
Control Structures
Sequential execution

– Statements executed in order

Transfer of control

– Next statement executed not next one in

sequence

 3 control structures (Bohm and Jacopini)

– Sequence structure

• Programs executed sequentially by default

– Selection structures

•if, if/else, switch

– Repetition structures

•while, do/while, for

Control Structures

C++ keywords

– Cannot be used as identifiers or variable names

C++ Keywords

Keywords common to the
C and C++ programming
languages

auto break case char const

continue default do double else

enum extern float for goto

if int long register return

short signed sizeof static struct

switch typedef union unsigned void

volatile while

C++ only keywords

asm bool catch class const_cast

delete dynamic_cast explicit false friend

inline mutable namespace new operator

private protected public reinterpret_cast

static_cast template this throw true

try typeid typename using virtual

wchar_t

Control Structures
Flowchart

– Graphical representation of an algorithm

– Special-purpose symbols connected by arrows

(flowlines)

– Rectangle symbol (action symbol)

• Any type of action

– Oval symbol

• Beginning or end of a program, or a section of code

(circles)

Control Structures

if Selection Structure
Selection structure

– Choose among alternative courses of action

– Pseudocode example:
If student’s grade is greater than or equal to 60

 Print “Passed”

– If the condition is true

• Print statement executed, program continues to next

statement

– If the condition is false

• Print statement ignored, program continues

– Indenting makes programs easier to read

• C++ ignores whitespace characters (tabs, spaces,

etc.)

 if Selection Structure

Translation into C++
If student’s grade is greater than or equal to 60

 Print “Passed”

 if (grade >= 60)

 cout << "Passed";

Diamond symbol (decision symbol)

– Indicates decision is to be made

– Contains an expression that can be true or false

• Test condition, follow path

if structure

– Single-entry/single-exit

if Selection Structure

Flowchart of pseudocode statement

A decision can be made on

any expression.

zero - false

nonzero - true

Example:

3 - 4 is true

if/else Selection Structure
if

– Performs action if condition true

if/else

– Different actions if conditions true or false

Pseudocode
if student’s grade is greater than or equal to 60

print “Passed”

else

 print “Failed”

C++ code
 if (grade >= 60)
 cout << "Passed";

else

 cout << "Failed";

if/else Selection Structure

Ternary conditional operator (?:)

– Three arguments (condition, value if true,

value if false)

Code could be written:
 cout << (grade >= 60 ? “Passed” : “Failed”);

Condition Value if true Value if false

if/else Selection Structure
Nested if/else structures

– One inside another, test for multiple cases

– Once condition met, other statements skipped

if student’s grade is greater than or equal to 90

 Print “A”

else

 if student’s grade is greater than or equal to 80

 Print “B”

 else

 if student’s grade is greater than or equal to 70

 Print “C”

 else

 if student’s grade is greater than or equal to 60

 Print “D”

 else

 Print “F”

if/else Selection Structure

Example

 if (grade >= 90) // 90 and

above

 cout << "A";

else if (grade >= 80) // 80-89

 cout << "B";

else if (grade >= 70) // 70-79

 cout << "C";

else if (grade >= 60) // 60-69

 cout << "D";

else // less than

60

 cout << "F";

if/else Selection Structure
Compound statement

– Set of statements within a pair of braces
 if (grade >= 60)

 cout << "Passed.\n";

else {

 cout << "Failed.\n";

 cout << "You must take this course

again.\n";

}

– Without braces,
cout << "You must take this course

again.\n";

always executed

Block

– Set of statements within braces

while Repetition Structure

Repetition structure

– Action repeated while some condition remains

true

– Psuedocode

while there are more items on my shopping list

 Purchase next item and cross it off my list

– while loop repeated until condition becomes

false

Example
int product = 2;

while (product <= 1000)

 product = 2 * product;

Formulating Algorithms

(Counter-Controlled Repetition)
Counter-controlled repetition

– Loop repeated until counter reaches certain

value

Definite repetition

– Number of repetitions known

Example

 A class of ten students took a quiz. The grades

(integers in the range 0 to 100) for this quiz are

available to you. Determine the class average

on the quiz.

fig02_07.cpp

(1 of 2)

 // Fig. 2.7: fig02_07.cpp

 // Class average program with counter-controlled repetition.

