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Abstract Aberrations in one-carbonmetabolismwere reported
to increase breast cancer risk by influencing the DNA synthesis
and methylation of DNA and catecholamines. However, the
results of these association studies remain inconclusive. We
have explored the contribution of eight genetic polymorphisms
inmodulating the susceptibility to breast cancer by performing a
meta-analysis of worldwide studies. In total, 62 case-control
studies representing 17 different populations involving 18,117
breast cancer cases and 23,573 healthy controls were included
in this meta-analysis. Out of the eight polymorphisms analyzed,
methylenetetrahydrofolate reductase (MTHFR) C677T exhibit-
ed positive association with the breast cancer risk in both fixed
effects (OR 1.14, 95 % CI 1.10–1.17) and random effects (OR
1.10, 95 % CI 1.02–1.18) models. Solute carrier family 19
(folate transporter), member 1 (SLC19A1) G80A exhibited pos-
itive association (OR 1.16, 95 % CI 1.03–1.31) while MTR
A2756G exhibited an inverse association (OR 0.78, 95 % CI
0.75–0.82) with the breast in fixed effect model alone.
Significant heterogeneity was observed in the association of
MTHFR C677T with breast cancer even between studies from

the same geographical area, specifically among Chinese,
Indians, and Turks. Subgroup analysis revealed MTHFR
C677T-mediated breast cancer risk in post-menopausal women
and women with low dietary intake of folate. Geographical area
wise segregation of data revealed MTHFR-mediated increased
breast cancer risk in populations who consume methionine-rich
diet. Altitude-level variations were observed in the association
of SHMT1C1420Twith breast cancer. India and Brazil of same
altitude showed an inverse association with this polymorphism,
while USA and China that share similar altitude showed a null
association. MTHFR C677T and SLC19A1 G80A are the two
polymorphisms of one-carbon metabolic pathway that increase
breast cancer in the worldwide population. Dietary patterns and
altitudinal variations are the likely risk modulators that are con-
tributing toward ethnic- and population-level variations in ge-
netic associations.
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Introduction

The etiology of breast cancer is complex, involving interactions
between genetic and environmental factors; and epigenetic
modifications. The high-penetrant genetic mutations account
for less than 10 % breast cancer cases (Hoskins et al. 1995).
Several genetic polymorphisms have been explored across dif-
ferent pathways for possible association with breast cancer
(Fachal and Dunning 2015). Among these pathways, the most
widely investigated pathway is the one-carbon metabolic path-
way, which was so named because of the several metabolic
reactions involving the transfer of one-carbon moiety from
one substrate to another to form several crucial metabolic
precursors.
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The dietary folate in the form of folyl polyglutamates is
hydrolyzed by folate hydrolase (prostate-specific membrane
antigen) 1 (FOLH1) to folyl monoglutamates, which are
absorbed easily by the intestinal cells (Halsted 1989). Folate
reductase catalyzes the reduction of folate to dihydrofolate
(DHF) and tetrahydrofolate (THF). The THF of the blood
stream is transported into RBC by the solute carrier family
19 (folate transporter), membrane 1 (SLC19A1) (Brzezińska
et al. 2000). The methylene moiety from the serine is trans-
ferred to THF to form 5,10-methylene THF in the presence of
serine hydroxymethyltransferase 1 (soluble) (SHMT1)
(Stover and Schirch 1992). The 5,10-methylene THF is the
common substrate for two rate-limiting enzymes, i.e.,
thymidylate synthase (TYMS) and methylenetetrahydrofolate
reductase (NAD(P)H) (MTHFR), which catalyze the conver-
sion of dUMP to dTMP and FAD-dependent reduction of
5,10-methylene THF to 5-methyl THF, respectively (Trinh
et al. 2002). The 5-methyl THF is the cosubstrate for the
remethylation of homocysteine to methionine in the presence
of 5-methyltetrahydrofolate-homocysteine methyltransferase
(MTR). The other cosubstrate, i.e., methyl cobalamin is
formed due to reductive methylation of cobalamin by the 5-
methyltetrahydrofolate-homocysteine methyltransferase re-
ductase (MTRR). The MTR-MTRR holoenzyme complex,
thus contributes toward the remethylation of homocysteine
to methionine (Brot and Weissbach 1966). Methionine is the
precursor for the synthesis of S-adenosylmethionine (SAM),
which is a universal methyl donor that donates a methyl group
to DNA, histones, and catecholamines. After donating a meth-
yl group, SAM is converted to S-adenosyl homocysteine
(SAH).

