Dr. Borhen Halouani

King Saud University College of sciences Department of mathematics Second semester 1431/1432 H

List of exercises $n^{\circ}5$ (Math 580 Theory Measure I)

Exercise 1:

Let $f : [a, b] \longrightarrow \mathbb{R}$ be a monotone function.

- 1. Show that f is Riemann-integrable.
- 2. Show that f has at each point of [a, b[(resp.]a, b]) a right limit (resp. a left limit).

Exercise 2:

Let $f, g: [a, b] \longrightarrow \mathbb{R}$ be two Riemann-integrable functions.

- 1. Show that |f| is integrable and $|\int_a^b f(x)dx| \le \int_a^b |f(x)|dx$.
- 2. Show that $\forall p \in \mathbb{N}, |f|^p$ is Riemann-integrable.
- 3. Show that (f.g) is Riemann-integrable.

Exercise 3:

Let $(f_n)_n$ be a sequence of functions defined on [0,1] by $f_n(x) = \sum_{k=1}^n \frac{x^k}{k}$.

Show that $(f_n)_n$ is a Cauchy sequence but it does not convergent in $(\mathcal{C}([0,1] \to \mathbb{R}), N_1)$ where $\mathcal{C}([0,1] \to \mathbb{R})$ is the set of all continuous functions on [0,1] and $N_1(f) = \int_0^1 |f(x)| dx$.

Exercise 4:

Give an example of measure μ on $(\mathbb{R}^2, \mathcal{B}^{\otimes^2})$ which is not the tensorial product of two measures on $(\mathbb{R}, \mathcal{B})$. **Exercise 5:**

- 1. Show that $\mathcal{P}(\mathbb{N}) \otimes \mathcal{P}(\mathbb{N}) = \mathcal{P}(\mathbb{N}^2)$.
- 2. Let μ be the counting measure of N. Show that $\mu \otimes \mu$ is the counting measure of \mathbb{N}^2 .

Exercise 6:

Let λ be the Lebesgue measure on $([0,1], \mathcal{B}([0,1]))$ and μ be the counting measure on $([0,1], \mathcal{P}([0,1]))$. Denote $\Delta = \{(x,x); x \in [0,1]\}$ be the diagonal of $[0,1]^2$.

- 1. Show that $\Delta \in \mathcal{B} \otimes \mathcal{P}$.
- 2. Compute $\int \left(\int \chi_{\Delta}(x,y) \ d\lambda(x)\right) d\mu(y)$ and $\int \left(\int \chi_{\Delta}(x,y) \ d\mu(y)\right) d\lambda(x)$.
- 3. Explain.

Exercise 7:

Let f_1 and f_2 be two functions defined on \mathbb{R}^2 by :

$$f_1(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}; f_2(x,y) = \begin{cases} \frac{x - y}{(x^2 + y^2)^{3/2}} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

1. For $j = 1, 2$, compute: $\int_0^1 \left(\int_0^1 f_j(x,y) dy \right) dx$ and $\int_0^1 \left(\int_0^1 f_j(x,y) dx \right) dy$.

2. Conclude.

Exercise 8:

Let $f : \mathbb{R}^d \longrightarrow \mathbb{R}$ be a Borelian function and $\Gamma = \{(x, f(x)); x \in \mathbb{R}^d\}$ its graph.

- 1. Show that Γ is a Borelian set of \mathbb{R}^{d+1} .
- 2. Show that Γ is a null set for the Lebesgue measure of \mathbb{R}^{d+1} .

Exercise 9:

1. Study the integrability of $f(x, y) = \frac{1}{(1+x+y)^{\alpha}}$ on $[0, \infty)^2$ where $\alpha \in \mathbb{R}$ is a parameter and compute its integral, if it exists.

2. Use the fact
$$\frac{1}{x} = \int_0^\infty e^{-xt} dt$$
 to prove that : $\lim_{a \to \infty} \int_0^a \frac{\sin x}{x} dx = \frac{\pi}{2}$.

- 3. Show that the function $\frac{\sin x}{x}$ is not integrable on $(0, \infty)$. (*Hint: By contradiction, deduce that* $\frac{\sin^2 x}{x}$ *is integrable and prove that it follows a contradiction*).
- 4. Let 0 < a < b be 2 real numbers and f be the real function defined on $[0,1] \times [a,b]$ by $f(x,y) = x^y$. Show that f is Lebesgue integrable for the Lebesgue measure on $([0,1] \times [a,b], \mathcal{B}([0,1] \times [a,b]))$ an deduce $\int_0^1 \frac{x^b - x^a}{\ln x} dx$.