M 106

Integral Calculus and Applications



Contents

1.1
1.1.1
1.1.2

1.2
1.3

2.1
2.2
2.3
24
25

2.5.1
25.2

3.1
3.1.1
3.1.2
3.2
3.2.1
3.2.2
3.3
3.3.1
3.3.2

4.1
4.2
4.2.1
422
4.3
4.3.1
4.3.2

5.1

The Indefinite Integrals

Antiderivatives and Indefinite Integrals

Antiderivatives . . . . . . ..
Indefinite Integrals . . . . . . ...

Properties of the Indefinite Integral
Integration By Substitution

The Definite Integrals

Summation Notation

Riemann Sum and Area

Properties of the Definite Integral

The Fundamental Theorem of Calculus
Numerical Integration

Trapezoidal Rule . . . . . ... ... .. ...
Simpson'sRule . . . . . . ..

Logarithmic and Exponential Functions

The Natural Logarithmic Function

Properties of the Natural Logarithmic Function
Differentiating and Integrating the Natural Logarithmic Function

The Natural Exponential Function

Properties of the Natural Exponential Function
Differentiating and Integrating the Natural Exponential Function
General Exponential and Logarithmic Functions

General Exponential Function . . . ... .. ... ... ... . o .
General Logarithmic Function . . . . . ... ... .. ... ... ... ... ...

Inverse Trigonometric and Hyperbolic Functions

Inverse Trigonometric Functions
Hyperbolic Functions

Properties of the Hyperbolic Functions . . . . .. ... .. ... ... .. ....
Differentiating and Integrating the Hyperbolic Functions

Inverse Hyperbolic Functions

Properties the Inverse Hyperbolic Functions
Differentiating and Integrating the Inverse Hyperbolic Functions

Techniques of Integration

Integration by Parts

16
19
23
26
33

33
35

44
45
46
50
50
51
53
53
56

62
66
67
70
72
72
75

81



5.2
5.2.1
522
5.3
5.4
5.5
5.6
5.6.1
5.6.2
5.6.3

6.1

6.2
6.2.1
6.2.2

71
7.2

7.3

7.3.1
7.3.2
7.3.3
7.4

7.4.1
742

8.1
8.1.1
8.1.2
8.2
8.2.1
8.2.2
8.2.3
8.3
8.3.1

Trigonometric Functions
Integration of Powers of Trigonometric Functions . . . . . . . . . . . . . . e
Integration of Forms sin ux cos vx, Sin ux SiN vx and COS UX COS VX . . . . v v v v v i i it ettt et

Trigonometric Substitutions
Integrals of Rational Functions
Integrals Involving Quadratic Forms

Miscellaneous Substitutions
Fractional Functionsin sin X and CoS X . . . . . . . . . . i i e e e
Integrals of Fractional Powers . . . . . . . . . . . .

Integrals of FOrm {/f(x) . . o o oo o

Indeterminate Forms and Improper Integrals

Indeterminate Forms

Improper Integrals
Infinite Intervals . . . . . . e
Discontinuous Integrands . . . . . . . . ..

Application of Definite Integrals
Areas
Solids of Revolution

Volumes of Solids of Revolution

Disk Method . . . . . . . e
Washer Method . . . . . . . e
Method of Cylindrical Shells . . . . . . . .

Arc Length and Surfaces of Revolution
Arc Length . . o
Surfaces of Revolution . . . . . . . L e

Parametric Equations and Polar Coordinates

Parametric Equations of Plane Curves
Tangent LiNes . . . . o . o
Arc Length and Surface Area of Revolution . . . . . . . . .. . e

Polar Coordinates System

The Relationship between Rectangular and Polar Coordinates . . . . . . .. .. ... ... ... .. ... ......
Tangent Line to Polar Curves . . . . . . . .
Graphs in Polar Coordinates . . . . . . . . . .

Area in Polar Coordinates
Arc Length and Surface Area of Revolution in Polar Coordinates . . . . . .. ... ... ... .. ... .......

Appendix
Appendix (1): Basic Mathematical Concepts

Appendix
Appendix (1): Integration Rules and Integrals Table
Appendix (2): Answers to Exercises

Homework

103
107
108
109

113
117

119
119
122
128
131
132
134

142
144
146
150
151
153
154
161
166

173

187
190



Chapter 1

The Indefinite Integrals

Antiderivatives and Indefinite Integrals

We begin with the definition of the antiderivatives and indefinite integrals. Then, we provide basic integration rules.

Antiderivatives

Definition 1.1 A function F is called an antiderivative of f on an interval [ if

F'(x) = f(x) for every x € I.

Example 1.1

(1) Let F(x) =x?>+3x+1and f(x) = 2x+3.
Since F' (x) = f(x), then the function F (x) is an antiderivative of f(x).
(2) Let G(x) =sin x+x and g(x) =cos x+ 1.
Since G (x) = cos x + 1, then the function G(x) is an antiderivative of g(x).

If F(x) is an antiderivative of f(x), then every function F (x) + ¢ is also antiderivative of f(x), where c is a constant. The upcoming theorem
states that any antiderivative G(x), which is different from F (x) can be expressed as F(x) + ¢ where c is an arbitrary constant.

Theorem 1.1 If functions F and G are antiderivatives of a function f on an interval /, there exists a constant ¢ such that
G(x) =F(x)+ec.

Proof. Let H be a function defined as follows:
H(x)=G(x)—F(x)Vxel

where F and G are antiderivatives of the function f. Let a,b € I such that a < b. Since F and G are antiderivatives of f, then

H'(x) = G'(x) = F'(x) = f(x) = f(x) =0

for every x € I. Since the function H is differentiable, it is continuous. From the mean value theorem on [a, b], there is a number ¢ € (a,b)

such that
H(b)—H(a)

b—a
! Since H'(x) = 0 on I, then H’(c) = 0. This implies H(a) = H(b) and this means H is a constant function. H

H'(c)=

is i . i i ists z S ; _ [(b)=fla)
LIf £ is continuous on [a, b] and differentiable on (a, b), there exists a number ¢ € (a,b) such that f(c) = L2524




Example 1.2 Let f(x) = 2x. The functions
F(x)=x>+2,
_2 1
G(x)=x"—5,
H(x)=x>—V2,

are antiderivatives of the function f. Therefore, F(x) = x> + ¢ is a general form of the antiderivatives of the function f(x) = 2x.

Example 1.3 Find the general form of the antiderivatives of f(x) = 6x°.

Solution:

If F(x) = x°, then F’(x) = 6x°. The function F(x) = x% + ¢ is the general antiderivative of f.

Indefinite Integrals

From Theorem 1.1, if the function F(x) + ¢ is an antiderivative of f(x), then there exist no antiderivatives in different forms for the

function f(x). This leads us to define the indefinite integral.

Definition 1.2 Let f be a continuous function on an interval /. The indefinite integral of f is the general antiderivative of f on I:

The function f is called the integrand, the symbol / is the integral sign, x is called the variable of the integration and c is the

constant of the integration.

Now, by using the previous definition, the general antiderivatives in Example 1.1 are
1 /(2x+3) dx=x>+3x+c.

2 /(cos x+1) dx=sin x+x+c.

We can now work out how to evaluate some integrals. To do that, we should remember differentiation rules of some functions.

Basic Integration Rules

M Rule 1: Power of x. J
d—x’”’1 =(n+1)x", so /(n+ X" dx =" +¢
X
Generally, for n # —1,
xn+1
/x" dx="—+c.
n+1

In words, to integrate the function x", we add 1 to the power and divide the function by n+ 1. If n = 1, we have a special case

/ldx:x—l—c.

M Rule 2: Trigonometric functions.

d . .
7, Sin X =cos x, so /cos xdx=sin x+c¢
by

d . .
d—cosx:—smx, SO /—31nxdx:cosx+c
X

Therefore, /sin xdx=—cos x+c.



The other trigonometric functions with the previous rules are listed in the following table:

Derivative Indefinite Integral
x) ldx=x+c
y=x",n#—1 X'dx= xﬁi-i-c
si )—cosx cos xdx =sin x+c¢

cos x) = sin x sin x dx = —cos x+¢

(

(5

(si

(-

(tan x) = sec? x
(-

(

(-

sec? xdx=tan x+c

2

cot x) = csc” x csc? xdx = —cot x+c

sec x) = sec x tan x sec x tan x dx =sec x+c¢

&\& S~ i‘\& S %\& S~ %\& S

CSC X) = CSC x cot x csc x cot x dx = —csc x+c¢

e |

Table 1.1: The list of basic integration rules.

Example 1.4 Evaluate the integral.

Solution:
1) /x_3 dx = %—I—c: —ﬁ—f—c.

1
2) / 5 dx:/sec2 xdx =tan x+c. (sec x = S~ Tx= )
cos? x

COs“ X

Note that we sometimes need to express an integrand in a form in which we can recognize its derivative like item 2 in the previous
example.

Exercise 1.1

1 -8 [ Evaluate the integral.
1 1
1 | —=d _
/ N > / i
2 /—dx 6 /tanx
cos x
1
3 / o dx 7 / £3d
sin® x x

4/—csczxtan2xdx 8/Vsin4xcscxdx




1.2 Properties of the Indefinite Integral

In this section, we list some properties of the indefinite integrals.

Theorem 1.2 Assume f and g have antiderivatives on an interval /, then

d
1. E/f(x) dx =
2. /%(F(x))dx:F(x)-i—c,

3/ x)tg(x dx—/f dx:l:/g

4. /kf(x) dx = k/f(x) dx, where k is a constant.

Proof. Foritems 1 and 2, let F be an antiderivative of f.

1. dx/f x= L (F(x)+c) = f(x).

2. /dx dx—/f +c.

3. Let F and G be antiderivatives of f and g, respectively. By differentiating the left side, we have

%(/ (F(x) £g(x) dX> = %(F(x):l:(;(x))
= fx) £g).
Hence,/(f(x)ig(x)) dx=F(x) = G(x)+ci.

From the right side, we have

/ dxi/ )dx=F(x)£G(x)+c

For any special case, we can choose the values of the constants such that ¢; = ¢; and this prove item 3.
4. By differentiating the left side, we have

%(/kf(x)dx) /f dx k ~(F()
kf()

Hence, /kf(x) dx=kF(x)+ci.
From the right side, we have

k/f(x) dx=kF(x)+c

We can choose the values of the constants such that ¢; = ¢, and this prove item 4. B

In the following example, we use the previous properties and the table of the basic integration rules to evaluate some indefinite integrals.

Example 1.5 Evaluate the integral.
(€0 /(4x+3) dx
?) /(2 sin x+3cos x) dx
A3) / (Vx+sec? x) dx



d
@) 4 a(sin x) dx
(5) f/\/x—l—l dx
dx
Solution:
) /(4x+3)dx:“zi+3x+c:2x2+3x+c.
) /(2sin x+3cos x) dx = —2cos x+3sin x+c.
3 3
3) /(\/;H-sec2 x) dx = %—I—tan x+c= Z"TZ—HaH x+c.
4) /d;x(sin x) dx =sin x+c.
(5) d—/\/erldx:\/erl.
X

Example 1.6 If/f(x) dx=x*>+c¢y and /g(x) dx = tan x+ ¢y, ﬁnd/(3f(x) —2g(x)) dx.

Solution:

From the third and fourth properties, / (3f(x) —2g(x)) dx = S/f(x) dx — Z/g(x) dx =3x> — 2tan x+ ¢, where ¢ = 3¢| — 2¢5.

Example 1.7 Solve the differential equation f'(x) = x* subject to the initial condition £(0) = 1.
Solution:
/f/(x) dx= /x3 dx
= fx) = lex4+c.

If x =0, then f(0) = %(0)4 + ¢ =1 and this implies ¢ = 1. Hence, the solution of the differential equation is f(x) = %x“ +1.

Example 1.8 Solve the differential equation f/(x) = 6x> 4 x — 5 subject to the initial condition £(0) = 2.
Solution:

/f/(x) dx= /(6x2+x—5) dx

= flx)= 203+ %xz —5x+c.

Use the condition f(0) = 2 by substituting x = 0 into the function f(x). We have

F0)=0+0—-0+c=2=c=2.
Therefore, the solution of the differential equation is f(x) = 2x> 4 %xz —5x+2.
Example 1.9 Solve the differential equation f”'(x) = Scos x+ 2sin x subject to the initial conditions f(0) = 3 and f/(0) = 4.

Solution:
/f”(x) dx = /(SCOS x+2sin x) dx
= f'(x) = 5sin x —2cos x+c
Using the condition f/(0) = 4 gives

f(0)=0-2+c=4=c=6. (use values of the trigonometric functions given on page 180)



1.3

Hence, f/(x) = 5sin x —2cos x+ 6. Now, again
/f’(x) dx = /(SSin x—2cos x+6) dx
= f(x) =—5cos x—2sin x+6x+c.
Use the condition f(0) = 3 by substituting x = 0 into f(x). We obtain
F(0)=-5-0+0+c=3=c=8.

Hence, the solution of the differential equation is f(x) = —5cos x —2sin x+ 6x+ 8.

Notes:
B We can always check our answers by differentiating the results.

M In the previous examples, we use x as a variable of the integration. However, for this role, we can use any variable such as y, z, ¢, etc .
That is, instead of f(x) dx, we can integrate f(y) dy or f(¢) dt

B The properties of the indefinite integral and the table of the basic integrals are elementary for simple functions. Meaning that, for more
complex functions, we need some techniques to simplify the integrals. Section 1.3, we shall provide one of these techniques.

Exercise 1.2

1 - 10 M Evaluate the integral.

3 sin? x+4
1 /\/de 6/

sin® x
2 /(x%+x2+1)dx 7 /x milp

x*
3 /x(x3+2x+1)dx 8 /(4x~%—2x%+x) dx
4/(x2+seczx)dx 9/ + +1 dx
5 [ (ese® x— V) d 1o /x tatl

11 - 12 M Evaluate.

11 %(/\/cos3 x+1dx)

12 / cos® x+ 1) dx
13 - 17 M Solve the differential equation subject to the given conditions.

13 f/(x) =4x3 +2x+1; f(0) =1

14 f"(x) =sin x+2cos x; f(0) =1and f'(0) =3

15 f'(x) = v/x f(0) =

16 f'(x) =cosx; f(x ) 1.

17 f'(x) = sec’x; f(§)=0.

Integration By Substitution

The integration by substitution (known as u-substitution) is a technique for solving some composite functions. The method is based
on changing the variable of the integration to obtain a simple indefinite integral. The following theorem shows how the substitution
technique works.



10

Theorem 1.3 Let g be a differentiable function on an interval / where the derivative is continuous. Let f be continuous on the
interval J contains the range of the function g. If F is an antiderivative of the function f on J, then

/f(g(x))g (x)dx=F(g(x))+c, x€l.

Proof. Since F is an antiderivative of f, then %F (g(x)) = F (g(x))g (x) = f(g(x))g (x). Hence,

[ 768 @) dx = [ L F(s(0) dx= Flgo) . m

The task here is to recognize whether an integrand has the form f(g(x))g (x). The following two examples explain this task.

Example 1.10 Evaluate the integral /Zx (¥ +1)3 dx.

Solution:
We can use the previous theorem as follows:

let f(x) =x> and g(x) =x* + 1, then f(g(x)) = (x* 4+ 1)°. Since ¢ (x) = 2x, then from Theorem 1.3, we have

2, 1\4
/2x(x2+ 1)? dx = @—l—c.

We can end with the same solution by using the five steps of the substitution method given below.

M Steps of the integration by substitution:

Step 1: Choose a new variable u.

Step 2: Determine the value of du.

Step 3: Make the substitution i.e., eliminate all occurrences of x in the integral by making the entire integral is in terms of u.
Step 4: Evaluate the new integral.

Step 5: Return the evaluation to the initial variable x.

In Example 1.10, let u = x? + 1, then du = 2x dx. By substituting that into the original integral, we have

4
/u3du:%+c.

2 4
Now, by returning the evaluation to the initial variable x, we have / 2x(x2 + 1)3 dx = w +c.
. sec? \/x

Example 1.11 Evaluate the integral / dx.

x
Solution:

. sec? VX ) ) . ,

We use Theorem 1.3 for the integral 2/ NG dx. Let f(x) =sec” xand g(x) = \/x, then f(g(x)) =sec* /x. Since g (x) =1/(2y/x),

X

then we have

2
/ sec\/}\/;c dx =2tan /x+c.
By using the steps of the substitution method, let u = \/x, then du = 2%/;

dx. By substitution, we obtain

2/8602 udu=2tan u+c=2tan \/x+c.
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21
Example 1.12 Evaluate the integral /xi dx.
(3 =3x+1)0

Solution:

Let u = x> — 3x+ 1, then du = 3(x* — 1) dx. By substitution, we have

1/ N N ~1 .
— u U= — c = C.
3 3 —5u° 15(x3 —3x+1)°

The upcoming corollary simplifies the process of the substitution method for some functions.

Corollary 1.1 If/f(x) dx = F(x) + c, then for any a # 0,

/f(ax:l:b) dx = éF(ax:I:b)—f—c.

Proof. To verify the previous result, it is sufficient to choose the variable u = ax £ b, then du = a dx. This implies dx = é du. By
substitution, we have

/f(ax:l:b) dx:/f(u) % — é/f(u) du = éF(u): éF(ax:l:b)—i—c. n

Example 1.13 Evaluate the integral.

@ / V2x—5dx ) /cos (3x+4) dx

Solution:

From Corollary 1.1, we have

@ / Vax-Sdr= %(h;/s;/z to=EF 4
@ /COS (3x+4) dx = gsin (3x+4) +c.

Notes:

M The substitution method turns the integral into a simpler integral involving the variable u. The new integral can be evaluated by using
either the table of the basic integrals or other techniques of the integration.

B When using the substitution method, we need to return to the original variable. All examples above expressed in terms of the original
variable x.

M Students should distinguish between integrals that can be evaluated by the substitution method. We must choose u so that du is already
sitting in the integrand, regardless of a constant k. For example, the integral [ cos ¥ dx cannot be evaluated by the substitution method.
To see this, let u = xz, this implies du = 2x dx. However, the term x is not in the integrand. Therefore, the integral cannot be evaluated
by the substitution method.

M The substitution method may be used as a first step in simplifying an integral. It might be followed by other techniques given in
Chapter 5.

Exercise 1.3

1- 16 M Evaluate the integral.
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1 /x\/@dx

2 /x\/ﬁdx

3 /xzx/Jﬁdx

4/‘tan2x dx
cos* X

5 /sin5 X cos x dx

6 /de
VoxZ +1
7 /cost\/l—sintdt

3
8/COS xdx

CSC x

9 /cos (Bx+4) dx

!
10 /7ﬁ(\/§+1)2 dx

11 /sec 4x tan 4x dx

dx

12 /\/COt.X

sin? x
12
13 /(l-i-;)t dt
X
14 /74
Va1
15 / X2 (4x> —6)7 dx

16 / sin? 3xcos 3x dx



Review Exercises

13

1
9 /—dx
V3

10 /(x—l)(x+1)dx

12 /\5/1+xdx

13 /(x3+1)(x—1)dx

1 - 34 M Evaluate the integral.

1 /(2x3 —3yx+ is) dx
X

Review Exercises

18 /sin (x+1) dx

19 /(cos x—x)dx

20 / (sec? x—4) dx

21 /(sec X tan x+x) dx

22 /(csc2 x+x2+1)dx

1
23/ 5 d
cos~ X
1
24 / —— dx
sin“ x
Zs/tanx
cos X

26 /sec x (tan x —sec x) dx

27 /(2—0—tan2 x) dx (Hint: tan? x = sec> x— 1)
28 / cos x

sin? x
29 / tanzx

cos

30 /sin x sec? x dx

31 /cos x csc? x dx
32 /sec x (sec x+2tan x) dx

33 /csc x (csc x+3cot x) dx

34 /sin x Vcos® xdx




Review Exercises

14

35 - 64 M Evaluate the integral.
35 /x4(3x5 +1)10 dx

36 /x\/x2+1dx
37 /(2x+1)\/x2+x+2dx
38 /(x271)\3/x373x+2dx

39 /(5x+ 1)(5x* +2x—5)% dx

40 /Sm VX
NG

# / \/;c"(i)s\z[\f

2
42/ cos” \/x
VX sin? \/x x

sin 2x
3 d
/ cos2 2x

44/ cos /x
Vxsin? \/x x

45 /xsin %2 dx

X
46 / d
cosz 2

47 / xrl dx
sin? (x2 4+2x— 1)

2
48/°S°\[x

sec? (Yx+1)
49/ I dx

X
50 /7dx
VX249
x
51 /7dx
Vxr—1
52 /cos2 x sin x dx

53 /sm xcos\/?cdx
Vx

3 .
54 /cos xsm\/fcdx
Vx

55 /2+cosx
sin? x

X
56 /751
Jar1
57 /x\/x73dx

dx

1
o v

® [ as®

60 /sinx (cos® (x+1)) dx
61 / sin 2x
(5+cos 2x
3
X
62 /761)(
Vit —1

3
x4

64 /sec \fztan\f
x3




Review Exercises

15

65 - 70 M Choose the correct answer.

65 The value of the integral /

(a) —24/24cos x+c¢
(b) v/2+cos x+c¢

\/2+cos X

t
66 The value of the integral / w

(a) cos (tan x) +c¢
(b) sin (tan x) +c¢

67 The integral / xVx2+1dxis equal to

(a) %xzx/xz +1+c¢
b) 2(2+1)7 +¢

68 The integral / 5 dx is equal to

(a) %tan 2 +c
(b) tan X2+ ¢

1+cos® x
(@) 3cos’ X tc

(b)l 3C05 X+C

3cos? x

COs x

V4 +sin x

70 The value of the integral /

(a) %\/sin x+4+c
(b) v/sin x+4+c¢

dx is equal to

dx is equal to

69 The value of the integral / dx is equal to

dx

(¢) —v2+cos x+c
(d) 2+/2+4cos x+c¢

(c) —cos (tan x)+c¢
(d) —sin (tan x) +¢

© —2(2+1)3 +c
@ L2 +1)7 +c

(c) 3 tan x+c
) - cos x2 +c

(©) —"Oﬁ L +c
(d) tan33 X +c

(¢) 24/sin x+4+c
(d) —2+/sin x+4+c¢
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Chapter 2

The Definite Integrals

2.1 Summation Notation

Summation (or sigma notation) is a simple form used to give a concise expression for a sum of values.

n
Definition 2.1 Let {aj,ay,...,a,} be a set of numbers. The symbol ¥ ay represents their sum:
k=1

n
Zak =a)+ay+...+ay.
k=1

Example 2.1 Evaluate the sum.
3
@ y 7
i=1

4
2) _zl(j2 +1)
J=

3
3) Y (k+1)i?
k=1

Solution:

3
M) YP=13+23433=148427=36.
i=1

4
@) L (PHD)=(1P+D)+@+ D+ G+ 1)+ @ +1)=2+5+10+17=34.
=

3) k)ijl(k—i-l)kz =(1+D)(1)>+2+1D)2)2+B+1)(3)>=2+12+36=50.

Theorem 2.1 Let {ay,ay,...,an} and {by,b,...,b,} be sets of real numbers. If n is any positive integer, then

n
1. ¥ c=c+c+..+c=ncforanyceR.
—_———

k=1 ‘
n-times

n n n
2. Y (atby)= Y art ¥ by
k=1 =1 k=1

n n
3. Ycar=c Y aiforanyceR.
k=1 k=1
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Example 2.2 Evaluate the sum.
10
@ X 15
k=1
.
@ X (K +2)
k=1

3) i 3(k+1)

Solution:
10

1) Y 15=(10)(15) = 150.
k,

4
2) z(k2+zk) Zk2+2 k= (12422432 4+4%) +2(1+2+3+4) = 30+20 = 50.

I ™+

k
3 Z 3(k+1)=3 %(k+l):3(2+3+4) =27.
k=1 k=1

In the following theorem, we present summations of some polynomial expressions. They will be used later in a Riemann sum.

Theorem 2.2
n

LY k=14243+..+n= "0
k=1

2. YR =242 434 P = 2]
k=1

n 12
3. k§]k3:13+23+33+...+n3: [t )]

Proof. We prove this theorem by induction.

1. 2 o= et
(a) If n = 1, then both left and right sides equal 1.

(b) Assume the equality holds for n, that is Z k=12 nH) . We want to prove that the equality holds for n+ 1. The right side
forn+1is w . The left side is
n+1 n 1 2
Lk=Lktnt) M) a1y = 2F )2(n+ !

Hence, the result follows.
2 _ n(nt1)(2n+1)
2. Z k* = ——p——.

k=
(a) If n = 1, then both left and right sides equal 1.

n(n+1)(2n+1
Z kZ — )6( )

(b) Assume the equality holds for n i.e., . The task is to prove the equality for n+ 1. The right side for

n—i—lis(

%. The left side for n+ 1 is
”“kz 2o 2 n(n+1)2n+1) 2
Z Z +(n+ Tﬂnnt )
 (n+1)(2n2+Tn+6)  (n+1)(n+2)(2n+3)
6 N 6 ’

2
3. kz B = [n(n;tl)} )
(a) If n =1, then both left and right sides equal 1.
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n
(b) Assume the equality holds for nie., ¥ k° = ["("7;])] % We want to prove the equality for n+ 1. The right side for n+ 1 is

k=1
2
[%} and the left side is

ntl /L n(n n 2(n* +4n n n
Y=Y K1) =] (;])]2+(n+1)3=( Tt d) (et Dint2)?

4 2

k=1 k=1
Hence, the formula is proved. B
Example 2.3 Evaluate the sum.
100 0, 0 .
® Xk (2 Yk 3 Yk
k=1 k=1 k=1
Solution:
1) Y k= 100051 _ 5050
k=1

@) ¥ k2= 000ED _ g5
k=1

10
@) ¥ k= [2012 3025,
k=1

Example 2.4 Express the sum in terms of n.

M ¥ (k+1)
k=1

@ ¥ (K—k-1)
k=1

Solution:

M) L (k+1)= %kt ¥ 1=200 py ni3)
k=1 k=1 k=1

) { (k2—k—1) _ i 2 i k— i 1= _ n(r+)@2n+1)  n(ntl) = n(n2—4)'
k=1 k=1 k=1 k=1 6 2 3

Exercise 2.1

1-6 .3Eva1uate the sum.
4
1L (+1) 3 % S5 L4
=
5 ) S 2
2 _ZOJ 4 Y 5i 6 Y (3-2))
Jj= i =
7 -9 M Express the sum in terms of 7.

7 % (k—1)
k=1

(k> 41)
1

®
=
I ™M=

9 Y (KB+2k2—k+1)

1

I ™M=
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Riemann Sum and Area

A Riemann sum is a mathematical form used in this book to approximate the area of a region underneath the graph of a function. Before
start-up in this issue, we provide some basic definitions.

Definition 2.2 A set P = {xq,x1,X2,...,x, } is called a partition of a closed interval [a, b] if for any positive integer n,

a=x9 <X <X < oo. <Xp_1<Xp=>b.

Ax;  Ax, Axs Ax,,
Xo X1 X2 X3 Xn—-1 X
a b

Figure 2.1: A partition of the interval [a,b].

Notes:
B The division of the interval [a,b] by the partition P generates n subintervals: [xo,x1], [x1,%2], [x2,%3], .-+ [Xn—1,%n].
B The length of each subinterval [x;_1,x;] is Axg = xp — xg_1.

B The union of subintervals gives the whole interval [a, b].

Definition 2.3 The norm of the partition of P is the largest length among Ax;,Axy, Axs, ..., Ax, i.e.,

|| P||= max{Axy,Axz,Ax3, ..., Ax, }.

Example 2.5 If P ={0,1.2,2.3,3.6,4} is a partition of the interval [0,4], find the norm of the partition P.

Solution:

We need to find the subintervals and their lengths.

Subinterval Length The norm of P is the largest length among
(o1, %] Axy {Axy, Axa, Axs, Axy}.
[0,1.2] 12-0=12 Hence, || P = Axs = 13
[1.2,2.3] 23-12=1.1
2.3,3.6] 3.6-23=13
3.6,4] 4-36=04
Remark 2.1
1. The partition P of the interval [a, b] is regular if Axg = Ax; = Axp = ... = Ax, = Ax.

2. For any positive integer n, if the partition P is regular then

—a

b
Ax = and x; = xg+k Ax.

Indeed, let P be a regular partition of the interval [a,b]. Since xo = a and x,, = b, then
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X1 =x0+Ax,
p%) =x1+Ax=(x0+Ax)+Ax:x0+2Ax,
X3 =x+Ax= (XQ+2AX)+AX=)CQ+3AX.

By continuing doing so, we have x; = xo + k Ax.

Ax Ax Ax Ax
| | 1 1 15—

Xp X1 Xz X3 Xn-1  x,

Figure 2.2: A regular partition of the interval [a, b].

Example 2.6 Define a regular partition P that divides the interval [1,4] into 4 subintervals.

Solution:

Since P is a regular partition of [1,4] where n = 4, then

4—1 3 3
AX:T:Z and )Ck:1+k*

4
Therefore,
x0 =1 x=143(3)=1
a=1+3=1 xp=1+4(3)=4

n=1+2(3)=3

The regular partition is P = {1, %, %, ]7* 4}

Now, we are ready to define a Riemann sum .

Definition 2.4 Let f be a function defined on a closed interval [a,b] and let P = {xg,x,...,x,} be a partition of [a,b]. Let
o= (01,0, ...,0,) is a mark on the partition P where ®; € [x;_1,x¢], Kk = 1,2,3,...,n. Then, a Riemann sum of f for P is

Rp = Z S o) Axy.
k=1

As shown in Figure 2.3, the amount f(®;)Ax; is the area of the rectangle A1, f(®;)Ax; is the area of the rectangle A, and so on. The
sum of these areas approximates the area of the whole region under the graph of the function f from x =atox =b.

This indicates that if f is a defined and positive function on a closed interval [a,b] and P is a partition of that interval where ® =
(01,0, ...,0,) is a mark on the partition P, then the Riemann sum estimates the area of the region under f from x = a to x = b. As the
number of the subintervals increases n — oo (i.e., ||P|| — 0), the estimation becomes better. Therefore,

n

R, = lim Y f(oy)Ax;

A= m
IPlI—=0 =

lim
|P|—0
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Y
x = f(x)

i : N ke
1 . i I : | H
1 1 ! 1 ' 1
- Pl : P
i == ! | g | [ B
(AL ! : i 1L : F 0
:-—-i I:qi "': I i i I i i i : E I :: i
(e R A P : ¢ EE msE 1
1 ! I ) I i I e i I 1 ' 1 i
L 1 | i 13 : S
A [ D | A T
R T | i o : | [ o
T ! ' TR ' oo 181
ey il I : : ! e dlema S Ge B
1 ! 1 i - i ] | I 1 I 1 H 1 h 1
o ! e o dlid | : | g o o1
T ] ' I i a1 ko1
o i e TeR | v ool o o o
R i ! ! ' e L
Jis e, 5 | i : T >
a wy Xq Wy X3 X3 Xp—q Wy Xg Xp—1 Wy D X

Figure 2.3: A region under a function f from x =a to x = b.

Example 2.7 Find a Riemann sum R), of the function f(x) = 2x—1 for the partition P = {—2,0,1,4,6} of the interval [-2,6] by
choosing the mark,

(1) the left-hand endpoint,
(2) the right-hand endpoint,
(3) the midpoint.

Solution:

(1) Choose the left-hand endpoint of each subinterval.

Subintervals | Length Axy o | flog) | flog) Axg
2,0 |0-(2)=2|-2] -5 ~10
[0,1] 1-0=1 | 0 | -1 -1
(1,4] 4-1=3 1 1 3
[4,6] 6—-4=2 4 7 14

7
Ry = k):1f(mk)Axk 6

(2) Choose the right-hand endpoint of each subinterval.

Subintervals | Length Ax; | @ | flog) | f(og) Axg
2,00 |[0-(2)=2]0 | -1 )
[0,1] 1-0=1 1 1 1
[1,4] 4-1=3 | 4 7 21
[4,6] 6-4=2 | 6 | 11 22

7
Ry = k):1f(mk)Axk 42

(3) Choose the midpoint of each subinterval.!

Subintervals | Length Axy o | flog) | flog) Axy
2.0 |0-(2)=2|-1] 3 ~6
[0,1] 1-0=1 |05] 0 0
[1,4] 4-1=3 | 25| 4 12
[4,6] 6-4=2 | 5 9 18

7
Rp = kzlf(wk)Axk 24

— X1t
W =——>%—.



22

Example 2.8 Let A be the area under the graph of f(x) =x+ 1 from x = 1 to x = 3. Find the area A by taking the limit of the Riemann
sum such that the partition P is regular and the mark ® is the right-hand endpoint of each subinterval.

Solution:
For a regular partition P, we have

1 Av=e =31 -2 4y

n n’

2. xk—x0+kAxwherex0—1

Since the mark o is the right endpoint of each subinterval, then @, = x;, = 1+ zn—k Therefore,

floy) = (1+%)+1 %4’2— 2(n+k).

From Definition 2.4,

n 4 n
Ry=Y) flon)Ax nﬁZ("Jrk)
k=1 k=1 n n
1 +k k
_i 2+n(n+1)} ()E(” )= k§1”+L§]
2" 2 @) ¥ k="
2(n+1 k=
2

Hence, lim R, =4+2=6.
n—yo0

The following definition shows that the definite integral of a defined function f on a closed interval [a,b] is a Riemann sum when
|| P|— O.

Definition 2.5 Let f be a defined function on a closed interval [a,b] and let P be a partition of [a,b]. The definite integral of f
on [a,b] is

[ 50 ax= tim ¥ sy

IPII=07%

if the limit exists. The numbers a and b are called the limits of the integration.

4
Example 2.9 Evaluate the integral / (x+2) dx.
2

Solution:

Let P = {xg,x|,...,X, } be a regular partition of the interval [2,4], then Ax = % = % and x; = xo + Ax. Also, let the mark ® be the right
endpoint of each subinterval, so 0 = x; =2+ % and then f(@y) = %(Zn +k).

The Riemann sum of f for P is

RP:Zf((Dk) Z2n+k 4 (2n2+@):8+
k

2(n+1)
k no

4
From Definition 2.5, / (x+2) dx = lim R, = 8+ lim 22H) — g0 — 0,
2 n—oo n—e M
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Exercise 2.2

1-8 MIf P is a partition of the interval [a, b], find the norm of the partition P.

L P={-1.0.13.4415}, [-1.5] 5 P=1{3,3.5,3.6,4,49,7}, [3,7]

2 P={0,05.1,253.1.4), [0.4] 6 P={-2,0,13,2,2.5,3.4,55}, [-2,5.5]
3 P=1{-3,0,23,4.6,48,55,6}, [-3,6] 7 P={-1,-2,0,5,1,3.2}, [-12]

4 P={-2,0,23,3,35,4}, [-2,4] 8 P={0,3,5.%F.n}, [0.7]

9 - 12 M Define a regular partition P that divides the interval [a, b] into n subintervals.
9 [a,b]=[0,3] n=35 11 [a,b] =[-4,4] n=38

10 [a,b]=[-1,4] n=6 12 [a,b] =[0,1] n=4

13- 15 M Find a Riemann sum R), of the function f(x) = x> + 1 for the partition P = {0, 1,3,4} of the interval [0,4] by choosing
the mark,

13 the left-hand endpoint,
14 the right-hand endpoint,

15 the midpoint.

16 - 19 M Let A be the area under the graph of f from a to b. Find the area A by taking the limit of a Riemann sum such that the
partition P is regular and the mark  is the right-hand endpoint of each subinterval.
16 f(x)=x/3 a=1, b=2 18 f(x)=5—x> a=—1, b=1

17 f(x)=x—1 a=0, b=3 19 fx)=x>~1 a=0, b=4

2.3 Properties of the Definite Integral

In this section, we present some properties of the definite integral.

Theoremb2.3

1. / cdx=c(b—a),
a

2. /af(x) dx =0if f(a) exists.

Proof. Let P = {xg,x|,...,X, } be a partition of [a,b] and let ® = (0, ®, ..., ®,) be a mark on P.

1. Let f be a constant function defined by f(x) = c¢. From Definition 2.5,

b n
/cdx: lim Y cAx
a

[IPII—=0,=
n
= lim ¢ Z Axp (property 3 on page 16)
[|P|—0 k=1
— 1lim C(b _ a) (Y Axy is the length of the interval [a,b])
1P]|—0 ‘
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2. From Definition 2.5,

/af(x dx=lim Zj (Axy =0fork=1,2,3,....n)
a IPll—
n
= lim (0
I\P\HO/;
= lim 0=0.1
[IPl—0

Theorem 2.4
1. If f and g are integrable on [a,b], then f + g and f — g are integrable on [a, b] and

/ab (f(x):tg(x)) dx:/abf(x)ﬂ:/abg(x) dx

2. If f is integrable on [a,b] and k € R, then k f is integrable on [a,b] and

/abkf(x) dx=k /abf(x) dx

Proof. Let P ={xq,x1,...,Xx, } be a partition of [a,b] and let ® = (®;,®,, ...,®,) be a mark on P.
1. From Definition 2.5,

n

[ g a= im ¥ (e oay

IP1-0¢=

k=1
n

= lim flop)Ax £ lim g(op)Ax
IPII—=04= [IPll— Z

2. From Definition 2.5,

/bkf(x) dx= lim Z kf(op)Ax = lim ka oy )Ax,

PI—=0f ([P —

=k lim mek

1P1—=0;=

=k/a f(x)dx.

Theorem 2.5
1. If f and g are integrable on [a,b] and f(x) > g(x) for all x € [a, D], then

/ubf(x) dx> /abg(x) dx.

2. If f is integrable on [a,b] and f(x) > O for all x € [a,b], then

/ah f(x)dx>0.

Proof. Let P = {xg,x1,...,x,} be a partition of [a,b] and let ® = (®;,®,,...,®,) be a mark on P.
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1. Since f(x) > g(x) for all x € [a,b], then f(wy) > g(o) ¥V k=1,2,...,n. Hence,

lim Zf lim ngkm

IPl=0 =1 HPH

:>/a f(x)dxz/a g(x) dx.

2. Since f(x) > 0 for all x € [a,b], then f(w;) >0V k=1,2,...,n. Hence,
n

lim Y f(op)Ax >0
HPH—>0kZ )

:>/ x)dx>0.1

Theorem 2.6 If f is integrable on the intervals [a,c] and [c,b], then f is integrable on [a,b] and
b c b
[ rwar= [ fwaer [ 1w ax
a a c

Proof. Let P = {xq,x1,...,x,} be a partition of [a,b] contains ¢ = x; and let ® = (®;,03,...,0,) be a mark on P. Assume P| =
{x0,%1,...,% } is a partition of [a,c] with a mark u = (®;,®;, ...,0) and Py = {xg+1,Xk+2,...,%n } is a partition of [c,b] with a mark
V= (wk+17('0k+27 "'amﬂ)'

Now, if || P ||— 0, then || P; ||— O and || P, ||— 0. Also,

lim Zf

171047

:>/a f(x)dx:/af(x)dx—ﬁ—/c f(x) dx. |

Zf Axg+ lim Zf

A S04 I172l=0 55

Theorem 2.7 If f is integrable on [a,b], then
b a
/ fx)dx= —/ f(x) dx
a b

Proof. From Theorems 2.6 and 2.3 (item 2), we have

/ dx+/ dxf/ f(x)dx=0.
/abf(x) dx = —/baf(x) dx.l

Therefore,

Example 2.10 Evaluate the integral.
2 2
1 / 3 dx ) / (x* +4) dx
0 2

Solution:
2
a / 3dx=3(2-0)=6.
0

"2
) /2 (x® +4) dx=0.
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Example 2.11 If/hf(x) dx=4and /hg(x) dx =2, then find /h (3f(x)— @) dx.

Solution:

/ab(3f(x)f¥) dx=3 bf(x)d f%/abg(x)dx:3(4)f§(2):ll.

a

2 2
Example 2.12 Prove that / (o + 22 +2) dx > / (x* +1) dx without evaluating the integrals.
0 0

Solution: Let f(x) = x> +x> 42 and g(x) = x> 4 1. We can find that f(x) — g(x) = x> +1 > 0 for all x € [0,2]. This implies that
f(x) > g(x) and from Theorem 2.5, we have

2 2
/ (412 +2) de/ (¥ +1) dx.
0 0

Exercise 2.3

1-2 M Evaluate the integral.

5 1
1 /7dx 2/ V3x2+1dx
0 1

3-6 M Verify the inequality without evaluating the integrals.
2 2
3 / (3x% +4) dx > / (2x* +5) dx
1 1
4 4
4 / (2x+2)dx < / (Bx+1) dx
1 1
4
5 / (x* —6x+8) dx <0
2
21
6 / (1+sin x) dx >0
0

b b
7-10 .If/a fx) dx=2and/a g(x) dx = 3, then find
7 /ab<6f(x)—¥) dx 9 /aa\/(f.g)(X)dx
8 /ba(f(x)+g(x)) dx 10 /Caf(x)dx—i-/bcf(x)dxwherece(a,b)

2.4 The Fundamental Theorem of Calculus

In this section, we formulate one of the most important results of calculus, the Fundamental Theorem. This theorem links together the
notions of integrals and derivatives.

Theorem 2.8 Suppose that f is continuous on the closed interval [a, b].

X
1. If F(x) = / f(2) dt for every x € [a,b], then F(x) is an antiderivative of f on [a,b].
a

b
2. If F(x) is any antiderivative of f on [a,b], then / f(x)dx=F(b)—F(a).
a

The proof of this theorem is given on page 29.

The Fundamental Theorem simplifies the process of calculating the definite integrals. The following corollary shows how the definite
integral can be evaluated.
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Corollary 2.1 If F is an antiderivative of f, then

b
/a F(x) dx= [F(x)} — F(b)— F(a).

Notes:
b
M From the previous corollary, a definite integral / f(x) dx is evaluated by two steps:
a

Step 1: Find an antiderivative F of the integrand,

Step 2: Evaluate the antiderivative F at upper and lower limits by substituting x = b and x = a (evaluate at lower limit) into F, then
subtracting the latter from the former i.e., calculate F(b) — F(a).

b
B When using substitution to evaluate the definite integral / f(x) dx, we have two options:
a

1
Option 1: Change the limits of integration to the new variable. For example, / 2xvV/x2 4+ 1 dx. Let u = x> + 1, this implies du = 2x dx.
0

2
Change the limits #(0) = 1 and u(1) = 2. By substitution, we have / u'/? du. Then, evaluate the integral without returning to the
1

original variable.