Since aberrant methylation of tumor suppressors and cate-
chol estrogens, defective DNA synthesis and repair are the
well-documented risk factors for breast cancer; several poly-
morphisms of one-carbon metabolic pathway were explored
for the possible association with breast cancer. Limited studies
are there on FOLH1 C1561T polymorphism in association
with breast cancer (Mohammad et al. 2011; Naushad et al.
2011). Several other genetic variants of FOLH1 are also
explored for their association with breast cancer (Divyya
et al. 2013). SLC19A1G80Awas shown to exert breast cancer
risk in Indian and Brazilian populations (Carvalho Barbosa
Rde et al. 2011; Mohammad et al. 2011; Naushad et al.
2011), while no association was reported in the US population
(Xu et al. 2007). SHMT1 C1420T polymorphism was shown
to confer protection against breast cancer in Indian
(Mohammad et al. 2011; Naushad et al. 2011), Chinese (Wu
et al. 2014), and Brazilian (Carvalho Barbosa Rde et al. 2011)
populations while null association was observed in the US and
(Xu et al. 2007) Taiwanese (Yu et al. 2007) populations. TYMS
5′-UTR 28 bp tandem repeat polymorphism showed null as-
sociation with breast cancer risk in six studies (Xu et al. 2007;
Suzuki et al. 2008; Carvalho Barbosa Rde et al. 2011;

Naushad et al. 2011). TYMS 3′-UTR ins6/del6 showed posi-
tive association with breast cancer in the Japanese population
(Zhai et al. 2006), while it showed a null association in Indians
(Naushad et al. 2011), Chinese (Zhai et al. 2006) and Germans
(Justenhoven et al. 2005).MTHFR C677T is the most widely
studied polymorphism of this pathway; the segregation of data
based on ethnic group or populations revealed a strong asso-
ciation of this polymorphism in Turkey(Deligezer et al. 2005;
Ozen et al. 2013), China (Cheng et al. 2008; Gao et al. 2009;
Wu et al. 2012; Jiang-Hua et al. 2014), Syria (Lajin et al.
2012), Morocco (Diakite et al. 2012), and North America
(Maruti et al. 2009; Bentley et al. 2010; Ramos-Silva et al.
2015). Two studies, i.e., one on multi-ethnic group (Le
Marchand et al. 2004) and another on the Iranian population
(Hosseini et al. 2011), showed a protective role of this poly-
morphism. In rest of the population (N = 10), the association
of this polymorphism was either borderline or null (Shrubsole
et al. 2004; Lee et al. 2004; Inoue et al. 2008; Ma et al. 2009;
Hosseini et al. 2011; Prasad and Wilkhoo 2011; Akram et al.
2012; Awwad et al. 2015).MTR A2756G was investigated in
ten different populations out of which it was identified as a
risk factor in Iranian (Hosseini 2013) and Australian (Beetstra
et al. 2008) populations. In two populations, i.e., Greece
(Kakkoura et al. 2015) and China (He et al. 2014), this poly-
morphism showed an inverse association with breast cancer
risk while in other population, it showed a null association
(Platek et al. 2009; Weiwei et al. 2014; He et al. 2014).
MTRR A66G was identified as a risk for breast cancer in a
Russian population (Tao et al. 2009), while it was shown to
have an inverse association with Thai (Sangrajrang et al.
2009; Sangrajrang et al. 2010) and Australian (Beetstra et al.
2008) populations. In another eight populations,MTRRA66G
showed a null association (Kotsopoulos et al. 2008; Burcoş
et al. 2010; Weiner et al. 2012).

The variations in genetic association across different popu-
lations might be attributed to gene-gene and gene-nutrient in-
teractions which act as potential risk modulators. In the current
study, we have aimed to provide a comprehensive overview of
all the genetic association relevant to one-carbon metabolism
as possible risk modulators for breast cancer using meta-
analysis approach. This will help in identifying the genetic risk
factors that are common across the different populations and
also to emphasize the role of dietary and lifestyle patterns in
dictating the breast cancer risk along with a given set of
polymorphisms.

