

Objectives

- 1. To determine the blood group according to the ABO system.
- 2. To test for the availability of the Rh factor (D antigen).

Blood Group Substances

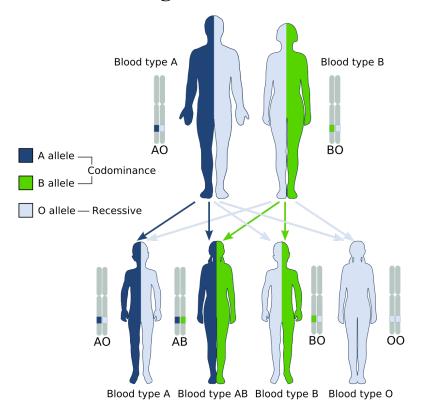
- The differences in human blood are due to the presence or absence of certain protein molecules called **antigens** and **antibodies**.
- The **antigens** are glycoproteins located <u>on the surface of the red blood cells.</u>
- The **antibodies** are proteins present in the plasma to attack foreign antigens, resulting in clumping (agglutination).
- ABO blood grouping consists of:
 - 1. Two antigens (A & B) on the surface of the RBCs
 - 2. Two antibodies in the plasma (anti-A & anti-B)

ABO Blood Type System

- The ABO blood type system is the **major** blood type classification system.
- The **four blood types** in the ABO system (A, B, AB, and O) refer to different versions of **glycoproteins** which are <u>present on the surface of RBCs.</u>

Blood Types:

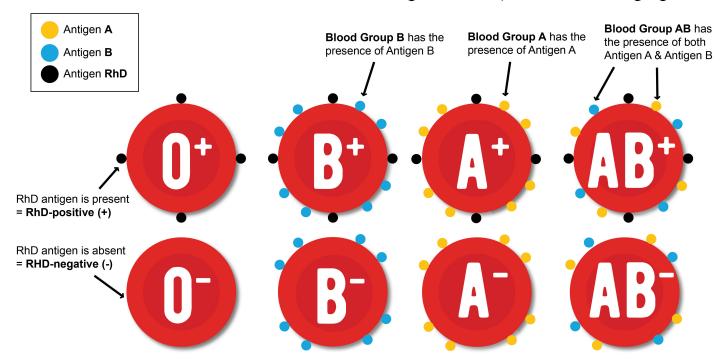
Blood Type	Surface antigens	Plasma antibodies	
Type A	A-surface antigens	Anti-B	\Diamond
Type B	B-surface antigens	Anti-A	0
Type AB	A and B antigens	No antibodies	
Type O	No surface antigens	Anti-A and anti–B	


Importance of The ABO System

- Blood group antigens must be determined to secure a safe practice of blood transfusion.
- They are also useful in determining familial relationships in forensic medicine.

Genetics of Blood Types

- Individuals inherit a **gene** which codes for specific antigen(s) to be added to the red cell.
- You have two copies of this gene, one inherited from your mother and the other inherited from your father.
- There are 3 versions 'alleles' for blood type: A, B & O.
- Since we have **2 genes**, there are **6 possible combinations**.
- The A and B genes are dominant and the O gene is recessive.


Father	Mother		Genotypes	Blood type	Antibody Present	
	A	В	o			
A AA	AB	AO	A+A	A	Anti-B	
			A+O	A	Anti-B	
				A+B	AB	None
В	BA	BB	BO	B+B	В	Anti-A
			B+O	В	Anti-A	
	0.4	OD	0.0	O+O	О	Anti A&B
О	OA	OB	00			

Codominance

Is a condition in which the alleles of a gene pair in a heterozygote are fully expressed thereby resulting in offspring with a phenotype that is neither dominant nor recessive.

Rhesus Blood Group

- First studied in <u>rhesus</u> monkeys.
- Is the <u>second most significant</u> blood group system in human transfusion.
- The D antigen (RhD) is the most important.
- If it is present on RBCs' surface, the blood is RhD positive (~80% of the population), if not it's RhD negative.

Some people in group A will have it, and will therefore be classed as A+ (or A positive), while the ones that don't, are A- (or A negative) and so it goes for groups B, AB and O.