Option 2: Leave the limits in terms of the original variable. Evaluate the integral, then return to the original variable. After that, substitute
x = b and x = a into the antiderivative as in step 2 above.

Example 2.13 Evaluate the integral.

2 n
(¢)) /](2x+1)dx @ /Oz(sian)dX
3 T
(2) /0 (*+1) dx (5)/E(seczx—4) dx
2 5
3 /1 ﬁdx (6)/0 (sec x tan x+x) dx
Solution:

2 2
1) /_](2X+1) dx = {x2+x}7l = (4+2)7<(,1)2+(71)) —6-0=6.
3 s
@ /0 (1) dx = [%H]Z:(%JH)—O:Q
21 112 s
@ f e[ -G p-282 v

=(—cos 5+%)—(—cos 04+0)=TF +1.

=

4) /i(sin x+1)dx= {fcos x+x}
0
T T
®) / (sec? x—4) dx = [tanx—4xh = (tan T—47) — (tan T —4%) = —4x— (1 —m) = —3n— 1,
i i

2

2
2+ K -1=1+F.

a

(6) /05 (sec x tan x+x) dx = [sec x+ %]

I
—
w2
9]
S
Wi
J’_
ol
—
I
—
w
9]
S

[e]
J’_
SIS
N
Il
fore]

2 . 2
Example 2.14 If f(x) = { ; ﬁig , find / f(x) dx.
x> -1

Solution:
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The definition of the function f changes at 0. Since [—1,2] = [—1,0]U[0,2], then from Theorem 2.6,
2 0 2
[ r@ax= [ s dvs [ ax

= sz dx+/(;2x3 dx
3 4
=[50+ [4),

16 13

Ty
T34 3

2
Example 2.15 Evaluate the integral/ |x—1] dx.
0

Solution:

x—1 x>1

‘x_“:{ —(x—1) :x<1

Since [0,2] = [0,1]U[1,2], then from Theorem 2.6,

2 1 2
—ld:/—+1d+/ ~1)d
/0|x | dx 0( x+1) dx 1(x ) dx
52 1 x2 2
=7+ 74,

= (3-0)+(0+3)

1.

Theorem 2.9 If f is continuous on a closed interval [a, b], then there is at least a number z € (a,b) such that

/a ’ (x) dx = F()(b—a).

Proof. 1f f is constant i.e., f(x) = k, then
b
| 1) dx=kp-a) = )b -a)
for any z € (a,b) and this means the equality is satisfied.

Therefore, assume the function f is not constant. Since the function f is continuous, then from the extreme value theorem, there exist
u, v € [a,b] such that f(u) = m is the minimum value and f(v) = M is the maximum value of f.> Now, ¥ x € [a, b], we have

m< f(x) <M.

b b b
/mde/f(x)dxﬁ/de.
a a a
b

m(b—a) < / F(x) dx < M(b—a).

a

/abf(x) dx
(b—a

This implies

Then,

Sm<T <M

)

b
/a f(x) dx
= flu) < e <fv)

2If f is a continuous function on a closed interval [a, b], then f takes a minimum value and a maximum value at least once in [a, b].
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From the intermediate value theorem,? there exists a number z € (a,b) such that

b
/a f(x) dx b
W:f@;‘/a F) dx= (b—a)f(z). m

Example 2.16 Find a number z that satisfies the conclusion of the Mean Value Theorem for the function f on the given interval.

M) fx) =1+, [0,2]
(2) f(x)=Vx, [0, 1]
Solution:
(1) From Theorem 2.9,

/02(1 +x2) dx=(2-0)f(z)

32
X 2
1 =20
[x+3}0 (1+22)
14
=201+
3
7
g—l—i-z2

.. . 2_ 4 _ 2 .
This implies z° = 3,thenz ==+ 7 However,

(2) From Theorem 2.9,

This implies z = 27 € (0,1).

In the following, we prove the Fundamental Theorem.

Proof. 1. We want to prove that if x € [a, b], then JP_IR) w = f(x). Note that

Fx+h) = /:Hlf(t) di = /:f(z) dt+/xx+hf(t) di

:F(x)+/xx+hf(t) dt.

X+h
Hence, F(x+h) — F(x) = / f(¢) dt. Since the function f is continuous on the interval [x,x + A], then from the Mean Value
X

Theorem for integrals, there is z € (x,x+ &) such that

X+h
/x () di = f(2)h

N F(x+h)—F(x)

Y = f(2).

When i — 0, (x+h) — x and this means z — x. This implies f(z) — f(x) since f is continuous. Therefore,

F(x+h)—F(x)

F'(x) = lim = f(x).

31f f is continuous on a closed interval [a, b] and If u is any number between f(a) and f(b), then there is at least a number z € [a, b] such that f(z) = w.
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2. Assume that F and G are antiderivatives of f on the interval [a,b]. Then, form Theorem 1.1, there is a constant ¢ such that
a
F(x) = G(x) + c. Now, if x = a, then F(a) = / f(t) dr =0. Thus
a

F(a) =G(a)+c=c=—G(a) = F(x) = G(x) — G(a), Vx € [a,b].
If we assume x = b, then

b
F(b) = / F(x) dx = G(b) — G(a). W

In the following, we define the average value of the function f on the interval [a,b].

Definition 2.6 If f is continuous on the interval [a,b], then the average value f,, of f on [a,b] is

1 b
fov = 5 / F(x) dx.

Example 2.17 Find the average value of the function f on the given interval.

M) f(x) =2 +x—1, [0,2]
(2) flx) =X, (1,3]
Solution:

2 . 2
) favzzl—o/o (x3+x—1)dx:%[%+%—X]O:%[(4+2—2)—(0) =2

(Z)fav:ﬁ/f\/;cdx:%%[x%r i1,

=
X

From the Fundamental Theorem, if f is continuous on [a,b] and F (x) = / f(t) dt where ¢ € [a,b], then
.

%/axf(t) dt = %[F(x)—F(a)] = f(x) Vx€ [a,b].

This result can be generalized as follows:

Theorem 2.10 Let f be continuous on [a,b]. If g and & are in the domain of f and differentiable, then

h(x)
o L 10 dt = S ) = F e ) Ve [

h(x)

Proof. Let F(x) = / f(¢) dt. For any constant a, we can write

8(x)
F(x)= /a f@) dt+/h(x> f(@)dr.
8(x) a
Assume H(x) = " f(¢) dr and let u = h(x). Then, from the chain rule, we have
H'() = 40 = T w0 = ) )

Similarly, assume G(x) = /a f@) dt = —/.gm f(t) dt. This implies, G’ (x) = — f(g(x))g’ (x). Thus,

g(x)

F'(x) = H'(x) + G (x) = f(h(x))H' (x) — f(g(x))g'(x). W
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h(x)
Lo [ ) di = F(R)H (x) Vx € fa,b],

2 4 [ 0= e () Ve o]

Corollary 2.2 Let f be continuous on [a,b]. If g and / are in the domain of f and differentiable, then

Proof. The proof of this corollary is straightforward from Theorem 2.10 by assuming g(x) = a in item 1 and A(x) = a in item 2.

Example 2.18 Find the derivative.

X
o £ /1 Vcos 1 dt

|
d
@ E/l B+1 d

3) L(x /Xn(t3 —1) dt)

3
@) %/+]\/t+1dt
X

Solution:

X
1) j—x 1 Vcos t dt =+/cos x (1) = +/cos x.

S|
d _ 2
@ dx/l 511 dt = (x2)2+1 (29) = 7
2

&) dix(x/: (’3_1)dl) :/sz(t3—l) dt+x(2x(x6—l)—(x3_1))

3
“) %/X_H\/mdtzof\/(x+1)+l:7\/x+2.

sin x ]

da - _ 1 _ cosx __
3 4 . 2 dt = Tan? 5 08 X = o = sec x.

(6) j—x/ cos (2 +1) dt = cos (x> +1) +cos (x> +1) =2cos (x> +1).
—X

2

1
d _ 2 1
D & iyt

sin x
(8 % Vl+t4dl=\/mcosx+\/msinx.

Cos x
"X
Example 2.19 If F(x) = (x? —2)/ (t43F'(t)) dt, find F'(2).
2

Solution:

F'(x) = Zx/zx (t+3F'(1)) dt + (x? —2)(x+3F'(x))

Letting x = 2 gives

2

dt

cos (1> +1) dr

V144 dt

(Let f(x) =xand g(x) = ffz (£* —1) dt. Then,
find . (fg)(x))

(use the identity cos? x+sin®> x = 1)

4/ (t+3F'(r)) dt +(4—2)(2+3F'(2))

=F'(2)=2(2+3F'(2)).
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Hence, —5F'(2) =4=F'(2) = _%.

Exercise 2.4

1-10 M Evaluate the integral.
3
1 / (2—x+x%)dx
0

1
2/ (X +3x+1) dx
-1
10 ;
Shoe

4/7dx

5 / cos x dx

11 - 16 M Verify that the function f satisfies the hypotheses of the Mean Value Theorem on the given interval. Then, find all
numbers z that satisfy the conclusion of the Mean Value Theorem.

6 /z(sin x+cos x) dx
0

7 /tg sec x (tan x+sec x) dx
ry

19 f(x)= %, 1

11 f(x)= (x+1)3, [~1,1]
12 f(x) = (2,0]
13 f(x) = v/, [1,4]
14 f(x)= 7 [1,4]
15 f(x) =sin x, [0, 7]
16 f(x) =cos x, [0, 3]
17 - 20 M Find the average value of the function f on the given interval.
17 f(x) =x> +x>—1, [0,2]
18 f(x) = ¥/x, [-1,3]

21 - 28 M Find the derivative.
21 & Vit1dt

P

22 i/ Lo

23 L[ (1—1)dt
1

3x-1) 1
24 i/ —dt
Cy x+1 t—1

29 - 32 M Find the derivative at the indicated value.

29 F(x /\/3r2+ dt, F(2),F'(2)and F"(2).

0 sin ¢ , "
30 G(x) = /x L dr, G(0),G/(0) and G (0).

31 Hix / Viv1dn, H'(2).

20 f(x) =sin x, [0

25 %(sinx/lx\ﬁdt)

X
d .
26 Tix/_ sin (r+1) dt

27 4 t_1 d
L ——dt
dx |13 1441

Sec x
28 4 Vit di
tan x



[\
9]

[\
wn
[y

33

32 F(x)= sinx/: (1+F'(1)) dr, F(0)and F'(0).

Numerical Integration

Sometimes we face definite integrals that cannot be solved even if the integrands are continuous functions such as v/1 +x3 and ¢ . In
our discussion in this book so far, we are not able to evaluate such integrals. We exploit this to show the reader a new technique to
approximate the definite integrals.

Trapezoidal Rule

As discussed in Section 2.2, if f is a defined and positive function on a closed interval [a,b], a Riemann sum approximates the area
underneath the graph of f from x = a to x = b as follows. Assume P is a regular partition of [a,b]. We divide the interval [a,b] by the
partition P into n subintervals : [xg,x1], [x1,x2], [x2,%3], ..., [Xs—1,%n]. Then, we find the length of the subintervals: Ax; = b -%. Using
Riemann sum, we have

b—a

[ ax= ¥ ronan -
“ k=1

where ® = (0,3, ...,®,) is a mark on the partition P.

Y Fle)
=1

As shown in Figure 2.4, we take the mark as follows:

1. The left-hand endpoint. We choose ®; = x;_ in each subinterval. Then,
b b—a &
/ f)dx= —Y fla-1).
a =
2. The right-hand endpoint. We choose ®; = x; in each subinterval. Then,

b b—a &
| fw a2 Y ).
a k=1

3. The average of the previous two approximations is more accurate,

b—ar & n
o™ L;f(xk—l)"‘kglf(xk)}

Trapezoidal Rule

Let f be continuous on [a,b]. If P = {xg,x,...,X, } is a regular partition of [a,b], then

b a
/a fx) dx =~ b7 f(xo)+2f(x1)+2f(xz)+...+2f(xn71)+f(xn)]

Error Estimation

Although the numerical methods give an approximated value of a definite integral, there is a possibility that an error occurs. The
numerical method and the number of subintervals play a role in determining the error. The way of estimating the error under the
trapezoidal rule is given without proof in the following theorem.

Theorem 2.11 Suppose that f” is continuous on [a,b] and M is the maximum value for f” over [a,b]. If Er is the error in
b

calculating / f(x) dx under the trapezoidal rule, then
a

M(b—a)?

Er|<
[Erls =52
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I I O e T

(4)

Figure 2.4: Approximation of a definite integral by using the trapezoidal rule.

21
Example 2.20 By using the trapezoidal rule with n = 4, approximate the integral / — dx. Then, estimate the error.
1 X

Solution:

Xp—1%n

X

X2

(B)

21
(1) We approximate the integral / — dx by the trapezoidal rule.
1 x

(a) Find a regular partition P = {xg,x],X2,...,X, } Where Ax =
We divide the interval [1, 3] into four subintervals where the length of each subinterval is Ax =

XOZI
xi=1+1=1}
xn=14+2(3)=13

The partition is P = {1,1.25,1.5,1.75,2}.

(b) Approximate the integral by using the following table:

(b=a)

n

Ao Xy X

and x; = xg + kAx.

x3=14+3(1) =13
xp=1+4(3) =2

Hence,

(2) We estimate the error by using Theorem 2.11.

k Xk S (0) mi myf (k)
0 1 1 1 1
1 1.25 0.8 2 1.6
2 L5 0.6667 2 1.3334
3 1.75 0.5714 2 1.1428
4 2 0.5 1 0.5
4
Sum= Y myf(xa) 5.5762
k=1
21 1
/ - dx~ -[5.5762] =0.697.
1 X 8
— ! () — —1 11 _ 2 _ 6
f@=-=f@=—7F=1"W=73 =3

Since f”'(x) is a decreasing function on the interval [1,2], then f”(x) is maximized at x = 1.
Hence, M =| f(1) |=2 and

|ET |<

2(2-1)3
R

1

96

=0.0104.

(©)

2—-1

7

Xp-1%n

= % as follows:

X

Remark 2.2 By knowing the error, we can determine the number of the subintervals n before starting approximating.
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21
Example 2.21 Find the minimum number of subintervals to approximate the integral / — dx such that the error is less than 1073,
1 X

Solution:

202-1)

12n2 < 1072,

From the previous example, we had M = 2. Therefore, | ET |<

This implies that

2(2-1) 103 500

3
2 3
> 10° = — >/ — =12.91.
n-> 2 0 3 =>n> 3 9

Therefore, n = 13.

Simpson’s Rule

Simpson’s rule is another numerical method to approximate the definite integrals. The question that can be raised here is that how the
trapezoidal method differs from Simpson’s method? The trapezoidal method depends on building trapezoids from the subintervals, then
taking the average of the left and right endpoints. The Simpson’s rule is built on approximating the area of the graph in each subinterval
with area of some parabola (Figure 4.1).

Xg Xq Xz Xn—1 Xn x
a b
Figure 2.5: Approximation of a definite integral by using Simpson’s rule.
(b—a)

First, let P be a regular partition of the interval [, b] to generate n subintervals such that | P |= and n is an even number.

n
YA

Now, take three points lying on the parabola as shown P,(0,y,)
in the next figure. Assume for simplicity that xo = —h, SERCT
x1 = 0 and x; = h. Since the equation of a parabola is Fy(=hyg) Py(hy,)

y:ax2+bx+c

, then from the figure, the area under the graph bounded
by [—h,h] is

h
ax? +bx+c dx:ﬁ 2ah* + 6¢).
3
—h

Figure 2.6
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Thus, since the points Py, P; and P; lie on the parabola, then

yo = ah® —bh+c
y1=¢
V2 = ah® 4+ bh+c.

Some computations lead to 2ah® + 6¢ = yo +4y; + y,. Therefore,

Wl s

/j;(axz—kbx—kc) dx = g(yo+4y1 +y) = (f(xo) +4f(x1)+f(x2)).

Generally, for any three points P,_1, Py and Py, we have

B et + 4yt yien) = 2 (fCt) 47 () + £ (esn)).

3

W=

By summing the areas of all parabolas, we have

[ 709 =2 (1000) 447 00)  102)

2 () +47 () + 1))

5 (o) +47 o)+ £ )

= 2] ) 4 (x1) 4 2 2) + 47 (33) o 25 2) 4 1)+ )

Error Estimation

The estimation of the error under Simpson’s method is given by the following theorem.

Suppose £ is continuous on [a,b] and M is the maximum value for /) on [a,b]. If Eg is the error in
b
calculating / f(x) dx under Simpson’s rule, then
a

M(b—a)’

Eg|< 047
| Es I< =150,

3
By using Simpson’s rule with n = 4, approximate the integral / vV x2 41 dx. Then, estimate the error.
1

Solution:

3
1. We approximate the integral / vV x2 4 1 dx under Simpson’s rule.
1

(b=4) and x; = xo +kAx.
3—-1

We divide the interval [1,3] into four subintervals where the length of each subinterval is Ax = 7= = % as follows:

(a) Find the partition P = {xq,x],x2, ..., X, } Where Ax =
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xo =1 x3=1+3(1)=21
xi=1+%1=11 xa=1+4(1)=3
x=142(3)=2
The partition is P = {1,1.5,2,2.5,3}.
(b) Approximate the integral by using the following table:
k X () my myf (k)
0 1 1.4142 1 2
1 1.5 1.8028 4 7.2112
2 2 2.2361 2 44722
3 2.5 2.6926 4 10.7704
4 3 3.1623 1 10
1
Sum= Y myf(x;) 27.0302
k=1

3
Hence, / Va2 +1dx~ 5 [27.0302] = 4.5050.
1

2. We estimate the error by using Theorem 2.12.
Since £ (x) = —(15x(4x2 —3))/1/(x2 4+ 1), then f*)(x) is a decreasing function on the interval [1,3]. Therefore, /(¥ (x) is
maximized at x = 1. Then, M =| f*)(1) |=0.7955 and

(0.7955)(3 — 1)°

180{4)? =5.5243x 1074,

| Es |<

3

Example 2.23 Find the minimum number of subintervals to approximate the integral / vV x%+1 dx such that the error is less than
1

1072,

Solution:

(0.7955)(3—1)°

From the previous example, we know that M = 0.7955. Thus, | Eg |< TS0nT

< 1072, This implies that

4 (0.7955)(32)

102 = n > 14.14.
180 "

Therefore, n = 14.

Exercise 2.5

1-4 M By using the trapezoidal rule, approximate the definite integral for the given n, then estimate the error.

1

1/ VX2 +1dx, _
1 n=4
4

2 [ vxa, nes
2
4 x

3/0)‘:_’_1(1)57 n=4

T
4/ sin x dx, n=4
0
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5-8 M By using Simpson’s rule, approximate the definite integral for the given n, then estimate the error.

21
51n(2)=/7dx, .
1 X =

Iy

6 [ ax _
0 Vat+1 n=6
2

7/\/x3+1dX, n=10
0

3
8 / Vinx dx, n=4
1
9-10 M Consider the function f, and the integral I(f). What is the minimum number of points to be used to ensure an error
<5x 1072

2
9 f(x)=¢€"and I(f) = / €* dx under the trapezoid rule.
0

2
10 f(x) =cos x? and I(f) = / cos x dx under Simpson’s rule.
0
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Review Exercises

1-4 M Express the sum in terms of n.

n n
1Y (k-1) 3 Y (K—k+1)
k=1 k=1
n n
2 Y (2k+1) 4 Y (KB+2k+1)
k=1 k=1
5-8 .4Evaluate the sum.
3
5 Y (2k+1) 7 Y (k*+2k)
k=1 k=1
5 | 4 2
6 ¥ 1 8 Y(i-1)
j=1 i=1
9 -12 M For the partition P, find the norm || P ||.
9 P=1{0,1.01,1.1,2.5,3.6,4,6} 11 P={-3,-25-1,05,1.2,2}
10 P={1,2.5,3,4,5.1,6} 12 P={0,1.04,1.09,2.15,3.7,4,5}

13-16 M Find a Riemann sum Rp for the given function f by choosing the mark o,
(a) the left-hand endpoint,
(b) the right-hand endpoint,

(c¢) the midpoint,

13 f(x)=x+1, {1,2.5,3,3.5,4,5,6} 15 f(x)=x*+1, {1,1.5,2,2.5,3,3.5,4}

14 f(x)=2x—1, {-1,0,1,1.5,2,3,3.5} 16 f(x)=1-x%, {-2,-1,0,1,3,5,6}
17 - 28 M Find the area under the graph of f from a to b by taking the limit of a Riemann sum.

17 f(x)=x+3, a=1,b=3 23 f(x)=x, a=1,b=3

18 f(x)=3—x, a=0,b=1 24 f(x)=(1-x)2, a=0,b=1

19 f(x)=x% a=-1,b=1 25 f(x)=%, a=—-1,b=1

20 f(x)=x>—x+1, a=—1,b=3 26 f(x)=x(x—1), a=0,b=3

21 f(x)=%, a=2,b=4 27 f(x)=5x, a=1,b=3

22 f(x)=x>+x+1, a=0,b=2 28 f(x)=x>+1, a=0,b=2
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29 - 42 M Evaluate the integral.

4
29/ 2dx
-2
5
30 / (3—x) dx
0
4
31 / (2x% +x—1) dx
-1
2
32 / (6x* +3) dx
2
1
33 / (3 —4a*) dx
0
1
34/xx/x2+ldx
—1

5
35/ |x—1] dx
43 - 48 .If/

43 /b
44 /:f(x) dx

45 /ab (2f(x) +g(x)) dx

x)dx=2, /

49 - 54 M Use the properties of the definite integrals to prove the inequality without evaluating the integrals.

1 1
49 xde/ %2 dx
0 0

3
0/ dx>/xdx
0

4 4
51 / (2x+2) dxz/ (3x+1) dx
1 1

3
36/ |2x—3| dx
0
3
37 / (x—2)(x+3) dx
1
T
38 / cos x dx
0
%
39/ sin x dx
0
T
40 / sec x (tan x —sec x) dx
0

T
41 / x cos x% dx
0

T 2
g [TV,
/4 \/;C

x) dx =2 and / g(x) dx = 3 where ¢ € (a,b), evaluate the integral.

46/1) 5f(x)—3g(x)) d

47/ x) +7g(x)) dx
48 /aa(4f(x)+g(x)) dx
52 /03(x2—3x+4)dx20
53 /lzx/ﬁdxz/f\/mdx

2
54 2</ V1+x2 dx
—1

55-59 M Find the average value of the function f on the given interval.

55 f(x)=x2, [1,4]

56 f(x)=9—x% [0,3]
57 f(x) =x—x%, [0,2]
58 f(x)=x+1, [-1,2]

59 f(x)=6x2—2x+4, [—1,3]

60 - 63 M Find the number z that satisfies the Mean Value Theorem for the function f on the given interval.

60 f(x)=2+x, [0,4]
61 f(x)=x% [-1,3]
62 f(x)=vx, [0,9]
63 f(x)=4x"—1, [1,2]
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64 -71 x. Find the derivative of the functions. .
64 / sin v/ dt 68 cos 12 dt
0

COosx

X X
65 / ;dt 69 / Vi2+1dt
1 0
3

X 0
66 [ sin(+1)10dr 70 / NeTEw e
3x 6x—1
x+1 1 Vx )
67 / - dt 71 / tan 1~ dt
2 12 +1 3
72 -75 M By using the trapezoidal rule, approximate the definite integral for the given n, then estimate the error.
5
72 / x> dx, n=4
1
21
73 / — dx, n=10
1 x
1
74 / e* dx, n=4
0

3
75/ V1 4x3 dx, n==6
1

76 - 79 M By using Simpson’s rule, approximate the definite integral for the given n, then estimate the error.

T 1
76 / %dx, n:4
0 2—sin x
1
77 / In(1+¢€%) dx, n==6
0
2
78 / e* dx, n==6
1
T
79 / cos x% dx, n=4
0

3
80 - 81 M Find the minimum number of subintervals to approximate the integral / X +1dx by using the trapezoidal rule
1

such that the error is less than
80 1072 81 104

3
82 - 83 M Find the minimum number of subintervals to approximate the integral / © 4 1dx by using Simpson’s rule such
1

that the error is less than
82 0.5 83 2.55

84-106 W Choozse the correct answer.
n
84 The sum Y (k—1) is equal to
k=1

(a) nz(nzfl) (b) n(n;l) © nz(n;+1) ) nz(néfl)

n
85 The sum nlgl; kgl(n%) is equal to

@0 (b) o (©)2 (OF;

n
86 If y (k+o)= %(n > 1), then the value of o is equal to
k=1

(a) 2 )} © 4 @1
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87

88

89

90

91

92

93

94

95

96

97

98

929

100

101

102

4
If Y (k+a)= 14, then the value of a is equal to

k=1
(@l (b4 (0 —4 (@ -1
5
If ¥ (0k? +k— 1) =20, then the value of o is equal to
k=1
@) ®) 77 ©) 1t @ 11
6
If Y (k*+3k+20) = 130, then the value of o is equal to
k=1
(a)2 (b) -2 (©1 (d)3
The average value of the function f(x) = v/x+ 1 on [—2,0] is equal to
(@3 (b) 0 (c) -1 (d) -3
The average value of the function f(x) = sin xcos x on [0, §] is equal to
(@ —7 ®) 3 © 7 () —3
The average value of f(x) =|x—1] on [0, 1] is equal to
(@) —3 () 3 (©)0 ) 3
The average value of f(x) = sin xcos x on [—T, 7] is equal to
OF () ©1 @0
If F(x) = 1"2 Vt* 41 dt, the F'(x) is equal to

(@) Va8 +1 (b) X2v/x8+1 (©) 2xvx8 +1 (d) 2xv/x* + 1

2
The value of the integral / |x—1] dxisequal to
0
@0 d1 ©3 (@2

2

If f(1)=3, f(4) =7, f(2) =4 and f(14) = 23, the value of the integral / (x* +1)f'(x* 4 3x) dx is equal to
1

(@) % (b) 16 ©1 (@ 18

X
If F(x) = x/f cos 12 dt, then F'(,/T) is equal to
T
(@0 (b) vVr () =7 @1
xz
If F(x) = / sin 13 dt, then F’(x) is equal to
2x
(a) 2xsin x° —sin 8x° (c) 2xsin x° — 2sin 6x°
(b) 2xsin x® —2sin 8x3 (d) 2xsin x® +2sin 8x3

The number z that satisfies the Mean Value Theorem for f(x) = x2 on [0,2] is
@5 o @3 @

The number z that satisfies the Mean Value Theorem for f(x) = 1+ x> on [—3,0] is

(a) =3 ®) V3 ©V2 @ —v2

x+1
If F(x) = / tan(t?) dt, then F'(x) is equal to
x—1
(a) tan (x> +2x+1) +tan (x> —2x+1) (c) tan (x2 +1) —tan (x> — 1)
(b) tan (x2 +2x+1) —tan (x> —2x+1) (do

If F(x) = /lx V5412 dt, then F'(1) is equal to
()0 (b) 3v6 © V6 @ 7
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2

103 If /Ox f(\/t) dt = x, then f(x) is equal to
(@)1 (b) % © % @3

1
104 The value of the integral / 2| x P dx
1

(a)2 (b) 1 7(0) 0 d) —1
x dtan t
105 The derivative of the integral / (1+ Z? ) dt is equal to
0
(a) I +tan x (b) 1 —tan x (c) 1 —sec? x

XZ
106 If G(x) = / I?Tt dt, then G'(e) is equal to
(a) 2e ‘ (b)1 (c)e (d) 4e

(d) 1+sec? x
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Chapter 3

Logarithmic and Exponential Functions

The Natural Logarithmic Function

In chapter 1, we found that [x" dx = % + ¢ (see Table 1.1). If r = —1, does the previous rule hold? The answer is no because the
denominator will become zero. The task now is to find a general antiderivative of the function %; meaning that we are looking for a

function F (x) such that F' (x) = %

Consider the function f(¢) = % It is continuous on the interval (0, +0) and this implies that the function is integrable on the interval

[1,x]. Figure 3.1 shows the graph of the function f(r) = % from t =1 to t = x where x > 0. The area of the region under the graph can
be expressed as

f(x):./lx;dx

D DE

() =1/t f(r) =1/t

Figure 3.1: The area under the graph of the function f () = % in the interval [1,x] where x > 0.

In the following definition, we introduce the antiderivative of the function f(¢) = %

Definition 3.1 The natural logarithmic function is defined as follows:

In: (0,00) > R,

X ]
lnx:/ — dt
1t

for every x > 0.
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Properties of the Natural Logarithmic Function

1. From the Definition 3.1, the domain of the function Inx is (0,e0).
2. The range of the function Inx is R as follows:

Inx>0 :x>1
y= Inx=0 :x=1
Inx<0 :0<x<l

To see this, let x = 1, then Inx = fll Lar=o. Now, since flx Lagr=— jxl % dt, then for 0 < x < 1, the integral is the negative of

t
1

t

the area of the region under f(r) = ; from r = x to x = 1. This means that Inx is negative for 0 < x < 1 and positive for x > 1.

T

3. The function Inx is differentiable and continuous on the domain. From the fundamental theorem of calculus, we have

d d 1 1
L) =L [ Zdr=-vx>o.
dx(nx) dx/1 t x’x>

Therefore, the function Inx is increasing on the interval (0,00).

4. The second derivative j—;(lnx) = ;—21 < 0 for all x € (0,e0). Therefore, the function Inx is concave downward on the interval
(0,%0).
5. Rules of the natural logarithmic function:

Theorem 3.1 If a,b > 0 and r € Q, then
1. Inab =Ina+1Inb.

2. Ing =Ina—Inb.

3. Ina" =rlna.

Proof. 1. Let f(x) =1Inax and g(x) = Inx+1Ina for all x € (0,0). Then,

flx)= ia == and

ax
1 1
/
=2 40=-.
g ) S T0=1

Since f and g have the same derivative on the interval (0, o), they differ by a constant (Theorem 1.1). By taking x =1,
f(1) =1na and g(1) = Ina. This implies that the constant they differ by is 0, that is f(x) = g(x).

. From item (1), we have

Ina = ln(gb) —In g +Inb.

This implies

lng =Ina—1Inb.

. Let f(x) = Inx" for all x > 0 and r € Q. Then,

Since %(rlnx) = £, then there is a constant ¢ such that
Inx" = rlnx+c, Vx> 0.
Ifx=1,In1" = rln1+ ¢ and this implies ¢ = 0. Hence, Inx" = rInx. Therefore, for any a > 0, we have

Ina" =rina.l

6. limInx =oand lim Inx = —eo,
X—ro0

x—0F
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To see this, the figure on the right shows the region of f(¢) = 2

froms=1tos=x. Thearea A = (1)(%) = % From Definition 3.

2
ln2=/ ;dt>%: area of A. f(t) =1/t
1

Since Inx is increasing function, then

1
G
L,

lnx>ln2m:mln2>%VmEN 1
1/2
where if m is sufficiently large, x > 2. This implies lim Inx > 7, A
X—yo0 :
then lim Inx = oo, 1 2 t
X—r00
Now, letu =1 asx — 0, u — co. Since x = 1 = Inx =In 1 = —Inu. This implies
lim Inx = lim (—Inu) = — lim Inu = —oo.
x—0t X—>00 X—o0

From the previous properties, we have the graph of the function y = Inx.

y

X
—1 +
-2+
Figure 3.2: The graph of the function y = Inx.
Differentiating and Integrating the Natural Logarithmic Function
From our discussion above, we found that
1
2 lx = -
dx - X
Hence,
d 1 1
T n(—x)= —(—1)= =
pin(=x)=—(=1) =~
Therefore,
—In(Jx])==-Vx#0
In the following theorem, we generalize the previous result.
Theorem 3.2 If u = g(x) is differentiable, then
L Linu=Luifu>0
2. Linju|= Luifus0
Proof. 1. If y = Inu where u = g(x) is differentiable, then from the chain rule and the previous result, we have
1
ilnu* @ = dy@ =—u.

dx T dx  dudx u
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2. If u >0, then | u |= u. From the previous item, we have

d d 1
—Inju|=—lnu=—-u.
dxn|u\ pnu=-u
If u <0, then | u |= —u > 0. This implies
d d 1 d 1
Cjul=Lin(u)=— 2L (d)=-u.m
dxn|u‘ dxn( “) udx( ) "

Henceforth we will assume that the domain of the function u = g(x) is restricted to the domain of the natural logarithmic function.
Therefore, we sometimes do not put the function g(x) with the absolute value.

Example 3.1 Find the derivative of the function.

M f(x)=In(x+1)
(2) glx) =In(x>+2x—1)
3) h(x)=Invx2+1

(5) f(x)=Incos x

6) g(x)=+/x Inx
(7) h(x) =sin (Inx)

@ y(x) =

Solution:

Inx

@ fx) =

(2) g/(x)_ 3x242

0421

(8) y(x) =In(x+1Inx)

@ K = 7oy 3 = w4

@ ()= Nlm% = u\}th

(5) f'(x)==3nX — _tan x.

Cos x

6) g'(x)= Z—%Inx+ Xl = 21"—\/’% + é = 13{7}2.

(7) K (x)=cos (Inx)( 1 )= cos (Inx)

X X

()] y/(x) = ;ﬁ(l + %) = x(;il:lx)

In the following, we present a simple application of the natural logarithmic function. We know that the derivative of composite functions
takes an effort and time. This problem can be solved by using the differentiation of the natural logarithmic function. Specifically, we use
the derivative of the natural logarithmic function and Theorem 3.1 to simplify the differentiation of the composite functions.

Example 3.2 Find the derivative of the function y = ¢ f;—}

Solution:
We can solve this example using the derivative rules. However, for simplicity, we use the natural logarithmic function.
By Taking the logarithm function of each side, we have

5X—1‘_1 L
’/x—l—l —s(ln\x 1 ln|x+1|>.

By differentiating both sides with respect to x, we have

/
y;:%(xiliﬁ>

By multiplying both sides by y, we obtain

In|y|=1In
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Vxcos x

Example 3.3 Find the derivative of the function y = W
X sin x

Solution:
Take the natural logarithm of each side. This implies

\V/xcos x

1 :1‘7
nlyl rl(x-i—lsm

‘*lnf+ln|cos x| —In|x+ 1| —In|sin x|.

By differentiating both sides, we have

y 1 sinx 1 cos x

y 2xr cosx x+1 sinx

Multiply both sides by y to have

1 1 V/xcos x
/
= (= —tan x— — cot .
Y <2x RIS I x) (x4 1)sin x

Recall, % In|ul|= % where u = g(x) is a differentiable function. By integrating both sides, we have
74 d
—dx= / —In d
/ u dx |ul dx
=In|u|+c.

This can be stated as follows:

/
/M—dx:ln|u|+c
u

If u = x, we have the following special case

1
/fdx: In|x|+c
x

Example 3. 4 Evaluate the integral.

@ / 241 o 5 /tanxdx
6x2 41
@ /4x3+2x+1 * 6) /Cotxdx

()/xlnx (@) /secxdx

7)( @8) [cscxd
@ /1 ET ) [ esexa

Solution:
@ /x2i1 dx=In(>+1)+ec.
6x2 +1 12x% 42 |
=lin|4® +2x+1 )
()/4x3+2x+1 /4x3+2x+1 210 |40+ 204 1] 4

1
(3) Letu =Inx, then du = % dx. By substitution, we obtain / —du=In|u|.
u

d
By returning the evaluation to the initial variable x, we have / l—x = In(Inx). Hence,
x Inx

/; xcfﬁx = [ln(lnx)]z =In(Ine) —In(In2) = In(1) — In(In2) = —In(In2).

1
(4) For let u =1+ +/x, then du = 2—% dx. By substitution, we have 2/ —du=2In|u|.
u

[ At
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By returning the evaluation to the initial variable x, we have In| 1+ +/x|. Hence,

/\f1+f)

/ﬁﬁ 2[inf 14V || =203 - n2).

(5) We know that tan x = % Therefore,

Ccos x°

sin x —sin x
/tanxdx=/ dx=f/ dx
Cos X cos X

=—In|cos x|+c=1In|sec x| +c.

(bec r= cos X)

1
sin ,r)

(6) /cotxdx:/cosxdxfln|smx|+c—fln\cscx|+c (csc x =
sin x

2

sec x (sec tan sec” x+sec xtanx

(@) /secxdx:/ * (sec x+ tan x) dx:/—dx:1n|secx+tanx|+c.
(sec x+tan x) sec x+tan x

2

csc x (csc x —cot x CSC™ X —CSC X cot x

8) /csc xdx:/ ( )dx:/ dx=1In|csc x—cot x| +c.
(csc x—cot x) csc x —cot x

Exercise 3.1
1-20 M Find the derivative of the function.
1 y=In(x+1)
2 y=In(x*+2x—4 — In(sin2 15 y=1In(y/25))
y=In(x"+ ) 9 y=In(sin* x) y s
3 y=In(y/x) 10 y =In(cos? x) 16 y=In((x*+1)(x—1))
4 y=1In(Vx2) 11 y = In(sin’ x) 17 y=In(vx+1— %)
5 y—ln(}c) 12 y =In(sec x tan x) 18 y=5
nx:
=In(sin x+x+1) 13 y=cscx Inx 19 y=In(®+1)
7 y=In(sec x+x%) 14 y=Vx2In(x*+1) 20 y=In (In(sin x))
8 y=In(cos? x)

21 -26 M Find the derivative of the function. ,

2 713 7
2y =3 2 y= "5 25 y=(aGen)
_ 3 2 B Q 1
22 - LRI 24 y= (S rens 2 y- Fs
27 - 38 M Evaluate the integral.
3x 2 N T)
27 /zidx 31 [ SCr 4 35/ Inx dx
x=+1 1+ cot x x
sec? x 4
28 /‘ 2 [ Fdr 36/x+3dx
T tan x _1x24+1 1 x2
33 /cscxdx 37 /ﬂdx
X
z cos (vVx+1 3 1
30/4secxdx 34/¥dx 38/7
0 x+1 (lnx)
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3.2 The Natural Exponential Function

Since the natural logarithmic function In : (0,00) — R is a strictly increasing function (see Figure 3.3), it is one-to-one. The function
In is also onto and this implies that the natural logarithmic function has an inverse function. The inverse function is called the natural
exponential function.

Definition 3.2 The natural exponential function is
defined as follows:

exp:R — (0,00) ,

y=expx&lny=ux 1

Figure 3.3: The graph of the function y = ¢*.

3.2.1 Properties of the Natural Exponential Function

1.

2.

From the definition, the domain of the function exp x is R.
The range of the function exp x is (0,0) as follows:
expx>1 x>0

y= expx=1 :x=0
expx<1l :x<0

. Usually, the symbol exp x is written as ¢*, so exp (1) = e ~ 2.71828. From Definition 3.2, we have Ine = 1 and Ine” = rlne =

rvreQ.

. The function e* is continuous and differentiable on the domain. From Definition 3.2, we have

y=¢€" = Iny=ux.

By differentiating both sides, we have

Hence,
d
—e =" VxR
dx

Therefore, the function e* is increasing on the domain R.

L 2 . . .
. The second derivative %e" =¢* > 0 for all x € R. Hence, the function e* is concave upward on the domain R.

. lime* =cand lim ¢ =0.

X—3oo X—p—o0

. Since ¢* and Inx are inverse functions, then

Ine* =x, VxeR,

e = x, Vx € (0,00).

. Rules of the natural exponential function:



51

Theorem 3.3 If a,b > 0 and r € Q, then

(a) €a€b _ ea+b
a
e —
b) 5 =e"
e

(©) (ea)r:ear

Proof.  (a) From the properties of the natural logarithmic function, we have

In(e”) = Ine® +Ine’ = alne+blne = a+b , and
Ine*™’ =a+b.
Since the function In is injective, then e%e? = %,
(b) From the properties of the natural logarithmic function, we have
e’ a b
In(—) =alne—blne=1Ine" —Ine’ =a—b,and
e
Ine* b =a—b.
a

e
— =

Since the function In is injective, then — a=b.
e

(¢) Since In(e?)” = rine® = ra and Inel@) = g r, then (¢4)” = ¢*. A

1

Example 3.5 Solve for x.
(1) Inx=2 (3) (X—l)eilnx =2
(2) In(lnx) =0 @) xe2nx — g

Solution:
1) Inx=2=e"=¢2= x=¢2. (take exp of both sides)

(2) In(lnx) =0= Ny — 0 ny=1= M =pl = x =, (take exp twice)

3) (x—1e v =2= (x— 1)) =2 = (x—1)e!™* = 2. This implies
xx—1)=2=x—x-2=0=>(x+1)(x-2)=0=>x=—lorx=2.

We have to ignore x = —1 since the domain of the natural logarithmic function is (0,eo).

“) xe2n¥ = 8 = el =8 = 3 =8 = x=2.

Example 3.6 Simplify the expressions.
(1) In(eV¥) (3) (x+1)In(e~ 1)
) e%lnx @) e(Vx+2Inx)
Solution:
(1) In(eV™) = Vx.
2) e3lnx — oInyx _ YA
3) x+DIn(eH =@x+)x—1)=22-1.

@) c(VXH2Inx) _ /X pInx® _ (2,V%

3.2.2 Differentiating and Integrating the Natural Exponential Function

From the discussion above, we found that
d X
—e' = ¢

dx

X
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Generally, assume that y = " where u = g(x) is differentiable. By using the chain rule, we have

i u“_ @ dy du — oy
dx dx  dudx '
Theorem 3.4 If u = g(x) is differentiable, then
ie” ="
dx
Example 3.7 Find the derivative of the function.
1) y=eVatT @) y_e%— 1
Q) y= 675x2 5) y= elnsin x

(3) y=e3cos x—dx?

Solution: \
@y :e“HI(W)»

@) y =e 3 (—10x).

(3) y = e3c0s 4 (_3in x — 8x).
o B !

@ Y =e(F)—(-e) =54

(5) y = ¢lnsinx (§a) = cos x.

6) ¥y = (2™ — 7).

2*+\/W

(6) y=In(e*++/1—¢)

Recall that %e“ = e"u’ where u = g(x) is a differentiable function. By integrating both sides, we have

This can be stated as follows:

If u = x, we have the following special case

Example 3.8 Evaluate the integral.