Materials and methods

Search strategy and selection criteria

We searched four electronic databases (PubMed, Google
Scholar, Scopus, and Medline) to identify eligible studies that
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were published before December 2015. Articles were retrieved
by using the following keywords: BGCPII/FOLH1,^ BRFC1/
SLC19A1,^ BSHMT1,^ BTYMS,^ BMTHFR,^ BMTR,^
BMTRR,^ Bpolymorphism,^ and Bbreast cancer.^ The refer-
ence list of the retrieved publications was also reviewed to
identify additional relevant articles.

Inclusion and exclusion criteria

The inclusion criteria were the following: (a) case-control
study involving unrelated individuals, (b) information on the

raw data of genotypes, (c) information on ethnicity, and (d) the
genotype distribution in accordance with Hardy-Weinberg
equilibrium (HWE). The exclusion criteria were the follow-
ing: (a) case only study, (b) meta-analysis, (c) only minor
allele frequencies provided, and (d) duplication of data.

Data extraction

A standardized form was used by the investigators for inde-
pendent extraction of data and for credibility of results. The
following information was extracted from each published

Flowchart 1 Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flow diagram. This illustrates the selection process of the
studies

Table 1 Association of polymorphisms of one-carbon metabolic pathway with breast cancer risk

Polymorphism Number of populations (subjects) Pooled odds ratio Test for homogeneity Bias

Fixed effects Random effects

FOLH1 C1561T (rs61886492)
T vs. C-allele

1 (486) 0.74 (0.46–1.19) ND ND ND

SLC19A1 G80A
(rs1051266)
A vs. G-allele

3 (3177) 1.16 (1.03–1.30)a 1.28 (0.98–1.67) 7.91a 4.78

cSHMT C1420T
(rs1979277)
T vs. C-allele

4 (5742) 0.93 (0.86–1.01) 0.86 (0.71–1.03) 7.94a −2.15

TYMS 5′-UTR 2R/3R
(rs45445694)
2R vs. 3R

5 (5461) 0.96 (0.88–1.04) 0.96 (0.88–1.04) 2.76 2.24a

TYMS 3′-UTR ins6/del6
Del6 vs. ins6-allele

4 (2676) 1.02 (0.91–1.14) 1.16 (0.84–1.59) 19.06a 5.19

MTHFR C677T
(rs1801133)
T vs. C-allele

17 (51,690) 1.14 (1.10–1.17)a 1.10 (1.02–1.18)a 57.88a −0.73

MTR A2756G
(rs1805087)
G vs. A-allele

10 (22,584) 0.78 (0.75–0.82)a 0.99 (0.76–1.29) 236.06a 6.28a

MTRR A66G
(rs1801394)
G vs. A-allele

11 (15,018) 1.02 (0.97–1.07) 1.02 (0.95–1.09) 15.78 −0.97

This table illustrates association of each folate pathway genetic polymorphism with breast cancer risk in the worldwide population. The data from the
literature was grouped based on the populations. The number of populations and the number of subjects included for the analysis were depicted

ND not determined
a Statistically significant
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article: first author, year of publication, ethnicity (country),
number of cases, number of controls, source of controls, and
genotype distribution.

Segregation of data into ethnic groups and populations

The studies from the same ethnic group or population were
pooled together to assess ethnicity or population-based risk.
This analysis is useful in addressing the risk modulation based
on specific dietary or lifestyle patterns. The number of ethnic
groups, number of subjects in each group, and their associa-
tion with each polymorphism were tabulated.

In silico analysis

In order to elucidate the structural and functional effects of the
amino acid substitution, Polymorphism Phenotyping v2
(PolyPhen-2) (http://genetics.bwh.harvard.edu/pph2/) was

used, which was based on the physical and comparative
considerations. The score classifies the proteins into benign,
partially damaging and highly damaging.

