

JORDAN WEAK AMENABILITY AND ORTHOGONAL FORMS ON JB*-ALGEBRAS

FATMAH B. JAMJOOM ${ }^{1}$, ANTONIO M. PERALTA ${ }^{2 *}$ AND AKHLAQ A. SIDDIQUI ${ }^{1}$

Communicated by Y. Zhang

Abstract

We prove the existence of a linear isometric correspondence between the Banach space of all symmetric orthogonal forms on a JB*-algebra \mathcal{J} and the Banach space of all purely Jordan generalized Jordan derivations from \mathcal{J} into \mathcal{J}^{*}. We also establish the existence of a similar linear isometric correspondence between the Banach spaces of all anti-symmetric orthogonal forms on \mathcal{J}, and of all Lie Jordan derivations from \mathcal{J} into \mathcal{J}^{*}.

1. Introduction

Let φ and ψ be functionals in the dual of a C^{*}-algebra A. The assignment

$$
(a, b) \mapsto V_{\varphi, \psi}(a, b):=\varphi\left(\frac{a b+b a}{2}\right)+\psi\left(\frac{a b-b a}{2}\right)
$$

defines a continuous bilinear form on A which also satisfies the following property: given $a, b \in A$ with $a \perp b$ (i.e. $a b^{*}=b^{*} a=0$) we have $V_{\varphi, \psi}\left(a, b^{*}\right)=0$. A continuous bilinear form $V: A \times A \rightarrow \mathbb{C}$ is said to be orthogonal when $V(a, b)=0$ for every $a, b \in A_{s a}$ with $a \perp b$ (see [15, Definition 1.1]). A renowned and useful theorem, due to S . Goldstein [15], gives the precise expression of every continuous bilinear orthogonal form on a C^{*}-algebra.

[^0]Theorem 1.1. [15] Let $V: A \times A \rightarrow \mathbb{C}$ be a continuous orthogonal form on a C^{*}-algebra. Then there exist functionals $\varphi, \psi \in A^{*}$ satisfying that

$$
V(a, b)=V_{\varphi, \psi}(a, b)=\varphi(a \circ b)+\psi([a, b]),
$$

for all $a, b \in A$, where $a \circ b:=\frac{1}{2}(a b+b a)$, and $[a, b]:=\frac{1}{2}(a b-b a)$.
Henceforth, the term "form" will mean a "continuous bilinear form". It should be noted here that by the above Goldstein's theorem, for every orthogonal form V on a C^{*}-algebra we also have $V\left(a, b^{*}\right)=0$, for every $a, b \in A$ with $a \perp b$.

The applications of Goldstein's theorem appear in many different contexts ([5, 17]). Quite recently, an extension of Goldstein's theorem for commutative real C^{*}-algebras has been published in [14].

Making use of the weak amenability of every C*-algebra, U. Haagerup and N.J. Laustsen gave a simplified proof of Goldstein's theorem in [17]. In the third section of the just quoted paper, and more concretely, in the proof of [17, Proposition 3.5], the above mentioned authors pointed out that for every antisymmetric form V on a C^{*}-algebra A which is orthogonal on $A_{s a}$, the mapping $D_{V}: A \rightarrow A^{*}, D_{V}(a)(b)=V(a, b)(a, b \in A)$ is a derivation. Reciprocally, the weak amenability of A also implies that every derivation δ from A into A^{*} is inner and hence of the form $\delta(a)=\operatorname{adj}_{\phi}(a)=\phi a-a \phi$ for a functional $\phi \in A^{*}$. In particular, the form $V_{\delta}(a, b)=\delta(a)(b)$ is anti-symmetric and orthogonal.

The above results are the starting point and motivation of the present note. In the setting of C^{*}-algebras we shall complete the above picture showing that symmetric orthogonal forms on a C^{*}-algebra A are in bijective correspondence with the purely Jordan generalized derivations from A into A^{*} (see Section 2 for definitions). However, the main goal of this note is to explore the orthogonal forms on a JB^{*}-algebra and the similarities and differences between the associative setting of C^{*}-algebras and the wider class of JB^{*}-algebras.

In Section 2 we revisit the basic theory and results on Jordan modules and derivations from the associative derivations on C^{*}-algebras to Jordan derivations on C^{*}-algebras and JB^{*}-algebras. The novelties presented in this section include a new study about generalized Jordan derivations from a JB*-algebra \mathcal{J} into a Jordan Banach \mathcal{J}-module in the line explored in [24], [1, §4], and [7, §3]. We recall that, given a Jordan Banach \mathcal{J}-module X over a JB*-algebra, a generalized Jordan derivation from \mathcal{J} into X is a linear mapping $G: \mathcal{J} \rightarrow X$ for which there exists $\xi \in X^{* *}$ satisfying

$$
G(a \circ b)=G(a) \circ b+a \circ G(b)-U_{a, b}(\xi),
$$

for every a, b in \mathcal{J}, where

$$
U_{a, b}(x):=(a \circ x) \circ b+(b \circ x) \circ a-(a \circ b) \circ x \quad\left(x \in X^{* *}\right) .
$$

We show how the results on automatic continuity of Jordan derivations from a JB*-algebra \mathcal{J} into itself or into its dual, established by S. Hejazian, A. Niknam [19] and B. Russo and the second author of this paper in [26], can be applied to prove that every generalized Jordan derivation from \mathcal{J} into \mathcal{J} or into \mathcal{J}^{*} is continuous (see Proposition 2.1).

Section 3 contains the main results of the paper. In Proposition 3.8 we prove that for every generalized Jordan derivation $G: \mathcal{J} \rightarrow \mathcal{J}^{*}$, where \mathcal{J} is a JB*algebra, the form $V_{G}: \mathcal{J} \times \mathcal{J} \rightarrow \mathbb{C}, V_{G}(a, b)=G(a)(b)$ is orthogonal on the whole \mathcal{J}. We introduce the two new subclasses of purely Jordan generalized Jordan derivations and Lie Jordan derivations. A generalized derivation $G: \mathcal{J} \rightarrow \mathcal{J}^{*}$ is said to be a purely Jordan generalized derivation if $G(a)(b)=G(b)(a)$, for every $a, b \in \mathcal{J}$; while a Lie Jordan derivation is a Jordan derivation $D: \mathcal{J} \rightarrow \mathcal{J}^{*}$ satisfying $D(a)(b)=-D(b)(a)$, for all $a, b \in \mathcal{J}$.

Denote by $\mathcal{O} \mathcal{F}_{s}(\mathcal{J})$ the Banach space of all symmetric orthogonal forms on \mathcal{J}, and by $\mathcal{P} \mathcal{J} \mathcal{G} \operatorname{Der}\left(\mathcal{J}, \mathcal{J}^{*}\right)$ the Banach space of all purely Jordan generalized Jordan derivations from \mathcal{J} into \mathcal{J}^{*}. The mappings

$$
\begin{aligned}
& \mathcal{O} \mathcal{F}_{s}(\mathcal{J}) \rightarrow \mathcal{P} \mathcal{J G D} \operatorname{er}\left(\mathcal{J}, \mathcal{J}^{*}\right), \quad \mathcal{P} \mathcal{J} \mathcal{G} \operatorname{Der}\left(\mathcal{J}, \mathcal{J}^{*}\right) \rightarrow \mathcal{O} \mathcal{F}_{s}(\mathcal{J}), \\
& V \mapsto G_{V}, \quad G \mapsto V_{G},
\end{aligned}
$$

define two isometric linear bijections and are inverses of each other (cf. Theorem 3.6). Let now $\mathcal{O} \mathcal{F}_{a s}(\mathcal{J})$ and $\mathcal{L i e} \mathcal{J} \operatorname{Der}\left(\mathcal{J}, \mathcal{J}^{*}\right)$ denote the Banach spaces of all anti-symmetric orthogonal forms on \mathcal{J}, and of all Lie Jordan derivations from \mathcal{J} into \mathcal{J}^{*}, respectively. The mappings

$$
\begin{array}{ccc}
\mathcal{O} \mathcal{F}_{a s}(\mathcal{J}) \rightarrow \mathcal{L i e} \mathcal{J} \operatorname{Der}\left(\mathcal{J}, \mathcal{J}^{*}\right), & \mathcal{L i e} \mathcal{J} \operatorname{Der}\left(\mathcal{J}, \mathcal{J}^{*}\right) \rightarrow \mathcal{O} \mathcal{F}_{a s}(\mathcal{J}), \\
V & \mapsto D_{V}, & D \mapsto V_{D}
\end{array}
$$

define two isometric linear bijections and are inverses of each other (see Theorem 3.13).

We culminate the paper with a short discussion which shows that, contrary to what happens for anti-symmetric orthogonal forms on a C^{*}-algebra, the antisymmetric orthogonal forms on a JB*-algebra are not determined by the inner Jordan derivations from \mathcal{J} into \mathcal{J}^{*} (see Remark 3.15). It seems unnecessary to stress the high impact and deep repercussion of the theory of derivations on C^{*}-algebras and JB^{*}-algebras; the results in this note add a new interest and applications of Jordan derivations and generalized Jordan derivations on JB*algebras.

Throughout this paper, we habitually consider a Banach space X as a norm closed subspace of $X^{* *}$. Given a closed subspace Y of X, we shall identify the weak*-closure, in $X^{* *}$, of Y with $Y^{* *}$.

2. Derivations and generalized derivations in correspondence WITH ORTHOGONAL FORMS

A derivation from a Banach algebra A into a Banach A-module X is a linear map $D: A \rightarrow X$ satisfying $D(a b)=D(a) b+a D(b),(a \in A)$. A Jordan derivation from A into X is a linear map D satisfying $D\left(a^{2}\right)=a D(a)+D(a) a,(a \in A)$, or equivalently, $D(a \circ b)=a \circ D(b)+D(a) \circ b(a, b \in A)$, where $a \circ b=\frac{a b+b a}{2}$, whenever $a, b \in A$, or one of a, b is in A and the other is in X. Let x be an element of X, the mapping $\operatorname{adj}_{x}: A \rightarrow X, a \mapsto \operatorname{adj}_{x}(a):=x a-a x$, is an example of a derivation from A into X. A derivation $D: A \rightarrow X$ is said to be inner when it can be written in the form $D=\operatorname{adj}_{x}$ for some $x \in X$.

A well known result of S. Sakai (cf. [29, Theorem 4.1.6]) states that every derivation on a von Neumann algebra is inner.
J.R. Ringrose proved in [28] that every derivation from a C^{*}-algebra A into a Banach A-bimodule is continuous.

A Banach algebra A is amenable if every bounded derivation from A into a dual Banach A-bimodule is inner. Contributions of A. Connes and U. Haagerup show that a C^{*}-algebra is amenable if and only if it is nuclear ($[11,16]$). The class of weakly amenable Banach algebras is less restrictive. A Banach algebra A is weakly amenable if every bounded derivation from A into A^{*} is inner. U. Haagerup proved that every C^{*}-algebra B is weakly amenable, that is, for every derivation $D: B \rightarrow B^{*}$, there exists $\varphi \in B^{*}$ satisfying $D()=.\operatorname{adj}_{\varphi}$ ([16, Corollary 4.2]).

