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Preface

We are much indebted to our colleagues throughout the country who
have so generously provided us with suggestions on both the order of
presentation and the kind of material to be included in this edition of
Introduction to Mathematical Statistics. We believe that you will find
the book much more adaptable for classroom use than the previous
edition. Again, essentially all the distribution theory that is needed is
found in the first five chapters. Estimation and tests of statistical
hypotheses, including nonparameteric methods, follow in Chapters 6, 7,
8, and 9, respectively. However, sufficient statistics can be introduced
earlier by considering Chapter 10 immediately after Chapter 6 on
estimation. Many of the topics of Chapter 11 are such that they may
also be introduced sooner: the Rao—Cramér inequality (11.1) and
robust estimation (11.7) after measures of the quality of estimators
(6.2), sequential analysis (11.2) after best tests (7.2), multiple com-
parisons (11.3) after the analysis of variance (8.5), and classification
(11.4) after material on the sample correlation coefficient (8.7). With this
flexibility the first eight chapters can easily be covered in courses of
either six semester hours or eight quarter hours, supplementing with
the various topics from Chapters 9 through 11 as the teacher chooses
and as the time permits. In a longer course, we hope many teachers and
students will be interested in the topics of stochastic independence
(11.5), robustness (11.6 and 11.7), multivariate normal distributions
(12.1), and quadratic forms (12.2 and 12.3).

We are obligated to Catherine M. Thompson and Maxine Merrington
and to Professor E. S. Pearson for permission to include Tables IT and
VE which are abridgments and adaptations of tables published in
Biometrika. We wish to thank Oliver & Boyd Ltd., Edinburgh, for
permission to include Table IV, which is an abridgment and adaptation
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Preface
vi

of Table I1I from the book Statistical Tables for Biological, Agricultural,
and Medical Research by the late Professor Sir Ronald A. Fisher,
Cambridge, and Dr. Frank Yates, Rothamsted. Finally, we wish to
thank Mrs. Karen Horner for her first-class help in the preparation of

the manuscript.
R. V. H.

A.T.C
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Chapter 1

Distributions of
Random Variables

1.1 Introduction

Many kinds of investigations may be characterized in part by the
fact that repeated experimentation, under essentially the same con-
ditions, is more or less standard procedure. For instance, in medical
research, interest may center on the effect of a drug that is to be
administered; or an economist may be concerned with the prices of
three specified commodities at various time intervals; or the agronomist
may wish to study the effect that a chemical fertilizer has on the yield
of a cereal grain. The only way in which an investigator can elicit
information about any such phenomenon is to perform his experiment.
Each experiment terminates with an oufcome. But it is characteristic of
these experiments that the outcome cannot be predicted with certainty
prior to the performance of the experiment.

Suppose that we have such an experiment, the outcome of which
cannot be predicted with certainty, but the experiment is of such a
nature that the collection of every possible outcome can be described
prior to its performance. If this kind of experiment can be repeated
under the same conditions, it is called a random experiment, and the
collection of every possible outcome is called the experimental space or
the sample space.

Example 1. In the toss of a coin, let the outcome tails be denoted by
T and let the outcome heads be denoted by H. If we assume that the coin
may be repeatedly tossed under the same conditions, then the toss of this
coin is an example of a random experiment in which the outcome is one of

1



2 Distributions of Random Variables [Ch. 1

the two symbols T and H; that is, the sample space is the collection of these
two symbols.

Example 2. In the cast of one red die and one white die, let the outcome
be the ordered pair (number of spots up on the red die, number of spots up
on the white die). If we assume that these two dice may be repeatedly cast
under the same conditions, then the cast of this pair of dice is a random
experiment and the sample space consists of the 36 order pairs (1, 1),...,
(1,6),(2,1),...,(2,6),..., (6, 6).

Let € denote a sample space, and let C represent a part of %. If,
upon the performance of the experiment, the outcome is in C, we shall
say that the event C has occurred. Now conceive of our having made N
repeated performances of the random experiment. Then we can count
the number f of times (the frequency) that the event C actually occurred
throughout the N performances. The ratio f/N is called the relative
frequency of the event C in these N experiments. A relative frequency is
usually quite erratic for small values of IV, as you can discover by
tossing a coin. But as N increases, experience indicates that relative
frequencies tend to stabilize. This suggests that we associate with the
event C a number, say $, that is equal or approximately equal to that
number about which the relative frequency seems to stabilize. If we do
this, then the number p can be interpreted as that number which, in
future performances of the experiment, the relative frequency of the
event C will either equal or approximate. Thus, although we cannot
predict the outcome of a random experiment, we can, for a large value
of N, predict approximately the relative frequency with which the
outcome will be in C. The number $ associated with the event C is given
various names. Sometimes it is called the probability that the outcome
of the random experiment is in C; sometimes it is called the probability
of the event C; and sometimes it is called the probability measure of C.
The context usually suggests an appropriate choice of terminology.

Example 3. Let € denote the sample space of Example 2 and let C be
the collection of every ordered pair of ¢ for which the sum of the pair is equal
to seven. Thus C is the collection (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), and (6, 1).
Suppose that the dice are cast N = 400 times and let f, the frequency of a
sum of seven, be f = 60. Then the relative frequency with which the outcome
was in C is fIN = &% = 0.15. Thus we might associate with C a number p
that is close to 0.15, and p would be called the probability of the event C.

Remark. The preceding interpretation of probability is sometimes re-
ferred to as the relative frequency approach, and it obviously depends upon
the fact that an experiment can be repeated under essentially identical con-
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ditions. However, many persons extend probability to other situations by
treating it as rational measure of belief. For example, the statement p = %
would mean to them that their personal or subjective probability of the event
C is equal to . Hence, if they are not opposed to gambling, this could be
interpreted as a willingness on their part to bet on the outcome of C so that
the two possible payoffs are in the ratio p/(1 — p) = %/2 = %. Moreover, if
they truly believe that p = % is correct, they would be willing to accept either
side of the bet: (a) win 3 units if C occurs and lose 2 if it does not occur, or
(b) win 2 units if C does not occur and lose 3 if it does. However, since the
mathematical properties of probability given in Section 1.4 are consistent
with either of these interpretations, the subsequent mathematical develop-
ment does not depend upon which approach is used.

The primary purpose of having a mathematical theory of statistics
is to provide mathematical models for random experiments. Once a
model for such an experiment has been provided and the theory
worked out in detail, the statistician may, within this framework, make
inferences (that is, draw conclusions) about the random experiment.
The construction of such a model requires a theory of probability. One
of the more logically satisfying theories of probability is that based on
the concepts of sets and functions of sets. These concepts are introduced
in Sections 1.2 and 1.3.

EXERCISES

1.1. In each of the following random experiments, describe the sample
space . Use any experience that you may have had (or use your intuition) to
assign a value to the probability p of the event C in each of the following
instances:

(a) The toss of an unbiased coin where the event C is tails.

{(b) The cast of an honest die where the event C is a five or a six.

(c) The draw of a card from an ordinary deck of playing cards where the
event C occurs if the card is a spade.

(d) The choice of a number on the interval zero to 1 where the event C
occurs if the number is less than %.

(e) The choice of a point from the interior of a square with opposite
vertices (—1, —1) and (1, 1) where the event C occurs if the sum of the
coordinates of the point is less than 3.

1.2. A point is to be chosen in a haphazard fashion from the interior of a
fixed circle. Assign a probability p that the point will be inside another circle,
which has a radius of one-half the first circle and which lies entirely within
the first circle.

1.3. An unbiased coin is to be tossed twice. Assign a probability p, to
the event that the first toss will be a head and that the second toss will be a



4 Distributions of Random Variables [Ch. 1

tail. Assign a probability p, to the event that there will be one head and one
tail in the two tosses.

1.2 Algebra of Sets

The concept of a sef or a collection of objects is usually left undefined.
However, a particular set can be described so that there is no misunder-
standing as to what collection of objects is under consideration. For
example, the set of the first 10 positive integers is sufficiently well
described to make clear that the numbers § and 14 are not in the set,
while the number 3 is in the set. If an object belongs to a set, it is said
to be an element of the set. For example, if A denotes the set of real
numbers z for which 0 < # < 1, then £ is an element of the set A. The
fact that 2 is an element of the set 4 is indicated by writing 3 € 4.
More generally, a € A means that a is an element of the set 4.

The sets that concern us will frequently be sets of numbers. However,
the language of sets of points proves somewhat more convenient than
that of sets of numbers. Accordingly, we briefly indicate how we use
this terminology. In analytic geometry considerable emphasis is placed
on the fact that to each point on a line (on which an origin and a unit
point have been selected) there corresponds one and only one number,
say z; and that to each number « there corresponds one and only one
point on the line. This one-to-one correspondence between the numbers
and points on a line enables us to speak, without misunderstanding, of
the “point ™ instead of the “number x.” Furthermore, with a plane
rectangular coordinate system and with # and y numbers, to each
symbol (z, ) there corresponds one and only one point in the plane; and
to each point in the plane there corresponds but one such symbol. Here
again, we may speak of the “point (z, y),” meaning the “‘ ordered number
pair z and y.”” This convenient language can be used when we have a
rectangular coordinate system in a space of three or more dimensions.
Thus the “point (x,, %5, . . ., x,) " means the numbers z;, z,, ..., @, in
the order stated. Accordingly, in describing our sets, we frequently
speak of a set of points (a set whose elements are points), being careful,
of course, to describe the set so as to avoid any ambiguity. The nota-
tion 4 = {#;0 <« < 1} is read “A is the one-dimensional set of
points x for which 0 < x < 1.” Similarly, 4 = {(z,9);0 < z < 1,
0 < y < 1} can be read ““ A4 is the two-dimensional set of points (z, ¥)
that are interior to, or on the boundary of, a square with opposite
vertices at (0, 0) and (1, 1).” We now give some definitions (together
with illustrative examples) that lead to an elementary algebra of sets
adequate for our purposes.
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Definition 1. If each element of a set 4, is also an element of set
Ag, theset A, is called a subset of the set A,. This is indicated by writing
A, € Ay, T A, © 4, and also 4, = A,, the two sets have the same
elements, and this is indicated by writing 4, = 4,.

Examplel. Let A, = {#;0 <z < 1Jand 4, = {2; -1 <2 < 2}. Here
the one-dimensional set 4, is seen to be a subset of the one-dimensional set
Aj; that is, 4, = A, Subsequently, when the dimensionality of the set is
clear, we shall not make specific reference to it.

Example 2. Let A, = {(,9);0 <z =y < BJand 4, = {(2,9);0 < 2 < 1,
0 < y < 1}. Since the elements of 4, are the points on one diagonal of the
square, then 4, < A4,.

Definition 2. If a set 4 has no elements, A4 is called the null set.
This is indicated by writing 4 = &.

Definition 3. The set of all elements that belong to at least one
of the sets 4, and 4, is called the union of A, and 4,. The union of
A, and A4, is indicated by writing 4, U A,. The union of several sets
Ay, Ay, Ag, ... is the set of all elements that belong to at least one of
the several sets. This union is denoted by 4, U A, U A3 U - or by
A1 VA,V ---U A4, if a finite number % of sets is involved.

Example 3. Let 4, = {x;2 = 0, 1,...,10}and 4, = {=,z = 8,9, 10, 11,
or 11 <2 <12}, Then 4, Ud, ={x;2=0,1,..., 8,9, 10, 11, or 11 <
r<12} ={x;2=0,1,...,8,9,10,or 1l < z < 12}.

Example 4. Let A, and A, be defined as in Example 1. Then
A, VA, = A4,

Example 5. Let A, = @. Then A, U 4, = 4, for every set 4.
Example 6. For everyset A, AUA = A.

Example7. Let A, ={x;1/(k +1) <x <1}, k=1,23,.... Then
Al. VA, U4,V ={x,0 < 2 < 1}. Note that the number zero is not in
this set, since it is not in one of the sets A, A, A, ...

Definition 4. The set of all elements that belong to each of the sets
A and A, is called the sntersection of A 1 and A,. The intersection of 4,
and A, is indicated by writing A, N A,. The intersection of several sets
Ay, Ay, A, . .. is the set of all elements that belong to each of the sets
Ay, Ay, A, . ... This intersection is denoted by A,nd,nA;n ...
orby A, M A, N ---N A, if a finite number % of sets is involved.

Example 8. Let A, = {(z, y); (&, y) = (0,0), (0, 1), (1, 1)} and A, =
(@ 9); @) = (1L1),(1,2), 2 D} Then 4, N 4, = {(x, y); (v, y) = (1, 1)}.
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A, A,
A1 n Az
FIGURE 1.1

;1 <z + gy}

Example9. Let A, ={(z,y);0 <z +y < 1}and 4, = {(z,y
=dg.

Then A, and 4, have no points in common and 4; N A4,
Example 10. Foreveryset A, ANAdA =A4AandAng =g.

Example 11. 1Let A, ={x;0 <z < 1/k}, £ =1,2,3,.... Then 4, N
Ay N Ag- -+ is the null set, since there is no point that belongs to each of
the sets 4, 4,, A,, . ...

Example 12. Let A, and A, represent the sets of points enclosed,
respectively, by two intersecting circles. Then the sets 4, U 4,and 4, N 4,
are represented, respectively, by the shaded regions in the Venn diagrams
in Figure 1.1.

Example 13. 1et A,, A,, and A; represent the sets of points enclosed,
respectively, by three intersecting circles. Then the sets (4, U 4,) N 43 and
(4; N 4,) U A, are depicted in Figure 1.2

Definition 5. In certain discussions or considerations the totality
of all elements that pertain to the discussion can be described. This set
of all elements under consideration is given a special name. It is called
the space. We shall often denote spaces by capital script letters such as
&, %, and €.

Example 14. Let the number of heads, in tossing a coin four times, be

141 ’42

As

(4,U 4,) n A (A,Nn A4,) U A,
FIGURE 12
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denoted by z. Of necessity, the number of heads will be one of the numbers
0, 1, 2, 3, 4. Here, then, the space is the set & = {x;x = 0, 1, 2, 3, 4}.

Example 15. Consider all nondegenerate rectangles of base # and height
y. To be meaningful, both # and y must be positive. Thus the space is the
set o = {(z,y);z >0,y > 0}.

Definition 6. Let .o/ denote a space and let 4 be a subset of the
set &Z. The set that consists of all elements of .o that are not elements
of A is called the complement of A (actually, with respect to «). The
complement of 4 is denoted by A*. In particular, &/* = &.

Example 16. Let o7 be defined as in Example 14, and let the set 4 =
{z; z = 0, 1}. The complement of A4 (with respect to &) is A* = {x;z = 2, 3, 4}.

Examplel7. Given A < /. ThenAUA* =S ANA* =3, Au A =,
AN = A, and (A%)* = A.

EXERCISES

1.4. Find the union 4, U 4, and the intersection A4; N 4, of the two
sets A, and A,, where:

(@) 4, ={z;2=0,1,2}, 4, = {x; 2 = 2,3, 4}.

by 4, ={z;0 <z <2}, 4y, ={x;1 <z < 3}

() 4, ={{z,y);0<2<2,0<y<2}, A, ={(z,y);1 <z <3,1<y<3}

1.5. Find the complement A* of the set 4 with respect to the space .« if;
(@)  ={x;0<z<1},4d=1{2;§ <z <1

b) L ={zy 222+ +22<1},4A={x92;22+y2+22=1}
(©) o ={@y)lel + |yl <2}, 4 ={(y);2* +y> <2}

1.6. List all possible arrangements of the four letters m, «, 7, and y. Let
A, be the collection of the arrangements in which y is in the last position.
Let A, be the collection of the arrangements in which s is in the first position.
Find the union and the intersection of 4, and 4,.

1.7. By use of Venn diagrams, in which the space & is the set of points
enclosed by a rectangle containing the circles, compare the following sets:

(@) A4, N (4,0 4g) and (4, N Ay U (A, N Ay).

(b) 4, U (A2 N Ag) and (4, U 4,) N (4, U 4,).

(¢) (4, A4,)* and 4% N A%,

(d) (4, N Ay)* and AT U A%,

1.8. If a sequence of sets A4,, A, A,,... is such that 4, < 4,4,
k=1,2,3,..., the sequence is said to be a nondecreasing sequence. Give an
example of this kind of sequence of sets.

1.9. If a sequence of sets A4,, A,, As,... is such that A, > 4,,,,
k=1,23,..., the sequence is said to be a nomincreasing sequence. Give an
example of this kind of sequence of sets.
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1.10. If 4,, A,, A5, ... are sets such that 4, < 4A,,,, £ =1,2,3,...,
lim A, is defined as the union 4, U 4, U A3V ---. Find lim 4, if:

k- k— o
@@ A, ={z; 1k <z <3 -1k, k=123,..;
(b) Ay ={(x,y); 1k <a®+y><4— kL, E=1273,....

1.11. If A,, A,, A5, ... are sets such that 4, > A4,,,, £ =1,2,3,...,
lim A, is defined as the intersection 4, " A, N Az N-- .. Find lim 4, if:

k- 0 k—+
@ Ay ={x;2 -1k <z <2, k=1,23,....
b) A4y ={x;2 <z <2+ 1k, k=123, ..
(© Ay ={(z,y;0<a®+y2 < kL k=1,23,....

1.3 Set Functions

In the calculus, functions such as

f@) = 22, —00 < T < 00,
or
gx,y) =e*Y, O<z<o 0<y<oo,
= 0 elsewhere,
or possibly
(X, g, - .., %) = 32,25 - - - Ty, O<x, <1, 2=1,2,...,n,

= 0 elsewhere,

were of common occurrence. The value of f(x) at the “point z = 1" is
f(1) = 2; the value of g(z, y) at the “point (—1,3)” is g(—1,3) = 0;
the value of 2(x,, z,, . . ., 2,) at the “point (1, 1, ..., 1)” is 3. Functions
such as these are called functions of a point or, more simply, point
Sfunctions because they are evaluated (if they have a value) at a point
in a space of indicated dimension.

There is no reason why, if they prove useful, we should not have
functions that can be evaluated, not necessarily at a point, but for an
entire set of points. Such functions are naturally called functions of a
set or, more simply, set functions. We shall give some examples of set
functions and evaluate them for certain simple sets.

Example 1. Let 4 be a set in one-dimensional space and let Q(4) be
equal to the number of points in 4 which correspond to positive integers.
Then Q(4) is a function of the set 4. Thus, if 4 = {z; 0 < z < 5}, then
Q4) = 4;ifd = {w;x = -2, —1}, thenQ(4) = 0;if 4 = {z; —0 <z < 6},
then Q(4) = 5.
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Example 2. Let A be a set in two-dimensional space and let ¢(4) be the
area of A, if A has a finite area; otherwise, let Q(4) be undefined. Thus, if
A ={@y);2*+y* <1} thenQ4) = mif 4 = {(y); (y) = (00),
(1,1), (0, 1)}, thenQ(4) = 0;if 4 = {(z,9);0 < 2,0 <y x+y < 1}, then
Q4) = %

Example 3. Let A be a set in three-dimensional space and let Q(4) be
the volume of 4, if 4 has a finite volume; otherwise, let Q(4) be undefined.
Thus,if 4 = {(x,4,2);0 <2 <2, 0<y <10 < z< 3} thenQ(4) = 6;
if A4 ={y 2);2*>+ y* + 22 = 1}, then Q(A) is undefined.

At this point we introduce the following notations. The symbol

[, /@) dz

will mean the ordinary (Riemann) integral of f(x) over a prescribed
one-dimensional set 4; the symbol

[, [ el y) du dy

will mean the Riemann integral of g(x,y) over a prescribed two-
dimensional set A4 ; and so on. To be sure, unless these sets A and these
functions f(x) and g(z,y) are chosen with care, the integrals will
frequently fail to exist. Similarly, the symbol

2 f(x)
A
will mean the sum extended over all € 4; the symbol

ZAZ g, y)

will mean the sum extended over all (z, y) € 4; and so on.

Example 4. Let A be a set in one-dimensional space and let Q(4) =
% f(x), where

flx) = &)=, x=123,...,
= 0 elsewhere.
If 4 ={z;0 < z < 3}, then
Q) =43+ @+ @° =4
Example 5. Let Q(4) = > f(x), where

f@) =p*1 - p)7% =01,

= 0 elsewhere.
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If A = {z; x = 0}, then
x=0
o) =5 - pre =1 p;
if A ={x;1 <=z <2} thenQ(4) = f(1) = p.
Example 6. Let A be a one-dimensional set and let
0(4) = fAe-z dz.
Thus, if A = {z; 0 < z < o}, then
0(4) =jo eTdr = 1;
if A ={z;1 <z < 2}, then
—_ 2 —-x — p—1 __ ,—2.
Q(A)-—Le dx = ¢ e~?;
ifd, ={z;0<z < 1}and 4, = {;1 < x < 3}, then
3
(4, U 4,) = fo ¢% dw
= J.l e~ *dx + F e~ *dx
0 1

= Q(41) + Q(42);
ifA =A,UA, whered; = {z;0 <z < 2}and 4, = {#; 1 <z < 3}, then

) = QU 4) = [[e=da
~freras feran fora

= Q(41) + Q(42) — Q{41 N 4y).
Example 7. Let A be a set in #-dimensional space and let

0(4) = f.A-fdxl dy - - - Ay

HA={,2..,2);0<z <z, <---< 2, <1} then
1 rxy, X
0(4) = fo fo f:a " da, da, - - dw, , dr,
=—1-, where n! = n{n — 1)--.3-2-1.
n!

EXERCISES

1.12. For every one-dimensional set 4, let Q(4) = > f(x), where f(z) =

A

(33 2=0,1,2,..., zero elsewhere. If 4; = {x;x=10,1,2,3} and

Ay ={z;2=0,1,2,...}, find Q(4,) and Q(4,). Hint. Recall that S, =
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at+ar+.-F+at=a(l — /(1 —7)and lim S, = a/(1 — #) provided
that 7| < 1.

1.13. For every one-dimensional set 4 for which the integral exists, let
Q(4) = _[Af(x) dz, where f(x) = 6x(1 —x), 0 <z < 1, zero elsewhere;
otherwise, let Q(4) be undefined. If 4; ={z; 3 <z < $}, 4, = {z; 2 = 1},
and 4; = {z; 0 < z < 10}, find Q(4,), Q(4,), and Q(4,).

1.14. For every one-dimensional set 4, let Q(4) be equal to the number of
points in 4 that correspond to positive integers. If 4; = {x; 2 a multiple of 3,
less than or equal to 50} and 4, = {x; x a multiple of 7, less than or equal to
50}, find Q(41), Q(45), Q(41 U 4,), and Q(4; N Ay). Show that Q(4, U 4,) =
Q44) + Q(4s) — Q{41 N 4y).

1.15. For every two-dimensional set A4, let Q(4) be equal to the number
of points (z, y) in A for which both « and y are positive integers. Find Q(4,)
and Q(4,), where 4, = {(x,); 2 + y* < 4} and 4, = {(, y); 2* + ¢* < 9}.
Note that 4; = 4, and that Q(4,) < Q(4,).

1.16. Let Q(4) = f P f (x? + y?) dz dy for every two-dimensional set 4
for which the integral exists; otherwise, let Q(4) be undefined. If 4, =
{(z,y);, "1 <ae<1l -1 <y<1,A4,={x19);-1<z=y<1}and
As ={{z, ¥); 2> + y? < 1}, find Q(4,), Q(4,), and Q(A3). Hint. In evaluating
Q(4,), recall the definition of the double integral (or consider the volume
under the surface z = 2 + y? above the line segment —1 <2 =y < lin
the xy-plane). Use polar coordinates in the calculation of Q(4;).

1.17. Let &/ denote the set of points that are interior to or on the
boundary of a square with opposite vertices at the point (0, 0) and at the

point (1,1). LetQ(4) = [, [dydz. (a) 1 A © istheset{(z,y);0 <z <y < 1},
compute ((4). (b) If 4 < o is the set {(x,y); 0 < 2 = y < 1}, compute
Q(4). (c) If 4 = o is the set {(z,y); 0 < z/2 < y < 32/2 < 1}, compute
0(4).

1.18. Let &7 be the set of points interior to or on the boundary of a cube

with edge 1. Moreover, say that the cube is in the first octant with one vertex
at the point (0, 0, 0) and an opposite vertex is at the point (1, 1, 1). Let

Q4) = [[[dxdydz. (a) It A = L istheset {(z,y,2;0 <z <y <z<1}
A

compute Q(A4). (b) I 4 is the subset {(#, ¥, 2); 0 < * = y = 2z < 1}, compute
Q(4).

1.19. Let 4 denote the set {(z, y, 2); 2% + y% + 2% < 1}. EvaluateQ(4) =
”f Va2 + y? + 22 dx dy dz. Hint. Change variables to spherical coordinates.
A

1.20. To join a certain club, a person must be either a statistician or a
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mathematician or both. Of the 25 members in this club, 19 are statisticians
and 16 are mathematicians. How many persons in the club are both a statisti-
cian and a mathematician?

1.21. After a hard-fought football game, it was reported that, of the
11 starting players, 8 hurt a hip, 6 hurt an arm, 5 hurt a knee, 3 hurt both a
hip and an arm, 2 hurt both a hip and a knee, 1 hurt both an arm and a knee,
and no one hurt all three. Comment on the accuracy of the report.

1.4 The Probability Set Function

Let € denote the set of every possible outcome of a random experi-
ment; that is, € is the sample space. It is our purpose to define a set
function P(C) such that if C is a subset of %, then P(C) is the probability
that the outcome of the random experiment is an element of C. Hence-
forth it will be tacitly assumed that the structure of each set C is
sufficiently simple to allow the computation. We have already seen that
advantages accrue if we take P(C) to be that number about which the
relative frequency f/N of the event C tends to stabilize after a long series
of experiments. This important fact suggests some of the properties that
we would surely want the set function P(C) to possess. For example, no
relative frequency is ever negative; accordingly, we would want P(C)
to be a nonnegative set function. Again, the relative frequency of the
whole sample space € is always 1. Thus we would want P(%) = 1.
Finally, if C,, C,, Cg, ... are subsets of € such that no two of these
subsets have a point in common, the relative frequency of the union of
these sets is the sum of the relative frequencies of the sets, and we would
want the set function P(C) to reflect this additive property. We now
formally define a probability set function.

Definition 7. If P(C) is defined for a type of subset of the space %,
and if

(a) P(C) = 0,

(b) P(C,UCyuCsu---) = P(Cy) + P(Cy) + P(Cj) + - - -, where

the sets C;, 1 = 1,2,3,..., are such that no two have a point in
common, (thatis, where C; N C; = @, 7 # §),
() P(®) =1,

then P(C) is called the probability set function of the outcome of the
random experiment. For each subset C of €, the number P(C) is called
the probability that the outcome of the random experiment is an
element of the set C, or the probability of the event C, or the probability
measure of the set C.
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A probability set function tells us how the probability is distributed
over various subsets C of a sample space %. In this sense we speak of a
distribution of probability.

Remark. In the definition, the phrase ““a type of subset of the space €’
would be explained more fully in a more advanced course. Nevertheless, a
few observations can be made about the collection of subsets that are of the
type. From condition (c) of the definition, we see that the space ¥ must be
in the collection. Condition (b) implies that if the sets Cy, Cy, Cs, ... are in
the collection, their union is also one of that type. Finally, we observe from
the following theorems and their proofs that if the set C is in the collection,
its complement must be one of those subsets. In particular, the null set,
which is the complement of €, must be in the collection.

The following theorems give us some other properties of a probability
set function. In the statement of each of these theorems, P(C) is taken,
tacitly, to be a probability set function defined for a certain type of
subset of the sample space €.

Theorem 1. For ecach C = €, P(C) = 1 — P(C*).

Proof. Wehave ¥ = C U C*¥ and C N C* = . Thus, from (c) and
(b) of Definition 7, it follows that

1 = P(C) + P(C%),
which is the desired result.
Theorem 2. The probability of the null set is zero, that is, P(z) = 0.

Proof. In Theorem 1, take C = @ so that C* = %. Accordingly, we
have
Pg)=1-P%) =1-1=0,

and the theorem is proved.

Theorem 3. If C, and C, are subsets of € such that C, < C,, then
P(Cy) < P(Cy).

Proof. NowCy, = C; U (C¥ N Cy)and C, N (C¥ N Cy) = @. Hence,
from (b) of Definition 7,

P(Cy) = P(Cy) + P(CT N Cy).

However, from (a) of Definition 7, P(C¥ N C,) > 0; accordingly,
P(C,) = P(Cy). ,

Theorem 4. For eachC < €,0 < P(C) < 1.
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Proof. Since g = C < €, we have by Theorem 3 that
P(z) < P(C) £ P(%) or 0< P(C) <1,

the desired result.

Theorem 5. If C; and C, are subsets of €, then
P(C, W Cy) = P(Cy) + P(Cy) — P(CLNCy).

Proof. Each of the sets C; U C, and C, can be represented, respec-
tively, as a union of nonintersecting sets as follows:

C,uC,=C,U(C¥FnNCy and C, = (C;NCy) VU (CFNCy).
Thus, from (b) of Definition 7,
P(C,UC,) = P(Cy) + PICEFNCy)
and
P(C,) = P(C;nC,) + P(CEFNCy).

If the second of these equations is solved for P(C¥ N C,) and this
result substituted in the first equation, we obtain

P(C, U Cy) = P(Cy) + P(Cs) — P(CL N Cy).
This completes the proof.

Example 1. Let € denote the sample space of Example 2 of Section 1.1.
Let the probability set function assign a probability of 5% to each of the 36
pointsin €. If C; = {c;c =(1,1), (2, 1), (3,1), 4, 1), (5, )}and C, =
fe;e = (1,2), 2,2), (3, 2)}, then P(C,) = 3%, P(C,) = 55, P(C, U Cy) = &,
and P(C; NCy) = 0.

Example 2. Two coins are to be tossed and the outcome is the ordered
pair (face on the first coin, face on the second coin). Thus the sample space
may be represented as ¥ = {¢;¢c = (H, H),(H, T), (T, H), (T, T)}. Let the
probability set function assign a probability of 1 to each element of %.
Let C;, ={c;c=(H, H),H,T)} and C, = {¢c;c = (H, H), (T, H)}. Then
P(C,) = P(Cy) =%, P(C,nCy) =%, and, in accordance with Theorem 35,
P(C,UC) =4+3-4=4%

Let € denote a sample space and let C;, C,, Cs, . .. denote subsets
of €. If these subsets are such that no two have an element in common,
they are called mutually disjoint sets and the corresponding events
C,,Cs,Cs, . .. are said to be mutually exclusive events. Then, for example,
P(C,uCyuCauU--+) = P(Cy) + P(Cy) + P(Cq) + - -+, inaccordance
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with (b) of Definition 7. Moreover, if € = C, UC,UCaU---, the
mutually exclusive events are further characterized as being exhaustive
and the probability of their union is obviously equal to 1.

EXERCISES

1.22. A positive integer from one to six is to be chosen by casting a die.
Thus the elements ¢ of the sample space ¥ are 1, 2, 3, 4, 5, 6. Let C, =
{e;¢=1,2,3,4},Cy = {c; c = 3,4, 5, 6}. If the probability set function P
assigns a probability of § to each of the elements of %, compute P(C,), P(C,)
P(C; N Cy), and P(C, U Cy).

’

1.23. A random experiment consists in drawing a card from an ordinary
deck of 52 playing cards. Let the probability set function P assign a prob-
ability of €5 to each of the 52 possible outcomes. Let C, denote the collection
of the 13 hearts and let C, denote the collection of the 4 kings. Compute
P(C,), P(Cs), P(C; nCy), and P(C, U C,).

1.24. A coin is to be tossed as many times as is necessary to turn up one
head. Thus the elements ¢ of the sample space € are H, TH, TTH, TTTH,
and so forth. Let the probability set function P assign to these elements the
respective probabilities 4, 1, §, 1%, and so forth. Show that P(#) = 1. Let
Ci={c;cisH, TH, TTH, TTTH, or TTTTH}. Compute P(C,). Let C, =
{¢;¢isTTTTH or TTTTTH}. Compute P(C,), P(C; N C,), and P(C, U C,).

1.25. If the sample spaceis ¥ = C; U C;and if P(C;) = 0.8and P(C,) =
0.5, find P(C; N C,).

1.26. Let the sample space be ¥ = {c; 0 < ¢ < ©}. Let C © % be defined
by C = {¢; 4 < ¢ < oo} and take P(C) = fc e~ *dx. Evaluate P(C), P(C*),
and P(C U C¥*).

1.27. 1f the sample space is € = {¢; —0 < ¢ < o} and if C € ¥isa set
for which the irtegral f ¢ ¢~ '*! dz exists, show that this set function is not a
probability set function. What constant could we multiply the integral by
to make it a probability set function?

1.28. If C, and C, are subsets of the sample space %, show that

P(C; N Cy) < P(Cy) < P(C, UC,) < P(C) + P(Cy).

1.29. Let C,, C,, and C4 be three mutually disjoint subsets of the sample
space €. Find P[(C, U Cy) N Cy) and P(CT L C¥).

1.30. 1f C,, C,, and Cj; are subsets of €, show that

P(C,uC,UCy) = P(Cy) + P(Cy) + P(C;3) — P(C, N Cy)
— P(C, N Cy) — P(C,NCq) + P(C, A Cy 1 Ca).
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What is the generalization of this result to four or more subsets of #7?
Hint. Write P(C, U C, U Cg) = P[C; U (C; U Cy)] and use Theorem 5.

1.5 Random Variables

The reader will perceive that a sample space € may be tedious to
describe if the elements of ¥ are not numbers. We shall now discuss
how we may formulate a rule, or a set of rules, by which the elements ¢
of € may be represented by numbers « or ordered pairs of numbers
(®,, x5) or, more generally, ordered n-tuplets of numbers (z,, ..., ,).
We begin the discussion with a very simple example. Let the random
experiment be the toss of a coin and let the sample space associated with
the experiment be € = {c; where cis T or ¢ is H} and T and H repre-
sent, respectively, tails and heads. Let X be a function such that
X(c) = 0if cis T and let X(¢) = 1if ¢ is H. Thus X is a real-valued

' function defined on the sample space € which takes us from the sample
space € to a space of real numbers & = {z;z = 0,1}, We call X a
random variable and, in this example, the space associated with X is
& ={x;x =0,1}. We now formulate the definition of a random
variable and its space.

Definition 8. Given a random experiment with a sample space %.
A function X, which assigns to each element ¢ € ¢ one and only one
real number X (c) = =, is called a random variable. The space of X is the
set of real numbers & = {x;x = X(c), c e ¢}

It may be that the set € has elements which are themselves real
numbers. In such an instance we could write X(c) = ¢ so that &/ = %.

Let X be a random variable that is defined on a sample space ¥,
and let &7 be the space of X. Further, let 4 be a subset of . Just as we
used the terminology ““the event C,” with C < %, we shall now speak
of “the event A.” The probability P(C) of the event C has been defined.
We wish now to define the probability of the event A. This probability
will be denoted by Pr (X € A), where Pr is an abbreviation of ““the
probability that.” With 4 a subset of &7, let C be that subset of ¥ such
that C = {¢;ce ¥ and X(c) € 4}. Thus C has as its elements all out-
comes in € for which the random variable X has a value that is in 4.
This prompts us to define, as we now do, Pr (X € 4) to be equal to
P(C), where C = {¢; c € € and X(c) € A}. Thus Pr (X € 4) is an assign-
ment of probability to a set A, which is a subset of the space .« associated
with the random variable X. This assignment is determined by the
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probability set function P and the random variable X and is sometimes
denoted by Px(4). That is,

Pr (X € 4) = Py(d) = P(C),

where C = {c;ce % and X(c) € A}. Thus a random variable X is a
function that carries the probability from a sample space % to a space
&/ of real numbers. In this sense, with 4 < .o, the probability Px(4)
is often called an induced probability.

The function Py(A4) satisfies the conditions (a), (b), and (c) of the
definition of a probability set function (Section 1.4). That is, Px(4) is
also a probability set function. Conditions (a) and (c) are easily verified
by observing, for an appropriate C, that

Py(4) = P(C) = 0,
and that € = {¢; c € € and X(c) € &} requires
Py(Z) = P(%) = 1.
In discussing condition (b), let us restrict our attention to two mutually

exclusive events 4, and A,. Here Py(4, U 4,) = P(C), where C =
{c;ce® and X(c) e A, U A,}. However,

C={c;ceand X(c)e A} U{c;ce® and X(c) € 45},

or, for brevity, C = C, U C,. But C, and C, are disjoint sets. This must
be so, for if some ¢ were common, say c,, then X(c;) € 4, and X(c,) € 4,.
That is, the same number X(c;) belongs to both 4, and A,. This is a
contradiction because 4; and 4, are disjoint sets. Accordingly,

P(C) = P(Cy) + P(C,).
However, by definition, P(C;) is Px(4,) and P(C,) is Py(A;) and thus
Py(dy U Ag) = Py(4,) + Px(Ay).

This is condition (b) for two disjoint sets.

Thus each of Px(4) and P(C) is a probability set function. But the
Teader should fully recognize that the probability set function P is
defined for subsets C of %, whereas Py is defined for subsets 4 of <,
and, in general, they are not the same set function. Nevertheless, they
are closely related and some authors even drop the index X and write
P(4) for Py(A). They think it is quite clear that P(A4) means the
Probability of 4, a subset of 7 and P(C) means the probability of C,
'ﬂl_Subset of €. From this point on, we shall adopt this convention and
Simply write P(A).
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Perhaps an additional example will be helpful. Let a coin be tossed
twice and let our interest be in the number of heads to be observed.
Thus the sample space is € = {¢; where cis TT or TH or HT or HH}.
Let X(c) = 0if cis TT; let X(c) = 1if ¢ is either TH or HT; and let
X(c) = 2 if ¢ is HH. Thus the space of the random variable X is
& = {x;x = 0,1, 2}. Consider the subset 4 of the space ./, where
A = {z; x = 1}. How is the probability of the event 4 defined? We
take the subset C of € to have as its elements all outcomes in € for
which the random variable X has a value that is an element of 4.
Because X(c) = 1if ¢ is either TH or HT, then C = {c; where cis TH
or HT}. Thus P(4) = Pr (X € A) = P(C). Since 4 = {x; x = 1}, then
P(4) = Pr(X € A) can be written more simply as Pr (X = 1). Let
Cy={c;cis ITT}, Cy ={c; cis TH}, C3 = {¢c; ¢ is HT}, and C, =
{c; ¢ is HH} denote subsets of %. Suppose that our probability set
function P(C) assigns a probability of } to each of the sets C;, 7 =
1,2,3,4. Then P(C,) = 4, P(C, v C3) =L + L =1 and P(C,) = L
Let us now point out how much simpler it is to couch these statements
in a language that involves the random variable X. Because X is the
number of heads to be observed in tossing a coin two times, we have

Pr (X = 0) = 4, since P(C,) = };

Pr(X = 1) = 4, since P(C,UC;) = §;
and

Pr (X = 2) = 4, since P(C,) = L.

This may be further condensed in the following table:

x }0 1 2
Pr(X-2)|% % 4

This table depicts the distribution of probability over the elements of
&, the space of the random variable X.

We shall now discuss two random variables. Again, we start with
an example. A coin is to be tossed three times and our interest is in the
ordered number pair (number of H’s on first two tosses, number H’s on
all three tosses). Thus the sample spaceis € = {¢c;c = ¢, =1,2,...,8},
where ¢, is TTT, ¢y is TTH, ¢z is THT, ¢, is HTT, ¢ is THH, cq is
HTH,c,is HHT, and ¢gis HHH. Let X, and X, be two functions such
that X,(c;) = Xi(cs) = 0, Xi(es) = Xi(ca) = Xy(cs) = Xa(ce) = 1,
Xi(cq) = Xi(eg) = 2; and Xy(c;) = 0, Xp(cg) = Xyles) = Xofes) = 1,
Xolcs) = Xalce) = Xaleq) = 2, Xa(cg) = 3. Thus X, and X, are real-
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valued functions defined on the sample space %, which takes us from
that sample space to the space of ordered number pairs

o = {(x1, %3); (@1, 23) = (0,0), (0, 1), (1, 1), (1,2), (2,2), 2, 3)}

Thus X; and X, are two random variables defined on the space %,
and, in this example, the space of these random variables is the two-
dimensional set .o/ given immediately above. We now formulate the
definition of the space of two random variables.

Definition 9. Given a random experiment with a sample space €.
Consider two random variables X; and X,, which assign to each element
¢ of ¢ one and only one ordered pair of numbers X,(c) = z,, X a{c) = x,.
The space of X, and X, is the set of ordered pairs o = {(z1, 23);
x; = X4(c), zg = Xy(c), ce €).

Let o7 be the space associated with the two random variables X 1
and X, and let 4 be a subset of . As in the case of one random variable,
we shall speak of the event A. We wish to define the probability of the
event A, which we denote by Pr [(X,, X,) € A]. Take C = {¢; c e % and
[X1(c), Xo(c)] € A}, where € is the sample space. We then define
Pr[(X,, X,) € 4] = P(C), where P is the probability set function
defined for subsets C of %. Here again we could denote Pr [(X,, X,) 4]
by the probability set function P, .x5(4); but, with our previous
convention, we simply write

P(4) = Pr{(X,, X,) e 4].
Again it is important to observe that this function is a probability set
function defined for subsets A of the space .¢/.

Let us return to the example in our discussion of two random vari-
ables. Consider the subset 4 of &7, where A = {1, 29); (24, 22) = (1, 1),
(1,2)}. To compute Pr[(X,, X,)eA] = P(4), we must include as
elements of C all outcomes in € for which the random variables X 1 and
X, take values (x,, %;) which are elements of 4. Now X ieg) =1
Xolea) = 1, Xy(cq) = 1, and X,(ce) = 1. Also, Xi(es) = 1, Xy(c5) = 2
Xi(es) = 1, and X,(ce) = 2. Thus P(4) = Pr[(X,, X,) e 4] = P(C),
where C = {c; ¢ = ¢, ¢,, 5, or ¢g}. Suppose that our probability set
function P(C) assigns a probability of § to each of the eight elements of
%. Then P(A), which can be written as Pr (Xi=1,X,=10r2),is
equal to ¢ = 4. It is left for the reader to show that we can tabulate

th'e probability, which is then assigned to each of the elements of 2,
with the following result:

(21, 25) 0.0 ©1) (L) (12 22 @3
Pr(X,, X;) = (@y, 7)) | 4

1

3

oop=
N
oot
o=
o=



20 Distributions of Random Variables [Ch. 1

This table depicts the distribution of probability over the elements of
&, the space of the random variables X; and X,.

The preceding notions about one and two random variables can be
immediately extended to # random variables. We make the following
definition of the space of # random variables.

Definition 10. Given a random experiment with the sample space
%. Let the random variable X, assign to each element ¢ € € one and
only one real number X,(c) = x,, ¢ = 1,2,..., n. The space of these
random variables is the set of ordered n-tuplets & = {(z,, 25, . . ., z,);
z, = X,(0), ..., z, = X,(c), c € €}. Further, let 4 be a subset of &
Then Pr((X,,..., X,)ed] = P(C), where C = {¢c;ce% and [X,(c),
Xo(e), ..., Xy(e)) e 4},

Again we should make the comment that Pr[(X,,..., X,) e 4]
could be denoted by the probability set function Py, (A) But, if
there is no chance of misunderstanding, it will be ertten simply as
P(4).

Up to this point, our illustrative examples have dealt with a sample
space % that contains a finite number of elements. We now give an
example of a sample space € that is an interval.

Example 1. Let the outcome of a random experiment be a point on the
interval (0, 1). Thus, € = {¢; 0 < ¢ < 1}. Let the probability set function

be given by
= f dz.
(o4

For instance, if C = {¢; 1 < ¢ < 1}, then

12
PC) = [ d =%
Define the random variable X to be X = X(c) = 3¢ + 2. Accordingly, the
space of X is & = {;2 < x < 5}. We wish to determine the probability
set function of X, namely P(4), 4 < &/ At this time, let 4 be the set
{#; 2 < = < b}, where 2 < b < 5. Now X{(c) is between 2 and b when and
only whenceC = {¢; 0 < ¢ < (b — 2)/3}. Hence
(b-2)/3

Px(d) = P(4) = P(C) = f dz.

[

In the integral, make the change of variable = 3z + 2 and obtain

Py(4) = P(4) = f:%dx - fA%dx,
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since A = {2 <x < b}. This kind of argument holds for every set 4 < o
for which the integral
— 1
P(4) = [ Yda

exists. Thus the probability set function of X is this integral.

In statistics we are usually more interested in the probability set
function of the random variable X than we are in the sample space €
and the probability set function P(C). Therefore, in most instances, we
begin with an assumed distribution of probability for the random
variable X. Moreover, we do this same kind of thing with two or more
random variables. Two illustrative examples follow.

Example 2. Let the probability set function P(4) of a random variable
X be

=J‘ f(z) de, where f(x) = 3%2, red ={x;0 <z < 2}

Let 4; ={x;0 <2 <1} and 4, = {#; 1 < = < 2} be two subsets of <
Then

1/2327 1
P4 r (X Y AN
(4,) = ed,) J flz) dz = fo e = o

and

8

To compute P(4; U A4,), we note that A10A2 = @; then we have
Pld, v 4,y) = P(4,) + P(4,) = 1.

2
P(4,) = Pr (X e 4,) ff dx = 3id ?

Example 3. Let &/ = {(x,y);0 <z <y < 1} be the space of two
random variables X and Y. Let the probability set function be

P(4) = sz d dy.
If A is taken to be 4; = {(z,4); 4 < ¢ < y < 1}, then
1 ry
P(4)) = Pr[(X,Y)eA,] = f”zfmzdx dy = 1.
IfAistakentobe A, = {(v,9); 2 <y < 1,0 < 2 < 1}, then 4, = A*, and
P(4;) = Pr(X,Y)ed,] = P(4}) =1 - P(4,) = }.

EXERCISES

1.31. Let a card be selected from an ordinary deck of playing cards. The
outcome ¢ is one of these 52 cards. Let X(c) = 4if cis an ace, let X(¢) = 3 if
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¢ is a king, let X(c) = 2 if ¢ is a queen, let X(c) = 1if ¢ is a jack, and let
X(c) = 0 otherwise. Suppose that P(C) assigns a probability of s to each
outcome c. Describe the induced probability Px(4) on the space & =
{x;x = 0,1, 2,3, 4} of the random variable X.

1.32. Let a point be selected from the sample space € = {¢; 0 < ¢ < 10}.
Let C = € and let the probability set function be P(C) = f o 1% dz. Define
the random variable X to be X = X(¢) = 2c — 10. Find the probability set
~ function of X. Hint. If —10 < a < b < 10, note that @ < X(c) < b when
and only when (a + 10)/2 < ¢ < (b + 10)/2.

1.33. Let the probability set function P(4) of two random variables X
and Y be P(4) =33 flz,y), where fx,y) = 35 (@ y)ed = {{x y);
@ y) = (0,1),(0,2),...,(0,13), (1, 1),..., (1, 13),..., (3, 13)}. Compute
P(4) = Pr[(X, Y) e A]: (a) when 4 = {(z, ); (&, y) = (0,4), (1, 3), (2, 2)};
(b) when 4 = {(z,9);x + y = 4, (x, y) € L}.

1.34. Let the probability set function P(A4) of the random variable X be
P(4) = fA f(@) dee, where f(z) = 229, v e o = {x; 0 < z < 3}. Let 4, =
{;0 <2 < 1}, 4, = {;2 < x < 3}. Compute P(4,) = Pr(X e 4], P(4,) =
Pr (X e4,),and P(4, U4,) =Pr(Xed; UAd,).

1.35. Let the space of the random variable X be &/ = {2;0 <z < 1}.
IfA, ={z;0 <z < $}and 4, = {z;} < = < 1}, find P(4,) if P(4,) = }.

1.36. Let the space of the random variable X be &/ = {z; 0 < = < 10}
and let P(4,) = 3, where 4; = {z; 1 < z < 5}. Show that P(4,) < §,
where 4, = {z;5 < = < 10}.

1.37. Let the subsets 4, = {z;} < # < }}and 4, = {x; 1 <z < 1} of
the space &/ = {z;0 < z < 1} of the random variable X be such that
P(A,) = } and P(4,) = }. Find P(4, U 4,), P(4T), and P(4} N AD).

1.38. Let 4, = {(z,9);x <2,y < 4}, Ao ={(w. 9);x <2,y < 1}, 45 =
{x,y);2 <0,y <4}, and 4, = {(z, 9); z < 0,y < 1} be subsets of the
space & of two random variables X and Y, which is the entire two-dimen-
sional plane. If P(4,) = %, P(4,) = %, P(4s) = %, and P(4,) = %, find
P(A;), where 45 = {(z,y);0 <2< 2,1 <y <4}

1.39. Given [,[1/n(1 + a?)) dw, where A = ={z; —00 <z < o}
Show that the integral could serve as a probability set function of a random
variable X whose space is &

1.40. Let the probability set function of the random variable X be

P4) = fAe‘“’dx, where o = {z; 0 < < co}.
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let Ay, =@ 2—-1k<x<3}, £=123,.... Find lim 4, and
k—
p( lim Ak). Find P(4,) andklim P(A4;). Note that lim P(4,) = P( lim Ak).
k— © - ® k—o© k-

1.6 The Probability Density Function

Let X denote a random variable with space .7 and let A4 be a subset
of . 1f we know how to compute P(C), C < ¥, then for each 4 under
consideration we can compute P(4) = Pr (X € 4); that is, we know
how the probability is distributed over the various subsets of &7 In
this sense, we speak of the distribution of the random variable X,
meaning, of course, the distribution of probability. Moreover, we can
use this convenient terminology when more than one random variable
is involved and, in the sequel, we shall do this.

In this section, we shall investigate some random variables whose
distributions can be described very simply by what will be called the
probability density function. The two types of distributions that we shall
consider are called, respectively, the discrefe type and the continuous
type. For simplicity of presentation, we first consider a distribution of
one random variable.

(@) The discrete type of random variable. Let X denote a random
variable with one-dimensional space 7. Suppose that the space & is a
set of points such that there is at most a finite number of points of 7 in
every finite interval. Such a set &7 will be called a set of discrete points.
Let a function f(z) be such that f(x) > 0, x € &, and that

2 fl@) =1

Whenever a probability set function P(4), A < &, can be expressed in
terms of such an f(z) by

P(d) = Pr(Xe4) = 3 f(a),
A
then X is called a random variable of the discrete type, and X is said to
have a distribution of the discrete type.

Example 1. Let X be a random variable of the discrete type with space
A ={x;2=0,1,2,3,4}. Let

P(4) = 3 f(@)

where

41 1\ ¢
f(x)=m(-2-) ; reHd,
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and, as usual, 0! = 1. Then if 4 = {z;z = 0, 1}, we have
4 [I\¢ 4 (N\¢ 5
Prxed) =g (o) + 1 B =%

Example 2. Let X be a random variable of the discrete type with space
o ={zz=12 3,...}, and let

fl@) =@ we

Pr(Xed) =3 f(2).

Then

HA={xz=1235, 7,...}, we have
Pr(Xed) =@+ @ + @ + =%
(b) The continuous type of random variable. Let the one-dimensional
set of be such that the Riemann integral
[, f@az=1,

where (1) f(#) > 0, z€ &, and (2) f (x) has at most a finite number of
discontinuities in every finite interval that is a subset of . If o/ is the
space of the random variable X and if the probability set function
P(A), A < &, can be expressed in terms of such an f(z) by

P(4) = Pr (X e 4) = [, f(@) da,

then X is said to be a random variable of the continuous type and to
have a distribution of that type.

Esample 3. Let the space &/ = {z; 0 < z < oo}, and let
flx) = e %, z e L
If X is a random variable of the continuous type so that
Pr(Xed)= [ e=da,
we have, with 4 = {z;0 < 2 < 1},
— t -z - _ o1
Pr (X € ) _J'oe dz=1— ¢ L.

Note that Pr (X € A) is the area under the graph of f (x) = e~*, which lies
above the z-axis and between the vertical lines = 0 and z = 1.

Esample 4. Let X be a random variable of the continuous type with
space & = {r; 0 < z < 1}. Let the probability set function be

P(4) = L fl@) da,
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where

flx) =cx?, zesL

Since P(4) is a probability set function, P(<7) = 1. Hence the constant ¢ is
determined by

flcxzdx =1,
0
orc=3.

It is seen that whether the random variable X is of the discrete type
or of the continuous type, the probability Pr (X € 4) is completely
determined by a function f(x). In either case f(x) is called the probability
density function (hereafter abbreviated p.d.f.) of the random variable X.
If we restrict ourselves to random variables of either the discrete type
or the continuous type, we may work exclusively with the p.d.f. f(z).
This affords an enormous simplification; but it should be recognized
that this simplification is obtained at considerable cost from a mathe-
matical point of view. Not only shall we exclude from consideration
many random variables that do not have these types of distributions,
but we shall also exclude many interesting subsets of the space. In this
book, however, we shall in general restrict ourselves to these simple
types of random variables.

Remarks. Let X denote the number of spots that show when a die is cast.
We can assume that X is a random variable with & = {z;2 =1,2,..., 6}
apd with a p.d.f. f(x) = 1, x € &. Other assumptions can be made to provide
different mathematical models for this experiment. Experimental evidence
can be used to help one decide which model is the more realistic. Next, let X
denote the point at which a balanced pointer comes to rest. If the circum-
ference is graduated 0 < z < 1, a reasonable mathematical model for this
experiment is tc take X to be a random variable with & = {#;0 < 2 < 1}
and with a p.d.f. f(z) = 1, z e .

Both types of probability density functions can be used as distributional
modfals for many random variables found in real situations. For illustrations
Cor1_51der the following. If X is the number of automobile accidents during
a given day, then f(0), f(1), f(2), . .. represent the probabilities 0f 0, 1, 2, . ..
accidents. On the other hand, if X is length of life of a female born in a certain
Cornrpunity, the integral [area under the graph of f(z) that lies above the
x-axis and between the vertical lines z = 40 and x = 50]

@ do

represents the probability that she dies between 40 and 50 (or the percentage
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of these females dying between 40 and 50). A particular f(x) will be suggested
later for each of these situations, but again experimental evidence must be
used to decide whether we have realistic models.

The notion of the p.d.f. of one random variable X can be extended
to the notion of the p.d.f. of two or more random variables. Under
certain restrictions on the space ./ and the function f > 0 on &/
(restrictions that will not be enumerated here), we say that the two
random variables X and Y are of the discrete type or of the continuous
type, and have a distribution of that type, according as the probability
set function P(4), 4 < &, can be expressed as

P(4) = Pr((X,Y) 4] = 3 3 f.y),

or as
P(4) = Pr[(X,Y)ed] = |, j f(z, y) d dy.

In either case fis called the p.d.f. of the two random variables X and Y.
Of necessity, P(«/) = 1in each case. More generally, we say that the »
random variables X, X,, ..., X, are of the discrete type or of the con-
tinuous type, and have a distribution of that type, according as the
probability set function P(4), 4 < &, can be expressed as

P(A) = PI‘[(XI,...,X")GA] = Z-A-Zf(xl,_,,,xn),
or as
P(4) = Pr(X,,..., X e d] = [---[ fl@s, ..., 2,) doy - - - dm,

The idea to be emphasized is that a function f, whether in one or more
variables, essentially satisfies the conditions of being a p.d.f.if f > 0
on a space . and if its integral [for the continuous type of random
variable(s)] or its sum [for the discrete type of random variable(s)] over
& is one.

Our notation can be considerably simplified when we restrict our-
selves to random variables of the continuous or discrete types. Suppose
that the space of a continuous type of random variable X is & =
{#; 0 < & < oo} and that the p.d.f. of X is ¢~%, x € &. We shall in no
manner alter the distribution of X [that is, alter any P(4), 4 < &) if
we extend the definition of the p.d.f. of X by writing

flx) = e %, 0 <x < o,

= 0 elsewhere,
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and then refer to f(z) as the p.d.f. of X. We have

fl,f(x) dx = me 0dz + f: e~ %dr = 1.

Thus we may treat the entire axis of reals as though it were the space of
X. Accordingly, we now replace

Jof@a by [° f@) .

Similarly, we may extend the definition of a p.d.f. f(z, y) over the entire
zy-plane, or a p.d.f. f(z, y, 2) throughout three-dimensional space, and
so on. We shall do this consistently so that tedious, repetitious referf,znces
to the space &/ can be avoided. Once this is done, we replace

fw. f f@,y)dzdy by f s fi, f(z, y) da dy,

afld so on. Similarly, after extending the definition of a p.d.f. of the
discrete type, we replace, for one random variable,

/@ by 3,
and, for two random variables,
ZWZ fle,y) by yZ 2 f(= 9),

and so on.

In accordance with this convention (of extending the definition of a
p.d.f.),itisseen that a point function /. whether in one or more variables
essel}tially satisfies the conditions of being a p.d.f. if (a) fis deﬁned’
flnd 1s not negative for all real values of its argument(s) and if (b) its
Integral [for the continuous type of random variable(s)], or its sum
[for the discrete type of random variable(s)] over all real values of its
argument(s) is 1.

. If f(z) is the p.d.f. of a continuous type of random variable X and if
Aistheset {z;a < z < b}, then P(4) = Pr (X € 4) can be written as

Pria <X <b) = f:f(x) dz.
Moreover, if 4 = {x; 2 = a}, then
PA)=Pr(Xed)=Pr(X = a) = [} 7@ dz = o,

Sln.ce the integral f: f(x) dz is defined in calculus to be zero. That is, if
X is a random variable of the continuous type, the probability of every
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set consisting of a single point is zero. This fact enables us to write, say,
Pra<X<b) =Pra< X <bh).

More important, this fact allows us to change the value of the p.d.f.
of a continuous type of random variable X at a single point without
altering the distribution of X. For instance, the p.d.f.

fl) = e %, 0 <z < o0,
= 0 elsewhere,
can be written as
f@) = e 7%, 0<x < o,
= 0 elsewhere,

without changing any P(4). We observe that these two functions differ
only at # = 0 and Pr (X = 0) = 0. More generally, if two probability
density functions of random variables of the continuous type differ only
on a set having probability zero, the two corresponding probability set
functions are exactly the same. Unlike the continuous type, the p.d.f.
of a discrete type of random variable may not be changed at any point,
since a change in such a p.d.f. alters the distribution of probability.
Finally, if a p.d.f. in one or more variables is explicitly defined, we
can see by inspection whether the random variables are of the con-
tinuous or discrete type. For example, it seems obvious that the p.d.f.

9
f(x:y)=4x+y’ x=1’2:3»-°':y=1’2’3""’

= 0 elsewhere,

is a p.d.f. of two discrete-type random variables X and Y, whereas the
p.d.f.

flx,y) = 4aye==*-¥’, O0<zx<o,0<y<owm,

= 0 elsewhere,

is clearly a p.d.f. of two continuous-type random variables X and Y. In
such cases it seems unnecessary to specify which of the two simpler
types of random variables is under consideration.

Example 5. Let the random variable X have the p.d.f.
flx) = 2=, 0<z <l

= 0 elsewhere.
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Find Pr(} < X < ) and Pr(—% < X < 1). First

»

3/4
Prg<X <y =[ /)= "2 =
Next,
1/2
Pr(—4 <X <= _llzf(x) dz
=f 0m+f”hm
~1/2 0

Example 6. Let

[z, y) = 622y, 0<z<1l,0<y<t,
= 0 elsewhere,

be the p.d.f. of two random variables X and Y. We have, for instance,

mm<X<i§<Y<m=ﬁJTﬂ@wM@

D[ [ 0w
—§+0=3%

Note that this probability is the volume under the surface flz, y) = 62y
and above the rectangular set {(z, y); 0 < # < 2, } < y < 1}in the zy-plane.

EXERCISES

1.41. For each of the following, find the constant ¢ so that f(x) satisfies
the conditions of being a p.d.f. of one random variable X.

@) flz) =c(®* 2z =1,2,3,..., zero elsewhere.

(b) f(x) = cwe %, 0 < 2 < oo, zero elsewhere.

. 1.42. Tet f(x) = 2/15, 2 = 1, 2, 3, 4, 5, zero elsewhere, be the p.d.f. of X.
Find Pr(X =1o0r2),Pr(} < X <$),andPr(l < X < 2)

1.43. For each of the following probability density functions of X,
compute Pr (|X| < 1) and Pr (X2 < 9).

(@) flx) = 2%/18, —3 < x < 3, zero elsewhere.

(b) flx) = (= + 2)/18, —2 < x < 4, zero elsewhere.

1.44. Let f(z) = 1/2%, 1 < & < o0, zero elsewhere, be the p.d.f. of X. If

4, ={z;1 <z <2} and Ay ={2;4 <2 <5}, find PA4,uU 4
bl 2 ’ ad
P(4; n A,). } v ) e

1.45. Let f(x;, x,) = 42,25, 0 < z, < 1,0 <z, < 1, zero elsewhere, be
the p.d.f. of X, and X,. Find Pr 0O<X; <3i<X,<1),Pr(X, = X,),
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Pr (X, < X,), and Pr (X, < X,). Hint. Recall that Pr (X; = X,) would be
the volume under the surface f(x;, 2;) = 4@z, and above the line segment
0 < 2, = #, < 1in the 2;2,-plane.

1.46. Let f(x,, @4, 75) = exp [—(z; + z2 + 25)], 0 <2 < oo, 0<
2y < 0,0 < 23 < 00, zero elsewhere, be the p.d.f. of X;, X,, X;. Compute
Pr(X, < Xz < Xg)and Pr (X; = X, < X,). The symbol exp (w) means e*.

1.47. A mode of a distribution of one random variable X of the con-
tinuous or discrete type is a value of  that maximizes the p.d.f. f(z). If there
is only one such , it is called the mode of the distribution. Find the mode of
each of the following distributions:

(a) flx) = )% & =1,2,3,..., zero elsewhere.

(b) f(x) = 122%(1 — ), 0 < = < 1, zero elsewhere.

(©) flx) = (})2%~=, 0 < z < oo, zero elsewhere.

1.48. A median of a distribution of one random variable X of the discrete
or continuous type is a value of # such that Pr (X < #) < }and Pr (X < 2)
> 1. If there is only one such , it is called the median of the distribution.
Find the median of each of the following distributions:

H 1\ (3\ 4z
(a) flz) = P T (—) (—) , z=0,1,2, 3,4, zero elsewhere.

4] \4
(b) f(x) = 322, 0 < z < 1, zero elsewhere.
1
(C) f(x)=m’ —0 < < 0.

Hint. In parts (b) and (c), Pr(X < 2) = Pr(X < «) and thus that
common value must equal } if z is to be the median of the distribution.

1.49. Let 0 < p < 1. A (100p)th percentile (quantile of order p) of the
distribution of a random variable X is a value £, such that Pr (X < &) < p
and Pr (X < ¢,) = p. Find the twentieth percentile of the distribution that
has p.d.f. f(z) = 42% 0 < & < 1, zero elsewhere. Hint. With a continuous-
type random variable X, Pr (X < §,) = Pr (X < £,)and hence that common
value must equal p.

1.50. Show that
Jm xe Tdx = fw e Tdx =1,
o 0
and, for £ > 1, that (by integrating by parts)
J.m e~ Tdx =k fm xk~le=* g,
0 0

(a) What is the value of J : a"e~* dx, where » is a nonnegative integer?
(b) Formulate a reasonable definition of the now meaningless symbol 0l.
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(c) For what value of the constant ¢ does the function f(z) = ca"e~%,
0 < =z < o, zero elsewhere, satisfy the properties of a p.d.f.?

1.51. Given that the nonnegative function g(z) has the property that

J-: glx) dz = 1.

Show that f(z;, x;) = [26(Va3 + 3))/(mV/a] + 2),0 < 2, < 0,0 < x5 < o0,
zero elsewhere, satisfies the conditions of being a p.d.f. of two continuous-
type random variables X, and X,. Hint. Use polar coordinates.

1.7 The Distribution Function

Let the random variable X have the probability set function P(4),
where 4 is a one-dimensional set. Take x to be a real number and con-
sider the set 4 which is an unbounded set from -0 to z, including the
point z itself. For all such sets 4 we have P(4) = Pr(X e 4) =
Pr (X < ). This probability depends on the point z; that is, this
probability is a function of the point . This point function is denoted
by the symbol F(x) = Pr (X < x). The function F(z) is called the
distribution function (sometimes, cumulative distribution function) of
the random variable X. Since F(x) = Pr (X < %), then, with f(z)
the p.d.f., we have

F@)= 2 f(o),

w=x

for the discrete type of random variable, and

F@) = [*_ f(w) dw,

for the continuous type of random variable. We speak of a distribution
function F(x) as being of the continuous or discrete type, depending on
whether the random variable is of the continuous or discrete type.