Statistical analysis

Using statpages.org, chi-square goodness of fit for each cases
and control studies was calculated. p Value with 95 % confi-
dence interval, odds ratio, and phi coefficient were included in
the data. p Value with 0.05 or less was considered as signifi-
cant, and breast cancer risk was assessed through OR. A com-
putational tool (statdirect) was used to conduct meta-analysis
of all the studies related to polymorphisms of one-carbon me-
tabolism. The data were computed in the form of number of
variant alleles and number of total alleles in cases and con-
trols. The fixed effect model was generated using the Mantel-
Haenszel and the Robins-Breslow-Greenland algorithm.
These were based on conditional maximum likelihood. The

Fig. 2 Association of SHMT1
C1420Twith breast cancer in four
populations. This illustrates
population based risk association
in a fixed effects model and b
random effects model

Fig. 1 Association of SLC19A1 G80Awith breast cancer in three populations. This illustrates population based risk association in a fixed effects model
and b random effects model
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random effects model was based on the DerSimonian-Laird
algorithm. Non-combinability of studies was assessed based
on the Cochran’s Q test. The effect of heterogeneity was quan-
tified with the I2 test. Publication bias was assessed based on
the Horbold-Egger test.

Results

Characteristics of the included studies

According to search, 94 potentially relevant articles were
identified. After applying the inclusion and exclusion criteria,
we have chosen 62 published studies representing 17 popula-
tions involving 18,117 cases of breast cancer and 23,573
healthy controls (Flowchart 1).

Meta-analysis databases

There are three studies from India on FOLH1 C1561T poly-
morphism where one study was taken as representative which
shows no association of this polymorphism with breast cancer
(OR 0.74, 95% CI 0.46–1.19) (Table 1). No other population-
specific data were available on FOLH1 C1561T with rele-
vance to breast cancer.

The data on SLC19A1 G80A was complied into three dis-
tinct populations, out of which Indian (OR 1.33, 95 %CI 1.02–
1.74) and Brazilian (OR 1.63, 95 % CI 1.18–2.28) populations
exhibited an increased risk for breast cancer. Null association
was observed in US population (OR 1.04, 95 % CI 0.90–1.20).
The pooled OR was significant in the fixed effect model (OR
1.16, 95 % CI 1.03–1.30). However, the random effects model
showed no statistical significance (p = 0.08). Cochran’s Q tests
showed evidence of heterogeneity in association (p = 0.02).
There is no evidence of publication bias (p = 0.07) (Fig. 1).

Studies on SHMT1 C1420Twere segregated into four pop-
ulations; out of these Indian (OR 0.75, 95 % CI 0.58, 0.97)
and Brazilian (OR 0.64, 95 % CI 0.44–0.94) populations
showed statistically significant protective role against breast
cancer. Null association was observed in Chinese (OR 0.97,
95 % CI 0.73–1.29) and US (OR 0.97, 95 % CI 0.89–1.07)
populations. Pooled OR was not statistically significant in
both fixed effects and random effects models. The Cochran’s
Q test of heterogeneity was positive (p = 0.047). However,
there is no evidence of publication bias (p = 0.20) (Fig. 2).
Altitudinal variation was observed in the association of
SHMT1 C1420Twith breast cancer (Fig. 3).

Studies on TYMS 5′UTR 28 bp repeat polymorphism were
segregated into five populations, i.e., Chinese, Brazilian, US,
Indian, and Japanese. Null association was observed in all the
populations. Both fixed effects and random effects models
showed null association with pooled data (p = 0.28). No evi-
dence of heterogeneity was shown in Cochran’s Q test (p =
0.60). There was evidence for publication bias based on
Horbold-Egger test (p = 0.02).

In four populations, the association of TYMS 3′UTR with
breast cancer was investigated. Japanese population alone
showed statistically significant risk with this polymorphism
(OR 3.54, 95 % CI 1.86–6.76). However, the sample size of
the study was very less. In other populations, i.e., Indian,
Chinese, and Germans, null associations were observed with
this polymorphism. Both fixed effects (p = 0.77) and random
effects (p = 0.36) models showed null association of the
pooled data. The Cochran’s Q test (p = 0.0003) showed evi-
dence of heterogeneity in association. No publication bias was
observed for this polymorphism (p = 0.20).