1) /)ce*)‘2 dx

(2)/ (3

Solution:

4¢*) d

3) /e"+e *

tan X

@ /0052

(1) Letu = —x2, then du = —2x dx. We substitute that into the integral to obtain

-1 -1 -1
7 [eau= e

32
e +c.
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(2) Letu =3 —4¢"* and this implies du = —4¢* dx. By substitution, we have
—1 2
e / uduy=— % +c.
Return the evaluation to the initial variable x to obtain / e"(3—4e") dx=— % (3 —4¢*)?. Hence,

In5 n
[ eG4y an= —% € —4g*)2ﬁ) T —% [(—17) = (~1)%] = —36.

3) Letu=¢"—e¥, then du = € + ¢~ dx. By substitution, we have

1
/fdu:1n|u\+c:1n|e)‘—efx|+c4
u

(4) Let u = tan x, then du = sec? x dx. By substitution, we have

1
/e“du:e”Jrc:emnerc (sec® x = 5—)
cos? x
Exercise 3.2
1-4 M Simplify the expressions.
1 sin2 x+621ncos x 3 (x+2)eln(x_2)
2 lneé/;‘ 4 ln(e3+21nx)
5-8 M Solve for x.
5 x> =4 7 x e =27
6 In(lnx) =1 8 lnefx+2) —3
9-18 W Find the (Zierivative of the function.
9 y=¢in x—3x 14 y:e% sin x
10 y=x V> 15 y=In(tan ¢)
11 y = ¢*cos (Inx) 16 y=+/e*
12 y:e}lnx 17 y=("+1)(Ve *+1)
13 y=In(e *+xe™¥) 18 y =sec? (¢*)
19 - 28 M Evaluate the integral.
1
2x+1 /4 HS€C X o
19/Oe dx 24/ e zsmxdx
0 cos? x
x
€ 1
20 / — dx 25 / - d
Vx Jres
sin x
21 / ¢ dx 26 / e
sec x (1+e%)3
_ ; V/x+cos x
2 / (1 —24/xsin x) e dx 27 /elncos X dx
\Vx
1 2 X
ex 28 / d
23 / — dx L el

General Exponential and Logarithmic Functions

General Exponential Function

In Section 3.2, we defined the natural exponential function a* when a = e. In the following, we define the general exponential function
a* witha > 0.
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Definition 3.3 The general exponential function is defined as follows:

@ R —(0,00)

a* = ¢’ forevery a> 0.

Since Ina® = xIna Vx € Q, then by taking the natural exponential function of both sides, we can write

& = (vlna
The function a” is called the general exponential function with base a.
y y
1 1
X
Figure 3.4: The function y = a* fora > 1. Figure 3.5: The function y = a* fora < 1.

Properties of the General Exponential Function

Let f(x) =a* VxeR.
1. From Definition 3.3, the domain of f(x) is R and the range is (0, ) where

a>1 x>0
y=4q a'=1 :x=0
ad<l :x<0

2. If a > 1, Ina > 0 and this implies that xIna and f(x) are increasing functions as shown in Figure 3.4.

3. Ifa < 1, Ina < 0 and this implies that xIna and f(x) are decreasing functions (see Figure 3.5).

4. Rules of the general exponential function:

Theorem 3.5 If a,b > 0 and x,y € R, then
a. @'a =a*" c. (a*)Y=da"”

b. L =g d. (ab)* = a*b*

Proof. We prove this theorem by using Definition 3.3 and the properties of the functions ¢* and Inx.
a. a’a = ¢*nagyina — xlna+ylna _ e(ery)lna _ elna(*“’) — gty

@ _ M xlna—ylna _ ,(x—y)lna _ na® _ x—y

b. G =5%m=e¢ yina — px—y)lna — =a"7.
) x Xy )
c. (ax)y — e)lna — elna — 5.

d. (ab)* = gtnab _ x(Ina+nb) _ xlnaxlnb _ xpx
Note that the previous result generalizes Theorem 3.3. B



Differentiating and Integrating the General Exponential Function

Since a* = ¢*" then

2 ge 4 gone
— ayy,
=a"Ina.
This can be stated as follows:
d

X X
—a =a Ina
dx

The following theorem generalizes the previous result.

Theorem 3.6 If u = g(x) is differentiable, then

—d"=d"Inay’.

dx

Proof. From Definition 3.3 and the chain rule, we have

iau _ ieulna

dx dx
="M/ 1ng
=d“u'Ina.

Note that by applying the previous theorem for a = e, we have Theorem 3.4. W

Example 3.9 Find the derivative of the function.

1) y=2v* @) y=x(7"%)

(2) y=3"sinx (5) y=In(tan 5%)

(3) y=sin 3* 6) y= (10410710
Solution:

(1) ¥ =2V3 2 ;1o = 272

2) ¥y = 3sin X |3 (2x sin x4 x* cos x).
3) ¥ =cos (3x)(3xln3) = (3" ln3) cos 3*.
@ Y =7 +x ((-3In7) 77¥) =773%(1 - (3In7) x).

2 sy (5% x 2 sx
) sec* 5% (5* In5) _ (5% In5) sec* 5
) y = tan 5% - tan 5% .

(6) Y =10 (10*+10)° (10 In10— 10~ In10) = 10 In10 (10* +10%)° (10" — 10~).

Example 3.10 Find the derivative of the function y = (sin x)*.

Solution:
Take the natural logarithm of both sides to have Iny = x In(sin x). By differentiating both sides, we have

= In(sin x) 4+ TS X

sin x

Y
y
=y = (ln(sin x) +xcot x) (sin x)*.
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From Theorem 3.6, we have

/a” u dx = La“+c
Ina

Example 3.11 Evaluate the integral.

1) / 3 dx 3) / 3*sin 3° dx
2X
2) [5V5+1d / =
@ [5V5HTar @ [
Solution:

(1) Letu = —x2, then du = —2x dx. By substitution, we have

S L T
5 /3 du721n33 +6721n33 +c.

(2) Letu =541, then du = 5*In5 dx. By substitution, we obtain

1/%d 1 u%+ —2(5X+])%+
ms) M T 53277 3ms ¢

(3) Let u = 3%, then du = 3*1In3 dx. By substitution, we have

1 . 1 1 N
E/sm udu——mcos u—Q—c——mcos 3 +ec.

(4) Let u =241, then du = 2*In2 dx. By substituting that into the integral, we have

1 /1 1 1
L = 2+ 1)+
1n2/ud“ ma Ml o=@+ +e

3.3.2 General Logarithmic Function
We know that if a # 1, the function @ is strictly increasing or decreasing, depending on the value of a. In any case, the function a* is

one-to-one and onto and this implies that the function ¢* has an inverse function. The inverse function is called the general logarithmic
function log, x with base a.

Definition 3.4 The general logarithmic function is defined as follows:
log, : (0,00) = R,

x=da & y=log,x.

y y

Figure 3.6: The function y = log, x fora > 1. Figure 3.7: The function y = log, x fora < 1.
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Properties of the General Logarithmic Function

1. The general logarithmic function log, x = }E—;

To verify this, from Definition 3.4, we have y = log, x = x = &’.
By taking the natural logarithm of both sides, we have

Inx=Ina" =ylha=y= E—z.
2. If a > 1, the function log, x is increasing while if 0 < a < 1, the function log, x is decreasing (see Figures 3.6 and 3.7).
3. The natural logarithmic function Inx = log, x.
4. The general logarithmic function log;yx = logx.

5. The general logarithmic function log,a = 1.

6. Rules of the general logarithmic function:

Theorem 3.7 If x,y > 0 and r € R, then
a. log,xy =log,x+log,y

b. log, § =log,x—log,y

c. log,x" =rlog,x

Proof. To prove the theorem, we use the formula log, x = %g—é and the properties of the natural logarithmic function.

a. log,xy = lll:T)% = 11:]‘—;‘ + 11% =log,x+1log,y. (Ina b =Ina+Inb)
In(3
/ 1 In 4 _ng—
b. ]Oga§ =Ty = hr% - ﬁ =log,x—log,y. (In{ =Ina—Inb)
c. log,x" = % = r}ﬁ—z =rlog, x. (Ina" = rina)

The previous result generalizes Theorem 3.1. B

Differentiating and Integrating the General Logarithmic Function

; — Inx
Since log, x = 1=, then

d d /Inx 1
a(bg"x) - a(@) ~ xIna’

By integrating both sides, we have

1
/xlna dx =log, |x| +c.

Theorem 3.8 If u = g(x) is differentiable, then

d d /ln|u| 1
a0zl = - (500) = aima

x \ Ina ulna

From the previous theorem, we have

1 /
/ulnau dx =log, |u|+c¢

Note that

1, 1 u' In |u|
= — [ o= )
/ u' dx lna/ . dx og, |ul+c¢

ulna Ina

Example 3.12 Find the derivative of the function.
(1) y=logssin x (2) y=log\/x
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Solution:

1 cos x __ cotx
(l)yfln?)ﬂmx* In3 -

@ ¥ =GR

Example 3.13 Evaluate the integral.

1 1
D /xlogx d @ /x logz\/)?dx

Solution:
(1) Letu=1logx=du= xl‘fl—"lo. By substitution, we have

1
IHIO/; du=In101In|u|+c=1n10 In|logx | +c.

(2) Letu=log, /x=du= By substitution, we have

21n2f

1
21n2/f du=2In2 In|u|+c=2In2 In|log, x| +c.
u

Exercise 3.3
1-10 M Find the derivative of the function.

1 y=3" 6y:5ﬁtanx
2y psin ¥ cos x 7 y= x4

3 y=In2* 8 y=log(x+1)
4 y=1log,cos x 9 y=In(sec 5*1)
5 y=logVx+1 10 y=logsx>

11 - 14 M Find the derivative of the function.

11 y = (sin x)* 13 y=2x°¢

18y = 14 y= (x> —x)nx
15-20 M Evaluate the integral.

3X
15 / 25 dx 18 / — = dx
V31

16 /ZXCOS (2*+1) dx 19 /73X,/73x+1dx

17/ 1  dx 20/10g281nx
xlogx tan x
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1-6 M Solve for x.
1 x=¢e"

2 Inx=1
3 Inx=In3-2In8
7 -12 M Find each limit if it exists.

7 limIncos x
x—0

L

8 lim 1

9 lime *+1
X—yoo

13 f(x) =Inx

14 f(x) =In(x*>43x+1)
15 f(x) =Incos’® x

16 f(x) = Insin x?

17 f(x) =InvVx3+x—1
18 f(x) =In(vx—vx—T)

19 f(x)=sin x Incos x

20 f(x) = In(5x)

23 f(x) = +/x In(x? +x—2)
24 f(x) = esec x

25 f(x) — I +x—1

26 f(x) =" sin® x

27 f(x)=evT

28 f(x) =In(sin )

13 - 44 M Find the derivative of the function.

Review Exercises

4 Inx?> =In4+1n2
5 Inx=In(x+1)+In(x—1)
6 > +25—8=0

10 lim Iné*

X—yoo
11 Xlglolologszr e

12 lim Insin x
x—0t

29 f(x) =e>t!

30 f(x)=esin >

31 flx) =%

32 f(x) =sin(e> 1)
33 f(x) = e>t!

M flx) =5

35 fl) =&
36 f(x) =ev@nx

=

37 f(x)=e'Inx
38 f(x) =x2eV™
39 f(x) =meos ¥
40 f(x) =28 ¥
41 f(x)=10%
42 f(x) = tan(25" ¥)
43 f(x) = logg($57)

44 f(x) =log(Inx)
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45 - 50 M Find the derivative of the function.

45

46

47

y = (tan x)tn ¥ 48 y=x*
y=x* 49 y=sin¥
y=xr 50 y= (Inx)tn~

51 -72 M Evaluate the integral.

51

52

53

54

55

56

57

58

59

v/

61

/ X 4 62 /2xe"2

73 X

X’ +2

/sinx 63 /e"f
COS X

x+1
/x2+2x o 64 /
/\/lnx dx 65
X
- 5VF
_t 66 | ——
/0 x2+1 dx VX

0 X
d 67
/4 213

/

cos (Inx) dx 68

X

et 4

cos x eln(sin x)

In2
e
0
IE=
41

dx

—X
e
dx

e*x

- dx
sin x

/ ™ ¥gec? x dx

dx

(2—3¢%) dx

dx

3x
/(\/ﬂi)zdx 69 /4 dx
\/;C
3
/ L 70 / X377 dx
x(Inx)2 0
sin x —cos x 71 /xl()"z‘H dx
sin x4+ cos x
pRvZsal

72

/ 37 dx

73 - 89 M Choose the correct answer.

73

74

75

76

77

78

79

If f(x) =log, %7 = 1, then x is equal to

(a) 1 (b)2 ©3 (@) -1

1
The value of the integral / 5% dx is equal to
0
(a) 442 (b) 15 © s

If f(x) = x*t1, then f/(x) is equal to
@ (1+ 1 +Inx)xt! (b) (Inx+ 1)x !

(ORFS

() (1+Inx)x*+!

et .
)}LI;]O ‘;i:zx is equal to

(a) o0 ) 1 ©0 (d) None of these
The integral [tan 2x dx is equal to

(a) ’Tl In | sec 2x | +c (b) %sec2 2x+c (c) ’71 In | cos 2x | +c¢

The integral / In(2°" ¥ dx is equal to

(a) In(2)sin x+c (b) 275" ¥cos x+ ¢ (c) —sin x+c

Ler
The integral / ( dx is equal to
0

ex+ 1)2

Vx+1

dx where a >0

() (141 +Inx)x

(d) 2sec? 2x+¢

(d) —In2cos x+c¢
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80

81

82

83

84

85

86

87

88

89

@) 5frie (®)0 () ~1 @) (r7ep

If f(x) = x'™* then f(e) is equal to
(a)2 (b) 2e ©0 (de

lim S js equal to
Inx
x—0F

a) oo ()0 (©1 (d) —eo
If f(x) = In(Inx) then f/(x) is equal to
@ @ O © ~ e (@ iz

The integral / 2511 X ¢os x dx is equal to

zsin x

(a) 250 ¥ 4 ¢ (b) (In2)250 * 4 ¢ © 2 +c @ -2+

2
t

The integral / an’ x
sec x

(a)In|sec x+tan x| +sin x+c¢ (b) In | sec x+tan x| —cos x+¢

(c)In|sec x+tan x | —sin x+c¢ (d) In|sec x| —sin x+c

dx is equal to

1
The value of the integral / 3% dx is equal to
0
(@) 3 ®) 13 ©3 ()2
If f(x) =x", then f/(1) is equal to
@0 (b)e ©1 @ 3
1
The value of the integral / (7x)7"2 dx is equal to
0
@ 25 (b) 211n7 © &5 @)
If F(x) = x=, the F'(e) is equal to
I ¢
(20 (e (c)ee @

If log, % =2, then x is equal to
(a) —1 ®) 5 ©—3 @1
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Chapter 4

Inverse Trigonometric and Hyperbolic
Functions

Inverse Trigonometric Functions

The inverse trigonometric functions are the inverse functions of the trigonometric functions: sine, cosine, tangent, cotangent, secant,
and cosecant. While the trigonometric functions give trigonometric ratios, the inverse trigonometric functions give angles from the
angle trigonometric ratios. The most common notations to name the inverse trigonometric functions are arcsinx, arccosx, arctanx, etc.
However, the notations sin~! X, cos™ ! X, tan~! x, etc. are often used as well. In this book, we use the latter notations to denote to the
inverse trigonometric functions.!

To find the inverse of any function, we need to show that the function is bijective (i.e., is it one-to-one and onto?). From your
knowledge, none of the six trigonometric functions are bijective. Therefore, in order to have inverse trigonometric functions, we should
consider subsets of their domains. In the following, we show the graph of the inverse trigonometric functions, and their domains and
ranges.

M The inverse sine function M The inverse cosine function
siny=x<y=sin"! x cosy=x&y=cos | x
Domain: [—1,1] Range: [-7,7] Domain: [—1,1] Range: [0, 7]
y
/2 1N
y=sin"'x
1 1 X 75/

_7-5/2 1 1

1 1

sin x

L Common mistake: some students write sin~! x = (sin x)~! = and this is not true.
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M The inverse tangent function

tany:x<:>y:tan*1 X
Domain: R

. T T
Range: (—%,7%)

M The inverse cotangent function

coty=x&y=cot™! x

Domain: R Range: (0,7)

T

y

/2

M The inverse cosecant functi
cscy=x<&y=csc ! x
Domain: R\ (—1,1)

Range: [-%,0)U(0, %]

on

y
T/ 2
y=tan" ')
-1 1
_n, 2 L
M The inverse secant function
secy=x<y=sec | x
Domain: R\ (—1,1) Range: [0,7)U (5,7
y
Tc 4+
w/2 |
y=se¢ 'x
-5 5
y
w/2 |
y= cselx
) X
5
—m/2 |

Differentiating and Integrating the Inverse Trigonometric Functions

In the following theorem, we list the derivatives of the inverse trigonometric functions. Then, we list the integration rules.
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Theorem 4.1 If u = g(x) is a differentiable function, then
d n—1,, _ 1 ! d -1, _ =1
1 Zsin u= Tl 4. jocot " u= ol
d o=l =1 1 d o=l y— 1
2. ECOS u= ﬁu S. ax sec u u uz—lu
dan— =1/ 6. Leselu=—2L_y
3. tan " u= eyl dx w1

Proof. For simplicity, we assume u = x.
1. From the differentiation rule of the inverse functions, y = sin~! x is differentiable if x € (—1,1). By differentiating sin y = x
implicitly, we have

dy dy 1 d . 1
cosy —=1=—= = —sin | Xx= ————.
dx dx cosy dx 1 —sin? y
This implies
1
L sin ! x=
i x= ik

2. The function cos™! x is differentiable if x € (—1,1). We know that
y= cos ! x & COSy = X.

By using the implicit differentiation, we obtain

sin dy 1= dy ! = d cos™! -t
_ A — = — x= .
Y dx dx siny = dx \/1—cos? y
This implies
-1
-1
— cos = .
dx x 1— 2

3. The function tan—! x is differentiable if x € R. Since
y:tanf1 X< tany =x,

we use the implicit differentiation to have

sec? dy 1= d ! = d tan~! !
= = - = i = ——m8.
Y dx dx sec?y  dx 14tan? y
Hence,
1
-1
— tan =—.
dx o 1+x2

IS

. This item can be proved in a similar way to item 3.
5. The function sec™! x is differentiable if x € (—oo,—1) U (1,00). Since

-1
y=sec  x&secy=x,

we use the implicit differentiation to have

sec y tan & 1= d ! = d sec”! !
R —_— — —3 X=—r--——.
Y Y dx dx secytany  dx xy/sec? y—1
Hence,
Zsec ! x= #
dx /a1

6. This item can be proved in a similar way to item 5.

Example 4.1 Find the derivative of the function.
(1) y=sin"! 5x 3) y=sec! 2x

2) y=tan~! ¢ @ y=sin! (x—1)
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Solution: s s ) ) |
/ _ . —
M y= V12 Vi2se @ Y =7~ WAl
x x /o 1 _ 1
@ Y = @ = e @Y =Ty = e

From the list of the derivatives of the inverse trigonometric functions, we have the following integration rules:

1
1. /7dx:sin*1x+c
V-2
1 —1
2. /7dx:tan x+c
14+x2

———— dx=sec lx+c

The following theorem generalizes the previous integration rules.

Theorem 4.2 Fora > 0,

1
L[
N )

dx = sin™! Z+c

1 1 —1x
2. /mdxzatan E+C

_ 1 —1x
=,sec o +c

1
S p——
X x2—a2

Proof. We prove item 1 and the others can be done in a similar way.
For simplicity, we assume u = x.

dx =

1 1 1
e
d.

Let v = 2, then dv = . By substitution, we have

. L1 X
dv=sin"!v+c=sin'Z4+c. B
a

1 1 1
- 7ad\1:/7
a/\/l—v2 V1-y2

Example 4.2 Evaluate the integral.

1 1
[ — dx U
D /\/4—25)(2 * 3 /9x2+5 dx.
1 1
. 4 [ —— ax.
> [ = @ [ =
Solution:

1 R
@ / Viszse U7 / Va—(5x)2 o

Let u = 5x, then du = 5dx = dx = ‘15—” By substitution, we have

1/ ! du*lsinflzﬂ—C*lsin*ls—x—i-c
5/ Va—uz 5 2 75 2

1 1
2 ————dx= | ———— dx.
@ /x\/m ! /x (x3)2 -4 y

Let u = x3, then du = 3x2dx. By substitution, we obtain
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1 1
& /9x2+5 dx:/(3x)2+5 dx

Let u = 3x, then du = 3dx. By substitution, we have

RPN IS S N
3/ s T3 3[ N

4) /\/%dx:/ﬁdx

Let u = e*, du = e*dx. After substitution, we have

1 _ _
/7du=sec Lyte=sec e +e.
u

Vu?—1
Exercise 4.1
1 -8 M Find the derivative of the function.
1 y=sin"! Inx 5 y=sin! (xX+x—1)
2 y=cos! (4x?) 6 y=tan ! 1
3y=tan ! x 7 y=cot e
4 y=csc! ¥ 8 y=sec! (Iny/x)
9-16 M Evaluate the integral.
1 1
9 / ———dx 13 / ——dx
V9 —x2 xVx®8—9
1 e
10 —d 14 - d
/x2+81 * /elx-i-l *
11 / ! d 15 / ! d.
————dx ——dx
Ve —4 xy/1— (Inx)2
1 cot x
12 / —————— dx 16 / d
sec x (sin® x+1) cos? x VtanZ x—3 *

4.2  Hyperbolic Functions

In this section, we define the hyperbolic functions. They are based on the natural exponential function and this indicates that the
properties and the rules of the differentiation of the former functions depend on the latter function.

Definition 4.1 The hyperbolic sine function (sinh) and the hyperbolic cosine function (cosh) are defined as follows:
X —X

sinhx:%,VxeR,

—X

cosh x = ex%, vx e R.

Other hyperbolic functions can be defined from the hyperbolic sine and the hyperbolic cosine as follows:
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X —X

sinh —
tanh x = Smx ¢ e , VxeR
cosh x er e ¥
cosh x e
th x = = — VxeR\{0
coth X sinh x e —e X’ xEeRA\{0}
1 2
sechx = = , VxeR
cosh x eXt+e ¥
h ! 2 weR\{0}
cschx = = —
o sinh x e

4.2.1 Properties of the Hyperbolic Functions

1. The graph of the hyperbolic functions depends on the natural exponential functions ¢* and e~ (as shown in Figure 4.2).

2. The hyperbolic sine function is an odd function (i.e., sinh(—x) = —sinhx); whereas the hyperbolic cosine is an even function
(i.e., cosh(—x) = coshx). Therefore, the functions tanh, coth and csch are odd functions and the function sech is an even function.
This in turn indicates that the graphs of the functions sinh, tanh, coth and csch are symmetric with respect to the original point;
whereas the graph of the functions cosh and sech are symmetric around the y-axis.

3. cosh? x—sinh? x=1, Vx e R.
To verify this item, we have from Definition 4.1 that

X

cosh x—sinh x =e¢™* and cosh x+sinh x = ¢".

Hence,

(cosh x —sinh x)(cosh x+sinh x) = cosh? x —sinh? x = e ¥¢* = ¢ = 1.

4. Since cos? 7 +sin® 7 = 1 for any ¢ € R, then the point P(cos ¢,sin 1) is located on the unit circle x*> +y*> = 1. However, for any
t € R, the point P(cosh ¢, sinh 1) is located on the hyperbola x*> — y> = 1. Figure 4.1 illustrates this item.

VA VA

P(cost,sint)
P(cosht,sinht)

~
>
X

0 = 0

x%+y2 =1 x2-y? =1

Figure 4.1: sinh x and cosh x versus sin x and cos x.
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y=cschx

Figure 4.2: The graph of the hyperbolic functions.
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Theorem 4.3

1. sinh (x+y) = sinh x cosh y £ cosh x sinh y
. cosh (x£y) = cosh x cosh y+sinh x sinh y
. sinh 2x = 2sinh xcosh x
cosh 2x =2cosh? x— 1 = 2sinh? x+ 1 = cosh? x + sinh? x
1 —tanh? x = sech? x
coth? x—1= cstchix + anh

anh x+tanh y

- tanh (x+y) = 1+£tanh xtanh y

Nk W

2tanh
8. tanh 2r= ———
1 4 tanh” x
Proof. 1. From the definition of cosh x and sinh x, we have

f—e e t+eV fteted—eY
2 2 2 2

_ %(ex—o—y T+ - e Y _ e—(x—o—y) +ex+y _ Y +e—x+y _e—(x+y)>

1
— — (20 tY) _np—(xty)
=1 <2e 2e )
e(ty) _ o= (xty)

=—F — = sinh (x+y).

sinh x cosh y+cosh x sinh y =

F—etedteV etetel—eY
inh h y —cosh inh y = —
sinh x cosh y — cosh x sinh y 3 3 5 5

(erﬂf 4o Y Y o (WEY) XY Ly g x Y +ef(x+y)>

_ !

T4
1

— 2 (9px=y) _n,mxty
1 <2e 2e )
e(=y) _ o= (=)

=— =sinh (x—y).

FteFeteY n ef—eFe¥—e
2 2 2 2

_ %(ex+y+ex7y 4o ¥y +e7(x+y) N R e ] +ef(x+y)>

2. cosh x cosh y+sinh x sinh y =

1

— —(2p(xty) —(x+y)
1 (Ze +2e )
) o= (x+y)

= = cosh (x+y).

e t+e e te™ B e —e e —e™V
2 2 2 2

<(\f+y 4V pe XY _,’_ef(x+y) B I e B _ef(x+y))

cosh x cosh y—sinh x sinh y =

1
T4

= L2 20

Y o= ()

= —cosh(x—y).
> cosh (x—y)
e —e e e
3. 2sinh hx=2
sinh x cosh x ( > > )
1
:E(ezx_,’_l_l_efzx)
2x _ ,—2x
:L:sinhh.

2



70

4. We prove that cosh 2x = 2cosh? x— 1 and the other equalities can be proven similarly.

M)Z 1
2
ez.x+2+e—2x
2
62X+672X

=—F = cosh 2x.

2cosh2x—1:2(

. From the identity cosh? x —sinh?> x = 1, divide both sides by cosh® x. The result is 1 — tanh? x = sech x.
. From the identity cosh? x —sinh® x = 1, divide both sides by sinh? x. The result is coth? x — 1 = csch? x.

. From items 1 and 2 in this theorem, we have

sinh (x£y)  sinh xcosh y+cosh xsinh y
cosh (x£y)  cosh xcosh y=+sinh xsinh y’

tanh (x£y) =

By dividing the numerator and denominator by cosh x cosh y, we obtain

tanh x£tanh y

tanh (x+y) = ————.
anh (x) 1 £tanh xtanh y

. We prove this item by using items 3 and 4.

sinh 2x 2sinh x cosh x
tanh 2x = = 5 ——.
cosh 2x  cosh? x+sinh® x

By dividing the numerator and denominator by cosh® x, we have

2tanh x
1 +tanh” x
4.2.2 Differentiating and Integrating the Hyperbolic Functions
Theorem 4.4 lists the differentiation rules of the hyperbolic functions.
Theorem 4.4 If u = g(x) is differentiable function, then

1. j—x sinh u = cosh u u’ 4. j—x coth u = —csch? u o’
2. 4 cosh u=sinh uu 5. 4sechu= —sechu tanh u '
3. j—x tanh u = sech® u u’ 6. j—xcsch u = —csch u coth u v/

Proof. For simplicity, we consider the case u = x.
d (o _d(d—et\ _tet _

1. 7 (sinh x) = 7 (%5—) = “&5— = cosh x.
d _d etey_ et _
2. f(cosh x) = £ (&5—) = &F— =sinh x.
d _ d (sinh xy _ cosh x cosh x—sinh x sinh x _ cosh® x—sinh® x __ 1 _ 2
3. E(tanh x) = 7(005h X) - cosh® x - cosh’® x ~ cosh® x sech” x.
d _ d (cosh x\ _ sinh x sinh x—cosh x cosh x _ sinh®> x—cosh® x _ _—1 __ 2
4. E(COth X) - E( sinh X) - sinh? x - sinh? x T osinh® x —csch” x.
d _d 1 __ —sinh x __
5. f(sechx)= S (oms) = o = —sechx tanh x.
d d 1 —cosh
6. 7i(cschx)= S (Gmrs) = ﬁ = —csch x coth x. H
Example 4.3 Find the derivative of the functions. )
(1) y=sinh (x?) 3) y=eth

(2) y=+/x cosh x 4) y=(x+1) tanh? (x3)




Solution: A
(1) Y =2x cosh (x?). (3) y =S ¥ cosh x.

2 y= \[ cosh x+/x sinh x. (4) ¥ =tanh® (x3) +6x2(x+ 1) tanh (x*) sech? (x3).

cosh x

Example 4.4 Flnd 1fy =X

Solution: Take the natural logarithm of each side to have
Iny =cosh x Inx.
By differentiating both sides, we obtain % =sinh x Inx+ %.Therefore,

h
y/ = [sinh x lnx+ M} xcosh x

Theorem 4.5
. /sinhxdx:coshx+c ) /csch%cdx:—cothx—&—c
° /cosh xdx=sinh x+c¢ . /sechxtanh xdx = —sechx+c
) /sechzxdx:tanh x+c ) /cschx coth x dx = —cschx+c¢

Example 4.5 Evaluate the integral.

1)) / sinh? x cosh x dx 3) / tanh x dx
) / €M X ginh x dx @) / &* sech x dx
Solution:

(1) Let u = sinh x, then du = cosh x dx. By substitution, we have / W du=ud /3 +c. Hence,

sinh?® x
3

/ sinh? x cosh x dx =

(2) Let u = cosh x, then du = sinh x dx. By substitution, we have / e du = " + c. Hence,

/eCOSh ¥sinh x dx = e®*" ¥ 1 ¢

sinh x

cosh x” cosh x

(3) We know that tanh x = 321X gq / tanh x dx = /
Let u = cosh x, then du = sinh x dx. By substitution, we have / —du=1In|u|+c.
u
This implies

/tanh xdx =1Incosh x+c.

22x
) /Hsechxdx:/ — /2
X+e X x+1

1
Let u = ¢>*, then du = 2¢* dx. By substitution, we have / ] du=In|u+1|+c=In(e*+1)+c
u
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Exercise 4.2
1-10 M Find the derivative of the functions.
1 y =sinh (Vx3) 5 y=In(coth x) 0 b (1)
y = tanh (Inx
2 y=tanh 5x 6 y=+/cschx
. 10 y=+/x+1cschx
3 y=e"cosh x 7 y =sinh (tan x)
4 y = esinh2x 8 y=cosh (eV?)
11-20 W Evaluate the integral.
u / sinh ( 16 / sech x tanh x
1 +sech x
2 / cosh 1nx) dx 17 / V3 +cosh x sinh x dx
X
tanh sech \/x+1
13 /extanh e*dx 18 / v ( VE+]) dx
Vv
14 /(1 +tanh x)®sech® x dx 19 / — ik
cosh? x tanh x
esmh X
15 / dx 20 /ln(coth x) sech x csch x dx
sech x
4.3 Inverse Hyperbolic Functions
4.3.1 Properties the Inverse Hyperbolic Functions
M The function sinh : R — R is bijective, so it has M The function cosh is injective on [0, o), so cosh :
an inverse function [0,00) — [1,00) is bijective on [0,e0). It has an

inverse function
sinh ™' : R — R
cosh™! 2 [1,00) — [0,00)
sinh y =x < y=sinh™!
cosh y =x <y =cosh™!
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M The function tanh : R — (—1, 1) is bijective, so B The function coth : R\ {0} — R\ [-1,1] is
it has an inverse function bijective, so it has an inverse function
tanh~': (—1,1) > R coth ' : R\ [~1,1] = R\ {0}
tanh y=x< y=tanh~! x cothy:xﬁy:cothflx
2 .
y
%
: Iy :
y = tanh”!
} xn ;y :;coth .
=1 -0.5 0.5 1 :
A
14
-2
B The function sech is bijective on [0,0), so sech : B The function csch : R\ {0} — R\ {0} is
[0,00) — (0, 1] has an inverse function bijective. The inverse function is
sech™!: (0,1] — [0,0) csch ! : R\ {0} — R\ {0}
sechy=x<y=sech ! x cschy=x<y=csch™!x
3 .
y
2 A4
L y=fcsch™ X
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The following theorem shows that the inverse hyperbolic functions can be formalized as functions depend on the natural logarithmic
function.

Theorem 4.6
1. sinh ™! x=In(x+Vx2+1), Vx € R

2. cosh™! x=In(x+vx2 —1), Vx € [1,0)
3. tanh™! x=JIn (1), vxe (—1,1)

4. coth™! x= %ln(%), Vx e R\ [-1,1]

5. sech™! x =1In (M=) e (0, 1)

X

6. cschfl)c:ln(H“‘szl)7 vx e R\ {0}

X

Proof. 1. Lety=sinh~! x, then
Yy _ ey
Lo —2x—e =0

x=sinh y=
The last expression can be rewritten as quadratic equation
e —2xe’ —1=0,
where x represents an unknown variable. By using the discriminant method, we have

oo ZEVETTA
- =T

xEV2+1

Since vx2 4+ 1 > x and ¢’ > 0, then ¥ = x + v/x2 + 1. By taking the natural logarithm of both sides, we have
y=sinh~! x =In(x+V/x2+1).
2. If y=cosh™! x, we have x =cosh y = # then ¢ — 2xe¥ + 1 = 0. By using the discriminant method, we have

o 2x+V4ax2 -4
i —

=x+vx2-1.

Since vx2 — 1 > x and ¢’ > 0, then ¢’ = x + v/x2 — 1. Take the natural logarithm of both sides to obtain
y=cosh™! x=In(x+vx2—1).

3. Lety=tanh~! x, then

e—e™” , , 1+x
= eV —xe? =14x= ¥ = .
ey +eV 1 —x

By taking the natural logarithm of both sides, we have

x=tanh y=

_ 1 1+x
=tanh ' x=21
y=tanh™ ' x 2n(

1 fx).
4, Lety= coth™! x, then

e+e
ey —e YV’

x=coth y=

Therefore, xe® —x = ¢? + 1 and then % = % By taking the natural logarithm of both sides, we obtain

1 x+1
= th_l =1 .
y=co x=5 n(x_l)
5. Lety:sech_l x, then
2 2y
_ — Y _ 9y —
x=sechy= P = xe 2¢? +x=0.
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By using the discriminant method, we have
y 244 —4x2 y 1+V1—2x2
e = o = = " .

1+v1—x2 )
—5)

By taking the natural logarithm of both sides, we obtain y = sech™! x = In(
6. Puty=csch™! x, this implies x = csch y = ﬁ then xe® — 2¢¥ — x = 0. By using the discriminant method, we have

_2+:VA4+4x? Lo 1+vV1+x2

y
e
2x X

Take the natural logarithm of both sides to obtain y = csch™! x = In (11 VXH’R) [ |

4.3.2 Differentiating and Integrating the Inverse Hyperbolic Functions

In this section, we list the derivatives of the inverse hyperbolic functions. To prove the results, we can use either the derivative of the
hyperbolic functions or Theorem 4.6.

Theorem 4.7 If u = g(x) is differentiable function, then

1. Lginh™! u= !
xS “ Vie+1

N

2. Lcosh ! u= ng_lu', Yu € (1,00)
3. %tanh*1 u= ljuzu’, Yue (—1,1)

4. Lcoth ! u= 1—1u2”/’ Vue R\ [-1,1]

d oon—1,_ _ -1
5. fsech™ u= umu’, Vu e (0,1)

d -1, -1 /
6. Tcsch™ u= VT Vu € R\ {0}

Proof. For simplicity, we prove the theorem for the case u = x.
1. Lety =sinh™! x, then x = sinh y. By using the implicit differentiation, we have

l=coshyy =y = .
cosh y

We know that cosh? y=1+ sinh? y = 14x2. This implies cosh y = /1 +x2 since cosh y > 1. Hence

d
—sinh! x= ! .
dx xX2+1

2. If y=cosh™! x, then x = cosh y. By differentiating both sides, we have

l=sinhyy =y =— .
sinh y

We know that sinh? y = cosh? y— 1 =2x2 — 1. Since y > 0,sinhy > 0, then sinh y = v/x2 — 1. Hence

d 1 1
Ecosh xX= o
3. We can prove this item by using Theorem 4.6.
1 1 1 1
tanh~! x = Eln(li—i) = Eln\ 1+x| f§1n| 1—x].

Hence,

d tanh~! ! + : :
— x= = .
dx 2(14+x)  2(1—-x) 1—x2
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4. From Theorem 4.6,

1 1 1 1
coth™! x= Eln(ifl) = Eln\x—i—l | —§1n|x—1 | .
Thus,
d 1 1 -1 1
J— X = — = = .
dx 2x+1) 2(x—1) x2—1 1-—x2

5. Since sech™! x = In( V1= Vxl_"z) =In(1++1—x%) —Inx, then

—x 1 —(14+v1-x2) -1
VI=x2(1+vV1—-x2%)

d —1
—sech™ x= = = .
dx X wV/T-22(1+V1-22) x/1-22

6. Since csch™! x = In( 12+l VXXZH) =In(1+vx?+1) —Inx, then

icschfl)c: s —l: _(1+m) = -1 .n
dx (I+V2+ DV +1 x xW/a2+1(1+Va2+1) x| VaZ+1
Example 4.6 Find the derivative of the functions.
(1) y=sinh~! /x (5) y=csch™! 4x
2) y:tanh*1 e 6) y=x tanh~! %
(3) y=cosh™! (4% (7) y=(tanh™! x)?
(4) y=1In(sinh~" x) (8) y=e"sech™ ! x
Solution:
My =g =y
VAR 2V 24 /x(x+1)
@ Y =G =
@ y'= \/(4?)271 - \/168;4—1'
@ Y = G \/xii-kl - \/x27+llsinh" x'
& Y= \4x|\/7lgx2+l - \x\wfeic2+1'
6) y = tanh_l(%) +x (F(IW)(;—ZI) = tanh™! (%) -2
(7) y =2(tanh™" x) {1 = 2anh
(8) y/:exsech_lx—x\/%
From Theorem 4.7, we have the following list of integrals:
. /ﬁ dx=sinh™! x+¢ . /ﬁdx:coth_] x+c |x|>1
. /\/% dx=cosh™' x+c,x>1 . /ﬁ dx=—sech™! |x|+c, |x|< 1
o [ aemanh e < o [ e v s [ x>

Theorem 4.8 generalizes the previous result.
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Theorem 4.8
1.

[ —ginh~! X4,
/\/mdxfsmh Ztc 4./

1 1 —1 x
o dx=jcoth™' Z+4c, |x|>a

1 1 _
2. /\/ﬁdxzcosh_l §+c,x>a 5. /mdx:—%sech l%+09|x|<a
X —a -

1
3. /mdx:étanh71 %+C,|X‘<(I

1
6. /7dx=flcsch*l mJrc, xX|>a
WAt BT Taeseh g e |

Example 4.7 Evaluate the integral.
1 1
1) /7dx @) /7dx
Va2 —4 xV1—xb

1 o
2) [— 4 o
@ /\/4x2+9 * ® /o 1622 &

1 7 1
O [ = o [ d
Vex4+9 © 5 16 —x2 x
Solution:
1 N dx = cosh™! 5 +c.

" 1 g 1
2) /7dx:/7dx.
Vax2 +9 V(2x)2+9
Let u = 2x, then du = 2dx. By substitution, we have

1 1 _1 . -1 u _1 . -1 2x
E/ﬁdu—ismh 5—‘—6‘75511’11'1 ?—i—c

3) /¥dx—/;dx
Ve* 19 /(e)2 49 ’
Let u = €%, then du = ¢*dx. By substituting that into the integral, we have

1 _ 1 ‘M| _ 1 1 ex
/mdu——gcsch T‘FC—-gCSCh ?-i-c

1 1
4 —— dx= | ——— dx.
()/xvl—x(’ g /x\/l—(x3)2 *

Letu= x3, then du = 3x%dx. By substitution, we obtain

1 1 1 1
g/u\/ﬁ du = —§SCCh71 \u | —+c= —gSCCh71 |)C3 | —+-c.