Remark. If X is a random variable of the continuous type, the p.d.f.
f(z) has at most a finite number of discontinuities in every finite interval,
This means (1) that the distribution function F(z) is everywhere continuous
and (2) that the derivative of F(x) with respect to @ exists and is equal to
f(z) at each point of continuity of f(). That is, F'(z) = f(x) at each point of
continuity of f(z). If the random variable X is of the discrete type, most
surely the p.d.f. f(z) is not the derivative of F(x) with respect to z (that is,
with respect to Lebesgue measure); but f(z) 4s the (Radon-Nikodym) deriva-
tive of F(x) with respect to a counting measure. A derivative is often called
a density. Accordingly, we call these derivatives probability density functions.
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Example 1. Let the random variable X of the discrete type have the
p.d.f f(z) = z/6,2 = 1,2, 3, zero elsewhere. The distribution function of X is

Flx) =0, z <1,
=1 l<z<?2,
=3, 2<z<3,

1 3<u

Here, as depicted in Figure 1.3, F(z) is a step function that is constant in
every interval not containing 1, 2, or 3, but has steps of heights , 2, and 2
at those respective points. It is also seen that F(z) is everywhere continuous
to the right.

Example 2. Let the random variable X of the continuous type have the
p-d.f. f(®) = 2/2%, 1 < & < oo, zero elsewhere. The distribution function of
Xis

F@) = [ _oaw=0 =x<1,

x
=f12-02—3dw=1—$, 1 <a.

The graph of this distribution function is depicted in Figure 1.4. Here F(x)
is a continuous function for all real numbers z; in particular, F(x) is every-
where continuous to the right. Moreover, the derivative of F(x) with respect
to z exists at all points except at # = 1. Thus the p.d.{. of X is defined by this
derivative exceptatz = 1. Since theset A = {z; x = 1}is a set of probability
measure zero [that is, P(4) = 0], we are free to define the p.df. atz = 1in
any manner we please. One way to do thisis to write f(z) = 2/2%, 1 < & < 0,
zero elsewhere.

There are several properties of a distribution function F(x) that
can be listed as a consequence of the properties of the probability set
function. Some of these are the following. In listing these properties, we
shall not restrict X to be a random variable of the discrete or continuous
type. We shall use the symbols F(c0) and F(—co) to mean lim F(z)

=
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and lim F(z), respectively. In like manner, the symbols {z; x < o0}

xr— — ©
and {z;x < —oo} represent, respectively, the limits of the sets
{x; 2 < byand {z; 7 < —b}as b — o0.

(@) 0 < F(r) < 1because 0 < Pr(X <) < 1.

(b) F(x) is a nondecreasing function of z. For, if ' < «”, then

e<at={re<2}uirz <z <z

and

Pr(X

A

2)=Pr(X <a') +Pr(@ < X < 2.
That is,
F(@") — F(@') =Pr(@’ < X <2") > 0.

(c) F(0) = 1 and F(—o0) = 0 because the set {x; x < oo} is the
entire one-dimensional space and the set {x; ¥ < —oo} is the null set.

From the proof of (b), it is observed that, if @ < &, then
Pr(a < X <b) = F(b) — F(a).

Suppose that we want to use F(x) to compute the probability Pr (X = b).
To do this, consider, with 4 > 0,
ImPr(d -4 < X <b) =1lim[F() — F(b — &)].

h-0 h—0

Intuitively, it seems that im Pr (b — 4 < X < b) should exist and be
h—0

€qual to Pr (X = ) because, as % tends to zero, the limit of the set
0 -h<az< b} is the set that contains the single point = . The
fact that this limit is Pr (X = b) is a theorem that we accept without
Proof. Accordingly, we have

Pr (X = b) = F(9) - F(o-),
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where F(b—) is the left-hand limit of F(x) at # = b. That is, the proba-
bility that X = & is the height of the step that F(x) has at x = b.
Hence, if the distribution function F(z) is continuous at = b, then
Pr(X =08)=0.

There is a fourth property of F(z) that is now listed.

(d) F(z) is continuous to the right at each point .

To prove this property, consider, with 2 > 0,

limPr(e < X <a+ h) =lim[F(a + ) — F(a)].
h—0

h—0

We accept without proof a theorem which states, with 2 > 0, that
limPr(@ < X <a+ k) = P(0) =0.

h—0
Here also, the theorem is intuitively appealing because, as 4 tends to
zero, the limit of the set {x; 4 < < a + A}is the null set. Accordingly,
we write

0= F(a+) — F(a),

where F(a+) is the right-hand limit of F(z) at x = a. Hence F(z) is
continuous to the right at every point z = a.

The preceding discussion may be summarized in the following
manner: A distribution function F(x) is a nondecreasing function of z,
which is everywhere continuous to the right and has F(—o0) = 0,
F(0) = 1. The probability Pr (@ < X < b) is equal to the difference
F(b) — F(a). If « is a discontinuity point of F(z), then the probability
Pr (X = z) is equal to the jump which the distribution function has at
the point #. If x is a continuity point of F(x), then Pr (X = ) = 0.

Let X be a random variable of the continuous type that has p.d.f.
f(x), and let A be a set of probability measure zero; that is, P(4) =
Pr (X € A) = 0. It has been observed that we may change the definition
of f(x) at any point in 4 without in any way altering the distribution
of probability. The freedom to do this with the p.d.f. f(z), of a con-
tinuous type of random variable does not extend to the distribution
function F(z); for, if F(x) is changed at so much as one point %, the
probability Pr (X < z) = F(x) is changed, and we have a different
distribution of probability. That is, the distribution function F(z), not
the p.d.f. f(z), is really the fundamental concept.

Remark. The definition of the distribution function makes it clear that
the probability set function P determines the distribution function F. It is
true, although not so obvious, that a probability set function P can be found
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from a distribution function F. Thatis, P and F give the same information

about the distribution of probability, and which function is used is a matter
of convenience.

We now give an illustrative example,

Example 3. Let a distribution function be given by

F(z) =0, z <0,

]

Then, for instance,

Pr(-3<X=<4)=F@3) -F-3)=3-0=3}

and

Pr(X =0)=F@0) — F0-) =1 -0=1.

'l?he graph of F(x) is shown in Figure 1.5. We see that F (x) is not always
c'ontl‘nuou‘s, nor is it a step function. Accordingly, the corresponding distribu-
tion Is neither of the continuous type nor of the discrete type. It may be
described as a niixture of those types.

We shall now point out an important fact about a function of a
randf)m variable. Let X denote a random variable with space .
Consider the function ¥ — #(X) of the random variable X. Since X is
a fun.ction defined on a sample space €, then Y = u(X) is a composite
fun.ctlon defined on €. That is, Y = u(X) is itself a random variable
which has its own space & = ¥,y = ux),xe £} and its own
Probabiiity set function. If y € %, the event ¥ — u(X) < y occurs when
and only when, the event X e 4 < o occurs, where 4 = {x; u(x) < y},
That is, the distribution function of Yis , o

G(y) = Pr(Y < y) = Pr{u(X) < y] = P(4).
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The following example illustrates a method of finding the distribution
function and the p.d.f. of a function of a random variable.

Example 4. Let f(x) = 1, —1 < x < 1, zero elsewhere, be the p.d.f. of
the random variable X. Define the random variable Y by Y = X2 We wish
to find the p.d.f. of Y. If y > 0, the probability Pr (Y < y) is equivalent to

Pr(X?<y) =Pr(—Vy< X<y
Accordingly, the distribution function of ¥, G(y) = Pr (Y < y), is given by
Gly) =0, y<0O,
vy
=J' ' Ydz=+vy 0sy<l],
-~y
=1, 1<y
Since Y is a random variable of the continuous type, the p.d.f. of Y is

£(y) = G’(y) at all points of continuity of g(y). Thus we may write

1
=—, 0<y<l,
8) e Yy
= 0 elsewhere.

Let the random variables X and Y have the probability set function
P(4), where A is a two-dimensional set. If 4 is the unbounded set
{(u,v); w < z, v < y}, where x and y are real numbers, we have

P(4) = Pr[(X,Y)ed]=Pr(X <2, Y <y).

This function of the point (z, y) is called the distribution function of X
and Y and is denoted by

Fx,y) =Pr(X <2, Y <y).

If X and Y are random variables of the continuous type that have
p.d.f. f(z, y), then

F(x,y) = ﬁw fmf(u, v) du dv.
Accordingly, at points of continuity of f(z, y), we have

&*F(z, y)

oy flz, ).

It is left as an exercise to show, in every case, that
Pra < X <bc<Y<d=F®bd — Fb,c) — F(a,d) + F(a,c),

for all real constantsa < b, ¢ < 4.
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The distribution function of the #» random variables X 1 Xg e X,
is the point function

F(x,, @, ..., 2,) = Pr(X; <2y, X, <,,..., X, < z,).
An illustrative example follows.

Example 5. Let f(z,y,2) = e~ @+¥+9 () < g, Y.z < o0, zero elsewhere,
be the p.d.f. of the random variables X, Y, and Z. Then the distribution
function of X, Y, and Z is given by

Fl,y,2) =Pr(X <2, Y <y, Z <2)

= 'f:"‘: J: e VY dy dv dw

=(1-e?(1-e¥1—¢%, O0<ayz<owo,

and is equal to zero elsewhere. Incidentally, except for a set of probability
measure zero, we have

9®F(x, y, 2)
“omoy oz f= oy, 2).

EXERCISES

1.52. Let f(x) be the p.d.f. of a random variable X. Find the distribution
function F(x) of X and sketch its graph if:
{a) f(x) = 1, z = 0, zero elsewhere.
(b) flx) =4, = = —1,0, 1, zero elsewhere.
(c) flx) = /15,2 = 1,2, 3, 4, 5, zero elsewhere.
(@) flx) = 3(1 — 2)%, 0 < = < 1, zero elsewhere.
(e) flx) = 1/2%, 1 < = < oo, zero elsewhere.
(f) fl®) =40 <2 < 1lor2 <z < 4, zero elsewhere.

1.53. Find the median of each of the distributions in Exercise 1.52.

1.54. Given the distribution function

F(z) = 0, x < -1,

, -l<z<1,

Sketch the graph of F(z) and then compute: (a) Pr (- X<d: (b
Pr(X =0);(c) Pr(X =1); (@) Pr(2 < X < 3). V<X <D0

1.55. Let F(z, y) be the distribution function of X and Y. Show that
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Pria<X <bc<Yx<d)=F@bd — Fbc) — Fla, d) + F(a,c), for
all real constants a < b, ¢ < d.

1.56. Let f(z) = 1, 0 < z < 1, zero elsewhere, be the p.d.f. of X. Find
the distribution function and the p.d.f. of Y = VX. Hint. Pr (Y < y) =
PrivX<y)=Pr(X<y?),0<y<l

1.57. Let f(x) = 2/6, z = 1, 2, 3, zero elsewhere, be the p.d.f. of X. Find
the distribution function and the p.d.f. of Y = X2. Hint. Note that X is a
random variable of the discrete type.

1.58. Let f(z) = (4 — 2)/16, —2 < & < 2, zero elsewhere, be the p.d.f. of
X.

(a) Sketch the distribution function and the p.d.f. of X on the same set of
axes.

(b} If Y = |X|, compute Pr (Y < 1).

(c) If Z = X2, compute Pr (Z < %).

1.59. Let f(z,y) = e 7% 0 <z < 0, 0 <y < oo, zero elsewhere, be
thepdfof Xand Y.If Z = X + Y, compute Pr (Z < 0), Pr (Z < 6), and,
more generally, Pr (Z < z), for 0 < z < oo. What is the p.d.f. of Z2?

1.60. Explain why, with 2 > 0, the two limits im Pr (b — 4 < X < b)
h—0
and lim F(b — &) exist. Hint. Note that Pr (b — 2 < X < b) is bounded

h—=0

below by zero and F(b — 4) is bounded above by both F(b) and 1.

1.61. Showthat the function F(x,y) that is equal to 1, providedz+ 2y = 1,
and that is equal to zero provided « + 2y < 1, cannot be a distribution
function of two random variables. Hint. Find four numbers a < b, ¢ < d, so
that F(b,d) — F(a,d) — F(b,c) + F(a,c) is less than zero.

1.62. Let F(z) be the distribution function of the random variable X. If
m is a number such that F(m) = }, show that m is a median of the distri-
bution.

1.63. Let f(z) =1, —1 < 2 < 2, zero elsewhere, be the p.d.f. of X.
Find the distribution function and the p.d.f. of Y = X2 Hiut. Consider
Pr(X? <y)fortwocases:0 <y<landl <y < 4

1.8 Certain Probability Models

Consider an experiment in which one chooses at random a point
from the closed interval [a, b] that is on the real line. Thus the sample
space € is [a, b]. Let the random variable X be the identity function
defined on %. Thus the space & of X is & = %. Suppose that it is
reasonable to assume, from the nature of the experiment, that if an
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interval A4 is a subset of 7, the probability of the event 4 is proportional
to the length of A. Hence, if A is the interval [a, ], x < b, then

PA) =Pr(Xed)=Pr{a< X <2) =c(x - a),

where ¢ is the constant of proportionality.
In the expression above, if we take x = b, we have

1=Pr(a<X <bd) =cbd - a),

so ¢ = 1/(b — a). Thus we will have an appropriate probability model
if we take the distribution function of X, F(z) = Pr (X < x), to be

F(z) =0, T < a,

=:::: a<zx<hbh,
=1, b < x.

Accordingly, the p.d.f. of X, f(x) = F’(z), may be written

f(x)=bia, a<z<b

= 0 elsewhere.

The derivative of F(x) does not exist at x = a nor at z = b; but the set
{x; x = a, b} is a set of probability measure zero, and we elect to define
f(x) to be equal to 1/(b — a) at those two points, just as a matter of
convenience. We observe that this p.d.f. is a constant on & If the
p.d.f. of one or more variables of the continuous type or of the discrete
type is a constant on the space &, we say that the probability is
distributed uniformly over «Z. Thus, in the example above, we say that
X has a uniform distribution over the interval [a, b].

Consider next an experiment in which one chooses at random a
point (X,Y) from the unit square ¥ = & = {(z,%);0 <z < 1,
0 < y < 1}. Suppose that our interest is not in X or in Y but in
Z = X + Y. Once a suitable probability model has been adopted, we
shall see how to find the p.d.f. of Z. To be specific, let the nature of
the random experiment be such that it is reasonable to assume that
the distribution of probability over the unit square is uniform. Then the
p.d.f. of X and Y may be written

flx,y) =1, 0<xz<1,0<y<l,

= 0 elsewhere,
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and this describes the probability model. Now let the distribution
function of Z be denoted by G(2) = Pr (X + Y < z). Then

G(z) =0, z <0,

2 (M2 22
JJ dydx:—z-, 0<z2<1,
0 Jo

1 1 — 7)2
z2=1Jz—x
1, 2 <z

Since G'(z) exists for all values of z, the p.d.f. of Z may then be written
g(z) = z, 0<z<l,
=2 -z, 1<z2<2
= ( elsewhere.

Tt is clear that a different choice of the p.d.f. f(z, ¥) that describes the
probability model will, in general, lead to a different p.d.f. of Z.

We wish presently to extend and generalize some of the notions
expressed in the next three sentences. Let the discrete type of random
variable X have a uniform distribution of probability over the % points
of the space & = {x;z = 1,2,..., k}. The p.d.f. of X is then f(x) =
1%, x € o, zero elsewhere. This type of p.d.f. is used to describe the
probability model when each of the & points has the same probability,
namely, 1/k.

The probability model described in the preceding paragraph will
now be adapted to a more general situation. Let a probability set
function P(C) be defined on a sample space €. Here € may be a set in
one, or two, or more dimensions. Let % be partitioned into 2 mutually
disjoint subsets Cy, Cy, . . ., C; in such a way that the union of these &
mutually disjoint subsets is the sample space %. Thus the events
C,,C,, ..., Cyare mutually exclusive and exhaustive. Suppose that the
random experiment is of such a character that it may be assumed that
each of the mutually exclusive and exhaustive eventsC;, s = 1,2,..., k,
has the same probability. Necessarily then, P(C;) = 1/k, 4 = 1,2,..., k.
Let the event E be the union of 7 of these mutually exclusive events,
say

E=C,uC,u---UC, r <k
Then

P(E) = P(C)) + P(Cy) +---+ P(C,) =

;R
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Frequently, the integer % is called the total number of ways (for this
particular partition of %) in which the random experiment can ter-
minate and the integer 7 is called the number of ways that are favorable
to the event E. So, in this terminology, P(E) is equal to the number of
ways favorable to the event E divided by the total number of ways in
which the experiment can terminate. It should be emphasized that in
order to assign, ¢ this manner, the probability 7/k to the event E, we
must assume that each of the mutually exclusive and exhaustive events
C1,Cq, ..., C, has the same probability 1/k. This assumption then
becomes part of our probability model. Obviously, if this assumption is
not realistic in an application, the probability of the event E cannot be
computed in this way.
We next present two examples that are illustrative of this model.

Example 1. Let a card be drawn at random from an ordinary deck of
52 playing cards. The sample space € is the union of £ = 52 outcomes, and it
is reasonable to assume that each of these outcomes has the same probability
<. Accordingly, if E, is the set of outcomes that are spades, P(E,) = 13 = 1
because there are »; = 13 spades in the deck; that is, 1 is the probability of
drawing a card that is a spade. If E, is the set of outcomes that are kings,
P(E,) = ¥ = v because there are 7, = 4 kings in the deck; that is, ¥ is
the probability of drawing a card that is a king. These computations are very
easy because there are no difficulties in the determination of the appropriate
values of » and £. However, instead of drawing only one card, suppose that
five cards are taken, at random and without replacement, from this deck. We
can think of each five-card hand as being an outcome in a sample space. It
is reasonable to assume that each of these outcomes has the same probability.
Now if E, is the set of outcomes in which each card of the hand is a spade,
P(E,) is equal to the number 7, of all spade hands divided by the total
number, say %, of five-card hands. It is shown in many books on algebra that

7__(13)_& o k_(sz_szz.
15 \s) T 5 ? = 5)“5!47!

In general, if # is a positive integer and if « is a nonnegative integer with
x < n, then the binomial coefficient

(n _ #!

x) ! (n — )

is equal to the number of combinations of # things taken x at a time. Thus,
here,

13
P(E,) = (5) _ (13)(12)11)(10)(9)
' (52) = (52)(51)(50) (49) (48)

5

= 0.0005,
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approximately. Next, let E, be the set of outcomes in which at least one
card is a spade. Then E3 is the set of outcomes in which no card is a spade.

There are 7§ = (359) such outcomes Hence

()
PED =2,  and  P(E;) =1~ P(E}).

(5)

5

Now suppose that Ej; is the set of outcomes in which exactly three cards are
kings and exactly two cards are queens. We can select the three kings in any

one of (4

3) ways and the two queens in any one of (;) ways By a well-known

3
NI 52\ .. . .
P(Eg) = 10 s ) Finally, let E, be the set of outcomes in which there
are exactly two kings, two queens, and one jack. Then

(5)

because the numerator of this fraction is the number of outcomes in E,.

. . N (4
counting principle, the number of outcomes in Ej is 75 = ( )(2) Thus

P(E4) =

Example 2. A lot, consisting of 100 fuses, is inspected by the following
procedure. Five of these fuses are chosen at random and tested; if all 5
“blow” at the correct amperage, the lot is accepted. If, in fact, there are
20 defective fuses in the lot, the probability of accepting the lot is, under

appropriate assumptions,
( )
5

m = (.32,
5
approximately. More generally, let the random variable X be the number of

defective fuses among the 5 that are inspected. The space of X is &7 =
{z;z = 0,1, 2,3, 4, 5} and the p.d.f. of X is given by

G2
z/\5 -z
f(x)=Pr(X=x)=—(1W)——-—, z=0,1,23,4,5,
5
= 0 elsewhere.

This is an example of a discrete type of distribution called a hypergeometric
distribution.
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EXERCISES

{In order to solve some of these exercises, the reader must make certain
assumptions.)

1.64. A bowl contains 16 chips, of which 6 are red, 7 are white, and 3 are
blue. If 4 chips are taken at random and without replacement, find the
probability that: (a) each of the 4 chips is red; (b) none of the 4 chips is red;
(c) there is at least 1 chip of each color.

1.65. A person has purchased 10 of 1000 tickets sold in a certain raffle,
To determine the five prize winners, 5 tickets are to be drawn at random
and without replacement. Compute the probability that this person will win
at least one prize. Hint. First compute the probability that the person does
not win a prize.

1.66. Compute the probability of being dealt at random and without
replacement a 13-card bridge hand consisting of: (a) 6 spades, 4 hearts, 2
diamonds, and 1 club; (b) 13 cards of the same suit.

1.67. Three distinct integers are chosen at random from the first 20
positive integers. Compute the probability that: (a) their sum is even;
(b) their product is even.

1.68. There are five red chips and three blue chips in a bowl. The red
chips are numbered 1, 2, 3, 4, 5, respectively, and the blue chips are numbered
1, 2, 3, respectively. If two chips are to be drawn at random and without
replacement, find the probability that these chips have either the same
number or the same color.

1.69. Let X have the uniform distribution given by the p.d.f. f(z) = %,
x=-2,-1,0,1, 2, zero elsewhere. Find the p.d.f. of Y = X2 Hint. Note
that Y has a distribution of the discrete type.

1.70. Let X and Y have the pd.f. f(r,9) =1, 0<2 <1, 0<y <1,
zero elsewhere. Find the p.d.f. of the product Z = XY.

1.71. Let 13 cards be taken, at random and without replacement, from
an ordinary deck of playing cards. If X is the number of spades in these 13
cards, find the p.d.f. of X. If, in addition, Y is the number of hearts in these
13 cards, find the probability Pr (X = 2, Y = 5). What is the p.d.f. of X
and Y?

1.72. Four distinct integers are chosen at random and without replace-
ment from the first 10 positive integers. Let the random variable X be the
next to the smallest of these four numbers. Find the p.d.f. of X.

1.73. In a lot of 50 light bulbs, there are 2 bad bulbs. An inspector
examines 5 bulbs, which are selected at random and without replacement.
(a) Find the probability of at least 1 defective bulb among the 5.
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(b) How many bulbs should he examine so that the probability of finding
at least 1 bad bulb exceeds }?

1.9 Mathematical Expectation

One of the more useful concepts in problems involving distributions
of random variables is that of mathematical expectation. Let X be a
random variable having a p.d.f. f(z), and let %(X) be a function of X
such that

ffm w(z) f(x) de
exists, if X is a continuous type of random variable, or such that

S u(@)f @)

exists, if X is a discrete type of random variable. The integral, or the
sum, as the case may be, is called the mathematical expectation (or
expected value) of #(X) and is denoted by E[#(X)]. That is,

Ew(X)] = [ u(@)f() da,
if X is a continuous type of random variable, or

E[uX)] = 2 u(@)f(),

if X is a discrete type of random variable.

Remarks. The usual definition of E[#(X)] requires that the integral (or
sum) converge absolutely. However, in this book, each #(x) is of such a
character that if the integral (or sum) exists, the convergence is absolute.
Accordingly, we have not burdened the student with this additional provision.

The terminology ““mathematical expectation” or “‘expected value’ has
its origin in games of chance. This can be illustrated as follows: Three small
similar discs, numbered 1, 2, and 2, respectively, are placed in a bowl and
are mixed. A player is to be blindfolded and is to draw a disc from the bowl.
If he draws the disc numbered 1, he will receive $9; if he draws either disc
numbered 2, he will receive $3. It seems reasonable to assume that the
player has a “} claim” on the $9 and a “% claim” on the $3. His “total
claim” is 9(3) + 3(%), or $5. If we take X to be a random variable having
the p.d.f. f(x) = z/3, x = 1, 2, zero elsewhere, and u(zx) = 15 — 6z, then

Eu(X)] = > ulx)f(=x) %(15 — 6x)(x/3) = 5. That is, the mathematical

x =x=1
expectation of #(X) is precisely the player’s “claim” or expectation.

The student may observe that #(X) is a random variable Y with its own
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distribution of probability. Suppose the p.d.f. of Y is g(y). Then E(Y) is
given by

f " wdy or 2 98),

according as Y is of the continuous type or of the discrete type. The question
is: Does this have the same value as E[#(X)], which was defined above?
The answer to this question is in the affirmative, as will be shown in Chapter
4.

More generally, let X,, X,,..., X, be random variables having
p.df. f(xy, xy, ..., ;) and let u(X,, X,, ..., X,) be a function of these
variables such that the #-fold integral

W) [T [T ey wa s ) @, B, -, ) Ay - - da,
exists, if the random variables are of the continuous type, or such that
the »-fold sum

(2) 2_:---Zu(xl,xz,...,xn)f(xl,xz,...,xn)

zy

exists if the random variables are of the discrete type. The #n-fold
integral (or the n-fold sum, as the case may be) is called the mathe-
matical expectation, denoted by E[u(X,, X,, ..., X,)], of the function
u(Xy, X, ..., Xy).

Next, we shall point out some fairly obvious but useful facts about
mathematical expectations when they exist.

(a) If % is a constant, then E(k) = k. This follows from expression
(1) [or (2)] upon setting # = k and recalling that an integral (or sum) of
a constant times a function is the constant times the integral (or sum)
of the function. Of course, the integral (or sum) of the function fis 1.

(b) If £ 1is a constant and v is a function, then E(kv) = RE(v). This
follows from expression (1) [or (2)] upon setting # = kv and rewriting
expression (1) [or (2)] as & times the integral (or sum) of the product vf.

(c) If &, and k, are constants and v, and v, are functions, then
E(kyv, + kovy) = k1E(v,) + kyE(v,). This, too, follows from expression
(1) [or (2)] upon setting » = k,v; + kv, because the integral (or sum)
of (kv + kyv,)f is equal to the integral (or sum) of kyv,f plus the
integral (or sum) of k,v,f. Repeated application of this property shows
thatif &, &, . . ., &, are constants and vy, v,, . . ., v,, are functions, then

ERyvy + kovg + - - + Ekpuy) = BE(@y) + EE@W) + - + EnE(vy).
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This property of mathematical expectation leads us to characterize the
symbol E as a linear operator.

Example 1. Let X have the p.d.f.
flx) =2(1 — =), 0<z<l,
= 0 elsewhere.

Then
EX) = [ afte) do = [} @201 — 2) dw = &,
EX?) = [° of@)de = [ @201 - 0)de =
and, of course,
E(6X + 3X%) = 6(4) + 3() =

Example 2. Let X have the p.d.f.

f@)=% ==123

= ( elsewhere.

Then
E(X3) = Zxaf(z) = Zl z®

x

R

98
6.

=+ +%
Example 3. Let X and Y have the p.d.f.
fey)=z+y, O<z<l0<y<l,

= ( elsewhere.

Accordingly,
BxY) = [ |7 il y) dzdy

= [ [ o+ v away

1

= 7;-
Example 4. Let us divide, at random, a horizontal line segment of length

5 into two parts. If X is the length of the left-hand part, it is reasonable to
assume that X has the p.d.f.

fl@) =

4, O0<z<,
= 0 elsewhere.
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The expected value of the length X is E(X) = $ and the expected value of
thelength 5 — X is E(5 — X) = 3. But the expected value of the product of
the two lengths is equal to

EIX(5 - X)] = [[o(5 — 2)(}) do = % # ()2,

That is, in general, the expected value of a product is not equal to the
product of the expected values.

Example 5. A bowl contains five chips, which cannot be distinguished by
a sense of touch alone. Three of the chips are marked $1 each and the re-
maining two are marked $4 each. A player is blindfolded and draws, at
random and without replacement, two chips from the bowl. The player is
paid an amount equal to the sum of the values of the two chips that he
draws and the game is over. If it costs $4.75 cents to play this game, would
we care to participate for any protracted period of time? Because we are
unable to distinguish the chips by sense of touch, we assume that each of the
10 pairs that can be drawn has the same probability of being drawn. Let the
random variable X be the number of chips, of the two to be chosen, that are
marked $1. Then, under our assumption, X has the hypergeometric p.d.f.

)

= 0 elsewhere.

f(x)= ) z=01,2,

If X = z, the player receives u(x) = ¢ + 4(2 — ) = 8 — 3z dollars. Hence
his mathematical expectation is equal to
2
E[8 - 3X] = 3 (8~ 3@ = 15,

or $4.40.

EXERCISES

1.74. Let X have the p.d.f. f(z) = (z + 2)/18, —2 < = < 4, zero else-
where. Find E(X), E[(X + 2)%], and E[6X — 2(X + 2)%].

1.75. Suppose that f(x) = 4+, = 1, 2, 3, 4, 5, zero elsewhere, is the p.d.f.
of the discrete type of random variable X. Compute E(X) and E(X?). Use
these two results to find E[(X + 2)?] by writing (X + 2)% = X% + 4X + 4.

1.76. If X and Y have the p.d.f. f(z,9) = %, (=, ) = (0, 0), (0, 1), (1, 1),
zero elsewhere, find E[(X — (Y — 2)].

1.77. Letthep.df.of Xand Ybef(z,y) = e ?¥,0 <2 < 00,0 < y < o0,
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zero elsewhere. Let #(X, Y) = X, v(X, Y) =Y, and w(X, Y) = XY. Show
that E[«(X, Y)] - E(X, Y)] = E[»(X, Y)l.

1.78. Let the p.d.f. of X and Y be f(z, y)=20<z<y 0<y<l
zero elsewhere. Let #(X,Y) = X, »(X, Y) = Y and w(X,Y) = XY. Show
that E[w(X, Y)] * En(X, Y)] # E[w(X, Y)].

1.79. Let X have a p.d.f. f() that is positive at = — 1,0, '1 and is zero
elsewhere. (a) If f(0) = 3%, find E(X?). (b) If f(0) =} and if E(X) = ¢,
determine f(—1) and f(1).

1.80. A bowl contains 10 chips, of which 8 are marked $2 each and 2 are
marked $5 each. Let a person choose, at random and without replacemgnt,
3 chips from this bowl. If the person is to receive the sum of the resulting
amounts, find his expectation.

1.81. Let X be a random variable of the continuous type that has p.d.f.
f(x). If mis the unique median of the distribution of X and b is a real constant,
show that

E(X — b)) = E(X —ml) + 2 [ (b — @)f(@) d=,

provided that the expectations exist. For what value of b is E(|X — 8|) a
minimum?

1.82. Let f(x) =22, 0 <z < 1, zero elsewhere, be the p.d.f. of X.
(a) Compute E(VX). (b) Find the distribution function and the p.d.f. of
Y = VX. (c) Compute E(Y) and compare this result with the answer
obtained in part (a)-

1.83. Two distinct integers are chosen at random and without replace-

ment from the first six positive integers. Compute the expected value of the
absolute value of the difference of these two numbers.

1.10 Some Special Mathematical Expectations

Certain mathematical expectations, if they exist, have special
names and symbols to represent them. We shall mention now only
those associated with one random variable. First, let #(X) = X, where
X is a random variable of the discrete type having a p.d.f. f(z). Then

EX) = 2 of ().

x

If the discrete points of the space of positive probability density are
ay, a4y, g, - . ., then

E(X) = a;f(a;) + asf(ag) + asflas) +---
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This sum of products is seen to be a “weighted average” of the values
@y, 4, ag, . . ., the “weight’” associated with each a; being f(a;). This
suggests that we call E£(X) the arithmetic mean of the values of X, or,
more simply, the mean value of X (or the mean value of the distribution).

The mean value u of a random variable X is defined, when it exists,
to be p = E(X), where X is a random variable of the discrete or of the
continuous type.

Another special mathematical expectation is obtained by taking
#(X) = (X — p)? If, initially, X is a random variable of the discrete
type having a p.d.f. f(z), then

E[(X — )] = 2 (& - ()

= (a1 — W?f(a,) + (a2 — w)*f(az) +---,

if a4, a,, . . . are the discrete points of the space of positive probability
density. This sum of products may be interpreted as a “‘weighted
average’’ of the squares of the deviations of the numbers a,, a,, . ..
from the mean value u of those numbers where the ““ weight” associated
with each (a; ~ p)? is f(a;). This mean value of the square of the
deviation of X from its mean value p is called the variance of X (or the
variance of the distribution).

The variance of X will be denoted by o2, and we define o2, if it

exists, by o2 = E[(X — p)?], whether X is a discrete or a continuous
type of random variable.

It is worthwhile to observe that
o = E[(X — p)?] = E(X? - 2uX + p?);
and since E is a linear operator,
o? = E(X?) — 2uE(X) + p?
= E(X?) - 2u* + p?
= E(X?) ~ p2
This frequency affords an easier way of computing the variance of X.
It is customary to call o (the positive square root of the variance) the
standard deviation of X (or the standard deviation of the distribution).
The number o is sometimes interpreted as a measure of the dispersion of

the points of the space relative to the mean value u. We note that if the
space contains only one point @ for which f(z) > 0, then o = 0.

Remark. Let the random variable X of the continuous type have the
pd.f. f(¥) = 1/2a, —a < x < a, zero elsewhere, so that ¢ = a/V/3 is the
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standard deviation of the distribution of X. Next, let the random variable Y
of the continuous type have the p.d.f. g{y) = 1/4a, —2a < y < 2a, zero
elsewhere, so that o = 2a/V/3 is the standard deviation of the distribution of
Y. Here the standard deviation of Y is greater than that of X; this reflects
the fact that the probability for Y is more widely distributed (relative to the
mean zero) than is the probability for X.

We next define a third special mathematical expectation, called the
moment-generating function of a random variable X. Suppose that there
is a positive number % such that for —4 < ¢ < & the mathematical
expectation E(¢*X) exists. Thus

E@) = [

- e=f (x) d,
if X is a continuous type of random variable, or

E(@%) = 3 éf(a),

if X is a discrete type of random variable. This expectation is called the
moment-generating function of X (or of the distribution) and is denoted
by M(¢). That is,

M(t) = E(e%).

It is evident that if we set £ = 0, we have M(0) = 1. As will be seen by
example, not every distribution has a moment-generating function,
but it is difficult to overemphasize the importance of a moment-
generating function when it does exist. This importance stems from the
fact that the moment-generating function is unique and completely
determines the distribution of the random variable; thus, if two random
variables have the same moment-generating function, they have the
same distribution. This property of a moment-generating function will
be very useful in subsequent chapters. Proof of the uniqueness of the
moment-generating function is based on the theory of transforms in
analysis, and therefore we merely assert this uniqueness.

Although the fact that a moment-generating function (when it
exists) completely determines a distribution of one random variable will
not be proved, it does seem desirable to try to make the assertion
plausible. This can be done if the random variable is of the discrete
type. For example, let it be given that

_ 1t . 2,9t 3,3t 5 44t
M(@) = 76¢" + 16¢~ + 16 + T6¢

is, for all real values of ¢, the moment-generating function of a random
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variable X of the discrete type. If we let f(z) be the p.d.f. of X and let
a,b,¢,d,... bethe discrete points in the space of X at which f(z) > 0,
then

M) = 3 e ),

or
ot + Het + 55ed + et = fla)e® + F(B)ett 4 -

Because this is an identity for all real values of £, it seems that the right-
hand member should consist of but four terms and that each of the four
should equal, respectively, one of those in the left-hand member; hence
wemay takea = 1,f(a) = 15,0 = 2, f(b) = &5;¢ = 3,f(c) = i5;d = 4,
f(d) = 1%. Or, more simply, the p.d.f. of X is

x

f@) =15 w=1234,

0 elsewhere.

On the other hand, let X be a random variable of the continuous
type and let it be given that

1

M) =

t <1,

is the moment-generating function of X. That is, we are given

1 [co}
- tx
TTE f_we f(x) de, i < 1.
It is not at all obvious how f() is found. However, it is easy to see that
a distribution with p.d.f.

@) = ze™?, 0 <z < o,
= ( elsewhere

has the moment-generating function M () = (1 — #)~2,¢ < 1. Thus the
random variable X has a distribution with this p.d.f. in accordance with
the assertion of the uniqueness of the moment-generating function.

Since a distribution that has a moment-generating function M (¢) is
completely determined by M (¢), it would not be surprising if we could
obtain some properties of the distribution directly from M(¢). For
example, the existence of M (¢) for —% < ¢ < h implies that derivatives
of all order exist at £ = 0. Thus

aM ©
% =M'(@) = f xzet*f (x) da,

—
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if X is of the continuous type, or

aM(t) L tx
= M0 = 3 aef)

if X is of the discrete type. Upon setting ¢ = 0, we have in either case
M'(0) = EX) = p.

The second derivative of M (?) is

M) = f " a%f@@)dz  or 3, #%¢f (@),

so that M"(0) = E(X?). Accordingly,
o = E(X?) — p? = M"(0) — [M'(O)2.

For example, if M(f) = (1 — #)72%, ¢ < 1, as in the illustration above,
then

M'(t) = 2(1 — £)-3

and
M"(t) = 6(1 — 84
Hence
p=M(Q@0 =2
and

o= M"(0) —p2=6—4=2.

Of course we could have computed p and o? from the p.d.f. by

o= fww f(x)de and o? = f:o 22f (x) de — p?,

respectively. Sometimes one way is easier than the other.

In general, if m is a positive integer and if M™(¢) means the mth
derivative of M(t), we have, by repeated differentiation with respect
to ¢,

M™(0) = E(X™).
Now

© anf@)yde or  Samf(a),

- x

EX") = |

and integrals (or sums) of this sort are, in mechanics, called moments.
Since M (¢) generates the values of E(X™), m = 1,2,3,..., it is called
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the moment-generating function. In fact, we shall sometimes call
E(X™) the mth moment of the distribution, or the mth moment of X.

Example 1. Let X have the p.d.{f.
flx) =3z + 1), —1<z<l,
= 0 elsewhere.

Then the mean value of X is

I3 =f—:xf(x)dx=jjlx > d:z::-3

while the variance of X is

© 1
ozzf xzf(z)dx—pz—:flxzx;ldx— @2 =

©IN

Example 2. If X has the p.d.f.

f(x)z—;é; 1 <z < oo,

= 0 elsewhere,

then the mean value of X does not exist, since

] b
f x-—lédleimfldx
.

b—w Iy

= lim (Ind — In 1)

b+

does not exist.

Example 3. Given that the series

1 1 1
1—§+§5+3—2+"'
converges to #2/6. Then
flx) = 6 =123
_77-23;2, r=1,4,9,...,

= 0 elsewhere,

is the p.d.f. of a discrete type of random variable X. The moment-generating
function of this distribution, if it exists, is given by

M) = E(e) = 2 ¢f(a)

o 6etz
=2
=1 T
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The ratio test may be used to show that this series div_erges if £ > 0. Thus
there does not exist a positive number 4 such that M(f) ex1.sts for -2 <t < ht
Accordingly, the distribution ha\{ing the p.d.f. f(z) of this example does no
have a moment-generating function.

— et‘é’/z,

Example 4. Let X have the moment-generating funct.ion M(t)
o < t < 0. We can differentiate M(f) any number. of tlmes'to find the
moments of X. However, it is instructive to con.sider this altc?rr,latlv.e method.
The function M () is represented by the following MacLaurin’s series.

1 (2 1 (13\2 1 f_k
8t2/2=1+ﬂ(—2-)+'2—!(2) +"'+7e-! 5 +

2k = 1)- - (3)(1) o o ...
=1+%t2+%(!1—)t4+--~+( (ﬁ)!——t LR

In general, the MacLaurin’s series for M (¢) is

M), M0 M®O) i ...
M(t)=M(0)+———IE)t+-——2! £t e
E(X E(X? EX™ ...
=1+——(1!)t+—(2!—lt2+"-+-—7m—t o

Thus the coefficient of (t"/m!) in the MacLaurin’s series representation of
M) is E(X™). So, for our particular M (f), we have

)
E(X¥) = (2k — 1)(2k = 3)---(B)() = (22k)'

E=1,23,...,and E(X%* 1) =0,k=123,....

Remarks. In a more advanced course, we would n.ot work with the
moment-generating function because so many dlstrllbutlons do .not ‘have
moment-generating functions. Instead, we would let ¢ dgnote t.he imaginary
unit, ¢ an arbitrary real, and we would define p(f) = E (e‘tx.). .Thls exPectatlon
exists for every distribution and it is called the clmmctemst.w Junction .of the
distribution. To see why ¢(f) exists for all real £, we note, in the continuous
case, that its absolute value

p] = | [, eefe) de| < [T 1S @) de
However, |f(%)| = f(x) since f(2) is nonnegative and
|e#%| = |cos t + isin itz = Vcos? iz + sin? tr = 1.
Thus
o)l < [~ f@) de =1
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Accordingly, the integral for ¢(¢f) exists for all real values of £. In the discrete
case, a summation would replace the integral.

Every distribution has a unique characteristic function; and to each
characteristic function there corresponds a unique distribution of probability.
If X has a distribution with characteristic function ¢(#), then, for instance, if
E(X) and E(X?) exist, they are given, respectively, by 1E(X) = ¢'(0) and
12E(X?) = ¢"(0). Readers who are familiar with complex-valued functions
may write ¢(f) = M(¢) and, throughout this book, may prove certain
theorems in complete generality.

Those who have studied Laplace and Fourier transforms will note a
similarity between these transforms and M (¢) and ¢(f); it is the uniqueness
of these transforms that allows us to assert the uniqueness of each of the
moment-generating and characteristic functions.

EXERCISES

1.84. Find the mean and variance, if they exist, of each of the following
distributions.

3! 1\ 3
(@) flx) = A0 —a) (2) ,x = 0,1, 2,3, zero elsewhere.

(b) f(x) = 62(1 — z), 0 < & < 1, zero elsewhere.
(€) fl) = 2/x®, 1 < < oo, zero elsewhere.

1.85. Let f(x) = ()%, 2 = 1,2,3,..., zero elsewhere, be the p.d.f. of the
random variable X. Find the moment-generating function, the mean, and
the variance of X.

1.86. For each of the following probability density functions, compute
Pripg — 20 < X < p + 20).

(a) f(x) = 62(1 — ), 0 < & < 1, zero elsewhere.

(b) flz) = &)*, 2= 1,2,3,..., zero elsewhere.

1.87. If the variance of the random variable X exists, show that E(X?) >
[E(X)2.

1.88. Let a random variable X of the continuous type have a p.d.f. f(z)
whose graph is symmetric with respect to x = ¢. If the mean value of X
exists, show that E(X) = c. Hint. Show that E(X — c) equals zero by writing
E(X — ¢) as the sum of two integrals: one from —oo to ¢ and the other from
¢ to co. In the first, let y = ¢ — x; and, in the second, z = # — ¢. Finally,
use the symmetry condition f(c — y) = f(¢ + y) in the first.

1.89. Let the random variable X have mean pu, standard deviation ¢, and
moment-generating function M(¢), —% < ¢ < k. Show that

E(X—o_—") -0, E[(X = ")2] =1,
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E{exp [t(X 6_ ”)]} = e-ut/“M(é), —ho <t < ho.

1.90. Show that the moment-generating function of the random variable
X having the p.df. f(x) = %, —1 < z < 2, zero elsewhere, is

and

eZt —_ e—t
M) ="~ t£0,

=1, t=0.

1.91. Let X be a random variable such that E[(X — b)) exists for all
real b. Show that E[(X — b)%] is a minimum when b = E(X).

1.92. Let f{zy, %) = 224,00 < 23 < 1,0 < 2, < 1, zero elsewhere, be the
p.d.f. of X; and X,. Compute E(X; + X,)and E{(X; + X, — E(X; + X,)]2.

1.93. Let X denote a random variable for which E{(X — 4)2] exists. Give
an example of a distribution of a discrete type such that this expectation is
zero. Such a distribution is called a degenerate distribution.

1.94. Let X be a random variable such that K(f) = E(t*) exists for all
real values of ¢ in a certain open interval that includes the point ¢ = 1.
Show that K®™(1) is equal to the mth factorial moment E[X(X — 1)-..
(X —m + 1)].

1.95. Let X be a random variable. If m is a positive integer, the expecta-
tion E[(X — &)™), if it exists, is called the mth moment of the distribution
about the point &. Let the first, second, and third moments of the distribution
about the point 7 be 3, 11, and 15, respectively. Determine the mean p of X,
and then find the first, second, and third moments of the distribution about
the point p.

1.96. Let X be a random variable such that R(f) = E(e#*~%) exists for
—h < t < h. If mis a positive integer, show that R™(0) is equal to the mth
moment of the distribution about the point &.

1.97. Let X be a random variable with mean p and variance o2 such that
the third moment E[(X — w)?] about the vertical line through p exists. The
value of the ratio E[(X — p)®]/0® is often used as a measure of skewness.
Graph each of the following probability density functions and show that this
measure is negative, zero, and positive for these respective distributions
(said to be skewed to the left, not skewed, and skewed to the right, re-
spectively).

(@) f(x) = (@ + 1)/2, —1 < = < 1, zero elsewhere.

(b) flx) =%, —1 < x < 1, zero elsewhere.

(€) fl®) = (1 —x)/2, —1 < = < 1, zero elsewhere.

Where F(z)
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1.98. Let X be a random variable with mean i and variance ¢2 such that
the fourth moment E[(X — u)*] about the vertical line through u exists.
The value of the ratio E[(X — u)*]/o* is often used as a measure of Rurtosts.
Graph each of the following probability density functions and show that this
measure is smaller for the first distribution.

(a) f®) = 3, —1 < & < 1, zero elsewhere.
(b) f(x) = 3(1 — 2%/4, —1 < = < 1, zero elsewhere.

1.99. Let the random variable X have p.d.f.

f@)=p z=-11,
=1-2p, z =0,

= 0 elsewhere,

where 0 < p < 1. Find the measure of kurtosis as a function of #. Determine

its value when p = 4, p = §, p = 1, and p = 145. Note that the kurtosis
increases as p decreases.

1.1'00.‘ Lefc $(f) = In M(t), where M () is the moment-generating function
of a distribution. Prove that ¢'(0) = u and P (0) = o2

. 1:101: Find the mean and the variance of the distribution that has the
distribution function

Fz) =0, =z<0,

1.102. Find the m

oments of the distributi .
functiop, M) il of the distribution that has moment-generating

)73, ¢t < 1. Hint. Differentiate twice the series

(1—t)‘1=1+t+t2+t3+---, -l<t<1.

1.103. Tet X bea random vari i

10 able of the continuous t ith
Which is positive provided 0 < z < b vero et
Show that

’

b < 0, and is equal to zero elsewhere.

E(X) = [([1 - F@)] da,

is the distribution function of X.
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1.11 Chebyshev’s Inequality

In this section we shall prove a theorem that enables us to find
upper (or lower) bounds for certain probabilities. These bounds, how-
ever, are not necessarily close to the exact probabilities and, accordingly,
we ordinarily do not use the theorem to approximate a probability,
The principal uses of the theorem and a special case of it are in theoreti-
cal discussions.

Theorem 6. Let u(X) be a nonnegative fumction of the random
variable X. If E[u(X)] exists, then, for every positive constant c,

Priu(X) > o] < _EB‘C(_}QJ

Proof. The proof is given when the random variable X is of the
continuous type; but the proof can be adapted to the discrete case if we
replace integrals by sums. Let A = {x; u(x) > ¢} and let f(x) denote
the p.d.f. of X. Then

EwX)] = [* w@f@) de = [, u@)f@) dz + [ @] @) ds.

Since each of the integrals in the extreme right-hand member of the
preceding equation is nonnegative, the left-hand member is greater
than or equal to either of them. In particular,

E[u(X)] = [, u()f(@) da.

However, if x € 4, then u(x) > c; accordingly, the right-hand member
of the preceding inequality is not increased if we replace u(x) by c.
Thus

E[u(X)] = ¢ |, f() da.
Since
[ f@ dz = Pr(X e 4) = Pr{u(X) = ],

it follows that
Eu(X)] 2 ¢ Pru(X) = c,
which is the desired result.
The preceding theorem is a generalization of an inequality which

is often called Chebyshev’s inequality. This inequality will now be
established.
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Theorem 7. Chebyshev’s Inequality. Let the random variable X
have a distribution of probability about which we assume only that there is
a finite variance o®. This, of course, implies that theve is a mean . Then

for every k& > 0,

or, equivalently,

Proof. In Theorem 6 take #(X) = (X — w)? and ¢ = A2¢2. Then
we have

Pr{(X — p)? 2 0207 < )

Since the numerator of the right-hand member of the preceding
inequality is o®, the inequality may be written

Pr (| X — p| = ko) < 7’

which is the desired result. Naturally, we would take the positive
number % to be greater than 1 to have an inequality of interest.

It is seen that the number 1/£2is an upper bound for the probability
Pr(]X — u| > ko). In the following example this upper bound and
the exact value of the probability are compared in special instances.

Example 1. Let X have the p.d.f.

1
=5

= 0 elsewhere.

f(=) —V3 <z < V3,

Here p = 0ando? = 1. Tf 4 = 3, we have the exact probability

Pr(lX—F,[>ka)—Pr(IX[>3>—l J'alz 1 \/3
> ko) = >5)=1-| ——dr=1-22
2 ~322V3 ? 2

B , .

1/}];2Chel:yshev s lnequallty, the preceding probability has the upper bound

i = 5..Smce 1 — V3/2 = 0.134, approximately, the exact probability in

ha Case 1s considerably less than the upper bound §. If we take & = 2, we
Ve the exact probability Pr (IX — u|l = 20) = Pr(|X| = 2) = 0. This
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1.11 Chebyshev’s Inequality

In this section we shall prove a theorem that enables us to find
upper (or lower) bounds for certain probabilities. These bounds, how-
ever, are not necessarily close to the exact probabilities and, accordingly,
we ordinarily do not use the theorem to approximate a probability.
The principal uses of the theorem and a special case of it are in theoreti-
cal discussions.

Theorem 6. Let u(X) be a monnegative function of the random
variable X. If E[u(X)] exists, then, for every positive constant c,

Priu(X) = c] < E[}%()QJ

Proof. The proof is given when the random variable X is of the
continuous type; but the proof can be adapted to the discrete case if we
replace integrals by sums. Let 4 = {z; u(z) = ¢} and let f(x) denote
the p.d.f. of X. Then

Ew(X)] = [~ u@)f@) do = [, u(@)f(z) dz + [, w@)f (@) dz.

Since each of the integrals in the extreme right-hand member of the
preceding equation is nonnegative, the left-hand member is greater
than or equal to either of them. In particular,

E(X)] 2 [ @)/ (@) d=.

However, if z € 4, then u(x) = c; accordingly, the right-hand member

of the preceding inequality is not increased if we replace u(x) by c.
Thus

Eu(X)] = ¢ fA f(z) da.
Since
[ f@de = Pr(Xed)=PriuX) = d,
it follows that
Eu(X)] = cPru(X) = c],
which is the desired result.
The preceding theorem is a generalization of an inequality which

is often called Chebyshev’s inequality. This inequality will now be
established.
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Theorem 7. Chebyshev’s Inequality. Let the random variable X
have a distribution of probability about which we assume only that there is
a finite variance o2. This, of course, implies that there is a mean u. Then
for every k > 0,

Pr(|X — p| = ko) <

o7, equivalently,

Proof. In Theorem 6 take #(X) = (X — p)? and ¢ = k202, Then
we have

R

Since the numerator of the right-hand member of the preceding
inequality is o2, the inequality may be written

Pr(|X — p| = ko) < —»

which is the desired result. Naturally, we would take the positive
number % to be greater than 1 to have an inequality of interest.

It is seen that the number 1/£2 is an upper bound for the probability
Pr (|JX — p| > ko). In the following example this upper bound and
the exact value of the probability are compared in special instances.

Example 1. Let X have the p.d.f.

F(@) =ﬁ, V3 <z<3

= () elsewhere.

Here . = 0 and o2 = 1. If £ = 3, we have the exact probability

3 | V3
Pr(|X—,u|2ka)=Pr(|X[z—)=l—J 123
2 3122V/3 2

By Chebyshev’s inequality, the preceding probability has the upper bound
1//532 = %.'Since 1 — v/3/2 = 0.134, approximately, the exact probability in
this case is considerably less than the upper bound %. If we take & = 2, we
have the exact probability Pr (|X — p| > 2¢) = Pr (|X| = 2) = 0. This
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again is considerably less than the upper bound 1/&* = % provided by
Chebyshev’s inequality.

In each instance in the preceding example, the probability
Pr (|X — | = ko) and its upper bound 1/k2 differ considerably. This
suggests that this inequality might be made sharper. However, if we
want an inequality that holds for every k > 0 and holds for all random
variables having finite variance, such an improvement is impossible,
as is shown by the following example.

Esample 2. Let the random variable X of the discrete type have
probabilities §, §, § at the pointsz = —1,0, 1, respectively. Here p = 0 and
o? = 1. If k = 2,then 1/k? = }and Pr (| X — p| = ko) = Pr (X =1)=4%
That is, the probability Pr (X — u| = ko) here attains the upper bound
1/k* = }. Hence the inequality cannot be improved without further assump-
tions about the distribution of X.

EXERCISES

1.104. Let X be a random variable with mean p and let E[(X — w)%]
exist. Show, with 4 > 0, that Pr (|[X — p| 2 d) < E[(X — w)?*)/d?.

1.105. Let X be a random variable such that Pr (X < 0) = 0 and let
p = E(X) exist. Show that Pr (X = 2u) < %

1.106. If X is a random variable such that E(X) = 3 and E(X?) = 13, use
Chebyshev’s inequality to determine a lower bound for the probability
Pr(-2< X <38).

1.107. Let X be a random variable with moment-generating function
M(t), —h < t < h. Prove that

Pr (X = a) < e”*M(), 0<t<h,

and that
Pr (X < a) < e"“M(}), —h<t<0.

Hint. Let u(x) = ¢/ and ¢ = ¢ in Theorem 6. Note. These results imply
that Pr (X = a) and Pr (X < a) are less than the respective greatest lower
bounds of ¢~ %M (f) when 0 < ¢ < & and when —h<t<O.

1.108. The moment-generating function of X exists for all real values of
t and is given by

et — e—t

M@ =S5 t#0, MO =1

Use the results of the preceding exercise to show that Pr(X = 1) = 0 and
Pr (X < —1) = 0. Note that here k is infinite.

Chapter 2

Conditional Probability
and Stochastic
Independence

2.1 Conditional Probability

In some random experiments, we are interested only in those out-
comes that are elements of a subset C; of the sample space €. This
means, for our purposes, that the sample space is effectively the subset
C,. We are now confronted with the problem of defining a probability
set function with C, as the “new” sample space.

Let the probability set function P(C) be defined on the sample space
%f and let C; be a subset of ¥ such that P(C,) > 0. We agree to con-
sider only those outcomes of the random experiment that are elements
of C;; in essence, then, we take C, to be a sample space. Let C, be another
subset of €. How, relative to the new sample space C,, do we want to
define the probability of the event C,? Once defined, this probability is
called the conditional probability of the event C,, relative to the
hypothesis of the event C,; or, more briefly, the conditional probability
of C,, given C;. Such a conditional probability is denoted by the symbol
P(C2|C'1). We now return to the question that was raised about the
definition of this symbol. Since C; is now the sample space, the only
elements of C, that concern us are those, if any, that are also elements of
C,, that is, the elements of C; N C,. It seems desirable, then, to define
the symbol P(C,|C,) in such a way that

P(Cy|Cy) =1 and P(Co|Cy) = P(Cy N C4lCy).
Moreover, from a relative frequency point of view, it would seem logic-

ally inconsistent if we did not require that the ratio of the probabilities
of the events C; N C, and C;, relative to the space Cy, be the same as the
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ratio of the probabilities of these events relative to the space €; that is,

we should have
P(C, N C,|Cy) P(C, N Cz).

P(CIC) PG
These three desirable conditions imply that the relation
_P(C.NnCy)
P(Czlcl) - P(Cl)

is a suitable definition of the conditional probability of the event Cg,
given the event C, provided P(C,) > 0. Moreover, we have:

(@) P(C.|Cy) = 0.

(b) P(C, U Ca---|Cy) = P(Co|Cy) + P(CalCy) + -+ provided
C,, Cg, . . . are mutually disjoint sets.

() P(CG,|Cy) = 1.

Properties (a) and (c) are evident; proof of property (b) is left as an
exercise. But these are precisely the conditions that a probability set
function must satisfy. Accordingly, P(C,|Cy) s a probability set
function, defined for subsets of C,. It may be called the conditional
probability set function, relative to the hypothesis Cy; or the condi-
tional probability set function, given C,. It should be noted that this
conditional probability set function, given C, is defined at this time
only when P(C;) > 0.

We have now defined the concept of conditional probability for
subsets C of a sample space €. We wish to do the same kind of thing for
subsets A of &, where & is the space of one or more random variables
defined on €. Let P denote the probability set function of the induced
probability on 7. If A, and A, are subsets of &, the conditional
probability of the event A,, given the event 4,, is
P(4, N 4,)

Pd,)
provided P(4;) > 0. This definition will apply to any space which hasa
probability set function assigned to it.

Example 1. A hand of 5 cards is to be dealt at random and without
replacement from an ordinary deck of 52 playing cards. The conditional
probability of an all-spade hand (C,), relative to the hypothesis that there
are at least 4 spades in the hand (C,), is, since C; N Cy = C,,

ey rer WG
P - GG

P(AzlAl) =
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It is w?rth noting, if we let the random variable X equal the number of
spades in a 5-card hand, that a reasonable probability model for X is given
by the hypergeometric p.d.f.

s s)
(5)

= () elsewhere.

r=01234S5,

Accordingly, we can write P(C,|C,) = Pr(X = c (X — B
FEILE + f(5)). ICy) = Pr (X = 5)/[Pr (X = 4, 5)]

From the definition of the conditional probability set function, we
observe that ,

P(C, N Cy) = P(C,)P(Cy|C,).

This re}ation is frequently called the multiplication rule for probabilities
Sometimes, after considering the nature of the random experiment, it i;
possible to make reasonable assumptions so that both P(C ), and
P(C,|Cy) can be assigned. Then P(C; N Cy) can be computedlunder
these assumptions. This will be illustrated in Examples 2 and 3.

Exan‘lp‘le 2. A bowl! contains eight chips. Three of the chips are red and
the remaining five are blue. Two chips are to be drawn successively, at ran-
dom and without replacement. We want to compute the probability )that the
first dr?.W results in a red chip (C,) and that the second draw results in a
blue chip (C,). It is reasonable to assign the following probabilities:

PC,) =% and  P(C)C)) = 3.

Th i
us, under these assignments, we have P(C; N C,) = (3)(3) =

(715
=)

Example 3 From an ordinary deck of playing cards, cards are to be
drawn successively, at random and without replacement. The probability
that the third spade appears on the sixth draw is computed as follows. Let
C, be the event of two spades in the first five draws and let C; be the event of
a spade on the sixth draw. Thus the probability that we wish to compute is
P(C, N C,). It is reasonable to take

(=)(3)
2J\3
PC)) = —=F——
5
ihe desired proba'bility P(C 1N C,) is then the product of these two numbers.
ore generally, if X + 3 is the number of draws necessary to produce

and P(C2|C1) =4
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exactly three spades, a reasonable probability model for the random variable
X is given by the p.d.f.

(13)(39)
2N\ 1 ~0,1,2,...,39
o = | P ms) =m0
(2+x)
= 0 elsewhere.

Then the particular probability which we computed is P(C; NCy) =
Pr (X = 3) = f(Q3).

The multiplication rule can be extended to three or m.ore.events.
In the case of three events, we have, by using the multiplication rule
for two events,

P(C;nC;NCy) = PG N Cy) N (4]
= P(Cl n C2)P(CSlC1 n Cz).
But P(C, N Cy) = P(C;)P(C,|C,). Hence
P(Cl ﬁ C2 n Cs) - P(CI)P(C2lC1)P(C3|C1 f\ C2).

This procedure can be used to extend the multiplication rule to four
or more events. The general formula for & events can be proved by
mathematical induction.

Example 4. Four cards are to be dealt successively, at random F{nd
without replacement, from an ordinary deck of playing cards. The probability

of receiving a spade, a heart, a diamond, and a club, in that order, is

13(3) (12)(%3). This follows from the extension of the multiplication rule.

In this computation, the assumptions that are involved seem clear.

EXERCISES

(In order to solve certain of these exercises, the student is required to
make assumptions.)

2.1. If P(C,) > 0 and if C,, Cs, C,, ... are mutually disjoint sets, show
that P(C, U CgU---|Cy) = P(C,|Cy) + P(C5|Cy) + -

2.2. Prove that
PC,NnCynCsnN C,) = P(Cl)P(C2|C1)P(C3|C1 NCHPCICi N Ca N Ca).

2.3. A bowl contains eight chips. Three of the chips are re.d and five are
blue. Four chips are to be drawn successively at random and without replace-
ment. (a) Compute the probability that the colors alternat_e. (b) Compute
the probability that the first blue chip appears on the third draw. (c) If
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X + 1 is the number of draws needed to produce the first blue chip,
determine the p.d.f. of X.

2.4. A hand of 13 cards is to be dealt at random and without replacement
from an ordinary deck of playing cards. Find the conditional probability
that there are at least three kings in the hand relative to the hypothesis that
the hand contains at least two kings.

2.5. A drawer contains eight pairs of socks. If six socks are taken at
random and without replacement, compute the probability that there is at

least one matching pair among these six socks. Hinf. Compute the probability
that there is not a matching pair.

2.6. A bowl contains 10 chips. Four of the chips are red, 5 are white,
and 1 is blue. If 3 chips are taken at random and without replacement,
compute the conditional probability that there is 1 chip of each color
relative to the hypothesis that there is exactly 1 red chip among the 3.

2.7. Let each of the mutually disjoint sets C,,...,C, have nonzero
probability. If the set C is a subset of the union of C,, . . ., C,,, show that

P(C) = P(C)P(C|Cy) +---+ P(Ca)P(C|Cy).
If P(C) > 0, prove Bayes’ formula:

P(C)P(C|C) P "
P(C,)P(C[Cy) +---+ P(C,)P(C|C,)’ =1,...,m.

Hint. P(C)P(C,|C) = P(C)P(C|C).

P(Cz‘|C) =

2.8. Bowl I contains 3 red chips and 7 blue chips. Bowl 1I contains 6 red
chips and 4 blue chips. A bowl is selected at random and then 1 chip is drawn
from this bowl. (a) Compute the probability that this chip is red. (b) Relative
to the hypothesis that the chip is red, find the conditional probability that it
is drawn from bowl II.

2.9. Bowl I contains 6 red chips and 4 blue chips. Five of these 10 chips
are selected at random and without replacement and put in bowl II, which
was originally empty. One chip is then drawn at random from bowl II.
Relative to the hypothesis that this chip is blue, find the conditional

probability that 2 red chips and 3 blue chips are transferred from bowl I to
bowl II.

2.2 Marginal and Conditional Distributions

Let f(x,, ;) be the p.d.f. of two random variables X, and X,.
From this point on, for emphasis and clarity, we shall call a p.d.f. or a
distribution function a josnt p.d.f. or a joint distribution function when
more than one random variable is involved. Thus f(x;, x,) is the joint
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p.d.f. of the random variables X; and X, Consider the eventa < X
b,a < b. This event can occur when and only when the event a < X,

b, —oa < X, < oo occurs; that is, the two events are equivalent, so that
they have the same probability. But the probability of the latter event
has been defined and is given by

Pria < X; <b -0 < X, <00) = f: fio fxy, o) dxy dor,

for the continuous case, and by

Pr{a <X, <b —0<X,<o) = 3 3 flr,)

a<xy<bxy

for the discrete case. Now each of
[7, feyz)das  and 3 [z, )
is a function of z, alone, say f1(x;). Thus, for every a < b, we have

Pria < X, <b) = f” fulw,) dz;  (continuous case),

S fi(x,)  (discrete case),

a<xi<b

so that f;(z,) is the p.d.f. of X alone. Since f; (2,) is found by summing
(or integrating) the joint p.d.f. f(z;, @,) over all z, for a fixed z,, we can
think of recording this sum in the “margin”’ of the z,x,-plane. Accord-
ingly, fi(x,) is called the marginal p.d.f. of X;. In like manner

Sfalxg) = f jo [y, ) doy (continuous case),
= > flzy, 7a) (discrete case),
Xy

is called the marginal p.d.f. of X,.

Example 1. Let the joint p.d.f. of X, and X, be

fnw) =058, 5 =1,23,4,=1,2,

= 0 elsewhere.
Then, for instance,
Pr(X; =3)=/31+/32 =73
and
Pr(X,=2) =f(1,2) +f22) +f3.2 =%
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On the other hand, the marginal p.d.f. of X is

2
_ Zx1+x2=2x12;—3’ 5 =123,
zero elsewhere, and the marginal p.d.f. of X, is
3
Z z, + Ty _ 6 -;139:2, 2= 1,2,

zero elsewhere. Thus the preceding probabilities may be computed as
PrX;=3=f3)=3and Pr(X,=2) =f,(2) = %

We shall now discuss the notion of a conditional p.d.f. Let X; and
X, denote random variables of the discrete type which have the joint
p-d.f. f(z,, #;) which is positive on &7 and is zero elsewhere. Let f,(z,)
and f,(x,) denote, respectively, the marginal probability density func-
tions of X; and X,. Take A4, to be the set 4; = {(x, x,); #; = a7,
—00 < ¥y < 0}, where z] is such that P(4,) = Pr (X, = 2f) =
fi(xy) > 0, and take 4, to be the set A, = {(x;, %3); —©0 < #; < 0,
x, = x5}. Then, by definition, the conditional probability of the event
A,, given the event 44, is

iy - PO P0G =g Xa = w) [ E),
2 P(4,) Pr (X; = 1) Si(=h)

That is, if (%, xp) is any point at which f;(z;) > 0, the conditional
probability that X, = x,, given that X, = xz,, is f(x,, @)/ f1(%;). With
2, held fast, and with f,(z;) > 0, this function of z, satisfies the
conditions of being a p.d.f. of a discrete type of random variable X,
because f(xy, )/ f1(%1) is not negative and

gfifzvxz) _f folrx2 _ Sfi(zy) 1

1(x1) & Si(=)

We now define the symbol f(z,|#,) by the relation

[y, @)
TolXy) = ——F——, z,) > 0,
f( Zl 1) fl(xl) fl( l)
and we call f(x,|x,) the conditional p.d.f. of the discrete type of
random variable X,, given that the discrete type of random variable
X; = #;. In a similar manner we define the symbol f(x;|x;) by the
relation

Sz, o)
Salza) '

f(x1|x2) =

Jalzg) > 0,
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and we call f(z,|2;) the conditional p.d.f. of the discrete type of
random variable X,, given that the discrete type of random variable
X, = x,.