As shown in Table 2, the association of MTHFR C677T
with breast cancer exhibits lot of heterogeneity across different
studies. The Cochran’s Q test (Q 239.09, p < 0.0001) confirms
this heterogeneity. Furthermore, the data was grouped based on

Fig. 3 Influence of altitude on SHMT1C1420Tassociation. The two population, i.e., Indians and Brazilians who showed protective role (light gray) and
two other population, Chinese and US, who showed null association (dark gray) shared similar altitude
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Table 2 Association of MTHFR
C677T with breast cancer risk
across different studies

Author MTHFR 677 T-allele frequency OR 95 % CI

Cases Controls Limit Limit

Kalyan 0.5698 0.4536 1.5892 0.9785 2.581

Mir 0.2727 0.5614 0.3084 0.1158 0.8214

Naushad 0.6139 0.4869 1.6676 1.0959 2.5376

Prasad 0.4118 0.5132 0.6777 0.2612 1.7584

Barbosa 0.4906 0.52 0.8894 0.6482 1.2205

Ma 0.4938 0.5028 0.9648 0.7912 1.1765

Xu 0.5105 0.478 1.1386 1.0075 1.2868

Bentley 0.439 0.43 1.0371 0.918 1.1717

Platek 0.3568 0.3548 1.0088 0.899 1.1321

Tao 0.2191 0.2218 0.9847 0.8519 1.1381

Chen 0.5105 0.478 1.1386 1.0075 1.2868

Maruti 0.3615 0.3137 1.2389 1.0148 1.5125

Jin 0.2989 0.2872 1.0639 0.6136 1.8447

Yu 0.2199 0.201 1.1238 0.8071 1.5649

Liu 0.5082 0.4973 1.0443 0.8396 1.2989

Cheng 0.3916 0.3992 0.9691 0.7839 1.1981

Gao 0.5305 0.4791 1.2286 1.0471 1.4416

Wu 0.4348 0.4696 0.8777 0.3622 2.1267

Weiwei 0.5539 0.469 1.4044 1.0904 1.809

Jiang-Hua 0.5063 0.4127 1.4595 1.2301 1.7315

He 0.5 0.427 1.3418 1.0646 1.691

Wu 0.6039 0.4036 2.2411 1.4345 3.5013

Li 0.3978 0.2879 1.6362 1.0148 2.6381

Yuan 0.6039 0.4036 2.2411 1.4345 3.5013

Qi 0.5359 0.4574 1.3689 1.0484 1.7874

Shrubsole 0.4873 0.491 0.9855 0.8758 1.1089

Kan 0.6083 0.5268 1.3905 0.9109 2.1224

Hua 0.4432 0.5355 0.6926 0.429 1.1182

Lin 0.2122 0.2016 1.0711 0.7451 1.5397

Chou 0.3187 0.3391 0.9134 0.6723 1.241

Yu 0.2466 0.2112 1.2253 0.8936 1.6802

Justenhoven 0.4599 0.4908 0.8837 0.7482 1.0438

Reljic 0.5962 0.5849 1.0454 0.6498 1.6818

kalemi 0.4545 0.45 1.0196 0.5598 1.857

Deligezer 0.5158 0.4378 1.3671 1.0043 1.861

Ozen 0.4828 0.2891 2.289 1.285 4.0775

Ergul 0.4032 0.3693 1.1551 0.8133 1.6405

Hekim 0.3704 0.3704 1.0067 0.535 1.8944

Cam 0.5814 0.516 1.2996 0.8544 1.9768

Akram 0.5 0.5 1 0.6648 1.5042

Grieu 0.352 0.389 0.8539 0.693 1.0522

Campbell 0.623 0.574 1.2248 0.9493 1.5802

Beetstra 0.56 0.4211 1.724 0.6782 4.3826

Awward 0.544 0.4902 1.2389 0.8737 1.7569

Lee 0.5839 0.5408 1.1907 0.8722 1.6253

Le Marchand 0.3965 0.4628 0.7632 0.6165 0.9447

Inoue 0.3418 0.3714 0.8797 0.7096 1.0905

Suzuki 0.3511 0.3208 1.1459 0.9749 1.3468

284 J Community Genet (2016) 7:279–290



populations. It was identified as a risk factor in North America,
Turkey, China, Morocco, and Syria. In other populations, the
association was not statistically significant. Both fixed effects
(p < 0.0001) and random effects (p = 0.01) models showed sig-
nificant risk for this polymorphism in the pooled analysis. The
Cochran’s Q test (p < 0.0001) indicated heterogeneity in the
association across different populations. No evidence of pub-
lication bias was observed (p = 0.34) (Fig. 4). Except for North
America and China, all other countries showing MTHFR-me-
diated risk for breast cancer belong to Mediterranean origin
(Fig. 5). As shown in Table 3, even within a geographical area,
heterogeneity was observed with regard to association of
MTHFR C677T with breast cancer, specifically among
Chinese, Indians, and Turks. Subgroup analysis revealed

MTHFR C677T-mediated breast cancer risk in post-
menopausal women and in women with low dietary intake of
folate (Tables 4 and 5).

