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Abstract Equilibrium ratios play a fundamental role in understanding the phase behavior of

hydrocarbon mixtures. They are important in predicting compositional changes under varying tem-

peratures and pressures in the reservoirs, surface separators, and production and transportation

facilities. In particular, they are critical for reliable and successful compositional reservoir simula-

tion. Several techniques are available in the literature to estimate the K-values. This paper presents a

new model for predicting K values with genetic programming (GP). The new model is applied to

multicomponent mixtures. In this paper, 732 high-pressure K-values obtained from PVT analysis

of 17 crude oil and gas samples from a number of petroleum reservoirs in Arabian Gulf are used.

Constant Volume Depletion (CVD) and Differential Liberation (DL) were conducted for these

samples. Material balance techniques were used to extract the K-values of crude oil and gas com-

ponents from the constant volume depletion and differential liberation tests for the oil and gas

samples, respectively. These K-values were then used to build the model using the Discipulus soft-

ware, a commercial Genetic Programming system, and the results of K-values were compared with

the values obtained from published correlations. Comparisons of results show that the currently

published correlations give poor estimates of K-values for all components, while the proposed

new model improved significantly the average absolute deviation error for all components. The
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average absolute error between experimental and predicted K-values for the new model was 4.355%

compared to 20.5% for the Almehaideb correlation, 76.1% for the Whitson and Torp correlation,

84.27% for the Wilson correlation, and 105.8 for the McWilliams correlation.

ª 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

A phase is defined as that part of a system which is uniform in
physical and chemical properties, homogeneous in composi-
tion, and separated from other coexisting phases by a definite

boundary surface. The most important phases occurring in
petroleum production are the hydrocarbon liquid phase and
the gas phase. Water is also commonly present as an additional

liquid phase. Equilibrium ratios, more commonly known as K-
values, relate the vapor mole fraction, yi, to the liquid mole
fraction, xi, of a component i in a mixture,

Ki ¼ yi=xi ð1Þ

In a fluid mixture consisting of different chemical species at
high pressure, K-values are dependent on pressure, tempera-
ture, and the composition of the mixture.

The objective of this work is to evaluate the published

empirical correlations that could possibly be used for comput-
ing K-values for high-pressure systems, namely Wilson,
Whitson and Torp, McWilliams, and Almehaideb correlations,

using the experimental K-values extracted through material
balance techniques from PVT tests performed on Arabian Gulf
petroleum samples, and to develop a new model for the Ara-

bian Gulf crudes formulated using the Discipulus software.

2. Literature review

There are a number of methods for predicting k values. Usu-
ally these methods compute K-values explicitly or iteratively.
The explicit methods correlate K values with component

parameters (i.e., the critical properties) or the mixture param-
eters (i.e., the convergence pressure). Iterative methods based
on the equation of state (EOS) are usually tuned with binary
interaction parameters (Habiballah et al., 1996). In this paper,

we will focus on only four widely used correlations that are
applicable for high pressure K-values: Wilson, Whitson and
Torp, McWilliams, and Almehaideb correlations.

Wilson (Wilson, 1968) proposed a simplified expression in
the form

Ki ¼
Pci

P
exp 5:37ð1þ xiÞ 1� Tci

T

� �� �
ð2Þ

where Pci is the critical pressure of component i (psia), Tci is
the critical temperature of component i (�R), xi is the acentric

factor of component i, p is the system pressure (psia), T is the
system temperature (�R). This correlation is valid typically at
low pressures.

