
CS212:Data Structure

•Object Oriented Programming (OOP): What, Why,
How?
•Analyzing and Designing OO Programs (Objects &
Classes)
•Java Syntax, Java Program Skeleton
•Analyzing and Designing a Program
•Preparing Classes.

 Thinking of Objects!

 What is the form of “Things” in the world?

 Define an Object!!

It’s a thing that have a status and can perform functions

 An approach to the solution of problems in
which all computations are performed in
the context of objects.

◦ The objects are instances of classes, which:
 are data abstractions

 contain procedural abstractions that operate on the
objects

◦ A running program can be seen as a collection of
objects collaborating to perform a given task

 Object-Oriented Programming consists of 3
primary ideas:
◦ Data Abstraction and Encapsulation
 Operations on the data are considered to be part of the

data type

 We can understand and use a data type without knowing
all of its implementation details

 Neither how the data is represented nor how the operations
are implemented

 We just need to know the interface (or method headers) – how
to “communicate” with the object

 Compare to functional abstraction with methods

◦ Inheritance
 Properties of a data type can be passed down to a sub-

type – we can build new types from old ones

 We can build class hierarchies with many levels of
inheritance

◦ Polymorphism
 Operations used with a variable are based on the class of

the object being accessed, not the class of the variable

 Parent type and sub-type objects can be accessed in a
consistent way

 Procedural paradigm:
◦ Software is organized around the notion of procedures
◦ Procedural abstraction
 Works as long as the data is simple

◦ Adding data abstractions
 Groups together the pieces of data that describe some entity

 Helps reduce the system’s complexity.
 Such as Records and structures

 Object oriented paradigm:
◦ Organizing procedural abstractions in the context of data

abstractions

◦ Bird, Human and Fish are all Animals

◦ However, an Animal is not necessarily a Bird,
Human or Fish

Animal

Bird Human Fish

move()

move()

move()

 How To Define Objects in a Program?

 How dose objects interact?

 Classes What are they?

 Skeleton of a class

 Objects = nouns

 Functions to be encapsulated

 أفراحفندق به عدد من الغرف السكنية المخصصه للإيجار اليومي و صالات

 برنامج للحجزإعداد بالساعة المطلوب إجتمات كلها تؤجر قاعات و

 يمكن المستخدم القاعات المتوفره و أو للفندق بحيث يعرض للمستخدم الغرف

 حجز أحدهامن

 نظام الحجز

 مكان حجز

 غرفة قاعة صاله

 A class:
◦ A unit of abstraction in an object oriented (OO)

program

◦ Represents similar objects
 Its instances

◦ A kind of software module
 Describes its instances’ structure (properties)

 Contains methods to implement their behavior

 Two Main Sections
◦ Variables: can be a simple data type or another

Class

 Represent the State of the Class

 Define Data represented in an Class

 Associations

◦ Operations :A procedural abstraction used to
implement the behaviour of a class.

class Name {
 // Attributes
 Type Name;

 Constructor {
 }

 Setter {
 }
 Getter{
 }
 Operations{
 }
}

 Java is a programming language created by James

Gosling from Sun Microsystems in 1991. The first public

available version of Java (Java 1.0) was released 1995.

 The target of the Java programming language was that a

program can be written once and then runs on multiple

operating systems.

 The Java programming language consists out of a Java

compiler, the Java virtual machines, and the Java class

libraries.

 The Java virtual machine is a software implementation of a

computer that executes programs like a real machine.

 The Java virtual machine is written specifically for a

specific operating system.

 Java tries to deliver the promise of „Write once, run
everywhere“

 Characteristics:
Platform independent

Object-orientated programming language

Strongly-typed programming language

Interpreted and compiled language

Automatic memory management

Single inheriance

 The Java programming language is actively developed
via the Java Community Process (JCP)

 Watchout: Java is case-sensitive!!!

 Java applications are written
as text files

 The java compiler creates
platform independent code
which is called bytecode.

 Bytecode can be executed by
the java runtime
environment.