Out of the ten populations investigated for possible associ-
ation of MTR A2756G with breast cancer, the Iranian and
Australian populations showed positive association; the
Chinese and Greece populations showed an inverse associa-
tion; and the Russian, German, Japanese, Brazilian, Indian,
and US populations showed a null association. The pooled
data showed the protective role of this polymorphism in fixed
effects models alone (p < 0.0001). However, the random ef-
fects model showed a null association (p = 0.96). The
Cochran’s Q test (p < 0.0001) showed evidence of heteroge-
neity. There is evidence of publication bias (p = 0.04).

Table 2 (continued)
Author MTHFR 677 T-allele frequency OR 95 % CI

Cases Controls Limit Limit

Alshatwi 0.5093 0.4937 1.064 0.7142 1.5852

Sangrajrang 0.551 0.5338 1.0713 0.8365 1.3719

Hosseini 0.4444 0.5185 0.7434 0.5818 0.9497

Lajin 0.5698 0.4403 1.6797 1.1563 2.4401

Liu 0.5364 0.4755 1.276 1.0532 1.5459

Diakite 0.5339 0.4188 1.5859 1.0366 2.4262

Batschauer 0.4272 0.48 0.8084 0.5014 1.3035

Cortes 0.4256 0.3324 1.4868 1.0663 2.0732

Silva 0.6531 0.5627 1.4613 1.1872 1.7988

Maria 0.4947 0.4698 1.1049 0.98 1.2456

Ericson 0.3571 0.3232 1.1642 0.9422 1.4384

[Combined]

Fixed 1.1031 1.0707 1.1364

Random 1.1333 1.0734 1.1966

Fig. 4 Association of MTHFR
C677T with breast cancer across
17 populations. This illustrates
population based risk association
in a fixed effects model and b
random effects model
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Eleven studies explored the association of MTRR A66G
with breast cancer. Out of these, only Russian population
showed increased risk for breast cancer. Australian population
showed an inverse association with breast cancer. Other nine
populations, namely Chinese, Romanian, Canadian, Syrian,
Polish, Thai, Japanese, and Indian showed a null association.
Both fixed effects (p = 0.41) and random effects models (p =
0.59) showed a null association. The Cochran’s Q test
(p < 0.11) showed no evidence of heterogeneity in association.
No publication bias was observed (p = 0.26).

As shown in Fig. 6, in silico studies revealed the potential
damaging effects of SLC19A1 G80A, MTHFR C677T, and
MTRR A66G, while no damage was observed with SHMT1
C1420T and MTR A2756G polymorphisms (Fig. 6).

Discussion

The current study attempts to investigate the role of putative
genetic polymorphisms in one-carbon metabolic pathway
with the etiology of breast cancer. Here, we have pooled the
data from different ethnic groups and populations. Two poly-
morphisms, i.e., SLC19A1 G80A and MTHFR C677T, were
identified as potential risk factors for breast cancer in the

pooled analysis. SHMT1 C1420T and MTR A2756G showed
borderline protective role against breast cancer.

The functional analysis revealed the strong association of
SLC19A1 G80A and MTHFR C677T polymorphisms with
structural instability and damage of the respective proteins.
MTHFR C677T was shown to induce thermolability in
MTHFR protein, resulting in its dissociation into inactive
monomers with loss of FAD-binding capacity (Yamada et al.
2001). The SHMT1C1420T polymorphism has no deleterious
effect on SHMT1 protein. The MTR A2756G was shown to
induce benign damage to the protein. The MTRR A66G
showed a deleterious effect on MTRR protein. Since MTR
and MTRR act together in 1:1 stoichiometric ratio to form
holoenzyme complex (Yamada et al. 2006), it is likely that
MTR and MTRR variant alleles act in synergy in modulating
breast cancer risk.

The SLC19A1 G80A was found to be a risk factor in
Indians and Brazilians, but not in US population. This lack
of association with US population can be attributed to folate
fortification program in the USA. SLC19A1 expression was
reported to be downregulated in conditions of folate depriva-
tion (Ifergan et al. 2008) suggesting that availability of folate
might act as an effect modifier. Decreased transcription and
altered function might have deleterious impact, thus influenc-
ing intracellular folate levels.

