Experiment 4: Creatinine estimation and creatinine clearance tests

METHOD:

1-Set up a series of test tube as follows:

Chemical	Standard(serum)		Test (serum)		Standard (Urine)		Test (urine)		Blank
	(A)	(B)	(C)	(D)	(A)	(B)	(E)	(F)	
Water	1.5 ml	1.5 ml	1.5 ml	1.5 ml	1.5 ml	1.5 ml	1.5 ml	1.5 ml	2 ml
Standard(serum)	0.5 ml	0.5 ml	-	-	-	-	-	-	-
Serum Sample	-	-	0.5 ml	0.5 ml	-	-	-	-	-
Standard(Urine)	-	-	-	-	0.5 ml	0.5 ml	-	-	-
Urine Sample	-	-	-	-	-	-	0.5 ml	0.5 ml	-
Picric acid	6 ml	6 ml	6 ml	6 ml	6 ml	6 ml	6 ml	6 ml	6 ml

²⁻ Cove the tubes with foil and Mix well

- 3-Immerse the Tubes carefully in the boiling water bath for 40 seconds., then cool it under tape
- 4-Set another 8 test tube labeled A- D twice and transfer 4 ml of each tube into the new set.
- 5- Pipette 0.2 ml of NaOH to all tube
- 6- Let the tubes stand for 20 min.
- 7- Read the absorbance at 520 nm.

Results:

Tube	Standard(serum)		Test (serum)		Test (urine)		Standard(Urine)	
	(A)	(B)	(C)	(D)	(A)	(B)	(C)	(D)
Absorbance at 520 nm								
Average(Mean of Absorbance)								

- Calculations:
- Mean Absorbance of Standard =
- Mean Absorbance of Serum =
- Mean Absorbance of Urine =

Serum creatinine =	Mean Absorbance of Urine X	concentration of standard = mg / dl
_	Mean Absorbance of Standard	
Urinary creatinine	= Mean Absorbance of serum	X concentration of standard X D.F = mg / dl
	Mean Absorbance of Standard	
dilution factor= 100		
•	ormal range, convert from mg/dl	
Find the Creatinine	Clearance = if you know that the	Volume of urine in 24 h = 100 ml and $A=1.6 \text{ m}^2$
	3- A- Creatinine Cl	earance: = U.V/ P
<u>U is Urine creatinine</u>	2	
V is Volume of urine	<u>e in 24 h</u>	
<u>P is Serum creatinin</u>	<u>e</u>	
For example:		
<u>U = 488 mg/dl , P= 2</u>	2.32 mg/dl , U = 100 ml/24 h	
(488 mg/dl ÷2.32 mg	g/dl) × (100÷1440)= 14.6 ml/min	
14.6 ml/ min in 1.73	m ² find Cr.Cl in this person v	vho have a surface area = 1.6
(14.6 ×1.6)÷1.73= 1	3.5 /min/1.73m²	
	3- B- Creatinine Clearance: =	(U XV X1.73)/ (P X 1440 X A)

 $(488 \text{ mg/dl} \times 100 \times 1.73)/(2.32 \times 1440 \times 1.6) = 15.7 \text{ ml/min } / 1.73 m^2$

Normal creatinine clearance= 100-130 ml/min/1.73m²