In [24] J. Li and Zh. Pan introduced a concept which generalizes the notion of derivation and is more related to the Jordan structure underlying a C*-algebra. We recall that a linear mapping G from a unital C*-algebra A to a (unital) Banach A-bimodule X is called a generalized derivation in [24] whenever the identity

$$
G(a b)=G(a) b+a G(b)-a G(1) b
$$

holds for every a, b in A. The non-unital case was studied in $[1, \S 4]$, where a generalized derivation from a Banach algebra A to a Banach A-bimodule X is defined as a linear operator $D: A \rightarrow X$ for which there exists $\xi \in X^{* *}$ satisfying

$$
D(a b)=D(a) b+a D(b)-a \xi b(a, b \in A) .
$$

Given an element x in X, it is easy to see that the operator $G_{x}: A \rightarrow X$, $x \mapsto G_{x}(a):=a x+x a$, is a generalized derivation from A into X. Clearly, every derivation from A into X is a generalized derivation. There are examples of generalized derivations from a C^{*}-algebra A into a Banach A-bimodule X which are not derivations, for example $G_{a}: A \rightarrow A$ is a generalized derivation which is not a derivation when $a^{*} \neq-a$ (cf. [6, comments after Lemma 3]).
2.1. Jordan algebras and modules. We turn now our attention to Jordan structures and derivations. We recall that a real (resp., complex) Jordan algebra is a commutative algebra over the real (resp., complex) field which is not, in general associative, but satisfies the Jordan identity:

$$
\begin{equation*}
(a \circ b) \circ a^{2}=a \circ\left(b \circ a^{2}\right) . \tag{2.1}
\end{equation*}
$$

A normed Jordan algebra is a Jordan algebra \mathcal{J} equipped with a norm, $\|$.$\| ,$ satisfying $\|a \circ b\| \leq\|a\|\|b\|, a, b \in \mathcal{J}$. A Jordan Banach algebra is a normed Jordan algebra whose norm is complete. A JB*-algebra is a complex Jordan Banach algebra \mathcal{J} equipped with an isometric algebra involution ${ }^{*}$ satisfying $\left\|\left\{a, a^{*}, a\right\}\right\|=\|a\|^{3}, a \in \mathcal{J}$ (we recall that $\left.\left\{a, a^{*}, a\right\}=2\left(a \circ a^{*}\right) \circ a-a^{2} \circ a^{*}\right)$. A real Jordan Banach algebra \mathcal{J} satisfying

$$
\|a\|^{2}=\left\|a^{2}\right\| \text { and, }\left\|a^{2}\right\| \leq\left\|a^{2}+b^{2}\right\|
$$

for every $a, b \in \mathcal{J}$ is called a JB-algebra. JB-algebras are precisely the self adjoint parts of JB^{*}-algebras [9, page 174]. A JBW*-algebra is a JB*-algebra which is a
dual Banach space (see $[18, \S 4]$ for a detailed presentation with basic properties).

Every real or complex associative Banach algebra is a real or complex Jordan Banach algebra with respect to the natural Jordan product $a \circ b=\frac{1}{2}(a b+b a)$.

Let \mathcal{J} be a Jordan algebra. A Jordan \mathcal{J}-module is a vector space X, equipped with a couple of bilinear products $(a, x) \mapsto a \circ x$ and $(x, a) \mapsto x \circ a$ from $\mathcal{J} \times X$ to X, satisfying:

$$
\begin{gather*}
a \circ x=x \circ a, a^{2} \circ(x \circ a)=\left(a^{2} \circ x\right) \circ a, \text { and, } \tag{2.2}\\
2((x \circ a) \circ b) \circ a+x \circ\left(a^{2} \circ b\right)=2(x \circ a) \circ(a \circ b)+(x \circ b) \circ a^{2}, \tag{2.3}
\end{gather*}
$$

for every $a, b \in \mathcal{J}$ and $x \in X$. When X is a Banach space and a Jordan \mathcal{J} module for which there exists $M>0$ satisfying $\|a \circ x\| \leq M\|a\|\|x\|$, we say that X is a Jordan-Banach \mathcal{J}-module. For example, every associative Banach A bimodule over a Banach algebra A is a Jordan-Banach A-module for the product $a \circ x=\frac{1}{2}(a x+x a)(a \in A, x \in X)$. The dual, \mathcal{J}^{*}, of a Jordan Banach algebra \mathcal{J} is a Jordan-Banach J-module with respect to the product

$$
\begin{equation*}
(a \circ \varphi)(b)=\varphi(a \circ b), \tag{2.4}
\end{equation*}
$$

where $a, b \in \mathcal{J}, \varphi \in \mathcal{J}^{*}$.
Given a Banach A-bimodule X over a C^{*}-algebra A (respectively, a Jordan Banach \mathcal{J}-module over a JB*-algebra \mathcal{J}), it is very useful to consider $X^{* *}$ as a Banach A-bimodule or as a Banach $A^{* *}$-bimodule (respectively, as a Jordan Banach \mathcal{J}-module or as a Jordan Banach $\mathcal{J}^{* *}$-module). The case of Banach bimodules over C^{*}-algebras is very well dealt with in the literature (see [12] or [7, $\S 3]$), we recall here the basic facts: Let X, Y and Z be Banach spaces and let m : $X \times Y \rightarrow Z$ be a bounded bilinear mapping. Defining $m^{*}\left(z^{\prime}, x\right)(y):=z^{\prime}(m(x, y))$ $\left(x \in X, y \in Y, z^{\prime} \in Z^{*}\right)$, we obtain a bounded bilinear mapping $m^{*}: Z^{*} \times X \rightarrow Y^{*}$. Iterating the process, we define a mapping $m^{* * *}: X^{* *} \times Y^{* *} \rightarrow Z^{* *}$. The mapping $x^{\prime \prime} \mapsto m^{* * *}\left(x^{\prime \prime}, y^{\prime \prime}\right)$ is weak* to weak* continuous whenever we fix $y^{\prime \prime} \in Y^{* *}$, and the mapping $y^{\prime \prime} \mapsto m^{* * *}\left(x, y^{\prime \prime}\right)$ is weak ${ }^{*}$ to weak ${ }^{*}$ continuous for every $x \in X$. One can consider the transposed mapping $m^{t}: Y \times X \rightarrow Z, m^{t}(y, x)=m(x, y)$ and the extended mapping $m^{t * * * t}: X^{* *} \times Y^{* *} \rightarrow Z^{* *}$. In this case, the mapping $x^{\prime \prime} \mapsto m^{t * * * t}\left(x^{\prime \prime}, y\right)$ is weak* to weak* continuous whenever we fix $y \in Y$, and the mapping $y^{\prime \prime} \mapsto m^{t * * * t}\left(x^{\prime \prime}, y^{\prime \prime}\right)$ is weak ${ }^{*}$ to weak* continuous for every $x^{\prime \prime} \in X^{* *}$.

In general, the mappings $m^{t * * * t}$ and $m^{* * *}$ do not coincide (cf. [2]). When $m^{t * * * t}=m^{* * *}$, we say that m is Arens regular. When m is Arens regular, its (unique) third Arens transpose $m^{* * *}$ is separately weak* continuous (see [2, Theorem 3.3]). It is well known that the product of every C^{*}-algebra A is Arens regular and the unique Arens extension of the product of A to $A^{* *} \times A^{* *}$ coincides with the product of its enveloping von Neumann algebra (cf. [12, Corollary 3.2.37]). Combining [2, Theorem 3.3] with [18, Theorem 4.4.3], we can deduce that the product of every JB^{*}-algebra \mathcal{J} is Arens regular and the unique Arens extension of the product of \mathcal{J} to $\mathcal{J}^{* *} \times \mathcal{J}^{* *}$ coincides with the product of $\mathcal{J}^{* *}$ given by [18, Theorem 4.4.3]. The literature contains some other results assuring that certain bilinear operators are Arens regular. For example, if every operator
from X into Y^{*} is weakly compact and the same property holds for every operator from Y into X^{*}, then it follows from [4, Theorem 1] that every bounded bilinear mapping $m: X \times Y \rightarrow Z$ is Arens regular. It is known that every bounded operator from a JB^{*}-algebra into the dual of another JB^{*}-algebra is weakly compact (cf. [10, Corollary 3]), thus given a JB*-algebra \mathcal{J}, every bilinear mapping $m: \mathcal{J} \times \mathcal{J} \rightarrow Z$ is Arens regular.

Let X be a Banach A-bimodule over a C^{*}-algebra A. Let us denote by

$$
\pi_{1}: A \times X \rightarrow X, \text { and } \pi_{2}: X \times A \rightarrow X
$$

the bilinear maps given by the corresponding module operations, that is, $\pi_{1}(a, x)=$ $a x$, and $\pi_{2}(x, a)=x a$, respectively. The third Arens bitransposes $\pi_{1}^{* * *}: A^{* *} \times$ $X^{* *} \rightarrow X^{* *}$, and $\pi_{2}^{* * *}: X^{* *} \times A^{* *} \rightarrow X^{* *}$ satisfy that $\pi_{1}^{* * *}(a, x)$ defines a weak ${ }^{*}$ to weak* linear operator whenever we fix $x \in X^{* *}$, or whenever we fix $a \in A$, respectively, while $\pi_{2}^{* * *}(x, a)$ defines a weak* to weak* linear operator whenever we fix $x \in X$, and $a \in A^{* *}$, respectively. From now on, given $a \in A^{* *}, z \in X^{* *}$, $b \in \mathcal{J}$ and $y \in Y^{* *}$, we shall frequently write $a z=\pi_{1}^{* * *}(a, z), z a=\pi_{2}^{* * *}(z, a)$, and $b \circ y=\pi^{* * *}(b, y)$, respectively. Let $\left(a_{\lambda}\right)$, and $\left(x_{\mu}\right)$ be nets in A and X, such that $a_{\lambda} \rightarrow a \in A^{* *}$, and $x_{\mu} \rightarrow x \in X^{* *}$, in the respective weak* topologies. It follows from the above properties that

$$
\begin{equation*}
\pi_{1}^{* * *}(a, x)=\lim _{\lambda} \lim _{\mu} a_{\lambda} x_{\mu}, \text { and } \pi_{2}^{* * *}(x, a)=\lim _{\mu} \lim _{\lambda} x_{\mu} a_{\lambda}, \tag{2.5}
\end{equation*}
$$

in the weak* topology of $X^{* *}$. It follows from above properties that $X^{* *}$ is a Banach $A^{* *}$-bimodule for the above operations (cf. [12, Theorem 2.6.15(iii)]).

