King Saud University
College of Computer & Information Science
CSC111 - Lab09
Objectss - IIII -
All Sections

Instructions

Web-CAT submission URL:
http://10.131.240.28:8080/Web-CAT/WebObjects/Web-

CAT.woa/wa/assignments/eclipse

Objectives:

To apply class abstraction to develop software.

To design programs using the object-oriented paradigm.

To use UML graphical notation to describe classes and objects.
To demonstrate how to define classes and create objects.

To create objects using constructors.

To access objects via object reference variables.

To define a reference variable using a reference type.

To access an object’s data and methods using the object member
access operator (.).

To define data fields of reference types and assign default values
for an object’s data fields.

To distinguish between instance and static variables and methods.
To learn how to use static constant data members.

To define private data fields with appropriate getter and setter
methods.

To learn when and how to define private methods.

To encapsulate data fields to make classes easy to maintain



To develop methods with object arguments and differentiate
between primitive-type arguments and object-type arguments

To use the keyword this to refer to the calling object itself.

To combine logic (conditionals and loops) with objects.

To learn that most of program logic in OOP goes inside classes.
To learn how to write private helper methods.

To learn how a method of an object calls another method of the
same object.



Lab Exercise 1

Part1
Design a class named Ball class that models a moving ball. The class
contains:

* Two properties X, Y which maintain the position of the ball in a
two-dimensional space as double values.

* Two propertiesdistTraveledX anddistTraveledY
that keep the total distance traveled by current ball throughout all
of its moves on both x-axis and y-axis.

* MethodsgetX and getY that return the current position of the
ball.

* A method move, which changes x and y by the given xD1 sp and
yD1isp, respectively.

* TwomethodsgetDistTraveledX and

getDistTraveledY thatreturn the distance traveled by the

current ball throughout all of its moves on both x-axis and y-axis.

Start by drawing the UML for the class Ball.

public class Ball {

// data members

// define instance variables x, y
//distTraveledX,distTraveledY

/* modifiert datatype variable name*/
/* modifiert datatype variable name*/
/* modifiert datatype variable name*/
/* modifiert datatype variable name*/

// Getter for x getX()

//Getter for y getY()



// move x to the xDisp and y to yDisp
/*modifier */ /* returntype */ move(/* parameter xDisp
*/, /* parameter yDisp*/) {
// set x to xDisp and y to yDisp
distTraveledX += /* the difference between the old
position and the new position */
// update distTraveledY

}

Part 2

Add the following constructor to the class:

* A default constructor that sets position to (0, 0).
* A constructor that receives two parameters newX and newY that

represent current position of the ball.

public class Ball {
// data members

public Ball() {
// set x and y to zeros

}
public Ball(double newX, double newY) {

//set x to the newX
//set y to the newY
// Getter fro x getX()

//Getter fro y getY()

// move() function



Part 3

In this part, you will add static members which will help you to keep

track of all the balls. Add the following static properties and methods:

Two static properties totDistXAl1lBalls and
totDistYAL11Balls thatkeep the total distance traveled by
all balls throughout all of the moves on both x-axis and y-axis.
Static properties LastX and LastY which store the last
position of the most recent ball that has moved.

Two static methods getTotDistXALl1Balls and
getTotDistYAL1lBalls thatreturn the distance traveled

by all balls throughout all of the moves on both x-axis and y-axis.

public class Ball {

//
//
//
//
/*
/*
/*
/*

data members

non-static data members

define static variables totDistXAllBalls
, totDistYAllBalls, lastX and lastY
modifiertstatic datatype variable name*/
modifiertstatic datatype variable name*/
modifiertstatic datatype variable name*/
modifiertstatic datatype variable name*/

public Ball() {

// set x and y to zeros

}

public Ball(double newX, double newY) {

}
//

//

//set x to the newX
//set y to the newY

Getter fro x getX()

Getter fro y getY()

// Static getter getTotDistXAllBalls()
// Static getter getTotDistYAllBalls()



// move() function

Part 4

In this part you will define a new method to print the information of the ball and

modify the move method:

* Amethod toString, which returns the string "Ball @
(x,y)"

* Inthe move method, modify the method so that a ball must not
move if it is going to finish its movement in a position occupied by

another ball (Hint: use LastX and LastY to determine this. If

movement is allowed then change the values of LastX and

lastY).