Whitson and Torp (1983) modified Wilson’s equation to

accommodate the compositional effects at high pressures by
incorporating the convergence pressure, Pk (psia), to obtain

Ki ¼
Pci

Pk

� �A�1
Pci

P

� �
exp 5:37Að1þ xiÞ 1� Tci

T

� �� �
ð3Þ

where
A ¼ 1� P� 14:7

Pk � 14:7

� �
ð4Þ

The convergence pressure, Pk, concept is based on the observa-

tion that if we hold a hydrocarbon mixture of a certain compo-
sition at a constant temperature and increase the pressure, then
the equilibrium values for all its components converge toward

a common value of unity at certain pressure called the conver-
gence pressure. In computing the high pressure K-values using
the Whitson–Torp correlation, one has to be careful not to use

the correlation for pressures above the convergence pressure.
DePriester (DePriester, 1953) presented K-value charts for

light hydrocarbons vs. pressure and temperature that are valid

up to around 6000 psi pressures or more. McWilliams (McWil-
liams, 1973) fitted these charts to the following polynomial
equation

lnK ¼ aT1

T2
þ aT2

T
þ aT3 þ ap1 ln pþ

ap2
p2
þ ap3

p
ð5Þ

where T in R and p in psia. aT1, aT2, aT3, aP1, aP2, and aP3 are
constants. McWilliams equation is valid from 365.7 R to 851.7

R and from 14.69 psia to 870.7 psia.
Almehaideb et al. (2003) proposed a correlation for UAE

crudes at high pressures. Their correlation was obtained by

modifying the McWilliams correlation but with the additional
term as a function of x used for the C7+ fraction only, and an
adjustment for the effect of composition similar to the one sug-
gested by Whitson and Torp. The developed equation is to bet-

ter fit the UAE data using multi-variable regression technique.

Ki ¼
Pci

Pk

� �A�1
Pci

P

� �
exp½A� k�i � ð6Þ

where

A ¼ 1� P� 14:7

Pk � 14:7

� �
ð7Þ

k�i ¼
aT1

T2
þ aT2

T
þ aT3 þ ap1 ln pþ

ap2
p2
þ ap3

p
þ ax

x
ð8Þ
3. Extracting K-values from CVD and DL tests

Experimental K-values can be extracted from three types of
PVT tests, namely differential liberation (DL) tests, constant

volume depletion (CVD) tests, and separation tests, provided
that the gas composition exiting the PVT cell is performed at
each pressure stage. The first two tests are normally carried

out at high pressures, approximating the reservoir conditions
for crude oil and gas condensate systems, respectively, while
the separation tests are carried out at pressures approaching

surface operating pressures.
To obtain the experimental K-values at high pressures, data

are extracted from the differential liberation and constant vol-
ume depletion using the material balance technique. It is clear

that the same methodology will be used in both cases, at high
and low pressures, but the equation that will be used for the



Table 1 Calculation of K-values form CVD data for well G1, pressure step from 3970 to 3559 psia and 245 K.

Data T = 245 K, Pd = 3970 psia,
P
rnp ¼ 0:0788 mol Calculations Vcell = 1.6692 cu ft, VL = 0.0678 cu ft,

Vg = 1.6014 cu ft, nv = 0.8791 cu ft ntk = 0.9212 cu ft

Comp. Mw zi yi Mw \ zi
P

Dn�pZi Mw \ yi zjk Xjk K

N2 28.01 0.0024 0.25 0.0672 0.0002 0.0700 0.0024 0.0001 20.292

CO2 44.01 0.0415 4.22 1.8264 0.0033 1.8572 0.0415 0.0324 1.2935

H2S 34 0.021 2.06 0.7140 0.0016 0.7004 0.0210 0.0256 0.8140

C1 16.04 0.7095 72.9 11.380 0.0565 11.693 0.7088 0.5365 1.3367

C2 30.07 0.0595 5.99 1.7892 0.0047 1.8012 0.0595 0.0572 1.0415

C3 44.1 0.0376 3.67 1.6582 0.0029 1.6185 0.0376 0.0467 0.7965

IC4 58.12 0.0091 0.87 0.5289 0.0007 0.5056 0.0091 0.0137 0.6518

NC4 58.12 0.0188 1.79 1.0927 0.0014 1.0403 0.0189 0.0325 0.5607

IC5 72.15 0.0081 0.75 0.5844 0.0006 0.5411 0.0081 0.0127 0.6243

NC5 72.15 0.0103 0.95 0.7431 0.0008 0.6854 0.0103 0.0194 0.5101

C6 84.89 0.0171 1.49 1.4516 0.0013 1.2649 0.0172 0.0308 0.5364

C7+ 130.13 0.0651 5.06 8.4715 0.0047 7.5952 0.0656 0.1926 0.3089

Nomenclature

aT; ap correlation parameters

Bo oil formation volume factor (bbl/STB)
Ki equilibrium ratio for component i
M molecular weight (lbm/lb mol)
n mole fraction

