Dr. Borhen Halouani

King Saud University College of sciences Department of mathematics Second semester 1431/1432 H

List of exercises $n^{\circ}6$ (Math 580 Theory Measure I)

Exercise 1:

Let (X, \mathcal{A}, μ) be a probability space and f, g be two Borelian, positives functions such that $f, g \geq 1$. Show that

$$\left(\int_X f(x)d\mu(x)\right) \cdot \left(\int_X g(x)d\mu(x)\right) \ge 1.$$

Exercise 2:

Let λ be the Lebesgue measure on X = [0, 1] and $(f_n)_{n \ge 1}$ be a sequence of measurable functions on X with real values and satisfying

 $\lim_{n \to +\infty} \int_X |f_n(x)|^3 d\lambda(x) = 0.$ Prove that

$$\lim_{n \to +\infty} \int_X \frac{f_n(x)}{\sqrt{x}} d\lambda(x) = 0.$$

Exercise 3:

- 1. Let $(f_n)_n$ be a sequence of functions from $L^p(X, \mu)$, $p \ge 1$ such that (i) (f_n) converges to f almost everywhere.
 - (ii) $\lim_{n \to +\infty} ||f_n||_p = ||f||_p.$

We define the sequence $(\phi_n)_n$ by:

$$\phi_n(x) = 2^{p-1} \left(|f(x)|^p + |f_n(x)|^p \right) - |f(x) - f_n(x)|^p.$$

- (a) Prove that $\phi_n \ge 0$ for all n.
- (b) Use the Fatou's lemma to prove that $\lim_{n \to +\infty} f_n = f$ in L^p .
- 2. Give a sequence $(f_n)_n$ of functions in $L^1(\mathbb{R})$ which converges to 0 almost everywhere but $(f_n)_n$ does not convergent in L^1 .

Exercise 4:

Let (X, \mathcal{A}, μ) be a measure space, f be a function in $L^1(X, \mathcal{A}, \mu)$ and $(f_n)_{n \ge 1}$ be a sequence of functions in $L^1(X, \mathcal{A}, \mu)$ such that $\lim_{n \to +\infty} \int_X f_n(x) d\mu(x) =$

$$\int_X f(x)d\mu(x).$$

- 1. Show that if for all $n \ge 1$, the function f_n is positive and if the sequence (f_n) converges a.e to f then (f_n) converges to f in L^1 . <u>Hint:</u> Consider $g_n := \min(f, f_n)$. Now we consider the Lebesgue space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ and the sequence (f_n) defined by: $f_n = n\chi_{(0, \frac{1}{2})} - n\chi_{(-\frac{1}{2}, 0)}$.
- 2. Prove that (f_n) converges to 0 and $\lim_{n \to +\infty} \int_{\mathbb{R}} f_n(x) d\lambda(x) = 0.$
- 3. Does the sequence (f_n) converges to 0 in L^p for $p \in [1, +\infty)$?

Exercise 5:

Let (X, \mathcal{A}, μ) be a probability space and f be a Borelian, positive, integrable function.

- 1. Use Hölder's inequality to prove that: if $\mu(\{f > 0\}) < 1$ then $\lim_{p \to 0^+} ||f||_p = 0$.
- 2. Show that $\lim_{p \to 0^+} \int_X f^p d\mu = \mu(\{f > 0\}).$
- 3. Show that for all $p \in (0, 1)$ and $\forall x \in (0, +\infty)$,

$$\frac{|x^p - 1|}{p} \le x + |\ln x|.$$

We assume that f > 0 and $\ln f$ is also μ -integrable.

4. Show that $\lim_{p \to 0^+} \int_X \frac{f^p - 1}{p} d\mu = \int_X \ln(f) d\mu.$ 5. Show that $\lim_{p \to 0^+} ||f||_p = \exp\left(\int_X \ln(f) d\mu\right).$

Exercise 6:

Let p > 1. For every function $f \in L^p(\mathbb{R}_+)$, we associate the function F defined on $(0, +\infty)$ by

$$F(x) = \frac{1}{x} \int_0^x f(t) dt.$$

1. Show that F is well-defined.

2. We suppose that $f \in \mathcal{C}_K(\mathbb{R}^*_+, \mathbb{R}_+)^1$. Show that:

$$\int_0^{+\infty} (F(x))^p dx = -p \int_0^{+\infty} x (F(x))^{p-1} F'(x) dx \text{ and}$$
$$\int_0^{+\infty} (F(x))^p dx = \frac{p}{p-1} \int_0^{+\infty} f(x) (F(x))^{p-1} dx.$$

3. Deduce the Hardy's inequality:

$$||F||_p \le \frac{p}{p-1} ||f||_p$$

- 4. Prove the Hardy's inequality for the functions in $L^p(\mathbb{R}_+)$.
- 5. Show that the Hardy's inequality becomes equality if and only if $f \equiv 0$ almost everywhere.
- 6. Show that the constant $\frac{p}{p-1}$ can not replaced by another smallest constant. <u>Hint:</u> Consider $f(x) = \chi_{[1,A]}(x) \cdot x^{-1/p}$.

 $[\]overline{{}^{1}\mathcal{C}_{K}(\mathbb{R}^{*}_{+},\mathbb{R}_{+})}$ is the set of all continuous, positive, functions with compact support $K \subset \mathbb{R}^{*}_{+}$.