Advanced Classical Mechanics (508 phys) Problem Set 1

Dr Salwa Alsaleh

Problem (1)

Given a vector field $\mathbf{F}=y \mathbf{e}_{x}-x \mathbf{e}_{y}$.

1. Plot this field using MATHMATICA.
2. Show that this field is non-conservative.

Problem (2)

Prove the following identity (you may use MATHMATICA)

$$
\begin{equation*}
\operatorname{rot}(\operatorname{rot}(\mathbf{A}))=\mathbf{A} \Delta+\operatorname{div}(\mathbf{A}) \nabla \tag{0.1}
\end{equation*}
$$

Problem (3)

The vector potential for a magnetic dipole \mathbf{m}_{D} is given by

$$
\begin{equation*}
\mathbf{A}=\frac{\mu_{0}}{2 \pi} \frac{\mathbf{m}_{D} \wedge \mathbf{r}}{r^{3}} \tag{0.2}
\end{equation*}
$$

Find the magnetic flux field $\mathbf{B}=\operatorname{rot}(\mathbf{A})$.

Problem (4)

Given the equation of motion $\dot{\mathbf{v}}=\omega \wedge \mathbf{v}$ for a charged particle rotating in a magnetic field with cyclotron frequency $|\omega|$, show that the equation can be rewritten in any of the following equivalent forms

$$
\begin{gathered}
\dot{v}^{i}=\Omega_{j}^{i} \nu^{j} \\
\frac{\partial|\nu\rangle}{\partial t}=\hat{\Omega}|\nu\rangle
\end{gathered}
$$

with $\Omega=\epsilon_{i j k} \omega^{k}$

Problem (5)

A particle of mass m confined to the surface of the two-sphere has the two-dimensional coordinate map, valid in the northern hemisphere, given by

$$
\begin{equation*}
x=x, y=y, z=\sqrt{R^{2}-x^{2}-y^{2}} \tag{0.3}
\end{equation*}
$$

Where R is radius of the sphere. Find the kinetic energy of the particle in terms of these coordinates maps.

Problem (6)

Calculate the two-dimensional metric tensor for the torus given by

$$
\begin{gathered}
x(\theta, \phi)=(a+b \cos \phi) \cos \theta, \\
y(\theta, \phi)=(a+b \cos \phi) \sin \theta, \\
z(\theta, \phi)=b \sin \phi .
\end{gathered}
$$

Problem (7)

A point particle of mass m is constrained to move on a wire that is in the shape of an ellipse

$$
\begin{gathered}
x=a \cos \phi, \\
y=b \sin \phi, \\
z=0
\end{gathered}
$$

1. Plot the elliptic surface, for any value of a and b.
2. Find the kinetic energy in terms of parameter ϕ.
3. Find an integral expression for its path length for one complete cycle around an ellipse. (Hint: the arc-length of an ellipse can be written in terms of a complete elliptic integral of the second kind.)

Problem (8)

Consider a point in a two-dimensional plane $P(x, y)=x \mathbf{e}_{1}+y \mathbf{e}_{2}$ that is mapped to a skewed coordinate system given by

$$
\begin{gathered}
u=(x / 2 \cos \alpha+y / 2 \sin \alpha) \\
v=(-x / 2 \cos \alpha+y / 2 \sin \alpha)
\end{gathered}
$$

Where $\alpha=$ const

1. Find the covariant basis λ_{i} for the new coordinates.
2. Compute the metric for this surface.
3. Find the contravariant basis

Problem (9)

We have $S^{\mu \nu}$ a symmetric tensor, and $A^{\mu \nu}$ an anti-symmetric tensor. Show that $S^{\mu \nu} A_{\mu v}=0$.