In the Jordan setting, we do not know of any reference asserting that the bidual $Y^{* *}$ of a Jordan Banach \mathcal{J}-module Y over a JB*-algebra \mathcal{J} is a Jordan Banach $\mathcal{J}^{* *}$-module, this is for the moment an open problem. However, in the particular case of $Y=\mathcal{J}^{*}$, it is quite easy and natural to check that $\mathcal{J}^{* * *}$ is a Jordan Banach $\mathcal{J}^{* *}$-module with respect to the product defined in (2.4). That is, given $\varphi \in \mathcal{J}^{* * *}$ and $a \in \mathcal{J}^{* *}$, let us define $\varphi \circ a=a \circ \varphi \in \mathcal{J}^{* * *}$ as the functional determined by $(\varphi \circ a)(y):=\varphi(a \circ y)\left(y \in \mathcal{J}^{* *}\right)$.
2.2. Jordan derivations. Let X be a Jordan-Banach module over a Jordan Banach algebra \mathcal{J}. A Jordan derivation from \mathcal{J} into X is a linear map $D: \mathcal{J} \rightarrow$ X satisfying:

$$
D(a \circ b)=D(a) \circ b+a \circ D(b)
$$

Following standard notation, given $x \in X$ and $a \in \mathcal{J}$, the symbols $L(a)$ and $L(x)$ will denote the mappings $L(a): X \rightarrow X, x \mapsto L(a)(x)=a \circ x$ and $L(x): \mathcal{J} \rightarrow X$, $a \mapsto L(x)(a)=a \circ x$. By a little abuse of notation, we also denote by $L(a)$ the operator on \mathcal{J} defined by $L(a)(b)=a \circ b$. Examples of Jordan derivations can be given as follows: if we fix $a \in \mathcal{J}$ and $x \in X$, the mapping

$$
[L(x), L(a)]=L(x) L(a)-L(a) L(x): \mathcal{J} \rightarrow X, b \mapsto[L(x), L(a)](b),
$$

is a Jordan derivation. A derivation $D: \mathcal{J} \rightarrow X$ that can be written in the form $D=\sum_{i=1}^{m}\left(L\left(x_{i}\right) L\left(a_{i}\right)-L\left(a_{i}\right) L\left(x_{i}\right)\right),\left(x_{i} \in X, a_{i} \in \mathcal{J}\right)$ is called inner.

In 1996, B.E. Johnson proved that every bounded Jordan derivation from a C*-algebra A to a Banach A-bimodule is a derivation (cf. [22]). B. Russo and
the second author of this paper showed that every Jordan derivation from a C*algebra A to a Banach A-bimodule or to a Jordan Banach A-module is continuous (cf. [26, Corollary 17]). Actually every Jordan derivation from a JB*-algebra \mathcal{J} into \mathcal{J} or into \mathcal{J}^{*} is continuous (cf. [19, Corollary 2.3] and also [26, Corollary 10]).

Contrary to Sakai's theorem, which affirms that every derivation on a von Neumann algebra is inner [29, Theorem 4.1.6], there exist examples of JBW*algebras admitting non-inner derivations (cf. [30, Theorem 3.5 and Example 3.7]). Following [20], a JB*-algebra \mathcal{J} is said to be Jordan weakly amenable, if every (bounded) derivation from \mathcal{J} into \mathcal{J}^{*} is inner. Another difference between C^{*} algebras and JB*-algebras is that Jordan algebras do not exhibit a good behaviour concerning Jordan weak amenability; for example $L(H)$ and $K(H)$ are not Jordan weakly amenable when H is an infinite dimensional complex Hilbert space (cf. [20, Lemmas 4.1 and 4.3]). Jordan weak amenability is deeply connected with the more general notion of ternary weak amenability (see [20]). More interesting results on ternary weak amenability were recently developed by R. Pluta and B. Russo in [27].

Let us assume that \mathcal{J} and X are unital. Following [6], a linear mapping $G: \mathcal{J} \rightarrow X$ will be called a generalised Jordan derivation whenever

$$
G(a \circ b)=G(a) \circ b+a \circ G(b)-U_{a, b} G(1)
$$

for every a, b in \mathcal{J}, where $U_{a, b}(x):=(a \circ x) \circ b+(b \circ x) \circ a-(a \circ b) \circ x(x \in \mathcal{J}$ or $x \in X$). Following standard notation, given an element a in a JB*-algebra \mathcal{J}, the mapping $U_{a, a}$ is usually denoted by U_{a}. Every generalized Jordan derivation $G: \mathcal{J} \rightarrow X$ with $G(1)=0$ is a Jordan derivation. Every Jordan derivation from \mathcal{J} into X is a generalized derivation. For each $x \in X$, the mapping $L(x): \mathcal{J} \rightarrow X$ is a generalized derivation, and, as in the associative setting, there are examples of generalized derivations which are not derivations (cf. [6, comments after Lemma 3]). In the not necessarily unital case, a linear mapping $G: \mathcal{J} \rightarrow X$ will be called a generalized Jordan derivation if there exists $\xi \in X^{* *}$ satisfying

$$
\begin{equation*}
G(a \circ b)=G(a) \circ b+a \circ G(b)-U_{a, b}(\xi) \tag{2.6}
\end{equation*}
$$

for every a, b in \mathcal{J} (this definition was introduced in [1, §4] and in [7, §3]).
Let \mathcal{J} be a JB*-algebra and let Y denote \mathcal{J} or \mathcal{J}^{*}, regarded as a Jordan Banach \mathcal{J}-module. Suppose $G: \mathcal{J} \rightarrow Y$ is a generalized derivation, and let $\xi \in Y^{* *}$ denote the element for which (2.6) holds. As we have commented before, $L(\xi): \mathcal{J} \rightarrow Y^{* *}$ is a generalized Jordan derivation. If we regard G as a linear mapping from \mathcal{J} into $Y^{* *}$, it is not hard to check that $\widetilde{G}=G-L(\xi): \mathcal{J} \rightarrow Y^{* *}$ is a Jordan derivation. Corollary 2.3 in [19] implies that \widetilde{G} is continuous. If, in the setting of C^{*}-algebras, we replace [19, Corollary 2.3] with [26, Corollary 17], then the above arguments remain valid and yield:

Proposition 2.1. Every generalized Jordan derivation from a JB*-algebra \mathcal{J} into itself or into \mathcal{J}^{*} is continuous. Furthermore, every generalized derivation from a C^{*}-algebra A into a Banach A-bimodule is continuous.

A consequence of the result established by T. Ho, B. Russo and the second author of this note in [20, Proposition 2.1] is that for every Jordan derivation D from a JB*-algebra \mathcal{J} into its dual, its bitranspose $D^{* *}: \mathcal{J}^{* *} \rightarrow \mathcal{J}^{* * *}$ is a Jordan derivation and $D^{* *}\left(\mathcal{J}^{* *}\right) \subseteq \mathcal{J}^{*}$. A similar technique gives:

Proposition 2.2. Let \mathcal{J} be a JB-algebra or a $J B^{*}$-algebra, and suppose that G : $\mathcal{J} \rightarrow \mathcal{J}^{*}$ is a generalized Jordan derivation (respectively, a Jordan derivation). Then $G^{* *}: \mathcal{J}^{* *} \rightarrow \mathcal{J}^{* * *}$ is a weak*-continuous generalized Jordan derivation (respectively, Jordan derivation) satisfying $G^{* *}\left(\mathcal{J}^{* *}\right) \subseteq \mathcal{J}^{*}$.

Proof. Suppose first that \mathcal{J} is a JB-algebra. It is known that $\widehat{\mathcal{J}}=\mathcal{J}+i \mathcal{J}$ can be equipped with a structure of JB^{*}-algebra such that $\widehat{\mathcal{J}}_{\text {sa }}=\mathcal{J}$ (cf. [9, page 174]). It is easy to check that, given a generalized Jordan derivation $G: \mathcal{J} \rightarrow \mathcal{J}^{*}$, the mapping $\widehat{G}: \widehat{\mathcal{J}} \rightarrow \widehat{\mathcal{J}}^{*}, \widehat{G}(a+i b)=G(a)+i G(b)(a, b \in \mathcal{J})$ defines a generalized Jordan derivation on $\widehat{\mathcal{J}}$, where, as usually, for $\varphi \in \mathcal{J}^{*}$, we regard $\varphi: \widehat{\mathcal{J}} \rightarrow \mathbb{C}$ as defined by $\varphi(a+i b)=\varphi(a)+i \varphi(b)$. We may therefore assume that \mathcal{J} is a JB*-algebra.

By Proposition 2.1, every generalized Jordan derivation $G: \mathcal{J} \rightarrow \mathcal{J}^{*}$ is automatically continuous. Furthermore, since every bounded operator from a JB*algebra into the dual of another JB*-algebra is weakly compact (cf. [10, Corollary 3]), we deduce that G is weakly compact. It is well known that this is equivalent to $G^{* *}\left(\mathcal{J}^{* *}\right) \subset \mathcal{J}^{*}$.

Since $G: \mathcal{J} \rightarrow \mathcal{J}^{*}$ is a generalized Jordan derivation, there exists $\xi \in \mathcal{J}^{* * *}$ satisfying

$$
G(x \circ y)=G(x) \circ y+x \circ G(y)-U_{x, y}(\xi),
$$

for every x, y in \mathcal{J}. Let a and b be elements in $\mathcal{J}^{* *}$. By Goldstine's Theorem, we can find two (bounded) nets $\left(a_{\lambda}\right)$ and $\left(b_{\mu}\right)$ in \mathcal{J} such that $\left(a_{\lambda}\right) \rightarrow a$ and $\left(b_{\mu}\right) \rightarrow b$ in the weak*-topology of $\mathcal{J}^{* *}$. If we fix an element c in $\mathcal{J}^{* *}$, and we take a net $\left(\phi_{\lambda}\right)$ in $\mathcal{J}^{* * *}$, converging to some $\phi \in \mathcal{J}^{* * *}$ in the $\sigma\left(\mathcal{J}^{* * *}, \mathcal{J}^{* *}\right)$-topology, the net $\left(\phi_{\lambda} \circ c\right)$ converges in the $\sigma\left(\mathcal{J}^{* * *}, \mathcal{J}^{* *}\right)$-topology to $\phi \circ c$. The weak ${ }^{*}$-continuity of the mapping $G^{* *}$ implies that

$$
\begin{gathered}
G^{* *}(a \circ c)=\mathrm{w}^{*}-\lim _{\lambda} G\left(a_{\lambda} \circ c\right)=\mathrm{w}^{*}-\lim _{\lambda} G\left(a_{\lambda}\right) \circ c+a_{\lambda} \circ G(c)-U_{a_{\lambda}, c}(\xi) \\
=G^{* *}(a) \circ c+a \circ G(c)-U_{a, c}(\xi)
\end{gathered}
$$