(5) Since the interval of the integral is subinterval of (—4,4), then the value of the integral is tanh~!. Hence,

L | 1 xt 1 1 Ir1. 5
dx = [anh™' 5] =2 [anh ! () —anh = (0)] = ;|
/016—x2 =g [tanh 7], = g[tanh (7) —tanh ™ (0)
(6) The interval of the integral is not subinterval of (—4,4), so the value of the integral is coth™!. This implies

71 1 x17 1 7 5 1
—d :—[ th~! —] :—[ th™! — —coth™! —] :—[1 11)-31 3}.
/5 To—2 =7l 2ls=7(c° 7o ) g n(11) n(3)
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Exercise 4.3
1-6 M Find the derivative of the functions.
1 y=sinh~! (tanx) 4 y=+/x+lcsch™!x
2 y=cosh™! (eV¥) 5 y=tan x tanh~! x
3 y=tanh~! (Inx) 6 y=(2x—1)3sinh~! \/x
7 - 14 M Evaluate the integral.
1 1
7 | ——d 11 / —dx
/ v22—2 Vx?—25
e / 1
12 | ————dx
8 / 1 —e d sec x (1 —sin®x)
9 / S 13 [ L
by X
xvV1— x4 Y/ x0 +2

1 1
10 /7dx 14 /7d
Vx2 425 V4 —e2x *
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Review Exercises
1-18 M Find the derivative.
1 y=sin"! (3x+1) 10 y=tan~! (sinh x)
2 y=cos! VX 11 y = e5h ¥ ¢cosh (cosh x)
3y—tn ' 12 5= ks
4 y=sec! 3x 13 y=sech™! 3x
5 y=sinh (4x+1) 14 y=coth™! \/x
6 y=cosh ¢ 15 y:x“cosh*1 X
7 y=+/x tanh \/x 16 y=e*tanh™! ¥/x
8 y=e*cosh 2x 17 y=sinh~! (tanh x)
9 y=+/sinh 3x+cosh 5x 18 y=tanh (}%)
19-22 W Firlld each limit if it exists. L
19 ,}E};m 21 Xlg’[;loe tanh x
20 lim cosh x 22 lim eSech*
X——o00 X—poo
23 - 42 M Evaluate the integral.
1
33 / ———dx
23 / sinh® xcosh x dx Ve —1
x—1
34 dx
24 / tanh* xsech? x dx Va_2
x+1
sinh x 35 ——dx
25 / e cosh x dx W22
1
26 /excschxdx 36 /7 dx
xVx8 —16
cosh /x 1
27 dx 37 / ———dx
Vx V1+4x2
1
28 / x sech x? tanh x* dx / -
38 102 dx
29 / L §_x
sech 3x 39 A F_16 dx
30 / tanh x dx /3 1
40 ——— dx
1 2 Vx2—1
3 / 372 & a1 / L4
X —dx
32 / 1 d \Y4 25 =+ 9x2
- ix 1
xVxT—4 42 / ————dx
Ve — 16
43 - 55 [ Choose the correct answer.
43 The derivative of the function f(x) = tan~! (sinhx) is equal to
(a) sech x (b) csch x (c) tanh x (d) —sech x
1
44 The value of the integral / sinh x dx is equal to
-1
(a)0 (b) 2e¢ (c) 2! (d) Le
45 If f(x) = cosh™! \/x, then f'(x) is equal to
1 1 1
(a) m (b) m (C) m (d) None of these
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46

47

48

49

50

51

52

53

54

55

The integral / dx, is equal to

x—2
xVx2 =25
(a) cosh™! ngSec_1 5 +c
(c) cosh™! %—%sec*1 3+c

(b) cosh™! 5 — % sec ! x+e¢
(d) None of these

If £(x) =tanh™' (cos 3x), then f’(x) is equal to

() 3csc 3x (b) —3csc 3x (©) T3 )0
The integral / T dx, is equal to

1 +sin?
@) Ty ¢ (b) tan~! (sin x) +c (©) Ty € (d) tanh~! (sinx) 4 ¢
The value of the integral / __x is

& V16 —25x2
cos™! X cos ! & 3x ox
(a) =558 +c (b) 515 +c © " e () — 5 e
The value of the integral / ———dxis
1 : o J1r 2 1 1
in~ inh— inh—! X in~! X

(a)sin” " x4c (b) sinh™" x+c¢ (c) sinh o) +c (d) sin 7 +c

cosh x .
The integral / 2 dx is equal to

—sinh” x
(a) —tan~! (sinh x)+c¢ (b) tan~! (sinhx) +c¢
(c) m +c (d) tanh ™! (sinh x) +c¢
If F(x) =tan~! x+tan~! (%) where x # 0, then F’(x) is equal to

— 2
@ 122 ) 75 ©0 @ %
The derivative of the function £(x) = tan~! (sinh x) is equal to
1 2 (i 1 h
(a) o (b) sec” (sinh x) ©) s (d) 5 C‘s’:nhf
1
The value of the integral / dx is equal to
T Va2 O

(a)sinh™! 3 +c¢ (b)sin™! §+¢ (©) dsinh™! £ 4¢ (d) §sin~! 3 +c

1
The value of the integral / cosh x dx is equal to
-1
@0 (b) 2e (c)2¢7! (de—e!

2
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Chapter 5

Techniques of Integration

Integration by Parts

Integration by parts is a method to transfer the original integral to an easier one that can be evaluated. Practically, the integration by parts
divides the original integral into two parts u and dv, then we find the du by deriving u and v by integrating dv.

Theorem 5.1 If u = f(x) and v = g(x) such that /" and g’ are continuous, then

/udv:uv—/vdu.

Proof. We know that £ (£(x)g(x)) = f(x)¢' (1) + £ ()g(x). Thus, £(x)¢'(¥) = g (F(x)()) /' () )
By integrating both sides, we obtain
[ 10 0 de= [ 4L (71800 dx— [ x)s00) ax
— ¥ = [ (g0 d.

Since u = f(x) and v = g(x), then du = f'(x) dx and dv = g’(x) dx. Therefore,

/udvzuv—/vdu..

Theorem 5.1 shows that the integration by parts transfers the integral / u dv into the integral / v du that should be easier than the

original integral. The question here is, what we choose as u and what we choose as dv = V' dx. It is useful to choose u as a function that
can be easily differentiated, and to choose dv as a function that can be easily integrated. This statement is clearly explained through the
following examples.

Example 5.1 Evaluate the integral /x cos x dx.
Solution:

Let/ = [ x cos xdx. Let u = x and dv = cos x dx. Hence,

Try to choose
u=cos xand dv =x dx

dv =cos x dx = v = /COS X dx = sin x Do you have the same result?

From Theorem 5.1, we have

u=x=>du=dx,

I =x sin xf/sin X dx =x sin x+cos x+c.
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Example 5.2 Evaluate the integral / x e dx.

Solution:

Let/ = /x ¢" dx. Letu = x and dv = ¢* dx. Hence, Try to choose u = ¢* and dv = x dx

We will obtain
2 2
u=x=du=dx, I:?e"f/ie"dx.
.2

dv:exdxév:/exdx:ex.

. X .
However, the integral / —e" dx is more

From Theorem 5.1, we have difficult than the original one [ xe* dx.

szff/exdx:xexfe’urc.

Remark 5.1
1. Remember that when we consider the integration by parts, we want to obtain an easier integral. As we saw in Example

5.2, if we choose u = ¢* and dv = x dx, we have [ %2 ¢* dx which is more difficult than the original one.

2. When considering the integration by parts, we have to choose dv a function that can be integrated (see Examples 5.3 and
5.6).

3. Sometimes we need to use the integration by parts twice as in Examples 5.4 and 5.5.

Example 5.3 Evaluate the integral / Inx dx.

Solution: Let [ = /lnx dx. Let u = Inx and dv = dx. Hence,

1
u=Inx=du=—dx,
X

dv:dxév:/ldx:x.
. 1
From Theorem 5.1, we obtamI:xlnxf/xf dx:xlnxf/l dx=xlnx—x+c.
X

Example 5.4 Evaluate the integral / €' cos x dx.
Solution: Let I = /excos xdx. Letu = ¢* and dv = cos x dx.

u=e" =du=e"dx,

dv = cos xdx:>v=/cos X dx = sin x.

Hence, [ = e*sin x — /ex sin x dx.

The integral / €"sin x dx cannot be evaluated. Therefore, we use the integration by parts again where we assume J = / e"sin x dx. Let

u = ¢* and dv = sin x dx. Hence,
u=c¢" =du=¢e"dx,

dv:sinxdx:M/:/sin xdx = —cos x.

Hence, J = —¢*cos x+ /ex cos x dx. By substituting the result of J into /, we have

I=¢"sinx—J
= ¢"sin x+e*cos x—/excos xdx

=] =¢"sin x+e*cos x—1.



This implies

1 e
2l =e€"sin x+e‘cos x=1= E(e"sin x+e*cos x):>/excos xdx= j(sin x+cos x)+c.

Example 5.5 Evaluate the integral / x2e* dx.

Solution: Let I = /xze" dx. Let u = x* and dv = ¢* dx. Hence,

u:xz:>du:2xdx7

dv:exdx:>v:/exdx:ex.

This implies, I = x2¢* —2 / xe* dx.

We use the integration by parts again for the integral / xe* dx. LetJ = / xe* dx.

Let u = x and dv = € dx. Hence,

u=x=du= dx,

dv:exdx:>v:/exdx:ex.

Therefore, J = xe* — / e* dx = xe* — ¢ + c. By substituting the result into /, we have

2

I=x*" —2(x¢" — ") +c =" (x> —2x+2) +c.

1
Example 5.6 Evaluate the integral/ tan~! x dx.
0
Solution:
Let/= [ tan~' xdx. Letu=tan"! x and dv = dx. Hence,

_
X241
dv:dx:>v:/ldx:x.

u=tan ' x=du= dx ,

By applying Theorem 5.1, we obtain
I=x tan™! xf/L dx=x tan_lelln(x2+ +c
x2+1 2 '

Therefore,

1 1 1 1 1 b
/0 tan~! xdx= |x tan™! x—iln(xz—i-1)]0:(tan’l(l)—ian)—(O—Elnl):Z—lnﬁ.
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Exercise 5.1
1 -16 M Evaluate the integral.
1 /x3lnxdx 9 /ezx cos x dx
/3
2 / sin x In(cos x) dx 10 /(lnx)2 dx
0
i Inx
3/s1n x dx ll/dex
4 /x3«/4—x2dx 12 /xsinxcosxdx
5 in xd. 13 / ; dx
/x sin x dx (i)
6/xzcosxdx 14 /IXZécdx
0
7 /e"sin 2x dx 15 /x tan~! x dx
i
8 /\/gtanf1 xdx 16 /xefx dx
0

5.2 Trigonometric Functions
5.2.1 Integration of Powers of Trigonometric Functions

In this section, we evaluate integrals of forms [ sin” x cos” xdx, [ tan” x sec” x dx and / cot” x csc™ x dx. Students need the

trigonometric relationships that are provided in the beginning of this book on page 179.

Form 1: [ sin” x cos” xdx.

This form is treated as follows:

1. If n is an odd integer, write

1

sin” x cos™ x =sin""" x cos™ x sin x

Then, use the identity sin? x = 1 — cos? x and the substitution u = cos x.

2. If mis an odd integer, write
sin” x cos™ x = sin” x cos™ ! x cos x

2

Then, use the identity cos? x = 1 —sin’ x and the substitution u = sin x.

3. If m and n are even, use the identities cos? x = % and sin? x = %
\ J
Example 5.7 Evaluate the integral.
1) / sin’ x dx A3) / sin® x cos* x dx
2) / cos* x dx @) / sin? x cos® x dx

Solution:

(1) Write sin® x = sin?

x sin x = (1 —cos? x) sin x. Hence,

/sin3 xdx:/(l —cos? x) sin x dx.

Let u = cos x, then du = — sin x dx. By substitution, we have

3

—/(1—u2)du:—u+%+c.
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This implies

1
/sin3 xdx = —cos x+ §0033 x+ec.
(2) Write cos* x = (cos? x)? = (198 21)2 Hence,

1 2x\ 2
/cos4xdx:/(¥) dx

1
= Z/(l +2cos 2x+ cos® 2x) dx

1
= Z(/l dx+/2cos Zxdx—i-/cos2 2xdx)

1 1
= 7(x+sin 2x+§/(l+cos 4x) dx)

4
1( 4sin 2 +1( +sin4x))+
7\ sin 204 5 (x 7 ¢
(3) Write sin® x cos* x =sin* x cos* x sin x = (1 —cos? x)? cos* x sin x.
Let u = cos x, then du = —sin x dx. Thus, the integral becomes
5 2 7 9
—/(1—u2)2u4du:—/(u4—2u6+u8) du:—(i—i+i)+c.
5 7 9
This implies /sin5 x cos* xdx= —"0555 X+ 2°°7s7 X — cos99 Xt
(4) The integrand sin? x cos? x = (l_cgs Z0)( H'cgs ) — l_c‘f 2 — Si": 2 — %( l_cgs 40) Hence,
1 1 in 4.
/sin2 x cos? xdx= g/(lfcos 4x) dx = g(xf sm4 x) c.

Form 2: [ tan” x sec” xdx.

This form is treated as follows:

7

1. If n =0, write

sec™ x=sec™ % x sec? x

a. If m > 1 is odd, use the integration by parts.
b. If m is even, use the identity sec? x = 1 +tan? x and the substitution u = tan x.

2. If m =0 and n is odd or even, write

2

tan” x = tan" 2 x tan? x

2

Then, use the identity tanZ x = sec? x — 1 and the substitution u = tan x.

3. If nis even and m is odd, use the identity tan® x = sec? x — 1 to reduce the power m and then use the integration by parts.

4. If m > 2 is even, write

tan" x sec” x = tan” x sec” 2 x sec® x

Then, use the identity sec? x = 1+ tan? x and the substitution u = tan x. Alternatively, write

1

tan” x sec” x =tan""! x sec”! x tan x sec x

Then, use the identity tan? x = sec?> x— 1 and the substitution u = sec x.

5. If nis odd and m > 1, write

1

tan” x sec” x =tan" ' x sec” ! x tan x sec x

2

Then, use the identity tan? x = sec? x — 1 and the substitution u = sec x.
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Example 5.8 Evaluate the integral.

a) / tan® x dx @) / tan® x sec* x dx
?2) / tan® x dx 5 / tan* x sec* x dx
3) / sec® x dx

Solution:

(1) Write tan® x = tan® x tan® x = tan® x (sec? x— 1). Thus,

/tan5 xdx:/tan3 x (sec? x—1) dx

= /tan3 x sec? xdx—/tan3 xdx

4
tan™ x
=2 f/tanx(seczxfl)dx
4
tan™ x
= 1 f/tanxseczxder/tanxdx
tan* x  tan? x ' | | n
= - n|sec x| +c.
4 2

(2) Write tan® x = tan* x tan? x = tan* x (sec? x— 1). The integral becomes

/tan6 xdx= /tan4 x (sec’> x—1) dx

= /tan4 x sec? xdx—/tan4 xdx

5
tan” x
=—3 f/tanz x (sec?> x—1) dx
tan5 X 2 2 2
= 5 f/tan X sec xdx+/tan xdx
5

3
tan- tan-
= ans *_ an3 x+/(secz x—1)dx

tan® x  tan’ x
= 3 — 3 “+tan x —x+c.

2

(3) Write sec® x=sec x sec? xand letI = / sec x sec? x dx.

We use the integration by parts to evaluate the integral as follows:

u=sec x = du=sec x tan x dx ,

dv = sec? xdx:>v:/sec2 X dx =tan x.

Hence,

I = sec x tan x—/secxtanzxdx

= sec x tan xf/(sec3 x—sec x) dx

=sec x tan x—/+1In | sec x+tan x|

1
1= E(sec x tan x+1In | sec x+tan x |)+c.

4

(4) Express the integrand tan> x sec* x as follows

4 2 2 2

tan® x sec* x = tan’ x sec? x sec? x = tan® x (tan® x+1) sec” x.
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This implies

/tan5 x sect xdx= /tan5 x (tan® x+1) sec? x dx

= / (tan” x+tan’ x) sec® x dx

tan8 X tan® X
= + +c.

8 6

(5) Write tan* x sec* x = tan* x (tan? x4 1) sec? x. The integral becomes

/tan4 x sect xdx= /tan4 x (tan® x+1) sec? x dx

= / (tan® x+tan* x) sec? x dx

tan” x T tan® x i
= C.
7 5

Form 3: /cot" x csc™ xdx .

The treatment of this form is similar to the integral / tan” x sec™ x dx, except we use the identity

cot? x+1= csc? x.

Example 5.9 Evaluate the integral.
a1 /cot3 xdx (€)] /cot5 x csct x dx

2) / cot* x dx
Solution:
(1) Write cot® x = cot x (csc? x— 1). Then,
/cot3 xdx= /cot x (csc? x—1) dx
2

= /(cot X csc” x—cot x) dx

=/cotxcsc2xdxf/cotxdx
1 5 .
=f§cot x—In|sin x| +c.

(2) The integrand can be expressed as cot* x = cot® x (csc?> x — 1). Thus,

/cot4 xdx:/cot2 x (ese? x—1) dx
:/cot2 x csc? xdxf/cot2 xdx

cot® x

= 3 —/(csczx—l)dx

cot® x
= — 3 +cot x+x—+c.
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(3) Write cot® x csc* x =csc? x cot* x csc x cot x. This implies

/cot5 x csct xdx = /csc3 x cot* x csc x cot x dx
= /csc3 x (csc?> x—1)2csc x cot x dx

= /(csc7 x—2cse x+csc’ x) csc x cot x dx

CSCg X CSC6 X CSC4 X

8+3 4

5.2.2 Integration of Forms sin ux cos vx, sin ux sin vx and cos ux cos vx

We deal with these integrals by using the following formulas:

7

sin ux cos vx = = (sin (u—v)x+sin (u+v) x)

sin ux sin vx = = (cos (u—v) x—cos (u+v) x)

cos ux cos vx = = (cos (u—v)x+cos (u+v)x)

R = =5 =

\.

Example 5.10 Evaluate the integral.

(€))] / sin 5x sin 3x dx 3) / cos 5x sin 2x dx

2) / sin 7x cos 2x dx 4) / cos 6x cos 4x dx

Solution:
(1) From the previous formulas, we have sin 5x sin 3x = % (cos 2x —cos Sx). Hence,

/sin Sx sin 3x dx = %/(cos 2x —cos 8x) dx

1 1
= Zsin 2x — Esin 8x+c.

(2) Since sin 7x cos 2x = %(Sin 5x+sin 9x), then

1
/ sin 7x cos 2x dx = 3 / (sin 5x+sin 9x) dx

1 1
= _ECOS 5x—ﬁcos 9x+c.

(3) Since cos 5x sin 2x = 1 (sin 3x+sin 7x), then

1
/cos 5x sin 2x dx = 5/(sin 3x+sin 7x) dx

1 1
= ——cos 3x— ﬁcos Tx—+c.

6

(4) Since cos 6x cos 4x = %(cos 2x + cos IOx), then

1
/cos 6x cos 4x dx = 3 /(cos 2x+cos 10x) dx

1 1
= Zsin 2x+ %sin 10x+c.
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Exercise 5.2

1-18 M Evaluate the integral.

1

2

[N

9]

<))

N

®

o

/sin2 x cos® x dx
/sin5 x cos? x dx
/sin3 x cos® x dx

/ cos® 4x dx

/ tan* x dx
/ cot® x dx

sin® \/x
Vx
/cotzx cse x dx

/cot4x csc? x dx

dx

Trigonometric Substitutions

10

11

12

13

14

15

16

17

18

/
/
/

/
/
/
/
/
/

tan’ x sec® x dx

tan® x sec? x dx

3
2
tan® x sec’ x dx
sec” x dx

tan® x dx

sin 7x cos 3x dx
cos 4x cos 3x dx

sin 5x sin 3x dx

sin 3x cos S5x dx

In this section, we are going to study integrals containing the following expressions va2 — x2, Va2 +x2 and vx2 — a2 where a > 0. To
get rid of the square roots, we convert them using substitutions involving trigonometric functions. In the following, we explain the

conversion of the square roots:

M Va2—x2=acos Bif x=a sin 6.
If x = a sin 8 where 6 € [—7/2,7/2], then

\/a27x2= \/azfazsinzﬁ

=/a?(1—sin®> 8
=+va2cos? 0

=a cos 6.

If the expression v/a2 —x2 is in a denominator, then we assume -3<e<i.

W Va2 +x2=a sec Bif x=a tan 6.
If x =a tan © where © € (—1t/2,7/2), then

\/a2+x2 = \/a2+a2tan29

=4/a%(1+tan? 6)

=Va%sec? 0

=a sec 0.

X

a
N

I\M\
X
(¢)

a
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B Vx2—a?=a tan 0if x=asec 6.
If x = a sec 8 where 6 € [0,1/2) U[r,37/2), then

Va2 —a? = \/a?sec? 09— a2 g X

=4/a?(sec? 6—1)

0
=1Va%tan? 0 a

=a tan 6.

The previous discussion can be summarized in the following table:

Expression Substitution Identity
a? —x? x=asin®, -F<0<3% 1—sin® 6 =cos? 0
VaZ+x2 x=atan 6, —F<08<3 1+tan? @ =sec? 0
X2 —a? x:asec&O§(9<%orn§9<377t sin2 06— 1 =tan? @

Table 5.1: Table of the trigonometric substitutions.

Example 5.11 Evaluate the integral.
2
X
1) /7 dx
V1—x2
6 \/x2 25
2) / Y72 ik
5 x

A3) /\/x2+9dx
Solution:
(1) Letx =sin 6 where 6 € (—m/2,m/2), thus dx = cos 8 dB. By substitution, we have
/ x? dr— / sin® @
Vi-x V1-sin®

2
:/sm 9c059de
cos 6 1
.2 X
=/sm 0 do

=%/(1700s29)d9 6

cos 0 d6

= %(97 %sin 26) +c
= %(O—Sin 6 cos 0) +c.
Now, we must return to the original variable x:
x? dx — 1,. 4 \/72
/ﬁ x= E(sm x—xV1-x*)+c.

(2) Letx =15 sec 8 where 8 € [0,1/2) U[r,3m/2), thus dx =5 sec 6 tan 6 dO. After substitution, the integral becomes
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V25 sec? 6 —25 1 [tan? 0
/ 6z§e§ec4 g osccOan ede:%/ ;23 o 49 x
/2
1 .2 =2 ‘We must
:—/sm 0 cos 6 d6
25
5

1
N . =75 sin® 0+c.
return to the original variable x:

/m L 225
x4 o 75x3

Hence,
6 2_9 1 2_2 3/2.6 1
/ X Sd [(x 5) ]
5

& YT 3 5 600°

(3) Let x=3tan 0 where 0 € (—n/2,7/2). This implies dx = 3sec? 8 d6. By substitution, we have

/\/x2+9dx:/\/9tan2 0+9 (3sec’ 0) d6

:9/sec3ede 259
9 X
= i(sec 6 tan 0+ In|sec 6+ tan 6|).
This implies 3
9 /xvVx24+9 Va2 +9+x
2 -2
/ X +9dx72( ) +ln‘ 3 D—I—c
Exercise 5.3
1-16 M Evaluate the integral.
1
1 /*dx / 1
2./52 _ 9 [ ————d
x*Vxs—16 Aroa+1 X
2 /V9—xzdx 10 /\/x2—16dx
1
3 /*dx /1/ 2x _
(9x2—1)% 11 e 25 dx
1 cosx
4 /7d 12 /7dx
V9 +x2 * V2 —sin?x
5 /71 d. 13 /71 d
iy X
xX2Vx2+4 V1+x2
2 1
X
6 /7 d 14 /7 dx
(16—x22 (1—x2)3
3
X 15 [ &V I1—edx
7 dx
V1—2x8
/O _ 2
secZx o 16 / 92x s
V9 +tan2 x .
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Integrals of Rational Functions

In this section, we study rational functions of form g(x) = %

where f(x) and g(x) are polynomials. The previous techniques are not

suitable to evaluate some integrals that consist of rational functions. Therefore, we need to introduce a new technique to integrate the
rational functions. This technique is called decomposition of rational functions into a sum of partial fractions.
The practical steps to evaluate integrals of the rational functions can be summarized as follows:

» Step 1: If the degree of g(x) is less than the degree of f(x), we do polynomial long-division; otherwise we move to step 2.

From the long division shown on the right side, we

have (
q(X):fzh(X)er,

where () is the quotient and r(x) is the remainder.

h(x)

g(x) ) fx)

r-(;;)

» Step 2: Factor the denominator g(x) into irreducible polynomials where the factors are either linear or irreducible quadratic

polynomials. !

) o rx)

» Step 3: Find the partial fraction decomposition. This step depends on the result of step 2 where the fraction o0 O g can be

written as a sum of partial fractions:

g(x)

q(x) = Pr(x) +Pa(x) + P3(x) + .. + Pulx) ,

A Awx+B
each Pk(x) = W,n € Nor Pk(x) = %
later.

» Step 4: Integrate the result of step 3.
. x+1
Example 5.12 Evaluate the integral / S dx.
x> —2x—8

Solution:

if b2 —4ac < 0. The constants Ay and By, are real numbers and computed

Step 1: This step can be skipped since the degree of f(x) = x+ 1 is less than the degree of g(x) = x> — 2x — 8.
Step 2: Factor the denominator g(x) into irreducible polynomials

g(x) =x>—2x—8=(x+2)(x—4).

Step 3: Find the partial fraction decomposition.

x+1 A

B Ax—4A+Bx+2B

x2—2x—8 :x+2+

We need to find the constants A and B.

Coefficients of the numerators:

A+B=1-(1)
—4A+2B=1-(2)

By doing some calculation, we obtain A = % and B = %.

Step 4: Integrate the result of step 3.
1/6

x—4 (x+2)(x—4)

Ilustration
Multiply equation @ by 4 and add the

result to equation @

4A+4B =14
—4A+2B=1
6B=>5

5/6

x+1
dx = d
/x2—2x—8 o /x+2 x+/

20 — 452 —15x+5

Example 5.13 Evaluate the integral/— dx.

X2 4+3x+2

IFor this step, see quadratic equations on page 177.

1 5
Py dx:aln\x+2\+61n|x—4|+c.
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Solution:
Step 1: Do the polynomial long-division.
Since the degree of the denominator g(x) is less than the degree of ) 2x5 - 102
the numerator f(x), we do the polynomial long-division given on X 4+3x+2) 2 . —4x2 —15x 45
the right side. Then, we have —(2x +6x +4x)
(—10x  —19x  +5
11x+25 —(—10x2  —30x —20)
x)=2x—10)+ 5———.
q(x) = ( )t oo lx 125
Step 2: Factor the denominator g(x) into irreducible polynomials
g(x) =x>4+3x4+2=(x+1)(x+2).
Step 3: Find the partial fraction decomposition.
11x+25 A B Ax+2A+Bx+B
=(2x-10)+5——=2x—-10)+ —+—=(2x—10)+ ——————
alx) = (2x )+x2+3x+2 (26 )+x+1+x+2 (26 )+ (x+1)(x+2)
We need to find the constants A and B.
Coefficients of the numerators: )
Illustration
—2x +
A+B=11-(1) L@
—2A—-2B=-22
24+B=25-(2) .
By doing some calculation, we have A = 14 and B=-3. = —T-—-—-—-————
—B=3

Step 4: Integrate the result of step 3.

14 -3
/q(x) dx:/(Zx—lO) dx-l—/m dx—i—/m dx
=x>—10x+14In|x+1| =3In | x+2]| +c.

Remark 5.2
1. The number of constants A, B,C,etc. is equal to the degree of the denominator g(x). Therefore, in the case of repeated
factors of the denominator, we have to check the number of the constants and the degree of g(x).

2. If the denominator g(x) contains irreducible quadratic factors, the numerators of the partial fractions should be
polynomials of degree one (see step 3 on page 92).

2

Example 5.14 Evaluate the integral / wd}c.
(x+1)2(x—5)

Solution:

Steps 1 and 2 can be skipped in this example.

Step 3: Find the partial fraction decomposition.

Since the denominator g(x) has repeated factors, then

2% —-25x-33 A LB cC A(X2 —4x—5)+B(x—5)+C(x2+2x+1)
(x+1)2(x—-5) x+1 (x+1)2 x-5 (x+1)2(x-5) '

Coefficients of the numerators: )
Tustration

A+c=2-01) 5x(D+(3)-
—4A+B+2C=-25(2) —25A+11C=—158 - (4)
~5A-5B+C=-33-(3) 25x (D +(®)=

36C=—-108=C=-3
By solving the system of equations, we have A =5, B=1and C = —3.

Step 4: Integrate the result of step 3.
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2x% —25x—33 5 1 -3
ST = 2 d d d
/(x+1)2(x—5) * / 1 ”/ )2 ”/x—s *
—51n\x+1|+/ 2 gx—3In|x—5|

=5In|x+1]|— —3In|x—5]|+c.

1
(x+1)

Example 5.15 Evaluate the integral / 7+l)dx.

Solution:
Steps 1 and 2 can be skipped in this example.
Step 3: Find the partial fraction decomposition.

x+1 A Bx+C AP +A+Bx*+Cx
x(x2+1)  x X241 x(x2+1)

Coefficients of the numerators:

WehaveA=1,B=—1landC=1.
Step 4: Integrate the result of step 3.

1 l
/x;— dx—/ dx+/ x+
x?+1)
—ln|x| / d+/ L 4
= x2+1 * x24+1 x

1
=In|x]| —Eln(xz—O—l)—i-tan’1 x+c.
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Exercise 5.4

1-20 M Evaluate the integral.

l/ﬁdx

2 ? !
—-—d
/()x2+4x+3 *

1
4 /711
xX2—x—2 o
x+1
5 /7d
2rsiti2
6 /*d}c
X2 +TIx+12
5 x2-1
7 —d
/1x2+3x—4 *
3
X
8 —d
/x2—25 *
x
Ny ———
X2+Tx+6 *

10 —d
/x2+3x+9 *

1
11 ———d
/<x71>(x2+1> *
12/ x+2 dx
(x+1)(x*>—4)

3
13 / +2x+1
3x—10

1
14 [ —d
/x2+1 x

3x2+3x—1
15
/x3+x2 X dx

/2 sin x
16 d
/ cos2 x—cos x—2 o
2—x
17 d
/x3+x2

18

dx

0o 1+e*

e
1 -
? /ezx—Ze"—IS dx

1
[ s

Integrals Involving Quadratic Forms

In this section, we provide a new technique for integrals that contain irreducible quadratic expressions ax® + bx + ¢ where b # 0. This
technique is completing square method: a2 4 2ab + b* = (ax b) Before presenting this method, we explain the word irreducible and
show the reader how to complete the square.

Notes:
M If a quadratic polynomial has real roots, it is called reducible; otherwise it is called irreducible.
For the expression ax2 + bx + ¢, if b*> — 4ac < 0, then the quadratic expression is irreducible.

H To complete the square, we need to find (%)2, then add and subtract it.

Example 5.16 For the quadratic expression 2 —6x+ 13, we have a = 1,b = —6 and ¢ = 13. Since b*—4dac=-16< 0, then the
quadratic expression is irreducible. To complete the square, we find (%)2 =9, then we add and substrate it as follows:

P —6bx+13=x>—6x+9-9+13
—_———— ——
=(x—3)2 =4
Hence, x> — 6x+ 13 = (x—3)%> +4

In the following, we use the previous idea to evaluate some integrals.

E le 5.17 Evaluate the int lid
xample valuate emegra/ “6r 113

Solution:
The quadratic expression x> — 6x + 13 is irreducible. By completing the square, we have from the previous example

1 1
dx = dx.
/x2—6x—|—13 * /(x—3)2—|—4 o
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Let u = x — 3, then du = dx. By substitution,

1 1 _yu 1 4 x
/mduzitan 5+C:§tan (T)+C

Example 5.18 Evaluate the integral/% dx
x=—4x48

Solution:
For the quadratic expression x> — 4x + 8, we have b*> — 4ac < 0. Therefore, the quadratic expression x> — 4x -+ 8 is irreducible. By
completing the square, we obtain

X —4x+8=(x"—4x+4)+8—4
=(x—2)>+4.

Hence

X X
dx= dx.
/x274x+8 * /(x72)2+4 *

Let u = x — 2, then du = dx. By substitution,

u+2 u 2
du= d ———d
/u2+4 ! /u2+4 M+/u2+4 !

1
= 511‘1|1,42+4|+tan7l g

= %1n((x—2)2+4) +tan~! ()%2) +c

= %ln (x274x+8) +tan~! (x%) +c.

Example 5.19 Evaluate the integral /

1
— dx.
V2x—x2
Solution:
By completing the square, we have 2x — x> = — (x> —2x) = —(x> = 2x+1—1) = 1 — (x — 1)2. Hence

/\/ﬁdx:/\/ﬁdx.

Let u = x— 1, then du = dx. By substitution, the integral becomes

u=sin"' ut+c=sin"! (x—1)+c.

=

Example 5.20 Evaluate the integral / Vx24+2x—1dx.

Solution:
By completing the square, we have x> +2x— 1 = (x> +2x+1) — 1 — 1 = (x+1)? — 2. Hence,

/\/x2+2x—1dx:/mdx.

Let u = x+ 1, then du = dx. The integral becomes / vV u?—2du.

Use the trigonometric substitutions, in particular let
u=+2 sec 6= du=/2 sec 6 tan 0 d6 u

where 6 € [0,71/2) U[r,37/2). By substitution, we have

2/tam2 6 sec (9(16:2/(sec3 0 —sec 0) d6. V2
From Example 5.8, we have
2/(sec3 6 —sec 0) d6 = sec B tan 6 —In|sec 6+ tan 6| +c.
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By returning to the variable u and then to x,

22 22 1 1)2-2 1 1)2-2
/ T = MV _ln’u+\/u ’+C:(x+ )W (x+1) _ln‘x+ ++/(x+1) )+C.
2 V2 2 V2
Exercise 5.5
1-12 M Evaluate the integral.
1 1 5
1 / - d 7 /7d
) Pranas & Vi—e—2
1 e
2 —d -
/x2—6x+1 * 8 /62x+2ex—ldx
2x+3
3 /zde 9 /;dx
x+2x-3 V6 — 6x— 222
2
xc—2x+5
ﬂdx 10 /\/x(Z—x) dx
0 1 2
5/ ' 5 11/ sec” x dx
—1vV8+2x—x2 tan? x — 6tan x+ 12
6 /;dx 12 /\/S—Zx—xzdx
x2+8x—9 .

Miscellaneous Substitutions
In this section, we study three more important substitutions used in some cases. The first substitution is applied for integrals consisting

of rational expressions in sin x and cos x. The second and third substitutions are applied to integrals of fractional powers.

Fractional Functions in sin x and cos x

The integrals that consist of rational expressions in sin x and cos x are treated by using the substitution u = tan (x/2), —% < x < 7. This

. . 2 . 2
implies that du = QCCZM dx and since sec? x = tan® x+ 1, then du = ”TH dx. Also,
H X
. . X .X X s 5 X X (multiply and divide by cos %)
sin x=sin 2(=) =2 sin = cos - =2 Z cos = cos = Py Y 2
(2) 2 2 cos 3 2 2
X 2 X
=2tan - cos” —
2 2
X
:2tan 5 (cos -’(:KI-Q
sec? 3
_ 2u
T2+l
For cos x, we have
X 2 X .2 X
cos x =cos 2(=) =cos” = —sin” —
(2) 2 2
We can find that
X . u (use the identities sec? 5= tan? 5 +1 and
cos = = and sin = = . 2k . 2
2 u2+1 2 u2+1 cos” 5 +sin” 5 =1)
This implies
1—u?
CcoS X = .
1+u?

The previous discussion can be summarized in the following theorem:
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Theorem 5.2 For an integral that contains a rational expression in sinx and cos x, we assume

) 1—u?
sin x=——=, and cos x= .
14+ u? 14+ u?

. . . 2
to produce a rational expression in # where u = tan (x/2), and du = 1% dx.

Example 5.21 Evaluate the integral.
1
1 /7 d
M 1+sin x o

1
2 —d
()/2+cosx x

g 1
Y
3 14sin x+cos x o
Solution: ,
(1) Letu =tan ’26, then du = Hi” dx and sinx =

] +u2 By substituting that into the integral, we have

| 2 |
L :2/7(1
/1+ 1+ oI P

1+u2
—2/(u+1) 2 du
-2
= +c
u+1
"~ tan x/2+1 ¢
(2) Letu =tan %,then du:%dx and cos x:i;—;‘z.By substitution, we have
1
/2 1—“2'1+u 2/ u?+3 du
+1+u2
-1
= — tan +c
\/§ \/§
_1 ,tan x/2
= tan
s )

(3) Letu =tan 3, this implies du = 15 dx, sin x = {34

1 T £. By substitution, we have

1
/1+12u2+1112’]+u2 /2+2

1
:/ du
14+u

=In|1+4ul|+c

X
= ln‘l—l—tan E‘ +c.
5.6.2 Integrals of Fractional Powers

1
In the case of an integrand that consists of fractional powers, it is better to use the substitution ¥ = x» where 7 is the least common
multiple of the denominators of the powers. In the following, we provide an example.

1
Example 5.22 Evaluate the integral/m d
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Solution: : 1 .
Let u = x4, we find x = u* and dx = 4u3du. Therefore, xz = (x%)% = u2.
By substitution, we have

2
/ ! 4u3du=4/”—du
W2 +u u+1

1
=4 [(u—=1)du+4 | —d
/(u ) du+ /l+u u
=2u> —4u+4In | u+1|+4c

=2yx—4yx+4In|Yx+1] +c.

5.6.3 Integrals of Form {/ f(x)

If the integrand is of from {/f(x), it is useful to assume u = 1/ f(x). This case differs from that given in the substitution method in
Chapter 1 i.e., /f(x) f’(x) and the difference lies on the existence of the derivative of f(x).

Example 5.23 Evaluate the integral /\/ex—i-l dx.

Solution:

Let u = v/e*+ 1, we obtain du = "XH dx and u?> = ¢* + 1. By substitution, we have

2v/e*
2u? 1

1 1
=2 - -
u—i—/uildu—ﬁ—/quldu
=2u+In|u—1|—-In|ju+1]|+c
=2vVer+1+In(ver+1—-1)—In(vVe*+14+1)+c.

Exercise 5.6
1-12 M Evaluate the integral.
1 /de 7 71 d
EE /\/EH/% *
x1/2 %172
2 /74 /7
1408 & ) ran &
3 /;dx 9/ ! d.
vecos x+1 Ve +1 *
v [
—d
4 /ﬁ+4dx 10 Y BT b
1 1
11 —d
> /1+33inxdx /1—2cosx o

1 1
- 12 | ———d
6 /3—cosxdx /sinx—i—cosx x
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1-46 M Evaluate the integral.

x e dx

2 /xexzdx

3 /x sin x dx

p—

4 /x cos 4x dx

/\/;c Inx dx
6 /cosf1 x dx

/x sec? x dx
/x e dx
2

X
—— dx
/1 VaZ+1

]

|

o®

o

10 / (Inx)? dx
11 /sin2 x cos® x dx
12 /sin4 x cos* x dx
13 /tan x sec xdx
14 /tan3 x sec’ x dx
15 /cot2 x esc® xdx
16 /cot4 x esct xdx
17 /sin 3x sin x dx
18 /cos 7x sin 3x dx
19 /cos 4x cos 2x dx
20 [Vas—aax

1
21 / Nt
22 / 7@ dx

23 /de
16 x)

24 /
(3+x2)

47 -72 . Choose the correct answer.
47 The partial fraction decomposition of

Review Exercises

3
25 / V9 —x2 dx
0
1
x*—2x
27 /;dx
x2—4x+8
3x+1
28 | ——d
/x2—6x+13 x
o[l
243x—4
30
/x3+x2—x
2x—1
31/
+x 2
32/
3x2 —10
3 —d.
/x274x+4 *
2 _
34 /" % i

/2x473x3 —10x24+2x+11
dx
—5x-3

w

35

36 /Ld
14e*
X2 d
k72
/<x73><x+2>2 !
x+1
38 [ — 4
/(x2+x+2)2 *
3 /2x3718x2+29x74
(x+1)(x—2)3

o

dx
X
40 /7d
VX341
[
xvx3—1
VX dx
Vx+1
43 /*dx
3+cosx

44/
lfsmx

sec x
45
4—3tan x x

46 dx

z 1+51n X —COS X

41

42

[SE

takes the form
Bx+C

@ A+ 25 +x2+1 (b) A5 + B © A +5 +§§1? (d) None of these
48 The integral / ! dx is equal to
——dx u
g Vx24+2x+5 d
(a)sinh ™! (X41) +c (b) sinh ! (21 +¢ (c) Lsinh~! (5H) +¢ (d) None of these
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Review Exercises

49 The integral / X sin 2x dx is equal to
(a)%cos 2x+c (b) 5 cos fo%sin 2x+c
(c) —%cos 2x+ §sin 2x+c (d) None of these

50 The integral / /14 +/x dx is equal to
H 3
(a)%(1+\/?c)§—%(l+ﬁ)2+c ®) 2(14+y%)7 +¢
(c) %(1 +%)2 4c (d) None of these
51 To evaluate the integral / ! d
valu i ———dx
T VE R
©x=u Du=x

(@) u=/x ®) u=x

2
52 The int 1/711' 1t
elnegra x2_4x+3 x1sequa 0

e ©In] =3 | +c @In| =k +e

(a) In(x* —4x+3)+c¢ (b) In | X%

53 The integral / ?lex dx is equal to
(@x—In(x+1)+¢ (b)x—In(e*+1)+c¢
© % —In(e" +1)+c (@ In(%) —In(x+1)+¢
54 The integral / _ dx is equal to

V%
(a) sinh ™! (%)Jrc (b) sin™! (%)Jrc (© %sin*1 (’%2)+c (d) sin™! (%)Jrc

1
55 The integral / ————— dxisequal to

£ X2+ 2x+2 d
(@) sinh ™! (x+1) +¢ (b) sinh ™" (25) +-¢ (© Lsinh ™! (¥31) 4 ¢

(d) None of these

I—

MS
dx:/zi du, then
u-—1

X
56 If [ ———
/6(x§—1)
(@) x = u? b)) x=u’ (©)x=ub (d)x=ub

The substitution used to evaluate the integral / tan® x sec® x dx is
(d) u=sin x

57
(c)u=secx

(@) u=tan® x (b) u =tan x

58 To evaluate the integral / v dx, we use the substitution
14+ /x
@ u=+/x (b)u=+/x ©x=Yu du=x

2
x> —25 o
dx, we use the substitution

(c)x=>5tan 6 (d)x=25tan 6

To evaluate the integral

59
X
(b) x=25sec ©

(a)x=15sec 6

The value of the integral / " sec? xdxis equal to
0

(@) & ) V3 © 3 ) &

To evaluate the integral / £V 2x2 4 8 dx, we use the substitution
(b)x=2v2tan 6 (c)x=2v2sec 6 (d)x=2tan 6

60

61
(a)x=2sec 6
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62

63

64

65

66

67

68

69

70

71

72

To evaluate the integral / —— dx, we use the substitution

x3 +x3

(a) x = 12 (b) x = i ©x=ut (d)x=us

To evaluate the integral /
(a)x=2tan O

dx, we use the substitution

(c)x=2sec O

1
xX2V/x2+4
(b) 6 =2tan x

The value of the integral / x sin x dx is equal to

(a) sin x+xcos x+c¢
(b) —sin x+xcos x+c¢

The value of the integral / dx is equal to

2+2 +5
(@) Ttan™! (51 +¢
(b) tanh ™' (1) +c

x
. 2. .
The value of the integral / sin* x cos x dx is equal to
0

(a) 4 OF; © (%) @ 1(3)°

The value of the integral / dx is equal to

1
V2 —8x+25
(@) sinh ! (55%) +¢
(b) sinh~!' (x—4)+¢

sinh x

———— dxisequal to
9+ cosh? x q

The value of the integral /

(a) tan(%) +c
(b) In(9 + cosh? x) +¢

The value of the integral / sin® x cos® x dxis equal to
6 x— % sin® x+¢

(b) %sin5 x— ; sin® x+¢

(a) % sin

n
. 2 . .
The value of the integral / cos® x sin x dx is equal to
0

(a) 0 (b) 4 ©3 @ ¢

The value of the integral / tan® x sec x dx is equal to

(a) %8603 x—+sec x+c¢
(b) —%sec3 xX—sec x+c

The value of the integral / dx is equal to

x—2
xVx2 =25
(a) cosh™! z —2sec! 5 +c
(b) cosh™! 5—%560 x+c

(d)x=2sin 6

(c) sin x —xcos x+c¢
(d) —sin x —xcos x+c¢

(c) tan™ (% c
(d) Stanh~! (SF) 4 ¢

(c) %tan” (cosh x)+c
(d) tanfl (cosh x) s

©) %sin5 x— 2sm x+c

(d %sin5 x— é sin® x+¢

(c) — sec x—+sec x+c¢
(d) sec® x—sec x+c¢
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Chapter 6

Indeterminate Forms and Improper
Integrals

Indeterminate Forms

In the beginning of this section, we define the limit of functions and list the rules of the limits.

