Dr. Borhen Halouani

King Saud University College of sciences Department of mathematics Second semester 1431/1432 H

List of exercises $n^{\circ}3$ (Math 580 Theory Measure I)

Exercise 1:

Let μ and ν be measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ defined as :

$$\mu = \sum_{n \ge 1} e^{-n} \delta_{1/n} \; ; \; \nu = \sum_{n \ge 1} e^n \delta_{1/n} \; .$$

- 1. Does the measures μ and ν are finite? probability measures? σ -finite? infinite?
- 2. Compute $\mu(\{0\}), \ \mu([0,\frac{1}{k}])$ for $k \geq 1, \ \lim_{k \to \infty} \mu([0,\frac{1}{k}])$ and compare the results.
- 3. Compute $\nu(\{0\}), \nu([0, \frac{1}{k}])$ for $k \ge 1$, and compare the results.

Exercise 2:

1. Let (X, \mathcal{A}) be a measurable space and (μ_i) be a sequence of positives measures on \mathcal{A} . Assume that $\forall A \in \mathcal{A}$ and $\forall j \in \mathbb{N}, \mu_j(A) \leq \mu_{j+1}(A)$. For all $A \in \mathcal{A}$, we put $\mu(A) = \sup \mu_j(A)$. $j \in \mathbb{N}$

Show that μ is a measure on \mathcal{A} .

2. On the measurable space $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$, we define for all $j \in \mathbb{N}$,

$$\nu_j(A) = \operatorname{card}(A \cap [j, +\infty]).$$

Show that ν_j is a measure on $\mathcal{P}(\mathbb{N})$ and $\nu_j(A) \ge \nu_{j+1}(A)$.

3. Let $\nu : \mathcal{P}(\mathbb{N}) \longrightarrow [0,\infty]$ defined by $\nu(A) = \inf_{i \in \mathbb{N}} \nu_j(A)$. Compute $\nu(\mathbb{N})$ and $\nu(\{k\})$ for $k \in \mathbb{N}$. Deduce that ν is not a measure.

Exercise 3:

Let λ be the Lebesgue measure on \mathbb{R} and let $\varepsilon > 0$. Construct an open set Ω in \mathbb{R} that is dense and $\lambda(\Omega) < \varepsilon$. Exercise 4:

Let E be a nonempty set.

- 1. Let \mathcal{E} be a σ -algebra on E and A be a subset of E. Show that the characteristic function χ_A is measurable if and only if $A \in \mathcal{E}$.
- 2. Let \mathcal{A} be a partition at most countable of E, \mathcal{E} be the σ -algebra generated by \mathcal{A} and f be a real function on E. Show that f is measurable if and only if f is constant on each subset of \mathcal{A} .
- 3. Show that the function $f : \mathbb{R} \longrightarrow \mathbb{R}$ defined as $f(x) = \frac{1}{x}$ if $x \neq 0$ and f(0) = 0 is a Borelian function.

Exercise 5:

Let E be a Borelian set of \mathbb{R} and $f: E \longrightarrow \mathbb{R}$ be a monotonic function. Show that f is a measurable function.

Exercise 6:

Let (E, \mathcal{A}) be a measurable space and $(f_n)_n$ be a sequence of measurable functions from E to \mathbb{R} . Show that the following sets:

 $A = \left\{ x \in E, \lim_{n \to \infty} f_n(x) = \infty \right\} \text{ and } B = \left\{ x \in E, \text{ the sequence } (f_n) \text{ is bounded } \right\}$ are measurable.

Exercise 7:

Let (X, \mathcal{A}, μ) be a measure space, (Y, \mathcal{B}) be a measurable space and f: $(X, \mathcal{A}) \longrightarrow (Y, \mathcal{B})$ be a measurable function. Show that the function μ_f : $\mathcal{B} \longrightarrow [0, \infty]$ defined by $\mu_f(B) = \mu(f^{-1}(B))$ is a measure on \mathcal{B} . Exercise 8:(Egoroff's theorem)

Let (X, \mathcal{A}, μ) be a measure space such $\mu(X) < \infty$ and $f_n : (X, \mathcal{A}) \longrightarrow (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be a sequence of measurable functions.

- 1. Show that the set of convergence C of (f_n) is a measurable set.
- 2. We suppose that (f_n) is μ -convergent to f a.e $(\mu(C^c) = 0)$. For $k \in \mathbb{N}^*$, let $E_n^k = \bigcap_{i \ge n} \{ |f_i - f| \le \frac{1}{k} \}$. Show that $C \subset \bigcup_{n \ge 1} E_n^k$. Deduce that for all $\varepsilon > 0$, $\forall k \in \mathbb{N}^*$ there exists $n_{k,\varepsilon} \in \mathbb{N}^*$ such that

$$\mu\left((E_{n_{k,\varepsilon}}^k)^c\right) < \frac{\varepsilon}{2^k}$$

- 3. Deduce that $\forall \varepsilon > 0$ there exists $E_{\varepsilon} \in \mathcal{A}$ such that the sequence (f_n) converges uniformly to f on E_{ε} and $\mu(E_{\varepsilon}^c) < \varepsilon$.
- 4. Give a counterexample when $\mu(X) = +\infty$.