Now let X, and X, denote random variables of the continuous type
that have the joint p.d.f. f(z,, x,) and the marginal probability density
functions f;(x,) and fy(x,;), respectively. We shall use the results of the
preceding paragraph to motivate a definition of a conditional p.d.f. of
a continuous type of random variable. When f;(x,) > 0, we define the
symbol f(z,|z,) by the relation

flaa|2y) = j%fif(lg’,;—:)ﬁ)'

In this relation, z, is to be thought of as having a fixed (but any fixed)
value for which f;(x;) > 0. It is evident that f(x,|x;) is nonnegative
and that

J‘:) faa|2y) dwg = —°°w f}f(lc;:SZ) 4

| T

" filw)

1
= 'mfl(xl) =1

That is, f(2,|z,) has the properties of a p.d.f. of one continuous type of
random variable. It is called the conditional p.d.f. of the continuous
type of random variable X,, given that the continuous type of random
variable X, has the value z;. When f,(x;) > 0, the conditional p.d.f.
of the continuous type of random variable X,, given that the con-
tinuous type of random variable X, has the value z,, is defined by

Sy, )
fl@i|zs) = W» fa(xg) > 0.

Since each of f(z5|x,) and f(x,|x,) is a p.d.f. of one random variable
(whether of the discrete or the continuous type), each has all the
properties of such a p.d.f. Thus, we can compute probabilities and
mathematical expectations. If the random variables are of the con-
tinuous type, the probability

Pria < X, < b|X, =x) = f: flao|wy) dxy

is called ““the conditional probability that a < X, < b, given that
X, = z;.” If there is no ambiguity, this may be written in the form
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Pr(a < X, < blz)). Similarl iti il]
. y, the conditional b
¢ < X; <d given X, = Z,, 18 probabilitythat

Pric <X, <d|X, =g, = fcdf(xllxz) dz,.
If u(X,) is a function of X,, the expectation
E[uXo)ler) = [° uiay) flay|ay) du,

i§ calleq the conditional expectation of u(X,), given X, = z,. In par
jacular, if they exist, E(X 2]#,) is the mean and E{(X, —1E (X liw )]2I|)x \
is ’Fhe variance of the conditional distribution of X,, given 2XI1 = xl}
‘I‘t is c.or'lvenient to refer to these as the ”conditionazl’ mean”’ aln(; thlé
conditional variance’’ of Xy, given X, = z,. Of course we have

E{(X, - E(X2|x1)]2|x1} = E(X§|x1) - [E(X2|x1)]2

from an earlier result. In like manner, the conditional expectation of
u(X,), given X, = x,, is given by

Eu(Xy)|2a) = [ aley) flan]ay) da,.

Wl.t.h'random variables of the discrete type, these conditional prob-
:’:lblhtleS an'd conditional expectations are computed by using summation
Instead of integration. An illustrative example follows.

Example 2. Let X, and X, have the joint p.d.f.

f(xltx2)=2; 0<x1<z2<1,

= 0 elsewhere.
Then the marginal probability density functions are, respectively,
1
fulzy) =L12dx2 =21-2), O0<az <1,

= 0 elsewhere,
and

folw) = [P2dr, = 2, 0<ay<t,
= 0 elsewhere.
The conditional p.d.f. of X,, given X, = x5, is
1
f(m1!x2)=gz=x—2, 0<a; <30 <2, <1,

= 0 elsewhere.
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Here the conditional mean and conditional variance of X, given X, = #,
are, respectively,

E(Xylag) = [ 2af (@) das

o 1
= fo xl(x:) 4,

and

E(X, - EXuleaFim) = [ (- ) (5) 4

Finally, we shall compare the values of Pr (0 < X, < 3|X, = 2) and
Pr (0 < X, < %). We have

Pr(0< X, <3Xs =8 =] f@lpdo =[] § =3

but

Pr(0 < X; < ) = [[“filw) dzy = [} 21 — 2 dmy = 3

We shall now discuss the notions of marginal and conditional
probability density functions from the point of view of # random
variables. All of the preceding definitions can be directly generalized
to the case of # variables in the following manner. Let the random
variables X;, X5, ..., X, have the joint p.d.f. f(xy, %a, ..., %n). If the
random variables are of the continuous type, then by an argument
similar to the two-variable case, we have for every a < b,

Pra < Xy < b) = [ fila) das,
where f,(z;) is defined by the (» — 1)-fold integral
Al = [T 7 e @) Az da,

Accordingly, fi(%;) is the p.d.f. of the one random variable X, apd
fi(x,) is called the marginal p.d.f. of X;. The marginal probability
density functions fo(xs), ..., fa(®s) of Xa ..., Xy, respectively, are
similar (z» — 1)-fold integrals.
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Up to this point, each marginal p.d.f. has been a p.d.f. of one random
variable. It is convenient to extend this terminology to joint probability
density functions. We shall do this now. Let f(z,, z,, ..., #,) be the
joint p.d.f. of the #» random variables X,, X,, ..., X, just as before.
Now, however, let us take any group of 2 < #» of these random variables
and let us find the joint p.d.f. of them. This joint p.d.f. is called the
marginal p.d.f. of this particular group of %k variables. To fix the
ideas, take n = 6, £ = 3, and let us select the group X,, X,, X;. Then
the marginal p.d.f. of X,, X,, X; is the joint p.d.f. of this particular
group of three variables, namely,

2] @ o0
j_oo J_m f_w Sz, 2g, 23, 24, X5, Xg) da; dug dag,

if the random variables are of the continuous type.
We shall next extend the definition of a conditional p.d.f. If
fil@) > 0, the symbol f(x,, ..., x,|z,) is defined by the relation

_ [y )

S anla) = ==

and f(x,, . . ., x,|2,) is called the joint conditional pd.f of X ..., X,
given X; = ;. The joint conditional p.d.f. of any # — 1 random
variables, say X,,..., X, 1, X,11,-.., X, given X, = z,, is defined
as the joint p.d.f. of X, X,, ..., X, divided by marginal p.d.f. f,(z,),
provided f,(x) > 0. More generally, the joint conditional p.d.f. of
n — k of the random variables, for given values of the remaining %
variables, is defined as the joint p.d.f. of the # variables divided by the
marginal p.d.f. of the particular group of & variables, provided the
latter p.d.f. is positive. We remark that there are many other con-
ditional probability density functions; for instance, see Exercise 2.17.

Because a conditional p.d.f. is a p.d.f. of a certain number of random
variables, the mathematical expectation of a function of these random
variables has been defined. To emphasize the fact that a conditional
p.d.f. is under consideration, such expectations are called conditional
expectations. For instance, the conditional expectation of u(X,, ..., X,)
given X; = z,, is, for random variables of the continuous type, given by

E[u(X,, ..., X,)|z,]
= fw . -fw WXy, ..., By) f(@g, - . ., Tp|2y) dy- - -dx,,

provided f,(x;) > 0 and the integral converges (absolutely). If the

random variables are of the discrete type, conditional mathematical
expectations are, of course, computed by using sums instead of integrals.
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EXERCISES

2.10. Let X, and X, have the joint p.d.f. f(zy, z3) = %, + 25,0 < 2, < 1,
0 < z, < 1, zero elsewhere. Find the conditional mean and variance of X,

given X; =2, 0 <z, < 1.

2.11. Let f(x;|2) = cy21/23, 0 < 2; < x5, 0 < x, < 1, zero elsewhere,
and fo(x,) = co73, 0 < 2, < 1, zero elsewhere, denote, respectively, the con-
ditional p.d.f. of X, given X, = x,, and the marginal p.d.f. of X,. Deter-
mine: (a) the constants ¢; and ¢,; (b) the joint p.df. of X; and X,;
() Pr} < X, <3|Xys=4);and (d) Pr{} < X; <3).

2.12. Let f(z, z5) = 212223, 0 < 2, < @, < 1, zero elsewhere, be the
joint p.d.f. of X, and X,. Find the conditional mean and variance of X,,
given X, = 25, 0 < 2, < 1.

2.13. If X, and X, are random variables of the discrete type having p.d.f.
flzy, 2) = (2 + 22)/18, (21, 25) = (1, 1), (1,2), (2,1), (2, '2), zero else-
where, determine the conditional mean and variance of X,, given X, = z,,
x; = lor2

2.14. Five cards are drawn at random and without replacement from a
bridge deck. Let the random variables X, X,, and X; denote, respectively,
the number of spades, the number of hearts, and the number of diamonds that
appear among the five cards. (a) Determine the joint p.d.f. of X;, X,, and
X;. (b) Find the marginal probability density functions of X, X,, and X,.
(c) What is the joint conditional p.d.f. of X, and Xj, given that X, = 3?

2.15. Let X, and X, have the joint p.d.f. f(x,, x,) described as follows:

(@, 2) | (0,0) 0.1 (1,0) (1, 1) (20) (21

fevw) | 5 % 5 5 % 1%

and f(z,, ) is equal to zero elsewhere. Find the two marginal probability
density functions and the two conditional means.

2.16. Let us choose at random a point from the interval (0, 1) and let the
random variable X, be equal to the number which corresponds to that point.
Then choose a point at random from the interval (0, x,), where z, is the ex-
perimental value of X;; and let the random variable X, be equal to the
number which corresponds to this point. (a) Make assumptions about the
marginal p.d.f. fi(x;) and the conditional p.d.f. f(a,|z,). (b) Compute
Pr (X, + X, = 1). (¢} Find the conditional mean E(X;|z,).

2.17. Let f{z) and F(x) denote, respectively, the p.d.f. and the distribu-
tion function of the random variable X. The conditional p.d.f. of X, given
X > %, %, a fixed number, is defined by f(z|X > x,) = f(z)/[1 - F(o.co)],
Z, < z, zero elsewhere. This kind of conditional p.d.f. finds application in a
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problem of time until death, given survival until time ¥o. (a) Show that

f@|X > 2) is a p.df. (b) Let fl@) = e % 0 <z < o0, zero elsewhere.
Compute Pr (X > 2| X >1).

2.3 The Correlation Coefficient

Let X, Y, and Z denote random variables that have joint p.d.f.
S, y, 2). If u(z, y, 2) is a function of #, y, and z, then Elu(X, Y, Z)]
was defined, subject to its existence, on p- 45. The existence of all
mathematical expectations will be assumed in this discussion. The
means of X, Y, and Z, say p,, p,, and ps, are obtained by taking
u(x, y, z) to be z, y, and z, respectively; and the variances of X, Y, and
Z, say o3, o3, and o%, are obtained by setting the function u(z, y, z)
equal to (x — u1)?, (¥ — pg)? and (z — pg)?, respectively. Consider the

mathematical expectation

E[(X — ) (Y — po)] = E(XY — poX — Y + pypp)
E(XY) = pE(X) — mE(Y) + pypy
= E(XY) — pyp,.

This number is called the covariance of X and Y. The covariance of X
and Z is given by E[(X — u,)(Z — ps)], and the covariance of Y and Z
is E[(Y — po)(Z — ug)l. If each of o, and o, is positive, the number

= EIX = p) (Y — )]

0102

Pi2

is called the correlation coefficient of X and Y. If the standard deviations
are positive, the correlation coefficient of any two random variables is
defined to be the covariance of the two random variables divided by the
product of the standard deviations of the two random variables. It
should be noted that the expected value of the product of two random
variables is equal to the product of their expectations plus their
covariance.

Example 1. Let the random variables X and Y have the joint p.d.f.
fle,y) =z +y, 0<z<1,0<y<Il,

0 elsewhere.

We shall compute the correlation coefficient of X and Y. When only two

variables are under consideration, we shall denote the correlation coefficient
by p. Now

1r1
m=EX) = [ [alw+y) dudy = 7



74 Conditional Probability and Stochastic Independence [Ch.2

and

Similarly,
pa=E(Y) =1 and of = E(Y?) — 4 =15

The covariance of X and Y is

Remark. For certain kinds of distributions of two random variables,
say X and Y, the correlation coefficient p proves to be a very useful charac-
teristic of the distribution. Unfortunately, the formal definition of p does
not reveal this fact. At this time we make some observations about p, some
of which will be explored more fully at a later stage. It will soon be seen
that if a joint distribution of two variables has a correlation coefficient
(that is, if both of the variances are positive), then p satisfies —1 < p < 1.
If p = 1, there is a line with equation ¥y = a + bz, b > 0, the graph of
which contains all of the probability for the distribution of X and Y. In
this extreme case, we have Pr (Y = a + bX) = 1. If p = —1, we have the
same state of affairs except that & < 0. This suggests the following interest-
ing question: When p does not have one of its extreme values, is there a line
in the zy-plane such that the probability for X and Y tends to be con-
centrated in a band about this line? Under certain restrictive conditions this
is in fact the case, and under those conditions we can look upon p as a measure
of the intensity of the concentration of the probability for X and Y about
that line.

Next, let f(z, y) denote the joint p.d.f. of two random variables X
and Y and let f,(z) denote the marginal p.d.f. of X. The conditional
p.df.of Y, given X = x, is

_flzy)
f(ylx) - fl(x)

at points where fi(x) > 0. Then the conditional mean of Y, given
X = z, is given by

o [*, o) ay
f uf (yle) dy = === "=,

Ele) =) | @
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when dealing with random variables of the continuous type. This con-
ditional mean of Y, given X = z, is, of course, a function of z alone,
say @(x). In like vein, the conditional mean of X, given Y =y, is a
function of y alone, say #(y).

In case ¢(x) is a linear function of z, say ¢(x) = a + bz, we say the
conditional mean of Y is linear in x; or that Y has a linear conditional
mean. When g(x) = @ + bz, the constants ¢ and & have simple values
which will now be determined.

It will be assumed that neither ¢ nor o2, the variances of X and Y,
is zero. From

[2. @y day

EY|x) =2 —— — = a + bz,
¥ = =7
we have
(1) |2 wf@y) dy = (@ + b2 fi(o).
If both members of Equation (1) are integrated on «, it is seen that
E(Y) = a + bE(X),
or
(2) po = @ + by,

where p; = E(X) and p, = E(Y). If both members of Equation (1) are
first multiplied by « and then integrated on z, we have

E(XY) = aE(X) + bE(X?),
or
(3) pO10y + paps = apy + blof + p),
where po,o, is the covariance of X and Y. The simultaneous solution of

Equations (2) and (3) yields

a. [o2
ﬂ=#z—p;fu1 and b =p-2
1

That is,
p) = E(Y|x) = pp + p Z—i (@ — p)

1s the conditional mean of Y, given X = x, when the conditional mean
of Y is linear in «. If the conditional mean of X, given Y = y, is linear
in y, then that conditional mean is given by

ww=mmm=m+pgw—m»
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We shall next investigate the variance of a conditional distribution
under the assumption that the conditional mean is linear. The con-
ditional variance of Y is given by

W E(Y - BYPl - [

© o 2

(v = b2 = P2 — )| Flule) dy

© o, 2

(Y — po) — Py @ — )| flz,y) dy
- L)

when the random variables are of the continuous type. This variance is
nonnegative and is at most a function of z alone. If then, it is multiplied
by fi(x) and integrated on z, the result obtained will be nonnegative.
This result is

fj) f‘” [(y—”“’)_P?(x—#l)]zf(x,y)dydx

2

=77 - -2 2 - e = ) + S - ]
xﬂxw@m
EY — )] — 29 2 BX — m)(¥ — )] + 525 EL(X = )’

a2
[o2
— a2 2 292 2
“GZ—ZPG—P0102+p 521
1 1

= 03 — 2p%3% + p20Z = o3(1 — p?) > 0.

That is, if the variance, Equation (4}, is denoted by k(x), then E[#(X)] =
03(1 — p?) = 0. Accordingly, p? < 1, or —1 < p < 1. It is left as an
exercise to prove that —1 < p < 1 whether the conditional mean is or
is not linear.

Suppose that the variance, Equation (4), is positive but not a func-
tion of x; that is, the variance is a constant £ > 0. Now if £ is multi-
plied by f;(z) and integrated on z, the result is £, so that £ = o%(1 — p?).
Thus, in this case, the variance of each conditional distribution of Y,
given X = z, is o%(l — p?). If p = 0, the variance of each conditional
distribution of Y, given X = =z, is o%, the variance of the marginal
distribution of Y. On the other hand, if p? is near one, the variance of
each conditional distribution of Y, given X = , is relatively small,
and there is a high concentration of the probability for this conditional
distribution near the mean E(Y|z) = py + plog/oy)(® — pa)-

It should be pointed out that if the random variables X and Y in
the preceding discussion are taken to be of the discrete type, the results
just obtained are valid.
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Example 2. Let the random variables X and Y have the linear con-
ditional means E(Y|z) = 4¢ + 3and E(X|y) = i%¥ — 3. In accordance with
the general formulas for the linear conditional means, we see that E(Y|z) = p,
if 2=y, and E(X|y) = p, if y = p,. Accordingly, in this special case,
we have uy = 4p; + 3and p; = Jsp, — 3sothatp, = —L3andp, = —12.
The general formulas for the linear conditional means also show that the
product of the coefficients of # and y, respectively, is equal to p? and that
the quotient of these coefficients is equal to ¢%/o?. Here p%2 = 4(7%) = 1 with
p =% (not —3), and o%/e? = 64. Thus, from the two linear conditional
means, we are able to find the values of u,, us, p, and o,/o;, but not the
values of ¢; and o,.

This section will conclude with a definition and an illustrative
example. Let f(x, y) denote the joint p.d.f. of the two random variables
X and Y. If E(eh**hY) exists for —hy < &) < by, —hy < iy < hy,
where %, and &, are positive, it is denoted by M (¢,, ¢,) and is called the
moment-generating function of the joint distribution of X and Y. As in
the case of one random variable, the moment-generating function
M(¢,, t;) completely determines the joint distribution of X and Y, and
hence the marginal distributions of X and Y. In fact,

M(ty, 0) = E(h%) = M(t,)
and
M(0, 1) = E(e) = M(5).

In addition, in the case of random variables of the continuous type,

ak+mM t t
6t"6t': : f f atyreh=tiaf(z, y) du dy,
so that
akhLm‘M’(tl’ t2) ® ® Xk, m kym
w@?‘@ﬂﬁw‘ﬁwfmxyﬂ%whﬂy—ﬂxyy

For instance, in a simplified notation which appears to be clear,

~ _aM(0,0) ~ _aM(0, 0)
wo= B = 2R - B - RO,
22M (0,0
o} = E(X?) — pi = "—aﬁg ) _ e
(3)
22M(0, 0
=By - =000 g
2
22M (0, 0)

E[(X — .”»1)(Y — )] = “%—3152 = Pafeg-
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It is fairly obvious that the results of Equations (5) hold if X and
Y are random variables of the discrete type. Thus the correlation
coefficients may be computed by using the moment-generating function
of the joint distribution if that function is readily available. An
illustrative example follows.

Example 3. Let the continuous-type random variables X and Y have
the joint p.d.f.
fle,y) =e7Y, 0<z<y<om,

0 elsewhere.

The moment-generating function of this joint distribution is

Mty to) = [7 [ exp (b + oy — y) dy dz

1
T—4 —t)(1 - ta)

provided ¢, + #, < 1and ¢, < 1. For this distribution, Equations (5) become

w =1, gz = 2,
(6) o2 =1, o3 =2,
E[(X — p)(Y — p)] = 1.
Verification of results of Equations (6) is left as an exercise. If, momentarily,
we accept these results, the correlation coefficient of X and Y is p = 1/ V2.

Furthermore, the moment-generating functions of the marginal distributions
of X and Y are, respectively,

M, 0) =g=5  h<l

1
I = )%

MO, t,) = t, < 1.

These moment-generating functions are, of course, respectively, those of
the marginal probability density functions,

fle) = [Tevay=en  O<z<w,
x
zero elsewhere, and
Y
fuly) = e [(dz =y, 0 <y <o,

zero elsewhere.
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EXERCISES

2.18. Let the random variables X and Y have the joint p.d.f.

(@) flx,y) =% (=, 9) = (0,0), (1, 1), (2, 2), zero elsewhere.

d) fle,y) =4 (2, 9) = (0,2), (1, 1), (2,0), zero elsewhere.

© fle,y) =13, (= y) =(0,0), (1, 1), (2,0), zero elsewhere.
In each case compute the correlation coefficient of X and Y.

2.19. Let X and Y have the joint p.d.f. described as follows:
@y | (11 (1,2 (1,3) (21 22 (23
fey | & & &% 0 5 i

and f (v, y) is equal to zero elsewhere. Find the correlation coefficient p.

2.20. Let f(x,y) = 2,0 < x < y, 0 < y < 1, zero elsewhere, be the joint
p.d.f. of X and Y. Show that the conditional means are, respectively,
(1+=2))2 0<z<1, and y/2, 0 <y < 1. Show that the correlation
coefficient of X and Y is p = 1.

2.21. Show that the variance of the conditional distribution of Y, given
X = z, in Exercise 2.20, is (1 — )?/12, 0 < z < 1, and that the variance of
the conditional distribution of X, given ¥ =y, is 4?/12, 0 < y < 1.

2.22. Verify the results of Equations (6) of this section.

223. Let X and Y have the joint pdf flz,y) =1 -z <y <=,
0 < z < 1, zero elsewhere. Show that, on the set of positive probability
density, the graph of E(Y |z} is a straight line, whereas that of E(X|y) is not
a straight line.

2.24. If the correlation coefficient p of X and Y exists, show that
—1 < p < 1. Hint. Consider the discriminant of the nonnegative quadratic
function A(v) = E{{(X — p) + v(Y — py)]?}, where v is real and is not a
function of X nor of Y.

2.25. Let(t,, t,) = In M{¢,, ¢,), where M(¢,, ¢,) is the moment-generating
function of X and Y. Show that

a4(0, 0) 8240, 0)
o, o2

’ ’l:=1,2,

and
0%4(0, 0)
oty Oty

yield the means, the variances, and the covariance of the two random
variwbles.

2.26. Let X,, X,, and X; be three random variables with means,
variances, and correlation coefficients, denoted by w,, pa, pa; 0%, 63, 62; and
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Piss P13, Paz, Tespectively. If E(X) — wyl|wy, @3) = ba(y — pg) + bs(wg ~ pg),
where b, and b, are constants, determine b, and b; in terms of the variances
and the correlation coefficients.

2.4 Stochastic Independence

Let X, and X, denote random variables of either the continuous
or the discrete type which have the joint p.d.f. f(x;, x,) and marginal
probability density functions f;(x,) and f,(x,), respectively. In accord-
ance with the definition of the conditional p.d.f. f(z,|z,), we may write
the joint p.d.f. f(x;, ) as

f(@y, ) = f(lexl)fl(xl)'

Suppose we have an instance where f(x,|2;) does not depend upon ;.
Then the marginal p.d.f. of X, is, for random variables of the con-
tinuous type,

folws) = [° flslen) filw) day

= flaalz) [7 file)) dmy

= fl@las).
Accordingly,

So(@s) = fl@a|y) and fl@y, ®2) = f1(2) falza),

when f(xy|x,) does not depend upon x,. That is, if the conditional
distribution of X,, given X; = x,, is independent of any assumption
about x,, then f(x,, o) = fi(z,)fa(x,). These considerations motivate
the following definition.

Definition 1. Let the random variables X, and X, have the joint
p-d.f. f(z;, ;) and the marginal probability density functions f;(x,)
and fy{w,), respectively. The random variables X, and X, are said to be
stochastically independent if, and only if, f(x,, x5) = fi(@1)/fe(®s).
Random variables that are not stochastically independent are said to
be stochastically dependent.

Remarks. Two comments should be made about the preceding definition.
First the product of two nonnegative functions f;(z;) fa(z;) means a function
that is positive on a product space. That is, if f;(x;) and f,(x,) are positive
on, and only on, the respective spaces .24 and .4, then the product of
Jfil@y) and fy(z,) is positive on, and only on, the product space & =
{(xq, 25); &y € A, 2y € 8}, For instance, if o4 = {x;;0 <2; < 1} and
Ay = {x5; 0 < 25 < 3}, then & = {(#;, 2,); 0 < 2, < 1,0 < 2, < 3}. The
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second remark pertains to the identity. The identity in Definition 1 should
be interpreted as follows. There may be certain points (z,, #,) € & at which
@1, 25) # fi(zy) falx,). However, if A is the set of points (2, ,)at which
the equality does not hold, then P(4) = 0. In the subsequent theorems and
the subsequent generalizations, a product of nonnegative functions and an
identity should be interpreted in an analogous manner.

Example 1. Let the joint p.d.f. of X, and X, be

flzy, 25) = 2, + x5, 0<z, <1, 0<2, <1,

0 elsewhere.

It will be shown that X, and X, are stochastically dependent. Here the
marginal probability density functions are

© 1
Silzy) = f_w Jz1, p) dzy = fo (®1 + x5) dxy = 2, + 4, O<z <1,
= ( elsewhere,

and

© 1
flwd) = [ f@a) dey = [ @+ z)dey =4 4w 0<m <,

= 0 elsewhere.

Since f(x,, 25) # fi(2;)fo(x2), the random variables X, and X, are stochastic-
ally dependent.

The following theorem makes it possible to assert, without comput-
ing the marginal probability density functions, that the random
variables X, and X, of Example 1 are stochastically dependent.

Theorem 1. Let the random variables X, and X, have the joint p.d.f.
Sl@y, ). Then X and X, are stochastically independent if and only if
S (&1, 5) can be written as a product of a nonnegative function of z, alone
and a nonnegative function of x, alone. That is,

Sy, x2) = glay)h(x,),

where g(x,) > 0, x, € o, zer0 elsewhere, and h(xg) > 0, x, € Ay, zero
elsewhere.

Proof. If X, and X, are stochastically independent, then f(x,, x,) =
J1(@1) fo(x,), where f,(#,) and f,(x,) are the marginal probability density
functions of X, and X,, respectively. Thus, the condition f(x,, x5) =
&l(xq)h(x,) is fulfilled.
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Conversely, if f(z,, x5) = g(x;)h(x,), then, for random variables of
the continuous type, we have

filxy) = fjow gx)h(xy) dzy = gla,) fio h(xs) dxy = c18(,)
and
falwe) = [7 eglwnhias) duy = hias) [ @) duy = cahlws),

where ¢; and ¢, are constants, not functions of z; or x,. Moreover,
c,¢; = 1 because

1= f f h{xy) dx, dxy = Uio g(xy) dxl] U:o h(xs) dxz] = CoC;.
These results imply that

flog, 20) = gla)h(zs) = ci8(@1)eah(zs) = f1(#1) f2(2)-
Accordingly, X, and X, are stochastically independent.

If we now refer to Example 1, we see that the joint p.d.f.

fleg, ) = 21 + x4, O0<z <1,0 <2y <1,

0 elsewhere,

cannot be written as the product of a nonnegative function of z, alone
and a nonnegative function of z, alone. Accordingly, X; and X, are
stochastically dependent.

Example 2. Let the p.d.f. of the random variables X, and X, be
Sflxy, ) = 82125, 0 < x; < x, < 1, zero elsewhere. The formula 8z, might
suggest to some that X, and X, are stochastically independent. However, if
we consider the space & = {(z;, z,); 0 < z; < 2, < 1}, we see that it is not
a product space. This should make it clear that, in general, X; and X, must
be stochastically dependent if the space of positive probability density of X,
and X, is bounded by a curve that is neither a horizontal nor a vertical line.

We now give a theorem that frequently simplifies the calculations
of probabilities of events which involve stochastically independent
variables.

Thereom 2. If X, and X, are stochastically independent random
variables with marginal probability density functions fi(x,) and fy(xy),
respectively, then

Pria< X, <bc<X,<d)=Pr{a<X; <bPr(c<X;<d)

Jor every a < band ¢ < d, where a, b, ¢, and d are constants.
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Proof. From the stochastic independence of X, and X,, the joint
p.d.f. of X; and X, is f,(x,) fo(x5). Accordingly, in the continuous case,

Prie <X, <be<X,<d) =] [? filwn) fales) oy dy

b d
= Ua Sa(ey) d“’l] Uc Salzs) dxz]
=Pr(a<X; <bPr(c< X, <d);
or, in the discrete case,

Pra<X,<bc<X,<d)= 3 2 fl(xl)fz(xz)

a<xr;<b c<xTg<

~[3.h x1>][ S filed)]
<xy1<b c<zxg<d
=Pra< X, <b)Pr(c <X, <a),
as was to be shown.

Example 3. In Example 1, X; and X, were found to be stochastically
dependent. There, in general,

Pria <X, <bc<X,<d)#Pra<X, <bPr(c<X,<d).

For instance,

Pr0 <X, <%0<X,<3 = fo”zjo”z (@) + @) dw, diy = 4,
whereas

Pri0<X; <4 =[" @ +dn =3

and
Pr0<Xo<)=["(+w)dn=1%

Not merely are calculations of some probabilities usually simpler
when we have stochastically independent random variables, but many
mathematical expectations, including certain moment-generating
functions, have comparably simpler computations. The following result
will prove so useful that we state it in form of a theorem.

Theorem 3. Let the stochastically independent random variables X,
and X, have the marginal probability density functions f,(x,) and fy(z,),
respectively. The expected value of the product of a function u(X,) of X,
alone and a function v(X,) of X, alone is, subject to their existence, equal
to the product of ‘the expected value of w(X,) and the expected value of
v(Xy); that is,

EMu(X1)v(X2)] = E[u(X,)]E[»(X,)].
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Proof. The stochastic independence of X, and X, implies that the
joint p.d.f. of X, and X, is f(%,) fa(xo). Thus, we have, by definition of
mathematical expectation, in the continuous case,

E[u(X)o(Xo)) = [* {7 ul@)o(@) fu@) falas) de, da,
= [[7, ) rlers) d][ [ o) folwa) dia]

- o

~ E[u(X,)E[0(X,);
or, in the discrete case,
Eu(X)o(X,)] = 3 3 ulen)ole) i) fales
= [2 ) u(w)][3 vlea) )]

1

= E[u(X,)]E[v(X,)],
as stated in the theorem.

Example 4. Let X and Y be two stochastically independent random
variables with means y, and u, and positive variances of and o3, respectively.
We shall show that the stochastic independence of X and Y implies that the
correlation coefficient of X and Y is zero. This is true because the covariance
of X and Y is equal to

E[(X — p)(Y — po)] = E(X — p)E(Y — pg) = 0.

We shall now prove a very useful theorem about stochastically
independent random variables. The proof of the theorem relies heavily
upon our assertion that a moment-generating function, when it exists,
is unique and that it uniquely determines the distribution of probability.

Thereom 4. Let X, and X, denote random variables that have the
joint p.d.f. f(xy, x;) and the marginal probability density functions
J1(@,) and fo(x,), respectively. Furthermore, let M (¢, t;) denote the moment-
generating function of the distribution. Then X, and X, are stochastically
independent if and only if M(¢,, ;) = M(t,, 0)M(0, ¢,).

Proof. 1f X, and X, are stochastically independent, then
M(ty, t;) = E(eh¥1+ta%q)
— E(etlxletzxz)
= E(e"1%1)E (¢f2*2)
= M(t,, 0)M(0, ¢5).

Thus the stochastic independence of X; and X, implies that the
moment-generating function of the joint distribution factors into the
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product of the moment-generating functions of the two marginal
distributions.

Suppose next that the moment-generating function of the joint
distribution of X, and X, is given by M(¢,, t,) = M(¢;, 0)M (0, ¢,). Now
X, has the unique moment-generating function which, in the con-
tinuous case, is given by

Mz, 0) = fjow eh¥1f) (xy) dax,.

Similarly, the unique moment-generating function of X,, in the con-
tinuous case, is given by

M(0, ;) = f:o e'a%2f o (%) dz,.

Thus we have
M, MO, 1) = [[7 esifi(@) dan|[[ 7 eoafalea) dig]

= [ [ ety (@) folay) day de,

We are given that M(¢,, £,) = M(¢,, 0)M(0, £,); so

My, b)) = f:o f_mw 1+ ta%af, (2y) fo(xo) duy dw,.

But M(¢,, {,) is the moment-generating function of X; and X,. Thus
also

My, 4) = fio fjow i1 Taf (3, 2p) dx, da,.

The uniqueness of the moment-generating function implies that the
two distributions of probability that are described by f(z,) fo(zs) and
fzy, 2;) are the same. Thus

f@1, %) = frle)) fal®).

Thatis, if M (¢, t,) = M(t;, 0)M (0, £,), then X, and X, are stochastically
independent. This completes the proof when the random variables are
of the continuous type. With random variables of the discrete type,
the proof is made by using summation instead of integration.

Let the random variables X;, X,,..., X, have the joint p.d.f.
Sfl@y, @y, ..., 2,) and the marginal probability density functions
J1(@1), folxs), . . ., fo(®,), respectively. The definition of the stochastic
independence of X, and X, is generalized to the mutual stochastic
independence of X, X,,..., X, as follows: The random variables
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X,, X,, ..., X, are said to be mutually stochastically independent if

and only if f(xy, %s, . .., x,) = f1(21) falxg) - - - frlzn). It.follows immedi-
ately from this definition of the mutual stochastic independence of

X, X,, ..., X, that
Pr{g, < X, <bj,ay <Xy <by...,a, <X, <b)
=Pr(a, < X; <b)Pra, < Xg<by)---Pria, <X, <b,)

= ﬁPr (@, < X; < &),
1=1
where the symbol ﬁ ¢(7) is defined to be
i=1

I1#00) = 9(1)p(2)- -9l

The theorem that E[#(X,)v(X,)] = E[#{X,)]E[v(X,)] for stochastically
independent random variables X; and X, becomes, for mutually
stochastically independent random variables X, X,, ..., X,,

Eluy (X )ug(Xo) - - - un(X,)] = E[uy(X1)]E[us(X5)]- - - E[u,(X)],

or
E[[Tw(X)] = IT EwX))

The moment-generating function of the joint distribution of #
random variables X;, X,, ..., X, is defined as follows. Let

Elexp (£, X, + 6:Xp + -+ - + £,X,)]

exist for —h, < f, < h, 7 =1,2,..., n, where each %, is positive. This
expectation is denoted by M(ty, ¢,, .. ., £,) and it is called the mo.ment—
generating function of the joint distribution of X, ..., X, (or simply
the moment-generating function of X, ..., X,). As in the cases of one
and two variables, this moment-generating function is unique and
uniquely determines the joint distribution of the # variables (a%nd
hence all marginal distributions). For example, the moment-generating
function of the marginal distribution of X, is M(0,...,0,¢,0,...,0),
1 =1,2,...,n; that of the marginal distribution of X, and X, is
M(,...,0,¢,0,...,0,¢,0,...,0); and so on. Theorem 4 of this
chapter can be generalized, and the factorization

Mty by, 1) = T[T MO, 0,4,0,..,0)

is a necessary and sufficient condition for the mutual stochastic
independence of X, X,, ..., X,.
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Remark. If X,, X,, and X; are mutually stochastically independent,
they are pairwise stochastically independent (thatis, X, and X, ¢ # §, where
1,7 =1, 2, 3 are stochastically independent). However, the following
example, due to S. Bernstein, shows that pairwise independence does not

necessarily imply mutual independence. Let X,, X,, and X, 3 have the joint
p.d.f.

f@u s ) =3, (w1, 25 2) €{(1,0,0), (0,1,0), 0,0, 1), (1, 1, 1)},
= 0 elsewhere.
The joint p.d.f. of X, and X, ¢ # 7, is
folwo®) =4 (z,2)€{(0,0),(1,0), (0, 1), (1, 1)},

= 0 elsewhere,

whereas the marginal p.d.f. of X is
.fi(xi) = %l xl = Or 11
= 0 elsewhere.

Obviously, if 7 # 4, we have
Sl x)) = fi(m) fi()),

and thus X, and X, are stochastically independent. However,
f(@y, 25, 25) # fl(%)fz(xz)fa(xs)-
Thus X, X,, and X, are not mutually stochastically independent.

Example 5. Let X,, X, and X, be three mutually stochastically
independent random variables and let each have the p.df. flx) = 2z,
0 < x < 1, zero elsewhere. The joint p.d.f. of Xy, X, Xyis flzy) f(22) f(s) =
8x,wawy, 0 < z, < 1,4 =1, 2, 3, zero elsewhere. Let Y be the maximum of
X,, X,, and X,. Then, for instance, we have

Pr(Y <} =Pr(X;<4 X,<4 X;<9)
1/2 r1/2 r1/2
= fo fo fo 8x 295 de, dx, dx,
=@ =&
In a similar manner, we find that the distribution function of Y is
Gly) =Pr(Y <y =0, y <0,
=y O0=<y<],
=1, 1<y
Accordingly, the p.d.f. of Y is

&(y) = 6y°, 0<y<l,
= 0 elsewhere.
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Example 6. Let a fair coin be tossed at random on successive independent
trials. Let the random variable X; = 1 or X, = 0 according to whether the

outcome on the ith toss is a head or a tail, s = 1,2, 3,.... Let the p.d.f. of
each X,bef(z) = 3,2 =0, 1, zero elsewhere. Since the trials are independent,
we say that the random variables X,, X,, X, . .. are mutually stochastically

independent. Then, for example, the probability that the first head appears
on the third trial is

Pr(X,=0X,=0 X5 = 1)

=Pr(X, =0)Pr(X,=0)Pr(Xs = H=(E=%
In general, if Y is the number of the trial on which the first head appears,
then the p.d f. of Y is

gly) =@y, y=123...,
= 0 elsewhere.

In particular, Pr (Y = 3) = g3) =%

EXERCISES

2.27. Show that the random variables X, and X, with joint p.d.f.
flz, ) = 12z,2,(1 — x), 0 <% <1, 0 < x, < 1, zero elsewhere, are
stochastically independent.

2.28. If the random variables X, and X, have the joint p.d.f. f(xy, x5) =
2e-%1"%2 0 < x; < Ly, 0 < 2y < 00, 2€TO elsewhere, show that X, and X,

are stochastically dependent.

2.29. Let f(zy, x5) = L o2 =12 3,4, and z, = 1, 2,3, 4, zero else-
where, be the joint p.d.f. of X; and X,. Show that X, and X, are stochastically
independent.

2.30. FindPr(0 < X; <40 < X, < }) if the random variables X, and
X, have the joint p.d.f flay, 75) = 4, (1 — 25), 0 <21 < 1,0<z, <1,
zero elsewhere.

2.31. Find the probability of the union of the events a < X; < b,
—0 < X, < o and —oo<X1<oo,c<X2<difX1 and X, are two
stochastically independent variables with Pr(a < X; <b) =% and
Pric<X,<d)=3%

2.32, If f(xy, x5) = e” 517 %2, 0 <2, < o, 0 < z, < o0, zero elsewhere,
is the joint p.d.f. of the random variables X, and X,, show that X, and X,
are stochastically independent and that

E(@®+%) = (1 —1)7%, ¢< 1.

2.33. Let X,, X,, X,, and X, be four mutually stochastically independent
random variables, each with p.df. f(z) = 31 —x)?% 0<z<]1, zero
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elsewhere. If Y is the minimum of these four variables, find the distribution
function and the p.d.f. of Y.

2.34. A fair die is cast at random three independent times. Let the
r.andom variable X, be equal to the number of spots which appear on the
ith trial, ¢ = 1, 2, 3. Let the random variable Y be equal to max (X,). Find
the distribution function and the p.d.f. of Y. Hint. Pr (Y < y) = Pr (jX'. <y
i=1,23). - T

2.35. Suppose a man leaves for work between 8:00 aA.M. and 8:30 A.M. and
takes between 40 and 50 minutes to get to the office. Let X denote t};e .time
of departure and let Y denote the time of travel. If we assume that these
random variables are stochastically independent and uniformly distributed
find the probability that he arrives at the office before 9:00 a.m. ,

?.36. Let M(¢,, t,, t5) be the moment-generating function of the random
variables X;, X,, and Xg of Bernstein's example, described in the final
remark of this section. Show that M(, ¢, 0) = M(¢,, 0, 0)M(0, ¢,, 0)
M, 0,t5) = M(t,, 0, 00M(0, 0, £5), M(0, 12, t;) = M(0, t5, 0)M (0, O, t;)z’bu‘é
Mt ty, t5) # M(¢,, 0, 0)3£(0, £,, 0)M(0, 0, ¢3). Thus X, X,, X, are pai;wise
stochastically independent but not mutually stochastically independent.

2.37.. Generalize Theorem 1 of this chapter to the case of » mutually
stochastically independent random variables.

2.38.. Generalize Theorem 4 of this chapter to the case of » mutually
stochastically independent random variables.



Chapter 3
Some Special Distributions

3.1 The Binomial, Trinomial, and Multinomial Distributions

In Chapter 1 we introduced the uniform distribut'ion and the hyper-
geometric distribution. In this chapter we shall discuss some othc.ar
important distributions of random variables frequently used in
statistics. We begin with the binomial distribution.

Recall, if # is a positive integer, that

(@ + b)" = éo (:)bran—r.

Consider the function defined by

fla) = (Z)p’”(l o, @=0,1,2,...,m,

= ( elsewhere,

where # is a positive integer and 0 < p < 1. Under these conditions it
is clear that f(x) = 0 and that

S s = 3 (n)ea - o

(1-p) +2"=1

That is, f(z) satisfies the conditions of being a p.d.f. of a random
variable X of the discrete type. A random variable X that has a p.d.f. of
the form of f(x) is said to have a binomial dist.ribu.twn, 'and any such
f(@) is called a binomial p.d.f. A binomial distribution will be denoted

fi

90
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by the symbol b(%, p). The constants # and p are called the parameters
of the binomial distribution. Thus, if we say that X is (5, ), we mean
that X has the binomial p.d.f.

/@=C)G) 6 e=ot.us

= 0 elsewhere.

Remark. The binomial distribution serves as an excellent mathematical
model in a number of experimental situations. Consider a random experiment,
the outcome of which can be classified in but one of two mutually exclusive
and exhaustive ways, say, success or failure (for example, head or tail, life
or death, effective or noneffective, etc.). Let the random experiment be
repeated » independent times. Assume further that the probability of success,
say p, is the same on each repetition; thus the probability of failure on each
repetition is 1 — p. Define the random variable X,, 1 = 1,2,..., %, to be
zero, if the outcome of the 7th performance is a failure, and to be 1 if that
outcome is a success. We then have Pr(X, = 0) =1 — p and Pr (X, = 1)
=p,¢=1,2,..., n Since it has been assumed that the experiment is to be
repeated » independent times, the random variables X,, X,,..., X, are
mutually stochastically independent. According to the definition of X, the
sum Y = X; + X, +---+ X, is the number of successes throughout the
» repetitions of the random experiment. The following argument shows that
Y has a binomial distribution. Let y be an element of {y; ¥y = 0,1, 2,..., n}.
Then Y = yif and only if exactly y of the variables X, X,, ..., X, have the
value 1, and each of the remaining # — y variables is equal to zero. There

are (:) ways in which exactly y ones can be assigned to y of the variables

X, X,, ..., X,. Since X, X,,..., X, are mutually stochastically inde-
pendent, the probability of each of these waysis p¥(1 — $)*~¥. Now Pr (Y = y)

is the sum of the probabilities of these (Z) mutually exclusive events; that is,
Pr(Y —y) = (Z)pv(l —prY, oy =0,1,2...,m
zero elsewhere. This is the p.d.f. of a binomial distribution.

The moment-generating function of a binomial distribution is easily
found. It is

M)

Z ¢f () = xéo etx(::)px(l _ pyn-=

=1 = 2) + pe]”
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for all Teal values of £. The mean p and the variance o? of X may be
computed from M (¢). Since

M) = nl(1 — p) + peT ()
and
MY0) = (1 — B) + T (pe) + nln — DI = B) + peT%(pe)
it follows that
p=M(0) = np

and

o2 = M(0) — i = np + n(n — )p* — (1p)? = mp(1 = P).

Esample 1. The binomial distribution with p.d.f.

f@) = (Z)(%)z(l _ %)H, 2=012...7

= 0 elsewhere,

2
H

has the moment-generating function
M) = @&+ 3,

has mean p = np = 7, and has variance o® = np(l — p) = 7. Furthermore,
if X is the random variable with this distribution, we have

L 1 7 8
Pr0<Xsl)=2 /&) =15+ 15~ 18

x=0

and
Pr (X = 5) = f(5)

70 (1\s(h\z 21
T2l (2) (i) ~ 128
Example 2. 1ithe moment-generating function of a random variable X is
M@) = & + 3,

then X has a binomial distribution with # = 5 and $ = }; that is, the p.d.f.

of X is
@ =C)E )" e=orzes

= 0 elsewhere.

10
o -

Here p = np = § and o = np(l — p) =
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Example 3. If Yisb(n,}),thenPr(Y 2 1) =1 -Pr(Y =0)=1 - (3)~
Suppose we wish to find the smallest value of # that yields Pr (Y > 1) > 0.80.
We have 1 — (3)* > 0.80 and 0.20 > (%)*. Either by inspection or by use of
logarithms, we see that # = 4 is the solution. That is, the probability of at
least one success throughout #» = 4 independent repetitions of a random
experiment with probability of success p = % is greater than 0.80.

Example 4. Let the random variable Y be equal to the number of
successes throughout # independent repetitions of a random experiment with
probability ¢ of success. That is, Y is &(n, p). The ratio Y/n is called the
relative frequency of success. For every € > 0, we have

o

%—p‘2€)=Pr(|Y—an2€n)

=Pr(|Y —ul = eA/ﬂlL_B o)

where p = np and o? = np(l — p). In accordance with Chebyshev’s in-
equality with & = eV #n/p(1 — p), we have

Pr (|Y —pul = e"/_ﬂl_i%o) < 15(1”;;1’)

o

Now, for every fixed e > 0, the right-hand member of the preceding inequality
is close to zero for sufficiently large ». That is,

and hence

ne?

%“ﬁ‘ZG)Sp(l_p)-

limPr(Z—]bIZE)=0
N~ n
and

iir{:loPr(%—p‘<e)=l.

Since this is true for every fixed ¢ > 0, we see, in a certain sense, that the
relative frequency of success is for large values of #, close to the probability
¢ of success. This result is one form of the law of large numbers. It was
alluded to in the initial discussion of probability in Chapter 1 and will be
considered again, along with related concepts, in Chapter 5.

Example 5. Let the mutually stochastically independent random vari-
ables X, X,, X have the same distribution function F(z). Let Y be the
middle value of X, X,, X;. To determine the distribution function of Y, say
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G(y) = Pr (Y < y), we note that Y < y if and only if at least two of the
random variables X, X, X, are less than or equal to y. Let us say that
the sth “trial”’ is a success if X, < 9,4 =1, 2, 3; here each ““trial” has the
probability of success F(y). In this terminology, G(y) = Pr (Y < y) is then
the probability of at least two successes in three independent trials. Thus

6lo) = (3)FwP - Fo + PO

If F(x) is a continuous type of distribution function so that the p.d.f. of X
is F'(z) = f(x), then the p.d.f. of ¥ is

gly) = G'y) = 6[FWI1 — F)lf(®)-

Example 6. Consider a sequence of independent repetitions of a random
experiment with constant probability p of success. Let the random variable
Y denote the total number of failures in this sequence before the rth success;
that is, Y + 7 is equal to the number of trials necessary to produce exactly
» successes. Here 7 is a fixed positive integer. To determine the p-d.f ofY,let
y be an element of {y;y = 0,1, 2,...}. Then, by the multiplication rule of
probabilities, Pr (Y = y) = g(y) is equal to the product of the probability

(Fr T Nea-ar

r—1

of obtaining exactly » — 1 successes in the first y + 7 — 1 trials and the
probability p of a success on the (y + #)th trial. Thus the p.d.f. g(y) of Y is
given by

e = (VT )pa—pr, y=012.

y —1
= 0 elsewhere.

A distribution with a p.d.f. of the form g(y) is called a negative binomial
distribution; and any such g(y) is called a negative binomial p.d.f. The
distribution derives its name from the fact that g(y) is a general term in the
expansion of 1 — (1 — p)J 7" It is left as an exercise to show that the
moment-generating function of this distribution is M (¢) = p1—(1—pei ",
fort < —In (1 — p). If» = 1, then Y has the p-d.f.

gy) =p(1 -2, y=01L2...,

zero elsewhere, and the moment-generating function M (¢) = p[1 — (1 — p)ef] .
In this special case, 7 = 1, we say that ¥ has a geometric distribution.

The binomial distribution can be generalized to the trinomial

Sec. 3.1] The Binomial, Trinomial, and Multinomial Distributions 95

distribution. If # is a positive integer and a4, a,, a5 are fixed constants,
we have

1 n n—x n!
TaY - —Y
M xzo go 2yl (n — x — y)! @18285
z nla¥ & — )
=2 T L

oxlt(n —a) Shyltm —ax— y)!

= i —n!——a’f(az + ag)" ==
= (@, + ay + ag)™
Let the function f(z, y) be given by
n!
=x!y!(n—x—y)

where x and y are nonnegative integers with « + y < #, and 2,, $,,
and pg are positive proper fractions with $, + p5 + p3 = 1; and let
f(z,y) = 0 elsewhere. Accordingly, f(z,y) satisfies the conditions of
being a joint p.d.f. of two random variables X and Y of the discrete:
type; that is, f(z, y) is nonnegative and its sum over all points (z, ) at
which f(x, v) is positive is equal to (p; + P + P3)" = 1. The random
variables X and Y which have a joint p.d.f. of the form f(x, y) are said
to have a trinomial distribution, and any such f(x, y) is called a #7i-
nomial p.d.f. The moment-generating function of a trinomial distri-
bution, in accordance with Equation (1), is given by

f@y) TR,

My, t) = 2 (Dreh)=(paeta)Vpy =Y

<o ySo @ty (n — z — y)!
= (P16 + pae'z + Pg)"
for all real values of ¢, and ¢,. The moment-generating functions of the
marginal distributions of X and Y are, respectively,
M(t;, 0) = (pre" + pa + pa)" = [(1 — £1) + pri]"
and

M(0,25) = (p1 + pae’s + pa)* = [(1 — pa) + poc'e]™

We see immediately, from Theorem 4, Section 2.4, that X and Y are
stochastically dependent. In addition, X is b(n, $;) and Y is b(n, p).
Accordingly, the means and the variances of X and Y are, respectively,
B1 = Py, pop = 1Py, 0f = npy(l — p1), and of = np,(1 — ).
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Consider next the conditional p.d.f. of Y, given X = x. We have

to =g = () (725) T v otena

= 0 elsewhere.

Thus the conditional distribution of Y, given X = %, is b[n — =,
$a/(1 — $1)]. Hence the conditional mean of Y, given X = z, is the
linear function

E(Y]a) = (n — %) (%)

Likewise, we find that the conditional distribution of X, given Y = g,
is bfn — y, p1/(1 — p5)] and thus

$1
E(Xly) = (- 9)(225)
Now recall (Example 2, Section 2.3) that the square of the correlation
coefficient, say p2, is equal to the product of —p,/(1 — p,) and
—p1/(1 — p,), the coefficients of x and y in the respective conditional
means. Since both of these coefficients are negative (and thus p is
negative), we have

_ Pipa ,
P = A/(l—pl)a—pz)

The trinomial distribution is generalized to the multinomial distri-
bution as follows. Let a random experiment be repeated # independent
times. On each repetition the experiment terminates in but one of %
mutually exclusive and exhaustive ways, say C;, Cy, ..., Cy. Let $, be
the probability that the outcome is an element of C, and let p, remain
constant throughout the # independent repetitions, 7 = 1,2,..., k.
Define the random variable X, to be equal to the number of outcomes
which are elements of C;, 2= 1,2,...,k — 1. Furthermore, let x,,
Zg, - . -, X _1 be nonnegative integers so that xy + 25 + -+ ,_, < n.
Then the probability that exactly #; terminations of the experiment
arein C,, ..., exactly z, _, terminations are in C,,_,, and hence exactly
n — (®, +---+ x,.,) terminations are in Cj, is

n!

|ﬁ1x1 RRY ity AR

!zt

where 2, is merely an abbreviation for » — (z, + - - + Z,_,). This is
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the multinomial p.d.f. of & — 1 random variables X;, X,,..., X, _; of
the discrete type. The moment-generating function of a multinomial
distribution is given by

My, ....5_y) = (prhr +--- + Pk_letk-l + p)®

for all real values of ¢, £, ..., % _;. Thus each one-variable marginal
p.d.f. is binomial, each two-variable marginal p.d.f. is trinomial, and
so on,

EXERCISES

3.1. If the moment-generating function of a random variable X is
(% + %695, find Pr (X = 2 or 3).

3.2. The moment-generating function of a random variable X is
(3 + 3¢%°. Show that
N\x/2\9-=
()6
3.3. If X is b(n, p), show that

E(E) —p and E[()_; - p)z] _td =17

n n

5
Pripw —20 < X <p+ 20) = Z(z)
z=1

3.4. Let the mutually stochastically independent random variables
X,, Xg, X; have the same p.df f(z) = 322, 0 < 2 < 1, zero elsewhere.
Find the probability that exactly two of these three variables exceed 1.

3.5. Let Y be the number of successes in # independent repetitions of a
random experiment having the probability of success p = %. If # = 3,
compute Pr (2 < Y);if » = 5, compute Pr 3 < Y).

3.6. Let Y be the number of successes throughout # independent repe-
titions of a random experiment having probability of success p = 1 Deter-
mine the smallest value of # so that Pr (1 < Y) > 0.70.

3.7. Let the stochastically independent random variables X, and X, have
binomial distributions with parameters #, = 3, p; = %4 and 1, = 4, p, = 1,
respectively. Compute Pr (X; = X,). Hunt. List the four mutually exclusive
ways that X; = X, and compute the probability of each.

3.8. Let X}, X,, ..., X, _; have a multinomial distribution (a) Find the
moment-generating function of X,, X,, ..., X, _;. (b) What is the p.d.f.
of X,, Xg,..., X;_1? (c) Determine the conditional p.d f. of X, given
that Xy = x,,..., X, _; = 2,_;. (d) What is the conditional expectation
E(X ) |2g, ..., 2,
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3.9. Let X be b2, p) and let Y be b(4,4). If Pr(X = 1) = §, find
Pr(Y > 1).

3.10. If z = 7 is the unique mode of a distribution that is #(», $), show
that

(n+1)p—1<7r<(m+ 1)p
Hint. Determine the values of z for which the ratio f(x + 1)/f(z) > 1.

3.11. One of the numbers 1, 2, ..., 6 is to be chosen by casting an un-
biased die. Let this random experiment be repeated five independent times.
Let the random variable X; be the number of terminations in the set
{z; 2 = 1, 2, 3} and let the random variable X, be the number of termina-
tions in the set {x; x = 4, 5}. Compute Pr (X; = 2, X, = 1).

3.12. Show that the moment-generating function of the negative binomial
distribution is M (f) = p'[1 — (1 — p)e!]~". Find the mean and the variance
of this distribution. Hent. In the summation representing M (#), make use of
the MacLaurin’s series for (1 — w)~".

3.13. Let X, and X, have a trinomial distribution. Differentiate the
moment-generating function to show that their covariance is —np,p,.

3.14. If a fair coin is tossed at random five independent times, find the
conditional probability of five heads relative to the hypothesis that there
are at least four heads.

3.15. Let an unbiased die be cast at random seven independent times.
Compute the conditional probability that each side appears at least once
relative to the hypothesis that side 1 appears exactly twice.

3.16. Compute the measures of skewness and kurtosis of the binomial
distribution b(#n, $).

3.17. Let

I CAYAATED z, =0,1,..., 2z,

fenm) = ()@ 21254
zero elsewhere, be the joint p.d.f. of X; and X,. Determine: (a) E(X,),
(b) u(x,) = E(X,|z,), and (c) E[u(X;)]. Compare the answers to parts (a)

5 Ty

and (c). Hint. Note that E(X,) = > > a,f(,, z,) and use the fact that
0

x1=1 xo=
n n
> y( )(%)" = n/2. Why?
y=0 \¥Y

3.18. Three fair dice are cast. In 10 independent casts, let X be the
number of times all three faces are alike and let Y be the number of times
only two faces are alike. Find the joint p.d.f. of X and Y and compute
E(6XY).
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3.2 The Poisson Distribution

Recall that the series

m2 mB O m*
1+m+j+j+"'=xzo—!

converge, for all values of m, to ¢™. Consider the function f(z) defined
by
mTe~ "

f@) = ;o x=0,1,2,...,

!

= 0 elsewhere,

where m > 0. Since m > 0, then f(x) > 0 and
O yXe—m ® x

Zf(x)zz =e‘”‘2@—=e""e"’=l;

i ! =6 !

that is, f(x) satisfies the conditions of being a p.d.f. of a discrete type of
random variable. A random variable that has a p.d.f. of the form f(x)
is said to have a Poisson distribution, and any such f(x) is called a
Poisson p.d.f.

Remarks. Experience indicates that the Poisson p.d.f. may be used in a
number of applications with quite satisfactory results. For example, let the
random variable X denote the number of alpha particles emitted by a
radioactive substance that enter a prescribed region during a prescribed
interval of time. With a suitable value of m, it is found that X may be
assumed to have a Poisson distribution. Again let the random variable X
denote the number of defects on a manufactured article, such as a refrigerator
door. Upon examining many of these doors, it is found, with an appropriate
value of m, that X may be said to have a Poisson distribution. The number
of automobile accidents in some unit of time (or the number of insurance
claims in some unit of time) is often assumed to be a random variable which
has a Poisson distribution. Each of these instances can be thought of as a
process that generates a number of changes (accidents, claims, etc.) in a fixed
interval (of time or space and so on). If a process leads to a Poisson distri-
bution, that process is called a Poisson process. Some assumptions that ensure
a Poisson process will now be enumerated.

Let g(z, w) denote the probability of z changes in each interval of length
w. Furthermore, let the symbol o(h) represent any function such that
}llin(l) [o(h)/h] = O; for example, 42 = o(h) and o{h) + o(k) = o{h). The Poisson

postulates are the following:

(a) (1, 5) = M + o(h), where X is a positive constant and % > 0.
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®) 3 gle. ) = ofh).
(¢) The numbers of changes in nonoverlapping intervals are stochastically
independent.

Postulates (a) and (c) state, in effect, that the probability of one change in
a short interval 4 is independent of changes in other nonoverlapping intervals
and is approximately proportional to the length of the interval. The sub-
stance of (b) is that the probability of two or more changes in the same
short interval % is essentially equal to zero. If x = 0, we take g(0,0) = 1. In
accordance with postulates (a) and (b), the probability of at least one change
in an interval of length % is M + o(h) + o(h) = M + o(k). Hence the
probability of zero changes in this interval of length 2is 1 — M — o(h). Thus
the probability g(0, w + A4) of zero changes in an interval of length w + 7 is,
in accordance with postulate (c), equal to the product of the probability
g(0, w) of zero changes in an interval of length % and the probability
[1 — Ak — o(h)] of zero changes in a nonoverlapping interval of length 4.
That is,

g0, w + k) = g(0, w)[1 — A — o(h)].
Then

g0, w + h})" — g(0, w) — (0, w) — o(h)g}(lO, w)

If we take the limit as %2 - 0, we have
D,[g(0, )] = — (0, w).

The solution of this differential equation is

g(0, w) = ce~ .
The condition g(0, 0) = 1 implies that ¢ = 1; so

g0, w) = e,
If # is a positive integer, we take g(z, 0) = 0. The postulates imply that

g, w + k) = [gle, )1 — Mo~ o(i)] + [gle — 1, w)]Ns + o()] + ofh).

Accordingly, we have

Bow 1) 858 _ e, w) + delo - 1,w) + 21

and

Dyfg(x, w)] = —Ag(x, w) + Xz — 1, »),
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forz =1,2,3,.... It can be shown, by mathematical induction, that the
solutions to these differential equations, with boundary conditions g(z, 0) = 0
forx =1, 2,3,..., are, respectively,

_ (Aw)me —-Aw

o , z=1273,....

gz, w)

Hence the number of changes X in an interval of length w has a Poisson
distribution with parameter m = Aw.

The moment-generating function of a Poisson distribution is given
by

xe—m

M) = z etZf(x) = :;::0 e m

& z!

=e " i (me)”
x=0 !

= g-mgme’ __ pmiet-1)

for all real values of ¢. Since

M'(t) — em(e‘—l)(met)

and
M"(f) = e™e'~D(met) + eme'~D(pmet)2,
then
p=M(0) =m
and

2=M"0) — p?2=m+ m? — m? = m.

That is, a Poisson distribution has ¢ = ¢® = m > 0. On this account,
a Poisson p.d.f. is frequently written

’ x=0,1,2,...,

Sl =22

x!
= 0 elsewhere.
Thus the parameter w in a Poisson p.d.f. is the mean p. Table I in

Appendix B gives approximately the distribution function of the
Poisson distribution for various values of the parameter m = p.
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Esample 1. Suppose that X has a Poisson distribution with u = 2. Then
the p.d.f. of X is
2%¢-2

f@) = ==012...,

= 0 elsewhere.

The variance of this distribution is ¢® = p = 2. If we wish to compute
Pr (1 < X), we have

Prl<X)=1-Pr(X =0
=1—f(0)=1-—¢"2=0.865,
approximately, by Table I of Appendix B.
Example 2. If the moment-generating function of a random variable X is
M() = e¥e'-D,

then X has a Poisson distribution with u = 4. Accordingly, by way of
example,

3,—-4
Pr (X = 3) =4; =3?2e-4;

or, by Table I,
Pr(X =3)=Pr(X <3) — Pr(X <2) = 0433 — 0.238 = 0.195.

Example 3. Let the probability of exactly one blemish in 1 foot of
wire be about 1545 and let the probability of two or more blemishes in that
length be, for all practical purposes, zero. Let the random variable X be the
number of blemishes in 3000 feet of wire. If we assume the stochastic
independence of the numbers of blemishes in nonoverlapping intervals, then
the postulates of the Poisson process are approximated, with A = 1559 and
w = 3000. Thus X has an approximate Poisson distribution with mean
3000(y455) = 3. For example, the probability that there are exactly five
blemishes in 3000 feet of wire is

PriX=5) =2

and, by Table I,
Pr(X =5)=Pr(X

IA

5) — Pr (X < 4) = 0.101,

approximately.

EXERCISES

3.19. If the random variable X has a Poisson distribution such that
Pr(X=1) =Pr(X =2), find Pr (X = 4).
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3.20. The moment-generating function of a random variable X is
4’ =1, Show that Pr (u — 26 < X < p + 20) = 0.931.

3.21. In a lengthy manuscript, it is discovered that only 13.5 per cent of
the pages contain no typing errors. If we assume that the number of errors
per page is a random variable with a Poisson distribution, find the percentage
of pages that have exactly one error.

3.22. Let the p.d.f. f(x) be positive on and only on the nonnegative
integers. Given that f(z) = (4/2)f(x — 1), x = 1,2, 3,.... Find f(z). Hins.
Note that f(1) = 4f(0), f(2) = (4*/2!)f(0), and so on. That is, find each f(x)
in terms of f(0) and then determine f(0) from 1 = f(0) + f(1) + f(2) +.--.

3.23. Let X have a Poisson distribution with u = 100. Use Chebyshev’s
inequality to determine a lower bound for Pr (75 < X < 125).

3.24. Given that g(z, 0) = 0 and that
Dy[glw, w)] = —Ag(z, w) + Mglx — 1, w)
for z =1,2,3,.... If g(0,w) = e~**, show, by mathematical induction,
that

g(x,w):M'e——}iua z=1,2,3,....
!

3.25. Let the number of chocolate drops in a certain type of cookie have
a Poisson distribution. We want the probability that a cookie of this type
contains at least two chocolate drops to be greater than 0.99. Find the

smallest value that the mean of the distribution can take.

3.26. Compute the measures of skewness and kurtosis of the Poisson
distribution with mean p.

3.27. Let X and Y have the joint p.df. f(z,y) = e %[a! (y — x)!],
y=2012...;2=0,1,...,y, zero elsewhere.

(a) Find the moment-generating function M(#,, £,) of this joint distribu-
tion.

(b) Compute the means, the variances, and the correlation coefficient of
Xand Y.

(c) Determine the conditional mean E(X|y). Hint. Note that

S [exp (ba)lyl/lz! (v = 2)) = [1 + exp (@)

Why?

