List of exercises $n^{\circ} 4$ (Math 580 Theory Measure I)

Exercise 1:

Let λ be the Lebesgue measure on the interval $[-1,1]$. Let g be a function defined by : $g(x)=1$ if $x \in[0,1]$ and $g(x)=0$ otherwise. Let $\left(f_{n}\right)_{n}$ be a sequence of functions defined as $f_{n}(x)=g(x)$ if n is even and $f_{n}(x)=g(-x)$ if n is odd. Prove that

$$
\int\left(\liminf _{n \rightarrow \infty} f_{n}(x)\right) d \lambda<\liminf _{n \rightarrow \infty}\left(\int f_{n}(x) d \lambda\right)
$$

Exercise 2:

Let $f:(E, \mathcal{E}) \longrightarrow(F, \mathcal{F})$ be a measurable map and μ be a bounded measure on (E, \mathcal{E}). Denote $f_{*} \mu$ the image measure of μ by f. It is the measure on (F, \mathcal{F}) defined by

$$
f_{*} \mu(B)=\mu\left(f^{-1}(B)\right), \quad \forall B \in \mathcal{F}
$$

Show that the \mathcal{F}-measurable function $\phi: F \longrightarrow \mathbb{R}$ is $f_{*} \mu$-integrable if and only if $\phi \circ f$ is μ-integrable and deduce that

$$
\int_{E} \phi \circ f d \mu=\int_{F} \phi d\left(f_{*} \mu\right)
$$

Exercise 3:

Let $f:[0,1] \longrightarrow \mathbb{R}$ be a measurable function. Determine the limit of

$$
\int_{0}^{1} \frac{d t}{\sqrt{(f(t))^{2}+\frac{1}{n}}}
$$

Exercise 4:

Determine the limit of the following integrals when n tends to $+\infty$:
$u_{n}=\int_{0}^{1} \frac{1+n x^{3}}{\left(1+x^{2}\right)^{n}} d x ; v_{n}=\int_{0}^{n}\left(1+\frac{x}{n}\right)^{n} e^{-2 x} d x$ and $w_{n}=\int_{0}^{\infty} \frac{\sin (\pi x)}{1+x^{n}} d x$

Exercise 5:

Let a, b be two real numbers such $a<b$, and $f:(a, b) \longrightarrow \mathbb{R}$ be a bounded, integrable, Borelian function such that $\lim _{x \rightarrow a^{+}} f(x)=\gamma \in \mathbb{R}$.
Prove that for all $t \in(a, b)$, the function $x \longmapsto \frac{f(x)}{\sqrt{(x-a)(t-x)}}$ is integrable on (a, t) and compute

$$
\lim _{t \rightarrow a^{+}} \int_{a}^{t} \frac{f(x)}{\sqrt{(x-a)(t-x)}} d x
$$

Exercise 6:

1. Let a and b be two strictly positif real numbers. For $x>0$, let $f(x)=\frac{x e^{-a x}}{1-e^{-b x}}$. Show that

$$
\int_{0}^{+\infty} f(x) d x=\sum_{n=0}^{\infty} \frac{1}{(a+n b)^{2}}
$$

2. Let μ be a measure on \mathbb{R} such that the function $x \longmapsto e^{x^{2}}$ be μ-integrable. Give an example of a measure for μ, and prove that for all complex number $z \in \mathbb{C}$, we have:

$$
\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \int_{\mathbb{R}} x^{n} d \mu(x)=\int_{\mathbb{R}} e^{z x} d \mu(x)
$$

3. Prove that the function $f:[1, \infty) \longrightarrow \mathbb{R}$ defined by $f(x)=\sum_{n=1}^{\infty} n e^{-n x}$ is integrable on $[1, \infty)$ for the Lebesgue measure and compute its integral.

Exercise 7:

Let f be the function defined by $f(x, t)=e^{-x t} \frac{\sin x}{x} \chi_{(0, \infty)}(x)$.

1. Prove that for every $t>0$, the function $x \longmapsto f(x, t)$ is integrable for the Lebesgue measure on \mathbb{R}.
2. Prove that the function $F(t)=\int_{\mathbb{R}} f(x, t) d x$ is differentiable on $(0, \infty)$.
3. Determine the expression of F.
4. Can we deduce that the function $x \longmapsto \frac{\sin x}{x}$ is integrable on $(0, \infty)$?

Exercise 8:

Let (E, \mathcal{E}, μ) be a measure space and $f: E \longrightarrow \mathbb{C}$ be μ-integrable function.

1. Let $B_{n}=\{x \in E ; n-1 \leq|f(x)| \leq n\}$. Prove that $\mu\left(B_{n}\right)<\infty, \forall n \geq 2$.
2. Prove that $\sum_{n=2}^{\infty} n \mu\left(B_{n}\right)<\infty$.
3. Writting, for $N \geq 2, \sum_{n=2}^{N} \sum_{m=2}^{n} \frac{m^{2}}{n^{2}} \mu\left(B_{m}\right)=\sum_{m=2}^{N} \sum_{n=m}^{N} \frac{m^{2}}{n^{2}} \mu\left(B_{m}\right)$. Show that $\sum_{n=2}^{\infty} \sum_{m=2}^{n} \frac{m^{2}}{n^{2}} \mu\left(B_{m}\right)<\infty$.
4. Prove that, for $n \geq 2, \int|f|^{2} \chi_{\{|f|<n\}} d \mu=\int|f|^{2} \chi_{\{|f|<1\}} d \mu+\sum_{m=2}^{n} \int|f|^{2} \chi_{B_{m}} d \mu$.
5. Deduce that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}\left(\int|f|^{2} \chi_{\{|f|<n\}} d \mu\right)<\infty$.

Exercise 9:

Let μ be a probability on a measurable space $(E, \mathcal{E}), \phi:(a, b) \longrightarrow \mathbb{R}$ be a convex function with $-\infty \leq a<b \leq+\infty$ and $f: E \longrightarrow \mathbb{R}$ be an μ-integrable function.

1. Prove the Jensen's Inequality : $\phi\left(\int f d \mu\right) \leq \int \phi(f) d \mu$.

Hint: Use the fact the graph of a convex function is the superior envelope (convex hull) of affine functions.
2. Write this inequality in terms of image probability $f_{*} \mu$.
3. Deduce the finite Jensen's inequality, obtained in the case: $E=(a, b)$, $\mathcal{E}=\mathcal{B}((a, b)), f(x)=x$ and $\mu=\sum_{i=1}^{n} \alpha_{i} \delta_{x_{i}}$ where δ_{x} is the Dirac measure at x and $\alpha_{i} \in \mathbb{R}$ such $\sum_{i=1}^{n} \alpha_{i}=1$.

