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PHYS-505�
 The conservation laws in Quantum 
Mechanics	

Lecture-6!
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The conservation laws and the 
symmetries!

n  “In classical physics there are a number of quantities which are conserved
—such as momentum, energy, and angular momentum. Conservation 
theorems about corresponding quantities also exist in quantum mechanics. 
The most beautiful thing of quantum mechanics is that the conservation 
theorems can, in a sense, be derived from something else, whereas in 
classical mechanics they are practically the starting points of the laws. 
(There are ways in classical mechanics to do an analogous thing to what 
we will do in quantum mechanics, but it can be done only at a very 
advanced level.) In quantum mechanics, however, the conservation laws 
are very deeply related to the principle of superposition of amplitudes, and 
to the symmetry of physical systems under various changes.” (R. 
Feynmann)!
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The conservation laws and the 
symmetries!

n  Definition: A quantum mechanical quantity A is 
called conserved if its average value, at any of its 
states, remains constant with time.!

n  In quantum  mechanics the time evolution of 
the average of a physical quantity A is given 
by     !

i!
d A

dt
= A,H⎡⎣ ⎤⎦ +i!

∂A
∂t
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The conservation laws and the 
symmetries!

n  Thus for a conserved quantity (where  A does 
not depend on time):!

n  We can easily prove that !

n  A physical quantity which is conserved in 
classical physics is expected to be conserved 
in quantum physics as well.!

A,  H⎡⎣ ⎤⎦= 0 

An ,  H⎡
⎣

⎤
⎦= 0     (n ∈ N)
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The conservation laws and the 
symmetries!

n  The energy of a system is conserved only in 
the case where the potential is time 
independent. !

n  In the case where the potential depends on 
time we have for the time evolution of the 
Hamiltonian:!

d H

dt
=

∂H
∂t

= ∂V
∂t
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The conservation laws and the 
symmetries!

n  The time independence of the external potential is 
equivalent to a symmetry in time translation. This is 
because at any time you observe the field it is the 
same.!

n  So: conservation of energy is related to the symmetry in 
time translation.!

n  In a closed physical system, where the energy is 
conserved, the symmetry in time translation is 
obligatory! This is known as time homogeneity 
principle. For a closed, isolated system there is no 
meaning to talk about the beginning of time.!
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The conservation laws and the 
symmetries!

n  We start with the commutation relations for 
the components of the momentum:!

n  This is the well-known result from classical 
physics - a momentum component is 
conserved if the corresponding force 
component is zero.!

   
pi ,  H!" #$ = −i!

∂H
∂xi

= −i!
∂V
∂xi

= i!Fi       (i = x, y, z)
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The conservation laws and the 
symmetries!

n  But to have a force component zero this means that 
the potential does not depend on this component. 
This means that all the points that come as a result of 
a parallel translation along the direction of the 
specific component are physically identical. In other 
words the system has a translation symmetry along this 
direction.!

n  Conclusion: If a system has a translation symmetry 
along a direction, then the corresponding momentum 
component is conserved!
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The conservation laws and the 
symmetries!

n  For an isolated system of particles the total 
momentum is always conserved. But this discussion 
has another interesting dimension. It is related to the 
homogeneity of space. Let’s see the following example.!

n  Let’s consider a closed system of two particles 
(which for simplicity are limited to move along x-
axis). The homogeneity of space says that the 
potential interaction                   between them cannot 
depend on the absolute positions of the particles              
but only on their relative position                       i.e.  !

  
V x1,  x2( )

  x1,  x2

  x = x1 − x2

  
V x1,  x2( ) =V x1 − x2( ) =V x( )
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The conservation laws and the 
symmetries!

n  We can prove then that for the forces acting 
on the two particles              we have: !

n  This is the famous action-reaction principle or 
the 3rd Newton’s law!!

n  This law is a result of the homogeneity of 
space! !

n  Conclusion: The  translation symmetry is a 
consequence of space homogeneity!

!

  F1,  F2

  F1 = − F2
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The conservation of angular momentum!

n  We can prove for the components of the angular 
momentum the following relation:!

!
   Where       are the components of the torque          

exerted on the particle.!
  !
    Conclusion:  A component of the angular momentum is 

conserved only if the corresponding torque component is 
zero. !

   
li ,  H!" #$ = i!τ i       (i = x, y, z)

  τ i  τ
!
= r×F
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The conservation laws and the 
symmetries!

n  Let’s assume the direction along z-axis and let’s 
consider that the torque component along z-direction 
is zero. In this case the corresponding force 
component intersects the z-axis. But this can happen 
only if the equipotential surfaces are symmetrical 
around z axis. In other words if the potential has a 
rotational symmetry around z-axis.!

n  In the special case where the potential is central it has 
full rotational symmetry and thus all of the angular 
momentum components are conserved.!
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The conservation laws and the 
symmetries!

n  In vacuum space the three directions are 
physically equivalent (principle of the isotropy of 
space). !

n  This principle tells us that the potential 
interaction !

    cannot depend on the orientation of the vector 
r but only on its magnitude, i.e., to be central                   !

   
V r1,  r2( ) =V r1 − r2( ) =V r( )

   
V =V r1 − r2( ) =V r( )
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The conservation laws and the 
symmetries!

n  Conclusion:  In a closed system the 
conservation of angular momentum is a 
consequence of the isotropy of space.!
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Symmetry: The hydrogen molecular ion 
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 If the states |1⟩ and |2⟩ are reflected in the plane P-P, they go 
into |2⟩ and |1⟩, respectively. !
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Symmetry: The hydrogen molecular ion 

n  The reflection of the system can be represented by an 
operator P which has the following properties:!

n  Now we suppose that the the physics of the whole 
hydrogen molecular ion system is symmetrical. !
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P 1 = 2 ,     P 2 = 1

P = 0 1
1 0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
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Symmetry: The hydrogen molecular ion 
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At t=0 
ψ = 1

U 15,0( ) 1 At t=15s

ψ  = 2 / 3 1 + i 1/ 3 2

At t=0 
ψ = 2

U 15,0( ) 1 At t=15s

ψ  = 2 / 3 2 + i 1/ 3 1

A physical system is symmetric with respect to an operation when the!
 operator of this commutes with U, the operation of the passage of time. !
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Symmetry 
n  Incidentally, since for infinitesimal times ε we have !
!
!
    we can see the above discussion implies that:!
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U =1− iHε / !
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UH = HU ⇒ U ,H⎡⎣ ⎤⎦= 0



Symmetry and Conservation 

n  We can show that an operation which is a symmetry 
operation of the system produces only a multiplication by 
a certain phase, and then you know that the same 
property will be true of the final state—the same 
operation multiplies the final state by the same phase 
factor. !

n  That’s the basis of all the conservation laws of quantum 
mechanics. !
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Translation operator 
n  In quantum mechanics we have learned to associate a 

unitary operator U with an operation like translation or 
rotation. We have learned that for symmetry operations 
that differ infinitesimally from the identity 
transformation, we can write  

!
n  Where G is the Hermitian generator of the symmetry 

operator under question. Let us now suppose that the 
Hamiltonian H is invariant under U.   !
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U =1− iGε / !
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Translation operator 
n  Then this is equivalent to the following:!

n  Hence G is a constant of motion. For instance, if H is 
invariant under translation, then momentum is a 
constant of the motion; if H is invariant under rotation, 
then angular momentum is a constant of the motion.!
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U +HU = H ⇒ G,H"# $%= 0
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