3.3 The Gamma and Chi-Square Distributions

In this section we introduce the gamma and chi-square distributions.
It is proved in books on advanced calculus that the integral

7 ey
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exists for « > 0 and that the value of the integral is a positive number.
The integral is called the gamma function of «, and we write

N R
T(e) = fo y*~le~v dy.
If « = 1, clearly
T() = [T evay = 1.
If @ > 1, an integration by parts shows that
I'(0) = (¢ — 1) f:’ Y2V dy = (« — 1)« — 1).
Accordingly, if « is a positive integer greater than 1,
L(e) = (¢ = (e = 2)---G)AMTA) = (@ — 1)L

Since I'(1) = 1, this suggests that we take 0! = 1, as we have done.
In the integral that defines I'{«), let us introduce a new variable
z by writing y = z/f, where 8 > 0. Then

o [ )

© 1
a—1,—x/8

Sincea > 0, 8 > 0, and I'(¢) > 0, we see that

or, equivalently,

g~ 1g=2iB 0 <z < o0,

1
f(x) = P(a)/g“

= 0 elsewhere,
is a p.d.f. of a random variable of the continuous type. A random
variable X that has a p.d.f. of this form is said to have a gamma dis-
tribution with parameters « and §; and any such f(z) is called a gamma-
type p.d.f.

Remark. The gamma distribution is frequently the probability model for
waiting times; for instances, in hife testing, the waiting time until “death” is
the random variable which frequently has a gamma distribution. To see this,
let us assume the postulates of a Poisson process and let the interval of length
w be a time interval. Specifically, let the random variable W be the time that
is needed to obtain exactly k& changes (possibly deaths), where % is a fixed
positive integer. Then the distribution function of W is

Gw) = Pr(W < w) =1 — Pr (W > w).
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However, the event W > w, for w > 0, is equivalent to the event in which
there are less than % changes in a time interval of length w. That is, if the

random variable X is the number of changes in an interval of length w
then ,

k-1 k-1
Pr(W>w=>Pr(Xeo= S Q@)™
IZO ( x) z=.-:() x!

x

It is left as an exercise to verify that

® gk-1lp-z k-1 (,\w)xe—)\w
J - 2

JESTi%= % 4

If, momentarily, we accept this result, we have, for w > 0,

® k-1,-2 AW -1, -2
G(w)=1_f Z&ed=fz_e_
w TH “=) T

and for w < 0, G(w) = 0. If we change the variable of integration i
: , tion in the
integral that defines G(w) by writing z = My, then “

U Neyk-1,-2y
G(w =f 2y e ™ d
( ) o F(k) .7/, w > 0:

and G(w) = 0, w < 0. Accordingly, the p-d.f. of Wis

Akwk— 18 —Aw

gw) = G'(w) = T 0<w< oo,
= 0 elsewhere.

Thfa.t' is, W has a gamma distribution with « = £ and B =1/A If Wis the
warting time until the first change, that is, if £ = 1, the p.d.f of Wis
g(w) = de~2, 0 <w< oo,

= 0 elsewhere,

and W is said to have an exponential distribution.

We now find the moment-generating function of a gamma distri-
bution. Since

® 1
M@ = tx —1,—-x/8
(® J.o e I‘(a)ﬂ“x e dx

¢—1,—x(l-
x e~ x( Bt)lﬁdx’

N f T'(o)p*
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we may set y = #(1 — B)/B, ¢ < 1/8, or x = By/(1 — Bt), to obtain
® — Bt -1
g - [T ( LTI
0

[(e)p* \1 — Bt
That 1s,
o = (=5 [, v

__t L

S (- By B
Now

M'(t) = (—o)(1 = B~ *"(—B)

and

M'(t) = (—a)(—e — (1 = )~ *(=P)*
Hence, for a gamma distribution, we have
p= M0 = a8
and
02 = M"(0) — p? = afe + 1)B% — o?f? = off?
Example 1. Let the waiting time W have a gamma p.d.f. withe = kand

B = 1/A. Accordingly, E{(W) = k/x. If k = 1, then E(W) = .1/)\; that is, the
expected waiting time for & = 1 changes is equal to the reciprocal of A

Example 2. Let X be a random variable such that

m+ 3 .. _
E(X"')=(—3T———3, m=1,2,3,....

Then the moment-generating function of X is given by the series

N3, s13 6%
MO =1+zqttal ozt v

This, however, is the Maclaurin’s series for (1 — 3t)7%, Provided that
_1 < 3t < 1. Accordingly, X has a gamma distribution with « = 4 and

g =3.

Remark. The gamma distribution is not only a good model for vs./aiting
times, but one for many nonnegative random variables of the continuous
type. For illustrations, the distribution of certain incomes could be modeled
satisfactorily by the gamma distribution, since the two parameters « and 8
provide a great deal of flexibility.
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Let us now consider the special case of the gamma distribution in
which o = 7/2, where 7 is a positive integer, and 8 = 2. A random
variable X of the continuous type that has the p.d.f.

1
1@ = womz

= () elsewhere,

zr2-1g-xi2 0 <z < o,

and the moment-generating function
M@ = (1 - 2872, t <3,

is said to have a chs-square distribution, and any f(z) of this form is
called a chi-square p.d.f. The mean and the variance of a chi-square
distribution are p = ¢ = (#/2)2 = » and 0? = «f% = (r/2)22 = 27,
respectively. For no obvious reason, we call the parameter » the number
of degrees of freedom of the chi-square distribution (or of the chi-
square p.d.f.). Because the chi-square distribution has an important
role in statistics and occurs so frequently, we write, for brevity, that
X is x2(r) to mean that the random variable X has a chi-square distri-
bution with » degrees of freedom.

Example 3. If X has the p.d.f.
flx) = dae==2, 0<z< oo,
= 0 elsewhere,
then X is y2(4). Hence p = 4, 6% = 8, and M(¢) = (1 — 2¢) 7%, ¢ < &

Example 4. If X has the moment-generating function M (#) = (1 — 2¢) 78,
t < %, then X is x%(16).

If the random variable X is x%(#), then, with ¢; < ¢,, we have
Prc, < X <¢c)=Pr(X <¢;) — Pr(X <¢y),

since Pr (X = ¢,) = 0. To compute such a probability, we need the
value of an integral like

z 1
P — TI2=1,=WI2 Jup
r(X <a) fo F(r/2)2”2w e w
Tables of this integral for selected values of » and « have been prepared

and are partially reproduced in Table II in Appendix B.

Example 5. Let X be »?(10). Then, by Table II of Appendix B, with
r = 10,
Pr(3.25 < X < 20.5)

Pr (X < 20.5) — Pr (X < 3.25)
= 0.975 — 0.025 = 0.95.
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Again, by way of example, if Pr (@ < X) = 0.05, then Pr (X < a) = 0.95,
and thus @ = 18.3 from Table IT with 7 = 10.
Example 6. Let X have a gamma distribution with « = #/2, where 7 is

a positive integer, and B > 0. Define the random variat_;le Y = 2X/B. We
seek the p.d.f. of Y. Now the distribution function of Y is

B
Gly) =Pr(Y <) =Pr(Xg_2_ .
If y < 0, then G(y) = 0; but ify > 0, then

Bui2 1
= e 712 e %1 dg.
Gw) L o2 "

Accordingly, the p.d.f. of Y is

2 r/2-1,-y/2

) = C'6) = T B2
1

TG/2)2"

yrlz—le—y/2

if y > 0. That is, Y is x*(r)-

EXERCISES

328.If (1 — 2%, ¢ <4, is the moment-generating function of the
random variable X, find Pr (X < 5.23).

3.29. Tf X is x2(5), determine the constants ¢ and d sothat Pr (¢ < X < d)
= 0.95 and Pr (X < ¢) = 0.025.

3.30. If X has a gamma distribution with « =3 and B = ‘.t, find
Pr(3.28 < X < 25.2). Hint. Consider the probability of the equivalent
event 1.64 < Y < 12.6, where Y = 2X/4 = X/2.

3.31. Let X be a random variable such that E(X™) = (m + 1)1 27,
m = 1,2, 3,.... Determine the distribution of X.

3.32. Show that

Ie—u

Tl kete- She E=123,....
Y5 XY Zd = ? y ~y )
L TR: ¢~ ,Zo P

This demonstrates the relationship between the distribution functions of the
gamma and Poisson distributions. Hint. E%ther integr?t(_azb'y part_slk_z— 1
times or simply note that the “antiden'vatlve”' of. F-lem?is —2¢7 e ? -
(B — 1)7*=2%7% —- - — (k — 1)! e~ by differentiating the latter expression.

3.33. Let X,, X,, and X, be mutually stochastically independent rande
variables, each with p.d.f. f{@) = ¢™%, 0 <=z < o, zero elsewhere. Find
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the distribution of ¥ = minimum (X;, X,, X3). Himt. Pr{(Y <gy) =1 —
Pr(Y>y=1-Pr{X,>yi=1273).

3.34. Let X have a gamma distribution with p.d.f.

f@) = sz, 0 <z <o,

B

zero elsewhere. If # = 2 is the unique mode of the distribution, find the
parameter 8 and Pr (X < 9.49).

3.35. Compute the measures of skewness and kurtosis of a gamma distri-
bution with parameters « and B.

3.36. Let X have a gamma distribution with parameters « and B. Show
that Pr (X > 2af) < (2/e)®. Hint. Use the result of Exercise 1.107.

3.37. Give a reasonable definition of a chi-square distribution with zero
degrees of freedom. Hint. Work with the moment-generating function of a
distribution that is x2(7) and let » = 0.

3.38. In the Poisson postulates on page 99, let A be a nonnegative
function of w, say A(w), such that D,[g(0, )] = — A(w)g(0, w). Suppose that
Mw) = krw'=1, » > 1. (a) Find g(0, w) noting that g(0, 0) = 1. (b) Let W
be the time that is needed to obtain exactly one change. Find the distribution
function of W,namely G(w) = Pr(W <w) =1 —-Pr(W > w) =1 — g(0, w),
0 < w, and then find the p.d.f. of W. This p.d.1. is that of the Weibull distri-
bution, which is used in the study of breaking strengths of materials.

3.39. Let X have a Poisson distribution with parameter m. If m is an
experimental value of a random variable having a gamma distribution with
« = 2and 8 = 1, compute Pr (X = 0, 1, 2).

3.40. Let X have the uniform distribution with p.d.f. f(z) = 1,0 <z < 1,
zero elsewhere. Find the distribution function of ¥ = —2In X. What is the
p.d.f. of ¥?

3.4 The Normal Distribution
Consider the integral

I= f:, exp (—y?%/2) dy.

This integral exists because the integrand is a positive continuous
function which is bounded by an integrable function; that is,

0 < exp(—y?/2) <exp(—|y| + 1), —00 < ¥ < 00,
and

f:, exp (—|y| + 1) dy = 2e.
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To evaluate the integral I, we note that I > 0 and that I2 may be

written
© © 2 + 22
I2 =J j exp (_y > )dydz.

This iterated integral can be evaluated by changing to polar coordinates.
If we set y = 7 cos 6 and z = 7 sin 6, we have

_ (%[ ,-r22
Iz—fo fo e~ "2y dr df
= [(* 40 = 2.
0

Accordingly, I = V27 and

j“’ L vnay = 1.

- 217

If we introduce a new variable of integration, say z, by writing

T — a

= ) b>0,
y B >

the preceding integral becomes

© 1 [ (x — a)z]
——exp | ———|dx =1
J o V2 P 2P
Since & > 0, this implies that

flx) = ! exp[—u], —0 <& <

bV 2m 2
satisfies the conditions of being a p.d.f. of a continuous type of random
variable. A random variable of the continuous type that has a p.d.f. of
the form of f(x) is said to have a normal distribution, and any f(x) of

this form is called a normal p.d.f. o
We can find the moment-generating function of a normal distribu-

tion as follows. In

M) = J_: e b\}ﬂ exp [——(x—é-—bzi)%] dx

® 1 ( —2b%x + 2 — 2ax + a2) i
= — exp | —
J —w bV 27 P 2p?
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we complete the square in the exponent. Thus M (f) becomes

a? — (a + %27 (> 1 r — a — b2
M@ = exp[_ (2b2 ) ]f_mbmexp [_( o ) ]dx

s
= exp (av + —2—)

because the integrand of the last integral can be thought of as a normal
p-d.f. with a replaced by @ + 5%, and hence it is equal to 1.

The mean p and variance o2 of a normal distribution will be calcu-
lated from M (#). Now

M'(t) = M{t)(a + b%)

and
M"(#) = M@)(%) + M()(a + b%)2.
Thus
p=M0)=a
and

0% = M"(0) — pu2 = b% + a? — a® = B2,

This permits us to write a normal p.d.f. in the form of

_ 1 =2 B
160 = —=exp[-E ] o cacn,

a form that shows explicitly the values of u and ¢2. The moment-
generating function M (f) can be written

242
M(t) = exp (,ut + UT)

Example 1. If X has the moment-generating function
M(t) — 62t+32t2,

then X has a normal distribution with u = 2, o2 = 64.

The normal p.d.f. occurs so frequently in certain parts of statistics
that we denote it, for brevity, by #(u, 0?). Thus, if we say that the
random variable X is #(0, 1), we mean that X has a normal distribution
with mean p = 0 and variance o2 = 1, so that the p.d.f. of X is

1 6_12/2

f@) = o ,

-0 < ¥ < 0.
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If we say that X is #(5, 4), we mean that X has a normal distribution
with mean p = 5 and variance ¢® = 4, so that the p.d.f. of X is

fla) = 2\}% exp {—%QE], —00 < & < 0O,
Moreover, if
M) = &2,
then X is #(0, 1).
The graph of
fl@) = . IZWeXp [—@—2_;5’-"—)3], —0 < & < 0,

is seen (1) to be symmetric about a vertical axis through z = u, (2) to

have its maximum of 1/oV 27 at x = y, and (3) to have the z-axis as
a horizontal asymptote. It should be verified that (4) there are points
of inflection at x = p + o.

Remark. Each of the special distributions considered thus far has been
“justified”’ by some derivation that is based upon certain concepts found
in elementary probability theory. Such a motivation for the normal distribu-
tion is not given at this time; a motivation is presented in Chapter 5. How-
ever, the normal distribution is one of the more widely used distributions in
applications of statistical methods. Variables that are often assumed to be
random variables having normal distributions (with appropriate values of
p and o) are the diameter of a hole made by a drill press, the score on a
test, the yield of a grain on a plot of ground, and the length of a newborn
child.

We now prove a very useful theorem.

Theorem 1. If the random variable X is n(u, 02), 62 > 0, then the
random variable W = (X — p)/o is n(0, 1).

Proof. The distribution function G(w) of W is, since ¢ > 0,

G(w):Pr(X""sw)=Pr(X5wa+p).

g

That is,

[ e
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If we change the variable of integration by writing y = (x — p)/o, then

Glw) = Jw L -vua gy,

- V' 2mr

Accordingly, the p.d.f. g(w) = G'(w) of the continuous-type random
variable W is

-2
e~vi2 —00 < W < 0.

g(w) = Vi

Thus W is #(0, 1), which is the desired result.

This fact considerably simplifies calculations of probabilities con-
cerning normally distributed variables, as will be seen presently. Sup-

pose that X is n(u, 0%). Then, with ¢; < ¢, we have, since Pr (X = ¢,)
= 0,

Pric; < X <)) =Pr(X <¢)) — Pr(X <g¢,)

=Pr(X—“<Cz—M)~Pr(X—”'<C——1_H)

ag g

f(cz -wle . (c1—u)la 1
= — ¢~ W2 gy —f e~ w2 gy
— '\/277 — \/ 277

because W = (X — u)/o is n(0, 1). That is, probabilities concerning X,

which is #(u, 6%), can be expressed in terms of probabilities concerning
W, which is #(0, 1). However, an integral such as

e~ W2 oy

|7

cannot be evaluated by the fundamental theorem of calculus because
an “antiderivative” of e~**2 is not expressible as an elementary
function. Instead, tables of the approximate value of this integral for
various values of k have been prepared and are partially reproduced in
Table III in Appendix B. We use the notation (for normal)

N() = f \/12_5““’2/2 dw;
— T
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thus, if X is n(u, o), then

X - _ X - _
Pr(cl<X<cz)=Pr( P ’U')—Pr( koo ‘u')

G g g g

-3(5) - x(222).

(o) g

It is left as an exercise to show that N(—2) = 1 — N(x).
Example 2. Let X be n(2, 25). Then, by Table III,

Pr(0 < X < 10) = N(IOS— 2) - N(O—;—g)

= N(1.6) — N(—0.4)

= 0.945 — (1 — 0.655) = 0.600
and

Pr(-8<X<1)= N(l_;_z) _ N(—ss— 2)

= N(—-0.2) — N(-2)
= (1 —0.579) — (1 — 0.977) = 0.398.
Example 3. Let X be n{(u, o?). Then, by Table III,
Pr(p— 20 < X < u + 20) :N(%G—#) _N(g~_2:_—_n)
= N(2) — N(-2)
= 0.977 — (1 — 0.977) = 0.954.

Example 4. Suppose that 10 per cent of the probability for a certain
distribution that is #n(u, o?) is below 60 and that 5 per cent is above 90.
What are the values of x and o? We are given that the random variable X is
n(p, 6%) and that Pr(X < 60) = 0.10 and Pr (X < 90) = 0.95. Thus
N[(60 — u)/o] = 0.10 and N[(90 — w)/o] = 0.95. From Table III we have

0 —p_ —1.282, 90— p_ e
o3 g

These conditions require that 4 = 73.1 and o = 10.2 approximately.
We close this section with an important theorem.

Theorem 2. If the random variable X is n{u, 0®), 6® > 0, then the
random variable V. = (X — p)?/o? is x2(1).
Proof. Because V = W2, where W = (X — p)fo is #(0, 1), the

distribution function G(v) of V is, for v = O,

G(v) = Pr (W2 < v) = Pr(—=Vv < W < Vo).
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That is,

O
Gv) = 2] e~ 12 gy, 0<uy,

0 2w

and
G(v) = 0, v < 0.
If we change the variable of integration by writing w = V', then

e~ vl/2 dy’ 0 < v,

v 1
Cl) = fo Vs

Hence the p.d.f. g(v) = G'(v) of the continuous-type random variable
Vis

v1/2—16—vl2

g()

1
= — , 0 < ,
Vav2 v=®
= 0 elsewhere.

Since g(v) is a p.d.f. and hence

[ e av =1,

it must be that I') = V7 and thus V is y%(1).

EXERCISES
3.41. If

show that N(—2z) = 1 — N(2).
3.42. If X is n(75, 100), find Pr (X < 60) and Pr (70 < X < 100).
3.43. If X is n(p, 0®), find b so that Pr[—b < (X — u)/o < b] = 0.90.

3.44. Let X be n{u, 0% so that Pr (X < 89) = 0.90 and Pr (X < 94) =
0.95. Find p and o2,

3.45. Show that the constant ¢ can be selected so that f(z) = ¢2-22,
—0 < & < o, satisfies the conditions of a normal p.d.f. Hint. Write 2 = ¢in2,

3.46. If X is n(u, 0?), show that E(|X — p|) = oV/2/r.

3.47. Show that the graph of a p.d.f. #(u, ¢2) has points of inflection at
z=p—candz = p + o.
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3.48. Determine the ninetieth percentile of the distribution, which is
n(65, 25).

3.49. If ¢%+3" is the moment-generating function of the random variable
X, find Pr (-1 < X < 9).

3.50. Let the random variable X have the p.d.f.

fl@) = \/—27_ e~ %2 0 < x < o0, zero elsewhere.
T

Find the mean and variance of X. Hint. Compute E(X) directly and E(X?)
by comparing that integral with the integral representing the variance of a
variable that is »(0, 1).

3.51. Let X be #(5, 10). Find Pr[0.04 < (X — 5)% < 38.4].
3.52. If X is »(1, 4), compute the probability Pr (1 < X2 < 9).

3.53. If X is »(75, 25), find the conditional probability that X is greater
than 80 relative to the hypothesis that X is greater than 77. See Exercise
2.17.

3.54. Let X be a random variable such that E(XZ") = (2Zm)!/(2™ml),
m=1,23,... and E(X?" 1) =0, m = 1,2,3,.... Find the moment-
generating function and the p.d.f. of X.

3.55. Let the mutually stochastically independent random variables
X, X,, and X3 be #(0, 1), #(2, 4), and »(—1, 1), respectively. Compute the
probability that exactly two of these three variables are less than zero.

3.56. Compute the measures of skewness and kurtosis of a distribution
which is #(u, o).

3.57. Let the random variable X have a distribution that is #(u, ¢%).

(a) Does the random variable Y = X? also have a normal distribution?

(b) Would the random variable Y = aX + b, 2 and b nonzero constants,
have a normal distribution? Hing. In each case, first determine Pr (Y < ).

3.58. Let the random variable X be #(u, 02). What would this distribution
be if 6 = 0? Hint. Look at the moment-generating function of X for ¢ > 0
and investigate its limit as ¢ — 0.

3.59. Let n(x) and N(z) be the p.d.f. and distribution function of a
distribution that is #(0, 1). Let Y have a truncated distribution with p.d.f.
gly) = n(y)/[N() — N(a)], 2 < y < b, zero elsewhere. Show that E(Y) is
equal to [n(a) — #n(b)]/[N(d) — N(a)].

3.60. Let f(x) and F(x) be the p.d.f. and the distribution function of a
distribution of the continuous type such that f'(z) exists for all z. Let the
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mean of the truncated distribution that has p.d.f. gly) = fy)/F(b), —o0 <

Yy < b, zero elsewhere, be equal to —f(b)/F (6) for all real b. Prove that f (x)
is n(0, 1).

. 3.61. Let X and Y be stochastically independent random variables, each
with a distribution that is #(0, 1). Let Z = X + Y. Find the integral that
represents the distribution function G(z) = Pr(X + Y < z) of Z. Deter-

mine the p.d.f. of Z. Hini. We have that G(z) = f f’w H(z, z) dx, where

2~

Hz,z) = f o exp [— (@ + y%)/2] dy.

— 00

Find G'(z) by evaluating [ [0H(x, 2)/07] da.

3.5 The Bivariate Normal Distribution

Let us investigate the function

1
" e~ 2
2m010,V1 — p? - p? ’ © < ¥ <0, -0 <y <0,

flzy) =

where, with o; > 0, 0, > 0, and —1 < p<l,

1 (x—m)z (w—m y—n ~ K22
_ ) 2) (?/ 2
q 1 - P2 [ [F} P 251 )( Oy + 0'2

At this point we do not know that the constants B1, B, 03, 03, and p
represent parameters of a distribution. As a matter of fact, we do not

know that f(z, y) has the properties of a joint p.d.f. It will now be shown
that:

(@) f(z, y) is a joint p.d.f.
(b) X is n(u;, 02) and Y is #n(uy, o).
(c) pis the correlation coefficient of X and Y.

A joint p.d.f. of this form is called a bivariate normal p.d.f., and the
random variables X and Y are said to have a bivariate normal distribu-
tion.

That the nonnegative function f(z, y) is actually a joint p.d.f. can
be seen as follows. Define f;(z) by

A = [ f@ ) ay.
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Now

e o B | R el

02
b ’ x — p1\?
- () ra- R
02 o3
where b = pg + plogfos)(@ — p1)- Thus

exp[—(x — pa)?[20%) (= exp{—(y — b)*/1263(1 — pO)]} dy.
fila) = V= Y
For the purpose of integration, the integrand of the integral in this

expression for f;(x) may be considered a normal p.d.f. with mean b and
variance o2(1 — p?). Thus this integral is equal to 1 and

—00 < & < 0.

Since
fiowfo_owf(x, y) dy dx = ffwfl(x) dx = 1,

the nonnegative function f(x, y) is a joint p.d.f. of two (':ontinuous‘;—type
random variables X and Y. Accordingly, the function f;(z) is the
marginal p.d.f. of X, and X is seen to be n(uy, o). In like manner, we

see that Y is n(ue, 03).
Moreover, from the development above, we note that

fen =56z -z )

where b = py + plog/or)(@ — pa)- Accordingly, the seconq factor in the
right-hand member of the equation above is the conditional p.d.-f of
Y, given that X = x. That is, the conditional p.d.f of Y, given

X = x, is itself normal with mean py + plogfos)(@ - py) and va.ri-ance
o2(1 — p?). Thus, with a bivariate normal distribution, the conditional

mean of Y, given that X = g, is linear in « and is given by
O3
E(Yle) = pa + P (@ — p)-
Since the coefficient of # in this linear conditional mean E(Y|z) is

pasfoy, and since oy and o, represent the respective standard deviation;
the number p is, in fact, the correlation coefficient of X and Y. This
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follows from the result, established in Section 2.3, that the coefficient
of  in a general linear conditional mean E(Y|z) is the product of the
correlation coefficient and the ratio oy/c;.

Although the mean of the conditional distribution of Y, given
X = x, depends upon x (unless p = 0), the variance o2(1 — p?) is the
same for all real values of x. Thus, by way of example, given that
X = xz, the conditional probability that Y is within (2.576)a,v'1 — p2
units of the conditional mean is 0.99, whatever the value of z. In this

sense, most of the probability for the distribution of X and Y lies in
the band

pa+ p 2 (@ — ) £ (2576)0,V/T = 72
1

about the graph of the linear conditional mean. For every fixed positive
o4, the width of this band depends upon p. Because the band is narrow
when p? is nearly 1, we see that p does measure the intensity of the
concentration of the probability for X and Y about the linear con-
ditional mean. This is the fact to which we alluded in the remark of
Section 2.3.

In a similar manner we can show that the conditional distribution
of X, given Y = y, is the normal distribution

ag
%[#l + pa—: (y — po), o3(1 — p2)].

Example 1. Let us assume that in a certain population of married couples
the height X of the husband and the height X, of the wife have a bivariate
normal distribution with parameters u; = 5.8 feet, u, = 5.3 feet, o, = 05 =
0.2 foot, and p = 0.6. The conditional p.d.f. of X,, given z; = 6.3, is normal
with mean5.3+ (0.6)(6.3 —5.8) =5.6 and standard deviation (0.2)v/(1—0.36) =
0.16. Accordingly, given that the height of the husband is 6.3 feet, the
probability that his wife has a height between 5.28 and 5.92 feet is

Pr(5.28 < X, < 5.92|z, = 6.3) = N(2) — N(—2) = 0.954.

The moment-generating function of a bivariate normal distribution
can be determined as follows. We have

Mty t,) = fjow fiooo e aVf () da dy

= fiow etlzfl(x)[fiow etzyf(ylx) dy] dz

for all real values of ¢, and #,. The integral within the brackets is the
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moment-generating function of the conditional p.df. flylx). Since
fly|r) isa normal p.d.f. with mean ps + plogfo)(@ — pa) and variance
oZ(1 — p?), then

Iio eta¥f (y|x) dy = exp {tz[p«z + p%? (x — ”1)] + 15%_0_%(,12_“_@}

Accordingly, M(t;, tz) can be written in the form

o 2031 — p\ [ [(t iy ‘_’E)x]f (x) da.
exp {tzp«z - tzP'g‘j‘P«l 2 {)_. exp T P oy !

But E(et¥X) = exp [pi? + (032)/2] for all real valu.es (?f t. Accordingly,
if we set t = #; + top(oafor), WE SEE that M (ty, to) is given by

O2
—tp—2py +
exp {lops — Lap o 1 2 o\2
tl + t2p ;_
Oy 2 1
+ m(tl + fap 0—1‘) + o1 2
or, & uivalently,
a 022 + 2poi0atila + G%t%),
o1ty + 2poi9ohata T 7272
M(ty, t2) = €Xp (mtl + pola + 2

It is interesting to note that if, ‘n this moment-generating function
M(t,, 1), the correlation coefficient p is set equal to zero, then

M(t,, to) = M, 0)M (0, t5).
Thus X and Y are stochastically independent Wl:etn p= 0,' If, con};
versely, My, ta) = M(t, 0)M (0, ¢,5), we haye eP9192hts = 1. Slfmile ez%;
of o, and o, is positive, then p = 0. Accordingly, we have the following
1
theorem. - |
Theorem 3. Let X and Y have a bivariate normal d?smbutwy'b with
means py and pa, positive variances o2 and o3, and cowelamfm coeﬁ;i)cwnt p.
Then X and Y are stochastically independent if and only if p = V.

As a matter of fact, if any two random va?ri:%bles are stochasttm(a;llizi1
independent and have positive standard deviations, we (l)la(;leezlonzt i
Example 4 of Section 2.4 that p = 0. Howe.ver, p.=d I(l)dent. o
general imply that two variables are stochasjclcally in epi Theor,em X
can be seen in Exercises 2.18(c) and 2.23. The importance o i
lies in the fact that we now know when 'an('i on.ly when tw?1 ratr.l :
variables that have a bivariate normal distribution are stochastically

independent.

Sec. 3.5] The Bivariate Normal Distribution 121
EXERCISES

3.62. Let X and Y have a bivariate normal distribution with parameters

pr =23, pe=1, 03 =16, o2 = 25, and p = $. Determine the following
probabilities:

(@ Pri3 <Y <38

by Pr3<Y <8lxz=7).

() Pr(-3 <X <3).

(d) Pr(—=3 < X < 3|y =—4).

3.63. If M (¢, t,) is the moment-generating function of a bivariate normal
distribution, compute the covariance by using the formula

&°M(0,0) _ aM(0, 0) 2M(0, 0)
ot oty o, ot

Now let #(ty, t5) = In M{#, ¢,). Show that 8%4(0, 0)/6¢, &, gives this co-
variance directly.

3.64. Let X and Y have a bivariate normal distribution with parameters
pr=5p=10,02 = 1,02 =25,and p > 0. IfPr(4 < Y < 16|z = 5) =
0.954, determine p.

3.65. Let X and Y have a bivariate normal distribution with parameters
p1 =20, up = 40, 62 = 9, 02 = 4, and p = 0.6. Find the shortest interval

for which 0.90 is the conditional probability that Y is in this interval, given
that X = 22.

3.66. Let f(x,y) = (1/2m) exp[—1(2® + y*) {1 + ayexp[—(«® + y* - 2)]},
where —o0 < 2 < 00, —00 < ¥ < o0. If f(z, y) is a joint p.d.f, it is not a
normal bivariate p.d.f. Show that f(z, ) actually is a joint p.d.f. and that
each marginal p.d.f. is normal. Thus the fact that each marginal p.d.f. is
normal does not imply that the joint p.d.f. is bivariate normal.

3.67. Let X, Y, and Z have the joint p.d.f.
(1/2m)%2 exp [— (& + y® + 2)/2]{1 + wyzexp [— (2 + y* + 2%)/2]},

where ~00 <z < 0, —0 < ¥ < o0, and —0 < z < 0. While X, Y, and
Z are obviously stochastically dependent, show that X, Y, and Z are pair-

wise stochastically independent and that each pair has a bivariate normal
distribution.

3.68. Let X and Y have a bivariate normal distribution with parameters
1 = pgy =0, 6f = ¢ = 1, and correlation coefficient p. Find the distri-
bution of the random variable Z = aX + bY in which @ and b are nonzero
constants. Hint. Write G(z) = Pr (Z < 2) as an iterated integral and com-
pute G'(z) = g(z) by differentiating under the first integral sign and then
evaluating the resulting integral by completing the square in the exponent.



Chapter 4

Distributions of Functions
of Random Variables

4.1 Sampling Theory

Let X;, X,, ..., X, denote n random variables that have the‘joint
p.df. flzy, o, - - -, Ta)- These variables may or may not be .stochasi:,lcal%y
independent. Problems such as the following are very 1nteresjc1ng in
themselves; but more importantly, their solutions often pr9V1de the
basis for making statistical inferences. Let Y be a random variable that
is defined by a function of X1, Xo, ..., Xy, 53y Y = u(Xy, Xoy o - oy X,).
Once the p.d.f. f(zy, Za, . . ., Tp) 1S given, can we find the p.d.f. of ¥?
In some of the preceding chapters, we have solved a fe\fv of tl_lese pro;)—
lems. Among them are the following two. Iin = 1 and if X L is n(g, 6%),
then Y = (X, — p)foisn(0,1). fnisa positive integer, 1f the random
variables X;, 7 = 1,2,...,#n, are mutually stochastically independent,
and each X, has the same p.d.f. f(x) = P11 — p)F, 1 =0, 1, and

zero elsewhere, andif Y = i X, then Yis b(n, p). It should be observed
1

that Y = u(X,) = (X, —p)foisa function of X, that depends upon
the two parameters of the normal distribution; whereas Y = #(Xy, X,

X, = i X, does not depend upon p, the parameter of the common
1

.y

pdf ofthe X,i=1,2,...,% The distinction that we make between
these functions is brought out in the following definition.

Definition 1. A function of one or more random Variab}e§ that
does not depend upon any #nknown parameter is called a statistic.

122
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In accordance with this definition, the random variable Y = iX,
1

discussed above is a statistic. But the random variable Y = (X; — p)/o
is not a statistic unless p and o are known numbers. It should be noted
that, although a statistic does not depend upon any unknown param-
eter, the distribution of that statistic may very well depend upon
unknown parameters.

Remark. We remark, for the benefit of the more advanced reader,
that a statistic is usually defined to be a measurable function of the random
variables. In this book, however, we wish to minimize the use of measure
theoretic terminology so we have suppressed the modifier “measurable.”
It is quite clear that a statistic is a random variable. In fact, some probabilists
avoid the use of the word ““statistic’” altogether, and they refer to a measure-
able function of random variables as a random variable. We decided to
use the word “statistic”” because the reader will encounter it so frequently
in books and journals.

We can motivate the study of the distribution of a statistic in the
following way. Let a random variable X be defined on a sample space
% and let the space of X be denoted by & In many situations con-
fronting us, the distribution of X is not completely known. For instance,
we may know the distribution except for the value of an unknown
parameter. To obtain more information about this distribution (or the
unknown parameter), we shall repeat under identical conditions the
random experiment # independent times. Let the random variable X,
be a function of the 7th outcome, ¢ = 1, 2,..., n. Then we call X,
X,, ..., X, the items of a random sample from the distribution under
consideration. Suppose that we can define a statistic Y = u(X,, X,,
..., X,) whose p.d.f. is found to be g(y). Perhaps this p.d.f. shows that
there is a great probability that Y has a value close to the unknown
parameter. Once the experiment has been repeated in the manner
indicated and we have X, = x,, ..., X, = z,, theny = u(x;, 25, . . ., x,)
is a2 known number. It is to be hoped that this known number can in
some manner be used to elicit information about the unknown param-
eter. Thus a statistic may prove to be useful.

Remarks. Let the random variable X be defined as the diameter of a
hole to be drilled by a certain drill press and let it be assumed that X has a
normal distribution. Past experience with many drill presses makes this
assumption plausible; but the assumption does not specify the mean p nor
the variance ¢ of this normal distribution. The only way to obtain informa-
tion about p and o2 is to have recourse to experimentation. Thus we shall drill
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a number, say # = 20, of these holes whose diameters will be X L X 2
X,o. Then Xy, X,, ..., Xpolisa random sample from the normal dlst'rlbutlon
under consideration. Once the holes have been drilled and the dlametefs
measured, the 20 numbers may be used, as will be seen later, to elicit
information about p and o®.

The term ““random sample”’ is now defined in a more formal manner.

Definition 2. Let X;, X, ..., X, denote # mutually stochastically
independent random variables, each of which has the same but ppssibly
unknown p.d.f. f(z); that is, the probability density functions of
Xl) X2: L] Xn are, respectively, fl(xl) = f(xl):f2(x2) = f(xz), e ’fn(xn)
= f(x,), so that the joint p.d.f. is f(a,)f(®s)- - -f(x,). The random
variables X, X,, ..., X, are then said to constitute a random sample
from a distribution that has p.d.f. f().

Later we shall define what we mean by a random sample from a
distribution of more than one random variable.

Sometimes it is convenient to refer to a random sample of size #
from a given distribution and, as has been remarked, to rfafer'to
X,, X, ..., X, as the items of the random sample. A reexamination
of Example 5 of Section 2.4 reveals that we found the p.d.f. of the
statistic, which is the maximum of the items of a random sample of
size n = 3, from a distribution with p.d.f. f(z) = 22, 0 <2 < 1, zero
clsewhere. In the first Remark of Section 3.1 (and referred to in this
section), we found the p.d.f. of the statistic, which is the sum of the
items of a random sample of size # from a distribution that has p.d.f.
fl@) = p*(1 — p)*~%, 2z =0, 1, zero elsewhere. _

In this book, most of the statistics that we shall encounter will be
functions of the items of a random sample from a given distribution.
Next, we define two important statistics of this type.

Definition 3. Let X;, X,, ..., X, denote a random sample of size
n from a given distribution. The statistic

g KXot X _ 3

n
n i=1

X
iy
n

is called the mean of the random sample, and the statistic

bl 5]

2

>

L2 (Xl - X)2 X
2 — P a1
> = 121 n "

n
i=1

is called the variance of the random sample.
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Remark. Many writers do not define the variance of a random sample
n

as we have done but, instead, they take S? = > (X, — X)?/(n — 1). There
1

are good reasons for doing this. But a certain price has to be paid, as we shall

indicate. Let #;, s, . . ., z, denote experimental values of the random variable
X that has the p.d.f. f(x) and the distribution function F(z). Thus we may
look upon #y, 7y, ..., x, as the experimental values of a.random sample of

size » from the given distribution. The distribution of the sample is then
defined to be the distribution obtained by assigning a probability of 1/x to
each of the points #, @, .. ., 2,. This is a distribution of the discrete type.
The corresponding distribution function will be denoted by F,(z) and itisa
step function. If we let f, denote the number of sample values that are less
than or equal to z, then F,(z) = f,/n, so that F (x) gives the relative fre-
quency of the event X < zin the set of # observations. The function F,(z) is
often called the “empirical distribution function’ and it has a number of
uses.

Because the distribution of the sample is a discrete distribution, the

mean and the variance have been defined and are, respectively, fxi/n =7
n 1

and g (x; — T)?/n = s Thus, if one finds the distribution of the sample and

the associated empirical distribution function to be useful concepts, it
would seem logically inconsistent to define the variance of a random sample
in any way other than we have.

Random sampling distribution theory means the general problem
of finding distributions of functions of the items of a random sample.
Up to this point, the only method, other than direct probabilistic
arguments, of finding the distribution of a function of one or more
random variables is the distribution function techmigue. That is, if
Xy, Xy, ..., X, are random variables, the distribution of Y =
(X, X, ..., X,)is determined by computing the distribution function
of Y,

Gly) = Priu(X,, X,, ..., X,) <yl
Even in what superficially appears to be a very simple problem, this
can be quite tedious. This fact is illustrated in the next paragraph.

Let X, X,, X; denote a random sample of size 3 from a distribution
that is #(0, 1). Let Y denote the statistic that is the sum of the squares
of the sample items. The distribution function of Y is given by

Gly) = Pr(X2 + X2 + XZ <y).
If y < 0, then G(y) = 0. However, if y > 0, then

1 1
6) = | | Gomaexe | -5 2 + a8 + o) | s, do, o,
A
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where A is the set of points (3, 5, 3) interior to, or on the surface of,
a sphere with center at (0, 0, 0) and radius equal to Vy. This is not a
simple integral. We might hope to make progress by changing to
spherical coordinates:

x, = p cos 0 sin g, Zo = psin 0 sin ¢, Zg = pCOS @,

wherepzo,Os0<2w,0$<p57r.Then,fory20,

o - e 252 sin o dp df d

= A/g ny p2e'”2/2dp.
T Jo

If we change the variable of integration by setting p = Vv, we have
2 (Y VO _yp
= |5 Y dw,
G(y) A/ - L 5 ¢ w

for y > 0. Since Y is a random variable of the continuous type, the
p.d.f. of Y is g(y) = G'(y). Thus

1
——yf2mlemv2, 0 <y < oo,

g = T

= ( elsewhere.

Because I'G) = 3)I'3) = (3)V'w, and thus V2r = ['(3)2%2, we see
that Y is x%(3).

The problem that we have just solved points up the desirability of
having, if possible, various methods of determining the distribution of
a function of random variables. We shall find that other techniques are
available and that often a particular technique is vastly superior to
the others in a given situation. These techniques will be discussed in
subsequent sections.

Example 1. Let the random variable Y be distributed uniformly over the
unit interval 0 < y < 1; that is, the distribution function of Y is

Gly) =0,y<0
=y,0<y <1,
1,1 <y

Suppose that F(z) is a distribution function of the continuous type which is
strictly increasing when 0 < F(z) < 1. If we define the random variable X
by the relationship ¥ = F(X), we now show that X has a distribution which
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corresponds to F(z). If 0 < F(z) < 1, the inequalities X < z and F(X) <
F(x) are equivalent. Thus, with 0 < F(z) < 1, the distribution function of
Xis

Pr(X <) = Pr(F(X) < F(z)] = Pr[Y < F()]
because ¥ = F(X). However, Pr (Y < y) = G(y), so we have |

Pr(X < 2) = G[F(z)] = F(), 0 < Fl2) < 1.
That is, the distribution function of X is F(x).

This result permits us to simulate random variables of different
types. This is done by simply determining values of the uniform variable
Y, usually with a computer. Then, after determining the observed
value Y = y, solve the equation y = F(x), either explicitly or by
numerical methods. This yields the inverse function z = F~(y). By
the preceding result, this number « will be an observed value of X that
has distribution function F(x).

It is also interesting to note that the converse of this result is true.
If X has distribution function F(x) of the continuous type, then ¥ =
F(X) is uniformly distributed over 0 < y < 1. The reason for this is,
for 0 < y < 1, that

Pr(Y <y) = Pr(F(X) < y] = Pr[X < F-l(y)].
However, it is given that Pr (X < ) = F(x), so
Pr(Y<y=FF1'l=y 0<y<l

This is the distribution function of a random variable that is distri-
buted uniformly on the interval (0, 1).

EXERCISES
4.1. Show that

13 1 -
52 = 7—Lz(X,. - X2 = ﬁZX,Z - X2,
where X = iXi/n.
1

4.2. Find the probability that exactly four items of a random sample of
size 5 from the distribution having p.d.f. f(z) = (z + 1)/2, -1 <z < 1,
zero elsewhere, exceed zero.

4.3. Let X,, X,, X; be a random sample of size 3 from a distribution that
is #(6, 4). Determine the probability that the largest sample item exceeds 8.
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4.4. Let X,, X, be a random sample from the distribution having p.d.f.
f(@) = 2z, 0 < z < 1, zero elsewhere. Find Pr (X,/X, < 3).

4.5. Tf the sample size is # = 2, find the constant ¢ so that 52 =
o(X, — Xg)2

4.6. If z, =14, 1 =1,2,...,n, compute the values of £ = Y a/n and
$2 =3 (x, — T)%n.

47. Lety, =a + bz, 1=1,2,...,n, where a and b are constants. Find
g =wu/nand s2 = 3 (y, — §)?n in terms of a, b, T = > xy/n, and s =
2 (@ — ®)*/n.

4.8. Let X, and X, denote a random sample of size 2 from a distribution
that is #(0, 1). Find the p.d.f. of Y = X} + X3. Hint. In the double integral
representing Pr (Y < y), use polar coordinates.

4.9. The four values y, = 0.42, y, = 0.31, y; = 0.87, and y, = 0.65
represent the observed values of a random sample of size # = 4 from the
uniform distribution over 0 < y < 1. Using these four values, find a corre-
sponding observed random sample from a distribution that has p.d.f. f(z) =
e%, 0 < x < 00, zero elsewhere.

4.10. Let X,, X, denote a random sample of size 2 from a distribution
with p.d.f. f(®) = %, 0 < & < 2, zero elsewhere. Find the joint p.d.f. of X,
and X,. Let Y = X; + X,. Find the distribution function and the p.d.f.
of Y.

4.11. Let X, and X, denote a random sample of size 2 from a distribution
with p.df f(@) =1, 0<x <1, zero elsewhere. Find the distribution
function and the p.d.f. of ¥ = X,/X,.

4.12. Let X,, X,, X, be a random sample of size 3 from a distribution
having p.d.f. f(x) = 52%, 0 < z < 1, zero elsewhere. Let Y be the largest
item in the sample. Find the distribution function and p.d.f. of Y.

4.13. Let X, and X, be items of a random sample from a distribution
with p.d.f. f(x) = 22, 0 < z < 1, zero elsewhere. Evaluate the conditional
probability Pr (X; < X,|X; < 2X,).

4.2 Transformations of Variables of the Discrete Type

An alternative method of finding the distribution of a function of
one or more random variables is called the change of variable technique.
There are some delicate questions (with particular reference to random
variables of the continuous type) involved in this technique, and these
make it desirable for us first to consider special cases.

Sec. 4.2] Transformations of Variables of the Discrete Type 129
Let X have the Poisson p.d.f.
xe—u
f@)=2"—, z=01,2...,

x!

= 0 elsewhere.

As we have done before, let &7 denote thespace &/ = {x;2 =0,1,2, ...},
so that &7 is the set where f(x) > 0. Define a new random variable
Y by Y = 4X. We wish to find the p.d.f. of Y by the change-of-variable
technique. Let y = 4x. We call y = 4x a transformation from z to y,
and we say that the transformation maps the space 2/ onto the space
% =1{y;y =0,4,8,12,...}. The space & is obtained by transforming
each point in &/ in accordance with y = 4x. We note two things about
this transformation. It is such that to each point in & there corresponds
one, and only one, point in &; and conversely, to each point in & there
corresponds one, and only one, point in &7 That is, the transformation
y = 4x sets up a one-to-one correspondence between the points of .7 and
those of #. Any function y = u{x) (not merely y = 4«) that maps a
space .7 (not merely our .7) onto a space # (not merely our #) such that
there is a one-to-one correspondence between the points of ./ and those
of 4 is called a one-to-one transformation. 1t is important to note that a
one-to-one transformation, ¥y = u(x), implies that y is a single-valued
function of #, and that « is a single-valued function of y. In our case this
is obviously true, since y = 4x and x = (})y.

Our problem is that of finding the p.d.f. g(y) of the discrete type of
random variable Y = 4X. Now g(y) = Pr (Y = y). Because thereis a
one-to-one correspondence between the points of &7 and those of 4, the
event Y = y or 4X = y can occur when, and only when, the event X
= (})y occurs. That is, the two events are equivalent and have the
same probability. Hence

g(y)=Pr(Y=y)=Pr(X=g)= . y=2048,...,

0= elsewhere.

The foregoing detailed discussion should make the subsequent text
easier to read. Let X be a random variable of the discrete type, having
p.d.f. f(z). Let o7 denote the set of discrete points, at each of which
f(z) > 0,and let y = u(x) define a one-to-one transformation that maps
&/ onto #. If we solve y = u(x) for x in terms of y, say, * = w(y), then
for each y € %, we have z = w(y) € . Consider the random variable
Y = u(X). If ye, then 2 = w(y) € &, and the events Y = y [or
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#(X) = y] and X = w(y) are equivalent. Accordingly, the p.d.f. of Y is
Pr(Y =) = Pr(X = w(y)] = fle@®], ye%

0 elsewhere.

1

gy)

Example 1. Let X have the binomial p.d.f.

o =am 5 B) - =0

= 0 elsewhere.

We seek the p.d.f. g(y) of the random variable Y = X?. The transformation

= u(x) = 22 maps & = {z; 2 =0, 1,2,3} onto & ={y;y =0,1,4,9}.
In general, y = 2® does not define a one-to-one transformation; here, how-
ever, it does, for there are no negative valuesof zin o = {z;z = 0, 1, 2, 3}.
That is, we have the single-valued inverse function z = w(y) = Vy (not

—+/y), and so

£t = /D) = = GG w-ores

= () elsewhere.

There are no essential difficulties involved in a problem like the
following. Let f(z,, #,) be the joint p.d.f. of two discrete-type random
variables X, and X, with o/ the (two-dimensional) set of points at
which f(xy, 25) > 0. Let y; = uy(x1, %) and y, = uy(%,, x5) define a
one-to-one transformation that maps &/ onto #. The joint p.d.f. of
the two new random variables Y, = u,(Xy, X,) and Yy = #y(X;, X5)
is given by

g1, o) = flwi(ys, Ya), @a(Y1, Y2)l, (Y1, Y2) €5,
= 0 elsewhere,

where z; = w,;(y;, ¥o) and x, = wy(yy, ¥o) are the single-valued inverses
of y, = u,(x;, x5) and Yy, = uy(x;, ¥o). From this joint p.d.f. g(y1, y2)
we may obtain the marginal p.d.f. of Y, by summing on y, or the
marginal p.d.f. of Y, by summing on ;.

Perhaps it should be emphasized that the technique of change of
variables involves the introduction of as many “‘new’’ variables as
there were “old” variables. That is, suppose that f(x, %2, ®3) is the
joint p.d.f. of X;, X,, and X, with & the set where f(x,, %5, 25) > 0.
Let us say we seek the p.d.f. of ¥y = u,(X;, Xy, X,). We would then
define (if possible) Yy = u5(X,, Xo, X,) and Y5 = ug(X,, X,, X3), so
that y, = u; (%1, %o, ¥3), Yo = Ua(®1, Ta, 3), Y = U3(%1, Ty, T) define a

Sec. 4.2] Transformations of Variables of the Discrete Type 131

one-to-one transformation of .7 onto #. This would enable us to find the
joint p.d.f. of Y,, Y,, and Y; from which we would get the marginal
p-d.f. of Y, by summing on y, and y,.

Example 2. Let X; and X, be two stochastically independent random
variables that have Poisson distributions with means g, and p,, respectively.
The joint p.d.f. of X; and X, is

Tiukoe = H1—#
% 2, =0,1,23,..., 2,=0,1,2,3,...,
and is zero elsewhere. Thus the space &7 is the set of points (x4, z,), where
each of #; and «z, is a nonnegative integer. We wish to find the p.d.f. of
Y, = X, + X,. If we use the change of variable technique, we need to
define a second random variable Y,. Because Y, is of no interest to us, let
us choose it in such a way that we have a simple one-to-one transformation.
For example, take Y, = X, Then y, = 2, + 2, and y, = z, represent a
one-to-one transformation that maps &/ onto

'@={(y1’y2)§?/2=0, 1,---,3/1 and Y1 =0, 1,2,...}.

Note that, if (y,, ¥,) € %, then 0 < y, < y,. The inverse functions are given
by 2, = y; — y, and 2, = y,. Thus the joint p.d.f. of Y, and Y, is

s Vapae a4

8lv1va) = (v — y2)! 92! ’

(Y1, y2) €5,

and is zero elsewhere. Consequently, the marginal p.d.f. of Y, is given by

U1
&y = Z 81, ¥2)
yz=0

e~ 1k N !
= Yi: Yy~ ¥gy, Y
]:u'l 1o

il %o (U1 — Y2)! ¥a

(p1 + po)¥re #1742
1!

y1=01112)"-;

and is zero elsewhere. That is, Y, = X, + X, has a Poisson distribution
with parameter pu, + p,.

EXERCISES

4.14. Let X have a p.d.f. f(x) = 4, « = 1, 2, 3, zero elsewhere. Find the
pdfof Y =2X + 1.
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4.15. If f(z,, @;) = (3)77%2(3)? " 5772, (2, @) = (0,0), (0, 1), (1,0), (1, 1).
zero elsewhere, is the joint p.d.f. of X; and X, find the joint p.d.f. of Y¥; =
Xl _ X2 and Y2 = Xl + X2.

4.16. Let X have the p.df. f(z) = 3)%, z = 1, 2, 3, ..., zero elsewhere.
Find the p.df. of Y = X3,

4.17. Let X, and X, have the joint p.d.f. f(z,, ;) = 2,2,/36, 2, = 1,2,3
and z, = 1, 2, 3, zero elsewhere. Find first the joint p.d.f. of Y, = X, X, and
Y. = X,, and then find the marginal p.d.f. of Y.

4.18. Let the stochastically independent random variables X, and X,
be b(n,, p) and b(n,, p), respectively. Find the joint p.df. of Y, = X, + X,
and Y, = X,, and then find the marginal p.d.f. of Y. Hint. ‘Use the fact

that
5070 ()
Lo \w/\k —w) — k
This can be proved by comparing the coefficients of #* in each member of
the identity (1 + z)"1(1 + z)*2 = (1 + &)™ *"a.
4.19. Let X, and X, be stochastically independent random variables of
the discrete type with joint p.d.f. fi(x,) fa(%s), (#1, #2) € . Let y; = u,(xy)

and y, = u,(»,) denote a one-to-one transformation that maps &/ onto #.
Show that Y, = u,(X;) and Y, = u,{X,) are stochastically independent.

4.3 Transformations of Variables of the Continuous Type

In the preceding section we introduced the notion of a one-to-one
transformation and the mapping of a set &/ onto a set # under that
transformation. Those ideas were sufficient to enable us to find the
distribution of a function of several random variables of the discrete
type. In this section we shall examine the same problem when the
random variables are of the continuous type. It is again helpful to
begin with a special problem.

Example 1. Let X be a random variable of the continuous type, having
p.d.f.
f(x):Zx, 0<x<1,
= 0 elsewhere.
Here & is the space {z; 0 < x < 1}, where f(z) > 0. Define the random
variable Y by Y = 8X3 and consider the transformation y = 8z Under the

transformation y = 822, the set & is mapped onto theset # = {y; 0 < y < 8},
and, moreover, the transformation is one-to-one. For every 0 < 4 < b < §,

theeventa < Y < bwill occur when, and only when, the event $¥/a < X <
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W b occurs because there is a one-to-one correspondence between the points
of & and 4. Thus

Pria <Y <b) =Pr(3Va <X < 1Vb)

_ (Vo

= Jyz, 2002

Let us rewrite this integral by changing the variable of integration from 2 to
y by writing y = 823 or # = 4Vy. Now

dw _ 1

dy éyz/s’
and, accordingly, we have

Pria<Y <b)= J: 2(?) (@12—,5) dy

&
= —mdy.
J. oY

Since this is true for every 0 < 2 < b < 8, the p.d.f. g(y) of Y is the inte-
grand; that is,

1
gly) = 6y1/3’ 0<y<38,

= () elsewhere.

It is worth noting that we found the p.d.f. of the random variable
Y = 8X3 by using a theorem on the change of variable in a definite
integral. However, to obtain g(y) we actually need only two things:
(1) the set # of points y where g(y) > 0 and (2) the integrand of the
integral on y to which Pr (¢ < Y < &) is equal. These can be found by
two simple rules:

(a) Verify that the transformation y = 82® maps & = {;0 <z < 1}
onto # = {y; 0 < y < 8} and that the transformation is one-to-one.
(b) Determine g(y) on this set & by substituting 1Vy for # in f(z)
and then multiplying this result by the derivative of $¥y. That is,
o) — f(ﬁ) @y 1
2 dy 6y1/3’

= 0 elsewhere.

0<y <38,

We shall accept a theorem in analysis on the change of variable in a
definite integral to enable us to state a more general result. Let X be a
random variable of the continuous type having p.d.f. f(x). Let &/ be the
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one-dimensional space where f(z) > 0. Consider the random variable
Y = u(X), where y = u(x) defines a one-to-one transformation that
maps the set o/ onto the set Z. Let the inverse of y = u(z) be denoted
by z = w(y), and let the derivative dz/dy = w'(y) be continuous and
not vanish for all points y in #. Then the p.d.f. of the random variable
Y = u(X) is given by
gy) = fle@ll='@). yeB
= 0 elsewhere,

where |w'(y)| represents the absolute value of w'(y). This is precisely
what we did in Example 1 of this section, except there we deliberately
chose y = 82® to be an increasing function so that

dx , 1
d—yZU/(y)za-sz’ 0<y<8,
is positive, and hence
1 1

Henceforth we shall refer to dz/dy = w’(y) as the Jacobian (denoted by
J) of the transformation. In most mathematical areas, J = w'(y) is
referred to as the Jacobian of the inverse transformation z = w(y), but
in this book it will be called the Jacobian of the transformation, simply
for convenience.

Example 2. Let X have the p.d.f.

flx) =1, 0<z <1,
= 0 elsewhere.
We are to show that the random variable Y = —2In X has a chi-square
distribution with 2 degrees of freedom. Here the transformationisy = u(z) =
—21In z, so that z = w(y) = e~ ¥/2. The space &/ is & = {x; 0 < x < 1}, which
the one-to-one transformation y = —2In x maps onto # = {y; 0 < y < co}.
The Jacobian of the transformation is

dx 1
= —_— = 4 = —_pg~V/2
J=G =) =g

Accordingly, the p.df. gly) of Y = —2In X is
gly) =fle™?)|J| =42,  0<y<oo,
= 0 elsewhere,

a p.d.f. that is chi-square with 2 degrees of freedom. Note that this problem
was first proposed in Exercise 3.40.
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Xz

X=0 o X,=1

(0,0) X2=0 X,
FIGURE 4.1

This method of finding the p.d.1. of a function of one random variable
of the continuous type will now be extended to functions of two random
variables of this type. Again, only functions that define a one-to-one
transformation will be considered at this time. Let y;, = #,(;, 2,) and
Y2 = Uy(xy, ;) define a one-to-one transformation that maps a (two-
dimensional) set & in the #,z,-plane onto a (two-dimensional) set & in
the y,y,-plane. If we express each of #; and #, in terms of ¥, and y,, we
can write &, = w,(y1, ¥a), £ = wWy(y1, ¥o). The determinant of order 2,

or, 0%,
0x, O%g
% By,

is called the Jacobian of the transformation and will be denoted by the
symbol J. It will be assumed that these first-order partial derivatives are
continuous and that the Jacobian J is not identically equal to zero in &.
An illustrative example may be desirable before we proceed with the
extension of the change of variable technique to two random variables
of the continuous type.

Example 3. Let o/ be the set o = {(z,,2,); 0 < 2, < 1,0 < x, < 1},
depicted in Figure 4.1. We wish to determine the set & in the y,y,-plane that
is the mapping of & under the one-to-one transformation

Y1 = (%), To) = Ty + Xy,
Yo = ua(®1, To) = T — %y,

and we wish to compute the Jacobian of the transformation. Now

x = w1y, ¥2) = Hy1 + va2),
Ty = Wo(Y1, ¥a) = (Y1 — ¥2)-
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Ve

V2= N

Vo= 2~ )

0,0) 54

Ye=-)4

K

SemJi-2

FIGURE 4.2

To determine the set & in the y,y,-plane onto which ¢ is mapped under the
transformation, note that the boundaries of &7 are transformed as follows

into the boundaries of Z;

¢, =0 into 0 =3y + ¥,
=1 into 1=y + 92,
2, =0 into 0 =3y — v2),
@, = 1 into 1 =3y — y2)
Accordingly, & is as shown in Figure 4.2? Finally,
@y om| 11
Jo |t a2 2| _ 1
ao, om| (11|72
0y1 Oy, 2 2

We now proceed with the problem of finding the joint p.d.f. of two
functions of two continuous-type random variables. Let X, and X, be
random variables of the continuous type, having joint p.d.f. (2, ,).
Let o7 be the two-dimensional set in the z,z,-plane where g(x,, z,) > 0.
Let Y, = u,(X,, X,) be a random variable whose p.d.f. is to be found.
Ify, = uy(xy, x5) and y, = uy(xy, x,) define a one-to-one transformation
of o/ onto a set # in the y,y,-plane (with nonidentically vanishing
Jacobian), we can find, by use of a theorem in analysis, the joint p.d.f.
of Y, = u;(X,, X5) and Y, = #,(X,, X,). Let A be a subset of &7, and
let B denote the mapping of 4 under the one-to-one transformation
(see Figure 4.3). The events (X, X,) € 4 and (Y, Y,) € Bareequivalent.
Hence

Pr{(Y,, Yy) e B] = Pr(X,, X,) 4]

- L f Py, 25) day da,,
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0 b

(0,0) X (0,0 K
FIGURE 4.3

X Y2

We wish now to change variables of integration by writing y, =

(1, %3), Y2 = (&1, Tg), O T = Wy(y1, ¥,), Ty = w3(Y1, yo). It has
been proved in analysis that this change of variables requires

fA f?’(xl: xy) du, dwgy = fB f¢[w1(yll Y2), Wa(¥1, ?/z)]l]l dy, dy,.
Thus for every set B in 4,
Pr((Ys, Yg) € B] = [ [olw1(ys, ¥2), walys, ¥2)]|J| dy, dys,
which implies that the joint p.df. gy, ¥5) of Y, and Y, is

gW1, ¥2) = e[wi(y1, ¥2), walys, ¥2)1| ]|,
= 0 elsewhere.

(Y1, Y2) € B,

Accordingly, the marginal p.d.f. g,(y,) of Y, can be obtained from the

joint p.d.f. g(y,, y,) in the usual manner by integrating on y,. Five
examples of this result will be given.

Example 4. Let the random variable X have the p.d.f.

f@)=1 0<=z<l,

0 elsewhere,

and let X,, X, denote a random sample from this distribution. The joint
p.d.f. of X, and X, is then

(@1, @) = f@,)f(2o) = 1,

= () elsewhere.

O0<z;, <1,0 <2, <1,

Consider the two random variables Y, = X, + X sand Y, = X; — X,. We
wish to find the joint p.d.f of Y; and Y,. Here the two-dimensional space &/
in the :.lez-plane is that of Example 3 of this section. The one-to-one trans-
formation y, = 2, + 2,, ¥y, = », — zz maps s/ onto the space # of that
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example. Moreover, the Jacobian of that transformation has been shown to
be J = —%. Thus

2lys, y2) = o3 + ¥2), 3: — 92)]lJ]
— Ty + w2l — T =% (o9 e,
= ( elsewhere.

Because & is not a product space, the random variables Y, and Y, are
stochastically dependent. The marginal p.d.f. of Y, is given by

g(y1) = ffw g1, Y2) Yo

If we refer to Figure 4.2, it is seen that

Y,
o) = [ $dya=y O<u<l
= 2-31%‘13/2:2_%, 1<y <2
y1—-2

= ( elsewhere.

In a similar manner, the marginal p-d.f. ga(y,) is given by
+2
galy2) = fyz ldy, =y + 1, -1<y. <0,
—Yz

— (" idy=1-9ys O<m<l

Y2

= 0 elsewhere.
Example 5. Let X, and X, be two stochastically independent random
variables that have gamma distributions and joint p.d.f.

Sl ) = F—(OTIF-@m‘{‘lxé‘le"‘l‘xz, 0<w <00 <z <00,

zero elsewhere, where o >0, 8> 0. Let Y, =X, + Xz. and Y, =
X./(X; + X,). Weshall show that Y, and Y, are stochastically independent.
The space & is, exclusive of the points on the coordinate axes, the first

quadrant of the »;z,-plane. Now

Y1 = #y (21, Xa) = T T T,
1

Ya = Ug(®1, T2) = m

may be written ; = Y1¥2, T2 = yi(1 — Yz), SO

Ya Yi

=—y, # 0.
1—-ys —% %

J=

The transformation is one-to-one, and it maps o/ onto & = {{y1, ¥a):
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0 <y, <o, 0 <y, <1} in the y,y,-plane. The joint p.d.f. of ¥, and Y,
is then

81 ¥2) = (41) m (1192)* y2 (1 — y2)]f " te™n

@—1(1 _ B-1
— &Iﬁ)__yg+ﬁ—le—yl, 0<y <00,0<y, <1,

= { elsewhere.

In accordance with Theorem 1, Section 2.4, the random variables are sto-
chastically independent. The marginal p.d.f. of Y, is

Y — ) T s,
g2(y2) = Z_FU«)—F(_%—_L yitE-le—vidy,,

T+,
= Tarp % ¢

= 0 elsewhere.

- yz)ﬂ_ly 0< Y2 < 1,

This p.d.f. is that of the beta distribution with parameters « and 8. Since
&(y1, ¥2) = g.(y1)g2(ys), it must be that the p.d.f. of Y is

1
gl(yl) = F(a ¥ /3) yi'”—l@_”l, 0< Y < O

= 0 elsewhere,

which is that of a gamma distribution with parameter values of « + 8 and 1.
It is an easy exercise to show that the mean and the variance of Y,,
which has a beta distribution with parameters a and 8, are, respectively,

p_:__a_, o2 = aﬁ .
a+ B (¢ + B+ D« + B)?

Example 6. Let Y, = 1(X; — X,), where X, and X, are stochastically
independent random variables, each being ¥%(2). The joint p.d.f. of X; and
X, is

1
fl@y) f(ze) = 7 exp ) ] 0<z <0,0 < 2, <00,
4 2
= () elsewhere.

Let Y, = Xysothaty; = (&, — @), Y = @a, OT 21 = 2y; + Ya, T3 = Yy
define a one-to-one transformation from & = {(x;, z;); 0 < x, < o0,
0 <z, <oolontoZ = {{yy, ¥2); —21 < yzand 0 < y,, —00 < y; < oo}
The Jacobian of the transformation is

2 1
J‘\o 1|=2'
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hence the joint p.d.f. of ¥, and Y, is

2
e v = e, Guyded

= 0 elsewhere.

Thus the p.d.f. of Y, is given by

&ly) = f:yl%e"’l‘”z dy, = 3",  —0 <4 <0,
- .[: JenVady, =37, 0=y <
or
gy) = 3¢, —0 <y <0

This p.d.f. is now frequently called the double exponential p.d.f.

Example 7. In this example a rather important result is established.
Let X, and X, be stochastically independent random variables of the
continuous type with joint p.d.f. fi(e:) fol@z) that is positive on the two-
dimensional space . Let Y, = u,(Xy), 2 function of X, alone, and
Y, = uy(X,), a function of X, alone. We assume for the present that
Y1 = uy(x,), Y2 = to(%y) define a one-to-one transformation from 2/ onto a
two-dimensional set & in the y,y,-plane. Solving for x, and x, in terms of
y, and y,, we have z; = w,(y,) and &y = w,(Ys), SO

w3 (Y1) 0

0 @}(y) = w1(y1)w2(y2) # 0.

