List of exercises $n^{\circ} 5$ (Math 580 Theory Measure I)

Exercise 1:

Let $f:[a, b] \longrightarrow \mathbb{R}$ be a monotone function.

1. Show that f is Riemann-integrable.
2. Show that f has at each point of $[a, b[$ (resp. $] a, b]$) a right limit (resp. a left limit).

Exercise 2:

Let $f, g:[a, b] \longrightarrow \mathbb{R}$ be two Riemann-integrable functions.

1. Show that $|f|$ is integrable and $\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x$.
2. Show that $\forall p \in \mathbb{N},|f|^{p}$ is Riemann-integrable.
3. Show that ($f . g$) is Riemann-integrable.

Exercise 3:

Let $\left(f_{n}\right)_{n}$ be a sequence of functions defined on $[0,1]$ by $f_{n}(x)=\sum_{k=1}^{n} \frac{x^{k}}{k}$.
Show that $\left(f_{n}\right)_{n}$ is a Cauchy sequence but it does not convergent in $\left(\mathcal{C}([0,1] \rightarrow \mathbb{R}), N_{1}\right)$ where $\mathcal{C}([0,1] \rightarrow \mathbb{R})$ is the set of all continuous functions on $[0,1]$ and $N_{1}(f)=\int_{0}^{1}|f(x)| d x$.
Exercise 4:
Give an example of measure μ on $\left(\mathbb{R}^{2}, \mathcal{B}^{\otimes^{2}}\right)$ which is not the tensorial product of two measures on $(\mathbb{R}, \mathcal{B})$.

Exercise 5:

1. Show that $\mathcal{P}(\mathbb{N}) \otimes \mathcal{P}(\mathbb{N})=\mathcal{P}\left(\mathbb{N}^{2}\right)$.
2. Let μ be the counting measure of \mathbb{N}. Show that $\mu \otimes \mu$ is the counting measure of \mathbb{N}^{2}.

Exercise 6:

Let λ be the Lebesgue measure on $([0,1], \mathcal{B}([0,1])$) and μ be the counting measure on $([0,1], \mathcal{P}([0,1]))$. Denote $\Delta=\{(x, x) ; x \in[0,1]\}$ be the diagonal of $[0,1]^{2}$.

1. Show that $\Delta \in \mathcal{B} \otimes \mathcal{P}$.
2. Compute $\int\left(\int \chi_{\Delta}(x, y) d \lambda(x)\right) d \mu(y)$ and $\int\left(\int \chi_{\Delta}(x, y) d \mu(y)\right) d \lambda(x)$.
3. Explain.

Exercise 7:

Let f_{1} and f_{2} be two functions defined on \mathbb{R}^{2} by :
$f_{1}(x, y)=\left\{\begin{array}{ll}\frac{x^{2}-y^{2}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{array} ; f_{2}(x, y)= \begin{cases}\frac{x-y}{\left(x^{2}+y^{2}\right)^{3 / 2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}\right.$

1. For $j=1,2$, compute: $\int_{0}^{1}\left(\int_{0}^{1} f_{j}(x, y) d y\right) d x$ and $\int_{0}^{1}\left(\int_{0}^{1} f_{j}(x, y) d x\right) d y$.
2. Conclude.

Exercise 8:

Let $f: \mathbb{R}^{d} \longrightarrow \mathbb{R}$ be a Borelian function and $\Gamma=\left\{(x, f(x)) ; x \in \mathbb{R}^{d}\right\}$ its graph.

1. Show that Γ is a Borelian set of \mathbb{R}^{d+1}.
2. Show that Γ is a null set for the Lebesgue measure of \mathbb{R}^{d+1}.

Exercise 9:

1. Study the integrability of $f(x, y)=\frac{1}{(1+x+y)^{\alpha}}$ on $[0, \infty)^{2}$ where $\alpha \in \mathbb{R}$ is a parameter and compute its integral, if it exists.
2. Use the fact $\frac{1}{x}=\int_{0}^{\infty} e^{-x t} d t$ to prove that: $\lim _{a \rightarrow \infty} \int_{0}^{a} \frac{\sin x}{x} d x=\frac{\pi}{2}$.
3. Show that the function $\frac{\sin x}{x}$ is not integrable on $(0, \infty)$.
(Hint: By contradiction, deduce that $\frac{\sin ^{2} x}{x}$ is integrable and prove that it follows a contradiction).
4. Let $0<a<b$ be 2 real numbers and f be the real function defined on $[0,1] \times[a, b]$ by $f(x, y)=x^{y}$. Show that f is Lebesgue integrable for the Lebesgue measure on $([0,1] \times[a, b], \mathcal{B}([0,1] \times[a, b]))$ an deduce $\int_{0}^{1} \frac{x^{b}-x^{a}}{\ln x} d x$.