 #include <iostream>

 using namespace std;

 // function main begins program execution

 int main()

 {

 int total; // sum of grades input by user

 int gradeCounter; // number of grade to be entered next

 int grade; // grade value

 int average; // average of grades

 // initialization phase

 total = 0; // initialize total

 gradeCounter = 1; // initialize loop counter

fig02_07.cpp

(2 of 2)

fig02_07.cpp

output (1 of 1)

 // processing phase

 while (gradeCounter <= 10) { // loop 10 times

 cout << "Enter grade: "; // prompt for input

 cin >> grade; // read grade from user

 total = total + grade; // add grade to total

 gradeCounter = gradeCounter + 1; // increment counter

 }

 // termination phase

 average = total / 10; // integer division

 cout.setf (ios::fixed)

 cout.setf(ios::showpoint);

 cout.precision(2);

 // display result

 cout << "Class average is " << average << endl;

 return 0; // indicate program ended successfully

 } // end function main

 Enter grade: 98

 Enter grade: 76

 Enter grade: 71

 Enter grade: 87

 Enter grade: 83

 Enter grade: 90

 Enter grade: 57

 Enter grade: 79

 Enter grade: 82

 Enter grade: 94

 Class average is 81

The counter gets incremented each

time the loop executes.

Eventually, the counter causes the

loop to end.

Formulating Algorithms (Sentinel-Controlled Repetition)

 Suppose problem becomes:

 Develop a class-averaging program that will process an

arbitrary number of grades each time the program is run

– Unknown number of students

– How will program know when to end?

 Sentinel value

– Indicates “end of data entry”

– Loop ends when sentinel input

– Sentinel chosen so it cannot be confused with regular

input

• -1 in this case

Formulating Algorithms

(Sentinel-Controlled Repetition)
Many programs have three phases

– Initialization

• Initializes the program variables

– Processing

• Input data, adjusts program variables

– Termination

• Calculate and print the final results

– Helps break up programs for top-down

refinement

fig02_09.cpp

(1 of 3)

 // Fig. 2.9: fig02_09.cpp

 // Class average program with sentinel-controlled repetition.

 #include <iostream>

 #include <iomanip> // parameterized stream manipulators

 using namespace std;

 // sets numeric output precision

// function main begins program execution

int main()

 {

 int total; // sum of grades

 int gradeCounter; // number of grades entered

 int grade; // grade value

 double average; // number with decimal point for average

 // initialization phase

 total = 0; // initialize total

 gradeCounter = 0; // initialize loop counter

Data type double used to

represent decimal numbers.

fig02_09.cpp

(2 of 3)

 26

 27 // processing phase

 28 // get first grade from user

 29 cout << "Enter grade, -1 to end: "; // prompt for input

 30 cin >> grade; // read grade from user

 31

 32 // loop until sentinel value read from user

 33 while (grade != -1) {

 34 total = total + grade; // add grade to total

 35 gradeCounter = gradeCounter + 1; // increment counter

 36

 37 cout << "Enter grade, -1 to end: "; // prompt for input

 38 cin >> grade; // read next grade

 39

 40 } // end while

 41

 42 // termination phase

 43 // if user entered at least one grade ...

 44 if (gradeCounter != 0) {

 45 // calculate average of all grades entered

 47 average = static_cast< double >(total) / gradeCounter;

 48

static_cast<double>() treats total as a

double temporarily (casting).

Required because dividing two integers truncates the

remainder.

gradeCounter is an int, but it gets promoted to

double.

fig02_09.cpp

(3 of 3)

fig02_09.cpp

output (1 of 1)

 49 // display average with two digits of precision

cout.setf (ios::fixed);

cout.setf(ios::showpoint);

cout.precision(2);

50 cout << "Class average is " <<average << endl;

 52

 53 } // end if part of if/else

 54

 55 else // if no grades were entered, output appropriate message

 56 cout << "No grades were entered" << endl;

 57

 58 return 0; // indicate program ended successfully

 59

 60 } // end function main

 Enter grade, -1 to end: 75

 Enter grade, -1 to end: 94

 Enter grade, -1 to end: 97

 Enter grade, -1 to end: 88

 Enter grade, -1 to end: 70

 Enter grade, -1 to end: 64

 Enter grade, -1 to end: 83

 Enter grade, -1 to end: 89

 Enter grade, -1 to end: -1

 Class average is 82.50

setprecision(2)prints two digits past

decimal point (rounded to fit precision).