J =

Hence the joint p.d.f. of Y; and Y, is

gy, ¥2) = f1[w1(?/1)]f2[w2(?/2)]lwll(?h)w’z(yz)l: (y1, y2) € %,
= 0 elsewhere.

However, from the procedure for changing variables in the case of one
random variable, we see that the marginal probability density functions
of Y, and Y, are, respectively, g.(y1) = fulws ()} wi(y:)| and ga(y2) =

falwa(y2)|wa(y2)| for y, and y2 in some appropriate sets. Consequently,

g1, ¥2) = £1(¥1)82Y2)-

Thus, summarizing, we note that, if X, and X, are stochastically independent
random variables, then Y, = #,(X;)and Y, = ug(X,) are also stochastically
independent random variables. It has been seen that the result holds if X,
and X, are of the discrete type; see Exercise 4.19.

Esample 8. In the simulation of random variables using uniform random
variables, it is frequently difficult to solvey = F(x) for z. Thus other methods
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are 'necessary. For instance, consider the important normal case in which we
desire to determine X so that it is #(0, 1). Of course, once X is determined,

other normal variables can then be obtained through X by the transformation
Z =0oX+ p.

. To simulate normal variables, Box and Muller suggested the follow-
ing .scheme. Let Y,, Y, be a random sample from the uniform distri-
bution over 0 < y < 1. Define X, and X, by

X; = (—2InY,)¥2 cos (2nY3),
X, = (—21n Y )2 sin (27Y ).

The corresponding transformation is one-to-one and maps {(y;, ¥2);
0 <y, <1,0 <y, < 1}onto {(x;, %;); ~0 < #; < 0, —00 < Ty < DO}
except for sets involving #; = 0 and z, = 0, which have probability
zero. The inverse transformation is given by

2 2
- (25,

1
Y, = ——arctan _a_:g.
2 z;

This has the Jacobian
x2 + 2 2 2
(~zpexp (-E2H)  (cm)exp (<2572

— Tgfat 1/2,
(2m)(1 + @3/a}) (2m)(1 + a3/=3)

—(1 + 28/a?) exp (_Z‘ijzr_x%) —exp (__x? + x%)
- 2
@m)(1 + x3/x3) B 27

Since the joint p.d.f.of Y;and Y,islon0 < y; < 1,0 < y, < 1,and
zero elsewhere, the joint p.d.f. of X, and X, is

exp (_w‘f’ er x%)

2 ’ —0 < Z; < 00, =00 < Zp < 0O.

That is,‘ X, and X, are stochastically independent random variables
each being #(0, 1). ,
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EXERCISES

4.20. Let X have the p.d.f. f(x) = 2?/9, 0 < # < 3, zero elsewhere. Find
the p.d.f. of Y = X3

4.21. If the p.d.f. of X is f(x) = 2we~**, 0 < x < o0, zero elsewhere,
determine the p.d.f. of Y = X2

4.22. Let X,, X, be a random sample from the normal distribution
#(0, 1). Show that the marginal p.d.f. of Y, = X /X, is the Cauchy p.d.f.

1

= ——— — < < 00.
gl(yl) 7T(1 + y%) o0 Y1

Hint. Let Y, = X, and take the p.d.f. of X, to be equal to zero at 2, = 0.
Then determine the joint p.d.f. of Y; and Y,. Be sure to multiply by the
absolute value of the Jacobian.

4.23. Find the mean and variance of the beta distribution considered in
Example 5. Hint. From that example, we know that

1 I'e)T
J, -y =

foralle > 0,8 > 0.

4.24. Determine the constant c in each of the following so that each f(x)

is a beta p.d.f.
(@) fl@) = cx(l — )3, 0 < 2 < 1, zero elsewhere.
(b) flx) = ex*(1 — x)%, 0 < = < 1, zero elsewhere.
(©) flx) = cx®(1 — 2)8, 0 < = < 1, zero elsewhere.

4.25. Determine the constant ¢ so that f(z) = cx(3 — 2)%, 0 < = < 3,
zero elsewhere, is a p.d.f.

4.26. Show that the graph of the beta p.d.f. is symmetric about the
vertical line through z = 1 if « = 8.

4.27. Show, for £ = 1, 2, ..., n, that

! ' k-1 n-k __k—l n x _ n—x,
|, e - ara = 3 (e - )

This demonstrates the relationship between the distribution functions of
the beta and binomial distributions.

4.28. Let X have the logistic p.d.f. f(x) = e */(1 + ¢ %)%, —c0 <z <o

{a) Show that the graph of f(x) is symmetric about the vertical axis
through = = 0.

(b) Find the distribution function of X. '

(c) Show that the moment-generating function M() of X is
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(1 —H'(1 +¢), —1 < ¢ < 1. Hint. In the integral representing M(t), let
y=(1+e -1

4.29. Let X have the uniform distribution over the interval (—7/2, =/2).
Show that Y = tan X has a Cauchy distribution.

4.30. Let X, and X, be two stochastically independent random variables
of the continuous type with probability density functions f(z,) and g(,),

respectively. Show that the p.d.f. A(y) of ¥ = X 1 + X, can be found by the
convolution formula,

wy) = [°_fly - wietw) dw.

4.31. Let X, and X, be two stochastically independent normal random
variables, each with mean zero and variance one (possibly resulting from a
Box-Muller transformation). Show that

Zl = + 0'1X1,
Zy = pg + pooX; + o,V 1 — p2X,,

where 0 < 04, 0 < 05, and 0 < p < 1, have a bivariate normal distribution
with respective parameters py, g, 02, o2, and p.

4.32. Let X, and X, denote a random sample of size 2 from a distribution
that is n(u, 0?). Let Y, = X, + X, and Y, = X; — X,. Find the joint
p.d.f. of Y; and Y, and show that these random variables are stochastically
independent.

4.33. Let X, and X, denote a random sample of size 2 from a distribution
that is n(u, o). Let Y; = X; + X, and Y, = X, + 2X,. Show that the
joint p.df. of Y, and Y, is bivariate normal with correlation coefficient

3/4/10.

4.4 The t and F Distributions

It is the purpose of this section to define two additional distributions
quite useful in certain problems of statistical inference. These are called,
respectively, the (Student’s) ¢ distribution and the F distribution.

Let W denote a random variable that is n(0, 1); let V denote a
random variable that is x2(); and let W and V be stochastically
independent. Then the joint p.d.f. of W and V, say ¢(w, v), is the

product of the p.d.f. of W and that of V or
p(w, v) = L w1

ri2—1,—v/2 _
Vo _—*—_F(r/Z)ZWv e V2, 0 <w<w,0<v< o,

= 0 elsewhere.
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Define a new random variable T by writing
w
= \/7/7
The change-of-variable technique will be used to obtain the p.d.f. g;(¢)
of T. The equations

w

Vofr
define a one-to-one transformation that maps & = {(w, v); —© <w
<0,0 <v<wontoB = {(tu); —0 <t<w®0<u< co}. Since
w = tVu/V7, v = u, the absolute value of the Jacobian of the trans-

formation s | J| = Vu/V7. Accordingly, the joint p.d.f. of Tand U =
V is given by

t = and U =1

et = o2 )17

—ww<t<o,0<u <0,

= 0 elsewhere.

The marginal p.d.f. of T is then

) = ffwga, u) du

2
_———— yrt D2 exp [ z (1 + d )] au.
«/zmr(y/z)zr/2 2

In this integral let z = u[1 + (#/7)]/2, and it is seen that

@ 1 22 r+1)/2-1 2
t) = o ( 3 ) 3—2(—————1 t2 )dZ
! o V2mT(r[2)212 \1 + &1 + Bfr

_ I + 1)/2] 1 e
B \/771:11(7/2) (r+ t2/7)(r+1)/2

Thus, if W is #(0, 1), if V is x3(#), and if W and V are stochastically
independent, then

w

Tz\/VTr
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has the immediately preceding p.d.f. g;(#). The distribution of the ran-
dom variable T is usually called a ¢ distribution. It should be observed
that a ¢ distribution is completely determined by the parameter 7, the
number of degrees of freedom of the random variable that has the
chi-square distribution. Some approximate values of

(T <9 f g1(w

for selected values of # and £, can be found in Table IV in Appendix B.
Next consider two stochastically independent chi-square random
variables U and V having 7, and 7, degrees of freedom, respectively.
The joint p.d.f. p(#, v) of U and V is then
1

Pl ) = i e T e,

O<u<o,0<9v<o0,
= 0 elsewhere.

We define the new random variable

U,
T Vir,
and we propose finding the p.d.f. g,{f) of F. The equations
_un
f= ” /72 2=,
define a one-to-one transformation that maps the set & = {(u, v)
0 <u < 00,0 < v < oo}onto the set Z = {(f, 0<f<ooO<z

< w}. Since u = (r,/7y)zf, v = z, the absolute Value of the Jacobian of
the transformation is |J| = (r4/r,)z. The joint p.d.f. g(f, z) of the
random variables F and Z = V is then

r1/2—-1
glf, ) = ! (7_Zf) -

T2 a2 2o \ 7,
71f 4%
<o |5 (1) |5
provided that (f, 2) € &, and zero elsewhere. The marginal p.d.f. g,(f)

of F is then
alf) = [7 alf 9

I L A7 i V) i R [ 2 (rf
"L T(r: /2T (rgf2) 27 2 © xp ‘é(“‘*‘ 1)] az.
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If we change the variable of integration by writing

it can be seen that

2 (ryfra)P(f)2 1 2y ri+raiz-1
e
f o T(rif2)T(r5[2)20: 471 (11 flrs + 1 )

&lf) =

x (mf‘ﬁ) %

Tl(r, + 72)2rafra)s2  (fa21 0<f<oo,

T 2T(af2) (1 + 7o fjr) 0 2%

= 0 elsewhere.

Accordingly, if U and V are stochastically independent chi-square
variables with 7, and r, degrees of freedom, respectively, then

_ Ulry

" Virg
has the immediately preceding p.d.f. g;(f). The distribution of this ran-
dom variable is usually called an F distribution. It should be observed

that an F distribution is completely determined by the two parameters
7, and 7,. Table V in Appendix B gives some approximate values of

Pr(F < f) = [ g:w) dw

for selected values of 7,, 75, and f.

EXERCISES

4.34. Let T have a ¢ distribution with 10 degrees of freedom. Find
Pr (|T| > 2.228) from Table IV.

4.35. Let T have a ¢ distribution with 14 degrees of freedom. Determine
b so that Pr (—b < T < b) = 0.90.

4.36. Let F have an F distribution with parameters 7, and 7,. Prove that
1/F has an F distribution with parameters 7, and 7,.

4.37. If F has an F distribution with parameters#, = 5 and 7, = 10, find
a and b so that Pr (F < a) = 0.05 and Pr (F < b) = 0.95, and, accordingly,
Pr(a < F < b) = 090. Hint. Write Pr(F <a) = Pr (1/F = 1/a) =
1 — Pr (1/F < 1/a), and use the result of Exercise 4.36 and Table V.
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4.38. Let T = W/V/V]r, where the stochastically independent variables
W and V are, respectively, normal with mean zero and variance 1 and
chi-square with 7 degrees of freedom. Show that 72 has an F distribution
with parameters 7, = 1 and #, = r. Hint. What is the distribution of the
numerator of 72?

4.39. Show that the ¢ distribution with » = 1 degree of freedom and the
Cauchy distribution are the same.

4.40. Show that

1

Y= 1+ ("1/"2)F’

where F has an F distribution with parameters , and 7,, has a beta distri-
bution.

4.41. Let X,, X, be arandom sample from a distribution having the p.d.1f.
flx) = e % 0 <z < o0, zero elsewhere. Show that Z = X,/X, has an F
distribution.

4.5 Extensions of the Change-of-Variable Technique

In Section 4.3 it was seen that the determination of the joint p.d.f.
of two functions of two random variables of the continuous type was
essentially a corollary to a theorem in analysis having to do with the
change of variables in a twofold integral. This theorem has a natural
extension to n-fold integrals. This extension is as follows. Consider an
integral of the form

J.";'f‘?’(xl' Zg, o .., Xy) Ay dxy - - - dx,,
taken over a subset 4 of an #-dimensional space .&/. Let
Y1 = Uy (2y, Zg, . - ., Tp), Yo = Ug(Zy, Tg, o .o, Tp), - - o)
Yn = Un(T1, - - -, Tn),
together with the inverse functions
2y = ©1(Y1, Y2 -5 Yn)y %2 = WY1, Yo s Yn)s e e s
Ty = ©n(Y1, Y2, - - Yn)

define a one-to-one transformation that maps &/ onto # in the
Y1, Y2, - - -» Yn SPace (and hence maps the subset 4 of &/ onto a subset B
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of B). Let the first partial derivatives of the inverse functions be con-
tinuous and let the # by # determinant (called the Jacobian)

oy om0
oy, 0y, 0Yn
0z, 0%y oxy

J= oy, 29 Oyn

ox, oz, oz,

5?1_1 %2 N Yn
not vanish identically in #. Then

J..A.f¢(x1, Xg, . .y Ty) dXy A2y - - - d,

= IB f<P[w1(?/1, L] yn)r w2(y1: RN yﬂ)’ L] wn(yl’ e yn)]
x |J| dysdys - - - W

Whenever the conditions of this theorem are satisfied, we can determine
the joint p.d.f. of » functions of # random variables. Appropriate
changes of notation in Section 4.3 (to indicate n-space as opposed to
2-space) is all that is needed to show that the joint p.d.f. of the random
variables Y, = (X1, Xg, - - -, Xp), Yo = 4g(X3, Xg, .., Xp), oo, Yy =
U (X1, Xg, ..., X;)—where the joint p.d.f. of X, X5 ..., Xy 18
oy, - - ., T,)—is given by

g(ylr Yo -« +» yn) = l]lq’[wl(yl: L] yn)’ cet wn(yh cec yn)]»

when (¥, Y, - - -» Yn) € %, and is zero elsewhere.

Esample 1. Let X, X,, ..., X;,, be mutually stochastically indepen-
dent random variables, each having a gamma distribution with g = 1. The
joint p.d.f. of these variables may be written as

kE+1
1 & —1,-x
Ty, Loy ey T = xs e %, 0 <z < o0,
(P( 1 2 k+1) ]_]1 F(a,) i i
= 0 elsewhere.
Let
Y, X, i1=1,2,...,k

TX ot Xg ¥ Xt
and Yy, = X, + X, + -+ X,y denote %k + 1 new random variables.
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The associated transformation maps & = {(y,..., @x41); 0 < 2, < 0,
+=1,..., 8 + 1} onto the space

g={(y1)---:yk,yk+1);0<yi,1:= 1,...,k,
Y +"'+yk< 1,0<y,¢+1<00}.

The single-valued inverse functions are #;, = ¥1¥ki1, -+ T = Yile+1»
Trp1 = Yes1(l — y3 — - - — y,), so that the Jacobian is
Yeor O -0 "
0 Yesr - 0 Y2
J= : : : : = ?/ﬁ+1'
0 0 T Yie+1 Y
“Yet1 ~Ye+1 0 —Yke1r (L= = — Y

Hence the joint p.d.f. of Y,, ..., Y,, Y, , is given by
A Rl e R o et
Play) - - Toge) (et 1) ’

provided that (yy, ..., ¥y, ¥x+1) € Z and is equal to zero elsewhere. The joint
p.d.f. of Y,,..., Y, is seen by inspection to be given by

T+ o) oy -1 @y -1
g(yl"'wyk) = F(“l)"'P(ak+1) Y1t "'ygk (1 — Yy yk) k+1o 0,

when 0 <y,i=1,...,k y; +---+ y. < 1, while the function g is equal
to zero elsewhere. Random variables Y, ..., Y, that have a joint p.d.f. of
this form are said to have a Diricklet distribution with parameters oy, ...,
o, 041, and any such g(y,, ..., y,) is called a Dirichlet p.d.f. It is seen, in
the special case of % = 1, that the Dirichlet p.d.f. becomes a beta p.d.f.
Moreover, it is also clear from the joint p.d.f. of Y,,..., Y,, Y, that
Y, .1 has a gamma distribution with parameters «; +---+ e + oy, and
B = 1 and that Y, is stochastically independent of Y, Y, ..., Y;.

We now consider some other problems that are encountered when
transforming variables. Let X have the Cauchy p.d.f.

1
fl@) = m’

and let Y = X2 We seek the p.d.f. g(y) of Y. Consider the trans-
formation y = 22, This transformation maps the space of X, & =
{x; —0 < x < o0}, onto # = {y; 0 < y < oo}. However, the transfor-
mation is not one-to-one. To each y € &, with the exception of y = 0, there
correspond two points « € &. For example, if y = 4, we may have either
z = 2 or z = —2. In such an instance, we represent &/ as the union of
two disjoint sets 4, and 4, such that y = 2? defines a one-to-one trans-

—0 < X < 0,
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formation that maps each of A; and 4, onto 4. If we take A, to be
{x; —0 < & < Oyand 4, tobe {x;0 < = < o}, we see that A, is mapped
onto {y; 0 < y < oo}, whereas A, ismapped onto {y; 0 < ¥ < co}, and
these sets are not the same. Our difficulty is caused by the fact that
« — 0is an element of &7, Why, then, do we not return to the Cauchy
p.d.f. and take f(0) = 0? Then our new o is o = {—o0 < x < oo but
x # 0}.WethentakeA1 ={x; —0 <z < O}_a_md./l2 = {z;0 < & < 00}.
Thus y = %, with the inverse z = — vy, maps A, onto # =
{y; 0 <y < oo} and the transformation is one-to-one. Moreover, the
transformation y = «?, with inverse = = Vy, maps 4, on'to ZB =
{y;0 <y < oo} and the transformation is one-to-one. Consider the
probability Pr (Y € B), where B < B Let Ay = {x; 0 = —Vy,y€ B}
c A, and let A, = {z;@ = Vy,y€ B} < 4, Then Y e B when and
only when X € Ay or X € 4,. Thus we have

Pr(YeB) = Pr(Xedy) + Pr(Xedy)
= [, f@) dz + jh f(@) de.

In the first of these integrals, let z = — v/y. Thus the Jacobian, say [,
is — 1/2\/3—/; moreover, the set A, is mapped onto B. In the second
integral let @ = 4/y. Thus the Jacobian, say Ja, is 1/2Vy; moreover,
the set A, is also mapped onto B. Finally,

Pr(YeB) = f

< B

H-Va| gz + [ 1070 3

~ |
= - — dy.
= [ U=Va) + 10V 5 =
Hence the p.d.f. of Y is given by

gW) = 5:7;

With f(z) the Cauchy p.d.f. we have
1

gly) = vy

0 elsewhere.

[f(—VY) +f(Vy)], yeB.

0 <y <o,

In the preceding discussion of a random variable of the continuous

type, we had two inverse functions, # = —Vy and z = Vy. That is
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why we sought to partition .27 (or a modification of .27) into two disjoint
subsets such that the transformation y = 22 maps each onto the same
2. Had there been three inverse functions, we would have sought to
partition o/ (or a modified form of /) into three disjoint subsets,
and so on. It is hoped that this detailed discussion will make the follow-
ing paragraph easier to read.

Let ¢(,, %, . . ., #,) be the joint p.d.f. of X, X,, ..., X,, which are
random variables of the continuous type. Let &7 be the n-dimensional
space where ¢(x;, %5, ..., 2,) > 0, and consider the transformation
Y1 = Uy (T, Tay o, Tn), Yo = Ua(Ty, Tg, v -, %), oo o Y = Uy, Zgy - ., X)),
which maps & onto & in the y;, ¥s, - . ., ¥, space. To each point of &
there will correspond, of course, but one point in #; but to a point in
2% there may correspond more than one point in 7. That is, the trans-
formation may not be one-to-one. Suppose, however, that we can
represent o7 as the union of a finite number, say %, of mutually disjoint
sets Ay, Ag, ..., Ay so that

Y1 = U (X1, Loy oo oy Zp)s e e o, Yp = Uy(Tqy, oy .. ., Xy)
define a one-to-one transformation of each A, onto #. Thus, to each
point in & there will correspond exactly one point in each of 4,, 4,,
oAy Let
r = wll(yl’ Yo - - - yn):

Ty = w2l(y1: Yoy« oo yn);

Ty = wni(yl’ Ya, - -« yn);

denote the & groups of # inverse functions, one group for each of these %
transformations. Let the first partial derivatives be continuous and let
each

ow,; 0wy 0wy,
Owg; Jwgy  Owy
Jo= | e | i1 %
ow,; Owy, 0wy,
oy Bys oy

be not identically equal to zero in #. From a consideration of the prob-
ability of the union of £ mutually exclusive events and by applying the
change of variable technique to the probability of each of these events,
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it can be seen that the joint p.d.f. of Y, = uy(Xy, .Xz,-. LX), Yo =
(X1, Xap oo or Xn)so oo Y, = (X1, Xoy oo X,), is given by

k
= . v, Wai(Yrs - Yn))s
g(yl: Yo -+ > yn) - igl l]i‘?[wli(ylx ERA ] yn): m(yl n

provided that (y1, ¥a, - - -» y,) € B, and equals zero elsewhere. The p.d.f.
of any Y, say Y, 1is then

gilys) = Jiﬂ . fiowg(yl, Yoo -+ or Yn) W2 - AYn-

An illustrative example follows.

Example 2. To illustrate the result just obtai'neq, ta'ke n = 2 ang llet
X,, X, denote a random sample of size 2 from a distribution that is #(0, 1).
The joint p.d.f. of X, and X, is

[y, ) = -zl;exp (—ﬁ——_‘_—zxg), —00 < @y < 00, —00 < ¥y < 0.
Let Y, denote the mean andlet Y, Flenf)te twice the variance of the random
sample. The associated transformation 1s

x1+x2
= ———

Y1 = 2

D
Ya = 2

; - o
This transformation maps & = {(z1, %g); —00 < &y < 00, —®© <f %o <t. }
onto B = {(y1, Ya); —© < Y1 < 0, 0 < y, < ). But the tran§ ormation
is not one-to-one because, to each point in %, exclusive of pomts‘where
y, = 0, there correspond two points in &. In fact, the two groups of inverse
2 —

functions are -
7 Ya
n=9- % ”2=y1+~/2’

and

" Y
x1=?/1+A/% x2=y1—J7-

Moreover, the set &/ cannot be represented as the union of two dis.jomt1 set§,
each of which under our transformation maps onto 4. Ou'r d.1fﬁcu iy is
caused by those points of & that lie on the line whose equa’uor;1 is &y = xli
At each of these points we have y, = 0. However, v've c‘an de nle f ‘(xl, tx;

to be zero at each point where ; = Zs. We can do this without a teil'ng Oe
distribution of probability, because the probability measure of this set is Z(:: t
Thus we have a new & = {(%y, €a); —© < &1 < %, —o < Xy < 00, bu
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#; # x,}. This space is the union of the two disjoint sets 4; = {(zy, z);

z, > 24} and A, = {(x,, z,); x; < x;}. Moreover, our transformation now
defines a one-to-one transformation of each 4,, ¢ = 1, 2, onto the new Z =
{{y1, ¥2); —0 < ¥; < 0, 0 < y, < 00}. We can now find the joint p.d.f., say
&(y1, ¥o), of the mean Y, and twice the variance Y, of our random sample. An

easy computation shows that |J;| = |J.| = 1/V2y,. Thus

gy, y3) = %Texp [_(?/1 - ;/?12/2)2 (it \/y2/2)2] 1

2 Vo
1 G+ V2?5 — V2?1
+ on oXP [‘ 2 - 2 ] V2,

2 1
= [ emvi—— yli2-1,-uyi2 —00 < < 00,0 < < o0.
A/z‘”_ '\/2]_—‘(%) Ya Y1 Yz
We can make three interesting observations. The mean Y, of our random
sample is #(0, ); Y ,, which is twice the variance of our sample, is ¥*(1); and
the two are stochastically independent. Thus the mean and the variance of
our sample are stochastically independent.

EXERCISES

442, Let X,, X,, X; denote a random sample from a normal distribution
7n(0, 1). Let the random variables Y,, Y,, Y be defined by

X, =Y, c08 Yysin Yy, X, =Y,sin Y,sin Y,, X;=Y,co8Y,,

where 0 < Y, <0,0< Y, <27 0< Y; <o Showthat Y, Y,, Y;are
mutually stochastically independent.

4.43. Let X, X,, X; denote a random sample from the distribution
having p.d.{f. f(z) = 7%, 0 < < o™, zero elsewhere. Show that

X,

_ 1 X1+X2
1TX, + X,

Y ==,
X+ X + X

Y, Yo=X; + X, + X5

are mutually stochastically independent.

4.44. Let X, X,,..., X, be » mutually stochastically independent
gamma variables with parameters ¢ =« and B=1 ¢=12,...,7,
respectively. Show that Y, = X; + X, +--- + X, has a gamma distribu-
tion with parameterse = o; +-+-+ e,and B = 1. Hint. Let Y, = Xy + - - -
+ X, Y =X;+---+X,...,Y, =X,

4.45. Let Y,,...,Y, have a Dirichlet distribution with parameters

Cgy e v oy Oy Qg g
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(a) Show that Y, has a beta distribution with parameters « = «; and
B=as+ -+ ey

(b) Show that Y; +.--4+ Y, <k, has a beta distribution with
parameters « = oy +---+ o, and B = o, 1+ 4 oy

(c) Show that ¥, + Y,, Y; + Y,, Y;,..., Y,, £ = 5, have a Dirichlet
distribution with parameters «; + oy, 05 + oy, o, - - ., 0y, o4 1. Hint. Recall
the definition of Y, in Example 1 and use the fact that the sum of several
stochastically independent gamma variables with 8 =1 is a gamma
variable (Exercise 4.44).

4.46. Let X,;, X,, and X; be three mutually stochastically independent
chi-square variables with 7y, 7,, and 7; degrees of freedom, respectively.

(a) Show that Y, = X;/X, and Y, = X, + X, are stochastically
independent and that Y, is 2(»; + 7).

(b) Deduce that

Xy Xafrs
and
Xofr, Xy + Xo)/lry + 79)

are stochastically independent F variables.

447. If f(x) = 1, —1 < & < 1, zero elsewhere, is the p.d.f. of the random
variable X, find the p.df. of ¥ = X2

4.48. If X,, X, is a random sample from a distribution that is #(0, 1),
find the joint p.d.f. of Y, = X% + X3 and Y, = X, and the marginal p.d.f.
of Y,. Hint. Note that the space of Y, and Y, isgiven by —vy; < y2 < V',
0 <y < o0

4.49. If X has the p.d.f. f(z) = L, —1 < x < 3, zero elsewhere, find the
p.df. of Y = X2 Hint. Here & = {y; 0 < y < 9} and the event Ye B is
the union of two mutually exclusive events if B = {y; 0 < y < 1}.

4.6 Distributions of Order Statistics

In this section the notion of an order statistic will be defined and
we shall investigate some of the simpler properties of such a statistic.
These statistics have in recent times come to play an important role in
statistical inference partly because some of their properties do not
depend upon the distribution from which the random sample is obtained.

Let X, X,, ..., X, denote a random sample from a distribution of
the continuous type having a p.d.f. f(x) that is positive, provided that
a < x < b. Let Y, be the smallest of these X,, Y, the next X, in order
of magnitude, ..., and Y, the largest X,. Thatis, Y, < Y, <.-- < Y,
represent X, X,,..., X, when the latter are arranged in ascending
order of magnitude. Then Y,, 2 =1, 2,..., n, is called the ¢th order
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stati'st.ic of the random sample X 1 Xg, ..., X,. It will be shown that
the joint p.d.f. of Y, ¥, ..., Y, is given by

(1) 8WL Yo yn) = ) f W) f () - - fly,),
<Y <Y< <y, <b

= 0 elsewhere.

We shall prove this only for the case n = 3, but the argument is seen to
be entirely general. With # — 3, the joint p.df. of X,, X, X. is
S @) f(ws) f(%3). Consider a probability such as Pr (s < X1 ’ = 2),( <3 b
a < X3 < b). This probability is given by ' ’ ,

L 2 2 r@ twa) f o) da, dog dog = o,

since

[0 (@) any

is defined in calculus to be zero. As has been pointed out, we may
without altering the distribution of X, X, X3, define the j’oint p.d f’
J(@) f(xa) fms) to be zero at all points (x;, ,, ;) that have at l;ea.si;
two of their coordinates equal. Then the set <, where f(x,) f(x,) f (5)
> 0, is the union of the six mutually disjoint sets: i

Ay = {(z1, 25, T3)a < X < x;y < z3 < b},
A4, {(xp X, %3); a4 < Ty < Xy < 23 < b},
Ag = {(xy, 2, Zg);a < X < @y < %y < b},
Ay = {(z1, 2y, Za);a < Xy < @y < %y < b},
Ag = {(xy, 25, Tg);a < Xz < Ty < @y < b},
AG = {(xl’ Ly, xs),ﬂ <3 < Xy < x; < b}

There are six of these sets because we can arrange Z,, ¥,, ¥, in precisely
3!' = 6 ways. Consider the functions Y1 = minimum of x,, %, x,; y, =
middle in magnitude of z,, Ty, Z3; and y; = maximum of 9;1, 9’32 2x .
These functions define one-to-one transformations that map eacil gf
Ay, Ay, ..., Ag onto the same set F — {1, Y2 ¥5); 0 < 9y < 9, <
Y3 < b}. The inverse functions are, for points in 4,, xy = Yy, &y =2y
Z3 = Y3, for points in A,, they are z; = y,, z, = Y1, T3 = y5; and 52(;
on, for each of the remaining four sets. Then we have that

J1=

S O -
S = o

0
0l=1
1
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and
010
Ja=1|1 0 0]=-1.
001

It is easily verified that the absolute value of each of the 3! = 6
Jacobians is +1. Thus the joint p.d.f. of the three order statistics
Y, = minimum of X, X,, X;; Y, = middle in magnitude of X,, X,, Xj;
Y3 = maximum of X,, X,, X;is

81 Y2, y3) = | Jolf W) flw2)fya) + | Telf(wa) flyd) flys) +- -
+ | Jel flys) fly2) f 1), a <y <Yy <ys<b,

= 3Nfl)flya)flys), a <y <ys<ys<Dd,
= 0 elsewhere.

This is Equation (1) with # = 3.

In accordance with the natural extension of Theorem 1, Section 2.4,
to distributions of more than two random variables, it is seen that
the order statistics, unlike the items of the random sample, are sto-
chastically dependent.

Example 1. Let X denote a random variable of the continuous type with
a p.d.f. f(x) that is positive and continuous provided that ¢ < # < b, and is
zero elsewhere. The distribution function F(z) of X may be written

Fla) = f:f(w) dw, a<zx<ob

Ifx <a, F(x) = 0; and if b < z, F(x) = 1. Thus there is a unique median
m of the distribution with F(m) = 1. Let X,, X,, X; denote a random
sample from this distribution and let Y, < Y, < Y, denote the order
statistics of the sample. We shall compute the probability that Y, < m.
The joint p.d.f. of the three order statistics is

W1, Y2 ¥s) = 6f (W) f (W) flys), a <y <y2<ys<b,
= 0 elsewhere.

The p.d.f. of Y, is then

hys) = 6w [, [ £ flws) dys dys,

= 6f(yo) F(ya)[1 — Flya)l, a<ya<b,
= ( elsewhere.
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Accordingly,
m
Pr (Ys < m) = 6 [ (Flya) f(y) — [F(y2))%(y)} dys

i {[F(zznz _ [F(?;z)]a}'" 1

a

The procedure used in Example 1 can be used to obtain general
formulas for the marginal probability density functions of the order
statistics. We shall do this now. Let X denote a random variable of the
continuous type having a p.d.f. f(z) that is positive and continuous,
provided that @ < « < b, and is zero elsewhere. Then the distribution
function F(z) may be written

F@)=0, =<a,
= f:f(w)dw, a<x<b,
= i, b <a.
Accordingly, F'(z) = f(z), a < z < b. Moreover, if a < & < b,
1 - F(x) = F(b) — F(z)
= [\ f(w) do — |7 flw) dwo
= |, /) dw.

. L'et ).(1’ Xs, ..., X, denote a random sample of size # from this
distribution, and let Y,, Y,, ..., Y, denote the order statistics of this
random sample. Then the joint p.d.f. of Y,, Y,, ..., Y, is

g(yl:y2:-":yn) = n'f(yl)f(y2)f( n): <Y <Yy < <Y, < b’

= (0 elsewhere,

It will first be shown how the marginal p.d.f. of Y, may be expressed in
terms of the distribution function F(z) and the p.d.f. f(x) of the random
variable X. If ¢ < g, < b, the marginal p.d.f. of Ya 1S given by

gl = [ [ [0 [Pt £ ) f o) £ () dy dy s - -dys_,
= [ (2 1) dys) Fwe) £ w) dya- - -y,

= e [ Pl ) S ) dys- - -y,
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since F(z) = [ f(w) dw. Now

Y3 - -
J F(y5)f(y2) 4y _L (yz )]

a

[F(ya)]z
==
since F(a) = 0. Thus
o) = [ f FGE ). fy) dys - dgn-s.
But
v [F(ys)]? [F(ys)]® il [F(i‘/4)]3,
L W) s =5 3| T3
SO

(y4) S W) AYs - Y1

gl = [ [t

If the successive integrations on ¥, . .., Y, are carried out, it 1s seen
that

F " n-1
guly) = w2 fl)

= M’[F(yn)]n_lf(yn): a < Yy < br
= 0 elsewhere.

It will next be shown how to express the marginal p.d.f. of ¥, in
terms of F(z) and f(z). We have, fora < g, < b,

s =[ [ [ jy“n'fylf(yz) [ ) Ay -1 -2

- .L/1 fyn SJ.yn 2n‘fy1 )

f(yn 1)[1 - (yn—l)] dyn—l e dy2'
But

(1 = F(Yn-)1fWn-1) Wn-1 = — 2

Yn -
Yn-2 n-2

f" [l — Fy.-9*f

_ [1 — F(yn—z)]2’
- 2
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so that
(1 — Fly,_q))?
1(#:) f f nf(Ys) - f(Yn-o) —-—z(y"—z)]-dyn-z- *-dys.

Upon completing the integrations, it is found that

gi1(y1) = n[l — Fy)1" Y (y.), a <y, <b,
= 0 elsewhere.

Once it is observed that

[[trer—ye do - EE9E a0
and that
f [1 — F(w)]*~f(w) dw [1 —;"(y)]'g’ B >0,

it is easy to express the marginal p.d.f. of any order statistic, say Y,
in terms of F(x) and f(x). This is done by evaluating the integral

= [ ) f ) g
QY1 Y1 W1

The result is

n!

(2) gk(yk) = (k _ 1)| (n _ k)' [F(yk)]k_l[l - F(yk)]n_kf(yk);

a <y, <b,
= 0 elsewhere.

Example 2. Let Y, < Y, < Y; < Y, denote the order statistics of a
random sample of size 4 from a distribution having p.d.f.

fley=2x, O<z<l,

= () elsewhere.

We shall express the p.d.f. of Y in terms of f(x) and F(x) and then compute
Pr (3 < Y,). Here F(x) = 2, provided that 0 < = < 1, so that

4!
gs(ys) = 1t #3)%(1 — 93)(2ys), 0<y; <1,

= 0 elsewhere.
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Thus

Pr(} <Y, = J.Izga(ya) dys

1

1
= [} 24068 — vh) dyo = 385
1/2

Finally, the joint p.d.f. of any two order statistics, say Y; < Y, is
as easily expressed in terms of F(z) and f(z). We have

gy ¥5) = f: : f:z _[:: i L: : 'f;_l n! fyy) -

Yj-2
f(ys) ayn- - QY1 WY1 Y1 WY1 Yoy
Since, for y > 0,

[Fly) — F@)]"|’
Y z

fwm—mewwM=—

it is found that

n!
Q) &y = GG —3—)n- i)

x [Fly))}~[Fly) — Fly)y ~ "1 = Fl;)* ) f )

fora < y; < y; < b, and zero elsewhere.

Remark. There is an easy method of remembering a p.d.f. like that given
in Formula (3). The probability Pr (y; < Y; < % + ALy, < Y; < Y + A']-),
where A, and A, are small, can be approximated by the following multinomial
probability. In # independent trials, s — 1 outcomes must be less than y, (an
event that has probability p, = F(y;) on each trial); j — ¢ — 1 outcomes
must be between y; + A; and y; [an event with approximate probability
ps = Fly,) — F(y;) on each trial]; » — j outcomes must be greater than
y; + A, (an event with approximate probability pg =1 — F (:yj) on eac.h
trial); one outcome must be between y; and y; + A, (an event with approxi-
mate probability p, = f(y:)A; on each trial); and finally one .0}1tcorne must be
between y; and y; + A, [an event with approximate probability ps = Fly)A;
on each trial]. This multinomial probability is

n!

G-DG - D —J)

which is g(y,, v} Al

T PR TR Pabs,
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Certain functions of the order statistics Y, Y,, ..., Y, are important
statistics themselves. A few of these are: (a) Y, — Y, which is called
the range of the random sample; (b) (Y, + Y,)/2, which is called the
midrange of the random sample; and (c) if # is odd, Y, 1y, Which is
called the median of the random sample.

Example 3. Let Y,, Y,, Y3 be the order statistics of a random sample of
size 3 from a distribution having p.d.f.

f@y=1 O0<=z<l,

= 0 elsewhere.

We seek the p.d.f. of the sample range Z; = Y3 — Y,. Since F(z) = =,
0 < z < 1, the joint p.d.f. of Y, and Y;is

€131, ¥s) = 6(ys — ¥1), 0<y,<ys<1,
= 0 elsewhere.

In addition to Z, = Y3 — Y,, let Z, = Y;. Consider the functions z; =

Ys — Y1, 23 = Y3, and their inverses y, = 2z, — 2;, Y3 = 2,, so that the
corresponding Jacobian of the one-to-one-transformation is

% O
0z, 0Oz -
J= 1 2| _ | 1 1' -1
% %, 01
0z; 0z,
Thus the joint p.d.f. of Z, and Z, is
h(zl, 22) = I—1|6zl = 6Z1, 0 < 21 < ZZ < 1.

= 0 elsewhere.

Accordingly, the p.d.f. of the range Z; = Y; — Y, of the random sample of
size 3 is

ha(z) = fll b2, dzy = 65,(1 — 2,), 0 <z <1,

= () elsewhere.

EXERCISES

4.50. LetY, < Y, < Y; < Y, bethe order statistics of a random sample
of size 4 from the distribution having p.d.f. f(z) = ¢7%, 0 < z < o0, zero
elsewhere. Find Pr (3 < Y,).

4.51. Let X,, X,, X; be a random sample from a distribution of the
continuous type having p.d.f. f(z) = 22,0 < 2 < 1, zero elsewhere. Compute
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the probability that the smallest of these X, exceeds the median of the
distribution.

452, Let f(z) =%, =1,2,3,4, 5, 6, zero elsewhere, be the p.d.f. of a
distribution of the discrete type. Show that the p.d.f. of the smallest item of
a random sample of size 5 from this distribution is

7 — 5 6 — 5
gl(yl) = ( 6y1) - (—6_y1) 3 Y, = 1, 2,...,6,

zero elsewhere. Note that in this exercise the random sample is from a
distribution of the discrete type. All formulas in the text were derived under
the assumption that the random sample is from a distribution of the
continuous type and are not applicable. Why?

453. Let Y, < Y, < Y3 < Y, < Y, denote the order statistics of a
random sample of size 5 from a distribution having p.d.f. f(z) = ¢~7,
0 < z < o0, zero elsewhere. Show that Z;, = Y, and Z, = Y, — Y, are
stochastically independent. Hint. First find the joint p.d.f. of Y; and Y,.

454. Let YV, < Y, <---< Y, be the order statistics of a random
sample of size # from a distribution with p.d.f. f(x) =1, 0 <& < 1, zero
elsewhere. Show that the kth order statistic Y, has a beta p.d.f. with param-
etersa = kand B =»n —k + L.

4.55. Let Y, < Y, <---< Y, be the order statistics from a Weibull
distribution, Exercise 3.38, Section 3.3. Find the distribution function and
p.df of YV,.

4.56. Find the probability that the range of a random sample of size 4
from the uniform distribution having the p.d.f. f(x) =1, 0 < x < 1, zero
elsewhere, is less than 4.

4.57. Let Y, < Y, < Y, be the order statistics of a random sample of
size 3 from a distribution having the p.d.f. f(z) = 22, 0 < = < 1, zero
elsewhere. Show that Z, = Y,/Y,, Z, = Y,/Y;, and Z3 = Y, are mutually
stochastically independent.

4.58. If a random sample of size 2 is taken from a distribution having
p.df. f(x) = 2(1 — 2), 0 < = < 1, zero elsewhere, compute the probability
that one sample item is at least twice as large as the other.

4.59. Let Y, < Y, < Y, denote the order statistics of a random sample
of size 3 from a distribution with p.d.f. f(z) = 1,0 < & < 1, zero elsewhere.
Let Z = (Y, + Y3)/2 be the midrange of the sample. Find the p.d.f. of Z.

4.60. Let Y, < Y,denote the order steltistics of a random sample of size 2
from 7(0, o2). Show that E(Y,) = —o/Vw. Hint. Evaluate E(Y,) by using
the joint p.d.f. of Y, and Y, and first integrating on ;.

4.61. Let Y, < Y, be the order statistics of a random sample of size 2
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from a distribution of the continuous type which has p.d.f. f(z) such that
f(x) > 0, provided z > 0, and f(x) = 0 elsewhere. Show that the stochastic
independence of Z;, = Y, and Z, = Y, — Y, characterizes the gamma p.d.f.
f(z), which has parameters « = 1 and 8 > 0. Hiui. Use the change-of-
variable technique to find the joint p.d.f. of Z, and Z, from that of Y; and
Y,. Accept the fact that the functional equation A(0)a(z + y) = Alx)h(y)
has the solution A(x) = c¢,€%%, where ¢; and ¢, are constants.

4.62. Let Y denote the median of a random sample of size n = 2k + 1,
k a positive integer, from a distribution which is #(u, 6?). Prove that the
graph of the p.d.f. of Y is symmetric with respect to the vertical axis through
y = p and deduce that E(Y) = p.

4.63. Let X and Y denote stochastically independent random variables
with respective probability density functions f(z) = 2z, 0 < 2 < 1, zero
elsewhere, and g{y) = 3y?% 0 < y < 1, zero elsewhere. Let U = min (X, Y)
and V = max (X, Y). Find the joint p.d.f. of U and V. Hint. Here the two
inverse transformations are given by x = u, y = vand ¢ = v, y = u.

4.64. Let the joint p.d.f. of X and Y be f(z, y) = YPx(zx + ),0 < z < 1,
0 <y <1, zero elsewhere. Let U = min (X, Y) and V = max (X, Y).
Find the joint p.d.f. of U and V.

4.65. Let X, X,,..., X, be a random sample from a distribution of
either type. A measure of spread is Gint's mean difference

é- 3, 2 %= mif()

10
(a) Ifn = 10,find ay, a4y, ..., a39s0that G = 5 a,Y;, where Y,, Y,, ...,
=1

Y, are the order statistics of the sample.
(b) Show that E(G) = 2¢/V/w if the sample arises from the normal
distribution #(u, o?).

4.66. Let Y, < Y, <---< Y, be the order statistics of a random
sample of size » from the exponential distribution with p.d.f. f(z) = ¢ =,
0 < x < oo, zero elsewhere.

(a) Show that Z; =#nY, Z,=@n—-1)Y,-Y,), Zy=@n-2)
(Y, — Yy),..., 2, =Y, — Y,_, are stochastically independent and that
each Z, has the exponential distribution.

(b) Demonstrate that all linear functions of Y,, Y,, ..., Y,, such as

n
> a,Y, can be expressed as linear functions of stochastically independent
1

random variables.

4.67. In the Program Evaluation and Review Technique (PERT), we are
interested in the total time to complete a project that is comprised of a large
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number of subprojects. For illustration, let X, X,, X; be three stochastically
independent random times for three subprojects. If these subprojects are in
series (the first one must be completed before the second starts, etc.), then
we are interested in the sum Y = X, + X, + X;. If these are in parallel
(can be worked on simultaneously), then we are interested in Z =
max (X, X,, X;). In the case each of these random variables has the uniform
distribution with p.d.f. f(x) = 1, 0 < # < 1, zero elsewhere, find (a) the
p.d.i. of Y and (b) the p.d.{f. of Z.

4.7 The Moment-Generating-Function Technique

The change-of-variable procedure has been seen, in certain cases, to
be an effective method of finding the distribution of a function of several
random variables. An alternative procedure, built around the concept
of the moment-generating function of a distribution, will be presented
in this section. This procedure is particularly effective in certain
instances. We should recall that a moment-generating function, when
it exists, is unique and that it uniquely determines the distribution of
a probability.

Let o(%y, 2,,. .., 2,;) denote the joint p.d.f. of the #» random vari-
ables X, X,,..., X,. These random variables may or may not be the
items of a random sample from some distribution that has a given p.d.f.
flx). Let Yy = u(X,, X,,..., X,). We seek g(y,), the p.d.f. of the
random variable Y. Consider the moment-generating function of Y,.
If it exists, it is given by

M) = E(@) = [° egly,) dy,

in the continuous case. It would seem that we need to know g(y,)
before we can compute M (#). That this is not the case is a fundamental
fact. To see this consider

(1) J‘:) . f:o exp [tuy (%, - . -, T)]@(®y, - - -, X,) d2y - - - da,,

which we assume to exist for —% < ¢ < h. We shall introduce # new
variables of integration. They are y, = uy(%y, %o, ..., Ty), . o o, Y =
Un(®y, Zq, . - -, &,). Momentarily, we assume that these functions define
a one-to-one transformation. Letx; = w(yy, Yo, .- -, ¥n) 2 = 1,2,..., 1,
denote the inverse functions and let J denote the Jacobian. Under this
transformation, display (1) becomes

V) [ [T emlTlotos, ..., w,) dys - - -dya dys.

— oo
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In accordance with Section 4.5,

I]lq)[wl(yl: Yo - - - yn): ] wn(ylr Ya, - -+, yn)]

is the joint p.d.f. of Y, Y,,..., Y, The marginal p.d.f. g(y,) of Y,
is obtained by integrating this joint p.d.f. on g,,. . ., ¥,. Since the factor

€¥1 does not involve the variables y,, ..., y,, display (2) may be
written as
(3) |7, emgty) dy,.

But this is by definition the moment-generating function M (¢) of the
distribution of Y;. That is, we can compute E[exp (tuy (X5, ..., X)]
and have the value of E(¢'"1), where Y; = u,(X,,. .., X,). This fact
provides another technique to help us find the p.d.f. of a function
of several random variables. For if the moment-generating function of
Y, is seen to be that of a certain kind of distribution, the uniqueness
property makes it certain that Y, has that kind of distribution. When
the p.d.f. of Y, is obtained in this manner, we say that we use the
moment-generating-function technique.

The reader will observe that we have assumed the transformation
to be one-to-one. We did this for simplicity of presentation. If the
transformation is not one-to-one, let

szwﬂ(yl,...,yn), j=1,2,.-.,n, i=1,2,..-,k,

denote the % groups of # inverse functions each. Let J,,7 = 1,2,..., %
denote the £ Jacobians. Then

’

4) 2:1 [Jilelwn(yy, - - ., Yn)s o+ o WY1, - - -, Yn)]

is the joint p.d.f. of Y,,..., Y, Then display (1) becomes display
(2) with | J|p(w;,. . ., w,) replaced by display (4). Hence our result is
valid if the transformation is not one-to-one. It seems evident that
we can treat the discrete case in an analogous manner with the same
result.

It should be noted that the expectation, subject to its existence, of
any function of Y, can be computed in like manner. That is, if w(y,) is
a function of y,, then

E[(Y)] = |7 wly)el:) dy,

= fi, . ffm wuy (@, ..., 2,)]p(@y, . . ., z,) dzy - - - dez,,.
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We shall now give some examples and prove some theorems where
we use the moment-generating-function technique. In the first example,
to emphasize the nature of the problem, we find the distribution of a
rather simple statistic both by a direct probabilistic argument and by
the moment-generating-function technique.

Example 1. Let the stochastically independent random variables X,
and X, have the same p.d.f.

fl@) =—’ z=123,

= 0 elsewhere;

that is, the p.d.f. of X, is f(z,) and that of X is f(,); and so the joint p.d.f.
of X; and X, is
f(xl)f(xSZ) = x;_‘zz’ Z = 1: 2’ 3) Xy = 1) 2» 31

= 0 elsewhere.

A probability, such as Pr (X; = 2, X, = 3), can be seen immediately to be
(2)(3)/36 = 4. However, consider a probability such as Pr (X, + X, = 3).
The computation can be made by first observing that the event X, + X, = 3
is the union, exclusive of the events with probability zero, of the two
mutually exclusive events (X; = 1, X, = 2) and (X; = 2, X, = 1). Thus

Pr(X1+X2=3)=Pr(X1=1,X2=2)+Pr(X1=2,X2=1)

_@ @0 _ 4
=36 t 736 36
More generally, let y represent any of the numbers 2, 3,4, 5, 6. The probability
of each of the events X, + X, = %,y = 2, 3, 4,5, 6, can be computed as in

the case y = 3. Let g(y) = Pr (X; + X, = ). Then the table

| 2 4 5 6
|_l_ 4 10 12 9
36 36 36 36 36

gives the values of g(y) fory = 2, 3, 4, 5, 6. For all other values of y, g(y) = 0.
What we have actually done is to define a new random variable Y by ¥ =
X, + X,, and we have found the p.d.f. g(y) of this random variable Y. We
shall now solve the same problem, and by the moment-generating-function
technique.

Now the moment-generating function of Y is

M(t) = E(#*1+%)
= E(¢t%16'%3)
= E(etX1)E(et%2),
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since X, and X, are stochastically independent. In this example X; and X,
have the same distribution, so they have the same moment-generating
function; that is,
E(e”‘l) — E(etxz) — %et + %ezt + %eat.
Thus
M) = (e + 3% + 32
— %_eZt + _3&6_63t + %%CM + %eSt + _3_9.6.th.

This form of M (¢) tells us immediately that the p.d.f. g(y) of Y is zero except

at y = 2, 3, 4, 5, 6, and that g(y) assumes the values %, <%, 3%, 12, %,

respectively, at these points where g(y) > 0. This is, of course, the same
result that was obtained in the first solution. There appears here to be little,
if any, preference for one solution over the other. But in more complicated
situations, and particularly with random variables of the continuous type,
the moment-generating-function technique can prove very powerful.

Example 2. Let X, and X, be stochastically independent with normal
distributions #(u,, ¢2) and n{u,, 02), respectively. Define the random variable
Y by Y = X; — X,. The problem is to find g(y), the p.d.f. of Y. This will
be done by first finding the moment-generating function of Y. It is

M(f) = E(e*1-%2)
= E(e*1¢7tX3)
= E(¢™)E(e~%),

since X, and X, are stochastically independent. It is known that
tz
E(e%) = exp (,th + 2 )
and that
2t2
E(et%2) = exp (;th + > )
for all real £. Then E(e~'*2) can be obtained from E{¢'¥2) by replacing ¢ by

—t. That is,

2
E(C‘txz) = exp ( 2t + Tt)
Finally, then,

22

t 2t2
M(t) = exp (;th + 2 )exp( ot + 2 )

2 2\42
exp ((,;1 — o)t + ("1_+2_£ﬁ)
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The distribution of Y is completely determined by its moment-gene'ratin‘g
function M(f), and it is seen that Y has the p.d.f. g(), whl?h 11ls
n(y — po, 03 + 03). That is, the difference be‘tween _tw-o stochastically
independent, normally distributed, random variables is itself ‘a random
variable which is normally distributed with mean equal to the difference of
the means (in the order indicated) and the variance equal to the sum of the

variances.
The following theorem, which is a generalization of Example 2, is
very important in distribution theory.

Theorem 1. Let Xy, Xa,. - -, Xy be mutually stochastically indej?en—
dent random variables having, respectively, the normal distributions
n(wy, 03), #lpg, 03),- - -, and (g, 02). The random variable Y = kX, +
ko Xy 4o+ RoX,, where ky, ko .., Ry are rea'l constants, s normczlllzy
distributed with mean kyuy + -+ -+ Eopty and variance k303 + - - - + kioa.

That is, Y is n(zl b 3 k?a?).

Proof. Because Xy, Xo,- - - X, are mutually stochastically inde-
pendent, the moment-generating function of Y is given by

M@ = E{exp [tk Xy + koXo + -+ ann)]}
— E(etklxl) E(etkzxz) . E(etknxn)'

Now
o?t?
by = exp (s + %)
forallreal £,7 = 1,2,...,n. Hence we have
2 kt 2
ww=mhw+%#]

That is, the moment-generating function of Yis

M@=§wJWW+@?ﬂ
(3 #a2)

li

exp (2 ki”’i)t + 1 2

But this is the moment-generating function of a distribution that is

n(i ki, i k?af). This is the desired result.
1 1
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If, in Theorem 1, we set each %; = 1, we see that the sum of n
mutually stochastically independent normally distributed variables has
a normal distribution. The next theorem proves a similar result for
chi-square variables.

Theorem 2. Let Xy, X,, ..., X, be mutually stochastically indepen-
dent variables that have, respectively, the chi-square distributions x%(r,),
X2(rs),. . ., and x*(r,). Then the random variable Y = X; + X, +--- +
X, has a chi-square distribution with v, + - - - + v, degrees of freedom;
that is, Y is x2(ry +--- + 7,).

Proof. The moment-generating function of Y is

M) = E{exp [{(X; + Xy +---+ X,)]}
— E(etXI)E(eth) e E(etX")
because X, X,,. .., X, are mutually stochastically independent. Since
E(etX) = (1 — 2¢)-7/2 t<3,:1=12,...,n,
we have

M(@t) = (1 — 2f)=Catrateeetriz) ¢t <

N

But this is the moment-generating function of a distribution that is
x2(ry + 72 + - -+ + 7). Accordingly, Y has this chi-square distribution.

Next, let X, X,,..., X, be a random sample of size # from a
distribution that is #(u, 0?). In accordance with Theorem 2 of Section
3.4, each of the random variables (X, — u)2/0%,¢ = 1,2,..., n,is ¥*(1).
Moreover, these #» random variables are mutually stochastically inde-
pendent. Accordingly, by Theorem 2, the random variable Y =

i [(X, — u)/o]? is x%(n). This proves the following theorem.
1

Theorem 3. Let X, X,, ..., X, denote a random sample of size n
Sfrom a distribution that is n(u, 02). The random variable
vy =3 (My
1 (o)
has a chi-square distribution with n degrees of freedom.
Not always do we sample from a distribution of one random vari-

able. Let the random variables X and Y have the joint p.d.f. f(z, )

and let the 2% random variables (X, Y,), (X, Y3),..., (X, Y,) have
the joint p.d.f.

f(xl’ yl)f(x2’ y2) T 'f(xm yn)
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The # random pairs (X1, Y1), (Xa, Yo), oo (Xa .Yn) are then mutually
stochastically independent and are said to constitute a random sample
of size n from the distribution of X and Y. In the next paragraph we
shall take f(x, %) to be the normal bivariate p.d.f., .and we sha1.1 solve
a problem in sampling theory when we are sampling from this two-

variable distribution.
Let (X, Yy), (Xg Yo),- vy (X,,Y,) denote a random sample of

size » from a bivariate normal distribution with p.(.i.f. f(x, y) and
parameters py, i, 02, 2, and p. We wish to find the joint p.d.f. of the

two statistics X = %Xi/n and ¥ = 3 Y;/n. We call X the mean of
1 1 o
Xiyooor X and Y the mean of Yy,..., Y,. Since the joint p.d.f. of the
2y random variables (X, Y3), 1 = 1,2,...,n,is given by
Y = f(xl’ yl)f(x2» 3/2) - ’f(xn: yn)»
the moment-generating function of the two means X and Y is given by

n n
tlei tzZ?/i
+ 1

Mty tg) = J_ - -j_w exp P dzy - dyn

n © © tlxi tzyi) d d .
= exp (—— + flxs, i) dxy dy;
I i

The justification of the form of the right-hand member of the second
equality is that each pair (X, Y}) has the same p.d.f,, and thz.xt these
n pairs are mutually stochastically independent. The twotjold 1ntegra1
in the brackets in the last equality is the moment-generating function
of X, and Y, (see Section 3.5) with ¢, replaced by ¢,/n and £, replaced by
to/n. Accordingly,

n 4 Lopt
M(tl’ t2) — Hexp [_1& + 22
i1 % n

+ ai(ty/n)® + 2P0102(t;/%)(t2/") + Ug(tz/”)z]

(03/m)8 + 2p(os09/n)tits + (o3/m)83]
exp [tlf"'l + lopg + 3

But this is the moment-generating function of a bivariate normal
distribution with means p; and p,, variances of/n_ar}d og./n, .and. corre-
lation coefficient p; therefore, X and Y have this joint distribution.
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EXERCISES

4.68. Let the stochastically independent random variables X; and X,
have the same p.d.f. f(z) =%, 2 =1, 2, 3, 4, 5, 6, zero elsewhere. Find the
p.d.f. of ¥ = X, + X,. Note, under appropriate assumptions, that ¥ may
be interpreted as the sum of the spots that appear when two dice are cast.

4.69. Let X, and X, be stochastically independent with normal distribu-
tions #(6, 1) and #(7, 1), respectively. ¥ind Pr (X, > X,). Hint. Write
Pr (X, > X,) = Pr(X; — X, > 0) and determine the distribution of
X, — X,

4.70. Let X, and X, be stochastically independent random variables.
Let X;and Y = X, + X, have chi-square distributions with r, and » degrees
of freedom, respectively. Here , < 7. Show that X, has a chi-square distribu-
tion with #» — », degrees of freedom. Hint. Write M () = E(#*1*%2) and
make use of the stochastic independence of X; and X,.

4.71. Let the stochastically independent random variables X; and X,
have binomial distributions with parameters %y, p, = 1 and #u,, py = 3,
respectively. Show that Y = X, — X, + #, has a binomial distribution with

parameters n = n; + ny, p = 3.

4.72. Let X be n(0, 1). Use the moment-generating-function technique to
show that Y = X? is y*(1). Hint. Evaluate the integral that represents
E(¢%%) by writing w = av/'1 — 2¢, ¢ < 4.

4.73. Let X, X,, ..., X, denote » mutually stochastically independeni
random variables with the moment-generating functions M,(¢), My(¥), .. .,
M, (t), respectively.

(a) Show that ¥ = £ X, + kX, + -+ &, X, where &y, &,, ..., &, are
real constants, has the moment-generating function M (¢) = ﬁ M, (%1).

1

(b) If each £ = 1 and if X; is Poisson with mean pu;, 1 =1,2,...,n,

prove that Y is Poisson with mean p; +-- -+ p,.

4,74, If X,, X,, ..., X, is a random sample from a distribution with
moment-generating function M (¢), show that the moment-generating func-

tions of En:X, and i X,/n are, respectively, [M ()™ and [M (¢/n)]™.
T 1

4.75. In Exercise 4.67 concerning PERT, find: (a) the p.df. of Y;
(b) the p.d.f. of Z in case each of the three stochastically independent
variables has the p.d.f. f(z) = ¢ %, 0 < x < o, zero elsewhere.

4.76. If X and Y have a bivariate normal distribution with parameters
H1, Mo, o2, 0%, and p, show that Z = aX + bY + ¢ is nlap, + bugy + ¢,
a0} + 2abpoio, + b%03), where a, b, and ¢ are constants. Hint. Use the
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moment-generating function M (¢, ¢;) of X and Y to find the moment-
generating function of Z.

4.77. Let X and Y have a bivariate normal distribution with parameters
p1 = 25 py = 35 02 = 4,0 = 16,and p = 32. If Z = 3X — 2Y, find
Pr(—-2< Z < 19).

4.78. Let U and V be stochastically independent random variables, each
having a normal distribution with mean zero and variance 1. Show that
the moment-generating function E(e*U") of the product UV is (1 — #2) -2,
—1 <t < 1. Hint. Compare E(etVV) with the integral of a bivariate normal
p.d.f. that has means equal to zero.

4.79. Let X and Y have a bivariate normal distribution with the param-
eters p, pg, 03, 02, and p. Show that W = X — p; and Z = (Y — pg) —
plogfa )(X — p,) are stochastically independent normal variables.

4.80. Let X,, X,, X; be a random sample of size » = 3 from the normal
distribution #(0, 1).

(a) Show that Y; = X; + 8X3, Y, = X, + 38X, has a bivariate normal
distribution.

(b) Find the value of 8 so that the correlation coefficient p = §.

(c) What additional transformation involving Y, and Y, would produce
a bivariate normal distribution with means p; and y,, variances ¢% and o2,
and the same correlation coefficient p?

4.81. Let X,, X,,..., X, be a random sample of size » from the normal
distribution #(u, 0%). Find the joint distribution of Y = i a,X; and
Z = ibiXi, where the a, and b, are real constants. When, and 1only when,
are Yland Z stochastically independent? Hinf. Note that the joint moment-
generating function E[exp (t1 liaiXi + i, 1§ b,X,)] is that of a bivariate
normal distribution.

4.82. Let X,, X, be a random sample of size 2 from a distribution with
positive variance and moment-generating function M(f). If ¥ = X, + X,
and Z = X, — X, arestochastically independent, prove that the distribution
from which the sample is taken is a normal distribution. Hint. Show that
mlty, t5) = Efexp [0(X, + Xp) + 6(Xy — Xo)I} = M4 + 6)M( — &)
Express each member of m(ty, #5) = m(ty, 0)m(0, £,) in terms of M ; differentiate
twice with respect to #,; set ¢, = 0; and solve the resulting differential
equation in M.

4.8 The Distributions of X and nS?/o®

Let X, X,,..., X, denote a random sample of size # = 2 from a
distribution that is n(u, o?). In this section we shall investigate the
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distributions of the mean and the variance of this random sample,
that is, the distributions of the two statistics X — in/n and S? =
n
5 (x, - Xy, 1

1

The problem of the distribution of X, the mean of the sample, is

solveq by the use of Theorem 1 of Section 4.7. We have here, in the
notation of the statement of that theorem, B1=HRg = =p, =p
2 — — y ’
of = S% == 02 = .0.2’ and &y = ky =+ =k, = 1/n. Accordingly,
Y = X has a normal distribution with mean and variance given by

n 1 n 1\ 2 0.2
—_ = —_ 2 = —
26 - S[G)] -5
respectively. That is, X is n(u, o%/n).

. Example 1. Let X be the mean of a random sample oi size 25 from a
distribution that is n(75, 100). Thus X 15 #(75, 4). Then, for instance,

PMH<X<7%=NW€73_NG;;%

= N(2) — N(=2) = 0.954.

We now take up the problem of the distribution of S2, the variance
of a random sample X,,..., X, from a distribution that is n(p, o2).

To do this, let us first consider the joint distribution of Y, =X,
Yo=X,,...,Y, = X,. The corresponding transformation

xlznyl_yz_..._yn
Yo = Y3
Tp = Yn

has Jacobian #. Since

i(xt - ,“")2 =

)2 + n(Z — )2

i(xi -
i(xi -

n
because 2(% — p) ; (#, — €) = 0, the joint p.d.f. of X, Xo,.., X
can be written

(7o) o [ 202 - ),

2me

n
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. 4 x,)/n and —o0 < T, < D, i =

T ts (x; +
where Z represen (@1 2 _ 7 we find that the joint p.d.i. of

1,2,...,n. Accordingly, with Y1
Y, Y, ..., Y,is

2

n (’bel"‘yz—"'—yn—yl)
) exp{— 22

”(\/%:m )
30— w” M]

202 202

0 <y <0,1=12...,7 The quotient of this joint p.d.f. and the
- i > y »

p.d.f.
Vi BCE o]
o 202

of Y, = X is the conditional p.d.f. of Y3, Ya, .-, Yy, given Yy = 91,

vilgz) " ee ()

2+ $(y — 4.)2 Since this is a
where g = (), — Yz — = Yn = Y1) +§(yl Y1)

joint conditional p.d.f., it must be, for all ¢ > 0, that

e e L

Now consider

ns? = 3 (X, — X)?
1

n 2 _ 0.

—_—(%Yl——YQ“""_Yn—Yl)2+§(Yz_Y1) Q

. : A2 o
The conditional moment-generating function of nS%jo? = Qf¢*, given

Yl = ?/1» iS
© «© \/_ l
et =7 (=)
R L]
) J © f w \/ [ 276

1 - 2¢
X exp[ '__( 20" )qd Yo 'dym]

(1-2¢
exp { )Q] d?/z' . .dyn

202

il
/—‘\
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where 0 < 1 — 2¢, or ¢ < 1. However, this latter integral is exactly the
same as that of the conditional p.d.f. of Yy, Y3, ..., Y, given Y, = y,,
with ¢® replaced by ¢2/(1 — 2¢) > 0, and thus must equal 1. Hence the
conditional moment-generating function of #S?/o?, given Y, = y, or
equivalently X = &, is

E(etnszlozli) — (1 — 2t)—(n—1)/2, { <

N

That is, the conditional distribution of #S5%/6?, given X = &, is y?(n — 1).
Moreover, since it is clear that this conditional distribution does not
depend upon &, X and #S?/0? must be stochastically independent or,
equivalently, X and S? are stochastically independent.