 The Java virtual machine is a
program which knows how to
run the bytecode on the
operating system the JRE is
installed upon.

 The JRE translates the
bytecode into native code,
e.g. the native code for Linux
is different then the native
code for Windows.

Java code

is compiled
to produce

byte code

run by Java
Virtual Machine
(JVM) to produce
results

public class Hello {

 public static void main(String args[])

 {

 System.out.println("Hello World”);

 }

} /* end of program */

 name of class is same as name of file (which
has .java extension)

 body of class surrounded by { }

 this class has one method called main
◦ all Java applications must have a main method in

one of the classes

◦ execution starts here

◦ body of method within { }

 all other statements end with semicolon ;

 keywords appear in bold
◦ reserved by Java for predefined purpose
◦ don’t use them for your own variable, attribute or

method names!

 public
◦ visibility could be private

 static
◦ the main method belongs to the Hello class, and

not an instance (object) of the class

 void
◦ method does not return a value

String name=“ALi”;
 name is a variable of type String
 we have to declare variables before we use

them
 unlike C, variables can be declared

anywhere within block
 use meaningful names numberOfBricks
 start with lower case
 capitalise first letter of subsequent words

 int 4 byte integer (whole number)
◦ range -2147483648 to +2147483648

 float 4 byte floating point number
◦ decimal points, numbers outside range of int

 double 8 byte floating point number
◦ 15 decimal digits (float has 7) so bigger precision

and range

 char 2 byte letter

 String string of letters

 boolean true or false (not 1 or 0)

 Java provides print methods in the class
System.out (don’t need to import)

 println(name);
◦ prints out what is stored in name, then goes to a

new line

 print(name);
◦ prints out what is stored in name, but does not

start a new line

 print("My name is " + name);
◦ put text in quotes
◦ use + to print more than one item

 methods break down large problems into
smaller ones

 your program may call the same method
many times
◦ saves writing and maintaining same code

 methods take parameters
◦ information needed to do their job

 methods can return a value
◦ must specify type of value returned

public static int addNums(int num1, int
num2)

{

 int answer = num1 + num2;

 return answer;

}

signature

body

visibility [static] returnType methodName(parameterList)

 visibility:
◦ public

 accessible to other objects and classes

◦ protected

 accessible to classes which inherit from this one

◦ private

 static keyword:
◦ use when method belongs to class as whole

 not object of the class

visibility [static] returnType methodName(parameterList)

 return type:
◦ specifies type of information returned

◦ can be a simple type

 int, float, double, char, String, boolean

◦ or a class

◦ if nothing returned, use keyword void

 method name:
◦ use meaningful name which describes what

method does!

 parameter list:
◦ information needed by method
◦ pairs of type name
◦ examples:

addNums(int num1, int num2)

drawPerson(boolean isBald, String name, int
numEarrings)

◦ use empty brackets if method has no parameters
printHeadings()

 use curly brackets to enclose method body

 all your code goes in here
◦ write it so the method does what you intended

 last line should return a value of
appropriate type
◦ must match type in method header

◦ nothing is executed after return statement

◦ if method returns void, can omit return statement

 method will automatically return at closing }

 methods will not run unless called from
elsewhere
◦ a statement in main() method could call another

method
◦ this method could call a third method

 class methods are called with the form:
ClassName.methodName(parameters);
◦ omit ClassName if called in same class

 method name and parameters must match the
method signature

 if the method returns a value, it can be stored in
a variable or passed to another method

public static void main(String args[])

{

 int input;

 input = Console.readInt("Number? ");

 System.out.print("Your number plus 3 is ");

 System.out.println(addNums(input, 3));

}

 Inheritance in Java is implemented by
extending a class
public class NewClass extends OldClass

{

 …

◦ We then continue the definition of NewClass as
normal

◦ However, implicit in NewClass are all data and
operations associated with OldClass

 Even though we don’t see them in the definition

 Read Chapter 1 of the Textbook.

 Install eclipse or any java editor you fancy.

 Start programming …