Programs that use this must include <iomanip>

fixed forces output to print

in fixed point format (not

scientific notation). Also,

forces trailing zeros and

decimal point to print.

Include <iostream>

Nested Control Structures
Problem statement

 A college has a list of test results (1 = pass, 2 =

fail) for 10 students. Write a program that

analyzes the results. If more than 8 students

pass, print "Raise Tuition".

Notice that

– Program processes 10 results

• Fixed number, use counter-controlled loop

– Two counters can be used

• One counts number that passed

• Another counts number that fail

– Each test result is 1 or 2

• If not 1, assume 2

fig02_11.cpp

(1 of 2)

 1 // Fig. 2.11: fig02_11.cpp

 2 // Analysis of examination results.

 3 #include <iostream>

 4 using namespace std;

 5 // function main begins program execution

 10 int main()

 11 {

 12 // initialize variables in declarations

 13 int passes = 0; // number of passes

 14 int failures = 0; // number of failures

 15 int studentCounter = 1; // student counter

 16 int result; // one exam result

 17

 18 // process 10 students using counter-controlled loop

 19 while (studentCounter <= 10) {

 20

 21 // prompt user for input and obtain value from user

 22 cout << "Enter result (1 = pass, 2 = fail): ";

 23 cin >> result;

 24

fig02_11.cpp

(2 of 2)

 25 // if result 1, increment passes; if/else nested in while

 26 if (result == 1) // if/else nested in while

 27 passes = passes + 1;

 28

 29 else // if result not 1, increment failures

 30 failures = failures + 1;

 31

 32 // increment studentCounter so loop eventually terminates

 33 studentCounter = studentCounter + 1;

 34

 35 } // end while

 36

 37 // termination phase; display number of passes and failures

 38 cout << "Passed " << passes << endl;

 39 cout << "Failed " << failures << endl;

 40

 41 // if more than eight students passed, print "raise tuition"

 42 if (passes > 8)

 43 cout << "Raise tuition " << endl;

 44

 45 return 0; // successful termination

 46

 47 } // end function main

fig02_11.cpp

output (1 of 1)

 Enter result (1 = pass, 2 = fail): 1

 Enter result (1 = pass, 2 = fail): 2

 Enter result (1 = pass, 2 = fail): 2

 Enter result (1 = pass, 2 = fail): 1

 Enter result (1 = pass, 2 = fail): 1

 Enter result (1 = pass, 2 = fail): 1

 Enter result (1 = pass, 2 = fail): 2

 Enter result (1 = pass, 2 = fail): 1

 Enter result (1 = pass, 2 = fail): 1

 Enter result (1 = pass, 2 = fail): 2

 Passed 6

 Failed 4

 Enter result (1 = pass, 2 = fail): 1

 Enter result (1 = pass, 2 = fail): 1

 Enter result (1 = pass, 2 = fail): 1

 Enter result (1 = pass, 2 = fail): 1

 Enter result (1 = pass, 2 = fail): 2

 Enter result (1 = pass, 2 = fail): 1

 Enter result (1 = pass, 2 = fail): 1

 Enter result (1 = pass, 2 = fail): 1

 Enter result (1 = pass, 2 = fail): 1

 Enter result (1 = pass, 2 = fail): 1

 Passed 9

 Failed 1

 Raise tuition

Assignment Operators
Assignment expression abbreviations

– Addition assignment operator

 c = c + 3; abbreviated to

c += 3;

Statements of the form
variable = variable operator

expression;

can be rewritten as

variable operator= expression;

Other assignment operators
d -= 4 (d = d - 4)

e *= 5 (e = e * 5)

f /= 3 (f = f / 3)

g %= 9 (g = g % 9)

Increment and Decrement Operators

 Increment operator (++) - can be used instead of c += 1

 Decrement operator (--) - can be used instead of c -= 1

– Preincrement

• When the operator is used before the variable (++c or –

c)

• Variable is changed, then the expression it is in is

evaluated.

– Posincrement

• When the operator is used after the variable (c++ or c-

-)

• Expression the variable is in executes, then the variable

is changed.