To summarize, we have established, in this section, three important
properties of X and S? when the sample arises from a distribution
which is n(u, 62):

(a) X is n(u, o?/n).
(b) nS%[o? is x%(n — 1).
(c) X and S? are stochastically independent.

Determination of the p.d.f. of S? is left as an exercise.

EXERCISES

4.83. Let X be the mean of a random sample of size 5 from a normal
distribution with p = 0 and o2 = 125. Determine ¢ so that Pr(X < ¢) =
0.90.

4.84. If X is the mean of a random sample of size # from a normal
distribution with mean p and variance 100, find # so that Pr{u — 5 <
X < p+ 5 =0.954.

4.85. Let Xy, X,, ..., Xgsand Yy, Y,, ..., Y, be two random samples
from two independent normal distributions #(0, 16) and #(1, 9), respectively.
Let X and Y denote the corresponding sample means. Compute Pr (X > V).

4.86. Find the mean and variance of S2 =§(X, — X)?/n, where
1

X, Xs, ..., X, is a random sample from #(u, 0%). Hint. Find the mean and
variance of #S52%/¢2,

4.87. Let 52 be the variance of a random sample of size 6 from the normal
distribution #{u, 12). Find Pr (2.30 < S% < 22.2).

4.88. Find the p.d.i. of the sample variance S?, provided that the distri-
bution from which the sample arises is #(u, ¢2).
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4.89. Let X and S2 be the mean and the variance of a random sample
of size 25 from a distribution which is %(3, 100). Evaluate Pr (0 < X < 6,
55.2 < 5% < 145.6).

4.9 Expectations of Functions of Random Variables

Let X, X,, ..., X,, denote random variables that have the joint
p.df. f(xy, z5,...,2,). Let the random variable Y be defined by
Y = u(X,, X,,. .., X,). We found in Section 4.7 that we could compute
expectations of functions of Y without first finding the p.d.f. of Y.
Indeed, this fact was the basis of the moment-generating-function
procedure for finding the p.d.f. of Y. We can take advantage of this
fact in a number of other instances. Some illustrative examples will be
given.

Example 1. Given that W is »(0, 1), that V is ¥%(¥) with » > 2, and let
W and V be stochastically independent. The mean of the random variable

T = WV7]V exists and is zero because the graph of the p.d.f. of T (see
Section 4.4) is symmetric about the vertical axis through ¢ = 0. The variance
of T, when it exists, could be computed by integrating the product of #2 and
the p.d.f. of 7. But it seems much simpler to compute

4

o} = E(T%) = E(W2 V) _ E(Wz)E(rv)~
Now W2 is (1), so E(W2) = 1. Furthermore,

7 ®y 1
A r 12 —1,-v/2
E(V) fo Y e R

exists if » > 2 and is given by

Ty — 2)/2) 1I(r — 2)/2] oy
2T([2) 2[r — 2))20[(r — 2)/2] v — 2

Thus 62 = 7/(r — 2),7 > 2.

Example 2. Let X, denote a random variable with mean p,; and variance
o2, 1=1,2,...,n Let X;, X,, ..., X, be mutually stochastically inde-
pendent and let %y, &, .. ., k, denote real constants. We shall compute the
mean and variance of the linear function Y = £, X, + &, X, +---+ £, X,.

Because E is a linear operator, the mean of Y is given by

Ry = E(lel + k2X2 +-e-+ ann)
= kE(X)) + kE(X5) +- - + EE(X,)

n
= kg + Bopp +-- -+ kn.u'n = ;ki:u'i'
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The variance of Y is given by
of = E{lnXy 4 4 ko) — (bypy +- - + Bou)]
= E{[k:(Xl )t k(X — )]
= {3, 0 = ® + 233 (X, — (X, — w }

= igl RE((X; — m)% + 2 %jZ kEE(X: — p)(X, - ©4)l-

f:onsider E[(X; — p)(X; — p)), i < J- Because X, and X, are stochastically
independent, we have

E[(X; — m)(X; — my)l = EX, - l"‘i)E(Xl — ) =0
Finally, then,

oF = 2 WE(X, — w)?] = 3 kKo?.
i= =1

We can obtain a more general result if, in Example 2, we remove
the hypothesis of mutual stochastic independence of X,, X,,..., X..
We shall do this and we shall let pi; denote the correlation coefﬁéier:t
of X; and X;. Thus for easy reference to Example 2, we write

EUX — p)(X; — u)] = pyoo,, 4 < j.

If we refer to Example 2, we see that again py = S k. But now

T
n
i<y

Thus we have the following theorem.

Theorem 4. Let Xy, ..., X, denote random variables that have
MEANS py, . . -, iy and variances o3, . .., o2. Let pij» ¢ # 7, denote the cor-
relation coefficient of X, and X jand let ky, ..., k, denote real constants.
The mean and the variance of the linear Sunction

Y = ikiX i
1
are, respectively,
My = %kil‘i

and

n
0-%’ = ;ktzo'lz + 2 ?(Z kikjp,joiaj.
7
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The following corollary of this theorem is quite useful.

Corollary. Let X4, ..., X, denote the items of a random sample of
size n from a distribution that has mean p and variance o®. The mean and

the variance of Y = %k,X . are, respectively, py = (% k,)u and o2 =
n 1

(z k,z)az.
1

Example 3. Let X = iX,/n denote the mean of a random sample of
1
size # from a distribution that has mean p and variance oZ. In accordance
n n
with the Corollary, we have pz = p > (1/#) = p and o% = 02; (1/n)2 =
1

o?/n. We have seen, in Section 4.8, that if our sample is from a distribution
that is (s, ¢%), then X is n(y, o?/n). It is interesting that puz = p and

0% = ¢?/n whether the sample is or is not from a normal distribution.

EXERCISES

4.90. Let X,, X,, X, X, be four mutually stochastically independent
random variables having the same p.d.f. f(z) = 2z, 0 < x < 1, zero else-
where. Find the mean and variance of the sum Y of these four random
variables.

4.91. Let X, and X, be two stochastically independent random variables
so that the variances of X; and X, are o? = kand 0} = 2, respectively. Given
that the variance of ¥ = 3X, — X, is 25, find %.

4.92. If the stochastically independent variables X; and X, have means
p, i and variances o, of, respectively, show that the mean and variance of
the product Y = XX, are pp, and ofo3 + pfod + udof, respectively.

4.93. Find the mean and variance of the sum Y of the items of a random
sample of size 5 from the distribution having p.d.f. f(z) = 62(1 — ),
0 < z < 1, zero elsewhere.

4.94. Determine the mean and variance of the mean X of a random
sample of size 9 from a distribution having p.d f. f(z) = 42°, 0 < @ < 1,
zero elsewhere.

4.95. Let X and Y be random variables with u; = 1, u, = 4, of = 4,
0% = 6, p = %. Find the mean and variance of Z = 3X — 2Y.

4.96. Let X and Y be stochastically independent random variables with
means p;, pg and variances of, of. Determine the correlation coefficient of
X and Z = X — Y in terms of py, py, 0%, 03.

4.97. Let p and o® denote the mean and variance of the random variable
X.Let Y = ¢ + bX, where b and ¢ are real constants. Show that the mean
and the variance of Y are, respectively, ¢ + by and b%®.
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4.98. Let X and Y be random variables with means wu,, p; variances
o}, 03; and correlation coefficient p. Show that the correlation coefficient of
W=aX+0ba>0,and Z=cY +4d,¢c>0,is p.

4.99. A person rolls a die, tosses a coin, and draws a card from an
ordinary deck. He receives $3 for each point up on the die, $10 for a head,
$0 for a tail, and §1 for each spot on the card (jack = 11, queen = 12,
king = 13). If we assume that the three random variables involved are
mutually stochastically independent and uniformly distributed, compute
the mean and variance of the amount to be received.

4.100. Let U and V be two stochastically independent chi-square variables
with 7, and 7, degrees of freedom, respectively. Find the mean and variance
of F = (#,U)/(r, V). What restriction is needed on the parameters 7, and 7,
in order to ensure the existence of both the mean and the variance of F?

4.101. Let X, X,, ..., X, be a random sample of size # from a distribu-

tion with mean p and variance o2. Show that E(S?) = (» — 1)¢?/n, where S?

is the variance of the random sample. Hing. Write S% = (1/x) > (X, — p)2 —
1
(X — w2

4.102, Let X, and X, be stochastically independent random variables
with nonzero variances. Find the correlation coefficient of ¥ = X,X, and
X, 1n terms of the means and variances of X; and X,.

4.103. Let X, and X, have a joint distribution with parameters p;, uo,
0%, o2, and p. Find the correlation coefficient of the linear functions Y =
a; X, + a,X, and Z = b, X, + b,X, in terms of the real constants a,, a,,
b,, by, and the parameters of the distribution.

4.104. Let X, X,,..., X, be a random sample of size » from a distri-
bution which has mean p and variance ¢2. Use Chebyshev’s inequality to
show, for every € > 0, that lim Pr(|X — u| < €) = 1; this is another form

of the law of large numbers.

4.105. Let X, X,, and X, be random variables with equal variances
but with correlation coefficients p;, = 0.3, p;3 = 0.5, and p,; = 0.2. Find
the correlation coefficient of the linear functions ¥ = X; + X, and Z =
X, + X,

4.106. Find the variance of the sum of 10 random variables if each has
variance 5 and if each pair has correlation coefficient 0.5.

4.107. Let X, ..., X, be random variables that have means uq, ..., g,
and variances o3, . .., oZ. Let p,, ¢ # j, denote the correlation coefficient of
X, and X,. Let a,,...,a, and 4,,..., b, be real constants. Show that the

n n n
covariance of Y = aX, and Z= 3 bX,is 3 > apbo0,p, where
=1 )=1 41

1

pp=11=1,2,..., %

M=

It
P
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4.108. Let X, and X, have a bivariate normal distribution with param-
eters uy, po, 07, 03, and p. Compute the means, the variances, and the cor-
relation coefficient of Y, = exp (X,) and Y, = exp (X,). Hwni. Various
moments of Y, and Y, can be found by assigning appropriate values to ¢, and
b in Efexp (£, X; + £,X,)].

4.109. Let X be n(u, 0% and consider the transformation X = In Y or,
equivalently, ¥ = &%,

(a) Find the mean and the variance of Y by first determining E(e¥X) and
E[(¢9)2).

(b) Find the p.d.f. of Y. This is called the lognormal distribution.

4.110. Let X, and X, have a trinomial distribution with parameters #,
p 1 P 2°

(a) What is the distribution of ¥ = X, + X,?

(b) From the equality of = o + 0% + 2po,0,, once again determine the
correlation coefficient p of X; and X,.

4.111. Let Y, = X; + Xpand Y, = X, + X;, where X,, X,, and X,
are three stochastically independent random variables. Find the joint
moment-generating function and the correlation coefficient of Y, and Y,
provided that:

(a) X; has a Poisson distribution with mean g,, 7 = 1, 2, 3.

(b) X;isn(w;, of),s =1, 2, 3.

Chapter 5
Limiting Distributions

5.1 Limiting Distributions

In some of the preceding chapters it has been demonstrated by
example that the distribution of a random variable (perhaps a statistic)
often depends upon a positive integer ». For example, if the random
variable X is b(n, ), the distribution of X depends upon ». If X is the
mean of a random sample of size # from a distribution that is #(u, o?),
then X is itself #(u, 0?/n) and the distribution of X depends upon #.
If S2is the variance of this random sample from the normal distribution
to which we have just referred, the random variable n52%/62 is y2(n — 1),
and so the distribution of this random variable depends upon #.

We know from experience that the determination of the p.d.f. of a
random variable can, upon occasion, present rather formidable com-
putational difficulties. For example, if X is the mean of a random
sample X, X,, ..., X, from a distribution that has the p.d.f.

flx) =1, 0<z<],
= 0 elsewhere,

then (Exercise 4.74) the moment-generating function of X is given by
[M (t/n)]", where here

1 t
M(t)=f erdy = ° t L txo,

0
=1, t=0.
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Hence

_ tn __ 1 n
E(etX) = (6—”7—) , t#0,

=1, t=0.

Since the moment-generating function of X depends upon #, the
distribution of X depends upon #. It is true that various mathematical
techniques can be used to determine the p.d.f. of X for a fixed, but
arbitrarily fixed, positive integer ». But the p.d.f. is so complicated that
few, if any, of us would be interested in using it to compute probabilities
about X. One of the purposes of this chapter is to provide ways of
approximating, for large values of #, some of these complicated
probability density functions.

Consider a distribution that depends upon the positive integer #.
Clearly, the distribution function F of that distribution will also
depend upon . Throughout this chapter, we denote this fact by
writing the distribution function as F, and the corresponding p.d.f.
as f,. Moreover, to emphasize the fact that we are working with
sequences of distribution functions, we place a subscript # on the ran-
dom variables. For example, we shall write

1
@ = VTRV
for the distribution function of the mean X, of a random sample of size
» from a normal distribution with mean zero and variance 1.
We now define a limiting distribution of a random variable whose
distribution depends upon #.

e~ %12 dyy

Definition 1. Let the distribution function F,(y) of the random
variable Y, depend upon #, a positive integer. If I'(y) is a distribution
function and if lim F,(y) = F(y) for every point y at which F(y) is

continuous, then the random variable Y, is said to have a limiting
distribution with distribution function F(y).
The following examples are illustrative of random variables that

have limiting distributions.

Example 1. Let Y, denote the nth order statistic of a random sample
X1, Xg, - .., X, from a distribution having p.d.f.

f@) =1 0<z<00<0<wm,

0 elsewhere.
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The p.d.f. of Y, is

ny =1
gn(y)=%—: 0<y<0,

= 0O elsewhere,

and the distribution function of Y, is

F,(y) =0, y<0O,

Vet n
=| —Fdz= (g) , O0<y<#
fo 0 0 Y »

=1 0<y<oo.

Then
1}“2 F,ly) =0, -0 <y <9,
=1, 0 <y < oo
Now
Fy) =0, -0 <y < 8,

=1, 0 <y < o,
is a distribution function. Moreover, lim F.(y) = F(y) at each point of

continuity of F(y). In accordance with the definition of a limiting distribu-
tion, the random variable Y, has a limiting distribution with distribution
function F(y). Recall that a distribution of the discrete type which has a
probability of 1 at a single point has been called a degenerate distribution.
Thus in this example the limiting distribution of Y, is degenerate. Some-
times this is the case, sometimes a limiting distribution is not degenerate, and
sometimes there is no limiting distribution at all.

Example 2. Let X, have the distribution function

—nw?2
g~ mw lzdw‘

F,(z) =fi _l_

0 V l/n\/ 2m

If the change of variable v = 4/nw is made, we have
vz

F,(%) = T e~v2 gy,
-0 v

It is clear that
lim F,(7) =0, %<0,
n—w
= %,

=1,

Kl

»

0
0.

&
A
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Now the function
F(@) =0, T <
=1, z=

is a distribution function and lim F. (%) = F(7) at every point of continuity

>0

of F(@). To be sure, lim F,(0) # F(0), but F (@) is not continuous at & = 0.

Accordingly, the random variable X, has a limiting distribution with distribu-
tion function F(Z). Again, this limiting distribution is degenerate and has all
the probability at the one point z = 0.

imiti istributi if they exist, cannot in
Example 3. The fact that limiting distributions, 1 ‘ :
general be determined by taking the limit of the p.d.f. will now be illustrated.

Let X, have the p.d.f.
1
L@ =1 a=2+
= 0 elsewhere.
Clearly, lim f,(x) = 0 for all values of x. This may suggest that X, has no

limiting distribution. However, the distribution function of X, is

2 1
F,(x) =0, <2+ W

1
=1, x22+_’
n

and
lim F,(x) =0, %<2,

n-— 0

Since
F(x) = 0, z < 2,

=1 > 2,

is a distribution function, and since lim F (@) = F(x) at all points of con-

N> ®©

tinuity of F(x), thereisa limiting distribution of X, with distribution function
Example 4. Let Y, denote the nth order statistic of a random sample
from the uniform distribution of Example 1. Let Z, = n(6 — Y,). The p-d.f.
of Z,1s
(6 afn ™,
01!.

= ( elsewhere,

Balz) = 0 <z < nb,
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and the distribution function of Z, is

Galz) =0, z<0,

2 _ n—1 n
.__J-(_o_l"ﬂ_dw:l—(l—i), 0<z<nb,
o o n0

=1, nd < 2.

Hence

lim G,(z) =0, z2<0

=1 e 209 0<2<o0.

Now

G(z) =0, 2<0,

=1— g2 0<z

is a distribution function that is everywhere continuous and lim G,(z) =
n— o

G(2) at all points. Thus Z, has a limiting distribution with distribution

function G(z). This affords us an example of a limiting distribution that is
not degenerate.

EXERCISES

5.1. Let X, denote the mean of a random sample of size # from a distribu-
tion that is #(u, o). Find the limiting distribution of X,.

5.2. Let Y, denote the first order statistic of a random sample of size n
from a distribution that has the p.d.f. f(z) = ¢ ©“"9, § < 2 < o0, zero
elsewhere. Let Z, = n(Y; — 6). Investigate the limiting distribution of Z,,.

5.3. Let Y, denote the nth order statistic of a random sample from a
distribution of the continuous type that has distribution function F(z) and
p.d.i. f(z) = F'(z). Find the limiting distribution of Z, = »[1 — F(Y,)].

5.4. Let Y, denote the second order statistic of a random sample of size
# from a distribution of the continuous type that has distribution function
F(z) and p.d.{. f(x) = F'(z). Find the limiting distribution of W, = »nF(Y,).

5.5. Let the p.d.f. of Y, be f,(y) = 1, y = n, zero elsewhere. Show that
Y, does not have a limiting distribution. (In this case, the probability has
“escaped” to infinity.)

5.6. Let X, X,,..., X, be a random sample of size # from a distribution

which is #(u, 0%), where p > 0. Show that the sum Z, = iXi does not have
1
a limiting distribution.
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5.2 Stochastic Convergence

When the limiting distribution of a random variable is degenerate,
the random variable is said to converge stochastically to the constant
that has a probability of 1. Thus Examples 1 to 3 of Section 5.1
illustrate not only the notion of a limiting distribution but also the
concept of stochastic convergence. In Example 1, the nth order
statistic Y, converges stochastically to 8; in Example 2, the statistic
X, converges stochastically to zero, the mean of the normal distribution
from which the sample was taken; and in Example 3, the random
variable X, converges stochastically to 2. We shall show that in some
instances the inequality of Chebyshev can be used to advantage in
proving stochastic convergence. But first we shall prove the following
theorem.

Theorem 1. Let F,(y) denote the distribution function of a random
variable Y, whose distribution depends upon the positive integer n. Let ¢
denote a constant which does not depend upon n. The random variable Y,
converges stochastically to the constant ¢ if and only if, for every € > 0, the

lim Pr(|]Y, —¢| < ¢ = 1.

n— o

Proof. First, assume that the lim Pr(]Y, — ¢] < €) = 1 for every

e > 0. Weare to prove that the random variable Y, converges stochasti-
cally to the constant ¢. This means we must prove that

lim Fy) =0, y<o
=1, Yy > C.
Note that we do not need to know anything about the lim F,(c). For
if the limit of F,(y) is as indicated, then Y, has a limitiﬁé %istribution
with distribution function
Fy) =0, y<eg,
=1 Yy = c
Now
Pr(Y,—c¢| <€ = F,l{c + =] — Fulc — ¢),
where F [(c + €)—] is the left-hand limit of F,(y) at y = ¢ + . Thus
we have

1=1m Pr(|]Y, —¢c|] <e¢ = lim F,[(c + ¢)—] — lim F,(c — ).
n— o

o> 0 n— 00
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Because 0 < F,(y) < 1 for all values of
: - = and for iti
Integer #, it must be that y every positive

im Fo(c —¢) =0,  lim F[(c + -] = 1.

n— oo

Since this is true for every € > 0, we have

lim F, (y) = 0, Yy <,

n—r oo
=1, Yy > c,

as we were required to show.
To complete the proof of Theorem 1, we assume that

Hm F.ly) =0, Yy <c,

n— o

=1, Yy > C

We are to prove that lim Pr ([Yo—c¢l <€ =1 for every ¢ > Q.

n— o

Because
Pr([Yy —¢| <& = Fllc + =] - Folc — o,
and because it is given that

Hm F,[(c + ¢ —] = 1,

n—

lim F,(c — ¢) = 0,

n—> o

Of

We should like to point out a simple but useful fact. Clearly,
Pr(lY, —cf < ¢ + Pr(lY,—c|>¢ =1.
Thus the limit of Pr (|Y, — ¢| < €) is equal to 1 when and only when
im Pr(|Y, — ¢| = ¢ = 0.

n— oo
That is, 'this last limit is also a necessary and sufficient condition for the
stochastic convergence of the random variable Y, to the constant c.

.Exz.zmp'le L. Let X, denote the mean of a random sample of size # from
a dl.StrlbutIOil that has mean x and positive variance o2. Then the mean and
variance of X, are y and ¢%/n. Consider, for every fixed ¢ > 0, the probability

Pr(X, — 4l = 9 = Pr (|%, ] > ).
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where k = eV/njo. In accordance with the inequality of Chebyshev, this
probability is less than or equal to 1/k% = o?/ne®. So, for every fixed e > 0,

we have
. - . o2
lim Pr (|X, — u| = ¢ < lim — = 0.
n-» o0
Hence X, converges stochastically to p if o2 is finite. In a more advanced
course, the student will learn that g finite is sufficient to ensure this stochastic

convergence.

Remark. The condition Lim Pr(|Y, —c| <¢ =1 is often used as

n—»
the definition of convergence in probability and one says that Y, converges
to ¢ in probability. Thus stochastic convergence and convergence in prob-
ability are equivalent. A stronger type of convergence is given by
Pr (1im Y, = c) — 1; in this case we say that Y, converges to ¢ with

n—> 0

probability 1. Although we do not consider this type of convergence, it is
known that the mean X, of a random sample converges with probability 1
to the mean p of the distribution, provided that the latter exists. This is
one form of the strong law of large numbers.

EXERCISES

5.7. Let the random variable Y, have a distribution that is b(n, $).
(a) Prove that Y,/n converges stochastically to #. This result is one form of
the weak law of large numbers. (b) Prove that 1 — Y,/n converges stochastic-

ally to 1 — 5.

5.8. Let S2 denote the variance of a random sample of size # from a
distribution that is #{u, ¢2). Prove that #S3/(n — 1) converges stochastically
to o2

5.9. Let W, denote a random variable with mean p and variance b/#”,

where p > 0, u, and b are constants (not functions of #). Prove that W,
converges stochastically to p. Hint. Use Chebyshev’s inequality.

5.10. Let Y, denote the nth order statistic of a random sample of size #
from a uniform distribution on the interval (0, §), as in Example 1 of

Section 5.1. Prove that Z, = V' Y, converges stochastically to V0.

5.3 Limiting Moment-Generating Functions

To find the limiting distribution function of a random variable Y,
by use of the definition of limiting distribution function obviously
requires that we know F,(y) for each positive integer z. But, as
indicated in the introductory remarks of Section 5.1, this is precisely
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the problem we should like to avoid. If it exists, the moment-generating
function that corresponds to the distribution function F,(y) often
provides a convenient method of determining the limiting distribution
function. To emphasize that the distribution of a random variable Y,
depends upon the positive integer #, in this chapter we shall write th;
moment-generating function of Y, in the form M(¢; »).

The following theorem, which is essentially Curtiss’ modification of
a theorem of Lévy and Cramér, explains how the moment-generating
function may be used in problems of limiting distributions. A proof of
the theorem requires a knowledge of that same facet of analysis that
permitted us to assert that a moment-generating function, when it

exists, uniquely determines a distribution. Accordingly, no proof of the
theorem will be given.

Theorem 2. Let the vandom variable Y, have the distribution function
F (y) and the moment-generating function M(¢;n) that exists for
—h <t < h for all n. If there exists a distribution function F(y), with
corvesponding moment-generating function M (2), defined for |t| < hy < h,
such that 115210 Mt m) = M(f), then Y, has a limiting distribution with
distribution function F(y).

In this and the subsequent section are several illustration of the
use of Theorem 2. In some of these examples it is convenient to use a

certain limit that is established in some courses in advanced calculus.
We refer to a limit of the form

lim [1 + 5 + M]

n— n

where b and ¢ do not depend upon # and where lim ¢(xn) = 0. Then

n— 0

. b cn n
lim [1 + - + M] = lim (1 + Q)C — g
n n % )

n— n-»w

For example,

2 3\ -
Lim (1 _t;+—t§) n2 lim (1 A N t3/\/ﬁ)—n12.
n

n—>x© n3/ n—> o n

Here b = —#2, ¢ = —%, and ¢(n) = #/V/n. Accordingly, for every fixed
value of ¢, the limit is ¢t*/2,

Example 1 Let Y, have a distribution that is 8(n, $). Suppose that the
mean p = #p is the same for every #; thatis, p = u/n, where u is a constant.
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We shall find the limiting distribution of the binomial distribution, when
$ = p/n, by finding the limit of M(¢; ). Now
n ,‘L(et - 1) "
M) = E(e) = (1 — p) + pe = |1+ EE—=

for all real values of £. Hence we have
lim M(; n) = gt =1

n— o

for all real values of £. Since there exists a distribution, 'namely the Poi?scin
distribution with mean u, that has this moment—generatmg .functlon ghee .‘ .>,
then in accordance with the theorem and under tl.le conditions stated, it is
seen that Y, has a limiting Poisson distribution w1th.mez.1n Qe .

Whenever a random variable has a limiting distribution, we may, 1.f we
wish, use the limiting distribution as an approximation to the exact d.1str1—
bution function. The result of this example enables us t.o use the I.’01sson
distribution as an approximation to the binomial Flistributlon Wben » is large
and ¢ is small. This is clearly an advantage, for it is easy to provide ta?)les f.0r
the one-parameter Poisson distribution. On the other ‘har'ld, t.he binomial
distribution has two parameters, and tables for .thlS distribution are very
ungainly. To illustrate the use of the approximation, let Y have a binomial

distribution with # = 50 and $ = 35. Then

Pr(Y < 1) = (39)% + 50(5)(34)%° = 0400,
approximately. Since p = np = 2, the Poisson approximation to this prob-
ability is e~2 4 2¢72 = 0.406.

Example 2. Let Z, be x*(n). Then the moment-generating functiqn of Z,
is (1 — 2t)~™2, ¢ < }. The mean and the variance of Z, are, respectively, #

and 2#. The limiting distribution of the random variable Y, = (Z, = n)/V 2n
will be investigated. Now the moment-generating function of Y, is

sew [ 557)]}

—zn/JﬁE(etzn/Jé—n)

M{t; n)

= €

i -nl2 '\/ZL
#n)\2 N
This may be written in the form
130 A i < ﬁ
M(t;n):(e —t 5 € , 5

In accordance with Taylor’s formula, there exists a number £(n), between 0
and #V/2/n, such that

_ 2 1 2\ 2 e&(n) (A/?)a.
O AT R
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If this sum is substituted for ¢¥2 in the last expression for M(¢; n), it is
seen that

Mit;m) = (1 L M) -
" ”n
where
oy - Y2V
3Vn vV 3n

Since {(n) — 0 as # — oo, then lim (x#) = 0 for every fixed value of £ In
accordance with the limit proposition cited earlier in this section, we have

lim M(¢; n) = €2

n— 0

for all real values of £ That is, the random variable Y, = (Z, — #)/V/ 2n has
a limiting normal distribution with mean zero and variance 1.

EXERCISES

5.11. Let X, have a gamma distribution with parameter ¢« = »# and 8,

where B is not a function of #. Let Y, = X, /xn. Find the limiting distribution
of Y,.

5.12. Let Z, be x%(n) and let W,, = Z,/n? Find the limiting distribution
of W,.

5.13. Let X be ¥2(50). Approximate Pr (40 < X < 60).

5.14. Let p = 0.95 be the probability that a man, in a certain age group,
lives at least 5 years.

(a) If we are to observe 60 such men and if we assume independence, find
the probability that at least 56 of them live 5 or more years.

(b) Find an approximation to the result of part (a) by using the Poisson
distribution. Hint. Redefine p to be 0.05 and 1 — p = 0.95.

5.15. Let the random variable Z, have a Poisson distribution with
parameter u = #. Show that the limiting distribution of the random variable

Y, = (Z, — n)/vn is normal with mean zero and variance 1.

5.16. Let S2 denote the variance of a random sample of size #» from a
distribution that is n(u, ¢?). It has been proved that #S2/(n — 1) converges
stochastically to ¢2. Prove that S2 converges stochastically to o

5.17. Let X, and Y, have a bivariate normal distribution with parameters
M1, Ho, 03, 03 (free of #) but p = 1 — 1/n. Consider the conditional distribu-
tion of Y,, given X, = a. Investigate the limit of this conditional distribution
as # — c0. What is the limiting distribution if p = —1 + 1/#? Reference to
these facts was made in the Remark, Section 2.3.
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5.18. Let X, denote the mean of a random sample of size # from a Poisson
distribution with parameter p = 1.

(a) Show that the moment-generating function of Y, = V(X, — p)jo =
Vn(X, — 1) is given by exp [ —t4/7 + n{et~™ — 1)].

(b) Investigate the limiting distribution of Y, as #n — oo. Hint. Replace,
by its MacLaurin’s series, the expression et'¥#, which is in the exponent of the
moment-generating function of Y.

5.19. Let X, denote the mean of a random sample of size # from a
distribution that has p.d.f. f(x) = ¢7%, 0 < & < o0, zero elsewhere.

(a) Show that the moment-generating function M{f; n) of Y, =
Vn(X, — 1) is equal to [eV* — (t/vV/n)et!"™~ " t < Vn.

(b) Find the limiting distribution of Y, as # — 0.

This exercise and the immediately preceding one are special instances of
an important theorem that will be proved in the next section.

5.4 The Central Limit Theorem

It was seen (Section 4.8) that, if X,, X,,..., X, is a random sample
from a normal distribution with mean p and variance ¢2, the random
variable

%Xi—n”_ﬁ(xn—ﬂ)

oVn o

is, for every positive integer #, normally distributed with zero mean and
unit variance. In probability theory there is a very elegant theorem
called the central limit theorem. A special case of this theorem asserts
the remarkable and important fact that if X, X,, ..., X, denote the
items of a random sample of size # from any distribution having positive
variance o2 (and hence finite mean p), then the random variable
Vn(X, — p)/o has a limiting normal distribution with zero mean and
unit variance. If this fact can be established, it will imply, whenever
the conditions of the theorem are satisfied, that (for fixed #) the random
variable V(X — p)/o has an approximate normal distribution with
mean zero and variance 1. It will then be possible to use this approxi-
mate normal distribution to compute approximate probabilities con-
cering X.

The more general form of the theorem is stated, but it is proved
only in the modified case. However, this is exactly the proof of the
theorem that would be given if we could use the characteristic function
in place of the moment-generating function.
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The0.1°er.n 3.. Let Xy, X, ..., X, denote the items of a random sample
Jrom a distribution that has mean p and positive variance o2. Then the

rand ' = (3 \va X
andom variable Y, = (g X, — n,u)/\/na = Vu(X, - ®)/o has a limit-

wng distribution that is normal with mean zero and variance 1.

Proof. In the modification of the proof, we assume the existence of
the r.non.lent-generating function M () = E (€X), —h <t < h, of the
dlStI'.lbutIOIl. H9wever, this proof is essentially the same one that would
be given for this theorem in a more advanced course by replacing the
moment-generating functi isti i
ey g tunction by the characteristic function ot) =

The function

m(t) — E[et(X—u):l — 6”“M(t)
also faxists for —h <t < h. Since m(t) is the moment-generating
function for X — , it must follow that m(0) = 1, m'(0) = E(X — p)

= 0,and m"(0) = E[(X — p)?] = o2 B :
= o*. By Taylor’s formula th i
a number ¢ between 0 and ¢ such that Y e there exists

m(t) = m(0) + m'(0)¢ + mﬂf)tz

m” (§)t2
"
If 0%/2 is added and subtracted, then
L [m'(E) — o

mE) =1 + —
(%) +2+

Next consider M (t; n), where

_ E[exp (t Z—}i«—\/%"“”

) E[exp t ng_n#) exp (t X(ﬂ/—nu) exp 1 {\/_n”) }
oon ()] e ()

el ()Y

M@ n

~

oV H
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In m(f), replace ¢ by t/oV/n to obtain

t £ m'(§) — 1
m(cﬁ) =1t 2n * 2n0®

where now ¢ is between 0 and tloV'n with —hoVn < t < haV/'n.

Accordingly,
t2 [mll(g) - 0_2],:2}".

M(t; n) = {1 R e

i i i have
Since m"(t) is continuous at ¢ = 0 and since £ — 0 as n — 0, we

lim [m'(¢) — o%] = 0.

n— ©

The limit proposition cited in Section 5.3 shows that

lim M(t; n) = /2
for all real values of £. This proves that the random variable Y, =
Vn(X, — p)/o has a limiting normal distribution with mean zero and

variance 1.

We interpret this theorem as saying, with # a fixed positive integer,
that the random variable vVn(X — p)/o has an approxim.ate'normal
distribution with mean zero and variance 1; and in applications we
use the approximate normal p.d.f. as though it were the exact p.d.f.

- o.
o \S/Zr(n)i illgs)‘{rative examples, here and later, will help show the
importance of this version of the central limit theorem.

Example 1. Let X denote the mean of a random sample of size 75 from
the distribution that has the p.d.f.

f@) =1 O0<z<l,

= ( elsewhere.

It was stated in Section 5.1 that the exact p.d.f. of X, say g(@), is ra'tl.ler
complicated. It can be shown that g(Z) has a grapl} at points of p<?511t1ve£
probability density that is composed of arcs (?f' 75 different polynomials (;
degree 74. The computation of such a probability as Pr (0.45 < X <.0.5 )
would be extremely laborious. The conditions of the theorem are satisfied,
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since M(t) exists for all real values of ¢ Moreover, p = 1 and ¢? = &, so
we have approximately

Pr(045 < X < 0.55) = Pr [‘/;(0'45 — ) VX —p) V(055 - p)}

[0} o o

= Pr{—-1.5 < 30(X — 0.5) < 1.5]
= 0.866,
from Table III in Appendix B.

Example 2. Let X, X,,..., X, denote a random sample from a
distribution that is (1, ). Here p = $, 0% = p(1 — p), and M{¢) exists for
all real values of ¢. If Y, = X, + ...+ X, it is known that Y, is b(n, p).
Calculation of probabilities concerning Y,, when we do not use the Poisson
approximation, can be greatly simplified by making use of the fact that
(Yo — np)Vnp(l — p) = VX, — p)Vp(1 — p) = Vn(X, — p)johasa
limiting distribution that is normal with mean zero and variance 1. Let
# = 100 and p = 1, and suppose that we wish to compute Pr (Y = 48, 49,
50, 51, 52). Since Y is a random variable of the discrete type, the events Y =
48, 49, 50, 51, 52 and 47.5 < Y < 52.5 are equivalent. That is, Pr (Y = 48,
49,50, 51, 52) = Pr (47.5 < Y < 52.5). Since np = 50 and np(l — p) = 25,
the latter probability may be written

Pr(47.5 < Y < 52.5) = Pr (47'55_ 50 _Y —5- 50 _ 525 = 50)

Y — 50
5

Since (Y — 50)/5 has an approximate normal distribution with mean zero
and variance 1, Table 111 shows this probability to be approximately 0.382.

The convention of selecting the event 47.5 < Y < 52.5, instead of, say,
47.8 < Y <« 52.3, as the event equivalent to the event Y = 48, 49, 50, 51, 52
seems to have originated in the following manner: The probability,
Pr (Y = 48, 49, 50, 51, 52), can be interpreted as the sum of five rectangular
areas where the rectangles have bases 1 but the heights are, respectively,
Pr(Y = 48),..., Pr (Y = 52). If these rectangles are so located that the
midpoints of their bases are, respectively, at the points 48, 49,...,52 on a
horizontal axis, then in approximating the sum of these areas by an area
bounded by the horizontal axis, the graph of a normal p.d.f., and two

ordinates, it seems reasonable to take the two ordinates at the points 47.5
and 52.5.

= Pr (—0.5 < < 0.5).

EXERCISES

5.20. Let X denote the mean of a random sample of size 100 from a
distribution that is y*(50). Compute an approximate value of Pr (49 < X < 51).
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5.21. Let X denote the mean of a random sample of size 128 from a
gamma distribution with « = 2 and B = 4. Approximate Pr (7 < X < 9).

5.22. Let Y be (72, §). Approximate Pr (22 < Y < 28).

5.23. Compute an approximate probability that the mean of a random
sample of size 15 from a distribution having p.d.f. f(z) = 32%, 0 < x < 1,
zero elsewhere, is between ¢ and £.

5.24. Let Y denote the sum of the items of a random sample of size 12
from a distribution having p.d.f. f(x) = 3,2 = 1, 2, 3, 4, 5, 6, zero elsewhere.
Compute an approximate value of Pr (36 < Y < 48). Hint. Since the event
of interestis Y = 36, 37, ..., 48, rewrite the probability as Pr (35.5 < Y <

48.5).

5.25. Let Y be b(400, }). Compute an approximate value of
Pr(0.25 < Y/n).

5.26. If Y is 5(100, 1), approximate the value of Pr (Y = 50).

5.27. Let Y be b(n, 0.55). Find the smallest value of # so that (approxi-
mately) Pr (Y/n > 1) = 0.95.

5.28. Let f(x) = 1/22, 1 < x < 0, zero elsewhere, be the p.d.f. of a
random variable X. Consider a random sample of size 72 from the distri-
bution having this p.d.f. Compute approximately the probability that more
than 50 of the items of the random sample are less than 3.

5.29. Forty-eight measurements are recorded to several decimal places.
Each of these 48 numbers is rounded off to the nearest integer. The sum of
the original 48 numbers is approximated by the sum of these integers. If we
assume that the errors made by rounding off are stochastically independent
and have uniform distributions over the interval (—1, 4), compute approxi-
mately the probability that the sum of the integers is within 2 units of the
true sum.

5.5 Some Theorems on Limiting Distributions

In this section we shall present some theorems that can often be
used to simplify the study of certain limiting distributions.

Theorem 4. Let F,(u) denote the distribution function of a random
variable U, whose distribution depends upon the positive integer n. Let U,
converge stochastically to the constant ¢ # 0. The random variable U, [c
converges stochastically to 1.

The proof of this theorem is very easy and is left as an exercise.
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Theorem 5. L.et Zf"n(u) denote the distribution Junction of a vandom

Z)armble U, whose distribution depends upon the positive wnteger n. Further

et U, converge stochastically to the positive constant ¢ and let Pr (U, < O),
n

= 0 for every n. The random variable VU, converges stochastically to /.
Proof. We are given that the lim Pr (U,

n—>w

—¢| 2 ¢) = 0 for every
€ > 0. We are to prove that the lim Pr (vu, - Ve| = €) = 0 for
every ¢ > (. Now the probability e

Pr(jU, —¢| 2 ¢ = Pr[|(vVT, — Voy(VTU, + V)| = ¢

- P (VT - VA e )

\

zPr(l\/ﬁ;—\/E]_%) > 0.

If welet ¢ = i imi i
o € ¢/V'e, and if we take the limit, as # becomes infinite, we

0=1m Pr(|U, — ¢| > ¢ > lim Pr([vU, - vVe| = &) = 0

n— oo

for every ¢’ > 0. This completes the proof.

’Phe conclusions of Theorems 4 and 5 are very natural ones and the
ceFtalnly appeal to our intuition. There are many other theorems o};
this flavor in probability theory. As exercises, it is to be shown that if
the random variables U, and V. converge stochastically to the respec-
tive constants ¢ and d, then U,V, converges stochastically to the
constant ¢d, and U,/V, converges stochastically to the constant c/d,

provided that 4 # 0. However, we shall i
llowing therres accept, without proof, the

Theorem 6. Let F,(u) denote the distribution Junction of a random
variable Un whose distribution depends upon the positive integer n. Let U
have a limiting distribution with dustribution function F (u) L;:t H (vsL
denote the distribution Junction of a random variable V whose .dz'sm'but;on
depen.ds .u.]bon the positive integer n. Let Va convergenstochasticall to 1
The limiting distribution of the random variable W, =U,/V, s th?: same;

as that of U,: that e S _ S bhe
function J; (U’;S- S, Wy has a limiting distribution with distribution
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Example 1. Let Y, denote a random variable that is &(», $), 0 < p < 1.
We know that

Yn —_ %P
U n = —/m———
Vup(1 — p)
has a limiting distribution that is #(0, 1). Moreover, it has been proved that
Y,/mand 1 — Y,/n converge stochastically to pand 1 — p, respectively; thus
(Y,/n)(1 — Y,/n) converges stochastically to p(1 — p). Then, by Theorem 4,

(Y./m)(1 — Y, /n)/[p(1 — $)] converges stochastically to 1, and Theorem 5
asserts that the following does also:

v, = [(Yn/”)(l - Yn/n)]lm.

(1 - )
Thus, in accordance with Theorem 6, the ratio W, = U,/V,, namely
Yn _ %P

>

Va(Ya/n)(1 — Y,./n)
has a limiting distribution that is #(0, 1). This fact enables us to write (with
» a fixed positive integer)
Y — np
Va(Yn) 1 — Y/n

Pr [—2 < < < 2] — 0.954,

approximately.

Example 2. Let X, and S denote, respectively, the mean and the
variance of a random sample of size # from a distribution that is #n(u, ¢?),
o2 > 0. It has been proved that X, converges stochastically to u and that S2
converges stochastically to o2. Theorem 5 asserts that S, converges stochastic-
ally to o and Theorem 4 tells us that S, /¢ converges stochastically to 1. In
accordance with Theorem 6, the random variable W, = ¢X,/S, has the same
limiting distribution as does X,. That is, 0.X,/S, converges stochastically to .

EXERCISES

5.30. Prove Theorem 4. Hint. Note that Pr ([U,fc — 1] < ¢ =
Pr (U, — ¢| < €|c]), for every € > 0. Then take ¢ = ¢|c|.

5.31. Let X, denote the mean of a random sample of size # from a gamma
distribution with parameters « = u > 0 and B = 1. Show that the limiting

distribution of V#(X, — u)/V'X, is #(0, 1).

5.32. Let T, = (X, — u)/VSZ/(n — 1), where X, and S2 represent,
respectively, the mean and the variance of a random sample of size % from a
distribution that is #(u, 02). Prove that the limiting distribution of T, is
#(0, 1).
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5.33. Let X,,..., X, and Y,,..., Y, be the items of two independent
random samples, each of size %, from the distributions that have the
respective means g, and p, and the common variance ¢®. Find the limiting
distribution of

(Xn - Yu) = (1 — po)
oV 2

b

where X, and Y, are the respective means of the samples. Hint. Let Z, =

i Zn, where Z, = X, — Y.
1

5.34. Let U, and V, converge stochastically to ¢ and d, respectively.

Prove the following.

(a) The sum U, + V, converges stochastically to ¢ + 4. Hint. Show that
Pr(|Un+ Vn—C—dl Ze) SPr(lUn_cl_*_an"_dl Ze) SPqun _Cl
> ef20r|V, —d| = ¢2) < Pr(|U, —¢| = ¢/2) + Pr(|V, — d| = ¢/2).

(b) The product U,V, converges stochastically to cd.
(c) If d # 0, the ratio U,/V, converges stochastically to c/d.

5.35. Let U, converge stochastically to ¢. If A(u) is a continuous function
at u = ¢, prove that 4(U,) converges stochastically to &(c). Hint. For each
e > 0, there exists a § > 0 such that Pr [|A(U,) — A(c)| < €] = Pr[|U, — ¢|
< 8]. Why?



Chapter 6

Estimation

6.1 Point Estimation

The first five chapters of this book deal with certain concepts and
problems of probability theory. Throughout we have carefully dis-
tinguished between a sample space € of outcomes and the space &/
of one or more random variables defined on 4. With this chapter we
begin a study of some problems in statistics and here we are more
interested in the number (or numbers) by which an outcome is repre-
sented than we are in the outcome itself. Accordingly, we shall adopt a
frequently used convention. We shall refer to a random variable X as
the outcome of a random experiment and we shall refer to the space of
X as the sample space. Were it not so awkward, we would call X the
numerical outcome. Once the experiment has been performed and it is
found that X = x, we shall call z the experimental value of X for that
performance of the experiment.

This convenient terminology can be used to advantage in more
general situations. To illustrate this, let a random experiment be
repeated # independent times and under identical conditions. Then
the random variables X, X,, ..., X, (each of which assigns a numerical
value to an outcome) constitute (Section 4.1) the items of a random
sample. If we are more concerned with the numerical representations of
the outcomes than with the outcomes themselves, it seems natural to
refer to X;, X,,..., X, as the outcomes. And what more appropriate
name can we give to the space of a random sample than the sample
space? Once the experiment has been performed the indicated number

200

Sec. 6.1] Point Estimation 201

of times and it is found that X; = #;, X3 = =,,..., X, = z,, we shall
refer to z,, @y, .. ., x, as the experimental values of X;, X,,..., X, or
as the sample data.

We shall use the terminology of the two preceding paragraphs, and
in this section we shall give some examples of statistical inference.
These examples will be built around the notion of a point estimate of
an unknown parameter in a p.d.f.

Let a random variable X have a p.d.f. that is of known functional
form but in which the p.d.f. depends upon an unknown parameter 6
that may have any value in a set Q. This will be denoted by writing the
p.d.f. in the form f(x; 8), 6 € Q. The set Q will be called the parameter
space. Thus we are confronted, not with one distribution of prob-
ability, but with a family of distributions. To each value of 6, 6 € Q,
there corresponds one member of the family. A family of probability
density functions will be denoted by the symbol {f(x; 6); 6 € Q}. Any
member of this family of probability density functions will be denoted
by the symbol f(x; 6), 6 € Q. We shall continue to use the special
symbols that have been adopted for the normal, the chi-square, and the
binomial distributions. We may, for instance, have the family
{n(6, 1); 6 € Q}, where Q is the set —c0 < 6 < 0. One member of this
family of distributions is the distribution that is #(0, 1). Any arbitrary
member is #(§, 1), —c0 < 8 < 0.

Consider a family of probability density functions {f(x; 6); 6 € Q}.
It may be that the experimenter needs to select precisely one member
of the family as being the p.d.f. of his random variable. That is, he
needs a point estimate of 8. Let X,, X,,..., X, denote a random
sample from a distribution that has a p.d.f. which is one member (but
which member we do not know) of the family {f(x; 6); 6 € Q} of prob-
ability density functions. That is, our sample arises from a distribution
that has the p.d.f. flz; 8); 8 € Q. Our problem is that of defining a
statistic Y; = u,(X,, X,, ..., X)), so that if x,x,, ..., 2, are the
observed experimental values of X, X,,..., X,, then the number
Y1 = #y(%y, Xa, . . ., ;) Will be a good point estimate of 6.

The following illustration should help motivate one principle that is
often used in finding point estimates.

Example 1. Let X,, X,,..., X, denote a random sample from the
distribution with p.d.f.

f@) =61 - 6)'~* x=01,

0 elsewhere,
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where 0 < 6 < 1. The probability that X; =%, Xy =2,,..., X, ==, is
the joint p.d.f.

0711 — 6)1==18%2(1 — ) 2. .. §7(1 — 6)1 % = H2H(1 — -2,

where ; equals zero or 1, ¢ = 1,2,..., %. This probability, which is the
joint p.d.f. of X, X, ..., X,, may be regarded as a function of # and, when
so regarded, is denoted by L(6) and called the likelthood function.That is,

L) = 625(1 — O35, 0< <1

We might ask what value of § would maximize the probability L(6) of
obtaining this particular observed sample =z, @, ..., 2, Certainly, this
maximizing value of 6 would seemingly be a good estimate of § because it
would provide the largest probability of this particular sample. However,
since the likelihood function L(6) and its logarithm, In L(6), are maximized
for the same value 6, either L(6) or In L{6) can be used. Here

mum:(%@nﬂ+(n—§@ynu—m;

so we have

dinL(0) >z n—2Jx
a¢ 0 1-4

provided that 6 is not equal to zero or 1. This is equivalent to the equation
(1-10 ix,- = 0(n - ixi),
1 1

whose solution for §is i z;/n. That i z;/n actually maximizes L() and In L(6)
1 1
can be easily checked, even in the cases in which all of z,, z,, . . ., z, equal
zero together or 1 together. That is, ix,/n is the value of 6 that maximizes
1

L(6). The corresponding statistic,

Sl'—‘

is called the mazsmum likelihood estimator of 6. The observed value of §,
namely ix,-/n, is called the maximum likelihood estimate of 8. For a simple
1

example, suppose that # =3, and z; =1, 2, =0, 23 = 1, then L(§) =
62(1 — 0) and the observed § = 2 is the maximum likelihood estimate of 6.

The principle of the method of maximum likelihood can now be
formulated easily. Consider a random sample X, X,, ..., X, from a
distribution having p.d.f. f(x; ), 8 € Q. The joint p.d.f. of Xy, X, ...,
X, is flzy; 0)f(xa; 0) - - - flz,; 6). This joint p.d.f. may be regarded as a
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function of 8. When so regarded, it is called the likelihood function L
of the random sample, and we write

L(0; %y, o, . . ., 2,) = [fl®y; 0)f(%3; 0) - - - fley; 6), fe Q.

Suppose that we can find a nontrivial function of Ty, Tgy ..., Xy, SAY

w(®y, g, . . ., &,), such that, when 6 is replaced by u(z,, 2, . . ., x,), the
likelihood function L is a maximum. That is, Liu(xy, x, . .., x,);
Ty, Xy, .., ¥,] is at least as great as L(6; x,, x,,. . ., x,) for every 8 e Q.

Then the statistic u(Xy, X,, ..., X,) will be called a maximum likeli-
hood estimator of 6 and will be denoted by the symbol § = u(X,, X,,

.., X;). We remark that in many instances there will be a unique
maximum likelihood estimator § of a parameter 6, and often it may be
obtained by the process of differentiation.

Example 2. Let X,, X,,..., X, be a random sample from the normal
distribution #(6, 1), —o0 < 0 < oo. Here

L0z, 2g,...,2,) = (—\—/%)nexp [ zn: (z, — 0) 2/2]

1

This function L can be maximized by setting the first derivative of L, with
respect to 6, equal to zero and solving the resulting equation for §. We note,
however, that each of the functions L and In L is a2 maximum for the same
value 6. So it may be easier to solve

dln L(0; 2y, 2, . .., ,)

76 = 0.

For this example,

dln L(0; 2y, z,, ..., x,) i
T "=zm_@

If this derivative is equated to zero, the solution for 8 is w(Xy, g, . .., T,) =

; z;/n. That ;x,/n actually maximizes L is easily shown. Thus the statistic
9 = X X . = l S =
M( 1> 25 . n 2 X X
is the unique maximum likelihood estimator of the mean 6.

It is interesting to note that in both Examples 1 and 2, it is true that
E(f) = 6. That is, in each of these cases, the expected value of the

estimator is equal to the corresponding parameter, which leads to the
following definition.
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Definition 1. Any statistic whose mathematical expectation is
equal to a parameter 6 is called an unbiased estimator of the parameter
8. Otherwise, the statistic is said to be biased.

Example 3. Let
f(x;0)=%, 0<z<60<8<ocw,

= 0 elsewhere,

and let X, X,,..., X, denote a random sample from this distribution.
Note that we have taken 0 < z < 0 instead of 0 < < 6 so as to avoid a
discussion of supremum versus maximum. Here

L(G;xl,xz,...,x")=%‘, O<ua <6,

which is an ever-decreasing function of 8. The maximum of such functions
cannot be found by differentiation but by selecting 6 as small as possible.
Now 6 > each =z;; in particular, then, 6§ > max (z,). Thus L can be made no

larger than

1
[max (z)]"

and the unique maximum likelihood estimator 8 of 8 in this example is the
nth order statistic max (X,). It can be shown that E[max (X,)] = »8/(n + 1).
Thus, in this instance, the maximum likelihood estimator of the parameter 6
is biased. That is, the property of unbiasedness is not in general a property
of a maximum likelihood estimator.

While the maximum likelihood estimator § of # in Example 3 is a
biased estimator, results in Chapter 5 show that the #th order statistic
6 = max (X,) = Y, converges stochastically to . Thus, in accordance
with the following definition, we say that 8 = Y, is a consistent
estimator of 6.

Definition 2. Any statistic that converges stochastically to a
parameter 6 is called a consistent estimator of that parameter 6.

Consistency is a desirable property of an estimator; and, in all cases
of practical interest, maximum likelihood estimators are consistent.

The preceding definitions and properties are easily generalized.
Let X,Y,..., Z denote random variables that may or may not be
stochastically independent and that may or may not be identically
distributed. Let the joint p.d.f. g(z, y, ..., 2; 01, 05, ..., 4), (01, 0,, . . -,
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0,) € Q, depend on m parameters. This joint p.d.f., when regarded as
a function of (8, 0,, ..., 8,) € Q, is called the likelihood function of the

random variables. Those functions #(, ¥y, ..., 2}, #s(®, 4, ..., 2), ...,
(2, 9,. .., 2) that maximize this likelihood function with respect to
0y, 0,,..., 0, respectively, define the maximum likelihood estimators

6, = u(X,Y,....,2), O,=uyX,Y,...,2),...
bp = un(X,Y,..., 2)

of the m parameters.

Example 4. Let X, X,, ..., X, denote a random sample from a distri-
bution that is #(6;, 8,), —00 < 8, < 0, 0 < 6, < co. We shall find 8, and
8,, the maximum likelihood estimators of 6, and 6,. The logarithm of the
likelihood function may be written in the form

(xl - 01)2
In L(6y, 05; 21, -, 2,) = —2— _nln (221792).
2

M

We observe that we may maximize by differentiation. We have

oL 3@ =0 g 2@ 0P

n
’

00, 0, 00, 202 T 28,

If we equate these partial derivatives to zero and solve simultaneously the
two equations thus obtained, the solutions for 6, and 6, are found to be

n n
; 2/n = zZand > (x, — %)%/n = s, respectively. It can be verified that these
1

solutions maximize L. Thus the maximum likelihood estimators of 8, =
and 6, = ¢® are, respectively, the mean and the variance of the sample,
namely 8, = X and 8, = S2. Whereas 8, is an unbiased estimator of 6;, the
estimator 8, = S? is biased because

E(b,) = "_ZE(@E) - 0_25("_52) _ (=10 _ (n—1)6,

n o? n o? n %

However, in Chapter 5 it has been shown that §; = X and 8, = S2 converge
stochastically to 8, and @,, respectively, and thus they are consistent esti-
mators of 8, and 6,.

Sometimes it is impossible to find maximum likelihood estimators
in a convenient closed form and numerical methods must be used to
maximize the likelihood function. For illustration, suppose that
Xy, Xg,..., X, is a random sample from a gamma distribution with
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parameters « = 6, and 8 = 6,, where 8, > 0, 8, > 0. It is difficult to
maximize

1 n n
L8y, 05;2y,...,2,) = [W] (w129 -+ - ,)02 " exp (—z xi/92)
2

with respect to 6, and 6,, owing to the presence of the gamma function
I'(0,). However, to obtain easily point estimates of 8, and 0,, let us
simply equate the first two moments of the distribution to the corre-
sponding moments of the sample. This seems like a reasonable way in
which to find estimators, since the empirical distribution F,(x) converges
stochastically to F(x), and hence corresponding moments should be
about equal. Here in this illustration we have

0102 = X, 010% = 52,
the solutions of which are

2 2
0, = % and 6, = %

We say that these latter two statistics, §, and §,, are respective esti-

mators of 6, and 6, found by the method of moments.
To generalize the discussion of the preceding paragraph, let X, X,
..., X, be a random sample of size » from a distribution with p.d.f.
flx; 84, 05, ..., 8), (04,...,8,) € Q. The expectation E(X¥) is frequently
called the Ath moment of the distribution, 2 = 1, 2, 3,.... The sum

M, = S X¥/n is the kth moment of the sample, k = 1,2, 3,.... The

1
method of moments can be described as follows. Equate E(X¥) to M,

beginning with 2 = 1 and continuing until there are enough equations
to provide unique solutions for 6, 0,,..., 0, say h(M;, M,,...),
i =1,2,...,7 respectively. It should be noted that this could be
done in an equivalent manner by equating u = E(X) to X and

E[(X ~ p)¥] to % (X; — X)*/n, k = 2, 3, and so on until unique solu-
1

tions for 6, 6,,..., 8, are obtained. This alternative procedure was

used in the preceding illustration. In most practical cases, the esti-

mator 8, = & (M,, M,,...) of 8, found by the method of moments,
is a consistent estimator of 6,7 = 1,2,...,7.

EXERCISES

6.1. Let X,, X,,..., X, represent a random sample from each of the
distributions having the following probability density functions:
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() flz; 0) = 6%e~%/zl, 2 =0,1,2,...,0 < 8 < o0, zero elsewhere, where
f(0;0) = 1.
(b) f(z;0) = 62°~1,0 <2 < 1,0 < 6 < o0, zero elsewhere.
(c) flx; 6) = (1/6)e==",0 < x < o0, 0 < 8 < o0, zero elsewhere.
(d) flx; ) = e 1279, —0 < < 0, —0 < 8 < 0.
(€) flz;0) = ¢@="9 0 < x < 0, —0 < # < o0, zero elsewhere.

In each case find the maximum likelihood estimator @ of 6.

6.2. Let X;, X,,..., X, be a random sample from the distribution
having p.d.f. f(z; 6, 8;) = (1/6,)e"@-9% 0, < z < o0, —~c0 < 0, < o0,
0 < 6, < oo, zero elsewhere. Find the maximum likelihood estimators of
0, and 6,.

63. Let Y, < Y, <--- < Y, be the order statistics of a random sample
from a distribution with p.d.f. f(x; ) = 1,0 — <2< 0+ 1, —00 < 6 < oo,
zero elsewhere. Show that every statistic »(X,, X,, ..., X,) such that

Yn—%su(XerZw--:Xn) < Y1+'%

is a maximum likelihood estimator of 6. In particular, (4Y, + 2Y, + 1)/6,
(Y + Y,)/2,and (2Y, + 4Y, — 1)/6 are three such statistics. Thus unique-
ness is not in general a property of a maximum likelihood estimator.

6.4. Let X,, X,, and X; have the multinomial distribution in which
n = 25, k = 4, and the unknown probabilities are 6,, 6,, and 83, respectively.
Here we can, for convenience, let X, = 25 — X; — X, — X and 0,=1-—6,—
63 ~ 5. If the observed values of the random variables are 2, = 4, z, = 11,
and z3 = 7, find the maximum likelihood estimates of 6;, 6,, and 0.

6.5. The Pareto distribution is frequently used as a model in study of
incomes and has the distribution function

F(x; 61,05) =1~ (6,/2)%, 6, < =, zeroelsewhere, where 6, > 0and 6, > 0.

If X;, X,, ..., X, is a random sample from this distribution, find the maxi-
mum likelihood estimators of 8, and 8,.
6.6. Let Y, be a statistic such that lim E(Y,) = # and lim 0%, =

0.
Prove that Y, is a consistent estimator of 6. Hinf. Pr (Y, — 6] = ¢ <
E[(Y, — 6)?)/¢® and E[(Y, — 6)%] = [E(Y, — 0))2 + o},. Why?

6.7. For each of the distributions in Exercise 6.1, find an estimator of §
by the method of moments and show that it is consistent.
6.2 Measures of Quality of Estimators

Now it would seem that if y = u(z,, z,, . .., x,) is to qualify as a
good point estimate of 6, there should be a great probability that the
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statistic Y = #(X;, X,,..., X,) will be close to 8; that is, 6 should
be a sort of rallying point for the numbers y = u(x,, x,, ..., ,). This
can be achieved in one way by selecting ¥ = u(X,, X,,..., X,) in
such a way that not only is ¥ an unbiased esimator of § but also the
variance of Y is as small as it can be made. We do this because the
variance of Y is a measure of the intensity of the concentration of the
probability for Y in the neighborhood of the point 8§ = E(Y). Accord-
ingly, we define an unbiased minimum variance estimator of the param-
eter 6 in the following manner.

Definition 3. For a given positive integer#, ¥ = (X, X,, ..., X,)
will be called an unbiased minimum variance estimator of the parameter
0if Y is unbiased, that is E(Y) = 0, and if the variance of Y is less than
or equal to the variance of every other unbiased estimator of 0.

For illustration, let X,, X,,..., Xy denote a random sample from
a distribution that is #n(6, 1), —o0 < 6 < o0. Since the statistic X =
(Xy + Xy +-- -+ Xo)/9 is (6, L), X is an unbiased estimator of 6.
The statistic X, is n(0, 1), so X, is also an unbiased estimator of 6.
Although the variance % of X is less than the variance 1 of X;, we
cannot say, with # = 9, that X is the unbiased minimum variance
estimator of 0; that definition requires that the comparison be made
with every unbiased estimator of 8. To be sure, it is quite impossible to
tabulate all other unbiased estimators of this parameter 8, so other
methods must be developed for making the comparisons of the variances.
A beginning on this problem will be made in Chapter 10.

Let us now discuss the problem of point estimation of a parameter
from a slightly different standpoint. Let X, X,,..., X, denote a
random sample of size # from a distribution that has the p.d.f. f(z; 0),
0 € Q. The distribution may be either of the continuous or the discrete
type. Let Y = u(X,, X,,..., X,) be a statistic on which we wish to
base a point estimate of the parameter . Let w(y) be that function of
the observed value of the statistic Y which is the point estimate of 4.
Thus the function w decides the value of our point estimate of 8 and w
is called a decision function or a decision rule. One value of the decision
function, say w(y), is called a decision. Thus a numerically determined
point estimate of a parameter 6 is a decision. Now a decision may be
correct or it may be wrong. It would be useful to have a measure of the
seriousness of the difference, if any, between the true value of 6 and
the point estimate w(y). Accordingly, with each pair, [§, w(y)], 6 € Q,
we associate a nonnegative number .#[8, w(y)] that reflects this
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seriousness. We call the function .% the loss Junction. The expected
(mean). value of the loss function is called the 7isk Junction. 1f g(y; 6),
f € Q, is the p.d.f. of Y, the risk function R(0, w) is given by

R(0,w) = E{(L10, w(Y)]y = [* 216, wiy)lg(y; 0) dy

if Y is a random variable of the continuous type. It would be desirable
to select a decision function that minimizes the risk R(0, w) for all
values of 8, § € Q. But this is usually impossible because the decision
function w that minimizes R(8, w) for one value of § may not minimize
R(8, w) for another value of 8. Accordingly, we need either to restrict
our decision function to a certain class or to consider methods of order-
ing the risk functions. The following example, while very simple

dramatizes these difficulties. ’

E.xample L. Let X,, X,,..., X,5 be arandom sample from a distribution
thatis#(6, 1), —0 < 6 < 0. Let ¥V = X, the mean of the random sample,
and let £[6, w(y)] = [6 — w(y)]2. We shall compare the two decision functions

g'iven by wi(y) = y and w,(y) = 0 for —oo < Y < . The corresponding
risk functions are

R(6, w,) = E[(6 ~ Y)?] = %

and
R(0, w;) = E[(6 — 0)2] = 62

Obviously, if, in fact, § = 0, then wy(y) = 0is an excellent decision and we
have R(0, w;) = 0. However, if § differs from zero by very much, it is
equally clear that w,(y) = 0 is a poor decision. For example, if, in, fact
0 =2, R(2,wy) = 4> R(2, w;) = 5%. In general, we see that R(0, w,) <’
R(e, u{l), provided that —%1 < 6 < 1 and that otherwise R, w,) > R,(O ).
That is, one of these decision functions is better than the other for ;ome
values of 6 and the other decision function is better for other values of 6.
If, however, we had restricted our consideration to decision functions w
§uch that E[w(Y)] = 6 for all values of 6, § e (), then the decision w,(y) = 0
is not. allowed. Under this restriction and with the given &[4, w(y)],zthe risk
function is the variance of the unbiased estimator ©(Y), and we are con-
fronted with the problem of finding the unbiased minimum variance esti-
mator. In Chapter 10 we show that the solution is wly) =y = 7.

St?ppose, however, that we do not want to restrict ourselves to decision
functions w such that E [@(Y)] = 6 for all values of 6, 8 € Q. Instead. let us
say that the decision function that minimizes the maximum of tl’le risk
function is the best decision function. Because, in this example, R(6, wy) = 02
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is unbounded, w,(y) = 0 is not, in accordance, with this criterion, a good
decision function. On the other hand, with —c0 < § < o0, we have

max R(g, wl) — max (.2.1?) — _ZLS_'
e 0

Accordingly, w,{(y) = y = Z seems to be a very good decision in accordance
with this criterion because 3% is small. As a matter of fact, it can be proved
that w, is the best decision function, as measured by this minimax criterion,
when the loss function is Z[6, w(y)] = [0 — w(y)]%

In this example we illustrated the following:

(a) Without some restriction on the decision function, it is difficult
to find a decision function that has a risk function which is uniformly
less than the risk function of another decision function.

