Dr Borhen Halouani

King Saud University Department of mathematics Math 580 (Theory Measure I)

List of exercises $n^{\circ}2$

Exercise 1:

Let X be an infinite countable set.

a) Show that the set of finite subsets of X is countable.

b) Deduce that the set of infinite subsets of X is uncountable.

Exercise 2:

a) Let $f : [a, b] \longrightarrow \mathbb{R}$ be a monotonic function. Show that the set of all discontinuity points of f is a countable set.

Hint: Consider $J(n) = \{x \in (a, b] \setminus | f(x_+) - f(x_-)| > \frac{1}{n}\}.$ b) Same question with a monotonic function $f : \mathbb{R} \longrightarrow \mathbb{R}.$

Exercise 3:

Remember a real number is said *algebraic* if it is a root of a polynomial with integers coefficients.

Show that the set of all algebraic numbers is a countable set.

Exercise 4:

Let X be a nonempty set. Let $(A_n)_{n\geq 1}$ be a sequence of subsets of X. a) Show that

$$\chi_{\bigcup_{i=1}^{n} A_{i}} = \sum_{k=1}^{n} (-1)^{k+1} \sum_{I \subset \{1,2,\dots,n\}, |I|=k} \chi_{\bigcap_{i \in I} A_{i}}.$$

b) If X is finite, deduce Poincare's formula:

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{k=1}^{n} (-1)^{k+1} \sum_{I \subset \{1,2,\dots,n\}, |I|=k} \left| \bigcap_{i \in I} A_{i} \right|.$$

Exercise 5:

Let $\mathfrak{A} = \{A, B, C\}$ be a partition of X on three subsets. Describe the σ -algebra generated by \mathfrak{A} .

Exercise 6:

Let \mathfrak{A} and \mathfrak{F} be two σ -algebras of X. Describe the σ -algebras generated by $\mathfrak{A} \cap \mathfrak{F}$ and by $\mathfrak{A} \bigcup \mathfrak{F}$.

Exercise 7:

Let \mathfrak{A} be an algebra and μ is a measure defined on it. Let $A, B \in \mathfrak{A}$. Prove that

$$|\mu(A) - \mu(B)| \le \mu \left(A \Delta B\right)$$

Hint: $A \subset A \mid J(A \Delta B) = A \mid J B$.

Check whether the inequality holds if μ is an outer measure. Exercise 8:

Let X be a set, \mathfrak{A} an algebra of its subsets. Let $\widetilde{\mathfrak{A}}$ be the σ -algebra of Caratheodory measurable subsets of X. Suppose that $A \subset X$ is such that for any $\varepsilon > 0$ there exists $A_{\varepsilon} \in \mathfrak{A}$ such that $\mu^*(A\Delta A_{\varepsilon}) < \varepsilon$. Prove that $A \in \widetilde{\mathfrak{A}}$.

Exercise 9:

For all $A \subset \mathbb{R}$ and $x \in \mathbb{R}$. Define $x \cdot A = \{x \cdot a \setminus a \in A\}$ and

$$\mu^*(A) = \inf\left\{\sum_{n=1}^{\infty} (b_n - a_n), A \subset \bigcup_{n=1}^{\infty} (a_n, b_n); (a_n, b_n) \text{finite intervals}\right\}$$

a) Show that μ^* is an outer measure on $\mathcal{P}(\mathbb{R})$.

b) Show that $\mu^*(x.A) = |x|\mu^*(A)$.

c) Let $c \in \mathbb{R}$. Define $A_1 = \{a \in A, a < c\}$ and $A_2 = \{a \in A, a \ge c\}$. Show that

$$\mu^*(A) = \mu^*(A_1) + \mu^*(A_2).$$