Increment and Decrement

Operators
 Increment operator (++)

– Increment variable by one

– c++

• Same as c += 1

Decrement operator (--) similar

– Decrement variable by one

– c--

Increment and Decrement

Operators
Preincrement

– Variable changed before used in expression

• Operator before variable (++c or --c)

Postincrement

– Incremented changed after expression

• Operator after variable (c++, c--)

Essentials of Counter-Controlled

Repetition
Counter-controlled repetition requires

– Name of control variable/loop counter

– Initial value of control variable

– Condition to test for final value

– Increment/decrement to modify control variable

when looping

fig02_16.cpp

(1 of 1)

 1 // Fig. 2.16: fig02_16.cpp

 2 // Counter-controlled repetition.

 3 #include <iostream>

 4 using namespace std;

 5 // function main begins program execution

 9 int main()

 10 {

 11 int counter = 1; // initialization

 12

 13 while (counter <= 10) { // repetition condition

 14 cout << counter << endl; // display counter

 15 ++counter; // increment

 16

 17 } // end while

 18

 19 return 0; // indicate successful termination

 20

 21 } // end function main

for Repetition Structure

General format when using for loops
for (initialization; LoopContinuationTest;

 increment)

 statement

Example
for(int counter = 1; counter <= 10;

counter++)

cout << counter << endl;

– Prints integers from one to ten

 No

semicolon

after last

statement

fig02_17.cpp

(1 of 1)

 1 // Fig. 2.17: fig02_17.cpp

 2 // Counter-controlled repetition with the for structure.

 3 #include <iostream>

 4 using namespace std;

 5 // function main begins program execution

 9 int main()

 10 {

 11 // Initialization, repetition condition and incrementing

 12 // are all included in the for structure header.

 13

 14 for (int counter = 1; counter <= 10; counter++)

 15 cout << counter << endl;

 16

 17 return 0; // indicate successful termination

 18

 19 } // end function main

for Repetition Structure

for loops can usually be rewritten as while

loops
initialization;

while (loopContinuationTest){

 statement

 increment;

}

 Initialization and increment

– For multiple variables, use comma-separated lists

for (int i = 0, j = 0; j + i <= 10;

j++, i++)

 cout << j + i << endl;

fig02_20.cpp

(1 of 1)

fig02_20.cpp

output (1 of 1)

 1 // Fig. 2.20: fig02_20.cpp

 2 // Summation with for.

 3 #include <iostream>

 4 using namespace std;

 // function main begins program execution

 9 int main()

 10 {

 11 int sum = 0; // initialize sum

 12

 13 // sum even integers from 2 through 100

 14 for (int number = 2; number <= 100; number += 2)

 15 sum += number; // add number to sum

 16

 17 cout << "Sum is " << sum << endl; // output sum

 18 return 0; // successful termination

 19

 20 } // end function main

 Sum is 2550

Examples Using the for Structure

Program to calculate compound interest
 A person invests $1000.00 in a savings account yielding 5

percent interest. Assuming that all interest is left on deposit

in the account, calculate and print the amount of money in

the account at the end of each year for 10 years. Use the

following formula for determining these amounts:

 a = p(1+r)

 p is the original amount invested (i.e., the principal),

r is the annual interest rate,

n is the number of years and

a is the amount on deposit at the end of the nth year

n

fig02_21.cpp

(1 of 2)

 1 // Fig. 2.21: fig02_21.cpp

 2 // Calculating compound interest.

 3 #include <iostream>

 #include <iomanip>

 11 using namespace std;

 12 using std::setw;

 13 using std::setprecision;

 14

 15 #include <cmath> // enables program to use function pow

 16

 17 // function main begins program execution

 18 int main()

 19 {

 20 double amount; // amount on deposit

 21 double principal = 1000.0; // starting principal

 22 double rate = .05; // interest rate

 23

<cmath> header needed for

the pow function (program

will not compile without it).

fig02_21.cpp

(2 of 2)

 24 // output table column heads

 25 cout << "Year" << setw(21) << "Amount on deposit" << endl;

 26

 27 // set floating-point number format

 28 cout << fixed << setprecision(2);

 29

 30 // calculate amount on deposit for each of ten years

 31 for (int year = 1; year <= 10; year++) {

 32

 33 // calculate new amount for specified year

 34 amount = principal * pow(1.0 + rate, year);

 35

 36 // output one table row

 37 cout << setw(4) << year

 38 << setw(21) << amount << endl;

 39

 40 } // end for

 41

 42 return 0; // indicate successful termination

 43

 44 } // end function main

pow(x,y) = x raised to the

yth power.