ngj j; mole fraction of gas separated in separator stage
based on 1 lb mol of feed

nLj mole fraction of liquid separated in pressure stage

j; based on 1 lb mol of feed
p pressure (psia)
SD percent standard deviation

AAD percent absolute average deviation
R universal gas constant
Rsj gas to oil ratio in pressure stage j where j 1/4 1, 2,

etc. SCF/STB

T temperature (oR)
V volume (ft3)
xi mole fraction of component i in liquid phase

yi mole fraction of component i in gas (vapor) phase
zi mole fraction of component i in feed

Greeks

qSTO density of stock-tank oil (lbm/ft3)
qor density of reservoir oil (lbm/ft3)
xi acentric factor for component i

Subscripts and superscripts

b bubble point
c critical
cell the PVT cell

d dew point
g gas
i component
k pressure stage

L liquid
o oil
p produced

r reservoir
v vapor
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extraction of the K-values for high pressures will be suitable
for the differential liberation and constant volume depletion

tests. The equations reported by McCain (William and McC-
ain, 1990) and Whitson and Torp (1983) will be used as the
starting point (Almehaideb et al., 2003).

An example of the calculations to extract K-values from
CVD laboratory data for one of the samples is shown in Table
1. Also, an example of the calculations to extract K-values

from DL laboratory data for one of the samples is shown in
Table 2.
4. Genetic programming

Genetic algorithms, evolution strategies and genetic program-
ming belong to the class of probabilistic search procedures
known as Evolutionary Algorithms that use computational

models of natural evolutionary processes to develop com-
puter-based problem solving systems. Solutions are obtained
using operations that simulate the evolution of individual

structures through mechanism of reproductive variation and
fitness based selection. Due to their reported robustness in
practical applications, these techniques are gaining popularity

and have been used in a wide range of problem domain. The
main difference between genetic programming and genetic
algorithm is the representation of the solution. Genetic pro-

gramming creates computer programs as the solution whereas
genetic algorithm creates a string of numbers to represent the
solution. Genetic programming is based on the Darwinian
principle of reproduction and survival of the fittest and ana-

logs of naturally occurring genetic operations such as cross-
over and mutation (Koza, 1997). Genetic programming uses
four steps to solve a problem (Koza, 1992):

(1) Generate an initial population of random compositions
of the functions and terminals (input) of the problem.



Figure 1 K-value form Wilson correlation.

Figure 2 K-value form Witson and Torp correlation.

Figure 3 K-value form McWilliams correlation.

Figure 4 K-value form Almehaideb correlation.

Table 2 Calculation of K-values form DL data for well O1 at pressure 3903 psia and 250 K.

Data Bo = 2.091 bbl/STB, Rs = 316 SCF/STB, qob = 37.145 lb/ft3 Calculation Mor = 71.93 lbm/lb mol, ng = 0.1368

Comp. Data Calculation

Mwt. zi yi xi Ki

N2 28.02 0.0022 0.0046 0.001819 2.5283

CO2 44.01 0.0386 0.049 0.036951 1.3261

H2S 34.08 0.0728 0.0594 0.074925 0.7928

C1 16.04 0.4476 0.6862 0.409763 1.6746

C2 30.07 0.0577 0.0599 0.057351 1.0444

C3 44.09 0.0454 0.037 0.046732 0.7917

I-C4 58.12 0.0122 0.0084 0.012803 0.6561

n-C4 58.12 0.0273 0.0177 0.028822 0.6141

I-C5 72.15 0.013 0.0075 0.013872 0.5407

n-C5 72.15 0.0163 0.0083 0.017569 0.4724

C6 84.79 0.0281 0.0115 0.030732 0.3742

C7+ 209.2832 0.2388 0.0505 0.26866 0.1880
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(2) Execute each program in the population and assign a fit-
ness value.