(b) A principle of selecting a best decision function, called the
minimax principle. This principle may be stated as follows: If the
decision function given by w,(y) is such that, for all § € Q,

max R[f, wo(y)] < max R[6, w(y)]
P 8

for every other decision function w(y), then wq(y) is called a minimax
decision function.

With the restriction E[w(Y)] = 6 and the loss function £[6, w(y)] =
[6 — w(y)]?, the decision function that minimizes the risk function
“yields an unbiased estimator with minimum variance. If, however, the
restriction E[w(Y)] = 6 is replaced by some other condition, the
decision function w(Y), if it exists, which minimizes E{[6 — w(Y)]?}
uniformly in 6 is sometimes called the menimum mean-square-error
estimator. Exercises 6.13, 6.14, and 6.15 provide examples of this type
of estimator.
Another principle for selecting the decision function, which may be
called a best decision function, will be stated in Section 6.6.

EXERCISES

6.8. Show that the mean X of a random sample of size # from a distri-
bution having p.d.f. f(z; 6) = (1/8)e"“®,0 < x < 0,0 < 0 < 00, zero else-
where, is an unbiased estimator of 6 and has variance 02/n.

6.9. Let X, X,, ..., X, denote a random sample from a normal distribu-
n

tion with mean zero and variance 8, 0 < 6 < co. Show that > XZ/x is an
1

unbiased estimator of # and has variance 20%/n.
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6.10. Let Y, < Y, < Y, be the order statistics of a random sample of
size 3 from the uniform distribution having p.d.f. f(z; 8) = 1/6, 0 < = < 6,
0 < 8 < oo, zero elsewhere. Show that 4Y,, 2Y,, and $Y; are all unbiased
estimators of 6. Find the variance of each of these unbiased estimators.

6.11. Let Y, and Y, be two stochastically independent unbiased esti-
mators of §. Say the variance of Y, is twice the variance of Y,. Find the
constants £, and %, so that %, Y, + k,Y, is an unbiased estimator with
smallest possible variance for such a linear combination.

6.12. In Example 1 of this section, take Z[8, w(y)] = |8 — w(y)|. Show

that R(6, w,) = +Vv/2/= and R(, w,) = [6]. Of these two decision functions
w,; and w,, which yields the smaller maximum risk?

6.13. Let X,, X,, ..., X, denote a random sample from a Poisson distri-
bution with parameter 6, 0 < 8 < 0. Let ¥ = i X, and let £[0, w(y)] =
1

[0 — w(y)]®. If we restrict our considerations to decision functions of the
form w(y) = b + y/n, where b does not depend upon y, show that R(6, w) =
b? + 6/n. What decision function of this form yields a uniformly smaller risk
than every other decision function of this form? With this solution, say
and 0 < # < oo, determine max R(8, w) if it exists.

0

6.14. Let X, X,,..., X, denote a random sample from a distribution
that is #(u, 0), 0 < § < oo, where p is unknown. Let Y = i (X, — X)*n =
1

S? and let Z[0, w(y)] = [ — w(y)]? If we consider decision functions of the
form w(y) = by, where b does not depend upon ¥, show that R(6, w) =
(0?/n*)[(n® — 1)d% — 2n(n — 1)b + #2]. Show that b = n/(n + 1) yields a
minimum risk for decision functions of this form. Note that #Y/(n + 1) is
not an unbiased estimator of 6. With w(y) = ny/(n + 1) and 0 < 6 < oo,
determine mgx R(6, w) if it exists.

6.15. Let X, X,, ..., X, denote a random sample from a distribution

thatis 5(1,8),0 < 6§ < 1. Let Y = iX, and let Z{0, w(y)] = [0 — w(y)]}*
1

Consider decision functions of the form w(y) = by, where b does not depend
upon y. Prove that R(f, w) = b2n6(1 — 6) + (bn — 1)26% Show that

R 0 b4n2
max R0 ) = e — on = 7

provided the value b is such that 62z > 2(bn — 1)2. Prove that b = 1/x does
not minimize max R(6, w).
[}



212 Estimation [Ch. 6

6.3 Confidence Intervals for Means

Suppose we are willing to accept as a fact that the (numerical) out-
come X of a random experiment is a random variable that has a normal
distribution with known variance o® but unknown mean p. That is, u is
some constant, but its value is unknown. To elicit some information
about p, we decide to repeat the random experiment » independent
times, » being a fixed positive integer, and under identical conditions.
Let the random variables X,, X,,..., X, denote, respectively, the
outcomes to be obtained on these # repetitions of the experiment. If our
assumptions are fulfilled, we then have under consideration a random
sample Xy, X,, ..., X, from a distribution that is n(u, 0%}, 6% known.
Consider the maximum likelihood estimator of u, namely @ = X. Of

course, X is n(u, o%/n) and (X — w)/(o/V'n) is n(0, 1). Thus

Pr (-2 <Ak 2) = 0.954.
o/Vn
However, the events
-2 < 2 __P' < 2,
a/\/n
—20 20
—_'<X— <L —>
) # vV
and
20 20
X—-—<p< X +—
va ¥ Va

are equivalent. Thus these events have the same probability. That is,

2 <p< X+

Pr(X—%

2
n

> ) — 0.954.

Since o is a known number, each of the random variables X — 2¢/v/n
and X + 2¢/V/n is a statistic. The interval (X — 20/V%, X + 20/V'n)
is a random interval. In this case, both end points of the interval are
statistics. The immediately preceding probability statement can be
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read. Prior to the repeated independent performances of the random
experiment, the probability is 0.954 that the random interval

(X — 20/V'n, X + 20/V'n) includes the unknown fixed point
(parameter) p.

Up to this point, only probability has been involved; the determina-
tion of the p.d.f. of X and the determination of the random interval
were problems of probability. Now the problem becomes statistical.
Suppose the experiment yields X, = 2, X, = x,,..., X,, = z,. Then
the sample value of X is £ = (%, + 25 + - - - + ,)/%, a known number.
Moreover, since o is known, the interval (£ — 26/V'n, # + 20/V/n) has
known end points. Obviously, we cannot say that 0.954 is the prob-

ability that the particular interval (£ — 20/V#%,  + 20/V'n) includes
the parameter p, for g, although unknown, is some constant, and this
particular interval either does or does not include n. However, the fact
that we had such a high degree of probability, prior to the performance
of the experiment, that the random interval (X — 20/V'n, X + 20/V'n)
includes the fixed point (parameter) u leads us to have some reliance on
the particular interval (£ — 20/V#%, % + 20/V/n). This reliance is re-
flected by calling the known interval (& — 20/V%, & + 20/V/%) a 95.4
per cent confidence interval for p. The number 0.954 is called the
confidence coefficient. The confidence coefficient is equal to the prob-
ability that the random interval includes the parameter. One may, of
course, obtain an 80 per cent, a 90 per cent, or a 99 per cent confidence
interval for p by using 1.282, 1.645, or 2.576, respectively, instead of
the constant 2.

A statistical inference of this sort is an example of interval estimation
of a parameter. Note that the interval estimate of n is found by taking
a good (here maximum likelihood) estimate # of p and adding and

subtracting twice the standard deviation of X, namely 20/v/%, which
is small if » is large. If o were not known, the end points of the random
interval would not be statistics. Although the probability statement
about the random interval remains valid, the sample data would not
yield an interval with known end points.

Example 1. If in the preceding discussion # = 40, 0 = 10,and Z = 7.164,
then (7.164 — 1.282v/18, 7.164 + 1.2824/19), or (6.523, 7.805), is an 80 per
cent confidence interval for u. Thus we have an interval estimate of p.

In the next example we shall show how the central limit theorem
may be used to help us find an approximate confidence interval for p
when our sample arises from a distribution that is not normal.
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Example 2. Let X denote the mean of a random sample of size 25 from
a distribution that has a moment-generating function, variance o* = 100,

and mean p. Since o/V'n = 2, then approximately

X—p
2

Pr (_1.96 < < 1.96) — 0.95,

or
Pr(X — 392 <p < X +392) =095

Let the observed mean of the sample be Z = 67.53. Accord‘ingly, the interval
from 7 — 3.92 = 63.61 to & + 3.92 = 71.45 is an approximate 95 per cent
confidence interval for the mean p.

Let us now turn to the problem of finding a confidence interval for
the mean p of a normal distribution when we are not so fortunate as
to know the variance o2 In Section 4.8 we found that nS%[o®, where
S2 is the variance of a random sample of size # from a distribution
that is #(u, 02), is x2(n — 1). Thus we have V(X — p)lo ‘to be #(0, 1),
nS2%/o? to be x*(n — 1), and the two to be stochastically independent.
In Section 4.4 the random variable T was defined in terms of two such
random variables as these. In accordance with that section and the
foregoing results, we know that

WX - _ X -
T VnSR(n — 1)) S/Vn -1
has a ¢ distribution with # — 1 degrees of freedom, whatever the value

of 2 > 0. For a given positive integer # and a probability of 0.95, say,
we can find numbers @ < b from Table IV in Appendix B, such that

X -

Pr (a << b) = 0.95.
S/Vn -1

Since the graph of the p.d.f. of the random variable T is symmetric

about the vertical axis through the origin, we would dogbtless take

4 = —b,b > 0. If the probability of this event is written (with a = —D)

in the form

bS bS )
- <« X + ———) = 0.95,
\/n—l<pl vn -1

then the interval [X — (6S/Vn — 1), X + (0S/Vn — 1)]is a rand9m
interval having probability 0.95 of including the unknown fixed point
(parameter) p. If the experimental values of X;, X, ..., X, are x,, T,

Pr (X —_
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..., x, With s = i(xl — %)%/n, where £ = ixi/n, then the interval
1 1

[£ — (bs/Vn — 1), & + (bs/Vn — 1)] is a 95 per cent confidence

interval for u for every o > 0. Again this interval estimate of u is

found by adding and subtracting a quantity, here bs/V'# — 1, to the
point estimate &.

Example 3. If in the preceding discussion # = 10,7 = 3.22,and s = 1.17,

then the interval [3.22 — (2.262)(1.17)/v/9, 3.22 + (2.262)(1.17)//9]or
(2.34, 4.10) is a 95 per cent confidence interval for p.

Remark. If one wishes to find a confidence interval for w and if the
variance ¢? of the nonnormal distribution is unknown (unlike Example 2 of
this section), he may with large samples proceed as follows. If certain weak
conditions are satisfied, then S%, the variance of a random sample of size
n > 2, converges stochastically to o%. Then in

VuX — e  Va— 1(X — p)
VnS¥n — 1)o® S

the numerator of the left-hand member has a limiting distribution that is
#(0, 1) and the denominator of that member converges stochastically to 1.
Thus vV'# — 1(X — w)/S has a limiting distribution that is #(0, 1). This fact
enables us to find approximate confidence intervals for p when our con-
ditions are satisfied. A similar procedure can be followed in the next section
when seeking confidence intervals for the difference of the means of two
independent nonnormal distributions.

We shall now consider the problem of determining a confidence
interval for the unknown parameter $ of a binomial distribution when
the parameter # is known. Let Y be b(#n, p), where 0 < $ < l and #n is
known. Then p is the mean of Y /n. We shall use a result of Example 1,
Section 5.5, to find an approximate 95.4 per cent confidence interval
for the mean p. There we found that

Y — np
Vu(Yn)(1 — Y/n

Pr[——Z <

) < 2] = 0.954,

approximately. Since

Y — np _ (Y/n) — p

V¥l = Yjn) V) - Y/n)n

the probability statement above can easily be written in the form

LY ISR S (i o) PP
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approximately. Thus, for large #, if the experimental value of Y is y,
the interval

provides an approximate 95.4 per cent confidence interval for $.

A more complicated approximate 95.4 per cent confidence interval
can be obtained from the fact that Z = (Y — np)/Vnp(l — p) has a
limiting distribution that is #(0, 1), and the fact that the event —2 <
Z < 2is equivalent to the event

Y +2-2V[Y(n - Y)n] + 1
(1) n+ 4

<p<Y+2+2\/[Y(n—Y)/n]+1,
n+ 4

The first of these facts was established in Example 2, Section 5.4; the
proof of inequalities (1) is left as an exercise. Thus an experimental
value y of Y may be used in inequalities (1) to determine an approxi-
mate 95.4 per cent confidence interval for .

If one wishes a 95 per cent confidence interval for $ that does not
depend upon limiting distribution theory, he may use the following
approach. (This approach is quite general and can be used in other
instances.) Determine two #ncreasing functions of p, say ¢,(p) and ¢4(9),
such that for each value of  we have, at least approximately,

Pric,(p) < Y < cy(p)] = 0.95.

The reason that this may be approximate is due to the fact that Y has
a distribution of the discrete type and thus it is, in general, impossible
to achieve the probability 0.95 exactly. With ¢,(p) and cy($) increasing
functions, they have single-valued inverses, say d,(y) and d,(y),
respectively. Thus the events ¢, (p) < Y < ¢y(p) and dy(Y) < p < d,(Y)
are equivalent and we have, at least approximately,

Pr[dy(Y) < p < dy(Y)] = 0.95.

In the case of the binomial distribution, the functions ¢,(p), c,(#),
dy(y), and d,(y) cannot be found explicitly, but a number of books
provide tables of d,(y) and 4,(y) for various values of #.

Example 4. 1f, in the preceding discussion, we take # = 100 and y = 20,
the first approximate 95.4 per cent confidence interval is given by
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(0-2 — 2v/(0.2)(0.8)/100, 0.2 + 2+/(0.2)(0.8)/100) or (0.12, 0.28). The approxi-

mate 95.4 per cent confidence interval provided by inequalities (1) is

(22 = 2V/(1600/100) + 1 22 + 2v/(1600/100) + 1)

104 104

or (0.13, 0.29). By referring to the appropriate tables found elsewhere, we
find that an approximate 95 per cent confidence interval has the li;nits
d5(20) = 0.13 and 4,(20) = 0.29. Thus in this example we see that all three
methods yield results that are in substantial agreement.

Remark. The fact that the variance of Y/n is a function of p caused us
some difficulty in finding a confidence interval for p. Another way of handling
the problem is to try to find a function u(Y/n) of Y/n, whose variance is
essentially free of p. Since Y/x converges stochastically to p, we can approxi-
;nate #(Y[n) by the first two terms of its Taylor’s expansion about p, namely

y

v(i—/) = u(p) + (-}; - P)“'(P)~

Of course, v(Y/n) is a linear function of ¥/x and thus also has an approximate
normal distribution; clearly, it has mean %($) and variance

()2 2L =2)

But it is the latter that we want to be essentially free of p; thus we set it
equal to a constant, obtaining the differential equation

c

YO = =g

A solution of this is

u(p) = (2c) arc sin v/p.
If we take ¢ = 4, we have, since u(Y[n) is approximately equal to v(Y/n),

that
M(X) = arc sin JX
# n

This has an approximate normal distribution with mean arc sin V' and

Yariance 1/4n. Hence we could find an approximate 95.4 per cent confidence
Interval by using

Pr (_2 _ arcsin \/T/ﬁ;arc sin V'p
V1j4n

and solving the inequalities for p.

< 2) = 0.954
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EXERCISES

6.16. Let the observed value of the mean X of a random sample of size
20 from a distribution that is #(y, 80) be 81.2. Find a 95 per cent confidence

interval for p.

6.17. Let X be the mean of a random sample of size n from a distributio.n
that is #(u, 9). Find » such that Pr (X =1 <p<X+1) =090, approxi-
mately.

6.18. Let a random sample of size 17 from the normal distribution
n(u, o?) yield Z = 4.7 and 2 = 5.76. Determine a 90 per cent confidence

interval for p.

6.19. Let X denote the mean of a random sample of size » from a dist.:ri-
bution that has mean p, varance o® = 10, and a moment-generating
function. Find # so that the probability is approximately 0.954 that the
random interval (X — 4, X + 3) includes p.

6.20. Let X,, X5, ..., Xy be a random sample of size 9 from a distribu-
tion that is n{u, o®). .

(a) If o is known, find the length of a 95 per cent confidence interval for p
if this interval is based on the random variable VX — p)fo.

(b) If ¢ is unknown, find the expected value of the length of 2 95 per.cent
confidence interval for w if this interval is based on the random variable
\/g(X - H’)/S' 3 p 2/.2\1/2

(c) Compare these two answers. Hint. Write E(S) = (a/\/ n)E{(nS2%/0®)M?].

621, Let X;, Xo, ..., Xy X,., bearandom sample of sizen + 1,7 > 1,

n

from a distribution that is n(u, 0%). Let X = % X,/nandS? = 3 (X, — X)2%n.

1
Find the constant ¢ so that the statistic (X — Xp41)/Shasat distribution.
If # = 8, determine & such that Pr (X — &S < X, < X + &S) = 0.80.' The
observed interval (& — ks, T + ks) is often called an 80 per cent prediction
interval for Xg.

6.22. Let Y be (300, ). If the observed value of Y is y = 75, find an
approximate 90 per cent confidence interval for p.

6.23. Let X be the mean of a random sample of size 7 from a distribution
that is n(u, o2), where the positive variance o? is known. Use the fact that
N(2) — N(—2) = 0.954 to find, for each p, ¢;(n) and cap) spch t}‘lat
Prici(u) < X < cofp)] = 0.954. Note that cy(u) and co(p) _are increasing
functions of u. Solve for the respective functions 2, (Z) and. dz(a.c); thus we also
have that Pr[ds(X) < p < d4(X)] = 0.954. Compare this with the answer
obtained previously in the text.
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6.24. In the notation of the discussion of the confidence interval for p,
show that the event —2 < Z < 2 is equivalent to inequalities (1). Hent.
First observe that —2 < Z < 2 is equivalent to Z2? < 4, which can be
written as an inequality involving a quadratic expression in .

6.25. Let X denote the mean of a random sample of size 25 from a
gamma-type distribution with « = 4 and B > 0. Use the central limit
theorem to find an approximate 0.954 confidence interval for u, the mean of
the gamma distribution. Hint. Base the confidence interval on the random
variable (X — 4p)/(48%/25)*2 = 5X/28 — 10.

6.4 Confidence Intervals for Differences of Means

The random variable 7 may also be used to obtain a confidence
interval for the difference u, — p, between the means of two inde-
pendent normal distributions, say #(u,, 02) and #{u,, 0?), when the
distributions have the same, but unknown, variance o?.

Remark. Let X have a normal distribution with unknown parameters
@, and ¢%. A modification can be made in conducting the experiment so that
the variance of the distribution will remain the same but the mean of the
distribution will be changed; say, increased. After the modification has been
effected, let the random variable be denoted by Y, and let ¥ have a normal
distribution with unknown parameters u, and o2. Naturally, it is hoped that
po s greater than u,, that is, that p; — pu, < 0. Accordingly, one seeks a
confidence interval for u; — p, in order to make a statistical inference.

A confidence interval for u; — pe may be obtained as follows: Let
X, Xy, ..., X,and Y,, Y, ..., Y, denote, respectively, independent
random samples from the two independent distributions having,
respectively, the probability density functions #(u,, 0?) and #(u,, o?).
Denote the means of the samples by X and Y and the variances of the
samples by S% and S%, respectively. It should be noted that these four
statistics are mutually stochastically independent. The stochastic
independence of X and S2 (and, inferentially that of ¥ and S3) was
established in Section 4.8; the assumption that X and Y have indepen-
dent distributions accounts for the stochastic independence of the
others. Thus X and Y are normally and stochastically independently
distributed with means p, and p, and variances ¢?/n and ¢%/m, respec-
tively. In accordance with Section 4.7, their difference X — Y is norm-

ally distributed with mean u, — p, and variance 6?/n + o2/m. Then the
random variable

(X = Y) = (g1 — po)
Vo E om
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is normally distributed with zero mean and unit variance. This random
variable may serve as the numerator of a T random variable. Further,
nS2/o? and mS3/o? have stochastically independent chi-square distribu-
tions with # — 1 and m — 1 degrees of freedom, respectively, so that
their sum (252 + mS3)/o® has a chi-square distribution with# + m — 2
degrees of freedom, provided that m + # — 2 > 0. Because of the
mutual stochastic independence of X, ¥, S, and S, it is seen that

A/ nS? + mS3
o?*(n + m — 2)

may serve as the denominator of a T random variable. That is, the
random variable

(X -Y) — (1 — pa)
A/ nS? + mS3 (1 1)
—_— — + J—
w+m—2\n m
has a ¢ distribution with # + m — 2 degrees of freedom. As in the

previous section, we can (once # and  are specified positive integers
with # 4+ m — 2 > 0) find a positive number & from Table IV of

Appendix B such that
Pr(-b< T <b) =095

R = A/nS% + mS2 (_1 4 _1_)’
T ANn+m—2\n m
this probability may be written in the form
PrfX - V)~ bR < py —pp < (X = Y) + bR] = 0.95.

T =

If we set

It follows that the random interval
" o nS? + mS3 (1 1)
[(X_Y)~bA/n+m—2 n+m ’

2 Sz (1 1
(X_Y)+1,A/M_2(;+_)}

w+m—2 m

has probability 0.95 of including the unknown fixed point (u; — pa)-
As usual, the experimental values of X, Y, 57, and S2, namely &, 7, s,
and s2, will provide a 95 per cent confidence interval for u; — py when
the variances of the two independent normal distributions are unknown
but equal. A consideration of the difficulty encountered when the
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unknown variances of the two independent normal distributions are
not equal is assigned to one of the exercises.

Example 1. 1t may be verified that if in the preceding discussion # = 10,
m="7%=42 9 =234, s =49, s = 32, then the interval (—5.16, 6.76)
is a 90 per cent confidence interval for u, — p,.

Let Y, and Y, be two stochastically independent random variables
with binomial distributions b(n,, ,) and b(n,, p,), respectively. Let us
now turn to the problem of finding a confidence interval for the
difference p; — p, of the means of Y,/n, and Y,/n, when #, and #,
are known. Since the mean and the variance of Y,/n, — Y,/n, are,

respectively, p, — py and p,(1 — p,)/n; + pa(l — Pa)[ng, then the
random variable given by the ratio

(Yi/n, — Yo/ng) — (p1 — p2)
Vil = p)/ny + pa(1 — po)ng

has mean zero and variance 1 for all positive integers #, and #,.
Moreover, since both Y, and Y, have approximate normal distributions
for large n, and #,, one suspects that the ratio has an approximate
normal distribution. This is actually the case, but it will not be proved
here. Moreover, if #,/n, = ¢, where ¢ is a fixed positive constant, the
result of Exercise 6.31 shows that the random variable

(Yon)(1 = Yy/my)[ny + (Yo/no)(1 — Yofng)/ng
P11 = Py)[ms + Pal — po)/nse

converges stochastically to 1 as #,— o0 (and thus #; — oo, since
n/ny = ¢, ¢ > 0). In accordance with Theorem 6, Section 5.5, the
random variable

(Yy/ny — Yolng) — (p1 — p2)
W = 2 o ;

(1)

where

U= V(Y1/"1)(1 — Yy/ny)ny + (Ya/na)(1 — Yz/"z)/”z’

has a limiting distribution that is #(0, 1). The event -2 < W < 2,
the probability of which is approximately equal to 0.954, is equivalent
to the event

n—l—;';’—2U<p1—p2<n—l—‘h:+2U
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Accordingly, the experimental values y; and y, of Y, and Y, respec-
tively, will provide an approximate 95.4 per cent confidence interval for

P11 — P2
Example 2. If, in the preceding discussion, we take #n; = 100, n; = 400,
y; = 30, y, = 80, then the experimental values of Y,/n; — Yy/n, and U

are 0.1 and v/(0.3)(0.7)/100 + (0.2)(0.8)/400 = 0.05, respectively. Thus the
interval (0, 0.2) is an approximate 95.4 per cent confidence interval for

Pl - p2~

EXERCISES

6.26. Let two independent random samples, each of size 10, from two
independent normal distributions #(u;, ¢?) and #n(u,, o) yield T = 4.8,
s? = 8.64, § = 5.6, s = 7.88. Find a 95 per cent confidence interval for

H1 — Mo
6.27. Let two stochastically independent random variables Y, and Y,
with binomial distributions that have parameters #, = #n, = 100, p,, and p,,

respectively, be observed to be equal to y; = 50 and y, = 40. Determine an
approximate 90 per cent confidence interval for p; — p,.

6.28. Discuss the problem of finding a confidence interval for the
difference p; — p, between the two means of two independent normal
distributions if the variances ¢% and ¢% are known but not necessarily equal.

6.29. Discuss Exercise 6.28 when it is assumed that the variances are
unknown and unequal. This is a very difficult problem, and the discussion
should point out exactly where the difficulty lies. If, however, the variances
are unknown but their ratio ¢%/0% is a known constant k, then a statistic that
is a T random variable can again be used. Why?

6.30. Let X and Y be the means of two independent random samples,
each of size », from the respective distributions #(u,, %) and n(u,, o?),
where the common variance is known. Find # such that Pr (X — Y — o/5 <
/1,1—;,42<X—Y+0'/5)=0.90.

6.31. Under the conditions given, show that the random variable defined
by ratio (1) of the text converges stochastically to 1.

6.5 Confidence Intervals for Variances

Let the random variable X be #(u, 0%). We shall discuss the problem
of finding a confidence interval for o?. Our discussion will consist of two
parts: first, when p is a known number, and second, when p is unknown.

Let X,, X,,..., X, denote a random sample of size » from a
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distribution that is #(u, %), where p is a known number. The maximum
likelihood estimator of ¢® is 3 (X, — w)2/n, and the variable ¥ =
n; (X; — p)?fo? is ¥2(n). Let uslselect a probability, say 0.95, and for

the fixed positive integer # determine values of @ and b, a < b, from
Table II, such that

Pra <Y < b) = 0.95.

Thus
2 (X — p)?
Pria<*——— <b| =095,
o |
or%
> (X, — pp? > (X, - w?]
Prji—} 5 <o?< i p = 0.95.

Since u, a, and b are known constants, each of i (X; — p)?/b and
1

n
; (X; — p)?/a is a statistic. Moreover, the interval

1

3

[z (X = w2 30X -
b a

is a random interval having probability of 0.95 that it includes the

unknown fixed point (parameter) ¢. Once the random experiment has

been performed, and it is found that X, = z;, X, = @,..., X, = 2,,

then the particular interval

[i(xi - W 2 - mz}

1

b ’ a
is a 95 per cent confidence interval for o2.

The reader will immediately observe that there are no unique
numbers @ < b such that Pr (¢ < Y < 5) = 0.95. A common method
of procedure is to find @ and & such that Pr (Y < a) = 0.025 and
Pr (b < Y) = 0.025. That procedure will be followed in this book.

Example 1. If in the preceding discussion x = 0, » = 10, and gx? =
1

106.6, then the interval (106.6/20.5, 106.6/3.25), or (5.2, 32.8), is a 95 per cent
confidence interval for the variance o2, since Pr (Y < 3.25) = 0.025 and



224 Estimation [Ch. 6

Pr (20.5 < Y) = 0.025, provided that Y has a chi-square distribution with
10 degrees of freedom.

We now turn to the case in which  is not known. This case can be
handled by making use of the facts that $® is the maximum likelihood
estimator of o2 and #S%/e? is y?(n — 1). For a fixed positive integer
n > 2, we can find, from Table I, values of @ and b, a < b, such that

2
Pr (a < ?-ST < b) = 0.95.
g

Here, of course, we would find @ and b by using a chi-square distribution
with # — 1 degrees of freedom. In accordance with the convention
previously adopted, we would select a and b so that

2 S2
Pr (’Lsz- < a) ~0.025 and Pr (’—’T > b) = 0.025.

o o

We then have
2 2
Pr (.”_S— <o < ’_‘i) — 0.95
b a

so that (#S%/b, nS%/a) is a random interval having probability 0.95 of
including the fixed but unknown point (parameter) 0. After the random
experiment has been performed and we find, say, X; = 3, Xy = Zg, - -+,

X, = x,, with s? = i (x; — %)%/n, we have, as a 95 per cent confidence
1
interval for o2, the interval (ns?/b, ns?/a).

Example 2. 1f, in the preceding discussion, we have n = 9, s2 = 7.63,
then the interval [9(7.63)/17.5, 9(7.63)/2.18] or (3.92, 31.50) is a 95 per cent
confidence interval for the variance ¢°.

Next, let X and Y denote stochastically independent random
variables that are n(u,, 67) and n(u,, 03), respectively. We shall deter-
mine a confidence interval for the ratio of/oc? when p; and p, are
unknown.

Remark. Consider a situation in which a random variable X has a
normal distribution with variance of. Although o% is not known, it is found
that the experimental values of X are quite widely dispersed, so that of
must be fairly large. It is believed that a certain modification in conducting
the experiment may reduce the variance. After the modification has been
effected, let the random variable be denoted by Y, and let Y have a normal
distribution with variance ¢2. Naturally, it is hoped that o3 is less than of,
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that is, that o2/o? < 1. In order to make a statistical inference, we find a
confidence interval for the ratio ¢3/o?.

Consider a random sample X, X,, ..., X, of size » > 2 from the
distribution of X and a random sample Y,, Y,,..., Y, of size m > 2
from the independent distribution of Y. Here #» and s may or may not
be equal. Let the means of the two samples be denoted by X and Y,

and the variances of the two samples by S% = i(Xi — X)%/n and

m 1

S2 = > (Y; — Y)?/m, respectively. The stochastically independent

1
random variables #5%/c2 and mSZ%/e2 have chi-square distributions
with#» — 1and m — 1 degrees of freedom, respectively. In Section 4.4 a
random variable called F was defined, and through the change-of-
variable technique the p.d.f. of F was obtained. If #S%/o? is divided by
#n — 1, the number of degrees of freedom, and if mS%Z/o2 is divided
by m — 1, then, by definition of an F random variable, we have that

nSi/[et(n — 1)]

F =
mSg[[of(m — 1)]

‘
/

h.\as an F distribution with parameters » — 1 and m — 1. For numeri-
cally given values of #» and m and with a preassigned probability, say
0.95, we can determine from Table V of Appendix B, in accordance
with our convention, numbers 0 < a < b such that

nSYlo3n — 1] 7
mS3fodm — 1)] b] = 095.

Pr [a <

If the probability of this event is written in the form

mSE/(m — 1) ?_3 bmS%/(m -1)

Pr —= =
[“ WS = 1) ~ o2~ uSem = 1)] = 095,

it is seen that the interval

[a mS3Y(m — 1), mS3(m — 1>]
nS3n — 1) wSifen — 1)

is a random interval having probability 0.95 of including the fixed but
unknown point o2/0%. If the experimental values of X;, X,, ..., X, and
of Yy, Y, ..., Y, are denoted by @y, x,,...,%, and ¥y, ¥a - - -» Ym»
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n m _
respectively, and if #nsf = 2, (z, — %)2, ms3 = %(yl — %)2, then the
1
interval with known end points, namely

[ ms3/(m — 1) -, ms3/(m — 1)],

w2l — 1) nsif(n — 1)

is a 95 per cent confidence interval for the ratio o%/o? of the two un-
known variances.

Example 3. If in the preceding discussion n = 10, m = 5, s} = 20.0,
s = 35.6, then the interval

[( 1 ) 5(356)4 g o0 5(35.6)/4]

4.72) 10(20.0)/9° 10(20.0)/9

or (0.4, 17.8) is a 95 per cent confidence interval for o%/o}.

EXERCISES

6.32. 1£8.6,7.9,8.3,6.4,8.4,9.8,7.2,7.8,7.5 are the observed values of a
random sample of size 9 from a distribution that is n(8, o), construct a
90 per cent confidence interval for a2,

6.33. Let X,, X,,..., X, be a random sample from the distribution
n(u, o%). Let 0 < a < b. Show that the mathematical expectation of the

length of the random interval [; (X, — w)?/b, ; (X, — ,u,)z/a] is (b —a) x
(no?/ab).
6.34. A random sample of size 15 from the normal distribution #(x, o)

yields = 3.2 and s* = 4.24. Determine a 90 per cent confidence interval

for o2.

6.35. Let S2 be the variance of a random sample of size » taken from a
distribution that is #(u, 0?) where p and o® are unknown. Let £(z) be the p.d.f.
of Z = nS?/o?, which is x2(n — 1). Let a and b be such that the .observed
interval (ns2/b, ns?/a) is a 95 percent confidence interval for 02..If its length
ns2(b — a)/ab is to be a minimum, show that a and b must Satlsfy' the con-
dition that a%s(a) = b%g(b). Hunt. If G(z) is the distribution function of Z,
then differentiate both G(b) — G(a) = 0.95 and (b — a)/ab with respect to
b, recalling that, from the first equation, & must be a function of b. Then
equate the latter derivative to zero.

6.36. Let two independent random samples of sizes n = 16 and m = 10,
taken from two independent normal distributions #(u,, o%) and n{u,, 03),
respectively, yield z = 3.6, sf = 4.14, j = 13.6, s2 = 7.26. Find a 90 per
cent confidence interval for o%/03 when g, and p, are unknown.

Sec, 6.6] Bayesian Estimates 227

6.37. Discuss the problem of finding a confidence interval for the ratio
a3/o? of the two unknown variances of two independent normal distributions
if the means y, and p, are known.

6.38. Let X,, X,,..., X¢ be a random sample of size 6 from a gamma
distribution with parameters « = 1 and unknown B > 0. Discuss the
construction of a 98 per cent confidence interval for . Hint. What is the

distribution of 2 3 X,/8?
1

6.39. Let S and SZ denote, respectively, the variances of random samples,
of sizes #» and m, from two independent distributions that are #(u,, o?)
and #(us, 0?). Use the fact that (253 + mS2)/o? is % (n + m — 2) to find a
confidence interval for the common unknown variance o2.

6.40. Let Y, be the nth order statistic of a random sample, » = 4, from
a continuous-type uniform distribution on the interval (0, 6). Let 0 < ¢; <
¢, < 1 be selected so that Pr(c,8 < Y, < c,0) = 0.95. Verify that ¢, =
¥/0.05 and ¢, = 1 satisfy these conditions. What, then, is a 95 per cent
confidence interval for 67

6.6 Bayesian Estimates

In Sections 6.3, 6.4, and 6.5 we constructed two statistics, say U and
V,.U < V, such that we have a preassigned probability $ that the
random interval (U, V) contains a fixed but unknown point (parameter).
We then adopted this principle: Use the experimental results to com-
pute the values of U and V, say # and v; then call the interval (#, v) a
100p per cent confidence interval for the parameter. Adoption of this
principle provided us with one method of interval estimation. This
method of interval estimation is widely used in statistical literature and
in the applications. But it is important for us to understand that other
principles can be adopted. The student should constantly keep in mind
that as long as he is working with probability, he is in the realm of
mathematics; but once he begins to make inferences or to draw con-
clusions about a random experiment, which inferences are based upon
experimental data, he is in the field of statistics.

We shall now describe another approach to the problem of interval
estimation. This approach takes into account any prior knowledge of
the experiment that the statistician has and it is one application of a
principle of statistical inference that may be called Bayesian statistics.
Consider a random variable X that has a distribution of probability
that depends upon the symbol 6, where 8 is an element of a well-
defined set Q. For example, if the symbol 8 is the mean of a normal
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distribution, Q may be the real line. We have previously looked upon
6 as being some constant, although an unknown con.stant. Let us now
introduce a random variable ® that has a distribution of probability
over the set Q; and, just as we look upon z as a possible value of the
random variable X, we now look upon 68 as a possible value of the
random variable ©. Thus the distribution of X depends upon 8, a
random determination of the random variable ®. We shall denote the
p-d.f. of ® by 4(6) and we take A(6) = O when @ is not an (?len_lent.of Q.
Let X,, X,, ..., X, denote a random sample from this distribution of
X, and let Y denote a statistic that is a function of X,, X,,..., X,.
We can find the p.d.f. of Y for every given 8, that is, we can find the
conditional p.d.f. of Y, given ® = 6, which we denote by g(y|6). Thus
the joint p.d.f. of Y and O is given by

k(y, 0) = h(b)g(y|0).
If @ is a random variable of the continuous type, the marginal p.d.f. of
Y is given by
kiy) = [ h(O)e(y]6) ab.

If ® is a random variable of the discrete type, integration would be
replaced by summation. In either case the conditional p.d.f. of 0,

given Y =y, is

My, 6) _ MO0, W s o)
k1 (y) ki (y)

This relationship is one form of Bayes’ formula (see Exercise 2.7,
Section 2.1).

In Baygsian statistics, the p.d.f. 4(6) is called the prior p.d.f. of Q,
and the conditional p.d.f. £(f|y) is called the posterior p.d.f. of @. This
is because A(f) is the p.d.f. of ® prior to the observation of Y, whereas
k(8y) is the p.d.f. of ® after the observation of .Y has been made. In
many instances, 4(f) is not known; yet the.chome of.h(O) affects the
p.d.f. 2(8ly). In these instances the statistician takes 1n'to account all
prior knowledge of the experiment and assigns the prior p.d.i h(B)
This, of course, injects the problem of personal or subjective probability
(see the Remark, Section 1.1). '

Suppose that we want a point estimate of .0.. From t.he Bayesian
viewpoint, this really amounts to selecting a decision function w so that
w(y) is a predicted value of 8 (an experimental value of the rz.n{dom
variable ®) when both the computed value y and the conditional

k(fly) =
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p.d.i. k(0ly) are known. Now, in general, how would we predict an
experimental value of any random variable, say W, if we want our
prediction to be ““reasonably close” to the value to be observed? Many
statisticians would predict the mean, E(W), of the distribution of W:
others would predict a median (perhaps unique) of the distribution of
W; some would predict a mode (perhaps unique) of the distribution of
W, and some would have other predictions. However, it seems desirable
that the choice of the decision function should depend upon the loss
function Z[6, w(y)]. One way in which this dependence upon the loss
function can be reflected is to select the decision function w in such a
way that the conditional expectation of the loss is a minimum. A
Bayes’ solution is a decision function w that minimizes

ELZ10, wiy)]|Y =y} = [* 216, wiy)1k(6]y) a6,

if © is a random variable of the continuous type. The usual modification
of the right-hand member of this equation is made for random variables
of the discrete type. If, for example, the loss function is given by
L0, w(y)] = [0 — w(y)]?, the Bayes’ solution is given by w(y) =
E(Oly), the mean of the conditional distribution of @, given Y = Y.
This follows from the fact (Exercise 1.91) that E (W — b)), if it exists,
is .a minimum when b = E (W). If the loss function is given by
216, w(y)] = |8 - w(y)]|, then a median of the conditional distribution
of @, given Y = y, is the Bayes’ solution. This follows from the fact
(Exercise 1.81) that E(jW — b|), if it exists, is & minimum when b is
equal to any median of the distribution of W.

The conditional expectation of the loss, given Y =y, defines a
random variable that is a function of the statistic Y. The expected
value of that function of Y, in the notation of this section, is given by

2 AT, 10, w)irely d0yhy(y) dy
= f S {f ” 216, w(y)le(y]6) dy}h(o) do,

in the continuous case. The integral within the braces in the latter
expression is, for every given 6 € Q, the risk function R (0, w); accord-
ingly, the latter expression is the mean value of the risk, or the expected
risk. Because a Bayes’ solution minimizes

[°. 216, wiw)k(6ly) a0

for every y for which ki(y) > 0, it is evident that a Bayes’ solution
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w(y) minimizes this mean value of the risk. We now give an illustrative
example.

Example 1. Let X, X,,..., X, denote a random sample from a
distribution that is b(1, 6), 0 < 8 < 1. We seek a decision function w that

is a Bayes’ solution. If ¥ = iXi, then Y is b(n, 6). That is, the conditional
1
p.df. of Y, given ® = 8, is

gwlo) = (Z)Oy(l oy, y=01,...,m
= ( elsewhere.

We take the prior p.d.f. of the random variable © to be

W6) = %ﬁ% -1l — 61, 0< 6 <1,

= 0 elsewhere.

where « and B are assigned positive constants. Thus the joint p.d.f. of ¥ and
© is given by g(y|6)A(f) and the marginal p.d.f. of Y is

kaly) = [ hO)elyl) 6
=() “+BJ gure-1(1 — G)r-v*8-140

(X

m\ D(e + AT(e + 9T + B — y) ~
- (?/) T I'B)Tn + « + B) i y=012...,n

= () elsewhere.

Finally, the conditional p.d.f. of ©, given ¥ = y, is, at points of positive
probability density,

_ 8ly|0)A(6)
ki(y)

F(” + o+ B) -1 tn—y—1
- getv-1(] — GF+n-v-1, 0 < B<1,
Tt )Tt f—9) (

andy =0, 1, ..., We take the loss function to be £[6, w(y)] = [0 — w(y)].
Because Y is a random variable of the discrete type, whereas © is of the
continuous type, we have for the expected risk,

f:{z: 0 — w(y)) ( )0v(1 - 0)"—y}h(0) a8

-3 (0 — w)(0ly) d6 b ()

k(6ly)
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The Bayes’ solution w(y) is the mean of the conditional distribution of ©,
given Y = y. Thus

wly) = | 6k(0]y) 0

I'in + « + B)
= 0a+y —_ B+n—y—1
Fle + y)T'(» + B — y) f 46

- ety
T e+ B+

This decision function w(y) minimizes

[710 — wi)2h(oly) a6

for y = 0,1,...,#n and, accordingly, it minimizes the expected risk. It is
very instructive to note that this Bayes’ solution can be written as

wo) = () 2+ () s

which is a weighted average of the maximum likelihood estimate y/n of 8
and the mean «f(¢ + B) of the prior p.d.f. of the parameter. Moreover, the
respective weights are #f(« + B + #) and (« + B)/(« + B + #). Thus we
see that « and B should be selected so that not only is /(e + B) the desired
prior mean, but the sum « + B indicates the worth of the prior opinion,
relative to a sample of size ». That is, if we want our prior opinion to have as
much weight as a sample size of 20, we would take o« + B8 = 20. So if our
prior mean is ; we have that « and B are selected so that « = 15and 8 = 5.

In Example 1 it is extremely convenient to notice that it is not
really necessary to determine &, (y) to find k(8|y). If we divide g(y|6)A(6)
by %, (y) we must get the product of a factor, which depends upon y but
does not depend upon 8, say ¢(y), and

0y+o:—1(1 _ 3)n~y+8—1.
That is,
E(Bly) = cy)0v*+e-1(1 — n-v+8-1 0 < § < 1,

andy =0, 1,..., n. However, c(y) must be that ‘constant” needed to

make k(0|y) a p.d.f., namely

I'(n + e + B)

cy) = .
W= Ty T e~y + B

Accordingly, Bayesian statisticians frequently write that k(6|y) is pro-

portional to g(y|0)A(6); that is,

k(8ly) o< g(y|6)4(6)
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Then to actually form the p.d.f. £(6|y), they simply find a “ constant,”
which is some function of g, so that the expression integrates to 1. This
is now illustrated.

Example 2. Suppose that Y = X is the mean of a random sample of
size # that arises from the normal distribution #(6, o?), where o? is known.
Then g(y|8) is »n(8, o%/n). Further suppose that we are able to assign prior
knowledge to 8 through a prior p.d.f. 2(f) that is #(f,, o). Then we have that

L L o[-z 02 (-,
vV 2mo/V'n V 2w, 2(a”/n) 203

If we eliminate all constant factors (including factors involving y only), we
have

k(Oly) oc

R = el

This can be simplified, by completing the square, to read (after eliminating
factors not involving 6)

(o 1k + Oty
o2 + o%n
2(o*/n)a}

(68 + o®/n)

k(8ly) oc exp

That is, the posterior p.d.f. of the parameter is obviously normal with mean

Yoz + 640 /n _ ( o3 )?/ ( o2fn n) 0,

o3 + o?ln a + o¥n ot + o?f

and variance (0%/n)o2/(cZ + o?/n). If the square-error loss function is used,
this posterior mean is the Bayes’ solution. Again, note that it is a weighted
average of the maximum likelihood estimate y = Z and the prior mean 8.
Observe here and in Example 1 that the Bayes’ solution gets closer to the
maximum likelihood estimate as # increases. Thus the Bayesian procedures
permit the decision maker to enter his or her prior opinionsinto the solution
in a very formal way such that the influences of those prior notions will be
less and less as # increases.

In Bayesian statistics all the information is contained in the
posterior p.d.f. £(8)y). In Examples 1 and 2 we found Bayesian point
estimates using the square-error loss function. It should be noted that
if Llw(y), 0] = |w(y) — 6|, the absolute value of the error, then the
Bayes’ solution would be the median of the posterior distribution of the
parameter, which is given by k(6}y). Hence the Bayes’ solution changes,
as 1t should, with different loss functions.
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If an interval estimate of 8 is desired, we can now find two functions
u(y) and v(y) so that the conditional probability

Priu(y) < © < o(y)|Y = y] = |

(.

o)
,, F(6ly) a6,

is large, say 0.95. The experimental values of X,, X,,..., X,, say
%1, g, . . ., T, provide us with an experimental value of Y, say w.
Then the interval #(y) to v(y) is an interval estimate of 8 in the sense
that the conditional probability of ® belonging to that interval is
equal to 0.95. For illustration, in Example 2 where the posterior p.d.f.
of the parameter was normal, the interval, whose end points are found
by taking the mean of that distribution and adding and subtracting
1.96 of its standard deviation,

yok + Oin o [T
o5 + o?[n o2 + o?/n

serves as an interval estimate for § with posterior probability of 0.95.

Finally. it should be noted that in Bayesian statistics it is really
better to begin with the sample items X, X,, ..., X, rather than some
statistic Y. We used the latter approach for convenience of notation.
It X, X,,..., X, are used, then in our discussion, replace g(y|6) by
f(@1]0)f(5]0) - - - fl=,]0) and k(Bly) by k(8|x1, %, . - -, x,). Thus we find

that
k(0lwy, @, . . ., #,) o A(0) f(21]0)f (22| 6) - - - f(n]6).

If the statistic Y is chosen correctly (namely, as a sufficient statistic,
as explained in Chapter 10), we find that

k(B|xy, o, - . ., x,) = k(6]y).

This is illustrated by Exercise 6.44. Of course, these Bayesian pro-
cedures can easily be extended to the case of several parameters, as
demonstrated by Exercise 6.45.

EXERCISES

6.41. Let X,, X,,..., X, denote a random sample from a distribution
that is n(0, 0%), —o0 < 0 < oo, where o2 is a given positive number. Let
Y = X, the mean of the random sample. Take the loss function to be
210, wly)] = |6 — w(y)|. If 8 is an observed value of the random variable ©
that is n(u, %), where 72 > 0 and u are known numbers, find the Bayes’
solution w(y) for a point estimate of 6.

6.42. Let X,, X, ..., X, denote a random sample from a Poisson

distribution with mean 6, 0 < 6 < 0. Let ¥ = iXi and take the loss
1
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function to Z[6, w(y)] = [0 — w(y)]%. Let 6 be an observed value of the
random variable 0. If ® has the p.d.f. #(6) = 8-~ %8 /I(«)B* 0 < 8 < oo,
zero elsewhere, where « > 0, 8 > 0 are known numbers, find the Bayes’
solution w(y) for a point estimate of 6.

6.43. Let Y, be the nth order statistic of a random sample of size # from
a distribution with p.d.f. f(z|6) = 1/8, 0 < x < 6, zero elsewhere. Take the
loss function to be Z[6, w(y,)] = [0 — w(y,)]®. Let 6 be an observed value of
the random variable ®, which has p.d.f. A(6) = Baf/0*1, o < 0 < o, zero
elsewhere, with ¢ > 0, 8 > 0. Find the Bayes’ solution ©(y,) for a point
estimate of 0.

6.44. Let X, X,,..., X, be a random sample from a distribution that
is b(1, 6). Let the prior p.d.f. of ® be a beta one with parameters « and 8.
Show that the posterior p.d.f. k(8|z,, @, ..., z,) is exactly the same as
k(8ly) given in Example 1. This demonstrates that we get exactly the same
result whether we begin with the statistic Y or with the sample items. Hint.
Note that {6z, %, . . ., ,) is proportional to the product of the joint p.d.f.
of Xy, X, ..., X, and the prior p.d.f. of 6.

6.45. Let Y, and Y, be statistics that have a trinomial distribution with
parameters %, 6,, and 6,. Here 6, and 6, are observed values of the random
variables ®, and @,, which have a Dirichlet distribution with known param-
eters oy, oy, and «; (see Example 1, Section 4.5). Show that the conditional
distribution of ®, and ©, is Dirichlet and determine the conditional means

E(©,]y;, y5) and E(05y1, ¥a)-

6.46. Let X be #(0, 1/6). Assume that the unknown 6 is a value of a
random variable ® which has a gamma distribution with parameters
o = r/2and B = 2/r, where 7 is a positive integer. Show that X has a marginal
¢t distribution with 7 degrees of freedom. This procedure is called one of
compounding, and it may be used by a Bayesian statistician as a way of first
presenting the ¢ distribution, as well as other distributions.

6.47. Let X have a Poisson distribution with parameter 8. Assume that
the unknown 6 is a value of a random variable ® that has a gamma distri-
bution with parameters « =7 and 8 = (1 — p)/p, where » is a positive
integer and 0 < $ < 1. Show, by the procedure of compounding, that X has
a marginal distribution which is negative binomial, a distribution that was
introduced earlier (Section 3.1) under very different assumptions.

6.48. In Example 1let# = 30,« = 10,and 8 = 5sothat w(y) = (10 + ¥)/45
is the Bayes’ estimate of 6.

(@) If Y has the binomial distribution &(30, §), compute the risk
E{[6 — w(Y)]?}.

(b) Determine those values of 8 for which the risk of part (a) is less than
6(1 — 6)/30, the risk associated with the maximum likelihood estimator
Y/n of 6.

Chapter 7
Statistical Hypotheses

7.1 Some Examples and Definitions

The two principal areas of statistical inference are the areas of
estimation of parameters and of tests of statistical hypotheses. The
problem of estimation of parameters, both point and interval estima-
tion, has been treated. In this chapter some aspects of statistical
hypotheses and tests of statistical hypotheses will be considered. The
subject will be introduced by way of example.

Example 1. Let it be known that the outcome X of a random experiment
is n(0, 100). For instance, X may denote a score on a test, which score we
assume to be normally distributed with mean 6 and variance 100. Let us say
that past experience with this random experiment indicates that 8 = 75.
Suppose, owing possibly to some research in the area pertaining to this
experiment, some changes are made in the method of performing this random
experiment. It is then suspected that no longer does § = 75 but that now
8 > 75. There is as yet no formal experimental evidence that § > 75; hence
the statement 6 > 75 is a conjecture or a statistical hypothesis. In admitting
that the statistical hypothesis § > 75 may be false, we allow, in effect, the
possibility that § < 75. Thus there are actually two statistical hypotheses.
First, that the unknown parameter § < 75; that is, there has been no increase
in 6. Second, that the unknown parameter § > 75. Accordingly, the param-
eter spaceis Q = {f; —o0 < 6 < oo}. We denote the first of these hypotheses
by the symbols H,: 6 < 75 and the second by the symbols H,: § > 75. Since
the values 6 > 75 are alternatives to those where 6 < 75, the hypothesis
H,: 0 > 75 is called the alfernative hypothesis. Needless to say, H, could be
called the alternative H,; however, the conjecture, here 8 > 75, that is

235
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made by the research worker is usually taken to be the alternative hypothesis.
In any case the problem is to decide which of these hypotheses is to be
accepted. To reach a decision, the random experiment is to be repeated a
number of independent times, say #, and the results observed. That is, we

consider a random sample X;, X,, ..., X, from a distribution that is
#(8, 100}, and we devise a rule that will tell us what decision to make once
the experimental values, say &, , - - ., T, have been determined. Such a

rule is called a fest of the hypothesis Hy: 6 < 75 against the alternative
hypothesis H,: 6 > 75. There is no bound on the number of rules or tests
that can be constructed. We shall consider three such tests. Our tests will
be constructed around the following notion. We shall partition the sample
space & into a subset C and its complement C*. If the experimental values of
Xy, Xo ..., X,, 52y @4, &g, - . -, Ty, are such that the point (zy, &3, ..., #,) €C,
we shall reject the hypothesis H, (accept the hypothesis H,). If we have
(%1, T3, - - ., @,) € C*, we shall accept the hypothesis H, (reject the hypothesis
H,y).

Test 1. Let n = 25. The sample space o is the set
{(@), X, ..., Tgs); —0 < ; < 00,1 =1,2,..., 25}.
Let the subset C of the sample space be
C = {(xy, Tgy - - -, Tas); Ty + Ty + -+ + Ty > (25)(75)}.

We shall reject the hypothesis H, if and only if our 25 experimental values
are such that (z, @y, . . ., %gs) €C. If (w1, %y, . . ., g5) is DOt an element of C,
we shall accept the hypothesis H,. This subset C of the sample space that
leads to the rejection of the hypothesis Ho: 6§ < 75 is called the critical region

25 5
of Test 1. Now Sz, > (25)(75) if and only if > 75, where & = 3 @/25.
1 1

Thus we can much more conveniently say that we shall reject the hypothesis
H,: 8 < 75 and accept the hypothesis H;: § > 75 if and only if the experi-
mentally determined value of the sample mean Z is greater than 75. If
# < 75, we accept the hypothesis Hy: § < 75. Our test then amounts to this:
We shall reject the hypothesis Hy: 8 < 75 if the mean of the sample exceeds
the maximum value of the mean of the distribution when the hypothesis
H, is true.

Tt would help us to evaluate a test of a statistical hypothesis if we knew
the probability of rejecting that hypothesis (and hence of accepting the
alternative hypothesis). In our Test 1, this means that we want to compute
the probability

Pr[(X,, ..., X3 €C] = Pr (X > 75).

Obviously, this probability is a function of the parameter 6 and we shall
denote it by K,(6). The function K(f) = Pr (X > 75) is called the power
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A (6)

FIGURE 7.1

function of Test 1, and the value of the power function at a parameter point
is called the power of Test 1 at that point. Because X is #(6, 4), we have

X — _ _
K1(0)=Pr( - e>752 0)=1—N(752 0)_

So, for illustration, we have, by Table III of Appendix B, the power at
6 = 75 to be K,(75) = 0.500. Other powers are K,(73) = 0.159, K,(77) =
0.841, and K(79) = 0.977. The graph of K,(6) of Test 1 is depicted in Figure
7.1. Among other things, this means that, if § = 75, the probability of
rejecting the hypothesis Hy: 6 < 75 is 4. That is, if § = 75 so that H, is
true, the probability of rejecting this true hypothesis H is 1. Many statisti-
cians and research workers find it very undesirable to have such a high
probability as } assigned to this kind of mistake: namely the rejection of
H, when H, is a true hypothesis. Thus Test 1 does not appear to be a very
satisfactory test. Let us try to devise another test that does not have
this objectionable feature. We shall do this by making it more difficult to
reject the hypothesis H,, with the hope that this will give a smaller probability
of rejecting H, when that hypothesis is true.

Test 2. Let n = 25. We shall reject the hypothesis Hy: 6 < 75 and
accept the hypothesis H,: 8 > 75 if and only if £ > 78. Here the critical
region is C = {(®y, . .., Xgs); 1 + -+ - + g5 > (25)(78)}. The power function
of Test 2 is, because X is #{6, 4),

2

Some values of the power function of Test 2 are K,(73) = 0.006, K,(75) =
0.067, K4(77) = 0.309, and K,(79) = 0.691. That is, if § = 75, the proba-
bility of rejecting H,: 8 < 75 is 0.067; this is much more desirable than the
corresponding probability 4 that resulted from Test 1. However, if H, is
false and, in fact, 8 = 77, the probability of rejecting Hy: § < 75 (and hence
of accepting H,: 6 > 75) is only 0.309. In certain instances, this low prob-
ability 0.309 of a correct decision (the acceptance of H, when H, is true) is
objectionable. That is, Test 2 is not wholly satisfactory. Perhaps we can
overcome the undesirable features of Tests 1 and 2 if we proceed as in Test 3.

Ky0) = Pr(X > 78) = 1 — N<78 - 9).
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Test 3. Let us first select a power function K4(f) that has the features
of a small value at 6§ = 75 and a large value at 6 = 77. For instance, take
K4(75) = 0.159 and K;3(77) = 0.841. To determine a test Wth such a power
function, let us reject Hy: 6 < 75 if and only if the experimental value Z
of the mean of a random sample of size # is greater than some constant c.
Thus the critical region is C = {(#1, @3, .-+, Ta); T1 + T2 + -+ & > #e}.
It should be noted that the sample size # and the constant ¢ have not t?een
determined as yet. However, since X is n(8, 100/x), the power function is

)
Kyf) =Pr(X>c)=1- N(100/ \/%)-

The conditions K4(75) = 0.159 and K4(77) = 0.841 require that

1— N(C - 75) — 0159, 1-— N(” - 77) — 0.841.

10/v/n. 10/Vn
Equivalently, from Table III of Appendix B, we have
e=75_4 c= 77 _ _
/2 10Vn

The solution to these two equations in # and ¢ is n = 100, ¢ = 76. With
these values of # and ¢, other powers of Test 3 are K3(73) = 0.001 and
K4(79) = 0.999. It is important to observe that although Test 3 pas“a n}orﬁ
desirable power function than those of Tests 1 and 2, a certain ~ price
has been paid—a sample size of n = 100 is required in Test 3, whereas we
had # = 25 in the earlier tests,

Remark. Throughout the text we frequently say that we acc.ept the
hypothesis H, if we do not reject H in favor of H,. If this deCfswn is rn:ftdfe,
it certainly does not mean that H, is true or that we even believe that_ it is
true. All it means is, based upon the data at hand, that we are not convinced
that the hypothesis H, is wrong. Accordingly, the statement ““We accept
H,” would possibly be better read as “We do not reject H,.” However,:
because it is in fairly common use, we use the statement ‘“We accept H,,
but read it with this remark in mind.

We have now illustrated the following concepts:

(a) A statistical hypothesis. -

(b) A test of a hypothesis against an alternative hypothesis and
the associated concept of the critical region of the test.

(c) The power of a test.

These concepts will now be formally defined.

Definition 1. A statistical hypothesis is an assertion about the dis-
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tribution of one or more random variables. If the statistical hypothesis
completely specifies the distribution, it is called a simple statistical
hypothesis; if it does not, it is called a composite statistical hypothesis.

If we refer to Example 1, we see that both H;: 0 < 75and H,: 8 > 75
are composite statistical hypotheses, since neither of them completely
specifies the distribution. If there, instead of H,: 8 < 75, we had
Hy: 6 = 75, then H, would have been a simple statistical hypothesis.

Definition 2. A test of a statistical hypothesis is a rule which, when
the experimental sample values have been obtained, leads to a decision
to accept or to reject the hypothesis under consideration.

Definition 3. Let C be that subset of the sample space which, in
accordance with a prescribed test, leads to the rejection of the hypoth-
esis under consideration. Then C is called the critical region of the test.

Definition 4. The power function of a test of a statistical hypothesis
H, against an alternative hypothesis H, is that function, defined for
all distributions under consideration, which yields the probability that
the sample point falls in the critical region C of the test, that is, a
function that yields the probability of rejecting the hypothesis under
consideration, The value of the power function at a parameter point is
called the power of the test at that point.

Definition 5. Let H; denote a hypothesis that is to be tested
against an alternative hypothesis H, in accordance with a prescribed
test. The significance level of the test (or the size of the critical region C)
is the maximum value (actually supremum) of the power function of
the test when H, is true.

If we refer again to Example 1, we see that the significance levels
of Tests 1, 2, and 3 of that example are 0.500, 0.067, and 0.159, respec-
tively. An additional example may help clarify these definitions.

Example 2. It is known that the random variable X has a p.d.f. of the
form

flz; 0) = %e“""’, 0 <z < o0,
= 0 elsewhere.

It is desired to test the simple hypothesis Hy: 6 = 2 against the alternative
simple hypothesis H,: 8 = 4. Thus Q = {6; 8 = 2,4}. A random sample
X, X, of size » = 2 will be used. The test to be used is defined by taking
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the critical region to be C = {{z;, #;); 9.5 < 2; + 2z, < 00}. The power
function of the test and the significance level of the test will be determined.

There are but two probability density functions under consideration,
namely, f(x; 2) specified by H, and f(x; 4) specified by H;. Thus the power
function is defined at but two points § = 2 and 6 = 4. The power function
of the test is given by Pr[(X,, X,) € C). If H, is true, that is, 6 = 2, the
joint p.d.f. of X; and X, is

flxy; 2)f(zq; 2) = e~ @+ =2 0<x <00,0< zy < 00,

= () elsewhere,

and

Pr((X,, X, eC] = 1 — Pr[(X,, X;) €C*]

i

_ 9.5 (9.5-23 | _ o oo
1 fo fo 1e~@ =i gy da,
= 0.05, approximately.
If H, is true, that is, 8 = 4, the joint p.d.f. of X, and X, is
floy; 4)f(xq; 4) = fge™ @ tT04, 0 <z <0,0<zy <00,
= () elsewhere,

and

Pr [(X,, Xo) €C]

9.5 rO.5—x,
1- f f fee™ @1+ 2/t dg, dx,
o} 0

= 0.31, approximately.

Thus the power of the test is given by 0.05 for § = 2 and by 0.31 for § = 4.
That is, the probability of rejecting H, when H, is true is 0.05, and the
probability of rejecting H, when H, is false is 0.31. Since the significance
level of this test (or the size of the critical region) is the power of the test
when H, is true, the significance level of this test is 0.05.

The fact that the power of this test, when 8 = 4, is only 0.31 immediately
suggests that a search be made for another test which, with the same power
when 6 = 2, would have a power greater than 0.31 when 6 = 4. However,
Section 7.2 will make clear that such a search would be fruitless. That is,
there is no test with a significance level of 0.05 and based on a random
sample of size # = 2 that has a greater power at § = 4. The only manner in
which the situation may be improved is to have recourse to a random sample
of size # greater than 2.

Our computations of the powers of this test at the two points 6 = 2
and 6 = 4 were purposely done the hard way to focus attention on funda-
mental concepts. A procedure that is computationally simpler is the follow-
ing. When the hypothesis H, is true, the random variable X is x*(2). Thus
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the random variable X; + X, = Y, say, is y2(4). Accordingly, the power
of the test when H, is true is given by

Pr(Y 295 =1—-Pr(Y <95)=1- 095 = 0.05,

from Table II of Appendix B. When the hypothesis H, is true, the random
variable X/2 is x?(2); so the random variable (X, + X,)/2 = Z, say, is
x*(4). Accordingly, the power of the test when H, is true is given by

Pr(X, + X; = 9.5) = Pr (Z > 4.75)

-]
=f dze~%2 dz,
4.75

which is equal to 0.31, approximately.

Remark. The rejection of the hypothesis H, when that hypothesis is
true is, of course, an incorrect decision or an error. This incorrect decision
is often called a type I error; accordingly, the significance level of the test
is the probability of committing an error of type I. The acceptance of H,
when H, is false (H, is true) is called an error of type I1. Thus the probability
of a type II error is 1 minus the power of the test when H, is true. Frequently,
it is disconcerting to the student to discover that there are so many names for
the same thing. However, since all of them are used in the statistical litera-
ture, we feel obligated to point out that “significance level,” “size of the
critical region,” * power of the test when H,, is true,” and “* the probability of
committing an error of type I’ are all equivalent.

EXERCISES

7.1. Let X have a p.d.f. of the form f(z; 6) = 62°~%, 0 < 2 < 1, zero
elsewhere, where 8 € {6; 8 = 1, 2}. To test the simple hypothesis H,: § = 1
against the alternative simple hypothesis H;: # = 2, use a random sample
X, X, of size n = 2 and define the critical region to be C = {(z,, z,);
3/4 < z,z,}. Find the power function of the test.

7.2. Let X have a binomial distribution with parameters » = 10 and
pe{p;p =14} The simple hypothesis Hy: p = § is rejected, and the
alternative simple hypothesis H,: p = } is accepted, if the observed value
of X,, a random sample of size 1, is less than or equal to 3. Find the power
function of the test.

7.3. Let X,, X, be a random sample of size » = 2 from the distribution
having p.d.i. f(z; 8) = (1/0)e~="®, 0 < = < o0, zero elsewhere. We reject
H,: 0 = 2 and accept H,: 8 = 1if the observed values of X,, X, say z,, z,,
are such that

[y 2)f(%a; 2)
S (@ 1)f(22; 1)

<l
-2



242 Statistical Hypotheses [Ch.7

Here Q = {6; 6 = 1, 2}. Find the significance level of the test and the power
of the test when H, is false.

7.4. Sketch, as in Figure 9.1, the graphs of the power functions of Tests
1, 2, and 3 of Example 1 of this section.

7.5. Let us assume that the life of a tire in miles, say X, is normally
distributed with mean 6 and standard deviation 5000. Past experience
indicates that 6 = 30,000. The manufacturer claims that the tires made by a
new process have mean € > 30,000, and it is very possible that § = 35,000.
Let us check his claim by testing Hy: § < 30,000 against H;: 8 > 30,000.
We shall observe # independent values of X, say x4,..., z,, and we shall
reject H, (thus accept H,) if and only if Z > ¢. Determine » and ¢ so that the
power function K(6) of the test has the values K(30,000) = 0.01 and
K(35,000) = 0.98.