Definition 6.1 Let f be a defined function on an open interval / and ¢ € [ where f may not be defined at ¢. Then,

limf(x) =L, LeR

X—C

means for every € > 0, there is 8 > 0 such that if 0 < |x —c| < §, then | f(x) — L| < €.

The following theorem presents the general rules of the limits.

Theorem 6.1 If xlinc f(x) and thl(_ g(x) both exist, then

(1) Sum Rule: lim (f(x)+g(x)) = lim f(x)+ lim g(x).
(2) Difference Rule: lim (f(x)—gx)) = Jim f(x) — lim g(x).
(3) Product Rule: lim (f(x).8(x) = Jim f(x) x lim g(x).

(4) Constant Multiple Rule: lim (k f(x)) =k Jim £ (x).

; s (L@ _ Am SO
(5) Quotient Rule: thr)nf (@) = T g0

(6) Power Rule: lim (f(x))"" = (lim f£(x))"/".

X—C X—C

Example 6.1 Find each limit if it exists.
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1) limx (4) limsin x cos x
x—1 X—T
. . 1
@) lim/x ©®) lim ==
: 2 mm —X
(3) igl’(l)(x 2x+ 1) (6) )151} (2+1)
Solution:
1) limx=1 (4) limsin x cos x = lim sin x limcos x=10
-1 XOT XOT X—T
. - . 1 lim 541 oo
(2 lg‘%ﬁ =2v2 ®) xl_1>r§1+ G-3) — fim, 0 (—3)
: 2 1 2 _ 9y : _ . _ lim,_, _1
@) lim(e 204 1) = lin 2l 1 =1 © lim oy = s =

In the following, we examine several situations where a function is built up from other functions, but the limits of these functions are not
sufficient to determine the overall limit. These situations are called indeterminate forms. The following example shows these forms
without finding the final result.

Example 6.2
. i ) : 2 —
1) igr(l)sme =5 A3) xlg&x Inx = 0.0
. & o . 1 1\
@) lim T =2 @ lim (5 —fg) ==

In the following table, we categorize the indeterminate forms:

Case Indeterminate Form
Quotient Oand =

Product 0.0 and 0.(—e0)
Sum & Difference (—o0) 400 and o — o0
Exponent 02,1, 17 and oo°

Table 6.2: List of the indeterminate forms.

The following theorem examines the indeterminate forms 8 and Z.

Theorem 6.2 Suppose f and g are differentiable on an interval / and ¢ € I where f and g may not be differentiable at c. If %
has the form % or 2 atx=c and g’(x) # 0 for x # c, then

if Tim £

x—c g' (*x)

exists or equals to co.

Proof. The theorem is proved for the indeterminate form % atx = c. Assume lim £, &) — 1 € R and we want to prove that lim 0,
x—c g (x) x—c 8(Y)
Define two functions F' and G on the interval / as follows:

F(X):{ g(x) ﬁii and g(x):{ g(x) tx#e

X=¢C

Since lim F (x) = lim f(x) = 0 and lim G(x) = lim g(x) = 0, then F and G are continuous on the interval /. Also, we have F’(x) = f/(x)
X—C X—C X—C X—C
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and G'(x) = g/(x) for x # ¢. From Cauchy’s formula for the two functions F and G on the interval between x and ¢,! there exists a
number z belong to the open interval between ¢ and x such that

Since z — ¢ when x — ¢, then

i @— im@: imF/(Z) = im&:
e i Gw : L

Remark 6.1
1. L'Hopital’s rule works if ¢ = oo or when x — ¢ orx — ¢ ™.

2. When applying L’Hépital’s rule, we should calculate the derivatives of f(x) and g(x) separately.

3. Sometimes, we need to apply L’Hopital’s rule twice.

Example 6.3 Use L'Hopital’s rule to find each limit if it exists.
Vx—1-2

. !
e @
) lim Si2x @) lim <

=0 ¥ oo X

Solution:
(1) Since lirr; vx—1—-2=0and lirr;x2 —2 =0, we have the indeterminate form 8. By applying L"Hopital’s rule, we have
xX— X—

Vi—1-2 . 1 1
lim = lim = —.
x—=5 x2—=25 x—=54xy/x— 1 40

(2) The quotient has the indeterminate form 8. We apply L'Hopital’s rule to have

. sinx . COS X
lim = lim =1.

=)

(3) The indeterminate form is =. Apply L’Hopital’s rule to obtain

oo

(4) The indeterminate form is Z. By applying L’Hopital’s rule, we have

. e
lim — = lim — = oo,
X—o0 X x—oo |

Before considering examples of other indeterminate forms, we provide techniques to find the limits.

Techniques for finding the limits of other indeterminate forms:

M Indeterminate form 0.co.

1. Write f(x) g(x) as 15523() or 17()((1)'

2. Apply L’Hopital’s rule to the resulting indeterminate form 8 or =.

M Indeterminate form eo — oo,
1. Write the form as a quotient or product.

ILet f and g be continuous on [a, b] and differentiable on (a, b). If g’ (x) # O for every x in (a, b), then exists number z € (a, b) such that i: EZ;:; ((Z)) = ; ,’8 .
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2. Apply L’Hopital’s rule to the resulting indeterminate form % or =.

M Indeterminate forms 0°, 1%°, 17> or «?.

1. Lety= f(x)t®
2. Take the natural logarithm Iny = In £ (x)8®) = g(x)In f(x).

3. Apply L’Hopital’s rule to the resulting indeterminate form % or =.

Example 6.4 Find each limit if it exists.

. ) . 1 1
(1) lim +*Inx @ lim (5 —p5)
(2) lim(1—tan x) sec 2x i T

o @

Solution:

(1) The indeterminate form is 0.(—oo), so we cannot apply L"Hopital’s rule. We need to rearrange the expression in a way that enables
us to apply L’Hopital’s rule. By using the previous techniques, we obtain
1
Plnx = ?
¥z

The limit of the new expression is of the form =. Therefore, we can apply L'Hopital’s rule:

. Inx X2
lim — = lim — =0.
x—0t 2 x—0+t —2

Hence, lim x*lnx=0.
x—0*

(2) The indeterminate form is 0.0, so we try to rewrite the function to apply L’Hopital’s rule. We know that sec x = 1/ cos x, thus

(1 —tan x)

11—t 2x =
(1 —tan x)sec 2x —

Now, the limit of the new expression is of the form g. From L’Hopital’s rule, we have

(1—tanx) . sec’«x o
—— = = ]im - ("Hopital’s rule)
x—%  Cos 2x x—1 2sin 2x
_v2?
5 .

Hence, lim (1 —tan x) sec 2x = 1.
=5

(3) The indeterminate form is co — 0. To treat this form, we write the function as a single fraction

1 1 7lnxfx+1

x—1 Inx (x—1)lnx’
The new expression takes the indeterminate form %. From L’Hbpital’s rule,

Inx—x+1 . 1—x
im = lim .
=1t (x—=1)Inx  x=1+ x Inx+x—1

We have the indeterminate form %. We apply L’Hopital’s rule again to have

—X -1 —1
lim = lim = —.
o X It x—1 el nxt2 2

Bl—=

. 1 1y _
Hence, lim (1 mx) =
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(4) The limit is of the form 1*°. To treat this form, let y = (1 +x) i By taking the natural logarithm of both sides, we have
1
Iny = —1In(1
ny=~ n(1+x)
1
= limIny = lim — In(1 +x)
x—0 x—0 X

i 20+
x—0 X

The indeterminate form is %. By applying L’Hopital’s rule, we obtain

1
. In(1+x S
lim In(1+%) = lim 1= =1
x—0 X =0 1
Hence,
lirr(l)lny =1 = elime—olny _ 1 (take the natural exponential function of both sides)
x—
= lime™) = ¢
x—0
= limy=e
x—0
. 1
= lim(1+x)x =e.
x—0
Exercise 6.1
1-14 W FiIzld the limit if it exists. 5
s X —4x+4 8 lim *t2
1 ;LI)I’% =2 Tt =
. 2.9 . e'—In(e")
2 lllg x=3 ? )c1~1>r(r)1+ Inx
9 cos x + sin x 10 i 1—sin x
3 X]Ll;ltlJr =~ tnx xom)2 CoS X
4 lim 1t 11 1 Inx
x—0 ¥ XEH tan Tx
5 lim tan x 12 lim tan x
x—T/2+ x—=0
6 lim <1 im ndnx)
A 13 Jim =%
. 1 : 1
7 lim(e*+x)x 14 lim ()"
x~>0( ) x—0 ( o )

6.2 Improper Integrals

In this section, we deal with integrals over infinite intervals or with integrals that involve discontinuous integrands. In such cases, the
integrals are called improper.

b
Definition 6.2 The integral / f(x) dx is called a proper integral if

a
1. the interval [a,b] is finite and closed, and

2. f(x) is defined on [a,b].

If condition 1 or 2 is not satisfied, the integral is improper. In the following, we discuss the improper integrals.
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Infinite Intervals

oo

b —oo
In this section, we study integrals of forms / f(x) dx, / f(x) dx, / f(x) dx where f is a continuous function.

a —oo

Definition 6.3 -
1. Let f be a continuous function on [a,c0). The improper integral / f(x) dx is defined as follows:
a

oo t
/ f(x) dx= lim / f(x) dx if the limit exists.
a 1= Jq
b
2. Let f be a continuous function on (—oo, b]. The improper integral / f(x) dx is defined as follows:

b b
/ f(x)dx= lim / f(x) dx if the limit exists.
o ¢

t——oo

The previous integrals are convergent (or to converge) if the limit exists as a finite number. However, if the limit does not
exist or equals oo, the integral is called divergent (or to diverge).

3. Let f be a continuous function on R and a € R. The improper integral / f(x) dx is defined as follows:

/_:f(x) dx = /_:f(X) dx+/:f(x) dx.

The integral is convergent if both integrals on the right side are convergent; otherwise the integral is divergent.

Note:
1. If an improper integral is convergent, the value of the integral is the value of the limit.
2. If both integrals in item 3 converge, then the value of the improper integral is the sum of values of the two integrals.

Example 6.5 Determine whether the integral converges or diverges.

o 1 © X < 1
1 / —d 2 / ——d 3 / ——d
D 0 (x+2)2 * @) o 142 3 12

Solution:
a [ L lim/t L
—— dx= — dx.
0o (x+2)2 1= Jo (x+2)2
The integral

ro ' Y 1
— dx= ) Pdx=|—] =—(——2).
/()(x+2)2 * /0(” ) dx [x—i-Z]O (22
Thus,
11 11

fo
fim [ — dx= —lim (—— — 2) = —(0— 2) = ~.
fgg/o Grap i3 =-0-3)=3

This implies that the integral converges and has the value %

"o x . t
@ | it lin
The integral
tox 1 fo 1 1
761:7[1 | 2] — —In(1+472) = ~In(1) = = In(1 4+ ).
| =5 [+ = Sn(1+2) =S 1n(1) = SIn(1+2)
Thus,
li t d—]1'11z2—
ML Jy T @ g i) ==

The improper integral diverges.

> 1 . 01 . |
3) medx:tgryw.t e dx-i—flgg/o o dx
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dx=tan"! x+c¢, so

1
We know that / —
1+x2

0 1 _ » , »
lim T 2dx+thjolo/0 1+x2—tll)r_noo[07tan (t)}+llL@°[tan th]

t——oo [t X
=— lim tan" ! r+ limtan! ¢
——o0 [—yoo

T I
——(-2)+3=m

The integral is convergent and has the value 7.

6.2.2 Discontinuous Integrands

Definition 6.4
1. If f is continuous on [a,b) and has an infinite discontinuity at b i.e., lir}?i f(x) = %oo, then
x—b~

b t
/ f(x)dx= lim / f(x) dx if the limit exists.
a t—b~ Ja

2. If f is continuous on (a,b] and has an infinite discontinuity at a i.e., lim f (x) = oo, then
xX—a

b a

/ f(x) dx= lim / f(x) dx if the limit exists.
a t—at Jt

In items 1 and 2, the integral is convergent if the limit exists as a finite number; otherwise the integral is divergent.

b
3. If f is continuous on [a,b] except at ¢ € (a,b) such that lim f (x) = *oo, the improper integral / f(x) dx is defined as
X—rC a

/ahf(x) dx = /:f(x) dx+/chf(x) dx.

The integral is convergent if both integrals on the right side are convergent; otherwise the integral is divergent.

follows:

Example 6.6 Determine whether the integral converges or diverges.

4 i cosx (|
1 d —
@ /0 ! @ /0 sinx dx 3) /73 x2 dx

(4-x)2

Solution:
(1) Since lim I _ — wandthe integrand is continuous on [0,4), then from Definition 6.4,

x—4- (47x)%

4 t
/ ! - dx = lim (4—x)7% dx Ilustration
0 (4—x)3 i—4-Jo
2 t g g ,
1 432 goe — [ —(a— )32 gy
. fi e[
] 2 =204—-x)""21¢
= lim ( —1) 5
t—4- 4—t _ ‘e
4—x

= o0,

Thus, the integral diverges.

o cosx . . . x
(2) The limit X1_1>r(r]1+ T and the integrand is continuous on (0, 7], thus
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/% COS x d li % COSs X d
- x = lim - x Illustration
0 +/sin x t—=0tJr  4/sin x
n
o . B 4 © COS ) g /
=2 lim [\/m] * dx= [ cos x sin™"/? x dx
t—0* t /sin x
. 1 . - 1/2
=2 lim (T—VSm t) =2sin'/” x+c¢
=0+ \y/2
2
V2

The integral converges and has the value ‘%ﬁ

(3) Since lim & = lim & = o and the integrand is continuous on [—3,0)U(0, 1], then
x—0~ % x—0+ X

| 01 L
— d :/ — d / — d
/73 2 x Py X+ o 2 x
t 11
t—0"J -3 X t=0TJr X
t 1
:—lim[l} —1im[1]
t—0-Lx 1-3 —=0tLx It
=~ lim [7+1} —lim [1--]
—0- Lt 31 1=o0* t
o Figure 6.1
The integral diverges.
Exercise 6.2
1-16 M Determine whether the integral converges or diverges.
o 1 3 dx
1 / = dx 9 /
X 0 vV9—x2
2 [72 - i
/1 xﬁdx 10 /0 (1—x)e " dx
=1 = dx
3 / — dx 11 /
4 Vx 0o 2+4
0 M o0 1
4 /me dx 12 /_.x,ewe*x dx
oo N 00 1
5 / e dx 13 / dx
0 0o x—1
o 1 T
6 / dx 14 / sec? x dx
2 x—1 0
21 2 1
7 d 15 —d
/1 l—x . [) x2+1 &

O /2
8 / —dx 16 / tanx dx
—1Xx 0
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1 lim

x—oo ¥

2 lim tan x
X2
x—=0~

5 lim B2

13 /wﬁd’“

19 lim (L

x1 %1

x—0

1-10 W Find lthe limit if it exists.

1
11 / ——d
0 2x2+3x+1 x

i 1
12 / ———— dx
1 xvx2—1

X
s [y
/700 (x2+3)2 *

19-35 W Choose the correct answer.
lnX) is equal to

(a) o0 (b) —3

20 lim 2 3 is equal to

() o (b)In3

S |
21 Thei integral / —d.
e improper integra! ey x

(a) converges to (b) converges to 5

22 The improper integral / :
0

(a) converges to —2 (b) converges to 1

Review Exercises

6 lim =%
x—0

10 lim (e +x)+

11 - 18 M Determine whether the integral converges or diverges.

(do

@ -1

23

24

25

The improper integral /
0

(a) converges to T

The improper integral /

(a) converges to 0

The limit lim (82.4=*) is equal to
0 X

X—

(a) o (b) —§

T
(b) converges to 5

T
(b) converges to 7

(do

(c) diverges (d) None of these
(c) converges to 2 (d) diverges

(c) converges to oo (d) diverges

(c) converges to % (d) diverges
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26

27

28

29

30

31

32

33

34

35

. . 2 2
The improper integral / — dx
0 16—x*

(a) converges to % (b) converges to % (c) converges to T
The limit lim (7 — 27) is equal to
(a) o0 ()1 (©2 @o

1
The improper integral / x% dx converges if and only if

(aya>1 b)2<a<-—1 c©)a>—1 da<
xlggo(ﬁ - ﬁ) is equal to

(a) o b1 ©0 (@2

lim(1+ 2x)i is equal to
x—0

(a1 (b)e (c) & (d) o

X 2
/e’dt
0
X

lim is equal to
x—0
(a) ()1 ©0 -1

The limit lim (1 +3x)~ is equal to
x—0
() 1 (b) e (© e (d) e

11
The improper integral / — dx
0 x2
(a) converges to 3 (b) converges to % (c) converges to %

The improper integral / ———dx
POPETINEE™® o Vat1

(a) converges to % (b) converges to % (c) converges to —
. . < 1
The improper integral / ———5 dx
e x(Inx)

(a) converges to 0 (b) converges to 1 (c) converges to —1

(d) diverges
-2
(d) diverges
% (d) diverges
(d) diverges
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Application of Definite Integrals

Areas

The definite integral can be used to calculate areas under graphs. In Chapter 2, we mentioned that if f is continuous and f > 0 on [a, ],
the definite integral |, : f(x) dx is exactly the area of the region under the graph of f from a to b.

B If y = f(x) is a continuous function on [a,b] and
f(x) > 0 for every x € [a,b], the area of the region
under the graph of f(x) from x = a to x = b is given
by the integral:

A:/abf(x)dx

B If f and g are continuous functions and f(x) >
g(x) Vx € [a, D], then the area A of the region bounded
by the graphs of f (the upper boundary of R) and g (the
lower boundary of R) from x = a to x = b is subtracting
the area of the region under g(x) from the area of the
region under f(x). This can be stated as follows:

a= [ (1) —s00) ax

y

Figure 7.1: The area of the region under the graph of f over
[a,D].

Figure 7.2: The area of the region bounded by the graphs of
f and g over [a,b].
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B If x = f(y) is a continuous function on [c,d] and
f(y) > 0Vy € [c,d], the area of the region bounded by
the graph of f(y) from y = ¢ to y = d is given by the
integral:

A:/Cdf(y) dy

B If f and g are continuous functions and f(y) >
g(y) Vy € [c,d], then the area A of the region bounded
by the graphs of f (the right boundary of R) and g (the
left boundary of R) from y = ¢ to y = d is subtracting
the area of the region bounded by g(x) from the area
of the region bounded by f(x). This can be stated as
follows:

A= /Cd (f») —g()) dy

y

4 x=f(y)
R

C

Figure 7.3: The area of the region bounded by the graph of f
over [c,d].

Y

Figure 7.4: The area of the region bounded by the graphs of
S and g over [c,d].

Example 7.1 Express the area of the shaded region as a definite integral then find the area.

@
y
flx)=2x+1
R
1 3
Figure 7.5
Solution:

(2
y

Figure 7.6

(1)Area:A:/13(2x+1)dx: [x2+x]? - [(32+3)7(12+1)} —12-2=10.
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(2) We have two regions:

Region (1) : in the interval [a,c]. Region (2) : in the interval [c, b].
Upper graph: y = g(x) Upper graph: y = f(x)
Lower graph: y = f(x) Lower graph: y = g(x)
¢ b
Area: Ay :/ (8(x) = f(x)) dx. Area: Ay = / (f(x)—g(x)) dx.
a c

The total areais A = A| +Aj.

Example 7.2 Sketch the region bounded by the graphs of y = x> and y = x, then find its area.

Solution: The figure on the right shows the region bounded by the two functions.

y
The region is divided into two regions as follows:
Region (1): in the interval [—1,0]
Upper graph: y = x°
Lower graph: y =x
y=2
0 X+ x2q0 1 1 1 ; ‘
e[ §-51 ~bi-3l-4 * *
! /Jx Shail iy I G 273 -1 1
Region (2): in the interval [0, 1] =X
Upper graph: y =x
Lower graph: y = x3
1 P S L B 1
e [l [ - [4-beol -
Z/O(XX)X 7wl 1377 4

Figure 7.7
1 1 1

The total areaisA = A1 +Ar = 7+ 5 = 5.
Example 7.3 Sketch the region determined by the graphs of y =sin x, y =cos x, x=0and x = %, then find its area.

Solution: The figure on the right shows the region bounded by the two functions. Note that over the period [0, %], the two curves intersect
at T.
i)

y
Hence,
z . y = sinx
Area:A:/ (cos x—sin x) dx

0 ‘ X

= [sin X+ cos x]g n/4
1 1

[ L)

[(5+5)-()
=v2-1.

y = co$

Figure 7.8
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Example 7.4 Sketch the region bounded by the graph of x = ,/y from y = 0 to y = 1, then find its area.

Solution: The region bounded by the function x = /y from y = 0 to y = 1 is shown in the figure.
y

The area of the region is

A=/Olfydy

-2,

W W

Figure 7.9

Example 7.5 Sketch the region bounded by the graphs of x =2y and x = % + 3, then find its area.

Solution:
First, we find the intersection points:

2y=3+3=4y=y+6=y=2.

The two curves intersect at (4,2).

2

Area:A:/ (X+372y)dy
0 2
2

= [(2y43)d —[—§ 2+3}2——3+6—3
= [, 3 dy= |- P3| = =3

y

2,,
1.5 v 2y

1,,

x=y/243
0.5 | v/
X
1 2 3 4

Figure 7.10
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Exercise 7.1
1-27 M Sketch the region bounded by the graphs of the equations, then find its area.

1 y:%z,y:O,le,x:3
y:x3,x:0,x:2
y=x+2,x=1,x=4
y=x24+1,y=0,x=0,x=2
y:x3—|—l,y:0,x:0,x=l
y=sinx, x=0,x=m7
y=tan x, x=n/4, x=7/3
y=—x,y=x+1,x=0
y=vx, x+y=2,y=0

10 y=x2, x=y—2,y=0

o R N S Ut A W

11 x=y3,y=0,y=2,x=0

12 x=%,y=1,y:3,x=0

13 x=(+1)2,y=2,y=5,x=0
14 y=x3f4x,y=0,x=72,x:0
15 y=x3,y=2

16 y=x,y=2x,y=—x+2

17 y=vVx+1,x=1,y=0

18 x=y,x=y—5,x=0,x=2

19 y=vx—1,y=x,x=1,x=2

20 y=e¢', x=-2,x=3

21 y=&tl x=0,x=1

22 y=Inx, x=1,x=5

23 x=siny, y=0,y=mn/4

24 x=siny, x=cosy, y=0,y=m/4
25 y=sinx, y=cos x, x=—7/4, x=mn/4
26 y=(x+1)2+2, x=-2,x=0

27 x=Iny, x=0,y=1,y=e

7.2 Solids of Revolution

In this section, we introduce the solids of revolution.

Definition 7.1 If R is a plane region, the solid of revolution § is a solid generated from revolving R about a line in the same
plane where the line is called the axis of revolution.

In the following examples, we show some simple solids of revolution.
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Example 7.6 Lety = f(x) > 0 be continuous for every x € [a,b]. Let R be a region bounded by the graph of f and the x-axis from x = a
to x = b. Revolution of the region R about the x-axis generates a solid given in Figure 7.11 (right).

v

Figure 7.11: Revolution of a region about the x-axis. The figure on the left shows the region under the continuous function y = f(x) on the interval [a, b].
The figure on the right shows the solid S generated by revolving the region about the x-axis.

Example 7.7 Lety = f(x) be a constant function from x = a to x = b, as in Figure 7.12. The region R is a rectangle and by revolving it
about the x-axis, we obtain a circular cylinder.

i/
y=f(x)=c

Pr——

Figure 7.12: Revolution of a rectangular region about the x-axis. The figure on the left shows the region under the constant function f(x) = ¢ on the
interval [a,b]. The figure on the right shows the circular cylinder generated by revolving the region about the x-axis.

Example 7.8 Consider the region R bounded by the graph of x = f(y) from y = ¢ to y = d. Revolution of R about the y-axis generates a
solid given in Figure 7.13.

-
P

Figure 7.13: Revolution of a region about the y-axis. The figure on the left displays the region under the function x = f(y) on the interval [c,d]. The
figure on the right displays the solid S generated by revolving the region about the y-axis.
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Exercise 7.2
1-10 M Sketch the region R bounded by the graphs of the given equations, then sketch the solid generated if R is revolved about the
specified axis.

1y=x*x=1y=4 about the x-axis
2 y=yx,x=0,x=9 about the x-axis
3 y=Inx,x=05 x=¢€ about the x-axis
4 y=€-,x=—-1,x=5 about the x-axis
5 y=sinx,x=0,x=n about the x-axis
6 y=cosy y=0,y=m/2 about the y-axis
7 y=e¢*y=0,y=3 about the y-axis
8 x=y+1,y=—1,y=5 about the y-axis
9 y=x2 y=x about the x-axis
10 y=x, y=x about the y-axis

Volumes of Solids of Revolution

One of the interesting applications of the definite integrals is to determine volumes of the revolution solids. In this section, we study three
methods to evaluate the volumes of the revolution solids known as disk method, washer method and method of cylindrical shells.

Disk Method

Let f be continuous on [a,b] and let R be the region bounded by the graph of f and the x-axis form x = a to x = b. Let S be the solid
generated by revolving R about the x-axis. Assume that P is a partition of [a,b] and ® = (®;, 0, ..., ®;) is a mark where @ € [x;_1,x].
From each subinterval [x;_1,x], we form a rectangle, its high and width are (o) and Axy, respectively.

T

>
The revolution of the vertical rectangle about the x-axis generates a circular disk as shown in
. . . h
Figure 7.15. Its radius and high are JA/

r=flog), h=~Ax. S
Figure 7.

V =mr?h

VA YA

=f(x) y=f®

/%E Y
by mk
a Ax % A~

Axy Axy

o
=

Figure 7.15: The volume by the disk method for a solid generated by revolving the region about the x-axis. The figure on the left shows the region R
bounded by a function f on an interval [a, b] and the figure on the right shows the solid § generated by revolving R about the x-axis.

From Figure 7.15, the volume of each circular disk is
Vi = (f (o)) Axg, k=1,2,....n

The sum of volumes of the circular disks approximates the volume of the solid of revolution:

:f“v,ﬁ lim Zn Axkfn/b[f(x)rdx.

k=1 [IP|—0 ;=
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Similarly, we can find the volume of the solid of revolution generated by revolving the region about the y-axis. Let f be continuous on
[c,d] and let R be the region bounded by the graph of f and the y-axis from y = ¢ to y = d. Let S be the solid generated by revolving R
about the y-axis. Assume that P is a partition of [c,d] and ® = (®1,®y,...,®,) is a mark where ©; € [y;_1,yx]. From each [y;_1,y], we
form a rectangle, its high and width are f(w;) and Ayy, respectively.

The revolution of each horizontal rectangle about the y-axis generates a circular disk as shown in Figure 7.16. Its radius and high

are
= flog), h=Ay.

Therefore, the volume of each circular disk is

Vi = n(f (o)) Aye, k=1,2,....n

Ay 2

Ay

7
07

Figure 7.16: The volume by the disk method for a solid generated by revolving the region about the y-axis. The figure on the left shows the region R
bounded by a function f on an interval [c,d] and the figure on the right shows the solid § generated by revolving R about the y-axis.

The volume of the solid of revolution given in Figure 7.16 (right) is approximately the sum of the volumes of circular disks:

V=13 Vi= Z ) Ay

k=1 HPH 0=

[ [f(y)] “ay

These considerations can be summarized in the following theorem:

r

Theorem 7.1
1. If R is a region bounded by the graph of f on the interval [a,b], the volume of the solid of revolution determined by

revolving R about the x-axis is
b 2
V:ﬂ:/ [f(x)] dx.
a

2. If R is a region bounded by the graph of f on the interval [c,d], the volume of the solid of revolution determined by

revolving R about the y-axis is
d 2
V=ﬂ/ [f(y)} dy.
¢

Example 7.9 Sketch the region R bounded by the graphs of equations y = 1/x, x =4 and y = 0. Then, find the volume of the solid
generated by revolving R about the x-axis.

Solution:
The figure shows the solid generated by revolving the region R about the x-axis.



121

VA VA

E—
=S
LA

W
|
|

=Y

Figure 7.17

Since the revolution is about the x-axis, we have a vertical disk with radius y = /x and thickness dx.
Thus, the volume of the solid S is

4

V:n/()4(ﬁ)2dx:n/() xdx=g[x2]2=g[1670] = 8T.

Example 7.10 Sketch the region R bounded by the graphs of equations y = ¢*, y = ¢ and x = 0. Then, find the volume of the solid
generated by revolving R about the y-axis.

Solution:
y A
)
r= g%
> >
Figure 7.18

The figure shows the region R and the solid S generated by revolving the region about the y-axis. Since the revolution is about the y-axis,
then we need to rewrite the function to become x = f(y).

y=¢€" =Iny=Ine' = x=1Iny=f(y).
Now, we have a horizontal disk with radius x = Iny and thickness dy. Thus, the volume of the solid S is

e
Vv :Tt/ (Iny)? dy= [2y+y (Iny)? —2y lnyr =e—2. (use the integration by parts to evaluate the integral
1 ! [(Iny)? dy)

Example 7.11 Sketch the region R bounded by the graph of the equation x = y* on the interval [0,1]. Then, find the volume of the solid
generated by revolving R about the y-axis.

Solution:
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YA YA

JC=}?2

= v
w

Figure 7.19

Since the revolution of R is about the y-axis, we have a horizontal disk with radius x = y* and thickness dy. Thus, the volume of the solid

Sis 1
vs 67 =5[] =m0

Example 7.12 Sketch the region R bounded by the graph of the equation y = cos x from x = 0 to x = 7. Then, find the volume of the
solid generated by revolving R about the x-axis.

Solution:
VA VA
1 Yy =C0s5X 1 V=C08X
R 5
! > P — — >

il X — X

2 2
Figure 7.20

The figure shows the region R and the solid S generated by revolving the region about the x-axis. Thus, the disk to evaluate the volume of
the generated solid S is vertical where the radius is y = cos x and the thickness is dx. Hence,

V:ﬂ:/icoszxdng/i(l+cos 2x)dx=E[x+
0 2 Jo 2

sian}%_n[n ] i
o 2

-0
2 2

Washer Method

The washer method is a generalization of the disk method for a region between two functions f and g. Let R be a region bounded by
the graphs of f and g from x = a to x = b such that f > g on [a,b] as shown in Figure 7.21). The volume of the solid S generated by
revolving the region R about the x-axis can be found by calculating the difference between the volumes of the two solids generated by
revolving the regions under f and g about the x-axis as follows:

the outer radius: y; = f(x)

the inner radius: y; = g(x)

the thickness: dx

The volume of a washer is dV == [(the outer radius)? — (the inner radius)?|. thickness.

This implies dV =7 [(f(x))2 — (g(x))z] dx.
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Hence, the volume of the solid over the period [a, b] is

1% :71'./; [(f(x))zf (g(x))z} dx.

y ) y
y=f(x) y = f(x) y = f(x)
N ' E 1=y
: . =90 ; §E___,§ y=9() (N! y=4(x)
a b x T b Ux :

Figure 7.21: The volume by the washer method for a solid generated by revolving the region R about the x-axis.

Similarly, let R be a region bounded by the graphs of f and g such that f > g on [c,d] as shown in Figure 7.22. The volume of the solid S
generated by revolving R about the y-axis is

V= n/cd [(F0)* = (80:))*] a.

Figure 7.22: The volume by the washer method for a solid generated by revolving the region R about the y-axis.

Theorem 7.2 summarizes the washer method.

Theorem 7.2
1. If R is a region bounded by the graphs of f and g on the interval [a,b] such that f > g, the volume of the solid of
revolution determined by revolving R about the x-axis is

\% :ﬂ:/ab [(f(x))2— (g(x))z} dx.

2. If R is a region bounded by the graphs of f and g on the interval [c,d] such that f > g, the volume of the solid of
revolution determined by revolving R about the y-axis is

V= n/cd [(£5))* = (60))°] @
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Example 7.13 Let R be a region bounded by the graphs of the functions y = x2 and y = 2x. Evaluate the volume of the solid generated
by revolving R about the x-axis.

Solution:
Let f(x) = x? and g(x) = 2x. First, we find the intersection points:

fx)=gx) = x> =2x

=x2-2x=0
=x(x—-2)=0
=x=0o0rx=2.

Substituting x = 0 into f(x) or g(x) gives y = 0. Similarly, if we substitute x = 2 into the two functions, we have y = 2. Thus, the two
curves intersect in two points (0,0) and (2,4).

VA yA

(2,4)

=¥

(0,0)

The figure shows the region R and the solid generated by revolving R about the x-axis. A vertical rectangle generates a washer
where
the outer radius: y; = 2x,
the inner radius: y, = x* and
the thickness: dx.
The volume of the washer is
dv = R[Zx —x2] dx.

Thus, the volume of the solid over the interval [0, 2] is

1% :7'5/2 ((2)6)2— (x2)2> d)c:Tc/z(4x2 —x*) dx
’ 33 5.9
71![ x x]

3 5]o
32 32
=53]
64
7E7t.

Example 7.14 Consider a region R bounded by the graphs of the functions y = 1/x, y = 6 — x and the x-axis. Revolve this region about
the y-axis and find the volume of the generated solid.

Solution:
Since the revolution is about the y-axis, we need to rewrite the functions in terms of y i.e., x = f(y) and x = g(y).

y=vVa=x=y =f(©y)

y=6—x=>x=6—y=2g(y).

Now, we find the intersection points:

o) =g(y) =y*=6—y=y"+y—6=0=>y=—3ory=2.
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Since y = /x, we ignore the value y = —3. By substituting y = 2 into the two functions, we have x = 4. Thus, the two curves intersect in
one point (4,2). The solid S generated by revolving R about the y-axis is shown in the figure.
Since the revolution is about the y-axis, then we have a horizontal rectangle that generates a washer where

the outer radius: x; =6 —y,

the inner radius: x, = y* and
the thickness: dy.

The volume of the washer is

Figure 7.23

The volume of the solid over the interval [0,2] is

v [ (637~ (] dy=n] -

6-y)° 72
e 5y
32 216
335

Example 7.15 Consider the same region as in Example 7.14 enclosed by the graphs of y = 1/x, y = 6 — x and the x-axis. Revolve this

region about the x-axis instead and find the volume of the generated solid.

Solution:

From the figure, we find that the solid is made up of two separate regions and each requires its own integral. Meaning that, we use the
disk method to evaluate the volume of the solid generated by revolving each curve.

YA

6\\ }I

Figure 7.24

YA
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4 6 -
_ Tc/ N dx+7|:/ (67)6)2 dx (we use}d the subAstltutlon method to do the
0 4 second integral with u = 6 —x and du = dx)
21215 le—]
== —Zl6—-
2 [x o 3 (6-x) 4
T T
=—-(16-0)—-(0—8
2(16-0) = 2(0-8)
B 321‘6
=3

The revolution of a region is not always about the x-axis or the y-axis. It could be about a line paralleled to the x-axis or the y-axis. If the
axis of revolution is a line y = yg, evaluating the volume of the generated solid is similar to the case when the region revolves about the
x-axis. Whereas, if the axis of revolution is a line x = xq, evaluating the volume of the generated solid is similar to the case when the
region revolves about the y-axis.

Example 7.16 Let R is a region bounded by graphs of the functions y = x? and y = 4. Evaluate the volume of the solid generated by
revolving R about the given line.
(@y=4 (b)x=2

Solution:

(a) We have a vertical circular disk:

the radius of the disk: 4 —y = 4 —x2, and
the thickness: dx.

yA yA

=
Il
NS
=
Il
NS

A J
A J

Figure 7.25

The volume of the disk is

dV =74 —x*)? dx.

The volume of the solid over the interval [—2,2] is

2 2
v:n/ (4—x2)2dx:n/ (16 — 8x% +x*) dx
-2 -2

8 X712
= l16x— — +
n[x 3+5—2
_sia
15

(b) In this case, a horizontal rectangle will generate a washer where
the outer radius: 2+ ,/y,

the inner radius: 2 — \ﬁ and

the thickness: dy.
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v A v A
i i
i = i | / JJI{LI_I | -
Faill -
=9 y) % —2 2

Figure 7.26
The volume of the washer is

m/:nk2+v@f4{27v@f]dy:8nv§dy

The volume of the solid over the interval [0,4] is

4 6w p 514 128
V=8 de= OR T a7t 128
nAv?x 3 hﬂo 3

Example 7.17 Sketch the region R bounded by graphs of the equations x = (y — 1)? and x = y+ 1. Then, find the volume of the solid
generated by revolving R about x = 4.

Solution:
First, we find the intersection points:
(—1)?=y+1=y*-2y+1=y+1
=y*—3y=0
=y=0o0ry=3.

Thus, the two curves intersect in two points (1,0) and (4, 3).

VA VA

¥

}%
W

X =yl

Figure 7.27

The figure shows the region R and the solid S. A horizontal rectangle generates a washer where
the outer radius: 4 — (y— 1)2,

the inner radius: 4 — (y+1) =3 —y and

the thickness: dy.

The volume of the washer is

v =r[(4= (=12~ (3-3)?] dy=r[16-8(~ 1>+ (= 1)* = 3-3)?] .
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128

Thus, the volume of the solid over the interval [0, 3] is

v:n(/o3 16dy—8/03(y—1)2 dy+/03(y—1)4dy—/03(3—y)2dY)

8y~ 13 (y—1°  (3-y)?°73
:”[16“ A ]o

08
1,

Method of Cylindrical Shells

In the washer method, we assume that the rectangle from each subinterval is vertical to the axis of the revolution while in the method of
cylindrical shells, the rectangle is parallel to the axis of the revolution.

As shown in figure, let

r1 be the inner radius of the shell,

rp be the outer radius of the shell,

h be high of the shell,

Ar = ry — rq be the thickness of the shell,
r= % be the average radius of the shell.

Figure 7.28
The volume of the cylindrical shell is
— 20 2 V= \%) — Vi
\% 7tr2h Tl',rl h
— ﬂ:(l’% _ r%)h the outer cylinder  the inner cylinder

= TC(VQ +r1)(r2 —r )h

#)h(h —rp)

= 2nrhAr.

=2m(

Now, consider the graph shown in Figure 7.29 (A). The revolution of the region R about the y-axis generates a solid given in (B) of
the same figure. Let P be a partition of the interval [a,b] and let ® = (®;,®;,...,®,) be a mark on P where @y is the midpoint of
P15 x]-

The revolution of the rectangle about the y-axis generates a cylindrical shell where

the high = (),

the average radius = w; and

the thickness = Ax;.

Hence, the volume of the cylindrical shell is V};, = 2may f (@) Axy. To evaluate the volume of the whole solid, we sum the volumes of all
cylindrical shells. This implies

n

n
V=Y Vi=2n) onf(o)Ax.
k=1 k=1

From the Riemann sum

n b
lim Z cokf(cok)Axk:/a xf(x) dx

[PII—=0,=

and this implies

Vv :2n/bxf(x) dx.
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Figure 7.29: The volume by the method of cylindrical shells for a solid generated by revolving a region about the y-axis.

Similarly, if the revolution of the region is about the x-axis, the volume of the solid of revolution is

d
V= M/C yf(y) dy.

Theorem 7.3
1. If R is a region bounded by the graph of f on the interval [a,b], the volume of the solid of revolution determined by
revolving R about the y-axis is

v :27t/bxf(x) dx.

2. If R is a region bounded by the graph of f on the interval [a, b], the volume of the solid of revolution determined by
revolving R about the x-axis is

d
V= ZE/C yf(y) dy.

\.

The method of cylindrical shells is sometimes easier than the washer method. This is because solving equations for one variable in terms
of another is not always simple (i.e., solving x in terms of y). For example, for the volume of the solid obtained by revolving the region
bounded by y = 2x* — x> and y = 0 about the y-axis, by the washer method, we would have to solve the cubic equation for x in terms of
y, but this is not simple.

Example 7.18 Sketch the region R bounded by graphs of the equations y = 2x — x2 and x = 0. Then, by the method of the cylindrical
shells, find the volume of the solid generated by revolving R about the y-axis.

Solution: The figure shows the region R and the solid S generated by revolving R about the y-axis.

YA YA

(LD

Figure 7.30
Since the revolution is about the y-axis, the rectangle is vertical and by revolving it, we obtain a cylindrical shell where
the high: y = 2x —x2,
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the average radius: x,
the thickness: dx.
The volume of the cylindrical shell is

dV = 2mx(2x — x) dx = 2m(2x* — x°) dx.

Thus, the volume of the solid over the interval [0,2] is

2
V= 27t/ (2% —x%) dx
0

i
16 16

Example 7.19 Sketch the region R bounded by graphs of the equations x = ,/y and x = 2, and the y-axis. Then, find the volume of the
solid generated by revolving R about the x-axis.

Solution:
VA VA
2,4
. o . (2,4
Eemn Bl
(0,0) 2 X 0,0 2 X
Figure 7.31

Since the revolution is about the x-axis, the rectangle is horizontal and by revolving it, we have a cylindrical shell where
the high: x =/,

the average radius: y

the thickness: dy.

The volume of the cylindrical shell is dV =21y | /y dy.