Sets the field width to at least

21 characters. If output less

than 21, it is right-justified.

switch Multiple-Selection

Structure
Test variable for multiple values

– Series of case labels and optional default case
 switch (variable) {

 case value1: // taken if variable == value1

 statements

 break; // necessary to exit switch

 case value2:

 case value3: // taken if variable == value2 or ==

value3

 statements

 break;

 default: // taken if variable matches no other

cases

 statements

 break;

 }

do/while Repetition Structure

Similar to while structure

– Makes loop continuation test at end, not

beginning

– Loop body executes at least once

Format
do {

 statement

} while (condition);

fig02_24.cpp

(1 of 1)

fig02_24.cpp

output (1 of 1)

 1 // Fig. 2.24: fig02_24.cpp

 2 // Using the do/while repetition structure.

 3 #include <iostream>

 4 using namespace std;

 8 // function main begins program execution

 9 int main()

 10 {

 11 int counter = 1; // initialize counter

 12

 13 do {

 14 cout << counter << " "; // display counter

 15 } while (++counter <= 10); // end do/while

 16

 17 cout << endl;

 18

 19 return 0; // indicate successful termination

 20

 21 } // end function main

 1 2 3 4 5 6 7 8 9 10

Notice the preincrement in

loop-continuation test.

break and continue Statements

break statement

– Immediate exit from while, for,

do/while, switch

– Program continues with first statement after

structure

Common uses

– Escape early from a loop

– Skip the remainder of switch

fig02_26.cpp

(1 of 2)

 1 // Fig. 2.26: fig02_26.cpp

 2 // Using the break statement in a for structure.

 3 #include <iostream>

 // function main begins program execution

 9 int main()

 10 {

 11

 12 int x; // x declared here so it can be used after the loop

 13

 14 // loop 10 times

 15 for (x = 1; x <= 10; x++) {

 16

 17 // if x is 5, terminate loop

 18 if (x == 5)

 19 break; // break loop only if x is 5

 20

 21 cout << x << " "; // display value of x

 22

 23 } // end for

 24

 25 cout << "\nBroke out of loop when x became " << x << endl;

Exits for structure when

break executed.

fig02_26.cpp

(2 of 2)

fig02_26.cpp

output (1 of 1)

 26

 27 return 0; // indicate successful termination

 28

 29 } // end function main

 1 2 3 4

 Broke out of loop when x became 5

break and continue Statements

continue statement

– Used in while, for, do/while

– Skips remainder of loop body

– Proceeds with next iteration of loop

while and do/while structure

– Loop-continuation test evaluated immediately

after the continue statement

for structure

– Increment expression executed

– Next, loop-continuation test evaluated

fig02_27.cpp

(1 of 2)

 1 // Fig. 2.27: fig02_27.cpp

 2 // Using the continue statement in a for structure.

 3 #include <iostream>

 using namespace std;

 8 // function main begins program execution

 9 int main()

 10 {

 11 // loop 10 times

 12 for (int x = 1; x <= 10; x++) {

 13

 14 // if x is 5, continue with next iteration of loop

 15 if (x == 5)

 16 continue; // skip remaining code in loop body

 17

 18 cout << x << " "; // display value of x

 19

 20 } // end for structure

 21

 22 cout << "\nUsed continue to skip printing the value 5"

 23 << endl;

 24

 25 return 0; // indicate successful termination

Skips to next iteration of the loop.

fig02_27.cpp

(2 of 2)

fig02_27.cpp

output (1 of 1)

 } // end function main

 1 2 3 4 6 7 8 9 10

 Used continue to skip printing the value 5

Logical Operators

Used as conditions in loops, if statements

&& (logical AND)

– true if both conditions are true

 if (gender == 1 && age >= 65)

 ++seniorFemales;

|| (logical OR)

– true if either of condition is true

 if (semesterAverage >= 90 || finalExam

>= 90)

 cout << "Student grade is A" << endl;

Logical Operators

! (logical NOT, logical negation)

– Returns true when its condition is false, &

vice versa
 if (!(grade == sentinelValue))

 cout << "The next grade is " << grade

<< endl;

Alternative:
 if (grade != sentinelValue)

 cout << "The next grade is " << grade

<< endl;