for every $c \in \mathcal{J}$. This shows that $G^{* *}(a \circ c)=G^{* *}(a) \circ c+a \circ G(c)-U_{a, c}(\xi)$, for every $c \in \mathcal{J}, a \in \mathcal{J}^{* *}$. Therefore

$$
\begin{gathered}
G^{* *}(a \circ b)=\mathrm{w}^{*}-\lim _{\mu} G^{* *}\left(a \circ b_{\mu}\right)=\mathrm{w}^{*}-\lim _{\mu} G^{* *}(a) \circ b_{\mu}+a \circ G\left(b_{\mu}\right)-U_{a, b_{\mu}}(\xi) \\
=G^{* *}(a) \circ b+a \circ G^{* *}(b)-U_{a, b}(\xi),
\end{gathered}
$$

giving the desired conclusion.
Remark 2.3. Let $G: \mathcal{J} \rightarrow \mathcal{J}^{*}$ be a generalized Jordan derivation, where \mathcal{J} is a JB*-algebra. Let $\xi \in \mathcal{J}^{* * *}$ satisfy

$$
G(a \circ b)=G(a) \circ b+a \circ G(b)-U_{a, b}(\xi),
$$

for every a, b in \mathcal{J}. The previous Proposition 2.2 assures that $G^{* *}: \mathcal{J}^{* *} \rightarrow \mathcal{J}^{* * *}$ is a weak*-continuous generalized Jordan derivation, $G^{* *}\left(\mathcal{J}^{* *}\right) \subseteq \mathcal{J}^{*}$, and

$$
G^{* *}(a \circ b)=G^{* *}(a) \circ b+a \circ G^{* *}(b)-U_{a, b}(\xi),
$$

for every a, b in $\mathcal{J}^{* *}$. In particular, $G^{* *}(1)=\xi \in \mathcal{J}^{*}$, and G is a Jordan derivation if and only if $G^{* *}(1)=0$.

3. Orthogonal forms

In the non-associative setting of JB*-algebras, a Jordan version of Goldstein's theorem remains unexplored. In this section we shall study the structure of the orthogonal forms on a JB*-algebra \mathcal{J}. In this non-associative setting, the lacking of a Jordan version of Goldstein's theorem makes, a priori, unclear whether a form on \mathcal{J} which is orthogonal on $\mathcal{J}_{s a}$ is orthogonal on the whole of \mathcal{J}. We shall prove that symmetric orthogonal forms on a JB*-algebra \mathcal{J} are in one to one correspondence with the purely Jordan generalized Jordan derivations from \mathcal{J} into \mathcal{J}^{*} (see Theorem 3.6), while anti-symmetric orthogonal forms on \mathcal{J} are in one to one correspondence with the Lie Jordan derivations from \mathcal{J} into \mathcal{J}^{*} (see Theorem 3.13). These results, together with the existence of JB*-algebras \mathcal{J} which are not Jordan weakly amenable (i.e., they admit Jordan derivations from \mathcal{J} into \mathcal{J}^{*} which are not inner), show that a Jordan version of Goldstein's theorem for anti-symmetric orthogonal forms on a JB*-algebra is a hopeless task (see Remark 3.15).

We introduce next the exact definitions. In a JB*-algebra \mathcal{J} we consider the following triple product

$$
\{a, b, c\}=\left(a \circ b^{*}\right) \circ c+\left(c \circ b^{*}\right) \circ a-(a \circ c) \circ b^{*} .
$$

When equipped with this triple product and its norm, every JB^{*}-algebra becomes an element in the class of JB*-triples introduced by W. Kaup in [23]. The precise definition of JB^{*}-triples reads as follows: A $J B^{*}$-triple is a complex Banach space E equipped with a continuous triple product $\{\cdot, \cdot, \cdot\}: E \times E \times E \rightarrow E$ which is linear and symmetric in the outer variables, conjugate linear in the middle one and satisfies the following conditions:
(JB*-1) (Jordan identity) for a, b, x, y, z in E,

$$
\{a, b,\{x, y, z\}\}=\{\{a, b, x\}, y, z\}-\{x,\{b, a, y\}, z\}+\{x, y,\{a, b, z\}\} ;
$$

$\left(\mathrm{JB}^{*}-2\right) L(a, a): E \rightarrow E$ is an hermitian (linear) operator with non-negative spectrum, where $L(a, b)(x)=\{a, b, x\}$ with $a, b, x \in E$;
(JB*-3) $\|\{x, x, x\}\|=\|x\|^{3}$ for all $x \in E$.
We refer to the monographs [18], [9], and [8] for the basic background on JB*algebras and JB^{*}-triples.

A JBW**-triple is a JB^{*}-triple which is also a dual Banach space (with a unique isometric predual [3]). It is known that the triple product of a JBW*-triple is separately weak*-continuous [3]. A result due to S. Dineen establishes that the second dual of a JB^{*}-triple E is a JBW^{*}-triple with a product extending that of E (compare [9, Corollary 3.3.5]).

An element e in a JB^{*}-triple E is said to be a tripotent if $\{e, e, e\}=e$. Each tripotent e in E gives raise to the so-called Peirce decomposition of E associated to e, that is,

$$
E=E_{2}(e) \oplus E_{1}(e) \oplus E_{0}(e)
$$

where for $i=0,1,2, E_{i}(e)$ is the $\frac{i}{2}$ eigenspace of $L(e, e)$. The Peirce decomposition satisfies certain rules known as Peirce arithmetic:

$$
\left\{E_{i}(e), E_{j}(e), E_{k}(e)\right\} \subseteq E_{i-j+k}(e)
$$

if $i-j+k \in\{0,1,2\}$ and is zero otherwise. In addition,

$$
\left\{E_{2}(e), E_{0}(e), E\right\}=\left\{E_{0}(e), E_{2}(e), E\right\}=0
$$

The corresponding Peirce projections are denoted by $P_{i}(e): E \rightarrow E_{i}(e),(i=$ $0,1,2)$. The Peirce space $E_{2}(e)$ is a JB*-algebra with product $x \bullet_{e} y:=\{x, e, y\}$ and involution $x^{\sharp e}:=\{e, x, e\}$.

For each element x in a JB*-triple E, we shall denote $x^{[1]}:=x, x^{[3]}:=\{x, x, x\}$, and $x^{[2 n+1]}:=\left\{x, x, x^{[2 n-1]}\right\},(n \in \mathbb{N})$. The symbol E_{x} will stand for the JB*subtriple generated by the element x. It is known that E_{x} is JB*-triple isomorphic (and hence isometric) to $C_{0}(\Omega)$ for some locally compact Hausdorff space Ω contained in $(0,\|x\|]$, such that $\Omega \cup\{0\}$ is compact, where $C_{0}(\Omega)$ denotes the Banach space of all complex-valued continuous functions vanishing at 0 . It is also known that we can find a triple isomorphism Ψ from E_{x} onto $C_{0}(\Omega)$, such that $\Psi(x)(t)=t(t \in \Omega)$ (cf. Corollary 1.15 in [23]).

Therefore, for each $x \in E$, there exists a unique element $y \in E_{x}$ satisfying that $\{y, y, y\}=x$. The element y, denoted by $x^{\left[\frac{1}{3}\right]}$, is termed the cubic root of x. We can inductively define, $x^{\left[\frac{1}{\left.3^{n}\right]}\right.}=\left(x^{\left[\frac{1}{\left.3^{n-1}\right]}\right.}\right)^{\left[\frac{1}{3}\right]}, n \in \mathbb{N}$. The sequence $\left(x^{\left[\frac{1}{\left.3^{n}\right]}\right.}\right)$ converges in the weak*-topology of $E^{* *}$ to a tripotent denoted by $r(x)$ and called the range tripotent of x. The element $r(x)$ is the smallest tripotent $e \in E^{* *}$ such that x is positive in the JBW^{*}-algebra $E_{2}^{* *}(e)$ (compare [13], Lemma 3.3).

Elements a, b in a JB*-algebra \mathcal{J}, or more generally, in a JB*-triple E, are said to be orthogonal (denoted by $a \perp b$) when $L(a, b)=0$, that is, the triple product $\{a, b, c\}$ vanishes for every $c \in \mathcal{J}$ or in E ([5]). An application of [5, Lemma 1] assures that $a \perp b$ if and only if one of the following statements holds:

$$
\begin{array}{ccc}
\{a, a, b\}=0 ; & a \perp r(b) ; & r(a) \perp r(b) ; \\
E_{2}^{* *}(r(a)) \perp E_{2}^{* *}(r(b)) ; & r(a) \in E_{0}^{* *}(r(b)) ; & a \in E_{0}^{* *}(r(b)) ; \tag{3.1}\\
b \in E_{0}^{* *}(r(a)) ; & E_{a} \perp E_{b} & \{b, b, a\}=0 .
\end{array}
$$

The above equivalences imply, in particular, that the relation of being orthogonal is a "local concept", more precisely, $a \perp b$ in \mathcal{J} (respectively in E) if and only if $a \perp b$ in a JB*-subalgebra (respectively, JB*-subtriple) \mathcal{K} containing a and b.

Suppose $a \perp b$ in \mathcal{J}, applying the above arguments we can always assume that \mathcal{J} is unital. In this case, $a \circ b^{*}=\{a, b, 1\}=0$ and $\left(a \circ a^{*}\right) \circ b-(a \circ b) \circ a^{*}=$
$\left(a \circ a^{*}\right) \circ b+\left(b \circ a^{*}\right) \circ a-(a \circ b) \circ a^{*}=0$, therefore $a \circ b^{*}=0$ and $\left(a \circ a^{*}\right) \circ b=(a \circ b) \circ a^{*}$. Actually the last two identities also imply that $a \perp b$. It follows that

$$
\begin{equation*}
a \perp b \Leftrightarrow a \circ b^{*}=0 \text { and }\left(a \circ a^{*}\right) \circ b=(a \circ b) \circ a^{*} . \tag{3.2}
\end{equation*}
$$

So, if $a \perp b$ and c is another element in \mathcal{J}, we deduce, via Jordan identity, that

$$
\begin{gathered}
\left\{U_{a}(c), U_{a}(c), b\right\}=\left\{\left\{a, c^{*}, a\right\},\left\{a, c^{*}, a\right\}, b\right\}=-\left\{c^{*}, a,\left\{\left\{a, c^{*}, a\right\}, a, b\right\}\right\} \\
+\left\{\left\{c^{*}, a,\left\{a, c^{*}, a\right\}\right\}, a, b\right\}+\left\{\left\{a, c^{*}, a\right\}, a,\left\{c^{*}, a, b\right\}\right\}=0
\end{gathered}
$$

which shows that $U_{a}(c) \perp b$.
We shall also make use of the following fact

$$
\begin{equation*}
a \perp b \text { in } \mathcal{J} \Rightarrow\left(c \circ b^{*}\right) \circ a=(a \circ c) \circ b^{*}, \tag{3.3}
\end{equation*}
$$

for every $c \in \mathcal{J}$, this means that a and b^{*} operator commute in \mathcal{J} (cf. [5, page 225]). For the proof, we observe that, since $a \perp b, a \circ b^{*}=0$, and the involution preserves triple products, we have $0=\{a, b, c\}=\left(a \circ b^{*}\right) \circ c+\left(c \circ b^{*}\right) \circ a-(a \circ c) \circ b^{*}$, which proves the desired equality. A direct application of (3.3) and (3.2) shows that

$$
\begin{equation*}
a \perp b \text { in } \mathcal{J} \Rightarrow\left(a^{2}\right) \circ b^{*}=\left(a \circ b^{*}\right) \circ a=0 . \tag{3.4}
\end{equation*}
$$

When a C^{*}-algebra A is regarded with its structure of JB^{*}-algebra, elements a, b in A are orthogonal in the associative sense if and only if they are orthogonal in the Jordan sense.