Rh Blood Group Transfusion

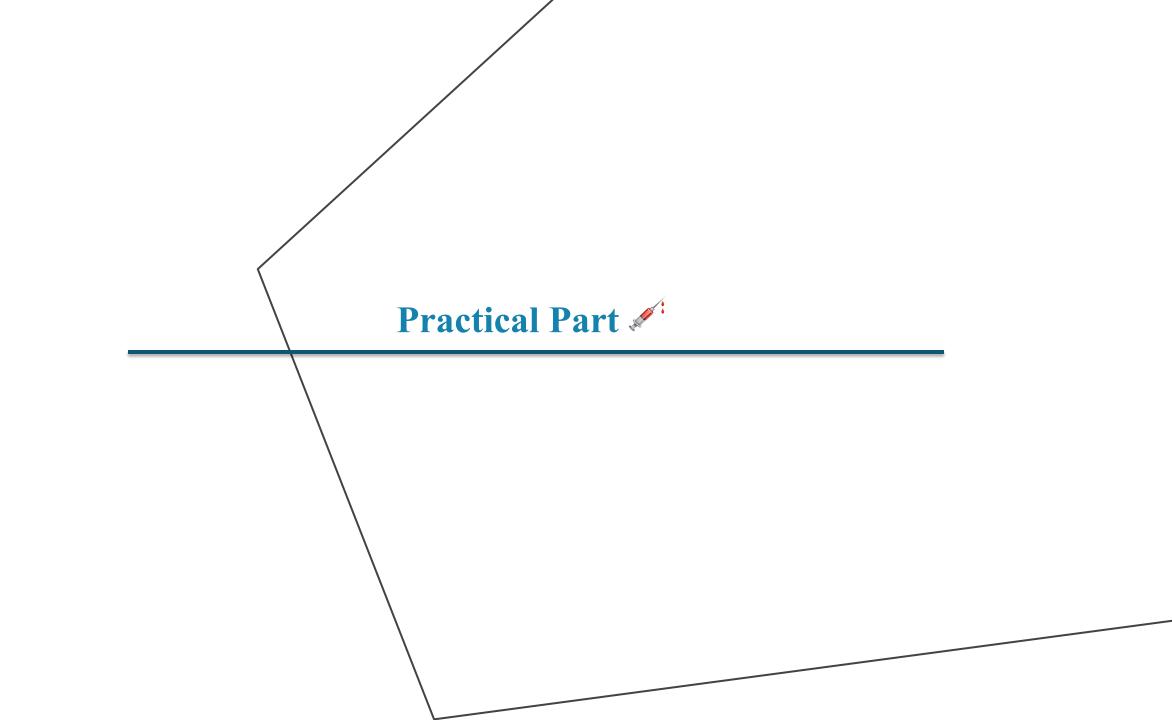
- A person with Rh⁺ blood can receive blood from a person with Rh- blood without any problems.
- A person with Rh⁻ blood can develop Rh antibodies in the blood plasma if he or she receives blood from a person with Rh+ blood, whose Rh antigens can trigger the production of Rh antibodies.

Blood Types Compatibility

Red Blood Cells Compatibility Table

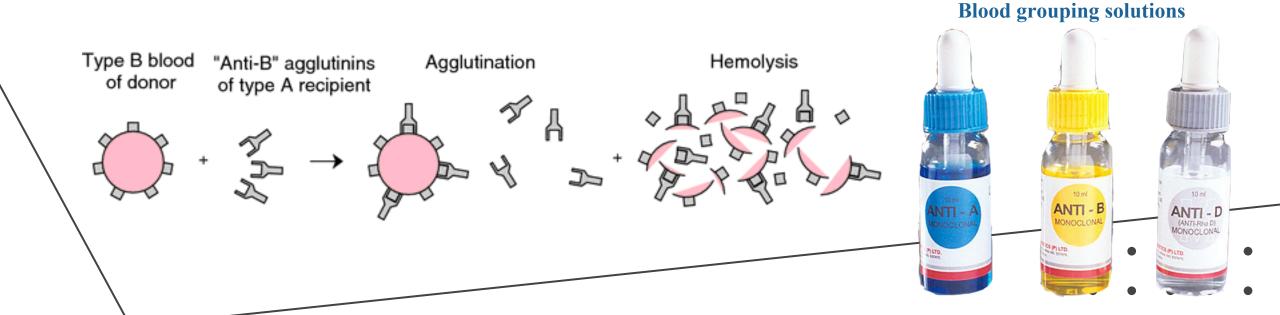
Recipient	Donor							
	0-	0+	A -	A+	B-	B+	AB-	AB+
0-	1	X	X	X	X	X	X	X
0+	1	1	X	X	X	X	X	X
A-	1	X	1	X	X	X	X	X
A+	1	1	1	1	×	X	X	X
B-	1	X	X	X	1	X	X	X
B+	1	1	X	X	1	1	X	X
AB-	1	X	1	X	1	X	1	X
AB+	1	1	1	1	1	1	1	1