The MTHFR C677T polymorphism was found to be a
risk factor in Mediterranean populations. The risk is prob-
ably attributed to change in the dietary patterns from the
conventional Mediterranean diet to the processed food
resulting in the deficiency of folate and other vitamins
(Castro-Quezada et al. 2014). This hypothesis was sub-
stantiated by the subgroup analysis showing MTHFR
C677T-mediated breast cancer risk among women with
low folate intake. Our results corroborate with a previous
study, which demonstrated increased risk for post-menopausal
breast cancer in carriers of MTHFR 677 T-allele despite hav-
ing high plasma folate levels (Ericson et al. 2009). Methionine
after the synthesis of SAM and its utilization as a methyl
group donor forms SAH and thus contributes toward higher
homocysteine levels. The remethylation of homocysteine de-
pends on the bioavailability 5-methyl THF and the activity of
MTR andMTRR complex. TheMTR-MTRR complex requires
methyl cobalamine as cofactor. Thus, the synthesis of 5-
methyl THF is hampered in subjects harboring the variants.
The other possible contributors for the population level varia-
tion in the association are complex interactions among MTR,
MTHFR, and MTRR.

The induction of futile folate cycle by SHMT1C1420T
might be contributing toward the maintenance of one-carbon
homeostasis through formation of 5-formyl THF from 5,10-
methylene THF (Stover and Schirch 1992) thus conferring
protection against breast cancer. In a previous study, we have
observed higher circulating folate levels in a subject with

Table 3 Test for homogeneity between the studies on MTHFR C677T
segregated based on geographical area

Country Total number of studies Cochran’s Q p value

China 15 84.21 <0.0001*

USA 6 7.79 0.17

Turkey 6 12.54 0.03*

India 4 9.07 0.03*

Taiwan 3 1.93 0.38

Australia 3 1.03 0.60

Brazil 3 0.43 0.81

*Denotes statistical significance and indicative of heterogeneity in
association

Fig. 5 Influence of altitude on MTHFR C677T association. Iran,
Singapore, Germany, Brazil, and Australia showed odds ratio ≤1.01.
Saudi Arabia, Thailand, Greece, and North America showed odds ratios
between 1.06 and 1.13. India, Korea, Chinese, Jordan, and Pakistan
showed odds ratios between 1.17 and 1.27. Japan, Turkey, Morocco,
and Syria showed odds ratios between 1.35 and 1.68. The change in
odds ratio was depicted in gray to black gradation in the world map
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SHMT1 TT genotype when compared to those with SHMT1
CT and CC genotypes (Naushad et al. 2011). The in silico
study showing active enzyme in the presence of this polymor-
phism supports this hypothesis further.

The results of our meta-analysis corroborated with other
meta-analyses (Yu and Chen 2012; Liang et al. 2013;
Castro-Quezada et al. 2014); (Li et al. 2014a; Rai 2014;
Pooja et al. 2015; Kumar et al. 2015) in showing MTHFR
C677T as a risk factor for breast cancer. The null association
of MTR A2756G in random effects model and an inverse
association with breast cancer in Caucasians were consistent
with the meta-analysis of Zhong et al. (2013). The null asso-
ciation of MTRR A66G with breast cancer is in agreement

with the meta-analysis of Hu et al. (2010). To date, there is
no other meta-analysis that explored the association of
SLC19A1 G80Awith breast cancer risk.

Our study showed agreement with another study (Li et al.
2014b) in demonstrating the protective role of SHMT1
C1420Tagainst breast cancer in Asians, while null association
in Caucasians. In contrast with Wang et al. (2010), we have
performed a meta-analysis of TYMS polymorphisms based on
alleles. And hence, null association was observed. Only
Japanese population exhibited positive association of TYMS
3′UTR ins6/del6 with breast cancer.

The limitations of the current study were the following: (i)
inclusion of only published studies in the current meta-
analysis and (ii) this meta-analysis was based on unadjusted
odds ratios as it is difficult to retrieve information on the con-
founding factors from each study.