(3) Create a new offspring population of computer pro-

grams by copying the best programs and creating new
ones by mutation and crossover.
(4) Designation of the best computer program in the
generation.

5. Developed K-value correlation using genetic program

The Discipulus software, a commercial Genetic Programming

system, was used to correlate the new K-value correlation. Dis-
cipulus wrote computer programs from data given to it. These
given data were classified into ‘‘training data,’’ ‘‘validation



Figure 5 The best program fitness improvement with time.

Figure 6 The extracted vs. calculated K-value for training data from genetic program.

Figure 7 The K-value for training data from new correlation.
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data’’ and ‘‘testing data’’ that provided to Discipulus program.
These data files contained matched inputs and outputs data.

From them, Discipulus created models that allow us to predict
outputs from similar inputs. The models were created as
computer programs in Java, C, or assembler program. The
input data for our new correlation are:

� Pressure, psi
� Reservoir temperature, R
� Component molecular weight, lb/mole

� C7+ molecular weight, lb/mole
� Component boiling temperature, R
� Component critical temperature, R
� Component critical pressure, psi

� Component acentric factor
� Constant Pk

PK ¼ �2381:8542þ 46:341487ðMW � cÞC7þ

þ
X3
i¼1

ai½½ðMW � cÞC7þ
=ðT� 460Þ��i ð9Þ

where ðMWÞC7þ
¼ molecular weight of C7+, ðcÞC7þ

¼ specific
gravity of C7+, a1�a2 = correlation coefficient with the



Figure 8 The extracted vs. calculated K-value for validation data from genetic program.

Figure 9 The K-value for validation data from new correlation.
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following values, a1 = 6124.3049, a2 = �2753.2538,
a3 = 415.42049, T = reservoir temperature in Ro.
Figure 10 The extracted vs. calculated K-val
The extracted k-value data were classified into three semi-

equal groups, ‘‘training data,’’ ‘‘validation data’’ and ‘‘testing
data’’. After uploading the data files into the program with the
‘run’ command issued, the program gives different types of

data that show how the run in progress improved its
performance.

6. Results and discussion

Extracted K-values were statistically compared in this study
with the results predicted using the Wilson correlation, Whit-

son and Torp correlation, McWilliams correlation, Almehai-
deb correlation and the new correlation.

The following is a statistical comparison of the results
obtained by the four published correlations and the new corre-

lation with the extracted values of equilibrium ratios.
Figs. 1–4 provide a general comparison between experimen-

tal and calculated K-values for all components using the
ue for applied data from genetic program.



Figure 11 The K-value for applied data from new correlation.

Table 3 Statistical comparison of four correlations for all components using extracted data.

Wilson correlation Witson and Torp correlation McWilliams correlation Almehaideb correlation New correlation

AAE SD AAE SD AAE SD AAE SD AAE SD

84.27 170.43 76.12 130.99 105.83 95.59 20.5 34.04 4.355 0.2
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Wilson correlation, Whitson and Torp correlation, McWil-
liams correlation and Almehaideb correlation.

Fig. 5 shows how the fitness of the best program for the new
genetic correlation created by the genetic program was
improved with time. Fig. 6–11 show the match between the

extracted K-value and the predicted K-values from the new
genetic correlation.

Table 3 is a comparison of the statistical measures for the

four published correlations with the new correlation. It shows
a significant overall improvement in the predictions of K val-
ues using the new Almehaideb correlation over the Almehai-
deb correlation, the Wilson correlation, Whitson and Torp

correlation, and McWilliams correlation for the extracted
data.

The average absolute error (AAE) between extracted and

predicted K-values form the new correlation created by genetic
program was 4.355%, and the standard deviation (SD) was
0.2%. The C++ code of the genetic program to calculate the

new correlation was given in the appendix.
7. Conclusions

As a result of this study, the following conclusions can be
cited:

1. K-values extracted from the CVD and DL experiments
provided a direct comparison between experimental and
correlated K-values for Arabian Gulf crude oil at high
pressure.

