Homework - I

KSU / Math-244 / Semester-II (1440-1441)

Note 1: The students must submit the completed homework through email to the respective class teachers within 3 days from its assignment date.
Note 2: Every student must submit PDF file of the homework done; in his own handwriting using blue ink and with his signature.

Problem1:

a) If $\mathbf{A}=\left[\begin{array}{ccc}1 & 0 & 1 \\ 2 & -1 & 1 \\ 1 & 3 & 2\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{ccc}1 & 0 & -3 \\ -6 & 7 & -3 \\ -3 & -9 & -2\end{array}\right]$, then find the values of
a. x, y and z such that $x \mathbf{A}^{2}+y \mathbf{A B}+z \mathbf{I}=\mathbf{0}$.
b) Find $\operatorname{adj}(\mathbf{A})$ and \mathbf{A}^{-1} for the matrix:

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & 0 & a \\
2 & b & c \\
-1 & 1 & 1
\end{array}\right],
$$

where $a b+b+2 a-c \neq 0$
c) Let $\mathbf{A} \in \mathbf{M}_{3 \times 3}(\mathbb{R})$ with determinant $|\mathbf{A}|=2$. Find $\left|2(\operatorname{adj}(\mathbf{A}))^{-1}+\mathbf{A}\right|$.

Problem 2:

a) Let $\mathbf{A}=\left[\begin{array}{rrrr}1 & -1 & 4 & 5 \\ -2 & 1 & -11 & -8 \\ -1 & 2 & 2 & 2\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{cccc}1 & -1 & 3 & 2 \\ 0 & 1 & 4 & 1 \\ 1 & 0 & 8 & 6\end{array}\right]$. Show that the matrices \mathbf{A} and B are row equivalent to each other.
b) Determine the value/s of α such that the following linear system:

$$
\begin{aligned}
x+2 y-r & =2 \\
x-2 y+3 z & =1 \\
x+2 y-\left(\alpha^{2}-3\right) z & =\alpha
\end{aligned}
$$

has: (i). no solution; (ii). unique solution; (iii). infinitely many solutions.

Problem 3:

a) Show that any homogeneous system of linear equations either has only the trivial solution or infinitely many solutions and so every homogeneous linear system is consistent.
b) Give example of a homogeneous linear system with only the trivial solution.
c) Give example of a homogeneous linear system having infinitely many non-trivial solutions.
d) By using the Cramer's rule, solve the following system:

$$
\begin{aligned}
& x+2 y-z=2 \\
& x+3 y+3 z=2 \\
& x+3 y+5 z=4
\end{aligned}
$$

Problem 4:

a) Let $\mathbf{W}=\left\{\mathbf{A} \in \mathbf{M}_{2 \times 2}(\mathbb{R})\right.$: $\left.\mathbf{A B}=\mathbf{B A}\right\}$, where $\mathbf{B}=\left[\begin{array}{rr}-\mathbf{1} & 1 \\ \mathbf{0} & 1\end{array}\right]$. Then:
(i). Show that \mathbf{W} is a vector subspace of the vector space $\mathbf{M}_{2 \times 2}(\mathbb{R})$.
(ii). Find a basis and dimension of \mathbf{W}.
b) Find a basis of the vector space \mathbb{R}^{3} which contains the set $\{(1,1,0),(1,-1,0)\}$.

Problem 5:

a) Show that $\mathbf{A}=\left\{\left[\begin{array}{ll}\boldsymbol{\alpha} & \boldsymbol{\beta} \\ \boldsymbol{\gamma} & \boldsymbol{\delta}\end{array}\right] \in \mathbf{M}_{2 \times 2}(\mathbb{R}): \boldsymbol{\alpha}+\boldsymbol{\beta}=\boldsymbol{\gamma}-\delta\right\}$ is a vector subspace of $\mathbf{M}_{2 \times 2}(\mathbb{R})$. Also find a basis and dimension of the vector space \mathbf{A}.
b) Show that $\mathbf{S}=\left\{\mathbf{X} \in \mathbf{M}_{2 \times 2}(\mathbb{R})\right.$: $\left.\mathbf{X}=-\mathbf{X}^{\mathbf{T}}\right\}$ is a subspace of the vector space $\mathbf{M}_{2 \times 2}(\mathbb{R})$ and show further that the set $\left\{\left[\begin{array}{rr}\mathbf{0} & -\mathbf{1} \\ \mathbf{1} & \mathbf{0}\end{array}\right]\right\}$ is a basis for \mathbf{S}.
c) Determine whether $\left\{\mathbf{X} \in \mathbf{M}_{2 \times 2}(\mathbb{R})\right.$: $\left.\mathbf{X}=\mathbf{X}^{\mathbf{T}}\right\}$ is a proper subspace of the vector space $\mathbf{M}_{2 \times 2}(\mathbb{R})$?