After that write a program that does the following:

* [t creates a new ball with a position (2, 2).

* Then it moves the ball by (3, -2).

* Then it moves the ball by (2, -7).

* Then it creates a new ball with a position (0,0).

* Then it moves the ball by (7, -7). Notice that the second ball must
not move since it will otherwise occupy the same place occupied
by the first ball.

* Then it moves the ball by (2, 4).



* Finally, it prints the last position of the two balls using
toString method and the total distance traveled on both x-

axis and y-axis by each ball and by all balls.

import Jjava.util.Scanner;

public class TestBall {
public static void main(String[] args) {
// create a scanner
// create a new ball with postion x=2 and y=2
// move the ball by x=3 & y=-2
// move the ball by x=2 & y=-7
// create a new ball with a position(0, 0)
// move it by x=7 & y=-7

System.out.println(/#* print the two balls' info using
the toString() */);

}



Lab Exercise 2

You have been asked by Saudi Wildlife Authority to design a class

named Species to manage endangered species.

Part 1

Add the following requirements to the :
* Three data fields (properties) which are:
o name oftype String which stores name of species,
o population oftype 1nt which stores the current
population of the species and it can not be negative, and
o growthRate of type double which stores the growth
rate of the current population.

* Two constructors one with no arguments and one with new
arguments to be assigned. In the one with no arguments assign
all the properties to their default values (i.e. integers to 0,
doubles to 0.0 and Strings to “”).

* Amethod readInput () thatreads the values of data
members. The method must not allow the user to enter incorrect
population value. If this happens, it should keep asking for
correct value until the user enters it.

public class Species {

/* define the three data members name
, population and growthRate */

public Species() {
// assign each property to its default value

}

public Species(/* name, population and growthRate */)

{

// assign each property to its corresponding value



}
public void readInput() ({

// create a new Scanner
/* print a message prompting the user to enter
the values: name, population and growthRate */
name = keyboard.nextLine();
// read population from the user
while(population < 0) {
/* keep asking and reading the population
from the user and tell him that his input
for the population is invalid untill he enters
a valid input*/
}

// read growthRate from the user

}
Sample Run 1

What is the species' name?

Dinosaur 4

What is the population of the species?

-200 4

You entered an invalid population, please renter the
population of the species again?

200 €

Enter the growth rate (% increase per year):

0 &

Part 2

Now you have a class called species Add the following method to the

previous class:

 AmethodwriteQutput() that prints the data of the species.




 AmethodpredictPopulation(int years) that

returns the projected population of the species after the specified

number of years (which must be a non-negative number).

* Getter methods forname, population and
growthRate.

 AmethodsetSpecies(String newName, int
newPopulation, double newGrowthRate) that

sets values of receiving object to new data sent through

parameters. The method should print an error message and exit

the whole program if newPopulation is a negative number.

public class Species {
/* define the three data members name
, population and growthRate */
public Species() {
// assign each property to its default value

}
public Species(/* name, population and growthRate */)
{
// assign each property to its corresponding value
}
// readInput() function

public /* return type */ writeOutput() {
// return a summary of the specie

}

public /* return type */ predictPopulation(int years)

{
// check the value to make sure that it is not a
negative number

// If not return the population after "years"

}
// getter methods for name, population and growthRate

//setter for the name



public /* return type */ setSpecies(String newName,
int newPopulation, double newGrowthRate) {
// assign each property to its new corresponding
value
// if the newPopulation is print error and exit
the program

}
}

Sample Run 2

What is the species' name?

Houbara Bustard ¢

What is the population of the species?
900 4

Enter growth rate (% increase per year):
0.24

After 535 years, the population of Houbara Bustard will be
14354

Part 3

 Amethodequals(Species otherObject) that
compares this object to otherQbject. Two species objects
are equal if they have the same name ignoring the letter case.