Definition 3.1. A form $V: \mathcal{J} \times \mathcal{J} \rightarrow \mathbb{C}$ is said to be orthogonal when $V\left(a, b^{*}\right)=$ 0 for every $a, b \in \mathcal{J}$ with $a \perp b$. If $V(a, b)=0$ only for elements $a, b \in \mathcal{J}_{s a}$ with $a \perp b$, we shall say that V is orthogonal on $\mathcal{J}_{\text {sa }}$.
3.1. Purely Jordan generalized Jordan derivations and symmetric orthogonal forms. We begin this subsection by dealing with symmetric orthogonal forms on a C^{*}-algebra, a setting in which these forms have been already studied. Let $V: A \times A \rightarrow X$ be a symmetric, orthogonal form on a C^{*}-algebra. By Goldstein's theorem (cf. Theorem [15]), there exists a unique functional $\phi_{V} \in A^{*}$ satisfying that $V(a, b)=\phi_{V}(a \circ b)$ for all $a, b \in A$. The statement also follows from the studies of orthogonally additive n-homogeneous polynomials on C^{*}-algebras developed in [25].

Given an element a in the self adjoint part $\mathcal{J}_{s a}$ of a JBW*-algebra \mathcal{J}, there exists a smallest projection $r(a)$ in \mathcal{J} with the property that $r(a) \circ a=a$. We call $r(a)$ the range projection of a, and it is further known that $r(a)$ belongs JBW^{*}-subalgebra of \mathcal{J} generated by a. It is easy to check that $r(a)$ coincides with the range tripotent of a in \mathcal{J} when the latter is seen as a JBW*-triple, so, our notation is consistent with the previous definitions.

We explore now the symmetric orthogonal forms on a JB*-algebra.
Proposition 3.2. Let $V: \mathcal{J} \times \mathcal{J} \rightarrow \mathbb{C}$ be a symmetric form on a JB*-algebra which is orthogonal on $\mathcal{J}_{\text {sa }}$. Then there exists a unique $\phi \in \mathcal{J}^{*}$ satisfying

$$
V(a, b)=\phi(a \circ b)
$$

for every $a, b \in \mathcal{J}$.

Proof. We have already commented that the (unique) third Arens transpose $V^{* * *}$: $\mathcal{J}^{* *} \times \mathcal{J}^{* *} \rightarrow \mathbb{C}$ is separately weak*-continuous (cf. Subsection 2.1). Let a be a self-adjoint element in \mathcal{J}. It is known that the JB^{*}-subalgebra \mathcal{J}_{a} generated by a is JB*-isometrically isomorphic to a commutative C*-algebra (cf. [18, §3]). Since the restricted mapping $\left.V\right|_{\mathcal{J}_{a} \times \mathcal{J}_{a}}: \mathcal{J}_{a} \times \mathcal{J}_{a} \rightarrow \mathbb{C}$ is a symmetric orthogonal form, there exists a functional $\phi_{a} \in\left(\mathcal{J}_{a}\right)^{*}$ satisfying that

$$
V(c, d)=\phi_{a}(c \circ d),
$$

for every $c, d \in \mathcal{J}_{a}$ (cf. Theorem 1.1). It follows from the weak*-density of \mathcal{J}_{a} in $\left(\mathcal{J}_{a}\right)^{* *}$ together with the separate weak*-continuity of $V^{* * *}$, and the weak*continuity of ϕ_{a}, that

$$
V^{* * *}(c, d)=\phi_{a}(c \circ d),
$$

for every $c, d \in\left(\mathcal{J}_{a}\right)^{* *}$. Taking $c=a$ and $d=r(a)$ the range projection of a we get

$$
\begin{equation*}
V(a, a)=\phi_{a}(a \circ a)=\phi_{a}\left(a^{2} \circ r(a)\right)=V^{* * *}\left(a^{2}, r(a)\right)=V^{* * *}\left(r(a), a^{2}\right), \tag{3.5}
\end{equation*}
$$

for every $a \in \mathcal{J}_{s a}$.
We claim that

$$
\begin{equation*}
V^{* * *}(a, r(a))=V^{* * *}(r(a), a)=V^{* * *}(a, 1)=V^{* * *}(1, a), \tag{3.6}
\end{equation*}
$$

for every positive $a \in \mathcal{J}_{s a}$. We may assume that $\|a\|=1$. We actually know that there is a set $L \subset[0,1]$ with $L \cup\{0\}$ compact such that \mathcal{J}_{a} is isomorphic to the C^{*}-algebra $C_{0}(L)$ of all continuous complex-valued functions on L vanishing at 0 , and under this isometric identification the element a is identified with the function $t \mapsto t$. Given $\varepsilon>0$, let $p_{\varepsilon}=\chi_{[\varepsilon, 1]}$ denote the projection in $\left(\mathcal{J}_{a}\right)^{* *}$, which coincides with the characteristic function of the set $[\varepsilon, 1] \cap L$. Clearly, $p_{\varepsilon} \leq r(a)$ in $\mathcal{J}^{* *}$. Suppose we have a function $g \in \mathcal{J}_{a} \equiv C_{0}(L)$ satisfying $p_{\varepsilon} \circ g=g \geq 0$, that is, the cozero set of g is inside the interval $[\varepsilon, 1]$.

Take a sequence $\left(h_{n}\right) \subset C_{0}(L)$ defined by

$$
h_{n}(t):= \begin{cases}1, & \text { if } t \in L \cap\left[\varepsilon-\frac{1}{2 n}, 1\right] \\ \text { affine, } & \text { if } t \in L \cap\left[\varepsilon-\frac{1}{n}, \varepsilon-\frac{1}{2 n}\right] \\ 0, & \text { if } t \in L \cap\left[0, \varepsilon-\frac{1}{n}\right]\end{cases}
$$

for n large enough $\left(n \geq m_{0}\right)$. The sequence $\left(h_{n}\right)$ converges to p_{ε} in the weak*topology of $\left(\mathcal{J}_{a}\right)^{* *}$ and $1-h_{n} \perp p_{\varepsilon}, g$. So, $\mathcal{J} \ni U_{1-h_{n}}(c) \perp g$ for every $c \in \mathcal{J}$ and $n \geq m_{0}$. Since $1 \in \mathcal{J}^{* *}$, we can find, via Goldstine's theorem, a net $\left(c_{\gamma}\right) \subset \mathcal{J}$ converging to 1 in the weak* topology of $\mathcal{J}^{* *}$. By hypothesis, $0=V\left(U_{1-h_{n}}\left(c_{\gamma}\right), g\right)$, for every $\lambda, n \geq m_{0}$. Taking weak* limits in γ and in n, it follows from the separate weak* continuity of $V^{* * *}$, that

$$
\begin{equation*}
V^{* * *}\left(1-p_{\varepsilon}, g\right)=0 \tag{3.7}
\end{equation*}
$$

for every p_{ε} and g as above. If we take

$$
g_{\varepsilon}(t):= \begin{cases}t, & \text { if } t \in L \cap[2 \varepsilon, 1] \\ \text { affine, } & \text { if } t \in L \cap[\varepsilon, 2 \varepsilon] \\ 0, & \text { if } t \in L \cap[0, \varepsilon]\end{cases}
$$

then $0 \leq g_{\varepsilon} \leq p_{\eta}$, for every $\eta \leq \varepsilon, \lim _{\varepsilon \rightarrow 0}\left\|g_{\varepsilon}-a\right\|=0$ and weak* $-\lim _{\eta \rightarrow 0} p_{\eta}=r(a)$. Combining these facts with (3.7) and the separate weak*-continuity of $V^{* * *}$, we get $V^{* * *}(1-r(a), a)=0$, which proves (3.6).

The identities in (3.5) and (3.6) show that $V(a, a)=V^{* * *}\left(1, a^{2}\right)$, for every $a \in \mathcal{J}_{\text {sa }}$. Let us define $\phi=V^{* * *}(1,.) \in A^{*}$. A polarization formula, and V being symmetric imply that $V(a, b)=V^{* * *}(1, a \circ b)=\phi(a \circ b)$, for every $a, b \in \mathcal{J}_{s a}$, and by bilinearity $V(a, b)=\phi(a \circ b)$, for every $a, b \in \mathcal{J}$.

The previous proposition is a generalization of Goldstein's theorem for symmetric orthogonal forms. It can be also regarded as a characterization of orthogonally additive 2 -homogeneous polynomials on a JB*-algebra \mathcal{J}. More concretely, according to the notation in [25], a 2-homogeneous polynomial $P: \mathcal{J} \rightarrow \mathbb{C}$ is orthogonally additive on $\mathcal{J}_{s a}$ (i.e., $P(a+b)=P(a)+P(b)$ for every $a \perp b$ in $\mathcal{J}_{s a}$) if, and only if, there exists a unique $\phi \in \mathcal{J}^{*}$ satisfying $P(a)=\phi\left(a^{2}\right)$, for every $a \in \mathcal{J}$. This characterization constitutes an extension of [25, Theorem 2.8] to the setting of JB*-algebras.

Remark 3.3. Let $V: \mathcal{J} \times \mathcal{J} \rightarrow \mathbb{C}$ be a symmetric form on a JB*-algebra. The above Proposition 3.2 implies that V is orthogonal if and only if it is orthogonal on $\mathcal{J}_{s a}$.

Let $V: \mathcal{J} \times \mathcal{J} \rightarrow \mathbb{C}$ be a symmetric orthogonal form on a JB*-algebra, and let ϕ_{V} be the unique functional in \mathcal{J}^{*} given by Proposition 3.2. If we define $G_{V}: \mathcal{J} \rightarrow \mathcal{J}^{*}$, the operator given by $G_{V}(a)=V(a,$.$) , we can conclude that$ $G_{V}(a)=\phi_{V} \circ a=G_{\phi_{V}}(a)$, and hence $G_{V}: \mathcal{J} \rightarrow \mathcal{J}^{*}$ is a generalized Jordan derivation and $V(a, b)=G_{V}(a)(b)(a, b \in \mathcal{J})$. Moreover, for every $a, b \in \mathcal{J}$, $G_{V}(a)(b)=V(a, b)=V(b, a)=G_{V}(b)(a)$. This fact motivates the following definition:

Definition 3.4. Let \mathcal{J} be a JB*-algebra. A purely Jordan generalized Jordan derivation from \mathcal{J} into \mathcal{J}^{*} is a generalized Jordan derivation $G: \mathcal{J} \rightarrow \mathcal{J}^{*}$ satisfying $G(a)(b)=G(b)(a)$, for every $a, b \in \mathcal{J}$.