To summarize, MTHFR C677T and SLC19A1 G80A are
considered to be a significant risk factors for breast cancer

Table 5 Effect of menopausal status on MTHFR C677T-mediated
breast cancer risk

Author MTHFR T-allele freq OR 95 % CI

Cases Control Limit Limit

Pre-menopausal

Diakite 0.3387 0.2705 1.3763 0.7999 2.3682

Deligezer 0.2611 0.227 1.2053 0.7824 1.857

Le Marchand 0.3129 0.3038 1.046 0.777 1.408

Naushad 0.1348 0.0714 1.9703 0.9701 4.0016

Suzuki 0.3958 0.412 0.9355 0.7392 1.1838

Platek 0.3431 0.3522 0.9613 0.7742 1.1937

Ericson 0.2982 0.3202 0.9035 0.708 1.153

Ma 0.2908 0.2899 1.0037 0.7255 1.3887

[Combined]

Fixed 1.0026 0.9011 1.1155

Random 1.0026 0.9011 1.1155

Post-menopausal

Diakite 0.3088 0.1964 1.8206 0.9154 3.6208

Maruti 0.3632 0.3153 1.2389 1.0148 1.5125

Stevens 0.1921 0.1582 1.2641 1.0014 1.5958

Deligezer 0.3384 0.2683 1.39 0.8845 2.1843

Ziva Cerne 0.3467 0.368 0.9111 0.7338 1.1313

Le Marchand 0.3183 0.3116 1.0316 0.9122 1.1665

Naushad 0.1013 0.0597 1.7551 1.0317 2.9857

Suzuki 0.4559 0.3784 1.3761 1.1014 1.7192

Platek 0.3444 0.3284 1.0746 0.9371 1.2324

Ericson 0.2518 0.2158 1.2238 0.9666 1.5495

Ma 0.312 0.3235 0.9486 0.7382 1.2189

[Combined]

Fixed 1.1177 1.0491 1.1909

Random 1.1494 1.0443 1.265

Table 4 Effect of folate inmodulatingMTHFRC677T-mediated breast
cancer risk

Author MTHFR T-allele freq OR 95 % CI

Cases Control Limit Limit

High folate

Shrubsole 0.4071 0.4274 0.9202 0.7708 1.0985

Lee 0.3487 0.3333 1.0708 0.7376 1.5545

Maruti 0.3447 0.3212 1.113 0.8183 1.514

Ma 0.2724 0.3344 0.7457 0.5846 0.9511

Suzuki 0.4314 0.3909 1.1824 0.9644 1.4496

Naushad 0.1409 0.0461 3.3184 1.7081 6.4468

Kakkoura 0.3981 0.4035 0.9779 0.8241 1.1605

He 0.295 0.2896 1.0276 0.6859 1.5395

Weiwei 0.2717 0.2382 1.1929 0.8229 1.7294

Chou 0.1818 0.2411 0.7071 0.4221 1.1845

Chen 0.3911 0.3821 1.0383 0.8755 1.2314

Le Marchand 0.3243 0.3295 0.977 0.7912 1.2064

[Combined]

Fixed 1.0046 0.9362 1.078

Random 1.0098 0.9372 1.088

Low folate

Shrubsole 0.4312 0.4051 1.113 0.9375 1.3214

Lee 0.3358 0.3333 0.9992 0.4835 2.0652

Maruti 0.3854 0.3066 1.4177 1.0631 1.8906

Ma 0.2841 0.2451 1.2204 0.862 1.7279

Suzuki 0.4235 0.404 1.0843 0.8283 1.4193

Naushad 0.125 0.0865 1.488 0.827 2.6775

Kakkoura 0.435 0.3845 1.2324 1.0397 1.4607

He 0.3303 0.2787 1.2739 0.7285 2.2275

Weiwei 0.3412 0.25 1.5492 1.0879 2.2061

Chou 0.1053 0.2028 0.4722 0.2628 0.8484

Chen 0.4167 0.3581 1.2799 1.0708 1.5298

Le Marchand 0.3177 0.3025 1.0743 0.8625 1.338

[Combined]

Fixed 1.1907 1.1037 1.2845

Random 1.1877 1.0722 1.3158
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globally. The SHMT1 C1420T seems to confer borderline
protective role. The ethnic and population level variations
in genetic association could be due to gene-gene interac-
tion, gene-nutrient interaction, and genome-epigenome
interactions.
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