Thus, the volume of the solid over the interval [0,4] is

4 4
V:2n/ yﬁdyzZﬂ:/ y%dy
0 0

,4ﬂ[%]4
51 o
_4m
5

[32—0] _ 128m
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Exercise 7.3
1 -8 M Sketch the region R bounded by the graphs of the given equations and find the volume of the solid generated by revolving R
about the x-axis.
1 y=x+1,x=0,x=1
2 y=x2—|-1, x=0,x=2
3y=x3,x=0x=2
4 y=/x,x=0,x=4
5y=vxx=y
6 y=sinx, x=0,x=m/2
7 y=1—x2, y=x2
8§ y=x+1,y=x+1
9-16 [ Sketch the region R bounded by the graphs of the given equations and find the volume of the solid generated by revolving
R about the y-axis.
9 y=x2 y=1,y=4
10 y=/x,y=0,y=3
11 x=cosy, y=0,y=m/2
12 x=Iny,y=1,y=e
13 y=x, y=(@x—12+1
14 y=¢"x=1,x=2,y=0
15 xy=4,x+y=5
16 y =12, y*> =8x
17 - 26 M Set up and evaluate an integral for the volume of the solid obtained by revolving the region bounded by the given curves
about the specified axis or line.
17 y=x2,y=1, linex=1
18 y=x2, y=1, x-axis
19 y=x2,x=12 liney=—1
20 y=+vx—1,y=0,x=5 linex=35
21 y=x2, x=0,y=1,y=4 liney=1
22 y=x—x%,y=0 linex=2
23 y=x%,y=0,x=1,x=2 linex=1
24 y=x%,y=0,x=1,x=2 linex=4
25 y=+/x—1,y=0,x=5 liney=3
26 y=x* y=sin & linex=—1
27 - 35 M Sketch the region R bounded by graphs of the given equations. Then, by method of the cylindrical shells, find the volume
of the solid generated by revolving R about the specified axis or line.
27 x=1+4y*, x=0, y=1, y=2 x-axis
28 x=,/y, x=0, y=1 x-axis
29 y:x3, y=28, x=0 x-axis
30 y= %, x=1, x=2 y-axis
31 y=x2%, y=0, x=1 y-axis
32 y=x%, y=x x-axis
33 y=sinx, y=cos x, x=0, x=F y-axis
34 y=x2+x, y=0 y-axis
35 y:x—l—%, y=35 linex=—1

7.4 Arc Length and Surfaces of Revolution

In this section, we present two other applications of the definite integrals. We use the definite integrals to evaluate the lengths of arcs of
functions and areas of surfaces of revolution. We restrict our attention to smooth functions (they have derivatives of all orders in their
domains).
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7.4.1 Arc Length

Let y = f(x) be a smooth function on [a, b]. Assume that P = {x¢,x|, ..., X, } is a regular partition of the interval [a, b] and let Py, Py, ..., P,
be points on the curve as shown in Figure 7.32.
The distance between any two points of the curve is

YA

d(Pr—1,P) = 1/ (Ax)? + (Aye)?

= @2+ (1)~ Fle)?

_ (f(xk)—f(xk—l))2
Axk\/l-‘r(Axk)z
_ b;a\/“r [f(xk);xi(xkq)]z

Figure 7.32: The length of the arc of y = f(x) from (a, f(a)) to (b, f(D)).

From the mean value theorem of differential calculus for the function f on [x;_1,x], we have

Sou) = foa—1)

Xk — Xk—1

flei) =
for some ¢; € (x;_1,x;). Thus, the distance between P, and Py is

d(Pe_1,P;) = b;a 1+ [f'(Ci)]2~

The sum of all these distances is

b—a
n

(V1 el 1 [l ot 1 e .

The previous sum is a Riemann sum for the function ¢/ 1+ [ / (xk)] % from a to b where for a better approximation, we let n be large
enough. Thus, the arc length of the function f is

2

Lm:Lh1+Vm]m

YA

Similarly, let x = g(y) be a smooth function on [c,d].
The length of the arc of the function g from (g(c),c)
t0 (g(d)d) is

Figure 7.33: The length of the arc of x = g(y) from (g(c),c) to (g(d),d).
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Theorem 7.4

L(f):/ab\/l—o—[f/(x)fdx‘

we)= [+

1. Lety = f(x) be a smooth function on [a,b]. The length of the arc of f from (a, f(a)) to (b, f(b)) is

2. Letx = g(y) be a smooth function on [c,d]. The length of the arc of g from (g(c),c) to (g(d),d) is

Example 7.20 Find the arc length of the graph of the given equation from A to B.

(1) y:57\/;, A(075)7 B(4773)
(2) x:4y; A(070)> B(471)
Solution:

S

M) y=fxX)=5-Vx = f(x) = _gx
= (f'(x)2 = g

S 14 ()2 =

~

The length of the curve is

L= %/04de= 2]—7 [(4+99)%]
= % [40% —4%}
=37 [10v0-1]

() x=g(y)=4y=4(y)=4
= (M) =16
=1+ () =17

=\/1+(g )2 = V117

The length of the curve is

L(g)=m/oldy=m[y];
:m[l—o] = V17.

Example 7.21 Find the arc length of the graph of the given equation over the indicated interval.

(1) y=cosh x; 0<x<2
@ x=gp+iph —2<y<-1
Solution:

(1) y= f(x) = coshx = f'(x) = sinh x
= (f'(x))* = sinh? x

= 1+ (f'(x))? = 1 4sinh? x = cosh® x

= 1/1+(f"(x))? = cosh x.
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The length of the curve is

2 2 . 7(,()0()7u7
L(f):/ coshxdx:[sinhx]o:sinh2—sinh0:sinh2. Ginh 0="5—="%=0
0
1, 1 5 15 1
2 = = _ — = [ _
@) x=g0) ="+ 3y g0 =50 y3)
6 2
_1)
= (J 2:()’
(&) 46
490 +y12 25 +1
=1+ 0)? ==
y
12 6
y +2y +1
S 1+E W) =75
1)2 1
=14 (g 0)2 =] s o + y iy
Since y < 0 over [—2, —1], the length of the curve is
1 -t Iyt 179-1 33
= [ e
©==/,0 Vv ==317 22 " 16

7.4.2  Surfaces of Revolution

In Section 7.2, we assume that the bounded region revolves about an axis or a line and this process generates a solid. In this section, we
assume that only the curve revolves about an axis. This generates a surface called surface of revolution (see Figure 7.34). We show how
the definite integral is applied to calculate the area of that surface.

Definition 7.2 Let f is a continuous function on [a,b]. The surface of revolution is generated by revolving the graph of the
function f about an axis.

Let y = f(x) > 0 be a smooth function on the interval [a,b]. Let P = {xg,x],...,X, } be a partition of the interval [a,b] and Py, Py, ..., P,
be the points on the curve as shown in Figure 7.34. Let Dy, be a frustum of a cone generated by revolving the line segment Py, P, about
the x-axis with radii f(x;_;) and f(xz). Since area of the frustum of a cone with radii r| and r; and slant length ¢ is S.A = t(r| + ),
then

S.A(Dy) = m[f (xx) + f (xe—1)] Al

where A/ is the distance between P;_; and Py i.e., Aly = v/(Axt)2 + (f(xe) — f (k1))
From the intermediate value theorem, there exists @y € (x;_1,x;) such that

Fr) = flxe—1) = f' (o) Axy.

This implies Ay = Axgr/1+ [f/(o)]2.
For n large, f(xg) = f(xx—1) = f(@y) and this implies

s =Y 2mf(0)y/1+ [ (00
k=1

From the Riemann sum,

b b
sA= fm Zan Wilrooras =2 [0 1+ R a=2a [y 14 () ax

If the revolution is about the y-axis, then

S.A:Zn/ab\x|\/1+[f’(x)]2dx:27t/ab|x\1/1+(%)2dx
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Figure 7.34: The revolution surface generated by revolving the graph of a continuous function about the x-axis.

Similarly, if x = g(y) is a smooth function on [c,d], then the surface area S.A generated by revolving the graph of g about the y-axis from
y=ctoy=dis

s.Azzn/Cd|g(y)\ 1+[g’(y)}2dy:2n/cd|x\ 1+(%)2dy-

If the revolution is about the x-axis, then

d d d
S.A:ZE/C Iy 1+[g’(y)}2dy:2n/C | 1+(£)2dy-

Theorem 7.5
1. Lety = f(x) be a smooth function on [a,b].
e If the revolution is about the x-axis, the surface area of revolution is

b
SA= 211:/ ly [/ 1+ (F/ () d.
a
o If the revolution is about the y-axis, the surface are of revolution is
b 2
SA= 27c/ x|/ 1+ (F/ () d.
a

2. Letx = g(y) be a smooth function on [c,d].
e If the revolution is about the y-axis, the surface area of revolution is

S.A:Zn/cd |x [/ 1+ (g()* dy.

e If the revolution is about the x-axis, the surface area of revolution is

S.A:ZTt/cd Iy [V 1+ (g 0) dy.

Note that the absolute value is for the case when the function is negative for some values in the closed interval.

Example 7.22 Find the surface area generated by revolving the graph of the function v/4 — x2, —2 < x < 2 about the x-axis.

Solution:
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b
We apply the formula S.A = Zn/ [y] 4/ 1+ (f(x))? dx.
a

2
V4 —x2

2
The area of the revolution surface is S.A = Zn/ V4 —x2 dx=4m[2+2] = l6m.
2

Example 7.23 Find the surface area generated by revolving the graph of the function y = 2x, 0 < x < 3 about the y-axis.
Solution:

b
WeapplythefonnulaS.AzZTE/ [x]4/14(f"(x))? dx.
a

y=2x= f(x)=2
= (f(x)? =4
S ()2 =5

= 1+ (P2 = V5.

3 3
The area of the revolution surface is S.A = 271',/ | x| V5dx=+/5m [ x2 ]0 =9,/5m.
0

Example 7.24 Find the surface area generated by revolving the graph of the function x = y* on the interval [0, 1] about the y-axis.
Solution: J
We apply the formula S.A = 27t/ | x| /14 (g'())? dy.

c

x=y =g () =37
= (g M)?*=9"
=1+ () =1+9%"

= \/1 +(E@ )= \/1 +9y*.

1 1
The area of the revolution surface is S.A = 275/ V1494 dy = ot [(1 +9y4)%}0 =5 [10\/ 10— 1} .
0
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Exercise 7.4
1-13 M Find the arc length of the graph of the given equation over the indicated interval.
1 y=Inx, 1 <x<3

2 y=¢5,0<x<1
3 y:x2+1, 1<x<3

4 y=/x,1<x<4

6 y=In(cos x), t/4 <x<m/3

91w

7x=3(-1)

8§ x=4-y2,0<y<1

9 x=4-2y,0<y<2

, 1<y<2

10 x=coshy, 1<y <3
11 x=1%,1<y<4
12 x=y2,0SyS1

13 x=In(sec ), 0 <y <

&la

14 - 24 M Find the area of the surface generated by revolving the curve about the specified axis.
14 y=+v4—x2, -1 <x<1 x-axis

15 y:xz, 1 <x <2 y-axis

16 y=¢*, 0 <x <1 x-axis

17 y=Inx, 1 <x <3 y-axis

18 y=sin x, 0 <x < m/2 x-axis
19 x=¢", 1 <y <2 y-axis

20 9x=y+18, 0 <x <2 x-axis
21 y:x3, 0 <x<2 x-axis

22 y=cos 2x, 0 <x <m/6 x-axis
23 y=/x, 1 <y<2 y-axis

24 y=1-x* 0<x<1 y-axis
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Review Exercises

1-23 M Sketch the region bounded by the graphs of the given equations, then find its area.
1y=xy=5

2 y=x3,x=0,y=0,x=2

6 x=2y,y+6=2x,y=0

7 y=x%y=yx

8 y=x, y=—x,y=28

9 x=y3—y x=0

10 y=x, x=2—y,x=0

11 y=x, y=x-5,x=0,y=2

12 x=y*, y=x+1,y=1,y=2
13 y=sinx, y=cosx,x=0,x=7%
14 y=¢" x=0, x=1n4

15 y=x, y=4x, y=—x+2

16 y=e ', x=—1,x=2

17 y=sinx, y=cos x, x=0,x=3%
18 y=cos 2x, y=0,x=%, x=7
19 y=sinx, x=7,x=3%

20 y=secx,y=0,x=F, x=1%
21 y=Inx, y=0, x=1In3

2y —x2=1,x=—-1,x=1

23 y=tanx, y=0,x=0,x=%

24 -26 M Sketch the region bounded by the graphs of the given equations.
24 x=y> y—x=2,y=-2,y=1.

25 y=x>—4, y=x+2.

26 y=x* y=—x% y=-2,y=2

27 -39 M Sketch the region R bounded by the graphs of the given equations and find the volume of the solid generated by
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revolving R about the x-axis.
27 y=1 x=1,x=3,y=0

28 y=x%, y=4—x2

29 y=x,x+y=4,x=0
30 y=x%, y=1—x?
31 y=x",y=9
32 y=x y=x
33 y=x%, y=x
34 y=1+xx=1,x=2,y=0
35 y=xt—4x,y=0

36 y=¢"',x=0,x=2

37 y=lnx, x=1,x=4

38 y=sinx,x=0,x=7%,y=0

H i
39 y=sinx,y=cos x, x=0,x=7¢

40 - 52 M Sketch the region R bounded by the graphs of the given equations and find the volume of the solid generated by
revolving R about the y-axis.
40 y:xz, x=0,y=4

41 y=x3, x=0,x=1

2 x=y* x=2

43 x=y*, y=x-2

44 y>’=1-x,x=0

45 y=x>—1,x=0,y=3

46 y=cosx,x=0,x=7

47 y=cos x, y=sinx,x=0,x=%
48 (x—2)*+y=1,y=0

49 yzl—xz,yzl—x

50 y=x>+1,x=0,x=1

51 y=6—3x,x=0,y=0

52 y=9—x%, x=2,x=3,y=0

53 - 65 M Find the arc length of the graph of the given equation over the indicated interval.
53 y=x%,0<x<2

54 y=x+1,0<x<4

55 y=x2,1<x<2
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56 y=2(x—1)2, 1<x<5
57 y=x

58 y=2(2+1)2, 1<x<4

=
[STD%)
o
IN
=
IN

_ 2
60 y=" + 1 1<x<3
61l y=e¢* 1<x<In4
62 y=5-2x2,0<x< 11

63 y=Inx, 2<x<4

64 y=Insecx, 0<x< %
65 y=v9—x2,0<x<4

66 - 71 M Find the area of the surface generated by revolving the given curve about the x-axis.

66 y=2x,1<x<2

67 y=vV4—x2,0<x<4
68 y=1x3,0<x<3

69 y=x 0<x<1

70 y=¢%,0<x<1

71 y=cos x, 0<x <

(S

72 - 77 M Find the area of the surface generated by revolving the given curve about the y-axis.

72 x=y%,0<y<3
73 x=+/1-)2,0<y<4

74 y:%x{ogxg

[O¥]

[N
o

75 x=+a—-y*,0<y<
76 y=1-x*,0<x<1

77 x=siny, 0<y<mn

78 - 84 M Choose the correct answer.

78 The area of the region bounded by the graphs of the functions y = x2 and y = 2 — x? is equal to
(@)2 (b) 4 © 3 OF

79 The area of the region bounded by the graphs of the functions y = x and y = —x and y = 1 is equal to
(@) 1 )0 (©2 @3

80 The area of the region bounded by the graphs of the functions y =2x and y =xand 0 <x < 1 is equal to
@ 3 ) 3 (©)2 3

81 The arc length of the graph of y = 4x from A(0,0) to B(1,4) is equal to

(@) V17 (b) V5 (©) 417 (d) 45

82 The area of the region bounded by the graphs of the functions x = —y? and x = —1 is equal to
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@) 3 OF © 5 @ 3
83 The area of the region bounded by the graphs of the functions y = cos x, y =sin x, x =0 and x = § is equal to

(@v2-1 0 (©)V2+1 (d1-v2

84 The area of the region bounded by the graphs of the functions x = y? and x = 2 — y? is equal to
@ 3 (b) 8 ©1 @3
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Chapter 8

Parametric Equations and Polar
Coordinates

Parametric Equations of Plane Curves

In this section, rather than considering only function y = f(x), it is sometimes convenient to view both x and y as functions of a third
variable ¢ (called a parameter).

Definition 8.1 A plane curve is a set of ordered pairs (f(¢),g(¢)), where f and g are continuous on an interval /.

If we are given a curve C, we can express it in a parametric form x(¢) = f(¢) and y(t) = g(¢). The resulting equations are called parametric
equations. Each value of ¢ determines a point (x,y), which we can plot in a coordinate plane. As 7 varies, the point (x,y) = (f(¢),g(¢))
varies and traces out a curve C, which we call a parametric curve.

Definition 8.2 Let C be a curve consists of all ordered pairs (f (t), g(t)), where f and g are continuous on an interval /. The
equations
x=f(t),y=g@) forrel

are parametric equations for C with parameter 7.

2

Example 8.1 Consider the plane curve C given by y = x~.

:}l

Figure 8.1

If we consider the interval —1 < x < 2, then we have
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}I

Figure 8.2

Now, let x =7 and y = 7% for —1 < < 2. We have the same graph where the last equations are called parametric equations for the curve

C.

Remark 8.1
1. The parametric equations give the same graph of y = f(x).

2. To find the parametric equations, we introduce a third variable z. Then, we rewrite x and y as functions of ¢.

3. The parametric equations give the orientation of the curve C indicated by arrows and determined by increasing values of
the parameter as shown in Figure 8.2.

Example 8.2 Write the curve given by x(¢) = 2t 4+ 1 and y(t) = 4> =9 as y = f(x).

Solution:
Since x =27+ 1, then t = (x — 1) /2. This implies

x—1

2 )279:>y=x272x78.

y=4r -9 =4(

Example 8.3 Sketch and identify the curve defined by the parametric equations

x=2>5cost, y=2sin¢t, 0<r<2m.

Solution:
First, find the equation in x and y. Since x = 5cos # and y = 2sin ¢, then cos ¢ = x/5 and sin = y/2.
:}!
By using the identity cos® 7 + sin® 1 = 1, we have 2yl
s 04| 25716
25 4

Thus, the curve is an ellipse.

X

Figure 8.3

Example 8.4 The curve C is given parametrically. Find an equation in x and y, then sketch the graph and indicate the orientation.
(1) x=sint, y=cost, 0<tr<2m
(2) x=1%, y=2Int, t>1.

Solution:
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(1) By using the identit cos? t+sin? ¢ = 1, we obtain
y g y

1) x2+y2=1
162—0—)72 =1.

Therefore, the curve is a circle.

(-1.0) (L0 X

(0.-1)

Figure 8.4
The orientation can be indicated as follows:
t 0 z T N 2n
x 1 0 -1 0
y 1 0 -1 0 1
(X,y) (071) (170) (0,_1) (_170) (071)

As shown in Figure 8.5, the orientation is indicated by arrows.

(2) Since y =2Inz = Ins?, then y = Inx.

Figure 8.5
The orientation of the curve C for ¢t > 1:
t 1 2 3
X 1 4 9
y 0 2In2 2In3
(x,y) (1,0) (4,2In2) (9,2In3)

The orientation of the curve C is determined by increasing values of the parameter ¢.
8.1.1 Tangent Lines

Suppose that f and g are differentiable functions. We want to find the tangent line to a smooth curve C given by the parametric equations
x = f(¢) and y = g(r) where y is a differentiable function of x. From the chain rule, we have

dy dy dx

dt  dx dt’

If dx/dt # 0, we can solve for dy/dx to have the tangent line to the curve C:
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rdy dy/dt

T dx  dx/dt

dx
i dx
i 7 #0

Remark 8.2
e If dy/dr =0 such that dx/dt # 0, the curve has a horizontal tangent line.
e If dx/dr = 0 such that dy/dt # 0, the curve has a vertical tangent line.

Example 8.5 Find the slope of the tangent line to the curve at the indicated value.
1) x:t+1,y:tz+3t; atr = —1
Q) x=3=3t,y=r2-5t—1;atr =2
(3) x=sinr,y=cos t;atr =%

Solution:
(1) The slope of the tangent line at P(x,y) is

. dy _dyjdt 2143

Cdx  dx/dt 1

=2t+3.

The slope of the tangent line at = —1 is 1.

(2) The slope of the tangent line is
o dy _dy/dt _ 2t-5

Cdx  dx/dt  32-3

The slope of the tangent line at # = 2 is ’Tl.
(3) The slope of the tangent line is
¢+ dy dy/dt —sint

Y T dx T dxjdi  cost

The slope of the tangent line at r = J is —1.

= —tan f.

Example 8.6 Find the equations of the tangent line and the vertical tangent line at # = 2 to the curve C given parametrically x = 2¢, y =
2
= —1.

Solution:
The slope of the tangent line at P(x,y) is

¢ dy dy/dt 2t
YT dx T dxjar T 2

1 _ =1

The slope of the tangent line at = 2 is m = 2. Thus, the slope of the vertical tangent line is —- = -
Att =2, we have (xg,y0) = (4,3). Therefore, the tangent line is
y—3=2(x—4) Point-Slope form: y — yg = m(x — xp)

and the vertical tangent line is

Example 8.7 Find the points on the curve C at which the tangent line is either horizontal or vertical.
@) x=1-1,y=1r%

) x=0—4t,y=1r*—4.

Solution:

(1) The slope of the tangent line is m = 4% = 42/4!

dx = dxjdt

_ 2t

For the horizontal tangent line, the slope m = 0. This implies —2¢ = 0 and then, r = 0. At this value, we have x =1 and y = 0.
Thus, the graph of C has a horizontal tangent line at the point (1,0).
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For the vertical tangent line, the slope 771 = 0. This implies % = 0, but this equation cannot be solved i.e., we cannot find values
for ¢ to satisfy % = 0. Therefore, there are no vertical tangent lines.
dy _ dy/dt 21

(2) The slope of the tangent line is m = 4 = dxjdi = 34

For the horizontal tangent line, the slope m = 0. This implies =3 . —; = 0 and this is acquired if 7 = 0. Atz =0, we have x =0 and
y = —4. Thus, the graph of C has a horizontal tangent line at the point (0, —4).

For the vertical tangent line, the slope % = 0. This implies 73’22t+4 = 0 and this is acquired if = +-2Z 7 Att = \[, we obtain
— inx = 10 -_8 : :
x= 3 f andy=—3. Att = \f’ we obtain x = V3 and y = — 3. Thus, the graph of C has vertical tangent lines at the points

( 3[7 and (77_§)

Let the curve C has the parametric equations x = f(¢), y = g(r) where f and g are differentiable functions. To find the second derivative

d*y .
T2 Weuse the formula:

Py _dy) _dy /di
dx? dx  dx/dt

2., 2
Note that 7é Z’;)c ?Z:Z .

Example 8.8 Find dy and Ly 2 at the indicated value.
@) x—t,y—tz—latt* 1.
(2) x=sint,y=cosratr=1%.

Solutlon
(1) %Y =2t and dx = 1. Hence, ji Z;%i = 2t, then at t = 1, we have Z—) =2(1)=2.
d*y _ dy/dt _
The second derivative is o= axd = 2.
2) % = —sin ¢t and @ =cos t. Thus, % = g% = —tan t,then atr = % we have % =—/3.
d) dy//df_fseczt_ _ dy_
The second derivative is &2 = dxjdi = cosi = —secd 1. Atr=1 3, we have = -8

Arc Length and Surface Area of Revolution

Let C be a smooth curve has the parametric equations x = f(¢), y = g(¢) where a < ¢ < b. Assume that the curve C does not intersect
itself and f’ and g’ are continuous.

YA
Let P = {ry,11,t2,...,1, } is a partition of the interval Pk s
[a,b]. Let P, = (x(tx),y(tx)) be a point on C
corresponding to . If d(Pi_1,P) is the length of

the line segment P, | Py, then the length of the line
given in Figure 8.6 is I :

d(Pe_1,Fy) :

agE

Ly, =

=]
=y
7

k

Figure 8.6

In the previous chapter, we found that L = i lhm Lp. From the distance formula,
—0

d(Pr—1,P) = 1/ (Axe)? 4 (Aye)?

Therefore, the length of the arc from ¢t = a to t = b is approximately

n
L~ lim m lim \/ (Axi /At )? + (Aye /A ) > Ay
wo||—>0kZ [1Pl[=0= Z
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From the mean value theorem, there exists numbers wy, zx € (fx_1,%) such that

Ave  f(o) = f (1) = P, Dk 8(t) —g(te—1) ()

Aty B — -1 Aty Tk —tg—1

By substitution, we obtain

L~ lim zn: \/[f’(wk)]z—l— [g’(wmz

[1PI-0 =

If wy = z for every k, then we have Riemann sums for 1/ [f/(1)] s [¢'(1)] ?. The limit of these sums is

= [P + g0

In the following, we determine a formula to evaluate the surface area of revolution of parametric curves. Let the curve C has the
parametric equations x = f(t), y = g(t) where a <t < b and f’ and g’ are continuous. Let the curve C does not intersect itself, except
possibly at the point corresponding to = a and r = b. If g(t) > 0 throughout [a, b], then the area of the revolution surface generated by

revolving C about the x-axis is
b b dx.\» dy\2
SA— zu/a /14 [/ (]2 dx = Zn/a g/ ()P + (5

Similarly, if the revolution is about the y-axis such that f(r) > 0 over [a, b], the area of the revolution surface is

S.A:Zﬂ:/abf(t) (%)%(@ 2

Theorem 8.1 Let C be a smooth curve has the parametric equations x = f(), y = g(¢) where a <t < b, and f’ and g’ are
continuous. Assume that the curve C does not intersect itself, except possibly at the point corresponding to t = a and ¢ = b.
1. The arc length of the curve is

2. If y > 0 over [a, b], the surface area of revolution generated by revolving C about the x-axis is

b
S.Azzn/y (%)ﬂ(@2
a

3. If x > 0 over [a,b], the surface area of revolution generated by revolving C about the y-axis is

b
S.A:27t/ oy ()24 (22
a dt

Example 8.9 Find the arc length of the curve x = ¢ cos 1, y=¢'sint, 0 <t <

(S

Solution:
: dx dy
First, we find Gt and 7.

dx ‘ [ dx\2 t Fei 2
— =¢é'cost—eé'sint= (—) = (ecost—esint),
dt (dz) ( )"
d . d .
& elsin t+e cos 1 = (—y)2 = (¢'sin 1+ €' cos 1)%.
dt dt
Thus,
dx\> ,dy\2 . . . . .
(E) + (d—);) =% cos® t—2¢% cos t sin t+e¥ sin? t+ ¢ sin® t+2¢* sin t cos t + ¢ sin® ¢

=¥ ¥ =26%,

[
Il
=
—
Q
[SIE]
|
—
~—

Therefore, the arc length of the curve is L = /2 foi e dr=v2 [ ¢ }
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Example 8.10 Find the surface area of the solid obtained by revolving the curve x =3cos ¢, y=3sin ¢, 0 <7 < % about the x-axis.

Solution: Since the revolution is about the x-axis, we apply the formula
sa=an [ v /(5 (D) ar
’ OV ar dt

We find % and % as follows:

d. d. d d
d—: = -3sint = (d—);)2 =9sin® ¢ and di)t) =3cos t = (d—:)z =9cos? 1.

Thus,
d d
(d—j)z + (d—i))2 =9(sin” 1 +cos® 1) =9.
This implies

T

SA= 187:/§ sin f df = —18% [cos z] S 18 [% - 1] —on.
0

I
3
0

Example 8.11 Find the surface area of the solid obtained by revolving the curve x = 3, y=1, 0 <t <1 about the y-axis.

Solution: Since the revolution is about the y-axis, we apply the formula
b dx\2 ,dy\2
S.A:2n/ () + (=
a dt

We find Z—;‘ and % as follows:

x _ap (N2 g4 g P dxy2
dz_3 (dt) or and dt ! (dt> !
Thus,
dx\2 o dy2 4
(B2 (D)2 gt 1
This implies

1 371
3 4 T 4 3 T
S.A:21t/0 A T [(9t +1)2]0: 8 [10\/10—1].
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Exercise 8.1

1-8 M The curve C is given parametrically. Find an equation in x and y, then sketch the graph and indicate the orientation.
1 x=ty=2t+1,1<t<3 5 x=Int,y=¢,1<t<4
2 x=cos 2t,y=sin 1,0 <t <m/2 6 x=3cos t,y=3sint,0<r<2m
3 x=2ty=(2)*-1<1<1 7 x=3t+2,y=1—1,-1<r<5
4 x=14cos t,y=1+sin1,0<t<2n 8 x=1,y=0,1<t<3

9-16 M Find % and % at the indicated value.
9 x=ry=r+latr=1 13 x=¢é,y=e¢'+1atr=0
10 x=1/3,y=13/2atr=2 14 x=1+cost,y=sintatr =m/4
11 x=vVi3,y=2+1latr=1 15 x=tcos t,y=tsin tatt =0
12 x=241,y=1-atr=3 16 x=+/t,y=r2atr=1

17 - 24 M Find the slope of the tangent line to the curve at the indicated value.
17 x=2t,y=(21)>att =1 21 x=3r+2,y=t—1latr=1
18 x=V13,y=2t+1att=2 22 x=t+cost,y=sintatt =m/6
19 x=2+1,y=1-atr=3 23 x=t,y=13 atr=1
20 x=cos 2t,y=sin tatt =7/3 24 x=i,y=r*atr=>5

25 -30 M Find the points on the curve C at which the tangent line is either horizontal or vertical.
25 x=t,y=13teR 28 x=12y=13-31teR
26 x=4t,y=r>reR 29 x=32—6t,y=1/1,t >0
27 x=Int,y=¢',t >0 30 x=1—sint,y=2cos t,t €R

31 -38 M Find the length of the curve.
31 x=3t+2,y=1t—1,-1<1r<3 35 x=Int,y=1,1<tr<4
32 x=32y=23,0<r<2 36 x=14cost,y=1+sin1,0<t<m
3B x=ty=12,1<1<4 37 x=3cos t,y=3sin 1,0 <r < m/4
34 x=sint,y=cos 1,m/6 <t <m/4 38 x=12y=130<r<1/2

39 - 46 M Find the area of the surface generated by revolving the curve about the specified axis.
39 x=12, y=1,0<r<1 x-axis

40 x=¢'cost,y=¢€'sint, 0<r <% x-axis
41 x=t,y=1%1<r<4 y-axis

42 x=t,y=+/t,0<t <2 x-axis

43 x=12,y=1,0<r<2 x-axis

44 x=1+cost,y=1+sint, 0<r<m y-axis
45 x=sin? 1, y=cos? 1, 0 <t <m/2 y-axis

46 x=312, y=1,0<t<2 x-axis
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Polar Coordinates System

Previously, we used Cartesian (or Rectangular) coordinates to determine points (x,y). In this section, we are going to study a new
coordinate system called polar coordinate system. Figure 8.7 shows the Cartesian and polar coordinates system.

Definition 8.3 The polar coordinate system is a two-dimensional system consisted of a pole and a polar axis (half line). Each
point P on a plane is determined by a distance » from a fixed point O called the pole (or origin) and an angle 6 from a fixed
direction.

plxy,v1)
o b T s

v

* ; Pole
Polar axis

Figure 8.7: The Cartesian and polar coordinates. The Cartesian coordinate system is on the left and the polar coordinate system is on the right.

Remark 8.3
1. From the definition, the point P in the polar coordinate system is represented by the ordered pair (r,8) where r, 8 are
called polar coordinates.

2. The angle 6 is positive if it is measured counterclockwise from the axis, but if it is measured clockwise the angle is
negative.

3. In the polar coordinates, if r > 0, the point P(r,8) will be in the same quadrant as 0; if r < 0, it will be in the quadrant on
the opposite side of the pole with the half line. That is, the points P(r,0) and P(—r,0) lie in the same line through the
pole O, but on opposite sides of O. The point P(r,0) with the distance |r| from O and the point P(—r,0) with the half
distance from O.

4. In the Cartesian coordinate system, every point has only one representation while in a polar coordinate system each
point has many representations. The following formula gives all representations of a point P(r,0) in the polar coordinate
system

P(r,0+2nm) = P(r,0) = P(—1,0+ (2n+1)n), neZ.

Example 8.12 Plot the points whose polar coordinates are given.
@ (1,5m/4) (3) (1,13m/4)

(2) (1,-3m/4) @ (=1,m/4)
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Solution:
1) (3)
'.,\ 2\ L :
N ‘ & 1o~ P
[ ‘-
1 o
o
P
4
) (4)
1 T
2 p( ’4)
LA
r"3 = /{/ E .l L
v ‘ / '
Y Polar s / Polar axis
/T /
(1 BHJ ‘ | / v
o(1,-= /
4 // 1 ﬂ
o’p( ’4)
Figure 8.8

8.2.1 The Relationship between Rectangular and Polar Coordinates

Let (x,y) be the rectangular coordinates and (r,0) be the polar coordinates of the same point P. Let the pole be at the origin of the

Cartesian coordinates system, and let the polar axis be the positive x-axis and the line = % be the positive y-axis as shown in Figure
8.9.

el

In the triangle, we have

 P(59) = (1)

=

cos 0= —-=x=rcos 0, :

r i a

sinGzX:>y:rsin6. : E

r Ty
Hence, ' A o
rcosf i i

4y = (rcos8)” + (rsin6), Pole Polar axis
= r*(cos> 0 +sin® ).

Figure 8.9: The relationship between the rectangular
and polar coordinates.

. . . 2 2 _ 2 _ y
This implies, x* +y* = r* and tan 8 = 2 for x # 0.
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The previous relationships can be summarized as follows:

x = rcos 6, y = rsin 6
tan 6 =2 for x#0
X

2y =2

Example 8.13 Convert from polar coordinates to rectangular coordinates.

2) (2,m) 4) (4,3n/4)
Solution:

(1) r=1land®=17.

T 1
x=rcos 0= (1)cos — = —,
Weos 3=
b4 1
=rsin 6= (1)sin — = —.
y (1)sin 7 7
(L L
Hence, (x,y) = ( > 2).
(2) r=2and 6=
x=rcos B =2cos T = -2,

y=rsin 6 =2sin Tt =0.

Hence, (x,y) = (=2,0).
(3) r=2and 0 = =~
-2
x=rcos 6 =2cos Tn =-1,
-2
y=rsin® = 2sin Tn = 3.
Hence, (x,y) = (—1,—/3).
@) r=4and 0= 3.
3n
x=rcos 0 =4cos T =-2V2,
. . 3n
y =rsin 8 =4sin T =2V2.

This implies (x,y) = (—2v/2,2v/2).

Example 8.14 Convert from rectangular coordinates to polar coordinates for r > 0 and 0 <6 < 7.

@ (5,0) 3) (-2,2)
2 (2v3,-2) @ (1,1)
Solution:

(1) We have x =5 and y = 0. By using x> +y? = 2, we obtain r = 5. Also, we have tan® = % = % =0, then 6 = 0. This implies
(r,0) = (5,0).

(2) We have x =2+v/3 and y = —2. Use x> +y*> = r? to have r = 4. Also, since tan 6 = 2= 2;\/25 = ;;, then 6 = %7[. Hence,
(60) = (4.35).

(3) We have x = —2and y = 2. Then, 7> = x*> +y* = (—2)? +22 and this implies r = 21/2. Also, tan 6 = X = F =1 then6= %Tn.
This implies (1,6) = (2v/2, 3).
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)

Y T
X

(4) We have x =1 and y = 1. By using x> +y* = 12, we have r = v/2. Also, by using tan 8 = £ = 1, we obtain 6 = 7+ This implies,

(r0) = (ﬁv %)

A polar equation is an equation in r and 6, r = f(6). A solution of the polar equation is an ordered pair (rg,00) satisfies the equation i.e.,
ro = f(Bp). For example, r = 2cos 8 is a polar equation and (1, §), and (v/2, %) are solutions of that equation.

Example 8.15 Find a polar equation that has the same graph as the equation in x and y.

™ x=7 3) K +y*=4
(2) y=-3 4) y2 =Ox
Solution:

(1) x=7=rcos 6 =7=r="7Tsech.
(2) y=-3=rsin 6=-3=r=—3csch.

3) P +y*=4=r*cos> O+r*sin®> 6 =14
= r?(cos® @ +sin® ) =4

=r=4.

4) y> =9x = r’sin> 6 =9rcos 0
= rsin® 8 =9cos 0
= r=9cot Bcsc 6.

Example 8.16 Find an equation in x and y that has the same graph as the polar equation.

@ r=3 (3) r=6cos 0
(2) r=sin 6 4) r=sec O
Solution:

1) r=3=/x24+y2=3=x>4+y>=0.
@) r=sind=r=Y=r=y=>x2+y =y=x2+y"—y=0.
() r=6cos 0=>r=6%=r2=6x=x2+)2—6x=0.

(4) r=sec Gﬁr:ﬁﬁrcos 0=1=x=1.

8.2.2 Tangent Line to Polar Curves

Theorem 8.2 Let r = f(8) be a polar curve where f’ is continuous. The slope of the tangent line to the graph of r = £(8) is

dy dy/d®  rcos 0+sin 6(dr/de)

dx dx/d®  —rsin @ +cos 8(dr/d®)’

Proof. Since r = f(0) is a polar curve, then
x=f(8)cos B, y= f(0)sin 6.

From the chain rule, we have

% = —f(8)sin 6+f/(9)cos 0 = —rsin 9+%COS 0,
% = f(8)cos B+ f'(8)sin B = rcos B+ %Sin 0.

If % # 0, the slope of the tangent line to the graph of r = f(0) is

dy dy/d®  rcos 8+sin 6(dr/de)

dx  dx/d®  —rsin @ +cos 0(dr/d®)’
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Remark 8.4
1. If 2% = 0 such that % # 0, the curve has a horizontal tangent line.

2. If % = 0 such that % # 0, the curve has a vertical tangent line.

3. If g—g # 0 at 6 = 09, the slope of the tangent line to the graph of r = f(8) is

rocos 8g+sin 8y(dr/d8)e—e,
—rpsin g+ cos eo(d}’/de)e:eo

, where ro = f(8p)

Example 8.17 Find the slope of the tangent line to the graph of » = sin 6 at 6 = %.

Solution:
. dx 5 .2
x=rcos 8= x=sin Ocos 0 = T =cos” O —sin” 0,
. .2 dy .
y=rsin 0 =y=sin" 0 = 76 = 2sin Ocos 6.
Hence,
dy  2sin 6cos 0
dx  cos? §—sin” 6
Ato=17, j—y =1and % = 0. Thus, the slope is undefined. In this case, the curve has a vertical tangent line.

Example 8.18 Find the points on the curve r =2+ 2cos 0 for 0 < 0 < 2w at which tangent lines are either horizontal or vertical.

Solution:

d
x=rcos ©=2cos 8+2cos” 6= d—g = —2sin 6 —4cos Osin 0,

d
y=rsin 8 = 2sin 6+2cos Osin 6 = d% =2cos B—2sin® 0+ 2cos’ 6.

For a horizontal tangent line,

d
d—g =0=2cos 0—2sin> +2cos> 6 =0=2cos> O+cos 8 —1=0= (2cos O —1)(cos 8+1) =0.

This implies 6 = 7, 6 = /3, or 8 = 57/3. Therefore, the tangent line is horizontal at (0,7), (3,7/3) or (3,57/3).

For a vertical tangent line,

dx

70 =0=sin 6(2cos 6+1) =0.

This implies 8 =0, 8 = &, 6 = 21/3, or 6 = 47/3. However, we have to ignore 8 = T since at this value dy/d® = 0. Therefore, the
tangent line is vertical at (4,0), (1,2n/3), or (1,4w/3).

Graphs in Polar Coordinates

Before starting sketching polar curves, we study symmetry about the polar axis, or the vertical line 6 = % or about the pole.
[l Symmetry in Polar Coordinates
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Theorem 8.3
1. Symmetry about the polar axis.
The graph of r = f(0) is symmetric with respect to the polar axis if replacing (r,0) with (r, —8) or with (—r,w — 6) does
not change the equation.

2. Symmetry about the vertical line 6 = Z.
The graph of r = f(8) is symmetric with respect to the vertical line if replacing (r,8) with (r,t — ) or with (—r, —8)
does not change the equation.

3. Symmetry about the pole 6 = 0.

The graph of r = f(0) is symmetric with respect to the pole if replacing (r,8) with (—r,0) or with (5,6 + ) does not
change the equation.

) ©

v y .
1 (r,8)
s e e 7O 1 1m 1 mp (0} (% 5
\ (-rm-6) (-r=6) \ 7% riil
T / /
\ T \ f/ [+ //7\.}
/% ‘\ /K Q 7
/8 /9 _I Pd’}i Polar axis
-0, g\ i £
Pole \i: Polaraxis Pole | \l Polar axis //
b
\ \\ (—T,6]=(r,n.-|{9]
(r,=6) ¥(r,—6)

Figure 8.10: Symmetry of the curves in the polar coordinate system. (A) symmetry about the polar axis, (B) symmetry about the vertical line 6 = %, and
(C) symmetry about the pole 6 = 0.

Example 8.19 (1) The graph of r =4cos 0 is symmetric about the polar axis since
4cos (—8) =4cos 8 and —4cos(m—0) =4cos 6.
(2) The graph of r = 2sin 6 is symmetric about the vertical line 8 = % since
2sin (T —0) =2sin 8 and —2sin (—6) = 2sin 6.
(3) The graph of r> = a®sin 20 is symmetric about the pole since
(=r)? = a*sin 26,
= r? = a’sin 26.
and
2 = a*sin (2(n+9)),
=a’sin (2m+20),

2 = a?sin 20.

M Some Special Polar Graphs
M Lines in polar coordinates
1. The polar equation of a straight line ax+by =cisr=
Since x = rcos 0 and y = rsin 6, then

c
acos 0+bsin 6 °

c

ax+by:c:>r(cos 6+bSll’l 9):C$r:m
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2. The polar equation of a vertical line x =k is r = ksec 6 .
Let x =k, then rcos 6 = k. This implies r = ﬁ =ksec 0.

3. The polar equation of a horizontal line y = k is r = kcsc 0.
Let y = k, then rsin 6 = k. This implies r = ﬁ =rcsc 6.

4. The polar equation of a line that passes the origin point and makes an angle 6y with the positive x-axis is 8 = 6.

Example 8.20 Sketch the graph of 6 = J.

Solution:

We are looking for a graph of the set of polar points

{(n6)|,reR}.
Polar axis
Figure 8.11
M Circles in polar coordinates
1. The circle equation with center at the pole O and radius |a| is r = a.
2. The circle equation with center at (a,0) and radius |a| is r = 2acos 6.
3. The circle equation with center at (0,a) and radius |a| is r = 2asin 6.
YA YA YA
S a4+ r = 2asin@
/‘\ /\/—\ i
k/a w ¢
r = 2acos@ r = 2acosf T r=Zagind
a<0 a>0 a-<0

Figure 8.12: Circles in polar coordinates.