We have already seen that every symmetric orthogonal form V on a JB*-algebra \mathcal{J} determines a purely Jordan generalized Jordan derivation $G_{V}: \mathcal{J} \rightarrow \mathcal{J}^{*}$. To explore the reciprocal implication we shall prove that every generalized derivation from \mathcal{J} into \mathcal{J}^{*} defines an orthogonal form on $\mathcal{J}_{\text {sa }}$.

Proposition 3.5. Let $G: \mathcal{J} \rightarrow \mathcal{J}^{*}$ be a generalized Jordan derivation, where \mathcal{J} is a JB*-algebra. Then the form $V_{G}: \mathcal{J} \times \mathcal{J} \rightarrow \mathbb{C}, V_{G}(a, b)=G(a)(b)$ is orthogonal on $\mathcal{J}_{\text {sa }}$.
Proof. Let $G: \mathcal{J} \rightarrow \mathcal{J}^{*}$ be a generalized Jordan derivation. By Proposition 2.1, G is continuous, and by Proposition 2.2, $G^{* *}: \mathcal{J}^{* *} \rightarrow \mathcal{J}^{*}$ is a generalized Jordan derivation too. Let ξ denote $G^{* *}(1)$.

Let p be a projection in $\mathcal{J}^{* *}$ and let b be any element in $\mathcal{J}^{* *}$ such that $p \perp b$. Since

$$
G^{* *}(p)=G^{* *}(p \circ p)=2 p \circ G^{* *}(p)+U_{p}(\xi),
$$

we deduce that

$$
\begin{equation*}
G^{* *}(p)\left(b^{*}\right)=2 G^{* *}(p)\left(p \circ b^{*}\right)+\xi\left(U_{p}\left(b^{*}\right)\right)=0 . \tag{3.8}
\end{equation*}
$$

Let a be a symmetric element in $\mathcal{J}^{* *}$, and let b be any element in $\mathcal{J}^{* *}$ satisfying $a \perp b$. By (3.1), the JBW*-algebra $\mathcal{J}_{a}^{* *}$ generated by a is orthogonal to b, that is, $c \perp b$ for every $c \in \mathcal{J}_{a}^{* *}$. It is well known that a can be approximated in norm by finite linear combinations of mutually orthogonal projections in $\mathcal{J}_{a}^{* *}$ (cf. [18, Proposition 4.2.3]). It follows from (3.8), the continuity of $G^{* *}$, and the previous comments that

$$
V_{G^{* *}}\left(a, b^{*}\right)=G^{* *}(a)\left(b^{*}\right)=0,
$$

for every $a \in \mathcal{J}_{s a}^{* *}$ and every $b \in \mathcal{J}^{* *}$ with $a \perp b$.
Our next result follows now as a consequence of Proposition 3.2, Remark 3.3, and Proposition 3.5.

Theorem 3.6. Let \mathcal{J} be a $J B^{*}$-algebra. Let $\mathcal{O} \mathcal{F}_{s}(\mathcal{J})$ denote the Banach space of all symmetric orthogonal forms on \mathcal{J}, and $\operatorname{let} \mathcal{P} \mathcal{J G D e r}\left(\mathcal{J}, \mathcal{J}^{*}\right)$ the Banach space of all purely Jordan generalized Jordan derivations from \mathcal{J} into \mathcal{J}^{*}. For each $V \in$ $\mathcal{O} \mathcal{F}_{s}(\mathcal{J})$ define $G_{V}: \mathcal{J} \rightarrow \mathcal{J}^{*}$ in $\mathcal{P} \mathcal{J G D e r}\left(\mathcal{J}, \mathcal{J}^{*}\right)$ given by $G_{V}(a)(b)=V(a, b)$, and for each $G \in \mathcal{P} \mathcal{J G D e r}\left(\mathcal{J}, \mathcal{J}^{*}\right)$ we set $V_{G}: \mathcal{J} \times \mathcal{J} \rightarrow C$, $V_{G}(a, b):=G(a)(b)$ $(a, b \in \mathcal{J})$. Then the mappings

$$
\begin{array}{ccc}
\mathcal{O} \mathcal{F}_{s}(\mathcal{J}) \rightarrow \mathcal{P} \mathcal{J G D} \operatorname{Der}\left(\mathcal{J}, \mathcal{J}^{*}\right), & \mathcal{P} \mathcal{J G} \operatorname{Der}\left(\mathcal{J}, \mathcal{J}^{*}\right) & \rightarrow \mathcal{O} \mathcal{F}_{s}(\mathcal{J}), \\
V & \mapsto G_{V}, & G \mapsto V_{G},
\end{array}
$$

define two isometric linear bijections and are inverses of each other.
Actually, Proposition 3.2 gives a bit more:
Corollary 3.7. Let \mathcal{J} be a $J B^{*}$-algebra. Then, for every purely Jordan generalized Jordan derivation $G: \mathcal{J} \rightarrow \mathcal{J}^{*}$ there exists a unique $\phi \in \mathcal{J}^{*}$, such that $G=G_{\phi}$, that is, $G(a)=\phi \circ a(a \in \mathcal{J})$.
3.2. Derivations and anti-symmetric orthogonal forms. We focus now our study on the anti-symmetric orthogonal forms on a JB*-algebra. We motivate our study with the case of a C^{*}-algebra A. By Goldstein's theorem every antisymmetric orthogonal form V on A writes in the form $V(a, b)=\psi([a, b])=$ $\psi(a b-b a)(a, b \in A)$, where $\psi \in A^{*}$ (cf. Theorem 1.1). Unfortunately, ψ is not uniquely determined by V (see [15, Proposition 2.6 and comments prior to it]). Anyway, the operator $D_{V}: A \rightarrow A^{*}, D_{V}(a)(b)=V(a, b)=[\psi, a](b)$ defines a derivation from A into A^{*} and $D_{V}(a)(b)=-D_{V}(b)(a)(a, b \in A)$. On the other hand, if $D: A \rightarrow A^{*}$ is a derivation, it follows from the weak amenability of A (cf. [16, Corollary 4.2]), that there exists $\psi \in A^{*}$ satisfying $D(a)=[a, \psi]$. Therefore, the form $V: A \times A \rightarrow \mathbb{C}, V_{D}(a, b)=D(a)(b)$ is orthogonal and anti-symmetric. However, when A is replaced with a JB*-algebra, the Lie product doesn't make any sense. To avoid the gap, we shall consider Jordan derivations.

It seems natural to ask whether the class of anti-symmetric orthogonal forms on a JB*-algebra \mathcal{J} is empty or not. Here is an example: let $c_{1}, \ldots, c_{m} \in \mathcal{J}$ and
$\phi_{1}, \ldots, \phi_{m} \in \mathcal{J}^{*}$, and define $V: \mathcal{J} \times \mathcal{J} \rightarrow \mathbb{C}$,

$$
\begin{gather*}
V(a, b):=\left(\sum_{i=1}^{m}\left[L\left(\phi_{i}\right), L\left(c_{i}\right)\right](a)\right)(b) \tag{3.9}\\
\left.=\left(\sum_{i=1}^{m}\left(\phi_{i} \circ\left(c_{i} \circ a\right)-c_{i} \circ\left(\phi_{i} \circ a\right)\right)\right)(b)=\sum_{i=1}^{m} \phi_{i}\left(b \circ\left(c_{i} \circ a\right)-\left(c_{i} \circ b\right) \circ a\right)\right)
\end{gather*}
$$

for every $a, b \in \mathcal{J}$. Clearly, V is an anti-symmetric form on \mathcal{J}. It follows from (3.3) that $V\left(a, b^{*}\right)=0$ for every $a \perp b$ in \mathcal{J}, that is, V is an orthogonal form on \mathcal{J}. Further, the inner Jordan derivation $D: \mathcal{J} \rightarrow \mathcal{J}^{*}, D=$ $\sum_{i=1}^{m}\left(L\left(\phi_{i}\right) L\left(a_{i}\right)-L\left(a_{i}\right) L\left(\phi_{i}\right)\right)$ satisfies $V(a, b)=D(a)(b)$ for every $a, b \in \mathcal{J}$.

We shall see now that, like in the case of C^{*}-algebras and in the previous example, Jordan derivations from a JB*-algebra \mathcal{J} into its dual exhaust all the possibilities to produce an anti-symmetric orthogonal form on \mathcal{J}. We begin with an strengthened version of Proposition 3.5.

Proposition 3.8. Let $G: \mathcal{J} \rightarrow \mathcal{J}^{*}$ be a generalized Jordan derivation, where \mathcal{J} is a JB**-algebra. Then the form $V_{G}: \mathcal{J} \times \mathcal{J} \rightarrow \mathbb{C}, V_{G}(a, b)=G(a)(b)$ is orthogonal (on the whole \mathcal{J}).

Proof. We already know that every generalized Jordan derivation $G: \mathcal{J} \rightarrow \mathcal{J}^{*}$ is continuous (cf. Proposition 2.1). By Proposition 2.2, $G^{* *}: \mathcal{J}^{* *} \rightarrow \mathcal{J}^{*}$ is a generalized Jordan derivation too. Let $\xi=G^{* *}(1)$.