2. K-values obtained from four correlations, namely the
Wilson correlation, Whitson and Torp correlation, McWil-

liams, and the Almehaideb correlation, are poorly
compared with the extracted K-values.

3. A new correlation Program, for the Arabian Gulf crude oil,

is proposed. The Discipulus software, a commercial
Genetic Programming system, was used to develop the
new K-value correlation program. It is based on the concept

of genetic algorithm.
4. The statistical comparison shows that the new correlation

compares favorably well with the results from the other

four correlations included in this study.
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Appendix A

This appendix gives the C++ code of the genetic program to
calculate the new correlation.



********************************** L70: cflag=(f[0] < f[0]);

#define TRUNC(x)(((x)>=0) ? floor(x): L71: f[0]=fabs(f[0]);

ceil(x)) L72: f[0]*=0.002621650695800781f;

#define C_FPREM (_finite(f[0]/f[1]) ? L73: f[0]/=0.1387641429901123f;

f[0]-(TRUNC(f[0]/f[1])*f[1]): f[0]/f[1]) L74: f[0]-=v[2];

#define C_F2XM1 (((fabs(f[0])<=1) && L75: f[0]*=f[0];

(!_isnan(f[0]))) ? (pow(2,f[0])-1): L76: tmp=f[0]; f[0]=f[0]; f[0]=tmp;

((!_finite(f[0]) && !_isnan(f[0]) && L77: f[0]/=v[8];

(f[0]<0)) ? -1: f[0])) L78: f[1]+=f[0];

L79: f[0]+=f[0];

float DiscipulusCFunction(float v[]) L80: f[0]+=f[0];

{ L81: f[0]=sqrt(f[0]);

long double f[8]; L82: f[0]-=v[2];

long double tmp = 0; L83: f[0]*=f[0];

int cflag = 0; L84: f[0]=sqrt(f[0]);

L85: f[0]=sqrt(f[0]);

f[0]=f[1]=f[2]=f[3]=f[4]=f[5]=f[6]=f[7]=0; L86: f[0]=sqrt(f[0]);

L87: f[0]*=1.258495330810547f;

L0: f[0]-=v[8]; L88: f[0]=sin(f[0]);

L1: f[0]+=v[7]; L89: f[1]/=f[0];

L2: f[0]=sin(f[0]); L90: f[1]/=f[0];

L3: f[0]/=-0.9636838436126709f; L91: if (cflag) f[0] = f[1];

L4: f[0]/=-1.907608032226563f; L92: tmp=f[0]; f[0]=f[0]; f[0]=tmp;

L5: tmp=f[1]; f[1]=f[0]; f[0]=tmp; L93: f[0]-=f[0];

L6: f[0]=sin(f[0]); L94: f[0]+=-0.494312047958374f;

L7: f[0]=fabs(f[0]); L95: f[0]-=v[2];

L8: f[0]=-f[0]; L96: f[0]=sin(f[0]);

L9: f[0]+=f[0]; L97: tmp=f[1]; f[1]=f[0]; f[0]=tmp;

L10: f[0]+=v[5]; L98: f[0]/=v[0];

L11: if (!cflag) f[0] = f[1]; L99: f[0]=fabs(f[0]);

L12: f[0]+=-1.364008665084839f; L100: f[0]-=f[1];

L13: f[0]+=f[0]; L101: f[0]-=f[1];

L14: f[0]*=f[1]; L102: f[0]-=f[1];

L15: tmp=f[1]; f[1]=f[0]; f[0]=tmp; L103: f[0]-=f[1];

L16: f[0]=-f[0]; L104: f[0]-=f[1];

L17: f[0]-=1.530829906463623f; L105: f[0]-=f[1];

L18: tmp=f[0]; f[0]=f[0]; f[0]=tmp; L106: if (!cflag) f[0] = f[0];

L19: tmp=f[0]; f[0]=f[0]; f[0]=tmp; L107: f[0]=fabs(f[0]);

L20: if (!cflag) f[0] = f[0]; L108: f[0]-=f[1];

