List of exercises $n^{\circ} 6$ (Math 580 Theory Measure I)

Exercise 1:

Let (X, \mathcal{A}, μ) be a probability space and f, g be two Borelian, positives functions such that $f . g \geq 1$. Show that

$$
\left(\int_{X} f(x) d \mu(x)\right) \cdot\left(\int_{X} g(x) d \mu(x)\right) \geq 1 .
$$

Exercise 2:

Let λ be the Lebesgue measure on $X=[0,1]$ and $\left(f_{n}\right)_{n \geq 1}$ be a sequence of measurable functions on X with real values and satisfying
$\lim _{n \rightarrow+\infty} \int_{X}\left|f_{n}(x)\right|^{3} d \lambda(x)=0$. Prove that

$$
\lim _{n \rightarrow+\infty} \int_{X} \frac{f_{n}(x)}{\sqrt{x}} d \lambda(x)=0
$$

Exercise 3:

1. Let $\left(f_{n}\right)_{n}$ be a sequence of functions from $L^{p}(X, \mu), p \geq 1$ such that
(i) $\left(f_{n}\right)$ converges to f almost everywhere.
(ii) $\lim _{n \rightarrow+\infty}\left\|f_{n}\right\|_{p}=\|f\|_{p}$.

We define the sequence $\left(\phi_{n}\right)_{n}$ by:

$$
\phi_{n}(x)=2^{p-1}\left(|f(x)|^{p}+\left|f_{n}(x)\right|^{p}\right)-\left|f(x)-f_{n}(x)\right|^{p} .
$$

(a) Prove that $\phi_{n} \geq 0$ for all n.
(b) Use the Fatou's lemma to prove that $\lim _{n \rightarrow+\infty} f_{n}=f$ in L^{p}.
2. Give a sequence $\left(f_{n}\right)_{n}$ of functions in $L^{1}(\mathbb{R})$ which converges to 0 almost everywhere but $\left(f_{n}\right)_{n}$ does not convergent in L^{1}.

Exercise 4:

Let (X, \mathcal{A}, μ) be a measure space, f be a function in $L^{1}(X, \mathcal{A}, \mu)$ and $\left(f_{n}\right)_{n \geq 1}$ be a sequence of functions in $L^{1}(X, \mathcal{A}, \mu)$ such that $\lim _{n \rightarrow+\infty} \int_{X} f_{n}(x) d \mu(x)=$ $\int_{X} f(x) d \mu(x)$.

1. Show that if for all $n \geq 1$, the function f_{n} is positive and if the sequence $\left(f_{n}\right)$ converges a.e to f then $\left(f_{n}\right)$ converges to f in L^{1}.
Hint: Consider $g_{n}:=\min \left(f, f_{n}\right)$.
Now we consider the Lebesgue space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ and the sequence $\left(f_{n}\right)$ defined by:

$$
f_{n}=n \chi_{\left(0, \frac{1}{n}\right)}-n \chi_{\left(-\frac{1}{n}, 0\right)} .
$$

2. Prove that $\left(f_{n}\right)$ converges to 0 and $\lim _{n \rightarrow+\infty} \int_{\mathbb{R}} f_{n}(x) d \lambda(x)=0$.
3. Does the sequence $\left(f_{n}\right)$ converges to 0 in L^{p} for $p \in[1,+\infty)$?

Exercise 5:

Let (X, \mathcal{A}, μ) be a probability space and f be a Borelian, positive, integrable function.

1. Use Hölder's inequality to prove that:

$$
\text { if } \mu(\{f>0\})<1 \text { then } \lim _{p \rightarrow 0^{+}}\|f\|_{p}=0 .
$$

2. Show that $\lim _{p \rightarrow 0^{+}} \int_{X} f^{p} d \mu=\mu(\{f>0\})$.
3. Show that for all $p \in(0,1)$ and $\forall x \in(0,+\infty)$,

$$
\frac{\left|x^{p}-1\right|}{p} \leq x+|\ln x| .
$$

We assume that $f>0$ and $\ln f$ is also μ-integrable.
4. Show that $\lim _{p \rightarrow 0^{+}} \int_{X} \frac{f^{p}-1}{p} d \mu=\int_{X} \ln (f) d \mu$.
5. Show that $\lim _{p \rightarrow 0^{+}}\|f\|_{p}=\exp \left(\int_{X} \ln (f) d \mu\right)$.

Exercise 6:

Let $p>1$. For every function $f \in L^{p}\left(\mathbb{R}_{+}\right)$, we associate the function F defined on $(0,+\infty)$ by

$$
F(x)=\frac{1}{x} \int_{0}^{x} f(t) d t
$$

1. Show that F is well-defined.
2. We suppose that $f \in \mathcal{C}_{K}\left(\mathbb{R}_{+}^{*}, \mathbb{R}_{+}\right)^{1}$. Show that:

$$
\begin{gathered}
\int_{0}^{+\infty}(F(x))^{p} d x=-p \int_{0}^{+\infty} x(F(x))^{p-1} F^{\prime}(x) d x \text { and } \\
\int_{0}^{+\infty}(F(x))^{p} d x=\frac{p}{p-1} \int_{0}^{+\infty} f(x)(F(x))^{p-1} d x
\end{gathered}
$$

3. Deduce the Hardy's inequality:

$$
\|F\|_{p} \leq \frac{p}{p-1}\|f\|_{p}
$$

4. Prove the Hardy's inequality for the functions in $L^{p}\left(\mathbb{R}_{+}\right)$.
5. Show that the Hardy's inequality becomes equality if and only if $f \equiv 0$ almost everywhere.
6. Show that the constant $\frac{p}{p-1}$ can not replaced by another smallest constant.
Hint: Consider $f(x)=\chi_{[1, A]}(x) \cdot x^{-1 / p}$.
[^0]
[^0]: ${ }^{1} \mathcal{C}_{K}\left(\mathbb{R}_{+}^{*}, \mathbb{R}_{+}\right)$is the set of all continuous, positive, functions with compact support $K \subset \mathbb{R}_{+}^{*}$.

