Dr. Borhen Halouani

King Saud University College of sciences Department of mathematics Second semester 1431/1432 H

List of exercises $n^{\circ}4$ (Math 580 Theory Measure I)

Exercise 1:

Let λ be the Lebesgue measure on the interval [-1, 1]. Let g be a function defined by : g(x) = 1 if $x \in [0, 1]$ and g(x) = 0 otherwise. Let $(f_n)_n$ be a sequence of functions defined as $f_n(x) = g(x)$ if n is even and $f_n(x) = g(-x)$ if n is odd. Prove that

$$\int \left(\liminf_{n \to \infty} f_n(x)\right) \ d\lambda < \liminf_{n \to \infty} \left(\int f_n(x) \ d\lambda\right).$$

Exercise 2:

Let $f: (E, \mathcal{E}) \longrightarrow (F, \mathcal{F})$ be a measurable map and μ be a bounded measure on (E, \mathcal{E}) . Denote $f_*\mu$ the image measure of μ by f. It is the measure on (F, \mathcal{F}) defined by

$$f_*\mu(B) = \mu(f^{-1}(B)), \quad \forall B \in \mathcal{F}.$$

Show that the \mathcal{F} -measurable function $\phi: F \longrightarrow \mathbb{R}$ is $f_*\mu$ -integrable if and only if $\phi \circ f$ is μ -integrable and deduce that

$$\int_E \phi \circ f \ d\mu = \int_F \phi \ d(f_*\mu).$$

Exercise 3:

Let $f:[0,1] \longrightarrow \mathbb{R}$ be a measurable function. Determine the limit of

$$\int_0^1 \frac{dt}{\sqrt{(f(t))^2 + \frac{1}{n}}}.$$

Exercise 4:

Determine the limit of the following integrals when n tends to $+\infty$:

$$u_n = \int_0^1 \frac{1 + nx^3}{(1 + x^2)^n} \, dx \, ; \, v_n = \int_0^n \left(1 + \frac{x}{n}\right)^n \, e^{-2x} \, dx \text{ and } w_n = \int_0^\infty \frac{\sin(\pi x)}{1 + x^n} \, dx.$$

Exercise 5:

Let a, b be two real numbers such a < b, and $f : (a, b) \longrightarrow \mathbb{R}$ be a bounded, integrable, Borelian function such that $\lim_{x \to a^+} f(x) = \gamma \in \mathbb{R}$.

Prove that for all $t \in (a, b)$, the function $x \mapsto \frac{f(x)}{\sqrt{(x-a)(t-x)}}$ is integrable on (a, t) and compute

$$\lim_{t \to a^+} \int_a^t \frac{f(x)}{\sqrt{(x-a)(t-x)}} \, dx.$$

Exercise 6:

1. Let a and b be two strictly positif real numbers. For x > 0, let $f(x) = \frac{xe^{-ax}}{1-e^{-bx}}$. Show that

$$\int_{0}^{+\infty} f(x)dx = \sum_{n=0}^{\infty} \frac{1}{(a+nb)^2}.$$

2. Let μ be a measure on \mathbb{R} such that the function $x \mapsto e^{x^2}$ be μ -integrable. Give an example of a measure for μ , and prove that for all complex number $z \in \mathbb{C}$, we have:

$$\sum_{n=0}^{\infty} \frac{z^n}{n!} \int_{\mathbb{R}} x^n d\mu(x) = \int_{\mathbb{R}} e^{zx} d\mu(x).$$

3. Prove that the function $f: [1, \infty) \longrightarrow \mathbb{R}$ defined by $f(x) = \sum_{n=1}^{\infty} ne^{-nx}$ is

integrable on $[1, \infty)$ for the Lebesgue measure and compute its integral.

Exercise 7:

Let f be the function defined by $f(x,t) = e^{-xt} \frac{\sin x}{x} \chi_{(0,\infty)}(x)$.

- 1. Prove that for every t > 0, the function $x \mapsto f(x, t)$ is integrable for the Lebesgue measure on \mathbb{R} .
- 2. Prove that the function $F(t) = \int_{\mathbb{R}} f(x,t) dx$ is differentiable on $(0,\infty)$.
- 3. Determine the expression of F.
- 4. Can we deduce that the function $x \mapsto \frac{\sin x}{x}$ is integrable on $(0, \infty)$?

Exercise 8:

Let (E, \mathcal{E}, μ) be a measure space and $f: E \longrightarrow \mathbb{C}$ be μ -integrable function.

1. Let $B_n = \{x \in E; n-1 \le |f(x)| \le n\}$. Prove that $\mu(B_n) < \infty, \forall n \ge 2$.

2. Prove that
$$\sum_{n=2}^{\infty} n\mu(B_n) < \infty$$
.

3. Writting, for $N \ge 2$, $\sum_{n=2}^{N} \sum_{m=2}^{n} \frac{m^2}{n^2} \mu(B_m) = \sum_{m=2}^{N} \sum_{n=m}^{N} \frac{m^2}{n^2} \mu(B_m)$. Show that $\sum_{n=2}^{\infty} \sum_{m=2}^{n} \frac{m^2}{n^2} \mu(B_m) < \infty$.

4. Prove that, for $n \ge 2$, $\int |f|^2 \chi_{\{|f| < n\}} d\mu = \int |f|^2 \chi_{\{|f| < 1\}} d\mu + \sum_{m=2}^n \int |f|^2 \chi_{B_m} d\mu.$

5. Deduce that
$$\sum_{n=1}^{\infty} \frac{1}{n^2} \left(\int |f|^2 \chi_{\{|f| < n\}} d\mu \right) < \infty.$$

Exercise 9:

Let μ be a probability on a measurable space $(E, \mathcal{E}), \phi : (a, b) \longrightarrow \mathbb{R}$ be a convex function with $-\infty \leq a < b \leq +\infty$ and $f : E \longrightarrow \mathbb{R}$ be an μ -integrable function.

- 1. Prove the Jensen's Inequality : $\phi(\int f d\mu) \leq \int \phi(f) d\mu$. <u>Hint:</u> Use the fact the graph of a convex function is the superior envelope (convex hull) of affine functions.
- 2. Write this inequality in terms of image probability $f_*\mu$.
- 3. Deduce the finite Jensen's inequality, obtained in the case: E = (a, b),

$$\mathcal{E} = \mathcal{B}((a, b)), f(x) = x \text{ and } \mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i} \text{ where } \delta_x \text{ is the Dirac measure}$$

at x and $\alpha_i \in \mathbb{R}$ such $\sum_{i=1}^{n} \alpha_i = 1$.