Let e be a tripotent in $\mathcal{J}^{* *}$ and let b be any element in $\mathcal{J}^{* *}$ such that $e \perp b$. Since $\{e, e, e\}=2\left(e \circ e^{*}\right) \circ e-e^{2} \circ e^{*}=e$ we deduce that

$$
\begin{gathered}
G^{* *}(e)=2 G^{* *}\left(\left(e \circ e^{*}\right) \circ e\right)-G^{* *}\left(e^{2} \circ e^{*}\right) \\
=2 G^{* *}\left(e \circ e^{*}\right) \circ e+2\left(e \circ e^{*}\right) \circ G^{* *}(e)-2 U_{e \circ e^{*}, e}(\xi) \\
-G^{* *}\left(e^{2}\right) \circ e^{*}-e^{2} \circ G^{* *}\left(e^{*}\right)+U_{e^{2}, e^{*}}(\xi) .
\end{gathered}
$$

Therefore,

$$
\begin{gather*}
G^{* *}(e)\left(b^{*}\right)=2 G^{* *}\left(e \circ e^{*}\right)\left(b^{*} \circ e\right)+2 G^{* *}(e)\left(\left(e \circ e^{*}\right) \circ b^{*}\right) \tag{3.10}\\
-2 \xi\left(\left(e \circ e^{*}\right) \circ\left(e \circ b^{*}\right)+\left(\left(e \circ e^{*}\right) \circ b^{*}\right) \circ e-\left(\left(e \circ e^{*}\right) \circ e\right) \circ b^{*}\right) \\
-G^{* *}\left(e^{2}\right)\left(e^{*} \circ b^{*}\right)-G^{* *}\left(e^{*}\right)\left(e^{2} \circ b^{*}\right)+\xi\left(e^{2} \circ\left(e^{*} \circ b^{*}\right)+\left(e^{2} \circ b^{*}\right) \circ e^{*}-\left(e^{2} \circ e^{*}\right) \circ b^{*}\right) \\
=(\text { by }(3.2),(3.3), \text { and }(3.4))=2 G^{* *}(e)\left(\left(e \circ e^{*}\right) \circ b^{*}\right)-G^{* *}\left(e^{2}\right)\left(e^{*} \circ b^{*}\right) \\
+\xi\left(e^{2} \circ\left(e^{*} \circ b^{*}\right)-\left(e^{2} \circ e^{*}\right) \circ b^{*}\right) \\
=2 G^{* *}(e)\left(\left(e \circ e^{*}\right) \circ b^{*}\right)-2\left(e \circ G^{* *}(e)\right)\left(e^{*} \circ b^{*}\right)+U_{e}(\xi)\left(e^{*} \circ b^{*}\right) \\
+\xi\left(e^{2} \circ\left(e^{*} \circ b^{*}\right)-\left(e^{2} \circ e^{*}\right) \circ b^{*}\right) \\
=2 G^{* *}(e)\left(\left(e \circ e^{*}\right) \circ b^{*}-\left(b^{*} \circ e^{*}\right) \circ e\right)+\xi\left(2 e \circ\left(e \circ\left(e^{*} \circ b^{*}\right)\right)-e^{2} \circ\left(e^{*} \circ b^{*}\right)\right) \\
+\xi\left(e^{2} \circ\left(e^{*} \circ b^{*}\right)-\left(e^{2} \circ e^{*}\right) \circ b^{*}\right)
\end{gather*}
$$

$$
\begin{gathered}
=(\operatorname{by}(3.3))=\xi\left(2 e \circ\left(e \circ\left(e^{*} \circ b^{*}\right)\right)-\left(e^{2} \circ e^{*}\right) \circ b^{*}\right) \\
=((3.3) \text { applied twice })=\xi\left(2 b^{*} \circ\left(e \circ\left(e^{*} \circ e\right)\right)-b^{*} \circ\left(e^{2} \circ e^{*}\right)\right) \\
=\xi\left(b^{*} \circ\left(2\left(e \circ\left(e^{*} \circ e\right)\right)-\left(e^{2} \circ e^{*}\right)\right)\right)=\xi\left(b^{*} \circ\{e, e, e\}\right)=\xi\left(b^{*} \circ e\right)=0
\end{gathered}
$$

where in the last step we applied (3.2).
Let us take $a . b$ in $\mathcal{J}^{* *}$, with $a \perp b$. The characterizations given in (3.1) imply that the JBW^{*}-triple $\mathcal{J}_{a}^{* *}$ generated by a is orthogonal to b, that is, $c \perp b$ for every $c \in \mathcal{J}_{a}^{* *}$. Lemma 3.11 in [21] guarantees that the element a can be approximated in norm by finite linear combinations of mutually orthogonal projections in $\mathcal{J}_{a}^{* *}$. Finally, the fact proved in (3.10), the continuity of $G^{* *}$, and the previous comments imply that $V_{G^{* *}}\left(a, b^{*}\right)=G^{* *}(a)\left(b^{*}\right)=0$.

We shall prove next that every anti-symmetric orthogonal form is given by a Jordan derivation.

Proposition 3.9. Let $V: \mathcal{J} \times \mathcal{J} \rightarrow \mathbb{C}$ be an anti-symmetric form on a JB*algebra which is orthogonal on $\mathcal{J}_{\text {sa }}$. Then the mapping $D_{V}: \mathcal{J} \rightarrow \mathcal{J}^{*}, D_{V}(a)(b)=$ $V(a, b)(a, b \in \mathcal{J})$ is a Jordan derivation.

Our strategy will follow some of the arguments given by U. Haagerup and N.J. Laustsen in $[17, \S 3]$, the Jordan setting will require some simple adaptations and particularizations. The proof will be divided into several lemmas. The next lemma was established in [17, Lemma 3.3] for associative Banach algebras, however the proof, which is left to the reader, is also valid for JB^{*}-algebras.

Lemma 3.10. Let $V: \mathcal{J} \times \mathcal{J} \rightarrow \mathbb{C}$ be a form on a JB*-algebra. Suppose that $f, g: \mathbb{R} \rightarrow \mathcal{J}$ are infinitely differentiable functions at a point $t_{0} \in \mathbb{R}$. Then the map $t \mapsto V(f(t), g(t)), \mathbb{R} \rightarrow \mathbb{C}$, is infinitely differentiable at t_{0} and its n 'th derivative is given by

$$
\sum_{k=0}^{n}\binom{n}{k} V\left(f^{(k)}\left(t_{0}\right), g^{(n-k)}\left(t_{0}\right)\right)
$$

The next lemma is also due to Haagerup and Laustsen, who established it for associative Banach algebras in [17, Lemma 3.4]. The proof given in the just quoted paper remains valid in the Jordan setting, the details are included here for completeness reasons.

Lemma 3.11. Let \mathcal{J} be a Jordan Banach algebra, let \mathcal{U} be an additive subgroup of \mathcal{J} whose linear span coincides with \mathcal{J}. Let $V: \mathcal{J} \times \mathcal{J} \rightarrow \mathbb{C}$ be an anti-symmetric form satisfying $V\left(a^{2}, a\right)=0$ for every $a \in \mathcal{U}$. Then the bounded linear operator $D_{V}: \mathcal{J} \rightarrow \mathcal{J}^{*}$ given by $D_{V}(a)(b)=V(a, b)$ for all $a, b \in \mathcal{J}$ is a Jordan derivation.
Proof. Let us take $a, b \in \mathcal{U}$. It follows from our hypothesis that

$$
\begin{gathered}
D_{V}\left(a^{2}\right)(b)-2\left(a \circ D_{V}(a)\right)(b)=D_{V}\left(a^{2}\right)(b)-2 D_{V}(a)(a \circ b) \\
=V\left(a^{2}, b\right)+2 V(a \circ b, a)=V\left(a^{2}, b\right)-2 V(a, a \circ b)
\end{gathered}
$$

$$
=\frac{V\left((a+b)^{2}, a+b\right)-V\left((a-b)^{2}, a-b\right)-2 V\left(b^{2}, b\right)}{2}=0 .
$$

This implies that $D_{V}\left(a^{2}\right)(b)=2\left(a \circ D_{V}(a)\right)(b)$, for every $a, b \in \mathcal{U}$. It follows from the bilinearity and continuity of V, and the norm density of the linear span of \mathcal{U} that $D_{V}\left(a^{2}\right)=2 a \circ D_{V}(a)$, for every $a \in \mathcal{J}$, witnessing that $D_{V}: \mathcal{J} \rightarrow \mathcal{J}^{*}$ is a Jordan derivation.

We deal now with the proof of Proposition 3.9.
Proof of Proposition 3.9. For each $a \in \mathcal{J}_{\text {sa }}$, let B denote the JB*-subalgebra of \mathcal{J} generated by a. It is known that B is isometrically isomorphic to a commutative C^{*}-algebra (see [18, Theorem 3.2.2 and 3.2.3]). Clearly, $\left.V\right|_{B \times B}: B \times B \rightarrow \mathbb{C}$ is an anti-symmetric form which is orthogonal on $B_{s a}$ (and hence orthogonal on B). Since B is a commutative unital C*-algebra, an application of Goldstein's theorem (cf. Theorem 1.1) shows that $V(x, y)=0$. for every $x, y \in B$. In particular, $V\left(a^{2}, a\right)=0$ for every $a \in \mathcal{J}_{s a}$. Lemma 3.11 guarantees that $D_{V}: \mathcal{J} \rightarrow \mathcal{J}^{*}$ is a Jordan derivation. Clearly, $D_{V}(a)(b)=-D_{V}(b)(a)$, for every $a, b \in \mathcal{J}$.

Definition 3.12. Let \mathcal{J} be a JB*-algebra. A Jordan derivation D from \mathcal{J} into \mathcal{J}^{*} is said to be a Lie Jordan derivation if $D(a)(b)=-D(b)(a)$, for every $a, b \in \mathcal{J}$.

Propositions 3.8 and 3.9 give:
Theorem 3.13. Let \mathcal{J} be a $J B^{*}$-algebra. Let $\mathcal{O} \mathcal{F}_{\text {as }}(\mathcal{J})$ denote the Banach space of all anti-symmetric orthogonal forms on \mathcal{J}, and let $\mathcal{L i e} \mathcal{J} \operatorname{Der}\left(\mathcal{J}, \mathcal{J}^{*}\right)$ the $B a$ nach space of all Lie Jordan derivations from \mathcal{J} into \mathcal{J}^{*}. For each $V \in \mathcal{O} \mathcal{F}_{\text {as }}(\mathcal{J})$ we define $D_{V}: \mathcal{J} \rightarrow \mathcal{J}^{*}$ in $\mathcal{L i e} \mathcal{J} \operatorname{Der}\left(\mathcal{J}, \mathcal{J}^{*}\right)$ given by $D_{V}(a)(b)=V(a, b)$, and for each $D \in \mathcal{L} \operatorname{ie} \mathcal{J} \operatorname{Der}\left(\mathcal{J}, \mathcal{J}^{*}\right)$ we set $V_{D}: \mathcal{J} \times \mathcal{J} \rightarrow C, V_{D}(a, b):=D(a)(b)$ $(a, b \in \mathcal{J})$. Then the mappings

$$
\begin{aligned}
\mathcal{O} \mathcal{F}_{a s}(\mathcal{J}) & \rightarrow \mathcal{L} i e \mathcal{J} \mathcal{D} \operatorname{er}\left(\mathcal{J}, \mathcal{J}^{*}\right), & \mathcal{L} i e \mathcal{J} \mathcal{D} \operatorname{er}\left(\mathcal{J}, \mathcal{J}^{*}\right) & \rightarrow \mathcal{O} \mathcal{F}_{a s}(\mathcal{J}), \\
V & \mapsto D_{V}, & D & \mapsto V_{D}
\end{aligned}
$$