Example 8.21 Sketch the graph of r = 4sin 6.

Solution:
Note that the graph of = 4sin 8 is symmetric about the vertical line 8 = 7 since 4sin (1 — 8) = 4sin 6. Therefore, we restrict our

attention to the interval [0,7/2] and by the symmetry, we complete the graph. The following table displays polar coordinates of some

points on the curve:

>
[}

N |ova

B Jula

S
Ll (SE]

RN FNES]
~
S

M Cardioid curves
1. r=a(1+£cos 6) 2. r=a(l=+sin 0)
r=a(l4+cos ®) r=a(l—cos ) r=a(l+sin®) r=a(l—sin6)
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X X
Figure 8.13
Vy bt
a
a )
o0 o
—a r
a
2a 2a
y YA
2a
< T~ >
—a S—” g - x
2a

Figure 8.14: Cardioid curves.

Example 8.22 Sketch the graph of r = a(1 — cos 6) where a > 0.

Solution:
The curve is symmetric about the polar axis since cos (—8) = cos 6. Therefore, we restrict our attention to the interval [0, 7] and by the

symmetry, we complete the graph. The following table displays some solutions of the equation » = a(1 — cos 0):

2n T

0 0 7
3a/2 2a

0 a/2

[l

Q pola
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Y Y
27 3a 2n 3a
L T F T
P(5.a) P(5.a)
E T a E T a
H3s H3s
P(m, 2a) P(m 2a)
) X - ‘
Pole Polar axis \ Pole ] Polar axis
\
\ )
)
. — =
Figure 8.15
M Limacons curves
1.r=a+bcos 0 2.r=a*+bsin 0
1.r=a+bcos 0
(@) r=a+bcos 0
B y Y
a 259
“<1 1<=<2 oy

13 (4
.
b
(b) r=a—bcos O
y 7
a
= 1 e
<1 <b<2
a (]
- \ a+b/\) |

Figure 8.16: Limagons curves r = a=+bcos 6.

2.r=a=xbsin 0
(@) r=a+bsin 6

y

a+b

SR
i
2
—]




v "
a+h S
o | 2
1< b <2
—a a B U %
(b) r=a—bsin 6
Ry ¥
2en 1<
b b
—a ) a x —a a X

Figure 8.17: Limagons curves r = a = bsin 6.

M Roses
1. r=a cos (n®) 2.r=a sin (nB) where n € N.
1. r=a cos (n6)

n=12 n=3
¥

2. r=a sin (n0)
n=2 1
v o

Figure 8.18: Roses in polar coordinates.

Note that if n is odd, there are n petals; however, if n is even, there are 2n petals.

(::::%% o % e % €:§§§§g%§%§§:}%

(
\

&
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M Spiral of Archimedes
r=a
a>0 a<0

N N
Q-

Figure 8.19: Spiral of Archimedes.

Exercise 8.2
1-8 M Find the corresponding rectangular coordinates for the given polar coordinates.
1(1,3) 5 (237
2 (-1,%) 6 (—3,2m)
3(2,%) 7 (7,3F)
4 (3,m) 8 (3,%)
- 16 M Find the corresponding polar coordinates for the given rectangular coordinates for » > 0 and 0 < 0 < 7.
9 (1,1) 13 (2,V?2)
10 (1,V/3) 14 (3,0)
11 (-1,1) 15 (4,2)
2 (v3,3) 16 (-3,-3)
17 - 24 M Find a polar equation that has the same graph as the equation in x and y and vice versa.
17 x=9 21 x* =3y
18 X2 +y*=1 22 X2 —y2=16
19 r=csc© 23 rzps?’ﬁ
20 r=2cos 6 24 r=3—2sin 0
25 - 28 [ Sketch the curve of the polar equations.
25 r=sec 0 27 r=2+2sin 6
26 r=2cos 0 28 r=3+2cos ©

29 - 33 M Find the slope of the tangent line to the graph at 6. Then find the points on the curve at which the tangent lines are either
horizontal or vertical.

29 r=2sinQat0=3% 32 r=1+sin0at6=7%
30 r=3+2cos Batb=7% 33 r=1-cosBatf=7F¢
z

31 r=cos 70 at6 =

8.3 Area in Polar Coordinates

Let r = f(8) be a continuous function on the interval [, B] such that 0 < o < 3 < 2x. Let f(8) > 0 over that interval and R be a polar
region bounded by the polar equations r = f(6), 6 = o. and 6 = P as shown in Figure 8.20.

To find the area of R, we assume P = {601,0,,...,0, } is a regular partition of the interval [0, B]. Consider the interval [6;_;,8;] where
AO; = 6 — 6;_1. By choosing oy € [0;_1,0], we have a circular sector where its angle and radius are A8; and f (), respectively.
The area between 0;_| and 0 can be approximated by the area of a circular sector.
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a

P,

Figure 8.20: Areas in polar coordinates

Let f(u) and f(vr) be maximum and minimum values of f on

[6x—1,0]. From Figure 8.21, we have
1 2
E[f(vk)] Aby

1 2
> [f (ug)] A6 <AA <
N————r N———r
i Area of the sector of radius (vk)
Figure 8.21

Area of the sector of radiusf (i)

By summing from k = 1 to k = n, we obtain

[F ()] A8k f ()

noq 2
Y 3 [f ()] " A8 f (i) <
k=1 k=1
~——
=A
The limit of the sums as the norm ||P|| approaches zero
lim Y L[] A0, ( f a6 = [ L [7(@)]* do
m = k uk k] (Vi =
[IP[[—0/=1 2 H |Ho & o 2
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Therefore,

Similarly, assume f and g are continuous on the interval o, B] such that f(8) > g(8). The area of the polar region bounded by the graphs

of f and g on the interval [, B] is

Example 8.23 Find the area of the region bounded by the graph of the polar equation.

(3) r=4sin 6

4) r=6—06sin 0

1 r=3
(2) r=2cos 0
Solution:

(1) The area is

1 [2n 2 9 [2n 9 21
A=— 3°de= - de=-10| =9m.
2/0 2/0 318], =om

Note that one can evaluate the area in the first quadrant and multiply
the result by 4 to find the area of the whole region i.e.,

A:4<%/0%32d6):18/0% d6:18[6]f:9n.

(2) We find the area of the upper half circle and multiply the result by 2
as follows:

A=2<l/i(200s 9)>2 de> :/74cos2 0.do
2 Jo 0

Figure 8.22

r = 2co50

Figure 8.23
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:}f
(3) The area of the region is T = 45inb
1/ 16 (™
Azf/ (4sin 8)2dB =~ [ (1—cos 260) d® 1
2 Jo 4 Jo
sin 2017
_4[9_ 2 ]0
:4[7:—0}
= 4.
Figure 8.24
¥,
(4) The area of the region is
1 [2n
A= 7/ 36(1 — sin 6)> d6
2 Jo
m . .5 7 = 6(1— sind)
:18/ (1 —2sin 6+sin” ) d6 ‘ ‘
0 -6 6
6 sin 2072n
- 18[9 2cos 0+~ — ]
+2cos +2 1 0
— 18[(2n+2+m) - 2]
= 54~.
Figure 8.25

Example 8.24 Find the area of the region that is inside the graphs of the equations r = sin® and r = /3 cos 6.

Solution:
First, we find the intersection points of the two curves

sin 8 = v/3cos e:>tane:\/§:>e=§.

The origin O is in each circle, but it cannot be found by solving the equations. Therefore, when looking for the intersection points of the
polar graphs, we sometimes take under consideration the graphs.

The region is divided into two small regions: below and above the line %
}I

r= sinf

S r=v3cosh

B3]

Figure 8.26
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:}f
Region(1): below the line %.
175 ., 13 o
Alzf/ sin GdG:f/ (1 —cos 20) do T
2 Jo 4 Jo 9=_
1 sin 2673 r=13 cosf ’ f'),» 3
Z[i 2 ]0 a0 r= sind
1rm  sin 3 . A
T4 [§ B } x
1{5,[}
4137 4
Figure 8.27
:}f
Region(2): above the line %.
3
/ V3cos 0)? d6 = f/ (1+cos 20) do T
T2 4 g
31 sin207% . A
=210+ r=vV3cosh | £ 7.
4[ 2 ]g f"',, r= sinf
3r,m T V3 fiis
=Z(Z2-0)=(24+2X2
4[(2 ) -3+ )] X
3z ﬁ}
~4le6 4 1
Figure 8.28

Total area A = A| +A, = % _ é.

Example 8.25 Find the area of the region that is outside the graph of r = 3 and inside the graph of r =24 2cos 0.

Solution: As shown in the figure, we find the area in the first quadrant and then we double the result to find the area of the whole region.
The intersection point of the two curves in the first quadrant is

1 b
2+2cos =3 = cos ezééezg.

k]
| =

A= (%/ (4(1+cos 8)* - )de)

:/g (1+2cos 6+ cos? 8) —9) do

r=2(1+ cosf)

:/ (8cos O+4cos> ©—5) do

T
3

[8 sin 0+ sin 26 — 39]

3—
2 .

Figure 8.29
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Exercise 8.3

1-8 M Find the area of the region bounded by the graph of the polar equation.
1 r=4sin 6 5 r=06(1+sin 0)
2 r=1+sin 8 6 r=2(1—cos 0)
3r=5 7 r=3cos 30
4 r=2cos 6 8 r=3+2sin 0

9 -18 M Find the area of the region bounded by the graph of the polar equations.
9 inside r = 1+ cos 6 and outside r = 3cos 0

10 inside r =2+ 2cos 0 and outside r = 3

11 outside r =2 —2cos 6 and inside r = 4

12 inside both graphs r =1+cos 6 and r =1

13 inside r = 1 +sin6 and outside r = 1

14 inside both graphs » =2cos 0 and r = 2sin 0

15 outside r = 3 and inside r = —6cos 0

16 inside both graphs r = cos@ and » = —sin 0

17 between the graphs » = 1+sin 6 and = 3sin 0
18 inside both graphs » =2 and r =2+ 2sin 6

19 inside the graph r =1 — cos 0 in the first quadrant

20 between the graphs r = 1+ sin 0 and » = 3sin 6 in the second quadrant

Arc Length and Surface Area of Revolution in Polar Coordinates
Arc Length in Polar Coordinates
Let the polar function » = f(60), e < 8 < B be smooth. We know that

x=f(0)cos 6 and y= f(8)sin 6, o <O <P.

Thus,
(Z—;)er (%)2 — (f'(8)cos 06— f(8)sin 8) + (f'(8)sin B+ f(8)cos 0)°
(G))20052 0 —2£(8)f'(8)cos Bsin 8+ (f(e))zsin2 0
))*sin> 0+ 2£(6)'(8) cos Osin 6+ (f(6))”cos® 6

+(f'(8))
C 2[cos 0+ sin® 9} (]”(6))2[sin2 6+ cos’ 9]

= (f

:(f’
(v
~ (1'(6))
= (FO) 4 (10) = (9 12

Therefore, the arc length of the curve is

p dr
= [ 4/ 2
L ; r—l—(de) do

Example 8.26 Find the length of the curve.

@ r=2 (3) r=e®where0<6<2n
(2) r=2sin 6 4) r=2—2cos 0
Solution:

@ r —l—(j—) = 4. Hence,

L:/zn\/?tdezz{ern:m
0 0
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2) + (d—) = 4sin® 8 +4cos® O = 4(sin? B+ cos’ 0) = 4. This implies
T T
L:/ Vade=2[0]| —om.
0 0
3) 2+ (%)2 e 20 4 ¢720 =220 Hence,
21 2n
L :/ V2e720 4o = ﬁ/ e ?do=V2[1-¢ .
0 0

(4) r2+(%) =4 —8cos O+4cos® B+4sin” O =8 —8cos B = 8(1 —cos 0).

2n 2n
L:/ V/8(1 —cos e)dezzﬂ/ V1—cos 6 .d6.
0 JO

Since sin? % = %, then

012n
L= 4/ \/sm fd6—8/ fsmfde—fS[cosE]O:l&

Surface Area of Revolution in Polar Coordinates

Let the polar function r = f(0), o0 < 8 < B be smooth. We know that
x=f(0)cos 6 and y= f(8)sin 6, <O <.

M The surface area generated by revolving the curve about the polar axis (the x-axis) is

dr.»

de) do

B
S.A:Zn/ | rsin ] 4/r2+ (
o

B The surface area generated by revolving the curve about the line 8 = % (the y-axis) is

SA= 27t/ |rcosO|\/r2+(Z;) de

Note that when choosing o and B, we must ensure that the surface does not retrace itself when the curve C is revolved.

Example 8.27 Find the area of the surface generated by revolving the curve r = 2sin 6 about
(1) the polar axis.
(2) theline®=3.

Solution:

B d
(1) We apply the formula S.A = Zn/ | rsin® | /7% +( .
o

2
de) de.

2 dr

r +(d6) = 4sin® 0+4cos® O = 4(sin® O+ cos’ 0) =
Thus,
T T 1 29
S.A:Sn/ sin? 9d6:4n/ (1 cos 26) de:4n[e— s } —4n [n 0] = 4n2.
0 0 2
B dr
(2) We apply the formula S.A = 27t/ |rcos 0] 4/r2+ (%)2 d®. Thus,
o
T 8 i3
SA= 87t/2 sin 6cos 0.d0 = ——: | cos? 8] = —an[0—1] =4n.
0 2 0
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Exercise 8.4
1-6 M Find the length of the curve.
1 r=3cos 0 4 r=3
2 r=sin 0 5 r=3+3cos 0
3 r=2(1—cos 0) 6 r=06,0<06<1
7 - 12 M Find the area of the surface generated by revolving the graph of the equation about the polar axis.
7 r=1+cos 0 10 r=4
8 r=cos 6 11 r=4sin 0
9 r=3—3cos 6 12 r=6(1+cos 0)

13- 18 M Find the area of the surface generated by revolving the graph of the equation about the line 6 = 7.
13 r=1+sin 6 16 r=2(1+sin 0)

14 r=2 17 r=4cos 0

15 r=1—sin 6 18 r=sin 0
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1-8 M The curve C is given parametrically. Find an equation in x and y, then sketch the graph and indicate the orientation.

1 x=3t,y=2t+1,0<r<3
2 x=12 y=2Int,t>0
3x=r2—1,y=12+1, -2<1<2

4 x=¢,y=e",teR

9-16 M Find % and % at the indicated value.
9 x=5t,y=4r+2, atr=1

10 x=¢', y=¢*, att =1In3
11 x=1, y=%2 atr=2

12 x=341,y=2—2, atr =1

17 - 24 M Find an equation of the tangent line at the indicated value.

17 x=12, y=1+2, attr =2

18 x=cos t, y = sin?

t,att=1%
19 x:\ﬁ,y:%, atr =2

20 x=2+4sect, y=1+2tant, att =%

Review Exercises

S x=3cost,y=2sint, 0<tr<2xn
6 x=cost,y=sint, 0<r<2m
7 x=Int,y=te', t >0

8 x=1,y=2t+4,0<t<5

13 x=sint, y=cost, att = ¢
-2
14 x=sin® ¢, y =cos? t, atr =14

15 x=1-sint,y=1—cost, atr =%

16 x=312—6r, y=Ins, atr =2

21 x=13—3t, y=1>—5t—1, atr =2
22 x=¢€,y=e¢"! att=0
T

23 x=1+sint, y=1-2cost, att =3

24 x=In(t+1), y=1>, atr =3

25 - 32 M Find the points on the curve C at which the tangent line is either horizontal or vertical.

25 x=312—6t, y=+/1,1>0
26 x=13—3t,y=1>—5, 1R
27 x=1—1,y=12, 1R

28 x=1-1,y=3-31,teR

33 -40 M Find the length of the curve.
33 x=512, y=1,0<r<1

34 x=t+1,y=2t,0<t <5
35 x=cost,y=sint,0<r<m

36 x=2sint, y=2cost,0<t<2mn

29 x=sint, y=cost,t€R
30 x=1+sint, y=2cost, t €R
31 x=1-12,y=1>—1,teR

32 x=¢,y=e',teR

37 x=1%,y=21,0<r<3
38 x=1,y=2t,1<t<3
39 x=élcost,y=e'sinr,0<t <%

40 x=813, y=3+(8—1)2,0<r<4

41 - 48 M Find the area of the surface generated by revolving the curve about the x-axis.

41 x=1%,y=1,0<1r<3
2 x=1y=120<r<1
43 x=cost,y=sint,0<t<m

44 x=t—sint,y=1-cost,0<r<%

45 x=2cost,y=2sint, 0<t<m
46 x=¢'cost,y=¢'sint, 0<r <%
47 x:e’,y:e%,OStSI

48 x=9+22 y=4r,0<r<2

49 - 56 M Find the area of the surface generated by revolving the curve about the y-axis.
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49 x=413 y=2r,0<1<5
50 x=3t4+2,y=1,0<r<3
— ol —an2
51 x=cos* t,y=sin"1,0<t <%

52 x=3+cost,y=sint,0<t<m

76 x2+y2—6x=0

95 r=sin6,0<0< %

96 r=1+sin 6,

97 r=2(1—cos 9),0<0< %
98 r=e 9 0<6<2n

99 outside r = 2(1+cos 0) and inside r =3

53 x=¢,y=1t,0<t<e
54 x=\O_ 12, y=31, 2<1<2
55 x=2t,y=1-12,0<r<1

56 x=2sinr, y=2cost, F <r<%

57 - 64 M Find the corresponding rectangular coordinates for the given polar coordinates.

57 (2,m) 61 (8,7)
58 (4,—m) 62 (—2,m)
59 (—2,1) 63 (5. %)
60 (1,%) 64 (2,5)
65 - 72 M Find the corresponding polar coordinates for the given rectangular coordinates for r >0 and 0 < 0 < 7.
65 (1,1) 69 (1,0)
66 (—1,0) 70 (v2,1)
67 (3,3V3) 71 (-3,0)
68 (—2,2) 72 (-3,4)
73 - 80 M Find a polar equation that has the same graph as the equation in x and y.
73 x=3 77 xy=4
74 y=—7 78 12 =9x
75 24yr=1 79 X2 +y*+9y=0

80 x2 —y2 =125

81 - 88 M Find an equation in x and y that has the same graph as the polar equation.

85 r=sec O

86 r(cos 6—sin 0) =4
87 r=1=570
88 r= 1o

91 r=2(1—cos 6)

92 r=3(1+sin 6)

81 r=3
82 r=sin 0
83 r=2cos 6
84 rsin 6=4
89 - 92 M Sketch the graph of the polar equations.
89 r=2
90 r=4sin 0
93 - 109 M Find the area of the region bounded by the graph of the polar equations.
93 r=4cos 0
94 r=6sin 0
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100 inside » = 2(1+sin 6) and outside r =2

101 outside r = cos 0 and inside r = sin

102 inside both graphs r =1 —cos 6 and r = 1+ cos 6
103 inside both graphs r = 4cos 6 and r = 4sin 0

104 inside both graphs r =1—sin O and » =1+sin 0
105 outside r =2 —2cos 0 and inside r =4

106 outside r = 2(1 +sin 8) and inside r = 2(1 —sin 0)
107 inside » = cos 0 and » = v/3sin 0

108 inside r = 3 and outside r = 2

109 inside r = 2cos 0 and outside r = 4cos 0

110 - 115 M Find the length of the curve.

110 r=2 113 r=¢% 0<0<2n
111 r=2sin 6 114 r=3(1+sin 0)
112 r=1—cos 0 115 r=+/5cos 6
116 - 121 M Find the area of the surface generated by revolving the graph of the equation about the polar axis.
116 r=cos 6,0<0< % 119 r=1-cos 6
117 r=sin6,0<0<% 120 r=¢%0<0<m
118 r=2-+2cos 6 121 r=+/3cos 6,0<6<73
122 - 127 M Find the area of the surface generated by revolving the graph of the equation about line 6 = %.
122 r=cos 6 125 r=1—sin 6
123 r=sinB, 0<0<Z 126 r=3,0<6<3
124 r=1+sin 6 127 r=¢%0<0<%

128 - 150 M Choose the correct answer.

128 The slope of the tangent line at the point corresponding to ¢ = 1 on the curve given parametrically equations x = 212 + 1,
y=53—-1,-2<t<2is

@ 3 (b) —3 © 3 !

w

'y
129 If a graph has polar equation r = 2sec 6, then its equation in xy-system is
(@)x=2 by=2 ©x+y+1=0 dy=13
130 The length of the curve C: x = cos 2¢, y =sin 2¢,0 <t < 7 is equal to
(a)2 (b) 21 ©n (d) 4n
131 The surface area resulting by revolving the graph of the parametric equation x = 3¢, y = 3¢, 0 <t < 1 about the x-axis is
equal to
(a) 9v21 (b) 18v/2n (c)24V/2m ) 3v2n

132 If a point has xy-coordinates (x,y) = (1,1), then one of its (r,8)-coordinates is

@ (1,%) () (-1,%F) © (2.5 @ (V2,%)

133 The slope of the tangent line to the graph of the equation r =2 at 6 = —% is
(@1 (b) -1 ©0 (d) oo
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134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

The graph of the curve C defined by the parametric equations x =2+ cos 2¢,y = —1+sin 2,0 <t <mis
(a) aline (b) parabola (c) cardioid (d) circle

The slope of the tangent line at the point corresponding to r = § on the parametric curve given by the equations ,
x=sint,y=cost, 0<tr<2mis

(@) —1 (b) 1 ©0 CF;

If a graph has polar equation r = 2csc 0, then its equation in xy-system is

(@ x=2 bx=13 ©)y=2 @y=1

The length of the curve C: x =cos 2¢, y=sin 27,0 <t < %

(am (b) 3 (©) 2n 3

If a point has (r,8)— coordinates (r,8) = (1, %), then its (x,y)— coordinates is
@ (2.4) ) (3, %) © (2. 2) (@ (1,0)

The slope of the tangent line to the curve: r =cos 8 at 6 = J is

(@) 5 (b) 0 (©) % (1

Let C be the curve given parametrically by : x =2+, y =12+ 3, t € R. The point on C at which the slope of the
tangent line equal to 2 is given by

(@) (0,4) (b) (2.4) (c) (4,4) @ (3. %)

If a graph has polar equation » = csc 0, then its equation in xy-system is

(@x=1 b)x+1=0 ©y=1 dy+1=0

The length of the curve C: cos 4¢, y =sin 47, 0 <t < % is equal to

(a) & (b) 27 ©n (d) 4n

If a point has xy-coordinates (x,y) = (1, 1) then one of its (r,0)— coordinates is

@ (1,5) ®) (2,%) © (V2,5F) @ (=v2, %)

The equation in polar coordinates for the line y =x— 1 is

@@)r= cos elfsin 0 (b)r= cos 61+sin 0 ©r= (:0; 0 + sir} 0 (d) r=cos 8+sin 6
The parametric equation of the circle centered at the origin with radius 5 is given by
(a) x =cos 50,y = sin 50 (c) 5x =cos 8,5y =sin
(b) x=>5cos 6,y =5sin 0 (d)x=cos 6,y=sin 0

The slope of the tangent line at the point corresponding to = 5 on the parametric curve given by the equations ,
x=sin? r, y=cos 1, T <r<2mis

(a) —oo (b) -1 ©0 @1
The length of the curve C: x =2cos ¢, y=2sin t; 0 <t < 1 is equal to
(@1 (b) v2 ©2 (d) 4

If a graph has a polar equation r = m, then its equation in xy-system is
(@x+2y+1=0 ®)x+2y—1=0 ©)2x+y+1=0 (d2x+y—-1=0

The slope tangent line to the graph of the equation r =2 at 8 = % is
(a) 1 (b) -1 ©0 (d)

The polar equation that has the same graph as the equation x* 4 2x2y? +y* = 2xy is

(a) 2 = sin 20 (b) 2 = cos 20 (c) r2 =sin O cos = %
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Appendix (1): Basic Mathematical Concepts

B Mathematical Expressions=- is the symbol for implying. < is the symbol for “= and <. Also, the expression “iff"
means if and only if . b > a means b is greater than a and a < b means a is less than b. b > a to denote that b is greater than
or equal to a.

M Sets of Numbers & Notations

. Natural numbers N = {1,2,3,...}.

. Whole numbers W = {0,1,2,3,...}.

. Integers Z = {...,—3,-2,—1,0,1,2,3,...}.

. Rational numbers Q = {¢ | a,b € Z and b # 0}.

. Irrational numbers I = {x | x is a real number that is not rational}.
. Real numbers R contains all the previous sets.

AU A WD R

M Fractions Operations
e Adding or subtracting two fractions
To add or subtract two fractions, we do the following steps:

1. Find the least common denominator.

2. Write both original fractions as equivalent fractions with the least common denominator.
3. Add (or subtract) the numerators.

4. Write the result with the denominator.

o Multiplying two fractions
To multiple two fractions, we do the following steps:

1. Multiply the numerator by the numerator.
2. Multiply the denominator by the denominator.

ac ac
5d = bd where b#0 and d #0.
e Dividing two fractions

To divide two fractions, we do the following steps:

1. Find the multiplicative inverse of the second fraction.
2. Multiply the two fractions.

a ¢ ad ad
—+—=—-.—=— where b#0 and d#0.
b d bc bc 7 7
Example 1
3,2 _ 15 14 _ 15414 _ 29 2,4 _2x4 _ 8
PR - - e il S P
— — — . . — _ 2X9
D78 " H8-""& & @ 5+5=5%X3=5a2=0
M Exponents

Assume 7 is a positive integer and a is a real number. The nth power of a is

d'=a.a..a.

Basic Rules
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For every x,y > 0 and a,b € R,
1. X0=1

2. xxb = yatb
3. i—: =xab

Example 2
1) 29273 =233=2"2=
@ 2 =3(2=34=3

ESE

1
32
1

M Algebraic Expressions

Let a and b be real numbers. Then,
1. (a+b)* = a®+2ab+b*

2. (a—b)?=d>—2ab+b?
3. (a+b)(a—b)=a>—b?

4. (a+b)® =d>+3a’b+3ab® +b>
Example 3
1) (xx£2)2=x>+4x+4
(2) X*—=25=(x—5)(x+5)

M Intervals

Leta,b € Randa < b.

e Open interval (a,b).
It contains all real numbers between a and b, i.e.,

x€(ab)sa<x<b

 (Z7777777777778)

a b

o Closed interval [a,b].
It contains all real numbers between a and b including
aand b, ie.,

x€lablea<x<b

 W77777777777778)

a b

e Half-open interval (a, b].
It contains all real numbers between a and b including
b,ie.,

xe€(ablea<x<b

(77

a b

e Half-open interval [a,b).
It contains all real numbers between a and b including
a,ie.,

x€la,b)sa<x<b

W77

a b

Example 4

4. ()b = xab
5. ()t =y
6 xfazxia

@) (5x) =252

5. (a—b)? =a® —3d%b +3ab® — b?

6. &> +b° = (a+b)(a®>—ab+b?)

7. a®— b = (a—Db)(a* +ab+b?)

8. a"—b'=(a—b) (@ " +a" b+ 3+ . A ab" 2+

(3) (x+2)P =x3+6x2+12x%8
4) P £27=(x£3)(x>F3x+9)

o Interval [a, o)
It contains all real numbers larger than or equal to a,
ie.,

x€la,) =a<x

W)

a

o Interval (a,oo)
It contains all real numbers larger than g, i.e.,

x€(a,») =a<x

Q)

a

o Interval (—eo, b]
It contains all real numbers less than or equal to b, i.e.,

X € (—oo,bl & x<b

Wz

b

o Interval (—oo,b)
It contains all real numbers less than b, i.e.,

X € (—oo,b) &x<b

Wz7zzzzzzzz 27777228

b
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M (2,5] () [~1,e)
M T i
() [-2,4)N][1,6) @ [-1,4)u]0,5)
[1,4) [-1,5)
M Absolute Value

The absolute value of x is defined as follows:

x|= X x>0
Tl —x x<0

Example 5 2| =2,|—2|=2,]0/=0.

Equations and Inequalities

Itb >0,
1. x—a|=bsx=a—b or x=a+b.
2. x—al<besa-b<x<a+b.
3. x—a|>bex<a—bor x>a+b.

Example 6 Solve for x.
1) |3x—4|=7 (2 |2x+1]<1
Solution:
(1) [3x—4]=7<3x—4=7 or 3x—4=—7.Thus,x= 4 or x=—1.
(2) |2x+1] <1< —1<2x+1 < 1. By subtracting 1 and then dividing by 2, we have —1 < x < 0.

M Functions
A function f : D — S is a mapping that assigns each element in D to an element in S. The set D is called the domain of the function f.
All values of f(x) belong to a set R C S called the range.
e Domains and Ranges
In the following, we show how to determine the domain and range of some functions.
1. Polynomials a,x" +a,_ X" '+ ...+ ajx+ag .
Domain: R Range: R
2. Square Roots f(x) = +/g(x) .
Domain: x € R such that g(x) >0 Range: R*
3. Rational Functions g(x) = % .
To determine the domain, we need to find the intersection of the domains of f and g. Then, we remove zeros of the function
8.
Example 7 Find the domain of the function.
M flx)=vx—1
@) qlx) = 375

_ 3742
(3) qlx) = 22

Solution:
(1) We need to find all x € R such that x — 1 > 0. By solving the inequality, we have x — 1 > 0 = x > 1. Thus, the domain is
[1,00). Hence, Vx € D(f), f(x) = y/g(x) > 0 i.e., the range is [0,e0).
(2) The domain of the numerator and the denominator is R. The denominator g(x) =0 if x = % Thus, the domain of g is
R\{3}.
(3) The domain of the numerator is R and the domain of the denominator is [—2,0). The denominator g(x) = 0 if x = —2.
Thus, the domain of g is (—2,0).

o Functions Operations

Let f and g be functions such that x belongs to their domains. Then
L (fEg)(x) = f(x)£g(x).
2. (f8)(x) = f(x)g(x) .
3. (é)(x) = % where g(x) #0.

Example 8 If f(x) =x? —1 and g(x) = x— 1, find the following:

M (f+8)x) @ (fg)) @) (L)
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Solution:

@) (D) =5 =55 = " =t

o Composite Functions

If f and g are two functions, the composite function (f o g)(x) = f(g(x)). The domain of fogis {Vx € D(g): g(x) € D(f)}.
Example 9 If f(x) = x% and g(x) = x+2, find (f o g)(x).

Solution:

(fo8)) = flg() = (x+2)" = +4x-+4.

o Inverse Functions

A function f has an inverse function f~! if it is one to one: y = £~ (x) & x = f(y).!

Properties of inverse functions:
1. D(f1) is the range of f.

2. The range of f~! is the domain of f. y=£ e
3. fY(f(x) =x,Vx € D(f). %
4. f(ffl(x)) =x,VxeD(fh.

5. (f7)7Mx) = f(x)Vx € D(f).

e Even and Odd Functions
Let f be a function and —x € D(f).

1. If f(—x) = —f(x) Vx € D(f), the function f is odd.
2. If f(—x) = f(x) Vx € D(f), the function f is even.

Example 10
(1) The function f(x) = 2x> +x is odd because f(—x) = 2(—x)3 + (—x) = —2x> —x = — (23 +x) = —f(x).
(2) The function f(x) = x* 4+ 3x? is even because f(—x) = (—x)* +3(—x) = x* 4+-3x% = f(x).

M Roots of Linear and Quadratic Equations

o Linear Equations

A linear equation is an equation that can be written in the form ax + b = 0 where x is the unknown, and a,b € R and a # 0. To solve the
equation, we subtract b from both sides and then divide the result by a:

ax+b=0=ax+b—-b=0—-b=>ax=-b=>x=—.
a

Example 11 Solve for x the equation x +2 = 5.

Solution:

3x+2:5$3x:5—2:>3x:3éx:§:1.

IThe —1in f~! is not exponent where ﬁ is written as (f(x)) -
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e Quadratic Equations

A quadratic equation is an equation that can be written in the form ax? + bx + ¢ = 0 where a, b, and ¢ are constants and a # 0. The
quadratic equations are solved by using the factorization method or the quadratic formula, or the completing the square.

Factorization Method

The factorization method depends on finding factors of ¢ that add up to b. Then, we use the fact that if x,y € R, then
xy=0=x=0o0ry=0.

Example 12 Solve for x the following quadratic equations:

1) *+2x—8=0

2) P +5x+6=0
Solution:

(1) Consider 2 and —4, we have 2 x (—4) = —8 = ¢, but 2+ (—4) = —2 # b. Now, consider —2 and 4, then —2 x4 = -8 =¢

and —2+4 =2 =b. Thus,
P 42x—8=(x—2)(x+4)=0=x—-2=0o0r x+4=0=x=2 or x=—4.
(2) By factoring the left side, we have
(x+2)(x+3)=0=>x4+2=0o0r x+3=0=x=-2 or x=-3.

Quadratic Formula Solutions
We can solve the quadratic equations by the quadratic formula:

e —b++Vb? —4ac
o 2a ’

Remark: The expression b* — 4ac is called the discriminant of the quadratic equation.

1. If b*> — 4ac > 0, then the equation has two distinct real solutions.
2. If b2 —dac = 0, then the equation has one distinct real solution.
3. If b? — 4ac < 0, then the equation has no real solutions.

Example 13 Solve for x the following quadratic equations:
(1) ¥®+2x—8=0
() ¥ +2x+1=0
(3) ¥ +2x+8=0
Solution:
(1) a=1, b=2, ¢ = —8. Since b> —4ac = 2> — 4(1)(—8) = 36, then there are two solutions x = 2 and x = —4.
(2) a=1,b=2, c=1. Since b> —4ac =22 —4(1)(1) = 0, then there is one solution x = —1.
(3) a=1, b=2, c=8. Since b> —4ac = 2> — 4(1)(8) < 0, then there are no real solutions.
Completing the Square Method
To solve the quadratic equation by the completing the square method, we need to do the following steps:
Step 1: Divide all terms by a (the coefficient of ).
Step 2: Move the term (<) to the right side of the equation.
Step 3: Complete the square on the left side of the equation and balance this by adding the same value to the right side.
Step 4: Take the square root of both sides and subtract the number that remains on the left side.

Example 14 Solve for x the quadratic equation x> +2x—8 =0.
Solution: a =1, =2, c=-8.

Step 1 can be skipped in this example since a = 1.

Step 2: x> +2x=8.

Step 3: To complete the square, we need to add (%)2 sincea = 1.

P 42x+1=84+1= (x+1)>=9.

Stepd:x+1=43=>x=E3-1=x=20rx=—4.
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M Systems of Equations

A system of equations consists of two or more equations with the same set of unknowns. The equations in the system can be linear or
non-linear, but for the purpose of this book, we only consider the linear ones.

Consider a system of two equations in two unknowns x and y

ax+by=c

dx+ey=f.

To solve the system, we try to find values of the unknowns that will satisfy each equation in the system. To do this, we can use elimination
or substitution.

Example 15 Solve the following system of equations:

2x+y:6—>@

Solution:

o By using the elimination method.

Multiply equation @ by 3, then add the result to equation @ This implies 7x =22 = x = 27—2 . Substitute the value of x into the first
or the second equation to obtain y = —%.

o By using the substitution method.

From the first equation, we have x = 4 + 3y. By substituting that into the second equation, we obtain

2
2(4+3y)+y:6;s7y+8:6:>y:_7

Substitute value of y into x = 4 4 3y to have x = %
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M Pythagorean Theorem

If ¢ denotes the length of the hypotenuse and a
and b denote the lengths of the other two sides, the
Pythagorean theorem can be expressed as follows:

P+b*=c* or c=Va2+b2.
c
If a and ¢ are known and b is unknown, then b
— 2__ 2
b=+Vc*—a*. P
a

Similarly, if b and ¢ are known and a is unknown, then

a is adjacent to the angle 0
a=+/c2—b? b is opposite
¢ is hypotenuse
The trigonometric functions for a right triangle are

cosf = 4 sin@ = é tan@ = é
c c a

Example 16 Find value of x. Then find cos 6, and sin 6.

Solution: N

a=3,b=4=c*=42432=25=¢=5 4

cosB =

sin9:5 )
3

M Trigonometric Functions
o If (x,y) is a point on the unit circle, and if the ray

1)

from the origin (0,0) to that point (x,y) makes an angle v
0 with the positive x-axis, then
. (xy)
0— 0= )
cos X, sin v, smHI
e Each point (x,y) on the unit circle can be written as — =
(cos®,sin®). cos#@
e Since x2 +y* =1, then cos26 + sin®® = 1.
Therefore,
1+tan®0 = sec?0 and cot? 0+ 1 = csc2 0.
Also,
sin® cos0 1 1
t = t0 = —— = — [
an® cos® cot® sin© sech cosO csch sin©

e Trigonometric functions of negative angles
cos(—6) =cos(0), sin(—6) = —sin(6), tan(—8) = —tan(0)

e Double and half angle formulas

sin260 = 2sinBcosO, cos20 = cos?0 —sin20 =1 —2sin*0 = 2cos? 0 — 1
2tan©
tan20 = ———
an 1 —tan20
sinzg _ 1—cos® cos29 _ l+cos6
2 2 27 2

o Angle addition formulas
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sin(01 £ 02) = sinB; cosBy £ cos O sinH;
cos(0] £6;) = cosB; cosB, FsinB; sin6;
tan0 +tan0;
tan(0+60,) = ————
an(61 +6,) 1 FtanB; tan0,
e Values of trigonometric functions of most commonly used angles
Degrees | 0 3 45 60 90 120 135 150 180 210 225 240 270 300 315 330 360
Ruws (0§ § § § % ¥ ¥ oc § § § ¢ % % Bon
: 1 1 3 3 1 1 -1 -1 =3 -3 -1 -1
3 1 1 -1 -1 =3 -3 -1 -1 1 1 3
o Graphs of trigonometric functions
y
2 1
It It x It
Y = i
4 4 i
y = Ccosx
y=5i 11
M Distance Formula
¥y
Let P; = (x1,y1) and P> = (x2,y2) be two points in the
Cartesian plane. The distance between P; and P; is Py=(x5, ¥5)
D:\/(xz—m)“r(yz—m)z‘ s
Example 17 Find the distance between the two points
Pi(1,1) and Po(—3,4).
Solution: D = /(-3 —1)2+(4—1)2 =16 +9 = .
V25 =5. “x
M Differentiation of Functions
m Differentiation Rules
F)+e) = f(x)+¢ (x)
4 di(#) — —g’()()2
& (f@g(x)) = f'(x)g(x) + f(x)g' (x) FRETT (o)
d _
4 (L0)) _ £ (e)=/(e'x) T (ef () =ef'(x)
dx \ g(x) (g(x))
m Elementary Derivatives
_ d 1
Ay = ! %%:_xg HVE= s

m Derivative of Composite Functions (Chain Rule)

If y = f(u),u = g(x) such that dy/du and du/dx exist, then the derivative of the composite function (f o g)(x) exists and

dyidyﬁi

dx  dudx

) (x)=f"(g(x))g'(x) .
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m Derivative of Inverse Functions

If a function f has an inverse function *1, then £ F1(x)= —L .
f f dxf ( ) f’(f*'(x))

M Graphs of Functions

o The First and Second Derivative Tests

1. Let f be continuous on [a,b] and f” exists on (a,b).
o If f/(x) > 0,Vx € (a,b), then f is increasing on [a,b].
o If f/(x) < 0,Vx € (a,b), then f is decreasing on [a,b].

2. Let f be continuous at a critical number ¢ and differentiable on an open interval (a,b), except possibly at c.

e f(c) is a local maximum of f if f’ changes from positive to negative at c.
e f(c) is alocal minimum of f if ' changes from negative to positive at c.

f () local maximum f () local minimum
. .

S N o =

3. If " exists on an open interval /,

e the graph of f is concave upward on I if f”/(x) >0on .
e the graph of f is concave downward on I if f”/(x) <0 on .

o Shifting Graphs
Let y = f(x) is a function.

1. Replacing each x in the function with x — ¢ shifts the graph c units horizontally.
e If ¢ > 0, the shift will be to the right.
e If ¢ <0, the shift will be to the left.

2. Replacing y in the function with y — ¢ shifts the graph c units vertically.
e If ¢ > 0, the shift will be upward.
e If ¢ <0, the shift will be downward.

o Symmetry about the y-axis and the origin

1. If a function f is odd, the graph of f is symmetric about the origin.
2. If a function f is even, the graph of f is symmetric about the y-axis.

e Lines

The general linear equation in two variables x and y can be written in the form:

ax+by+c=0,

where a, b and ¢ are constants with a and b not both 0.
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Example 18

2x+y=4

a=2,b=—-1,c=-4

To plot the line, we rewrite the equation to become
y = —2x+4. Then, we use the following table to make

points on the plane:
E—— The line 2x +y = 4 passes

X % through the points (0,4)
S S and (2,0).
Slope

y

(0,4)
2x+y=4

— 2=

1. The slope of a line passing through the points P (x1,y;) and P (x,y2) ism = ol

2. Point-Slope form: y —y; = m(x —x).
3. Slope-Intercept form:

If b # 0, the general linear equation can be rewritten as

ax—i—by—Q—c:Oéby:—ax—c:>y:—gx—géy:mx—i—d7

where m is the slope.

Example 19 Find the slope of the line 2x —5y+9 = 0.

Solution: 2x —5y+9=0= —5y=—2x—9=y=2x+ 2.

b b

Thus, the slope is % Alternatively, take any two points on that line say (—2, 1) and (3,3). Then,

_nen o 3-1 2
xp—x1 3—(=2) 5°
Special cases of lines in a plane
1. If m is undefined, the line is vertical. 2. If m = 0, the line is horizontal.
y ¥
y=>b
x=bh
X
3. Let L and L, be two lines in a plane, and let m; and m, be their slopes, respectively.
e If L) and L, are parallel, m; = my. e If L| and L, are vertical, m| = ;n—}
J’ }l
Ly

L,

/

(2,0) b2

Ly
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o Quadratic Functions

m Circles

Let C(h, k) be the center of a circle and r be the radius.
The equation of the circle is

(=P + =k =72

for h,k >0

Y (- +(y-k)i=1

-
Bk

Example 20 Find the equation of the circle that has
center at the point (1,—2) and radius r = 2.
Solution:

(=1 +(y+2)*> =4

x2+y272x+4y= -1.

m Conic Sections
Parabola:

If h = k = 0, the center of the circle is the origin (0,0)
and the equation of the circle becomes

2P =i,

xz+y2:1

A parabola is the set of all points in the plane equidistant from a fixed point F' (called the focus) and a fixed line D (called the directrix).