« AmethodisPopulationLargerThan(Species
otherSpecies) thatreturns true if population of this object
is greater than the population of otherSpecies.

 Amethod 1sExtinct() thatreturns true if the population of

this object is 0, otherwise returns false.

public class Species {
/* define the three data members name




, population and growthRate */
public Species() {
// assign each property to its default value

}
public Species(/* name, population and growthRate */) {
// assign each property to its corresponding value

}

// readInput() function

// writeOutput() function

// predictPopulation() function

// getter methods for name, population and growthRate
// setSpecies() function

public boolean equals(Species otherObject) {
return (this.name.equals(otherObject.name) && /*
population comparison&&growthRate comparison */)

public /* return type */ isPopulationLargerThan(Species
otherSpecies) {
/* return true if population of this object is longer
than the population of the otherObject's population
or false otherwise */

public /* return type */ isExtinct() {
// return true if population is less than 0 or
false otherwise

}
}

Write a test program that checks if the population of an input species
chosen by the user could one day exceed that of Arabian Oryx.
* The program first reads the information of some species X.



* Then it checks if species X is extinct and if so it prints the
message "The species that you entered 1is
extinct” and exits.

* If species X is not extinct, then it checks if, given the current
population and growth rate of species X, its population will
surpass that of Arabian Oryx, given that the current population of
Arabian Oryx is 1000 and its growth rate is 0.25. If this could
happen then it prints after how many years this will happen.

* Ifuser enters Arabian Oryx then you should keep asking him to
enter a different species.

* Check if the population of specie X is surpasses that of Arabian
Oryx print after how many years this will happen.

* check if the population of specie X prediction is less than

Name your test class TestSpecies. Use a new separate file for the

test class.

public class TestSpecies {
public static void main(String[] args){
Species speciesX = new Species();
// read inputs using readInputs() method
/* check if species X is extinct and if so print the
message "The species that you entered is extinct” and
exits */

// create a new species call it arabianOryx
/* set its properties using the setSpecies method for
arabianOryx
to name: arabian Oryx, population: 1000 and
growthRate: 0.25 */
while(/* species X equals arabianOryx*/) {
/* print a message saying that the values the user
entered is equal to arabianOryx's values and ask



them to re-enter it again */
}
if(/* speciesX poplation is larger than arabianOryx's
*/)4
// priny a message indicating that specie
poplation is larger
telse{
if (speciesX.getGrowthRate() <= arabianOryx) {
/* print a message saying that speciesX
has a lower growthRate than arabianOryx
growthRate */
telse{
int years = 1;
while(/* while speciesX prediction is less
thanarbianOryx prediction*/) {
/* increase the number of "years" i.e. the
argument of the function predictPopulation*/

//print how many years it will take species
X to surpass Arbian Oryx

Sample Run 3

What is the species' name?

Arabian Oryx ¢

What is the population of the species?
1000 <

Enter growth rate (% increase per year):
0.25 4

You entered the Arabian Oryx species, please enter another
one:

What is the species' name?

Arabian Oryx ¢

What is the population of the species?




1000 <

Enter growth rate (% increase per year):

0.25 4

You entered the Arabian Oryx species, please enter another
one:

What is the species' name?

Blue Whale €

What is the population of the species?

500 4

Enter growth rate (% increase per year):

0.38 4

After 535 years, population of Blue Whale will surpass that

of Arabian Oryx.




Lab Exercise 3

(This exercise is extra and student should complete it at home)

We would like you to program a simple game called Oracle. The oracle
pretends that it knows the answer to any question. It starts by letting
the user ask a question. Then, it asks the user for an advice on how to
answer his question. Finally, it gives the user an answer to his question
based on the advice he gave to previous question. Let me give you a

sample run and then explain the program in detail.

Sample Run

I am the oracle. I will answer any one-line question.
What is your question?
What time is 1t? 4

Hmm, I need some help on that.
Please give me one line of advice.
Seek and you shall find the answer ¢
Thank you. That helped a lot.

You asked the question:

What time is 1it?

Now, here is my answer:

The answer is 1in your heart.