define two isometric linear bijections and are inverses of each other.
Our final result subsumes the main conclusions of the last subsections.
Corollary 3.14. Let $V: \mathcal{J} \times \mathcal{J} \rightarrow \mathbb{C}$ be a form on a JB*-algebra. The following statements are equivalent:
(a) V is orthogonal;
(b) V is orthogonal on $\mathcal{J}_{\text {sa }}$;
(c) There exist a (unique) purely Jordan generalized Jordan derivation $G: \mathcal{J} \rightarrow$ \mathcal{J}^{*} and a (unique) Lie Jordan derivation $D: \mathcal{J} \rightarrow \mathcal{J}^{*}$ such that $V(a, b)=$ $G(a)(b)+D(a)(b)$, for every $a, b \in \mathcal{J}$;
(d) There exist a (unique) functional $\phi \in \mathcal{J}^{*}$ and a (unique) Lie Jordan derivation $D: \mathcal{J} \rightarrow \mathcal{J}^{*}$ such that $V(a, b)=G_{\phi}(a)(b)+D(a)(b)$, for every $a, b \in \mathcal{J}$.
Proof. $(a) \Rightarrow(b)$ is clear. To see $(b) \Rightarrow(c)$ and $(b) \Rightarrow(d)$, we recall that every form $V: \mathcal{J} \times \mathcal{J} \rightarrow \mathbb{C}$ writes uniquely in the form $V=V_{s}+V_{a s}$, where $V_{s}, V_{a s}: \mathcal{J} \rightarrow \mathcal{J}^{*}$ are a symmetric and an anti-symmetric form on \mathcal{J}, respectively. Furthermore,
since $V_{s}(a, b)=\frac{1}{2}(V(a, b)+V(b, a))$ and $V_{a s}(a, b)=\frac{1}{2}(V(a, b)-V(b, a))(a, b \in \mathcal{J})$, we deduce that V is orthogonal (on $\mathcal{J}_{s a}$) if and only if both V_{s} and $V_{a s}$ are orthogonal (on $\mathcal{J}_{s a}$). Therefore, the desired implications follow from Theorems 3.6 and 3.13. The same theorems also prove $(c) \Rightarrow(a)$ and $(d) \Rightarrow(a)$.

We shall finish this note with an observation which helps us to understand the limitations of Goldstein theorem in the Jordan setting.

Remark 3.15. Let A be a C^{*}-algebra, since the anti-symmetric orthogonal forms on A and the Lie Jordan derivations from A into A^{*} are mutually determined, we can deduce, via Goldstein's theorem (cf. Theorem 1.1), that every Lie Jordan derivation $D: A \rightarrow A^{*}$ is an inner derivation, i.e., a derivation given by a functional $\psi \in A^{*}$, that is, $D(a)=\operatorname{adj}_{\psi}(a)=\psi a-a \psi(a \in A)$. We shall see that a finite number of functionals in the dual of a JB^{*}-algebra \mathcal{J} and a finite collection of elements in \mathcal{J}, i.e. the inner Jordan derivations, are not enough to determine the Lie Jordan derivations from \mathcal{J} into \mathcal{J}^{*} nor the anti-symmetric orthogonal forms on \mathcal{J}. Indeed, as we have commented before, there exist examples of JB*algebras which are not Jordan weakly amenable, that is the case of $L(H)$ and $K(H)$ when H is an infinite dimensional complex Hilbert space (cf. [20, Lemmas 4.1 and 4.3]). Actually, let $B=K(H)$ denote the ideal of all compact operators on H, and let ψ be an element in B^{*} whose trace is not zero. The proof of [20, Lemmas 4.1] shows that the derivation $D=\operatorname{adj}_{\psi}: B \rightarrow B^{*}, a \mapsto \psi a-a \psi$ is not inner in the Jordan sense. Therefore the anti-symmetric form $V(a, b)=$ $D(a)(b)=(\psi a-a \psi)(b)=\psi[a, b]$ cannot be represented in the form given in (3.9). A similar example holds for $B=B(H)$ (cf. [20, Lemma 4.3]).

Remark 3.16. We have already shown the existence of JBW*-algebras which are not Jordan weakly amenable (cf. [20, Lemmas 4.1 and 4.3]). Thus, the problem of determining whether in a JB*-algebra \mathcal{J}, the inner Jordan derivations on \mathcal{J} are norm-dense in the set of all Jordan derivations on \mathcal{J}, takes on a new importance. If the problem has an affirmative answer for a JB*-algebra \mathcal{J}, Theorem 3.13 allows us to approximate anti-symmetric orthogonal forms on \mathcal{J} by a finite collection of functionals in \mathcal{J}^{*} and a finite number of elements in \mathcal{J}. Related to this problem, we note that Pluta and Russo recently proved that if the set of inner triple derivations from a von Neumann algebra M into its predual is norm dense in the real vector space of all triple derivations, then M must be finite, and the reciprocal statement holds if M acts on a separable Hilbert space, or is a factor [27, Theorem 1]. It would be interesting to explore the connections between normal orthogonal forms and normal Jordan weak amenability or norm approximation by normal inner derivations on JBW*-algebras.

Acknowledgement. The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no RG-1435-020. Second author also partially supported by the Spanish Ministry of Science and Innovation, D.G.I. project no. MTM2011-23843. We would like to thank the Referee for his/her useful comments and suggestions.

References

1. J. Alaminos, M. Bresar, J. Extremera, and A. Villena, Maps preserving zero products, Studia Math. 193 (2009), no. 2, 131-159.
2. R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848.
3. T.J. Barton and R.M. Timoney, Weak*-continuity of Jordan triple products and its applications, Math. Scand. 59 (1986), 177-191.
4. F. Bombal and I. Villanueva, Multilinear operators on spaces of continuous functions, Funct. Approx. Comment. Math. 26 (1998), 117-126.
5. M. Burgos, F.J. Fernández-Polo, J. Garcés, J. Martínez, and A.M. Peralta, Orthogonality preservers in C^{*}-algebras, $J B^{*}$-algebras and $J B^{*}$-triples, J. Math. Anal. Appl. 348 (2008), 220-233.
6. M. Burgos, F.J. Fernández-Polo, J.J. Garcés, and A.M. Peralta, Local triple derivations on C^{*}-algebras, Comm. Algebra 42 (2014), no. 3, 1276-1286.
7. M. Burgos, F.J. Fernández-Polo, and A.M. Peralta, Local triple derivations on C^{*}-algebras and JB*-triples, Bull. London Math. Soc., (4) 46 (2014), 709-724.
8. M. Cabrera García and A. Rodríguez Palacios, Non-Associative Normed Algebras, Volume 1. The Vidav-Palmer and Gelfand-Naimark Theorems, Part of Encyclopedia of Mathematics and its Applications, Cambridge University Press 2014.
9. Ch.-H. Chu, Jordan Structures in Geometry and Analysis, Cambridge Tracts in Math. 190, Cambridge. Univ. Press, Cambridge, 2012.
10. Ch.-H. Chu, B. Iochum, and G. Loupias, Grothendieck's theorem and factorization of operators in Jordan triples, Math. Ann. 284 (1989), 41-53.
11. A. Connes, On the cohomology of operator algebras, J. Funct. Anal. 28 (1978), 248-253.
12. H.G. Dales, Banach algebras and automatic continuity. London Mathematical Society Monographs. New Series, 24. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 2000.
13. C. M. Edwards and G. T. Rüttimann, Compact tripotents in bi-dual JB*-triples, Math. Proc. Cambridge Philos. Soc 120 (1996), no. 1, 155-173.
14. J. Garcés and A. M. Peralta, Orthogonal forms and orthogonality preservers on real function algebras, Linear Multilinear Algebra 62 (2014), no. 3, 275-296.
15. S. Goldstein, Stationarity of operator algebras, J. Funct. Anal. 118 (1993), no. 2, 275-308.
16. U. Haagerup, All nuclear C^{*}-algebras are amenable, Invent. Math. 74 (1983), no. 2, 305319.
17. U. Haagerup and N.J. Laustsen, Weak amenability of C^{*}-algebras and a theorem of Goldstein, in Banach algebras '97 (Blaubeuren), 223-243, de Gruyter, Berlin, 1998.
18. H. Hanche-Olsen and E. Størmer, Jordan operator algebras, Monographs and Studies in Mathematics 21, Pitman, London-Boston-Melbourne 1984.
19. S. Hejazian and A. Niknam, Modules Annihilators and module derivations of JB*-algebras, Indian J. pure appl. Math. 27 (1996), 129-140.
20. T. Ho, A.M. Peralta, and B. Russo, Ternary weakly amenable C^{*}-algebras and JB^{*} triples,Q. J. Math. 64 (2013), 1109-1139.
21. G. Horn, Characterization of the predual and ideal structure of a JBW*-triple, Math. Scand. 61 (1987), no. 1, 117-133.
22. B.E. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Cambridge Philos. Soc. 120 (1996), no. 3, 455-473.
23. W. Kaup, A Riemann Mapping Theorem for bounded symmentric domains in complex Banach spaces, Math. Z. 183 (1983), 503-529.
24. J. Li and Zh. Pan, Annihilator-preserving maps, multipliers, and derivations, Linear Algebra Appl. 423 (2010), 5-13.
25. C. Palazuelos, A.M. Peralta, and I. Villanueva, Orthogonally Additive Polynomials on C^{*} algebras, Quart. J. Math. Oxford. (3) 59 (2008), 363-374.
26. A. M. Peralta and B. Russo, Automatic continuity of triple derivations on C^{*}-algebras and $J B^{*}$-triples, Journal of Algebra 399 (2014), 960-977.
27. R. Pluta, B. Russo, Triple derivations on von Neumann algebras, to appear in Studia Math. arXiv:1309.3526v2.
28. J.R. Ringrose, Automatic continuity of derivations of operator algebras, J. London Math. Soc. (2) 5 (1972), 432-438.
29. S. Sakai, C^{*}-algebras and W^{*}-algebras, in: Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60. Springer-Verlag, New York-Heidelberg. 1971.
30. H. Upmeier, Derivations of Jordan C^{*}-algebras, Math. Scand. 46 (1980), 251-264.

1 Department of Mathematics, College of Science, King Saud University,
P.O.Box 2455-5, Riyadh-11451, Kingdom of Saudi Arabia.

E-mail address: fjamjoom@ksu.edu.sa; asiddiqui@ksu.edu.sa
2 Departamento de Análisis Matemático, Universidad de Granada, Facultad de Ciencias 18071, Granada, Spain.

Current address: Visiting Professor at Department of Mathematics, College of Science, King Saud University, P.O.Box 2455-5, Riyadh-11451, Kingdom of Saudi Arabia.

E-mail address: aperalta@ugr.es

[^0]: Date: Received: Oct. 31, 2014; Accepted: Jan. 2, 2015.

 * Corresponding author.

 2010 Mathematics Subject Classification. Primary 46L57; Secondary 47B47, 17B40, 46L70, 46L05, 46L89, 43A25.

 Key words and phrases. (Jordan) weak amenability, orthogonal form, generalized derivation, purely Jordan generalized derivation, Lie Jordan derivation.