Universal Recipient

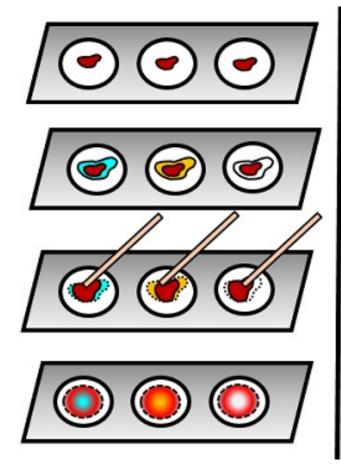

Universal Donor

Hemolytic Disease of The Newborn (HDN)

- Also called, **Erythroblastosis Fetalis** a **hemolytic anemia** in the fetus or neonate, caused by trans-placental transmission of maternal antibodies to fetal RBCs.
- Mother is Blood type Rh⁻, Father and fetus are Rh⁺.
- **First pregnancy** = Sensitization at delivery due to hemorrhage.

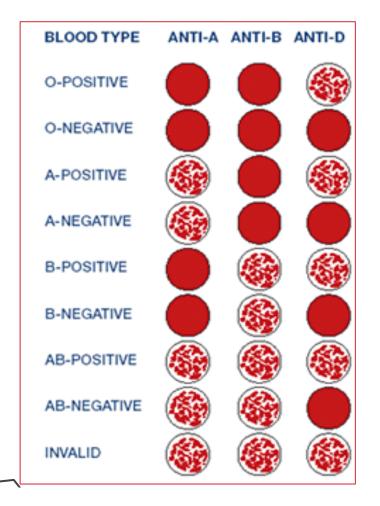

• Second pregnancy = Mother produce anti-Rh IgG antibodies that cross placenta to attack fetal RBCs leading to

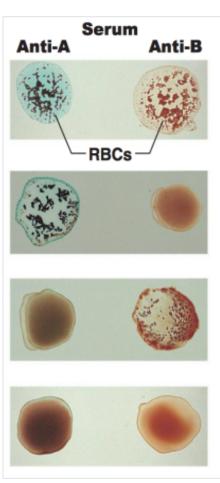
hemolysis. later pregnancy with during pregnancy at delivery months later Rh-positive baby Rh-positive father invading Rh-negative Rh-positive mother blood cells cause the Rh-positive Rh-negative Rh antibodies Rh antibodies production of mother with baby's blood remain in attack the Rh antibodies Rh-positive mother's Rh-positive cells enter mother's baby's blood baby bloodstream bloodstream cells, causing © Encyclopædia Britannica, Inc. Rh disease



Principle of Test

- The ABO and Rh blood grouping system is based on agglutination reaction.
- Agglutination is the reaction between antigens present on red blood cells and antibodies present in serum resulting in visible clumping.
- Agglutination occurs if an <u>antigen is mixed with its corresponding antibody</u>, i.e. occurs when A antigen is mixed with anti-A or when B antigen is mixed with anti-B.




Procedure

- 1.Add three drops of blood in a clean glass slide
- 2.Add antisera A, B and D sequentially to the 1st, 2nd and 3rd drop of blood
- 3.Properly mix the antisera with the blood by separate toothpicks
- 4.Allow to stand for 2-3 minutes and note down the result on the basis of clump formation

Results

- If the agglutination occurs in the RBCs to which **both**anti-A and B is added, then the **blood group** is 'AB'.
- If the agglutination occurs in the RBCs to which anti A is added, then the blood group is 'A'.
- If agglutination occurs in the RBCs to which anti-B is added, then the blood group is 'B'.
- If there is **no agglutination occurs** in the RBCs, then the **blood group** is 'O'.
- If the **agglutination occurs** in the RBCs to which **anti-D** is **added**, then the blood type is **positive** (+) whereas if **no agglutination** occurs in the RBCs to which anti-D is added, then the blood type is **negative** (-).