BCH 445- Biochemistry of Nutrition [Practical] Estimation of Total phenolic content in different plants

Free radicals

- Free radicals are those particles and molecules that cause damage to the body's cells and essential fatty acids by their ready reactivity and oxidizing ability.
- This characteristic is defined by their unpaired electron in an outer orbit.
- Many radicals are <u>unstable and highly reactive</u>. They can either <u>donate an electron to or accept</u> an electron from other molecules, therefore behaving as <u>oxidants or reductants</u>.
- These free radical molecules are released during the <u>normal metabolic process of oxidation</u>.

Sources of free radicals

- Free radicals come from a wide variety of sources but mainly our diet.
- The biggest source of ingested free radicals is probably fried foods and heated cooking oils,
 e.g. potato crisps/chips, French fries, onion rings etc. (fried in vegetable oils which oxidizes readily into free radicals).

Oxidative stress

- Oxidative stress is an imbalanced state when excessive amounts of free radicals are produced or antioxidant capacity is decreased, leading to oxidation of a varieties of biomacromolecules, such as enzymes, proteins, DNA and lipids.
- Oxidative stress involve in the development of chronic diseases including coronary heart disease,
 cancer, Alzheimer's and aging.

Antioxidants

- Antioxidants are defined as compounds that can <u>delay, inhibit, or prevent</u> the oxidation of oxidizable materials by scavenging free radicals and diminishing oxidative stress.
- Fruits and vegetables contain a wide variety of <u>free-radical scavenging molecules</u>, including phenolic compounds, carotenoids, and vitamins A,C and E.

Phenolic compounds

- Phenolics are compounds possessing one or more aromatic rings with one or more hydroxyl groups.
- Plant phenolic compounds are extremely heterogeneous and may range from simple <u>phenolic</u>
 molecules to highly polymerized compounds
- Studies have shown that consumption of food rich in phenolics can slow the progression of various debilitating diseases.
- Polyphenols include flavonoids, phenolic acids and tannins.

Phenolic compounds

- The antioxidant activity of phenol is mainly related to <u>redox properties</u>.
- Tea remains one of the most popular beverages world-wide and contains a variety of phenolic compounds which are potent antioxidants.

Phenolic antioxidant mechanism

Practical Part

Objective:

Determination of total phenolic content in green tea and black tea.

Principle

- In this method, we will use a colorimetric method, the Folin-Ciocalteu assay, to quantify the total phenolic content of the samples.
- The <u>oxidation</u> of a phenolate ion from the sample and the <u>reduction</u> of the phosphotungstic-phosphomolybdic reagent which known as Folin-Ciocalteu, the result of this reduction produce a <u>blue complex</u> that absorb light at <u>650nm</u>.

Principle cont.

The reaction must take place under alkaline conditions in order to aid with the <u>uptake of oxygen</u> by the phenol, which occurs most efficiently near the pka (approximately 10) of the phenol, and this is done by the addition of sodium carbonate.

Method

Tubes	Catechol standard 5mg/100ml	Samp le	Dist. H ₂ O (ml)	Folin- Ciocalteu reagent (ml)		Na ₂ CO ₃ (ml)
I	0.2		3.8			
2	0.4		3.6			
3	0.6		3.4		Wait	
4	0.8		3.2		3 min	
5	I		2	0.5 ml		2 ml
6	1.2		2.8			
7	1.4		2.6			
Black tea		0.1	3.9			
Green tea		0.1	3.9			

- Mix thoroughly and measure the absorbance at 650 nm against a reagent blank.
- Prepare a standard curve using different concentrations of catechol

Results

Tubes	Absorbance at 650 nm	Concentration mg/dl
I		
2		
3		
4		
5		
6		
7		
Black tea		
Green tea		

Calculations

■ The result you got from the curve x dilution factor = A

```
A \times 1 dl \rightarrow ...B...
```

$$\mathbf{B} \rightarrow 2 \text{ grams}$$

■ Phenol content=.....mg/100 g