L21: f[0]=fabs(f[0]); L109: f[0]-=f[1];

L22: f[0]=sin(f[0]); L110: f[0]-=f[1];

L23: f[0]=fabs(f[0]); L111: f[0]-=f[1];

L24: cflag=(f[0] < f[0]); L112: f[0]-=f[1];

L25: f[0]*=f[0]; L113: f[0]-=f[1];

L26: f[0]+=-1.427085638046265f; L114: f[0]-=f[1];

L27: f[0]/=f[0]; L115: f[0]-=f[1];

L28: tmp=f[0]; f[0]=f[0]; f[0]=tmp; L116: f[0]-=f[1];

L29: f[0]-=f[0]; L117: f[0]-=f[1];

L30: f[0]*=1.450522422790527f; L118: cflag=(f[0] < f[1]);

L31: cflag=(f[0] < f[0]); L119: f[1]-=f[0];

L32: f[0]=-f[0]; L120: f[0]-=v[5];

L33: f[0]=fabs(f[0]); L121: f[0]-=0.2877938747406006f;

L34: f[0]-=v[7]; L122: f[0]/=1.086833715438843f;

L35: f[0]*=f[0]; L123: f[0]=-f[0];

L36: f[0]/=v[0]; L124: f[1]+=f[0];

L37: f[0]=-f[0]; L125: f[0]/=-0.1401152610778809f;

L38: if (!cflag) f[0] = f[0]; L126: if (!cflag) f[0] = f[1];

L39: f[0]*=0.6342074871063232f; L127: f[0]+=v[0];

L40: cflag=(f[0] < f[0]); L128: f[0]=fabs(f[0]);

L41: f[0]=fabs(f[0]); L129: f[0]/=v[2];

L42: f[0]-=1.086833715438843f; L130: f[1]+=f[0];

L43: f[0]+=v[7]; L131: tmp=f[0]; f[0]=f[0]; f[0]=tmp;

L44: f[0]*=f[0]; L132: cflag=(f[0] < f[0]);

L45: f[0]*=-0.494312047958374f; L133: f[0]-=v[0];

L46: tmp=f[0]; f[0]=f[0]; f[0]=tmp; L134: f[0]/=v[6];
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L47: f[0]-=1.450522422790527f; L135: f[0]=sin(f[0]);

L48: f[0]/=v[4]; L136: f[0]*=1.530829906463623f;

L49: f[0]/=v[2]; L137: f[0]+=f[0];

L50: f[0]+=0.7790718078613281f; L138: f[0]/=0.2174909114837647f;

L51: cflag=(f[0] < f[1]); L139: f[0]+=f[0];

L52: f[1]*=f[0]; L140: f[1]-=f[0];

L53: f[1]-=f[0]; L141: f[0]+=f[0];

L54: f[0]=-f[0]; L142: f[0]-=f[0];

L55: f[0]-=v[4]; L143: f[0]=sin(f[0]);

L56: f[0]*=f[0]; L144: f[0]/=v[2];

L57: f[0]=cos(f[0]); L145: f[0]*=f[0];

L58: f[1]+=f[0]; L146: f[0]*=f[0];

L59: f[0]/=f[0]; L147: if (!cflag) f[0] = f[0];

L60: f[0]=fabs(f[0]); L148: if (cflag) f[0] = f[1];

L61: f[0]=cos(f[0]); L149: tmp=f[1]; f[1]=f[0]; f[0]=tmp;

L62: f[0]=-f[0]; L150: f[0]-=v[1];

L63: f[0]+=f[1]; L151: f[0]=fabs(f[0]);

L64: f[0]-=v[1]; L152: f[0]/=v[5];

L65: f[0]*=f[1]; L153:

L66: f[0]=fabs(f[0]); if (!_finite(f[0])) f[0]=0;

L67: f[0]=-f[0]; return f[0];

L68: f[0]+=f[0]; }

L69: tmp=f[1]; f[1]=f[0]; f[0]=tmp; **********************************

K-value program for crude oil components at high pressures 149
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