Do you wish to ask another question?
yes d

What is your question?

Am I gonna pass this course :(? ¢
Hmm, I need some help on that.
Please give me one line of advice.
Ask the professor

Thank you. That helped a lot.

You asked the question:

Am I gonna pass this course :(?
Now, here is my answer:




Seek and you shall find the answer
Do you wish to ask another question?
No
The oracle will now rest.

Design a class called Oracle that has the following members:
* Three instance data fields (we will see how to use these when we
explain the method members):

o oldAnswer oftype String which keeps the old answer
given by the user.

o newAnswer of type String where we store new answer
given by the user.

o question oftype String where we store the question
given by the user

* Four static data fields:

o WELCOME_MSG of type String that stores the intro string
given to user. The message is “I am the oracle. I
will answer any one-line question.”

o ADVICE_SEEKING_MSG of type String, which stores the
advice-seeking message given to user after each question,
he asks. The message is “Hmm, I need some help on
that.\nPlease give me one line of advice.”

o THANKS_YOU_MSG of type String that stores the thank
you message given to the user after he gives his advice. The
value is “Thank you. That helped a lot.”.

o GOODBYE_MSG of type String that stores the goodbye
message given to the user at the end of the program. The

valueis “The oracle will now rest.”.




* A method chat() which is the main method that runs the game
logic. In this method, we start by giving the welcome message
then we repeat the following tasks: (1) ask the user for his new
question, (2) do the game trick to answer the question and then
(3) check if the user wants to ask another question (i.e., repeat the
game) quit. To ask, process and answer a new question (i.e., (1)
and (2)), Method chat () delegates this task to method
answer (). Finally, the method prints the goodbye message.

* A method answer () that receives the user’s question and tries to
answer it. Method answer () first asks the user to enter his
question then calls method seekAdvice() to get an advice from
the user on how to answer the question. After that it uses the old
advice (i.e., old answer) given by the user to previous question to
answer the current question. At the first run, old answer is
initialized to the string “The answer is in your heart.”.
After that it calls the method update() to update the old answer
with the advice given by the user when method seekAdvice()
was called.

* A method seekAdvice() that asks the user for an advice on how
to answer his question. It then stores this advice as the new
answer and prints the thank you message. This advice/answer
will be used later on to answer the user’s next question. You
notice that this will achieve the game trick which is to answer the
user’s question using his previous answer.

* A method update() which stores the advice given by the user as

the old answer to be used later on to answer the next question.



Write a program called OracleDemo that runs the Oracle game by
creating an object of type Oracle and then calling the chat () method.
Notice that the program does not need to call any of the methods except
method chat (). This means that, except for method chat(), all other
methods should be private since they are called internally only. This
is a clear example that shows how, in Object Oriented Programming,
most of the program logic is implemented in the classes not the main

method.

import java.util.Scanner

public Oracle{

//data fields

private String oldAnswer = "The answer is in your
heart";

// intilize the other two Strigns newAnswer and question

private static final String WELCOME MSG = "I am the
oracle. " +

"I will answer any one-line question. ";

// intilize the other three static final Strings

THANKS SEEKING MSG, THANK YOU MSG and GOODBYE MSG

/* modifier */ /* return type */ chat() {
// print out the welcome message
// intilize a new scanner "keyboard"
String = response;
do {

// call answer method

// ask the user for if they wish to ask a new



question
// read the question and store it in response
}while(/* as long as response is equal to yes */);

// print out GOODBYE MSG
}

/* modifier */ /* return type */ answer() {

// prompt the user for the question

// intilize a new scanner "keyboard"

question = keyboard.nextLine();

// call seekAdvice()

// print out the question in the given sample format

// call the function update
}

/* modifier */ /* return type */ seekAdvice() {
// print out ADVICE SEEKING MSG
// intilize a new scanner "keyboard"
newAnswer = // read from keyboard

// print out THANK YOU_ MSG

/* modifier */ /* return type */ update() {

// assign old value to newAnswer

}

class OracleDemo({
public static void main(String[] args){
// create a new Orcle object

// call chat function