1. The vertex of the parabola is the origin (0,0).
(A) Xt = 4ay, a > 0.

e The parabola opens upward. e Directrix equation: y = —a.

e Focus: F(0,a). e Parabola axis: the y-axis.

(B) x2 = —4ay, a > 0.
e The parabola opens downward. e Directrix equation: y = a.
e Focus: F(0,—a). e Parabola axis: the y-axis.

(C)y? =4ax,a>0.

e The parabola opens to the right. e Directrix equation: x = —a.

e Focus: F(a,0). e Parabola axis: the x-axis.

(D) y* = —4ax, a > 0.
e The parabola opens to the left. e Directrix equation: x = a.

e Focus: F(—a,0). e Parabola axis: the x-axis.

2. The general formula of a parabola V (h,k):
(A) (x—h)2 =4da(y—k),a>0.

e The parabola opens upwards.

e Focus: F(h,k+a).

e Directrix equation: y =k —a.

e Parabola axis: parallel to the y-axis.

(B) (x—h)? = —4a(y—k),a> 0.
e The parabola open downwards.
e Focus: F(h,k—a).
e Directrix equation: y = k+a.
e Parabola axis: parallel to the y-axis.

\ F0,0)

(C) (y—k)?> =4a(x—h),a>0
e The parabola opens to the right.
e Focus: F(h+a,k).
e Directrix equation: x =h —a.
o Parabola axis: parallel to the x-axis.

(D) (y—k)?> = —4a(x—h),a>0
o The parabola opens to the left.
e Focus: F(h—a,k).
e Directrix equation: x = h+a.
o Parabola axis: parallel to the x-axis.
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Ellipse:
An ellipse is the set of all points in the plane for which the sum of the distances to two fixed points is constant.

V
1. The center of the ellipse is the origin (0,0). W, = (0.)

(A) 5 + 25 = L wherea > band ¢ = Va? — b,
Foci: Fi(—c,0) and F»(c,0). nflon) |p BNaO

o
e Vertices: V|(—a,0) and V»(a,0). h ' >
e Major axis: the x-axis, its length is 2a. fi=(=¢0) F=(0
e Minor axis endpoints: Wy (0,b) and W, (0, —b).
W, = (0,-b)
YA

B) %—i—i—i =1 where b > g and ¢ = Vb2 — a?.

Foci: F1(0,c) and F>(0,—c).

Vertices: V;(0,b) and V5 (0, —b).

Major axis: the y-axis, its length is 2b.

Minor axis endpoints: Wj(—a,0) and W (a,0).

e o o 03

2. The general formula of the ellipse P(h, k).
(A) BB 4 0K _ | where a > b and P | k2 Y/
prel 2 B) =5+ 7 =1 where b > a and ¢ = Vb* — a*.
c=Va2-bt Foci: Fi(h,k+c) and F>(h,k—c).
e Foci: F(h—c,k) and F>(h+c,k). Vertices: V| (h,k+b) and Va(h,k —b).
e Vertices: V) (h—a,k) and Vo (h+a,k). Major axis: parallel to the y-axis, its length is 2b.
e Major axis: parallel to the x-axis, its length is 2a. Minor endpoints: Wi (h— a,k) and Wy (h+ a, k).
e Minor endpoints: W; (h,k+ b) and W, (h,k—b).

Hyperbola:
A hyperbola is the set of all points in the plane for which the absolute difference of the distances between two fixed points is constant.

1. The center of the hyperbola is the origin (0,0).

(A) 5 — 2 = 1 where c = vVa® +57. . P

e Foci: Fi(—c,0) and F>(c,0). g P
Vertices: V) (—a,0) and V»(a,0).

B(o0) a0 | ief A0

[
e Transverse axis: the x-axis, its length is 2a.
e Asymptotes: y = i%x.

4

(B) 3 — & =1 where ¢ = Va? + b2

Foci: F1(0,c) and F>(0,—c).

Vertices: V;(0,b) and V,(0, —b).
Transverse axis: the y-axis, its length is 2b.

Asymptotes: y = :I:Zx.

/ »
i dail

.
&

T(00)

2. The general formula of the hyperbola P(h, k).

(A) (x;izh)z — 0272/6)2 = 1 where ¢ = Va? + b2. B) w — (x;izh)z = 1 where ¢ = Va? + b2

Foci: F(h—c,k) and F>(h+ c,k). Foci: Fy(h,k+c) and F>(h,k—c).

Vertices: V| (h—a,k) and Vo (h+a,k). Vertices: V) (h,k+b) and V,(h,k —b).

Transverse axis: parallels to the x-axis, its length is 2a. Transverse axis: parallels to the y-axis, its length is 2b.
Asymptotes: (y —k) = :I:g (x—h). Asymptotes: (y —k) = :I:g (x—h).

o o o o3,

e Graph of Some Functions
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Appendix
y=mx+b y=a x=a
BN BN 4
b
y:x2 y=x2+a y:xzfa
M R
»
y=(x+a)? y=(x—a)? x=y
R A
\ /
\ /
\ /
a > 5 C
£ x
x=y—a x=(y—a) y=+/x
Y ¥,
/// //
x =y y=x y=[x]
b Y I
//
-
///
X
N
S
\\\\\
M Areas and Volumes of Special Shapes
Area = x2 Area = xy Area = 1bh
d h
X b
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Area = T2

Volume = xyz

z
)
x

Volume = 1r2h

—

Volume = %xyh

4

Volume = %m‘3

Volume = %nrzh
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Appendix (1): Integration Rules and Integrals Table

M Integration Rules:
/ (f(x)£g(x)) dx= /f(x) dx+ / g(x) dx /f'(g(x))g’(x) dx= f(g(x)) +c
- - b
/kf(x) dx:k/f(x) dx / f'(x) dx = f(b) — f(a)
a
M Elementary Integrals:
b "
/xr dx — ifr+—1 secx tanx dx = secx
r+1
/sinx dx = cosx / cscx cotx dx = —cscx
1 L x
/cosxdx:—sinx /mdx:sm p
1 1 X
/seczxdx:tanx /m dx:; tan 2

x
/csczx dx = —cotx sec”! | 2]

1
S P
./x\/)czfa2 T

M Inverse Trigonometric Integrals:
/sin’lxdx:xsin71x+ 1-x2+c¢
~1 ~1 1 2
tan” xdx=xtan” x— Eln(l +x7)+c¢

/sec’lxdx:xsec’leln|x+ Va2 =1 +c

xﬂ+l 1 xn+l
/JH’ sin’lxdx:n+1sin’1x—m ﬁdx-&-cifn#—]
. xn+1 1 n+1
/x" tanfl)cdx:mtan"x—yﬁ—1 ﬁdx—&-cifn;é—]
a1 1 X"
/)c” sec” ! xdx= n i sec’lem/\/ﬁ dx+cifn#—1
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M Trigonometric Integrals:
in2
/sinzxdx: % o +c

4
5 X sin2x
dx= >
/cosxx 2+ 2 +c

/tanzxdx: tanx —x—+c

/cotzxdx: —cotx—x—+c

/sec3x dx =
/sec3x dx =

. 1 ., n—1 g
/sm"xdxsz sin" L x cosx+—/sm” 2xdx+c
n n

1
secx tanx —+ 3 In | secx + tanx | +c

N = N =

1
csex cotxt 5 In|cscx — cotx | +c

1 _ . n—1 _
/cos"xdx: — cos" lx smx+7/cos" 2xdx+c
n n

tan’
/ tan” x dx =
n—1

n—1

f/tan”’zxdercifn;él

cot ™!
/cot”xdx:— lx—/cot”’zxdx-&-cifn;él

1 -2
/sec"x dx = 1 sec" 2 x tanx+ n—l /sec”’zx dx+cifn#1
n—

1 -2
/csc"xdx: - esc" 2 x cotx—}—n—1 /csc"’zxdx-&-cifn;él
n— n—

son—1 m+1
. sin" " xcos"'x  n—1 e
/sm"x cos"xdx = — + sin" 2
n+m n+m

s+l

sinlxcos™ 'x m—1

/ sin” x cos” x dx =
n+m n+m

/x” sinx dx = —x"cosx-i—n/x”’] cosxdx+c

/x” cosx dx = x" sinx—n/x"’1 sinx dx+c¢

M Miscellaneous Integrals:
g b
/x(ax-&—b)" dx="2— — Inlax+b|+c
a a
/x(aerh)’2 dx= i(ln |ax+b| +L) +c
a? ax+b

(ax+b)"™' ax+b b
a? n+2 n-—1

x(ax+b)" dx = )+c
/

1 X 1

/ (a? j[:lxz)" dx= 2a2(n—1) ((azi)cz)'“1 +(2n73)/ (a% £ x%)n-1

/xx/ax+hdx: ?22(3ax72b)(ax+b)3/2 +c
a

/x"x/ax-i—b dx = p

2
m(}c"(u}c-‘rb)y2 —nb/x"il\/ax—i-b dx)

2
/\/% dx= g(ax72b)\/ax+b+c
ax

X" 2 X!
dx = X'/ b— b/id
/m = Gy Vb [ e )
1 Vax+b—+/b

1
————dx=—In| ———= | +cifb>0
/x\/ax-‘rb Vb | \/ax-'rb-‘r\/l;l

xcos"xdx+cifn#m

sin"x cos" Zxdx+cifm#n

dx) ifn#—1
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/ L U an ! /2 L e <0
1 41 Jaxtb
xvax—+b v/ —b —b

1 Vax+b (2n—3

)a/ 1
——dx=—
Jaxth b(n—1)x1 2(n—1)bJ x1\Jax+b
— 2 —
/\/Zaxfxzdx:u 2ax7x2+%cos’l(u)+c
a

dxifn#1

2

2x% —ax —3d> @& a—x
/x\/Zax—xzdxzi 2ax—x2+7cos (—=)+c
. a

6
/ V2ax — x? dx
x

= 2ax7x2+acos’l(g)+c
a

—1,4—X
cos (—)+
(=) +e

/ V2ax —x? doe 2v2ax — x%
T A= T

/7‘& —cos’l(—a_x)Jrc
V2ax—22 a
[ M 2 —1ax
/mdx— 2ax—x2+acos™ ( P )+

2 2
X _ (x+3a) 5,3 _ja—x
/mdxff ) V2ax—x +7005 ( P )+c¢
/ 1 V2ax —x*
—dx=———"—+c¢
xV2ax —x* ax




189

Appendix (2): Answers to Exercises

3

Chapter 1:

Exercise 1.1
2yx+c 5 %xé +c
- % +c 6 secx+c
—cotx+c 7 —35){—3+c
—tanx+c 8 —cosx—+c

4

Exercise 1.2

1

13
14
15
16
17

1

6

2.3
—cotx — 3x2 +c

3x—4cotx+c

Veosdx+1+c
x)=x*+ 24 x+1
x) = —sinx—2cosx+4x+3

[SSIE )

~

W

9
10

.o\
f%(lfsmt)z +c
4
-+

% sin(3x+4)+c¢

=2
T +c

%sec4x+c

2 3
—3cot2x+c¢

1 1
-1+ 1) +c

2-1)3 | (2x-1)2
% Tz

+ +c

(4x376)8
96 t¢

% sin®(3x) + ¢

Review Exercises

1

O B Y N \V ]

x2+c
x3+x+c 18
%—i—%—i—c 19
2
%—i—%—i—c 20
X, 3.2 21
F +3x"—x+c
2
x—xz—%x“—l-c 22
_ 3
71+c 2
7 24
Zx2+c
2, 25
—~=+4c
v 26
X .
3z —x+tc 27
4 3
57— Gt 28
5(1?) +e 29
5 4 2 3
2oL x+e 0
2 31
F+x+c
2.3 1 32
X2 —6x2 +c
35 32 33
$x3+5x3 +c¢ 34
7 4
T =% +x+c

—Ccosx+x+c¢
. )
SINX — 5 +c

tanx —4x—+c¢

secx+x72+c

—cotx+ g +x+c
tanx+c
—cotx+c
secx+c

secx —tanx—+c¢
tanx+x+c
—csex—+c¢
secx+c
—cscex—+c¢
tanx+2secx+c
—cotx—3cscx+c

-2 5
5 COos2 xX+c
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36

38

39
40
41
42
43
44

46
47
48
49
50

59
60
61

62

63
64
65
66
67
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B+
65 1€

5 13
(x +31)7 +e

%(x2+x+2)% +c

4
3_ 3
(x 3ic+2) +e

_g\4
(5x2+§x 5) te

—2cos\/x+c
2tan/x —2y/x+c
—2coty/x—2y/x+c
%sech—l—c
—2cscy/x+c¢
f%cosx2+c
%tanxz—l—c
—%cot(x2+x— 1)+c
—3cot/x
Stan(y/x+1)+¢
Va2 +9+c
213 +e

cos>x

sin® \/x+c
—Lcos*ax+e
—2cotx—cscx+c

4 1)5 = 3(x+1)5 4c
2(x—3)3 +2(x—3)% +c

1
e e
Vax—x2+c

3
— 5=+ —cosx+c

1 .
4(5+cos2x)? tc

%\/X“i—l +c

%x% +c

3secy/x+c¢

(a) 68 (a)
(©) 69 (d)
(d) 70 (c)

Chapter 2:

Exercise 2.1
19

2 55

163
3 %0

7 n(n;l)

8 2n3 430’4+ 7n
6

0 n[(n+1) (3n2+11n-2) +12]
2

Exercise 2.2
1 2.7

2 1.5

33

423

) 038,38
0 (1334524
11 {-4,-3,-2,-1,0,1,2,3,4}
2 0.4.4.31)

13 15

14 39

15 245

1
16 1

Exercise 2.3
1 35

20
7 11

Exercise 2.4
12

[\
wioo N‘

3 10(4V10+1)

4 4(v2-1)
50

61

7 1+V3-V2
81

9 10

17
18
19

9
10

4 275
5 120
6 11

=)
2wz

|w 3 &"—
L

~—
0~

—~
ox

. o
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25
26
27

28
29
30
31
32

3

25

3

3(2-3)

v/sinx+ 1 cosx++/cosx + 1sinx

[ SR
2/x(x+1)  x2+1
x—1

3
3x—4

1
X
Vi dt +/xsinx

sin(x+ 1) +2sin(—2x+1)

32
X241

V1 +sec*x secxtanx —v/1 + tan® x sec?x

F(2)=0 F'(2)=V13 F”(Z):%

G0)=0 G0)=0 G"(0)=-1
H(2)=4V5-3
F(0)=0 F'(0)=0

X
COsx
1

Exercise 2.5

1
2
3
4
5
6
7
8
9
10

2.3251, | Er |[<0.0147
3.046, | Er |[<8x 1074
2.317, | Er |<0.0053
1.8961, | Er |=0

1.5, |Eg|<5x 1074
0.5, |Es|<1x107*
2, |Eg|<9x1077

4, |Es|<4x1076

n=99
n=4

Review Exercises

1

\S}

6

n(n—1)
2

7 26
n(n+2)
( ) 8 14
n(2(n*~1)+6
n((n+])(n2+n+4)+4) 1015
4 11 1.5
24 12 1.55

1.45

13
14
15
16
17
18
19

23

24

66
67
68
69
70
71

72

a.20 b. 25 c. 22.5

a.3 b.10.5 c. 6.75

a. 20.375 b. 27.875 c. 23.9375
a. —164 b. =512 c. —299

10 20 28/3
5/2 213
2/3 28
2

1/3
0
9/2
20

14/3

12 45 7
3 46 —1
s 47 8
0 48 0
>t 55 7
0 56 6
53 57 3
3 58 2

2 59 16
0 60 %
! 61 5
—2 62 4
0 63 /1
2.0414
s 64 siny/x
A 65 1
3x%sin(x? +1)10 — 3sin(27x3 +1)1°
cosx? + cos(cos® x) sinx

X241
—6v/12x+2

tanx

2Vx

162 74 1.727
0.694 75 6.244
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76 2.405
77 0.984
78 4.671
79 1.250
80 19
81 1891
82 800
83 157
84 d

85 d

86 ¢

87
88
89
90
91 ¢

S

[N Y

Chapter 3:
Exercise 3.1
1
Lo
H 342
= XB+2x—4

~
g -

=|!
L

6 cosx+1
sinx+x+1

7 secxtanx+2x
secx+x?

8§ —2tanx

9 2cotx

10 2tanx+ cotx

11 —cscx cotx Inx+ %

12 2mGotl) | 32V

3Vx 41
x 1

13 ey daly) e
2 1

14 xzil +i

92
93
94

96
97
98
99
100
101
102
103
104
105
106

[SUEEN S S~

QU & O

QAU S/ > D

Inx>—2
16 (Inx?)?
3x?
17 o
cotx
18 Insinx
19 1 2 3 5/2x+1
5| 2x+1 3x—1 3x—1
20 | L+ 3242 32244x+1 | (=1) VP21
=1 T 2083 42x+1) B+ +x—1 X427 4x—1
21 |24 7 6 X2V Ix+3
x U 2(Tx43)  (14a%) | (1+4x2)3
o 12 _ _ 3| 3/tan’x sinx cosx
22 3| cosx sinx+COtx tanx ZX]\/T

|
[Zx};fl) +ZXtanx2} (%)%

7
2
J 2
24[ 1 _2tanx+3tan3x—%]%
3
2

29 —In| I +cotx|+c
30 1[In17 —1n2]

31 —In|ecscx +cotx | +c
32 2siny/x+1+c¢

33 @-ﬁ-c

34 1n2+%

35 sin(lnx) +c¢

1 1 1
36 —3 | maF ~ oy

Exercise 3.2

11

2

3 x2—4
4 3+41Inx?
5 x=+e?
6 x=ef
7 x=+27

8§ x=1lorx=-3

9 81 3% (cos x — 6x)
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eVI[1+ 2]
e*cos(Inx) — exb%(mx)
X2
1
1t mrm

35 .
e ﬁsm X
3)62/3

3
eV CoSXx+

evsec?(e¥)
tane*

Ve
2

2Ve " +1

6e3 sec?(e¥) tan(e>)
s

2eV¥ 4¢

eSlnX + c

Ze\/}Jrcosx +c

1
—ex +c¢
eﬁfe

—2¢ VA4

1
— ey T

sinx+ ¢

In(e? +1) —In(e+1)

Exercise 3.3

1
2
3

9
10

3*In3
2sinx COSX 102 cos 2x

In2

—tanx
In2

1
310 (x+1)
Sﬁtanx(% + \/)z seCZX)

472 _2In(4) x4~

1
In10 (x+1)

tan 5%5+! (5x+1 ln5)

3

2(In5) x

11

Insinx +xcotx) (sinx)*

Ine+x) ()"

(
(
(e"lnx—l— %)xe’
(

xr—x

ﬁ sin(2*+1)+c¢
0% 1n | log 42| +

2/FFT
“m3 tc

P+ e

% (log, sinx)? 4 ¢

Review Exercises

1
2
3
4
5
6

19
20

21

22

2

3/64
+2/2
(1+V5)/2
In2

0

0

_ 341
2(PFFx—T)

2401

sin’x

cosx In(cosx) — 202

2 1
% o — 5y

7% [(lnl)c)2 + 1]

6ln
X

In(+y-2) | (2e+1)y/x
2% + X2x—2

e“secx (1+tanx)

2x+1

et sinzx(3 cosx + sinx)
. .

Gre ¢

n M)(ﬁ —x)lnx

=18

2x+3
x243x+1

—3tanx

2x cotx?



30

45

46

47
48
49
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e cote®
2 er+ 1

S cosx

canl
2sec?x tanx % ¥

(6x2 + 1) 2731 gog (2 +x-1)
2e2x+1

xe*
(x+1)?
e (x Inx—1)
a7

@Y (tan x + xsec? x)

[4
e Inx+ %

o (4 V)
—n*sinx Inm

280" 2 (2sinxcosx)
3 In(10) 103

SeCZ(zsinx) (2sinx cosx In 2)

L( 6 _L)
In3 \ 6x+1 2x—1
1
10xInx

sec? x [ln(tan X+ 1} (tanx)ans
[lnx+ l]x’C

]

4(lnx+ 1)k

[cosx Inx+ %]xsmx

[seczx In(Inx) + ;aﬂl);} (Inx)tanx

T |xd+2+c
—In|cosx | +c
3In| X2 +2x | +c
32
%+c

Inv?2
1(In3—1n7)
sin(Inx)

2 4 2x+Inx+c
~1
me ¢

—In | sinx+cosx | ¢

61
62

64
65
66
67

79

_ﬁ:‘}*xz +c
exz +c
In(e*+e™) +c
sinx+c¢
etanx 4 o
&5V te

In5
5

2
Tl x*+1 ] +c

43x
sz T¢

1 1
—m3(y—1)

1 241
o107+

2a\/x+l
Ina

b

c

80 a

81

b

Chapter 4:
Exercise 4.1

1

1
xy/1—(Inx)?

—&

2 Jiier

6

1

2/x(x+1)

1

x|/ Zx2-1

I -
1—(x?+x—1)2

=1
142

1
ex
2
X

X2 (e~ +l)

1

sin™! (%) +¢

86
87
88
89
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13 %secfl(%)—i-c
14 tan~!(e*) +¢

15 sin~!(Inx) +¢

16 Lsec!(anx) 4 o

V3 V3

Exercise 4.2

I 3/xcosh(Va3)

2 5sech?(5x)

3 —e *coshx+e *sinhx
4 282 cosh(2x)

5 —csch’x
- cothx

6 —Ly/cschx cothx

7 cosh(tanx) sec?x

eV¥sinh(ev¥)
2V

sech? (Inx)
() X

10 cschx [ 1 —22(x+):j)Lc0thx}

—

11 2cosh(y/x)+c
12 sinh(Inx) +c¢
13 In(coshe*) +c¢

14 (l+tzlnhx)4+c

15 esinhx+c
16 —In(1+sechx)+c

3/2
17 2(3+c<;shx) +e

18 2(—sechy/x+In(cosh /X)) +¢

19 In | tanhx | +c

20 = (ln(c;)lh)c))2 te

Exercise 4.3

1 secx

14

e
2+/x(e2Vr—1)

1
x(1—(Inx)?)

csch"x+ —Vax+l1
2T T Ve

sec?x tanh ™! x+

tanx
1—x2

— 1)2sinh—! (2x
6(2x —1)=sinh ™" (/x) + o)

1 -1
\/icosh x+c

tanh~! (%) + ¢
%sech_'xz—kc
sinh*1(§)+c
cosh_'(g—‘)—i—c

tanh~! (sinx) 4 ¢
fﬁcschfl(%) +c
f%sechfl(%) +c

Review Exercises

2

-3
1—(3x+1)2

—1
24/x(1-x)

_2_
314x2/3

1
xVOx2—1

4cosh(4x+1)
€*sinh(e")

NG

3" (3cosh(2x) + 2sinh(2x))

3 cosh(3x)+5sinh(5x)
2 4/sinh(3x)+-cosh(5x)

sechx

e*cosh(coshx) + e* sinh(coshx) sinhx

sech?x

xV1-9x2
1

TVAT)

4x3 cosh™ L x+

x4
1

VX

sech?(y/x
~L_tanh(y/x) + 72(\[)

2

_1)3
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37
38

40
41
42
43
44
45
46
47
48
49
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e“tanh ™ (V/x) + —S—
3

sech’x

V/tanh® x+1

_1
2x

0

(o)

(oo}

21

sin}:“x +c

tanélsx Ny
esinhx+c
In|e*—1]|+c
2sinh(y/x) +c¢
f%sechx2+c
%sinh3x+c

In| coshx | +¢
%tan’l(%)—kc
Tsec”! (%)—Fc
sec”!(e*) +¢
—VA—x2—sin"'(3)+e

cosh™!(3) —cosh™1(2)
%sinhfl(%) +c
Tsec™1 () +e

a

a

a

S S o

50
51
52
53

55 d

Chapter 5:
Exercise 5.1

1 %(lnxf}l)Jrc

2 J(1-ml)

3 V1—22+xsin x+c

4 %(47x2)5/27%(47x2)3/2+c

5 sinx —xcosx+c

6 (x* —2)sinx+2xcosx+c

7 % (sin(2x) —2cos(2x)) +¢

T _In2X

CVRNG
%(s1nx+200sx)+c

10 x((In*x—2)Inx+2) +c

I R

12 stxfgxcost +e

13 2ln2x +c

14 e—-2

15 (x2+1)t221n Lx— X .

16 —(x+1)e ™" +c

Exercise 5.2
13 5 5(x 1 13 3
| gsin’x cos”x+ 3 (15 — g7 5in4x) + g sin’ x cos” x+¢

o) 5
2 7cos x+scos

X — %cos xX+c

Ox— %cos4x+c

1
3 gcos
4 L sindx coss4x+25j(%x—%sin16x)+%sin4x cos®4x] +c
5 x+%tan3x—tanx+c
6 1 4 1 2 : .
6 —zcot’x+ 5 cot”x+1In | sinx | 4
7 Va—1Lsin(2 /x)+c
8 7%c0txcsc3x+%(f%tan%qtécotz%721n\tanx\)+%+c
9 f%cot5x+c

10 1—15 sec’ x(3sec’x —5) +¢
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1 s o

12 f% secx  tanx + éllsec3
% (secx tanx+In|secx+ tanx|) + ¢

x tanx — fln\secx + tanx|

13 4tanx secd x4 2 ( secx tanx+21n|secx+tanx|)
@x | tanx+c

15 4i( 5cos(4x) —2cos(10x)) + ¢

16 4 (sinx+ $07) 4 ¢

14 —x+mn—”‘—

17 %(4sin2x—sin8x) +c
18 %(4cos2x7c058x) +c

Exercise 5.3

Vx2—16
I Xl6x te

2 X\/9 —x2 +

5 sin~ (%)—5—0

__x

Va1t
4 sinh™1(3)+c
5 Yoty

6 feln|4—x|—fcln|x+4| fﬁ+c

7 fsinTx*) +e

8 csch™!(3cotx) +¢

9 ;LZ_H—Han ]—|—c

10 §Vx?>—16—8cosh™ (%) ¢
11 Ve —25—5tan™! (Ve —25)+c

12 sin~! (%) +c

13 In|¥5H2 4 |4
14 SW W-ﬁ-c
15 %{e"mﬁ—sin_l(e")}—kc
16 f@fsm_l(g)Jrc

Exercise 5.4
I Inlx—1|—1In|x|+c

2 In3—%In$

3 —%tanhfl(%)—i—c

~

6
7
8

9
10

11
12
13
14
15
16
17
18
19
20

1
ln|x_H | +c

%1n|x+6|—zln|x+2|+c

4In|x+4|-3In|x+3|+c

4—6In3+3In5

$(25In[x? — 25| +x2 —25) +¢

§1n|x—§—6|—éln|x—|—1|—|—c

st <23%3)

—lln|x +1|—ltan*1x+%ln|x—1|+c
tanh ( 1y te

%+3x+%ln|x+2|+#ln|x—5|+c

1

tan " x

ln|x|+ tanh ! (2£ )+ln|5 (2x+1)2|,%tanh—l(2x;1)+c
21n2

—3Inlx|— 2 +3In|x+1|+c

lfln(e+1)+ln(2)

tanh ( D te

} —tanh~'x+4c

Exercise 5.5

1

W

9

tan~!(3) —tan~1(2)

2\[tamh‘ (2\[)4-
tanh ! (55L) +In[(x+1)% — 4| — 3 tanh 1 (L) +¢

1 —x—5tanh(1 —x)+c¢

—sin~!(1/3) +sin~1(2/3)
—1tanh ™1 (34) +¢
Ssin~ (ngz)qtc
f%tanh_](%)+c
izsin_l (2\72%3)4-6
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Exercise 5.6

1

2

10

11

12

4 — %) —4In(Yx+1) +c

10(25° — 2% 4 W tan 1 (3/10) 1
V2sinh (tan(%)) +¢
(Vx+4)2—16(y/x+4)+32In|\/x+4|+c

—1 (tan (x/2)+3

— 5 tanh S5 ) te

—1 ¢1-3tan(x/2
fxf%tan : (%)+c

€ 5 tan™ '(V2tan(3)) +

2(x6 +1)3 = 9(xs +1)2+ 18(x6 + 1) —6In[xs +1|+c

N

5
4(%+%—j{—§+x%—m\xi+l|>+c

710():27/5 x3é10 #+x1/10+1n|x1/1071\>+c

f% tanh~! (V3tan(x/2)) +c

v/2tanh™! (%) +c

Review Exercises

1

\8}

(ZXZI)er_i_C

2
S +e
sinx —xcosx+c¢
& (4xsin(4x) 4 cos(4x)) +c
%x3/2(3ln|x\ -2)+c
xcos lx—vV1—xZ+e¢
xtanx+In | cosx | +¢
_xe;"* — % +c
V5-v2

xInx —3xIn® x4+ 6(xInx —x) +¢

7 7 3
511%x72517nx+su§x+c

é (% — T36 sin(4x) — % sin’ 2x cos 2x> +c

3
Sec x
=3t
5 3
sec” x sec” x
575 fe

—%cotx csc3x+%(— %tanz(%)—k%cotz(%)—21n|tan(’§‘)\> +c

16
17
18
19

31
32
33
34
35

36
37

39

40
41
42
43

44

46 %

Tx— %c0t5x+c

—1 cot
e ) 1.

1 cos(4x) — % cos(10x)) +¢
15 (3sin(2x) +sin(6x)) +¢
@ +Zsin7!(3)+c

N"_

sin*1(§)+c

2 Vx2—16—4tan! ( ”‘24716) +c

2(16 7 T

tanh~! (1 —x) +¢

%ln( (x—2)2+1) +tan~' (352) +c
=3)241) +5tan~! (552) +

5tanh (Zx )+e

$In|5— (2x+1)2\7%tanh7 ( x§1)+c

%[ln\x—l|+51n\x+2|] te

In2 | 4In5
-5+

6(x+2In|x—2[) — 3 710 +c
Lx—1)2+2(x— 1)781n|x7 1|4+¢

2

x—x+ 1—5—%ln(x 3)—
fln(ex+1)+c

+ s Infx =3[+ ¢ In|x+2[ +c

ln(x+1)—6+c

(x+2)

x—=3 1 2x+1
7(x>+x+2) 7\ftan ( N )+C

3(55x—107)
217[((X7)+1n\x 2|+53ln|x+1\}+c

(¥ =2V +1+c
Z2tan ' (VA3 — 1) +¢
(Vx+1)((vx+1)—4) +2In(vx+1)+c
\%tan*1 (%) +c

~fae 7T €

%[ln\tan(%)—l—Z\ —In|2tan(3) — 1|] +c

ol

jin (24572)
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47

49

W W
—_
(e}

W W
A WP
Q QU O 60 Q8 T T 6o 8 o o

[}
W

57
58
59

Chapter 6:

Exercise 6.1
10

26

94 o e oW
|
8

Exercise 6.2
1 Divergent

Convergent
3 Divergent

Convergent

2

3

4

5 Divergent
6 Divergent
7 Divergent
8

Divergent

Review Exercises

| o

—o00

(OSIE \]

TN

60
61
62
63
64
65
66
67
68
69
70
71
72

10

12
13

Q T Q2 O 8 o s

o

[RIER SV SN

—_—_ O O =

Convergent
Convergent
Convergent
Convergent
Divergent

Divergent

Convergent

Divergent

1/e

o2
Convergent
Convergent
Divergent
Convergent

Divergent

Divergent

17 Divergent

18 Convergent
19
20
21
22
23
24
25
26

UL T T T o0 & &

Chapter 7:
Exercise 7.1
1 13/3

2 4
3272
4 14/3
5 5/4
62

7 In(2)/2
8 1/4
917/6

10 5/6

11 4

12 4/3

13 63

14 4

Exercise 7.2
1

y=yr

27
28
29
30
31
32
33
34

S S T S U AN S T S Vo T o

15 3/v4
16 5/9

17 4v2/3
18 10

19 3/2

20 ¢ —e 2
21 e(e—1)
22 5In5-4
23 (V2-1)/V2
24 /21
25 V2

26 14/3

27 1
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3
B 7
/1 e; X
1
2
4
—i ‘5 X
5
¥ =sin(x)
6
\zcos(}!)
7

A

[T

8
¥y
.|
=il
9
10
V=yLa(L1)
y=x
f 4

Exercise 7.3
I 37

[\
z
|

a

W AW
0
a

~J
NS [ a w?\_‘m a7, o8
a

N = [«
AR u-‘

| @
) a
—

a

(8]
(ST

14 2¢’n

o
©
a

-1
Y,
EER
y=2
YE (il
il
HE| *
i
\#|
H
Y:

iR
a

388 e
W ) a Aa

N
[=2)

R ol o5 VR gl g
8 a a a s

120+60n—11m
157

21n

[

4n
5

7681
7

21
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3

SN
a

W W
o B

-
5l
98]
N
o0
a
=
w
I
—_
5]
IS
=

w

@
|2
a
N
IS

2 V14?2 —tanh™

(-
5 1(V2+sinh7(1))
In

O
[\S}

Exercise 7.4

1 2(v/5—1)+tanh~!(v/2) — tanh~ ! (1/10)

T(V14e2)— ﬁqttanh*l(ﬁ)

3 1(—2V5+6y/37—sinh~!(2) +sinh 1 (6))
4 H(=2V5+4V/17—coth™ (%)‘I’COth (4]7))

n(2++/3) —sinh (1)

Wl

V5

10 sinh(3) —sinh(1)

—
[N}
B= 5

—

(—2V13+8v73 -9In(2+V/13) +9In(8 +/73))
(2V5+sinh~1(2))

13 In(v2+1)
14 8z
15 2(17V17-5V5)

16 ©

18
19

V2+eV1+e2—sinh~! (1) +sinh~!(e))

(-
17 n(v2(3v/5—1) —sinh~! (1) +sinh~!(3))
n(v2

V2 +sinh~1(1))

20 36v/82n

N
[\S}
EE]

[V}
‘ w

2 4

1 £ (145/145-1)
(2V3+In(2+V/3))
Z(29v/145 - 2V10)
5vV5-1)

a N

o

Review Exercises

A
3

AW
W A

n(—eV1+ e2+e*V/1+e* —sinh ™! (e )—l—sinh*l(ez))

5 4zm 15 %
6 12 16 €51
7% Zi/i 1
17 -
44
0 18 3
1
10 1 1o V2
11 10 20 In(3+2v2)
12 1 21 1+1In(3)(In(In3) —1)
3 2:}/5 22 2(V2+sinh (1))
; 2
143 23 1
24 25
5 X=9=2 y
’ y=x+
x:
2 : y=xt-4
i
X

X
77 2
27 3™ 40 8
28 8427 41 in
29 g 4 g
30 28q 43 2gn
1944 16
31 194y 44 167
32 TZSTC 45 8w
33 TZSW 46 TC(TC—Z)
34 %n 47 %(ﬁn—4)
16
35 32n 8y
(1 49 3
36 e'—1)n
2 50 3n
- 2
37 (6 + 4ln*(4) - s1 sn
161n(2))7 s
- 52 ¥n
BT 53 /17 + S @)
39 I - 3
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54 442

55 5 (22v22-13/13)

7 (37V37-1)

%( (4+18V2)% - (4+9(2))7)

59 §(2\/5—1)

60

61 —¥IT L VIEe | Ginh =1 (4) —sinh~! (e)
62 74

63 —+/54tanh~!(v/5) + /17 — tanh ! (v/17)
64 In(v2+1)

65 377t73cos_1(%)

66 6v/5m

67 16m

68 T(82v/82—1)

69 T(5v/5-1)

70 n(evV1+e2+In(e+V1+e2)—v2—In(v2+1))
71 (V2+sinh=1(1))n

72 X (438+/37 —sinh ! (6))

—

ala A

73 8n
74 2E(10v/10-1)
75 a*n

76 E(5v/5-1)

77 2m(v/2+sinh (1))

78 d 82 a
79 a 83 a
80 a 84 d
81 a

Chapter 8:
Exercise 8.1

I y=2x+1

2 x+2r=1

3 y=x2
412 (-1 =
5 x=In(Iny)

6 x2+y2=9

16
17
18
19
20

30

Horizontal line at (0,0) and no vertical line.
Horizontal line at (0,0) and no vertical line.
There are no horizontal or vertical lines.
Horizontal lines at (1,2) and (1, —2) and vertical line at (0,0).
Vertical line at (—3, 1) and no horizontal lines.

Horizontal lines at (1,2) and (1, —2), and vertical lines at (0,0)

and (2,0)

31
32

4410

2(5v5-1)

Z( 2v/5+8y/65 —sinh ™! (2) +sinh ! (8))
%

—V2+ V17 +tanh ™! (v/2) — tanh~! (v17)

L:_»'a;I

[N

1

<sf ~1)
2v/2n(142¢%)
-5

SVET(13y/13 - 1)

a1
o
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43 2(17V17-1)
44 22

45 2n

46 & (145V145—1)

Exercise 8.2
I (0,1)

YA

r=sec@&

27

¥

(1L,0)

r=2cos@

(10

50

15
16
17
18
19
20

(1/6,35.26)
(3,0)
(24/5,26.57)
(3v2, )
r=9secO
r=1

y=1

¥4y —2x=0
r=3tan0BsecO
r:4\/m
Va2 +yr—y=3

x2+y2+2y

3v/x24+y2=0

r=2+2sin@ 0.9

(-3,0) (3,0)

3
1<-<2

T =3+ 2c0s6

x

A/

x

29
30

31 The curve has a vertical

-3
3
3+2V2

tangent line.

Exercise 8.3

1

[OSIE \]

TN

727

9

10

4n
In
257
2n
547
61
g7
11w
4—Tn

9v3
2

Exercise 8.4

1
2

2

TS

eI )

3n

T

3 16

67
24

%(ﬁ—i— sinh’l(l

64n
V5

21
288m

Review Exercises

1
2
3
4

6

))

32

20

16

—(1+v2)

u‘
w0



29

3C

)

98]

36
37
38
39
40
41
42
43
44
45
46

47

48
49
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y= %x +3

y=—V2x+3

y=20x—4

y=4x— %

y=—oi =%

y=—x+2

y=2V3x—(2v3+3)

y=24x— (241n(4) - 9)

Vertical line at (—3, 1) and no horizontal lines.
Horizontal line at (%, f%) and vertical line at (—2,—4) and
(2,6).

Horizontal line at (1,0) and no vertical lines.

Horizontal line at (0,—2) and (2,2) and no vertical lines.

Horizontal line at (0,1) and (0,—1) and vertical line at (1,0) and
(—1,0).

Horizontal line at (1,2) and (1,—2) and vertical line at (2,0) and
(0,0).

Horizontal line at (3, 1) and vertical line at (1,0).
There are no horizontal or vertical lines.

26 (10V/101 +sinh ' (10))

5V5

T

4

3V/10 +sinh~1(3)

(283 —4/17 +tanh ™! (47—\5) —coth™!(

V2(e2 —1)
3.(65V65-2V2)
Z(37V37—1)

2(64-+247/13)n
- 1215

47

1(32-20V2)

161

221 (] 4 em)
(050t -2
BE(5V5-1)

12507
3

)

5=
3

59
60
61
62
63
64

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

3910
V2r

6 2

(= V2+eVe2 +1—sinh~!(1) +sinh ™! (¢9))

<2sﬁ+81sin*‘(¥)

V2
(202~ 1)

r=~6cos0

r? =8csc26
r=9cotBcscO
r=—9sin0

r? =25sec20
¥+y?=9
¥4+yP—y=0
¥4y —2x=0
y=4

x=1

)
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86 x—y=4
87 V¥ +y?—y=2 123
88 V¥ +y?+2x=3 124 2g
125 3x
5 20 126 18n
vy i
J 127 228 (7 _2)
=72 r=2(1-cos8) 128 d
1 02 129 a
‘ 130 b
| & 2 1131 4
1 f0-2) 132 d
133 a
91 92 134 d
v 135 a
7 =4sinf - 136 ¢
r =3(1+sin8d) 0,6) 137 a
021 138 a
139 b
% (-3,0) 3,00 * 140 a
141 ¢
142 ¢
143 d
93 4n 108 57 144 a
94 91 109 371 145 b
05 I 110 4z 146 a
96 3Z 111 21 147 ¢
97 ¥ —4 112 8 148 b
98 (1—e~*m) 13 V2(e" —1) 149 b
2
99 2% +2m Hi ;2\/\? 150 a
100 T+8 ”% T
24w T
N 17 =
102 3n—8 2
L2 118 1287
103 2(m—2) S
104 443 119 =mn
105 10m 120 22%(] 4 02M)
106 16 121 3n
107 3-6v3 122 72




Homework

Chapter 1:

Exercise 1.1: 1,6

Exercise 1.2 : 2,7, 13

Exercise 1.3: 1,2, 3,16

Review Exercises : 41, 62, 65, 66

Chapter 2:

Exercise 2.1: 1
Exercise 2.2 : 1
Exercise 2.3: 7
Exercise 2.4 : 1
Exercise 2.5: 1,
Review Exercises : 17, 19, 84, 87, 92

9
9
b
9

7
9,
10
7,9,12,17, 24,29
5

Chapter 3:

Exercise 3.1 : 2, 15, 21, 27, 35
Exercise 3.2: 9, 18, 19, 25
Exercise 3.3: 2,5,15,18
Review Exercises : 73, 75

Chapter 4:

Exercise 4.1:1,3,9
Exercise 4.2 : 1, 10, 11, 16
Exercise 4.3:1,4,7, 8
Review Exercises : 43, 55

Chapter S:

Exercise 5.1: 1,5
Exercise 5.2: 1,1
Exercise 5.3: 1,6
Exercise 5.4: 1,3
Exercise 5.5: 2,1
Exercise 5.6 : 6

Review Exercises : 51, 70, 72

Chapter 6:
Exercise 6.1: 3,7
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Exercise 6.2: 1,9
Review Exercises : 20, 26, 35

Chapter 7:

Exercise 7.1: 2,9, 17
Exercise 7.2 : 1

Exercise 7.3: 1,2,9,17
Exercise 7.4 : 1, 2, 14
Review Exercises : 78, 79

Chapter 8:

Exercise 8.1: 1,9, 17, 25, 31, 39
Exercise 8.2: 1,9, 18, 27,29
Exercise 8.3: 1,9, 11

Exercise 8.4:1,7,13

Review Exercises : 128, 130, 143, 148, 150
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