7.6. Let X have a Poisson distribution with mean 6. Consider the
simple hypothesis Hy: 6 = 1 and the alternative composite hypothesis
H;:0 <3 Thus Q={0;0< 08 <1} Let X,,..., X, denote a random
sample of size 12 from this distribution. We reject H, if and only if the
observed value of ¥ = X, +--- 4+ X, < 2. If K(6) is the power function
of the test, find the powers K(%), K(}), K(4), K(}), and K(7%). Sketch the
graph of K(f). What is the significance level of the test?

7.2 Certain Best Tests

In this section we require that both the hypothesis H,, which is to
be tested, and the alternative hypothesis H, be simple hypotheses.
Thus, in all instances, the parameter space is a set that consists of
exactly two points. Under this restriction, we shall do three things:

(a) Define a best test for testing H, against H,.

(b) Prove a theorem that provides a method of determining a best
test.

{(c) Give two examples.

Before we define a best test, one important observation should be
made. Certainly, a test specifies a critical region; but it can also be
said that a choice of a critical region defines a test. For instance, if one
is given the critical region C = {(x, @y, x3); #7 + 2% + 2% > 1}, the
test is determined: Three random variables X;, X,, X; are to be con-
sidered; if the observed values are x,, z,, %5, accept H, if 22 + a2 + 22
< 1; otherwise, reject H,. That is, the terms “test” and “critical
region’’ can, in this sense, be used interchangeably. Thus, if we define
a best critical region, we have defined a best test.

Sec. 7.2] Certain Best Tests 243

Let f(x; 0) denote the p.d.f. of a random variable X. Let X, X,
..., X, denote a random sample from this distribution, and consider
the two simple hypotheses Hy: 6 = 6' and H,: 6 = 6”. Thus Q =
{0; 6 = ¢, 6"}. We now define a best critical region (and hence a best
test) for testing the simple hypothesis H, against the alternative simple
hypothesis H;. In this definition the symbols Pr[(X;, X,,..., X,) €
C; Hy) and Pr((X,, X,,...,X,)eC; H] mean Pr((X,, X,,..., X,)
C] when, respectively, H, and H, are true.

Definition 6. Let C denote a subset of the sample space. Then C is
called a best critical region of size « for testing the simple hypothesis
H,: 8 = ¢ against the alternative simple hypothesis H,: § = 8" if, for
every subset 4 of the sample space for which Pr[(X,,..., X,) e
4;Hy] = «a:

@) Pr{(Xy, X, ..., X,)eC;Hy = a.
(b) Pr((Xy, Xo,..., X,)€C; Hy] = Pr((Xy, Xp, ..., X)) e 4; H,).

This definition states, in effect, the following: First assume H o
to be true. In general, there will be a multiplicity of subsets 4 of the
sample space such that Pr{(X,, X,,..., X,) € A] = «. Suppose that
there is one of these subsets, say C, such that when H, is true, the power
of the test associated with C is at least as great as the power of the test
associated with each other 4. Then C is defined as a best critical region
of size « for testing H, against H,.

In the following example we shall examine this definition in some
detail and in a very simple case.

Example 1. Consider the one random variable X that has a binomial
distribution with # = 5 and p = 6. Let f(z; ) denote the p.d.f. of X and let
Hy: 8 =14 and H,: 0 = }. The following tabulation gives, at points of
positive probability density, the values of f(z;4), f(z; 3), and the ratio
@ 3f ().

z 0 1 2 3 4 5
flz; %) 3z B3 33 2 37 E¥3
flx 3) 1033 1033 1033 o2 4 oz S pxy
fl=:d)

32 32 32 32 32 32
flz: 3) 3 9 27 81 3

We shall use one random value of X to test the simple hypothesis H,: 8 = }
against the alternative simple hypothesis H,: § = 2, and we shall first assign
the significance level of the test to be « = 1. We seek a best critical region
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ofsizea = 55. If 4, = {z; 2 = 0}and 4, = {z; 2 = 5}, then Pr (X € A; H,)
= Pr (X ed, Hy) =35 and there is no other subset A; of the space
{x;z = 0, 1,2, 3, 4, 5} such that Pr (X € 43; H,) = 3%. Then either 4, or 4,
is the best critical region C of size « = 4% for testing H, against H;. We
note that Pr (X € A,; H,) = 4% and that Pr (X € 4,; H,) = 1937 Thus, if
the set 4, is used as a critical region of size « = 3%, we have the intolerable
situation that the probability of rejecting H, when H, is true (H, is false)
is much less than the probability of rejecting H, when H, is true.

On the other hand, if the set A, is used as a critical region, then
Pr (X € 4,; Hy) = 55 and Pr (X € 4,; H,) = &% That is, the probability
of rejecting H, when H, is true is much greater than the probability of reject-
ing Hy when H is true. Certainly, this is a more desirable state of affairs, and
actually A, is the best critical region of size & = 3%. The latter statement
follows from the fact that, when H, is true, there are but two subsets, 4, and
A,, of the sample space, each of whose probability measure is 55 and the fact
that

g = Pr (Xedy;Hy) >Pr(Xed,; Hy) = 1633

It should be noted, in this problem, that the best critical region C = 4, of
size « = 5% is found by including in C the point (or points) at which f(z; 1)
is small in comparison with f(z; 4). This is seen to be true once it is observed
that the ratio f(z; 4)/f(#; $) is a minimum at # = 5. Accordingly, the ratio
fl=; 3)/f(z; $), which is given in the last line of the above tabulation, provides
us with a precise tool by which to find a best critical region C for certain given
values of «. To illustrate this, take « = 3%. When H, is true, each of the
subsets {x; x = 0, 1}, {x; x = 0, 4}, {x; x = 1, 5}, {x; * = 4, 5} has probability
measure . By direct computation it is found that the best critical region of
this size is {«; # = 4, 5}. This reflects the fact that the ratio f(z; 1)/f(z; $) has
its two smallest values for # = 4 and # = 5. The power of this test, which
has e = 3%, is

— - — 405 _ 243 _ 648
Pr(X =4,5 H)) = 19327 + 7654 = 1024

The preceding example should make the following theorem, due to
Neyman and Pearson, easier to understand. It is an important theorem
because it provides a systematic method of determining a best critical
region.

Neyman-Pearson Theorem. Let X, X,,..., X,, where n is a
Jixed positive integer, denote a vandom sample from a distribution that has
p.a.f. f(x; 0). Then the joint p.d.f. of X;, X,, ..., X, @5

L(0; 2y, @, . . ., ) = f(@y; a)f(xz» 6) - - - f(@n; 6).
Let 0" and 0" be distinct fixed values of 0 so that Q = {0; 0 = ¢, 8"}, and
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let k be a positive number. Let C be a subset of the sample space such that:

(@)

L(0'; 2y, 25, ..., 2,) .
RN S <k, for each point (xy, ,, . .., z,) € C.

(b)

(€) « = Pr(X,, X,,...,X,)eC; Hy).

Then C is a best critical region of size « for testing the stmple hypothesis
Ho: 0 = 0 against the alternative simple hypothesis H,: 6 = ¢”.

L(60; %y, 2o, ..., 2,)
)

>k X *
L0 22y m) 2 P Jor each point (xy, x,, .. ., x,) € C*.

Proof. We shall give the proof when the random variables are of
the continuous type. If C is the only critical region of size «, the
theorem is proved. If there is another critical region of size «, denote it
by A. For convenience, we shall let f-}-t f L(0;x,,...,x,)dx, - - - dx, be

denoted by J' r L(6). In this notation we wish to show that

ch(e") - [, L@ =0

Since C is the union of the disjoint sets C N 4 and C N A* and 4 is
the union of the disjoint sets A N C and 4 N C*, we have

M [ Le) - [, L@

=[ L)+ L) - [, L0 - | L@

CNA CNnA*

= L) - fmc‘ L(6").

However, by the hypothesis of the theorem, L(6") > (1/R)L(8') at
each point of C, and hence at each point of C N 4*; thus

L L6 = % L(®).

CNA*

But L(6") < (1/k)L(#') at each point of C*, and hence at each point of
A N C*; accordingly,

f L) < * L(®).

k Janc

"These inequalities imply that

1 1
LBII _ LBI/ > - L Y __f TANN
f (6) f ( )>kfm €) -3 | 1@
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and, from Equation (1), we obtain

@) f L") f L) [ LM* L) — L 5 L(H’)]-

However,

anA‘ L(Ol) - J.A('\C‘ L(el)

=jm'L(e) + [ L©) f L(6) waL(o')

If this result is substituted in inequality (2), we obtain the desired
result,

[, L6 - [, =0

If the random variables are of the discrete type, the proof is the same,
with integration replaced by summation.

Remark. As stated in the theorem, conditions (a), (b), and (c) are suffi-
cient ones for region C to be a best critical region of size «. However, they are
also necessary. We discuss this briefly. Suppose there is a region A of size «
that does not satisfy (a) and (b) and that is as powerful at § = 6" as C, which
satisfies (a), (b), and (c). Then expression (1) would be zero, since the power
at 0" using 4 is equal to that using C. It can be proved that to have expression
(1) equal zero A must be of the same form as C. As a matter of fact, in the
continuous case, 4 and C would essentially be the same region; that is, they
could differ only by a set having probability zero. However, in the discrete
case, if Pr[L(6') = kL(8"); H,] is positive, 4 and C could be different sets,
but each would necessarily enjoy conditions (a), (b), and (c) to be a best
critical region of size «.

One aspect of the theorem to be emphasized is that if we take Cto
be the set of all points (z,, @, . . ., ,) which satisfy

L(HI) xlx xz; c ey xn)

k 0
A

then, in accordance with the theorem, C will be a best critical region.
This inequality can frequently be expressed in one of the forms (where
¢, and ¢, are constants)

. n ”
4y (%1, T, -« ., Ty 0, 0") < c4,
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or
MZ(xl: Loy o vy Xy; 0,; 0") > Csy.

Suppose that it is the first form, #, < ¢;. Since 6" and 6" are given
constants, #,(X;, X,,..., X,; 0, 6"} is a statistic; and if the p.d.f. of
this statistic can be found when H| is true, then the significance level of

the test of H, against H, can be determined from this distribution.
That is,

o= Priu (X, X, ..., X; 0,0 < c;; Hy).

Moreover, the test may be based on this statistic; for, if the observed
values of X, X,, ..., X, are x;, ,, .. ., x,, we reject H, (accept H,) if
Uy (Ly, Zg, - .., Z,;) < Cy.

A positive number %k determines a best critical region C whose size
is « = Pr{(X,, Xs ..., X,) €C; Hy] for that particular %. It may be
that this value of « is unsuitable for the purpose at hand; that is, it is
too large or too small. However, if there is a statistic #, (X, X,, ..., X,),
as in the preceding paragraph, whose p.d.f. can be determined when
H, is true, we need not experiment with various values of % to obtain
a desirable significance level. For if the distribution of the statistic is
known, or can be found, we may determine ¢, such that Pr[ux,(X,, X,,

.., X,) < ¢g; Hy) 1s a desirable significance level.

An illustrative example follows.

Example 2. Let X,, X,...., X, denote a random sample from the
distribution that has the p.d.f.

flz; 6) = lz_exp(—<x_20)2)’ —0 < T < 0.

T

It is desired to test the simple hypothesis H,: # = 6’ = 0 against the alter-
native simple hypothesis H;: § = §” = 1. Now

L(ol, L1y« -, xn) _ (1/\/27)n exp [_< x?)/z]

U A 5= 2

» > %n, 1 2 n —_- —_ 2
(V2 exp [~ (3 @ — 17)12]
= exp (—le + 1_;)
1

It & > 0, the set of all points (z,, z,, .

~Na

.., &) such that

Y
1
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is a best critical region. This inequality holds if and only if

i n
—>rn+=<hk

or, equivalently,

—Ink=c

(N1

n
ez
1
n
In this case, a best critical region is the set C = {{xy, x5, ..., 2,); D 2 = ¢},
1
where ¢ is a constant that can be determined so that the size of the critical

n
region is a desired number «. The event > X; > ¢ is equivalent to the event
1

X > ¢/n = ¢, say, so the test may be based upon the statistic X. If H, is
true, that is, § = @' = 0, then X has a distribution that is #(0, 1/n). For a
given positive integer #, the size of the sample, and a given significance level
o, the number ¢; can be found from Table III in Appendix B, so that
Pr (X = ¢,; Hy) = . Hence, if the experimental values of X,, X,, ..., X,
were, respectively, 2,, @, .. ., x,, we would compute Z = gx,/n. Ifz >,
the simple hypothesis Hy: 8 = ¢ = 0 would be rejected at the significance
level «; if Z < ¢, the hypothesis H, would be accepted. The probability of
rejecting H,, when H, is true, is «; the probability of rejecting H,, when H,
is false, is the value of the power of the test at # = 6” = 1. That is,

Pr(X >¢;H,) = ) —_Tl—_—:exp (—u) dz.
o V2V 1] 2(1/n)
For example, if # = 25 and if « is selected to be 0.05, then from Table ITI
we find that ¢, = 1.645/4/25 = 0.329. Thus the power of this best test of H,
against H, is 0.05, when H, is true, and is

Jm NN /"_1"‘_ exp [—@:_1)_2] az = fw L -wm gy — 0.999+
0.329 277"\/"21—5 Z(ZLS_) -3.355 VZW

when H, is true.

There is another aspect of this theorem that warrants special
mention. It has to do with the number of parameters that appear in the
p.d.f. Our notation suggests that there is but one parameter. However,
a careful review of the proof will reveal that nowhere was this needed
or assumed. The p.d.f. may depend upon any finite number of param-
eters. What is essential is that the hypothesis H, and the alternative
hypothesis H, be simple, namely that they completely specify the
distributions. With this in mind, we see that the simple hypotheses
H, and H; do not need to be hypotheses about the parameters of a
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distribution, nor, as a matter of fact, do the random variables X, X

RRRY X n need to be mutually stochastically independent. That is 1i’f H2 ,
is tl.le simple hypothesis that the joint p.d.f. is g(x;, @y, .. ., z ) ’and i;
H, is the alternative simple hypothesis that the joint p.d.f.’ isnh,(xl, %y,

.., &,), then C is a best critical region of size « for testing H ;
H,i n,
11, for £ > 0: g 11, against

8|8
A

) kfor (xy, @y, ..., a,) e C.
»n

v

k for (x), x, ..., ®,) €C*.

(©) a«=Pr{(X,, X,,..., X,)eC; Hyl.
An illustrative example follows.

.Example 3. Let X,, ..., X, denote a random sample from a distribution
yvhlch has a p.d..f. J(®) that is positive on and only on the nonnegative
Integers. It is desired to test the simple hypothesis

-1
Hozf(x)=fxT £=01,2...,

= 0 elsewhere,
against the alternative simple hypothesis
Hy:f(@) = 3)=*,  2=0,1,2,...,
= 0 elsewhere.

Here

8@y, -, w) e "(xy) z! - xy))

Ay, ..., x,) - (%)"(%)11+$2+"'+I"
(2e-1)n232,

LT ()

1

If £ > 0, the set of points (21, @g, . . ., @,) such that

(2 %)In2 ~ In [11 @)] <k —nin @y =,

%'s a.best cri.tical region C. Consider the case of £ = 1 and # = 1. The preced-
Ing mequality may be written 2%1/z,! < ¢/2. This inequality is satisfied by all

points in the set C = (@2, =0,3,4,5,.. 3 Thus th
when H,, is true is } e power of the test

Pr(X,eC;Hy) =1 - Ppr (X1 =1,2; Hy) = 0.448,
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approximately, in accordance with Table I of Appendix B. The power of
the test when H, is true is given by

Pr(X,eC; Hy) = 1 — Pr(X; = 1,2, H))
—1—(}+%) =0625

EXERCISES

7.7. In Example 2 of this section, let the simple hypotheses read
Hy 0 =0 =0 and Hy: § = " = —1. Show that the best test of H,
against H, may be carried out by use of the statistic X, and that if n = 25
and « = 0.05, the power of the test is 0.999+ when H, is true.
e—xle,

7.8. Let the random variable X have the p.df. f(z; 0) = (1/6)
0 < z < oo, zero elsewhere. Consider the simple hypothesis Ho: § = §" = 2
and the alternative hypothesis H;: 0 = §" = 4. Let X,, X, denote a
random sample of size 2 from this distribution. Show that the best test of
H, against H; may be carried out by use of the statistic X, + X, and that
the assertion in Example 2 of Section 7.1 is correct.

7.9. Repeat Exercise 7.8 when H,: 8 = 6" = 6. Generalize this for every
8" > 2.

7.10. Let X,, X,, ..., X;0 be a random sample of size 10 from a normal
distribution #(0, ¢%). Find a best critical region of size « = 0.05 for testing
H,: o® = 1 against H;: 0 = 2. Is this a best critical region of size 0.05 for
testing H,: 0® = 1 against H;: o? = 4? Against H,: 0 = of > 1?

7.11. If X,, X,, ..., X, is a random sample from a distribution having
p.d.f. of the form f(z; 6) = 029-1, 0 < x < 1, zero elsewhere, show that a
best critical region for testing Ho: 6 = 1 against H;:0=2 is C=

n
{(xl, Xy, ..., &y); € < 1-[1 xi}.
i

7.12. Let X,, X,, ..., Xy be a random sample from a distribution
that is #(6;, 02). Find a best test of the simple hypothesis Hy: 8, = 6, =0,
6, = 65 = 1 against the alternative simple hypothesis H;: 0, = 0 =1,
0, = 03 = 4.

7.13. Let X;, X,, ..., X, denote a random sample from a normal distri-
bution #(6, 100). Show that C = {(y, @gy .-, Tn); € ST = ixl/n} is a

1
best critical region for testing Hy: 6 = 75 against H,: 6 = 78. Find n and ¢
so that
Pr(X., Xs ..., X)eC;Ho = Pr (X = ¢; Hy) = 0.05
and

Pr((X;, X, ..., X,) €C; H,] = Pr (X = ¢; H;) = 0.99, approximately.
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7.14. Let X,, X,,..., X, denote a random sample from a distribution
having the p.d.f. f(z; p) = p¥(1 — p)1~%, & = 0, 1, zero elsewhere. Show that
Cc = {(@1, ..., 2,); ;x" < ¢} is a best critical region for testing Hy:p = §
against H;: p = 4. Use the central limit theorem to find # and ¢ so that
approximately Pr (3 X, < c; Ho) = 0.10 and Pr (3 X < ¢; Hy ) = 0.80.

1

. .7.15. 'Ilet.Xlin, e X,o denote a random sample of size 10 from a
1001sson d.lstrlbutlon with mean 6. Show that the critical region C defined by
; z; > 3 is a best critical region for testing H,: § = 0.1 against H,: § = 0.5.

Determine, for this test, the significance level « and the power at 8 = 0.5.

7.3 Uniformly Most Powerful Tests

This section will take up the problem of a test of a simple hypothesis

H, against an alternative composite hypothesis H;. We begin with an
example.

Example 1. Consider the p.d.f.

1
fl@ 0 =5e  0<z<oo,
= 0 elsewhere,

of Example 2, Section 7.1. It is desired to test the simple hypothesis Hy: § = 2
against the alternative composite hypothesis H,: 8 > 2. Thus Q = {6; 0 > 2}
.A random sample, X, X,, of size n = 2 will be used, and the critical re_gior;
is C = {(x;, 75); 9.5 < #; + 2, < o0}. It was shown in the example cited
that the significance level of the test is approximately 0.05 and that the
power of the test when § = 4 is approximately 0.31. The power function
K{(6) of the test for all # > 2 will now be obtained. We have

K(@) _ _J-s.sfs.s—leexp K2 + e d
o Jo O g )

_ (0+ 9.5
0

)6—9'5/8, 2 < 0.

For ex.ample, K(2) = 0.05, K(4) = 0.31, and K(9.5) = 2/e. It is known
(E)fermse 7..9) that C = {(z,, x;); 9.5 < , + z; < 00} is a best critical
region. of size 0.05 for testing the simple hypothesis H,: § = 2 against
each simple hypothesis in the composite hypothesis H,: 8§ > 2.

The Rreceding example affords an illustration of a test of a simple
hypothesis H,, that is a best test of H, against every simple hypothesis
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in the alternative composite hypothesis H;. We now define a critical
region, when it exists, which is a best critical region for testing a simple
hypothesis H, against an alternative composite hypothesis H;. It seems
desirable that this critical region should be a best critical region for
testing H, against each simple hypothesis in H,. That is, the power
function of the test that corresponds to this critical region should be
at least as great as the power function of any other test with the same
significance level for every simple hypothesis in H;.

Definition 7. The critical region C is a uniformly most powerful
critical vegion of size « for testing the simple hypothesis H, against an
alternative composite hypothesis H, if the set C is a best critical region
of size « for testing H, against each simple hypothesis in H;. A test
defined by this critical region C is called a uniformly most powerful test,
with significance level e, for testing the simple hypothesis H, against
the alternative composite hypothesis H;.

As will be seen presently, uniformly most powerful tests do not
always exist. However, when they do exist, the Neyman—Pearson
theorem provides a technique for finding them. Some illustrative

examples are given here.

Example 2. Let X;, X,, ..., X, denote a random sample from a distri-
bution that is #(0, 6), where the variance ¢ is an unknown positive number.
It will be shown that there exists a uniformly most powerful test with
significance level « for testing the simple hypothesis Hy: § = ', where 6" is a
fixed positive number, against the alternative composite hypothesis
H,:0 > ¢. Thus Q = {6; § > 0'}. The joint p.di of X;, Xo, ..., X, 18

1 \n2 El:ziz
L(oi Xy, Tgy o vy xn) = (m) exp -——27 .

Let 6" represent a number greater than 6, and let % denote a positive
number. Let C be the set of points where

L(el; Ly, Loy -« -s xn)
L(6"; z;, %o, . - -, %)

IA

k’

that is, the set of points where

0”) n/z [ (0” —_ 0’) n 2]
-7 exXp | —\—5pg7 22| <k
(e P =\ 200 Z

n 2010” n 0”
2 — = [ R— =
Zx,- z 5 —p [Zm(0’> 1nk] c.

or, equivalently,
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n
The set C = {(2y, %5, . . ., 2,); ;x? > c} is then a best critical region for

testing the sirn.ple hypothesis H,: 6 = §' against the simple hypothesis
8 = 0". It remains to determine ¢ so that this critical region has the desired

size «. If Hy is true, the random variable é X?/0' has a chi-square distribu-
tion with # degrees of freedom. Since « = Pr (i X320 > ¢/0'; H 0), ¢/6’ may
be read from Table II in Appendix B anzl ¢ determined. Then C =
{(xy, 25, . .., 7,); ?:z:? > ¢} is a best critical region of size « for testing
Hy: 0 = 0" against the hypothesis 8 = 6”. Moreover, for each number §”
greater than 6’, the foregoing argument holds. That is, if 6” is another
number greater than ', then C = {(z, ..., 2,); ix? > ¢} is a best critical
region of size « for testing H,: 6 = 6’ against the hlypothesis 0 = 6". Accord-
ingly, C = {(, . . ., %,); gx? > ¢} is a uniformly most powerful critical region
of size « for testing Hy: § = ¢ against H,: 0 > ¢'. If =y, x,, .. ., z, denote
the experimental values of X,, X, ..., X,, then H,: 6 = ¢ is rejected at the
significance level o, and H,: 6 > § is accepted, if ?x? > ¢; otherwise,

Hgy: 0 = ' is accepted.

If in the preceding discussion we take n = 15, & = 0.05, and 6’ = 3, then
here the two hypotheses will be Hy: 6 = 3 and H;: § > 3. From Table II
¢/3 = 25 and hence ¢ = 75. ’

. Example 3. 1Let X, X,,..., X, denote a random sample from a
distribution that is #(6, 1), where the mean 6 is unknown. It will be shown
that there is no uniformly most powerful test of the simple hypothesis
H,: 6 = 0, where ¢’ is a fixed number, against the alternative composite
hypothesis H,: 8 # 6. Thus Q = {#; —o0 < 0 < ©0}. Let §” be a number
not equal to §'. Let % be a positive number and consider

(1/2m)"2 exp [

(1/2m)"2 exp [

(@ — 012

x;
< k.
(@ — 07212]

n
-2
1
-2
1
The preceding inequality may be written as

exp {~(0" = 0) 3+ 5107 - @71} < &

or

(6" — 6" iwi > g[(e”)z - (8% — In k.
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This last inequality is equivalent to

= n, ., , In %
Z%Zz(e +9)—' 0//_ 9/’

pravided 6” > ¢, and it is equivalent to

In %
x < (9”_*_01)__071_1___01

"
2

HM:

if 8" < 0. The first of these two expressions defines a best critical region for
testing Ho: 0 = 6’ against the hypothesis 6 = 6" provided that 6" > ¢',
while the second expression defines a best critical region for testing H,: 6 = ¢’
against the hypothesis § = 6” provided that §” < 6. That is, a best critical
region for testing the simple hypothesis against an alternative simple
hypothesis, say 8 = 6’ + 1, will not serve as a best critical region for testing
H,: 0 = 6 against the alternative simple hypothesis § = 6’ — 1, say. By
definition, then, there is no uniformly most powerful test in the case under
consideration.

It should be noted that had the alternative composite hypothesis been
either H,;: 8 > ¢ or Hy: 0 < ¢, a uniformly most powerful test would exist
in each instance.

Example 4. In Exercise 7.15, the reader is asked to show that if a random
sample of size » = 10 is taken from a Poisson distribution with mean 6, the

10 .
critical region defined by > =, > 3 is a best critical region for testing H,: 6 =
1

0.1 against H,: § = 0.5. This critical region is also a uniformly most powerful
one for testing Hy: 6 = 0.1 against H;: 8 > 0.1 because, with §” > 0.1,

(0.1)3%i= 100D (g L 3 ). - .z ])

” <k
(0”)2115_10(6 )/(xll le . xnl)

is equivalent to

(%,,1) 2”‘8-10(0.1—9”) < k.

The preceding inequality may be written as
(i xl)(ln 01 -In6") <Ink + 100.1 — 6
1
or, since §” > 0.1, equivalently as

Lo Ink+1-—106"
202 n01—1In0

1

10 . 10 . .
Of course, Y #, = 3 is of the latter form. The statistic Y = ; X, has a Poisson
1
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distribution with mean 106. Thus, with # = 0.1 so that the mean of Y is 1,
the significance level of the test is

Pr(Y>3=1~Pr(Y <2 =1 0920 = 0.080.

If the uniformly most powerful critical region defined by lzoxl > 4 is used,
1
the significance level is
a=Pr(Y>4)=1-Pr(Y <3)=1- 0981 = 0.019.

If a significance level of about « = 0.05, say, is desired, most statisticians
would use one of these tests; that is, they would adjust the significance level
to that of one of these convenient tests. However, a significance level of

10 10
« = 0.05 can be achieved exactly by rejecting Hy if Yo, > 4orif Do, =3
1 1

and if an auxiliary independent random experiment resulted in ‘‘success,”
where the probability of success is selected to be equal to

0.050 — 0.019 _ 31
0.080 — 0.019 ~ 61

This is due to the fact that, when 8 = 0.1 so that the mean of Y is 1,

Pr(Y > 4) + Pr(Y = 3 and success) = 0.019 + Pr (Y = 3) Pr (success)
= 0.019 + (0.061)21 = 0.05.

The process of performing the auxiliary experiment to decide whether to
reject or not when Y = 3 is sometimes referred to as a randomsized test.

Remarks. Not many statisticians like randomized tests in practice,
because the use of them means that two statisticians could make the same
assumptions, observe the same data, apply the same test, and yet make
different decisions. Hence they usually adjust their significance level so as
not to randomize. As a matter of fact, many statisticians report what are
commonly called p-values. For illustrations, if in Example 4 the observed
Y is y = 4, the p-value is 0.019; and if it is y = 3, the p-value is 0.080. That
is, the p-value is the observed ‘“tail” probability of a statistic being at least
as extreme as the particular observed value when H, is true. Hence, more
generally, if ¥ = u(X, X,,..., X,) is the statistic to be used in a test of
H, and if a uniformly most powerful critical region is of the form

u(Zy, Tg, ..., Ty) < C,
an observed value u(z,, z,, . . ., ;) = 4 would mean that the
p-value = Pr (Y < d; Hy).

That is, if G(y) is the distribution function of ¥ = u(X,, X,, ..., X,) pro-
vided that H, is true, the p-value is equal to G(d) in this case. However,
G(Y), in the continuous case, is uniformly distributed on the unit interval,
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so an observed value G(d) < 0.05 would be equivalent to selecting ¢ so that
Pr{u(X,, X, ..., X,) < ¢; Hygl =0.05

and observing that 4 < ¢.

There is a final remark that should be made about uniformly most
powerful tests. Of course, in Definition 7, the word undformily is associated
with 6, that is, C is a best critical region of size « for testing Hy: 6 = 8,
against all @ values given by the composite alternative H,. However, suppose
that the form of such a region is

U@y, oy - - ., T,) < C.

Then this form provides uniformly most powerful critical regions for all
attainable « values by, of course, appropriately changing the value of c.
That is, there is a certain uniformity property, also associated with «, that
is not always noted in statistics texts.

EXERCISES

7.16. Let X have the p.d.f. f(z; §) = 65(1 — 6)1~=, & = 0, 1, zero else-
where. We test the simple hypothesis H,: 8 = % against the alternative
composite hypothesis I1;: § < % by taking a random sample of size 10 and
rejecting H,: 8 = 1 if and only if the observed values #;, z,, . . ., 2,4 of the

10
sample items are such that > z, < 1. Find the power function K(6), 0 <
1

0 < %, of this test.

7.17. Let X have a p.d.f. of the form f(x; 8) = 1/8, 0 < x < 0, zero else-
where. Let Y, < Y, < Y; < Y, denote the order statistics of_a random
sample of size 4 from this distribution. Let the observed value of Y, be y,.
We reject Hy: 0 = 1 and accept H;: 0 # 1 if either y, < $ or y, = 1. Find
the power function K(6), 0 < 6, of the test.

7.18. Consider a normal distribution of the form #(6, 4). The simple
hypothesis Hy: # = 0 is rejected, and the alternative composite hypothesis
H;: 8 > 0isaccepted if and only if the observed mean z of a random sample
of size 25 is greater than or equal to 3. Find the power function K(4), 0 < 6,
of this test.

7.19. Consider the two independent normal distributions #(u,, 400) and
n(pg, 225). Let 0 = p; — py. Let # and 7 denote the observed means of two
independent random samples, each of size #, from these two distributions.
We reject Hy: 0 = 0 and accept H,: 8 > Oif and only if £ — g = ¢. If K(6)
is the power function of this test, find » and ¢ so that K(0) = 0.05 and
K(10) = 0.90, approximately.

7.20. If, in Example 2 of this section, Hy: 8 = ¢, where ¢’ is a fixed posi-
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n

tive number, and H,: 8 < ', show that the set {{(z;, z,, ..., 2,); > 2% < c}is
1

a uniformly most powerful critical region for testing H, against H;.

7.21. If, in Example 2 of this section, H,: § = &', where ¢ is a fixed
positive number, and H,;: 8 # 6, show that there is no uniformly most
powerful test for testing H, against H;.

7.22. Let X, X,, ..., X, denote a random sample of size 25 from a
normal distribution #(6, 100). Find a uniformly most powerful critical region
of size « = 0.10 for testing H,: § = 75 against H;: 6 > 75.

7.23. Let X,, X,,..., X, denote a random sample from a normal
distribution #(6, 16). Find the sample size # and a uniformly most powerful
test of Hy: 0 = 25 against H,: § < 25 with power function K(8) so that
approximately K{25) = 0.10 and K(23) = 0.90.

7.24. Consider a distribution having a p.d.i. of the form f(z; 0) =
6*(1 — 6)1-%, & = 0, 1, zero elsewhere. Let Hy: § = 55 and H;: 6 > 5. Use
the central limit theorem to determine the sample size # of a random sample
so that a uniformly most powerful test of H, against H, has a power function
K (6), with approximately K(s%) = 0.05 and K(i%5) = 0.90.

7.25. Tlustrative Example 1 of this section dealt with a random sample
of size # = 2 from a gamma distribution with « = 1, § = 6. Thus the
moment-generating function of the distribution is (1 — 6)~* ¢ < 1/6,
> 2 Let Z=X, + X,. Show that Z has a gamma distribution with
o« = 2, B = 0. Express the power function K(6) of Example 1 in terms of a
single integral. Generalize this for a random sample of size #.

7.26. Let X have the p.df. f(z; 6) = 65(1 — )1~%, x = 0, 1, zero else-
where. We test Hy: 6§ = L against H,: § < } by taking a random sample

5
X, X,, ..., Xsof size w = 5 and rejecting Hyif Y = 3 X, is observed to be
1

less than or equal to a constant c.

(a) Show that this is a uniformly most powerful test.

(b) Find the significance level when ¢ = 1.

{(c¢) Find the significance level when ¢ = 0.

(d) By using a randomized test, modify the tests given in part (b) and
t

part (c) to find a test with significance level « = 5.

7.4 Likelihood Ratio Tests

The notion of using the magnitude of the ratio of two probability
density functions as the basis of a best test or of a uniformly most
powerful test can be modified, and made intuitively appealing, to
provide a method of constructing a test of a composite hypothesis
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against an alternative composite hypothesis or of constructing a test of a
simple hypothesis against an alternative composite hypothesis when a
uniformly most powerful test does not exist. This method leads to tests
called likelihood ratio tests. A likelihood ratio test, as just remarked, is not
necessarily a uniformly most powerful test, but it has been proved in
the literature that such a test often has desirable properties.

A certain terminology and notation will be introduced by means of
an example.

Example 1. Let the random variable X be #(f;, 8,) and let the param-
eter space be @ = {(6y, 0,); —00 < 6 < 0, 0 < , < ao}. Let the composite
hypothesis be Hq: 8; = 0, 6, > 0, and let the alternative composite hypoth-
esis be H;: 0, # 0, 0, > 0. The set w = {(6,, 0,); 0, = 0,0 < 0, < o0} is
a subset of Q and will be called the subspace specified by the hypothesis H,,.
Then, for instance, the hypothesis H, may be described as H,: (6;, 6,) € w.
It is proposed that we test H, against all alternatives in H;.

Let X, X,,..., X, denote a random sample of size » > 1 from the
distribution of this example. The joint p.d.f. of X;, X,, ..., X, is, at each
point in Q,

1 \ns2 ;(zz - 01)2
L(Gl, 02, Ty, ..., x,,) = ('2—‘”—02) €Xp —T = L(Q)

At each point (0, 0,) € w, the joint p.d.f. of X1, X,, ..., X, is

1 \m2 ;xtz
L(O,Hz;xl,...,zn)=(m) exp | -5 | = L)

The joint p.d.f., now denoted by L(w), is not completely specified, since 8,
may be any positive number; nor is the joint p.d.f., now denoted by L(Q),
completely specified, since §, may be any real number and 8, any positive
number. Thus the ratio of L{w) to L(Q)} could not provide a basis for a test
of H against H;. Suppose, however, that we modify this ratio in the follow-
ing manner. We shall find the maximum of L(w) in w, that is, the maximum
of L(w) with respect to 6,. And we shall find the maximum of L(Q) in Q;
that is, the maximum of L(Q) with respect to 8, and 6,. The ratio of these
maxima will be taken as the criterion for a test of H, against H;. Let the
maximum of L(w) in w be denoted by L(&) and let the maximum of L(Q)
in Q be denoted by L(Q). Then the criterion for the test of H, against H, is
the likelihood ratio

Ay, g, 0, ) = A = L((g)

R

b~
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Since L{w) and L(Q) are probability density functions, A > 0; and since w
is a subset of Q, A < 1.
In our example the maximum, L(&), of L{w) is obtained by first setting

dinLw) __ n z
a6, 20, 26

equal to zero and solving for 6,. The solution for 8, is ix?/n, and this
1

number maximizes L(w). Thus the maximum is

L{@)

Il

n/2 < 2
1 2%
—_— exp | ——
27 Y ailn 2> atn
1

1

n/2
ne~1
s .
2 > a?
1

On the other hand, by using Example 4, Section 6.1, the maximum, L(Q),

Il

of L(Q) is obtained by replacing 6, and 6, by ixi/n = Z and i (x; — Z)*/n,
1 I
respectively. That is,

) [ 1 ni2 i (@; — x)?
L) = | —5——— | exp|-—
i 27r§ (x; — a_c)z/njl 2 g (x; — 2)%In

ne~? "
203 (@ — 5)2}
L 1

Thus here

n n/2

2 (& — @)?

1
A= T
e

Because ix? = i (x; — x)? + nx®, A may be written
1 1
A= nl n/2
{1 + [t - ;7;)2]}
1

Now the hypothesis H, is 8, = 0, §, > 0. If the observed number Z were

zero, the experiment tends to confirm H,. But if £ = 0 and i 2 > 0, then
1
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A = 1. On the other hand, if # and #&?/2 (z, — )2 deviate considerably
1
from zero, the experiment tends to negate Ho. Now the greater the deviation
of n:?/i (x, — )2 from zero, the smaller X becomes. That is, if A is used
1

as a test criterion, then an intuitively appealing critical region for testing
H, is a set defined by 0 < A < A, where A, is a positive proper fraction.
Thus we reject Hy if A < Ay, A test that has the critical region A < Ay is a
likelihood ratio test. In this example A < A when and only when

Vo |7
n
J3 ot =1
If Hy: 6, = 0 is true, the results in Section 6.3 show that the statistic

Vi (X - 0)
J3 - X =1

has a ¢ distribution with # — 1 degrees of freedom. Accordingly, in this
example the likelihood ratio test of H, against H; may be based on a T
statistic. For a given positive integer », Table IV in Appendix B may be
used (with # — 1 degrees of freedom) to determine the number ¢ such that
a = Prjt(Xy, Xs, ..., Xa)| = ¢; Hol is the desired significance level of the
test. If the experimental values of X,, X,,..., X, are, respectively,
%y, Ty, . . -, &y, then we reject H, if and only if [t(z, 4, - .., )| = ¢ If, for
instance, # = 6 and « = 0.05, then from Table IV, ¢ = 2.571.

> ViIn = Do — 1) =c.

HXy, Xg o or X)) =

The preceding example should make the following generalization
easier to read: Let X, X,,..., X, denote n mutually stochastically
independent random variables having, respectively, the probability
density functions f(z,; 65, Oy .. os b)), 2=1,2,...,m. The set that
consists of all parameter points (8, 8, . .., 0p) is denoted by Q, which
we have called the parameter space. Let w be a subset of the parameter
space Q. We wish to test the (simple or composite) hypothesis
Hy: (6, b, - . ., ) € © against all alternative hypotheses. Define the
likelihood functions

n
L) = [ | filw,; 01, 03, - - -, On), (8, 05, .. ., ) €,
1=1

and

n

L(Q) = Hf,(xi; 6y, 05, ..., 04), (6, 0y, .. ., Op) € Q.

1=1
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A

Let L(&) and L(€Q) be the maxima, which we assume to exist, of these

two likelihood functions. The ratio of L(#) to L(Q) is called the likeli-
hood ratio and is denoted by

L(s)
L)

Let A, be a positive proper function. The likelthood ratio test principle

states that the hypothesis Hy: (0, 0,, ..., 0,) € w is rejected if and
only if

Ay, g, o0, Xy) = A =

Axy, Zgy .., &) = A < A

The function A defines a random variable A{(X,, X,, ..., X,), and the
significance level of the test is given by

a=PriNXy, X, ..., X,) < Ao; Hy).

The likelihood ratio test principle is an intuitive one. However, the
principle does lead to the same test, when testing a simple hypothesis
H, against an alternative simple hypothesis H,, as that given by the
Neyman-Pearson theorem (Exercise 7.29). Thus it might be expected
that a test based on this principle has some desirable properties.

An example of the preceding generalization will be given.

Example 2. Let the stochastically independent random variables X and
Y have distributions that are #(6;, 83) and n(8,, 65), where the means 0,
and 6, and common variance f; are unknown. Then Q = {(6,, 0,, 0;);
-0 < 0, < 0, —0 < 8 < 0,0 < §; < oo}). Let X3, X,,..., X, and
Y,, Y, ..., Y, denoteindependent random samples from these distributions.
The. hypothesis Hy: 6, = 6,, unspecified, and 8; unspecified, is to be tested
against all alternatives. Then o = {(0, 8;, 03); —0 < 8, = 0, < o0,
0 <0 <oo}. Here X,,X,,...,X,, Y,,Y,,...,Y, arte n 4+ m > 2

mutually stochastically independent random variables having the likelihood
functions

1 \ sz S(m = 02 + 3w — 027
L = |=— 1 1
() (zﬂoa) P | 20,
and
- n m -
1 \ a+my2 2 (@ — 01+ 2 (g — 6,)°
L = [—no _ 1 .
() (2ﬂ03) exp 20, -
If
oln L(w) 91 L(w)
70, and 20,
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are equated to zero, then (Exercise 7.30) and #,, #,, and w’ maximize L(Q). The maximum is
n m e~ 1\ (ntm)2
Sm-0)+3w-0)=0, 1) = (5) "
(1) so that
1 [” = L(&) w'\ (a+m)2
w2 [S -0y + i—92]=0. N, . .. ) = A= =(—) :
( ) 7, Z ( 1) 2 (y 1) (4 s T, Y1 s Ym) = A ) —
The solutions for 01 and 03 are, respectively, The random variable defined by A2/ +m) g
S+ 2 S(X, - X2+ S(Y, - 72
9= 1 1 T .
n -+ m n — — m _
. X~ (X + mY)[(n + m)[* + Z{Y, ~ [(nX + m¥)/(n + m)]}*
an
n 5 m )2 Now
2@ —u?+ 2y —u - o
w = I 1 , ”(__nX+m7)2_”[ v ( _ nX + m¥\]?
notm zX‘ n+ m _E(X' A+ & - =
and # and w maximize L(w). The maximum is _ i X - R+ n(X' _aX 4 m?)2
L& e~ 1\ (n+my2 ¢ i Tt m
@ = (57a)
and
In lik , if
n like manner, i m X + mY\2 & v._ v v nX + mY\]2
oIn L(Q) &In L(Q) on L(Q) 2 ‘__—n+m) —Z[( P = )+( ——M)]
80, a0, a0
1 2 3 _ m Y Y . Y MX + m? a
are equated to zero, then (Exercise 7.31) = 2 Yy = ¥ + m|Y — — Tm )
S —6) =0, But
1
m s nX +m¥\2  mn .
2) ;(yi—92)=0, n(X— n+m) —(n+m)2(X_Y)
1 & m and
—t )+ [ - 62+ - 0] -0 _
3 L7 1 - nX + mY\2 nim 2
m(Y - ) - (X - 7).
The solutions for 8y, 8,, and 8, are, respectively, n+ m (n + m)

i . Hence the random variable defined by A%™*™ may be written
i
= - xp+ 3 - vy
S S 06— P+ 3 (Y= V) + [mfn + m))(X - VPP
( T = 1
i(xi — u)? + gj(y, — U)? 1+ Lo (n + )X — ¥)*
r_ 1 1

(X — RP + 3(¥, - ¥

8
1
3
+
3
\%E]
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If the hypothesis Hy: 6, = 0, is true, the random variable

A/ g _ )
T = n+m
A/i()fi—X)u?(Yi—Y)z
n+m—2

has, in accordance with Section 6.4, a ¢ distribution with # + m — 2 degrees
of freedom. Thus the random variable defined by AZ/®+m jg

n+m—2
(n+m—2) + T?

The test of H, against all alternatives may then be based on a ¢ distribution
with # + m — 2 degrees of freedom.

The likelihood ratio principle calls for the rejection of H, if and only if
A < Ay < 1. Thus the significance level of the test is

«=Pr{AXy, ..., X0 Yy .., Y, < Ag; Hol.
However, A(Xy,..., X,, Yy, ..., Y,) < A is equivalent to |T| > ¢, and so
o= Pr(|T| = ¢; Hy).

For given values of # and m, the number ¢ is determined from Table IV in
the Appendix (with # + m — 2 degrees of freedom) in such a manner as to
yield a desired «. Then H, is rejected at a significance level « if and only if
[¢| = ¢, where ¢ is the experimental value of T. If, for instance, » = 10,
m = 6, and « = 0.05, then ¢ = 2.145.

In each of the two examples of this section it was found that
the likelihood ratio test could be based on a statistic which, when the
hypothesis H, is true, has a ¢ distribution. To help us compute the
powers of these tests at parameter points other than those described by
the hypothesis H,, we turn to the following definition.

Definition 8. Let the random variable W be %(3, 1); let the random
variable V be x%(r), and W and V be stochastically independent. The
quotient

w
T

T:

is said to have a noncentral t distribution with » degrees of freedom and
noncentrality parameter §. If § = 0, we say that 7 has a central ¢
distribution.
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In the light of this definition, let us reexamine the statistics of the
examples of this section. In Example 1 we had

VnX
J3 = g -
VuX|o _
J3 (X~ Do — 1

HXy, ..., X,) =

Here W, = VaX/ois n(Vnby)o, 1), V, = 5 (X, — X)2/e?is x*(n — 1),
1
and W, and V, are stochastically independent. Thus, if 6, # 0, we see,

in accordance with the definition, that #(X,, ..., X,) has a noncentral
¢ distribution with # — 1 degrees of freedom and noncentrality param-

eter 8, = Vn8,/o. In Example 2 we had

T = Ws
VVyln + m — 2)
where
nwm
_ X —
W, w+m ( Y)/U
and

Vs

1

B -2+ S - v/

Here W, is n[Vum/(n + m)(8; — 0,)/c, 1], V4 is ¥%(n + m — 2), and
W, and V, are stochastically independent. Accordingly, if 6, # 6,, T
has a noncentral ¢ distribution with # + # — 2 degrees of freedom and
noncentrality parameter 8, = Vam/(n + m)(6; — 65)/o. It is interest-
ing to note that &, = Vn#,/c measures the deviation of 6; from
0, = 0in units of the standard deviation o/4/% of X. The noncentrality
parameter 8, = Vam/(n + m)(, — 6,)/c is equal to the deviation of
0, — 6, from 6, — 6, = 0 in units of the standard deviation
oV(n + m)nmoft X — Y.

There are various tables of the noncentral £ distribution, but they are
much too cumbersome to be included in this book. However, with the

aid of such tables, we can determine the power functions of these tests
as functions of the noncentrality parameters.
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In Example 2, in testing the equality of the means of two inde-
pendent normal distributions, it was assumed that the unknown
variances of the distributions were equal. Let us now consider the
problem of testing the equality of these two unknown variances.

Example 3. We are given the stochastically independent random sam-
ples X;,..., X,and Yy, ..., ¥, from the independent distributions, which
are n(f,, 8,) and n(8,, 8,), respectively. We have

Q = {(0y, 05, 05, 0,); —0 < 0;, 8, < 0,0 < 03,0, < oo}

The hypothesis Hy: 0; = 6,, unspecified, with 6, and 6, also unspecified, is
to be tested against all alternatives. Then

w = {(81, 0, 0, 0); —00 < 0, 6, < 0,0 < 63 = 6, < co}.

It is easy to show (see Exercise 7.34) that the statistic defined by A =
L(6)/L(Q) is a function of the statistic

(X, — X)%(n — 1)
F =

(¥, — T)3fm — 1)

%t =N

If 6, = 0,, this statistic F has an F distribution with # — land m — 1
degrees of freedom. The hypothesis that (8, 6,, B, 8,) € w is rejected if the
computed F < ¢, or if the computed F > c,. The constants ¢, and ¢, are
usually selected so that, if 8; = 0y,

mwsm=mwzm=%

where «, is the desired significance level of this test.

EXERCISES A

7.27. In Example 1 let » = 10, and let the experimental values of the
random variables yield  — 0.6 and 1;" (o — B)2 = 3.6. If the test derived
in that example is used, do we accept or reject Hy: 6, = 0 at the 5 per cent
significance level?

72&hﬂkmmhzmu“:m=&5=7izg=7mx%m_zy=
71.2, i (y, — §)* = 54.8. If we use the test derived in that example, do we
acceptl or reject Hy: 8, = 6, at the 5 per cent significance level?

7.29. Show that the likelihood ratio principle leads to the same test,.when
testing a simple hypothesis H, against an alternative simple hypothesis H;,
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as that given by the Neyman—Pearson theorem. Note that there are only
two points in Q.

7.30. Verify Equations (1) of Example 2 of this section.
7.31. Verify Equations (2) of Example 2 of this section.

7.32. Let X,, X,, ..., X, be a random sample from the normal distribu-
tion #(6, 1). Show that the likelihood ratio principle for testing Hy: 0 = 6,
where ' is specified, against H,: 6 # 6’ leads to the inequality |z — 6’| > c.
Is this a uniformly most powerful test of H, against H,?

7.33. Let X, X,, ..., X, be a random sample from the normal distribu-
tion #n(0;, 6,). Show that the likelihood ratio principle for testing Hy: 0, = 6,
specified, and #, unspecified, against H,: 8, # 05, 6, unspecified, leads to a

n n

test that rejects when > (z, — %)% < ¢; or > (#; — Z)2 > ¢,, where ¢; < ¢,
1 1

are selected appropriately.

734. Let X|,..., X, and Y,,..., Y, be random samples from the
independent distributions »(8,, 8;) and »(8,, 8,), respectively.

(a) Show that the likelihood ratio for testing Hy: 6, = 8y, 0; = 6,
against all alternatives is given by

[3 @ = 22m] [ 0 — 9]

1

{[g(%'_iﬁz+'§(%-—u?]/@¢+—@}m+m”’

where u = (nx + my)/(n + m).

(b) Show that the likelihood ratio test for testing Hy: 6; = 6, 6, and 6,
unspecified, against H;: 8, # 6,, 8, and 8, unspecified, can be based on the
random variable

(X = X)?(n — 1)
F =

(Y, ~ ¥)(m — 1)

=Ma|=pg=

7.35. Let » independent trials of an experiment be such that z;, z,, . . .,
x, are the respective numbers of times that the experiment ends in the
mutually exclusive and exhaustive events A,, 4,, ..., 4,. If p, = P(4,) is
constant throughout the » trials, then the probability of that particular
sequence of trials is L = pFipgz - - - pie.

(a) Recalling that p; + p, +---+ P, = 1, show that the likelihood
ratio for testing Hy: p, = pio > 0, 2 = 1,2,..., &, against all alternatives
is given by

= T1(ERR)

i=1
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(b) Show that

& oxyfe — npo)®
—2In A= A T o110
20 = 2. =y
where p; is between po, and z,/n. Hint. Expand In p,, in a Taylor’s series with

the remainder in the term involving ($, — x;/n)z.
(c) For large #, argue that z,/ (np})? is approximated by 1/(npio) and hence

k 2

(x, — npoy) hen H is t

_ A Wy — "Poi) | when is true.
2In 121 ”1’01

Chapter o
Other Statistical Tests

8.1 Chi-Square Tests

In this section we introduce tests of statistical hypotheses called
chi-square lests. A test of this sort was originally proposed by Karl
Pearson in 1900, and it provided one of the earlier methods of statistical
inference.

Let the random variable X; be n(u, 62), 7 = 1,2, ..., %, and let
X, X,, ..., X, be mutually stochastically independent. Thus the joint
p.d.f. of these variables is

1 1 & (2, — )2
EEE exp [-—52 (———) ], —0 < Z; < 0.

G109 -0y G

The random variable that is defined by the exponent (apart from the
coefficient —1) is i (X; — py)?/o?, and this random variable is x%(n).
1

In Chapter 12 we shall generalize this joint normal distribution of
probability to # random variables that are stochastically dependent
and we shall call the distribution a multivariate normal distribution.
It will then be shown that a certain exponent in the joint p.d.f. (apart
from a coefficient of —%) defines a random variable that is y?(n). This
fact is the mathematical basis of the chi-square tests.

Let us now discuss some random variables that have approximate
chi-square distributions. Let X; be &(n, p,). Since the random variable
Y = (X; — npy)/vV'np,(1 = p,) has, as #n — o0, a limiting distribution
that is #(0, 1), we would strongly suspect that the limiting distribution

269
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of Z = Y?is y%(1). This is, in fact, the case, as will now be shown. If
G,(y) represents the distribution function of Y, we know that

lim G,(y) = N(y), -0 <y < ©,
n— oo
where N(y) is the distribution function of a distribution that is #(0, 1).

Let H,(z) represent, for each positive integer #, the distribution
function of Z = Y?2. Thus, if z > 0,

H() =Pr(Z<z)=Pr(-Vz<Y < V72
= Gn(\/;) - Gn[(_\/;)—]
Accordingly, since N(y) is everywhere continuous,

lim H,(z) = N(Vz) — N(~V72)

n— o

— ¢~ W2 gy,

If we change the variable of integration in this last integral by writing
w? = y, then

lim H,(z f ——F 517 v~ 1e=vI2 gy,

n—w

provided that z > 0. If z < 0, then lim H,(z) = 0. Thus lim H,(2) is

-0

equal to the distribution function of a random variable that is y2(1).
This is the desired result.

Let us now return to the random variable X; which is b(xn, $,). Let
Xy =n — X, and let p, = 1 — p,. If we denote Y2 by Q, instead of
Z, we see that ¢; may be written as

(X, — npy)? _ (X — npy)? + (X; — npy)?

G = npi(l — p1) a npy n(l — $,)
- (X, — np,)? + (Xp — npo)?
npy NPy

because (X; — #p1)2 = (n — X, — n + npy)? = (X, — np,)2. Since Q,
has a limiting chi-square distribution with 1 degree of freedom, we say,
when # is a positive integer, that Q, has an approximate chi-square
distribution with 1 degree of freedom. This result can be generalized as
follows.

Let X;, X,, ..., X;_; have a multinomial distribution with param-
eters #, py, ..., Px_1, as in Section 3.1. As a convenience, let X; =

Sec. 8.1] Chi-Square Tests 271

n — (Xl +"'+ Xk—l) al’ld let pk == 1 —_ (pl +--.+ Pk—l)' Deﬁne
Qk-1 by

g - ”Pt

It is proved in a more advanced course that, as #» — o0, Q,,_{ has a
limiting distribution that is y?(k — 1). If we accept this fact, we can
say that Q,_, has an approximate chi-square distribution with 2 — 1
degrees of freedom when # is a positive integer. Some writers caution
the user of this approximation to be certain that » is large enough
that each np, ¢ = 1,2, ..., %, is at least equal to 5. In any case it is
important to realize that Q, _, does not have a chi-square distribution,
only an approximate chi-square distribution.

The random variable Q,_, may serve as the basis of the tests of
certain statistical hypotheses which we now discuss. Let the sample
space & of a random experiment be the union of a finite number % of
mutually disjoint sets A4;, A,, ..., 4,. Furthermore, let P(4;) = p;,
t=1,2,...,k where p, =1 —j)l — -+ — Pr_1, so that p; is the
probability that the outcome of the random experiment is an element
of the set A;. The random experiment is to be repeated # independent
times and X; will represent the number of times the outcome is an
element of the set A, That is, X;, X,, ..., Xy =0 — X; —--- —
X, _, are the frequencies with which the outcome is, respectively, an
element of 4,, A,, ..., A,. Then the joint p.d.f. of X, X,, ..., X;_ 18
the multinomial p.d.f. with the parameters #, py, ..., py—;. Consider
the simple hypothesis (concerning this multinomial p.d.f.) Hy: $, = P10,
P2 = Paose s Pr-1 = Pr-1,0 (e = Pro =1~ Pro =+~ Pk—1,o)»
where p1q, ..., Pr_1,0 are specified numbers. It is desired to test H,
against all alternatives.

If the hypothesis H, is true, the random variable

-

has an approximate chi-square distribution with & — 1 degrees of free-
dom. Since, when H, is true, np,, is the expected value of X, one would
feel intuitively that experimental values of Q, _, should not be too large
if H, is true. With this in mind, we may use Table II of the Appendix,
with £ — 1 degrees of freedom, and find ¢ so that Pr (Q,_; = ¢) = &,
where o is the desired significance level of the test. If, then, the hy-
pothesis H, is rejected when the observed value of Q,_; is at least as
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great as ¢, the test of H, will have a significance level that is approxi-
mately equal {o c.
Some illustrative examples follow.

Example 1. One of the first six positive integers is to be chosen by a
random experiment (perhaps by the cast of a die). Let 4; = {x; z = 1},
i=1,2,...,6. The hypothesis Hy: P(4;)) = pio =%, 1 =1,2,...,6, will
be tested, at the approximate 5 per cent significance level, against all
alternatives. To make the test, the random experiment will be repeated, under
the same conditions, 60 independent times. In this example # = 6 and
npo = 60(%) = 10,4 = 1,2, ..., 6. Let X, denote the frequency with which
the random experiment terminates with the outcome in 4,,7 = 1, 2,.. ., 6,
and let Q5 = %(Xi — 10)2/10. If H, is true, Table II, with s — 1 =6 - 1 =

1

5 degrees of freedom, shows that we have Pr (Qs > 11.1) = 0.05. Now
suppose that the experimental frequencies of 4,, 4,, . . ., A¢ are, respectively,
13, 19, 11, 8, 5, and 4. The observed value of (5 is

(13- 102 (19— 102 (11 — 10)2
T 10 Yt 1o
(8 — 10 _ (5 — 10 (4 — 107 _
+ 10 + 10 + 10 15.6.

Since 15.6 > 11.1, the hypothesis P(4;) = §, ¢ = 1,2,..., 6, is rejected at
the (approximate) 5 per cent significance level.

Example 2. A point is to be selected from the unit interval {z; 0 < z < 1}
by a random process. Let A, ={z;0 <ax <1}, dy={z;1 <z <%}
Ay ={x;} <2 <3}, and 4, = {z; 3 < x < 1}. Let the probabilities p;,
7= 1,2, 3, 4, assigned to these sets under the hypothesis be determined by
the p.df 2» 0 < x < 1, zero elsewhere. Then these probabilities are,
respectively,

P10 = :/ 2z dx = g, P20 = 15 P30 = T6 P10 = Ts-
Thus the hypothesis to be tested is that py, py, ps, and py =1 — p; — Py — P3
have the preceding values in a multinomial distribution with % = 4. This
hypothesis is to be tested at an approximate 0.025 significance level by
repeating the random experiment #» = 80 independent times under the same
conditions. Here the np,o, 7 = 1, 2, 3, 4, are, respectively, 5, 15, 25, and 35.
Suppose the observed frequencies of 4, A,, A3, and 44 to be 6, 18, 20, and

4 .
36, respectively. Then the observed value of Q5 = 21: (X — npio)?/(npio) is

=2 = 1.83,
5 15 25 35 35 = 18

(6 - 57, (18- 152 (20252 (36 —35° 64
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approximately. From Table I, with 4 — 1 = 3 degrees of freedom, the value
corresponding to a 0.025 significance level is ¢ = 9.35. Since the observed
value of Q5 is less than 9.35, the hypothesis is accepted at the (approximate)
0.025 level of significance.

Thus far we have used the chi-square test when the hypothesis H,,
is a simple hypothesis. More often we encounter hypotheses H, in which
the multinomial probabilities p,, py, . . ., P, are not completely specified
by the hypothesis H,. That is, under H,, these probabilities are
functions of unknown parameters. For illustration, suppose that a
certain random variable Y can take on any real value. Let us partition
the space {y; ~c0 < y < oo} into % mutually disjoint sets 4,, A,,..., 4,
sothat theevents 4,, 4,, ..., A, are mutually exclusive and exhaustive.
Let H, be the hypothesis that Y is n(u, 0®) with u and ¢2 unspecified.
Then each

b = }_ exp[— (¥ — p)?/20% dy, i=1,2,...,4
4 V2no
is a function of the unknown parameters u and o2. Suppose that we take
a random sample Y, ..., Y, of size # from this distribution. If we let
X; denote the frequency of 4;, 72 = 1,2,..., %, so that X, + ...+ X,
= n, the random variable

Q _ & (X't — npi)z
k-1 = —
i=1 np;
cannot be computed once X,, ..., X, have been observed, since each

$i, and hence Q. _,, is a function of the unknown parameters p and o2

There is a way out of our trouble, however. We have noted that
Q-1 1s a function of u and ¢2. Accordingly, choose the values of u and
o? that minimize Q,_,. Obviously, these values depend upon the ob-
served X; = x,,..., X, = «, and are called minimum chi-square
estimates of u and o?. These point estimates of u and o? enable us to
compute numerically the estimates of each p;. Accordingly, if these
values are used, Q) _; can be computed once Y, Yy, ..., Y,, and hence
Xy, X,, ..., X,, are observed. However, a very important aspect of
the fact, which we accept without proof, is that now @, _; is approxi-
mately y%(k — 3). That is, the number of degrees of freedom of the
limiting chi-square distribution of Q,_, is reduced by one for each
parameter estimated by the experimental data. This statement applies
not only to the problem at hand but also to more general situations.
Two examples will now be given. The first of these examples will deal
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with the test of the hypothesis that two multinomial distributions are
the same.

Remark. In many instances, such as that involving the mean p and the
variance o2 of a normal distribution, minimum chi-square estimates are
difficult to compute. Hence other estimates, such as the maximum likelihood
estimates 4 = YV and 2 =S 2, are used to evaluate p; and Q,_,. In general,
Q). is not minimized by maximum likelihood estimates, and thus its
computed value is somewhat greater than it would be if minimum chi-square
estimates were used. Hence, when comparing it to a critical value listed in
the chi-square table with & — 3 degrees of freedom, there is a greater chance
of rejecting than there would be if the actwal minimum of Q,_, is used.
Accordingly, the approximate significance level of such a test will be some-
what higher than that value found in the table. This modification should be
kept in mind and, if at all possible, each p; should be estimated using the
frequencies X, ..., X, rather than using directly the items Y,, Y,,..., Y,
of the random sample.

Example 3. Let us consider two independent multinomial distributions
with parameters #,, pyj, paj ..., Prjy § = 1, 2, respectively. Let X, 7 =
1,2,...,k 7 =1, 2, represent the corresponding frequencies. If #, and #,
are large, the random variable

2 < XiJ_ qu)
DD I

is the sum of two stochastically independent random variables, each of
which we treat as though it were y2(k — 1); that is, the random variable is
approximately x*(2¢ — 2). Consider the hypothesis

Ho: P11 = pro, Por = DPags -+ o» Pia = Pros

where each p;; = p,,, ¢ = 1,2,..., k, is unspecified. Thus we need point
estimates of these parameters. The maximum likelihood estimator of p,; =
P10, based upon the frequencies X, is (X;; + X0)/(ny + n5),1=1,2,.. ., k.
Note that we need only 2 — 1 point estimates, because we have a point
estimate of p,; = p,, once we have point estimates of the first £ — 1 prob-

abilities. In accordance with the fact that has been stated, the random
variable

LEAXy —nf (X + Xio)/(ny + n3)]}?
Z Z : )j(u + Xig)/(ny + n5)]

has an approximate y? distribution with 22 — 2 — (¢ — 1) = % — 1 degrees
of freedom. Thus we are able to test the hypothesis that two multinomial
distributions are the same; this hypothesis is rejected when the computed
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value of this random variable is at least as great as an appropriate number
from Table II, with £ — 1 degrees of freedom.

The second example deals with the subject of contingency tables.

Example 4. Let the result of a random experiment be classified by two
attributes (such as the color of the hair and the color of the eyes). That is,
one attribute of the outcome is one and only one of certain mutually exclusive
and exhaustive events, say A4, 4,, ..., 4,; and the other attribute of the
outcome is also one and only one of certain mutually exclusive and exhaustive
events, say By, By, ..., By. Let py=PA,;NB), i=12,...,a; j=
1,2,...,b. The random experiment is to be repeated » independent times
and X,; will denote the frequency of the event 4; N B;. Since there are
k = ab such events as A; N B, the random variable

_ o & XU npi;)”
Qab—l - ; Z ’”Pu

has an approximate chi-square distribution with ab — 1 degrees of freedom,
provided that # is large. Suppose that we wish to test the independence of the
A attribute and the B attribute; that is, we wish to test the hypothesis
Hy: P(4;nB;) = P(A)P(B,), +=12,...,a; 7=12,...,b. Let us
denote P(4;) by #;. and P(B;) by p.,; thus

i = Eb: pij: Py = _i Dis
=1 i=1
and
b a b a
= 2 .Zpu= Zp.j=2}f>i..
j=1 i=1 i=1 i=1

Then the hypothesis can be formulated as Hy: p; = pip 6= 1,2,...,4
j=1,2,...,b. To test Hy, we can use Qg _; with p; replaced by p;.p.;.
But if ., ¢ =1,2,...,a, and p,, j=1,2,...,b, are unknown, as they
frequently are in the applications, we cannot compute Q,,_, once the fre-
quencies are observed. In such a case we estimate these unknown parameters

by
X- b
p. ==L, where X.= > X, i=12..4
n =1
and
a X.j 2 .
Py =7 where X~1=ZXU: 7=12...,b
i=1

Since 3 $,. = > p.; =1, we have estimated only a — 1 +b—-1=2a+
i 7

b — 2 parameters. So if these estimates are used in Q,_,, with p;; = pi.p.;,
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then, according to the rule that has been stated in this section, the random
variable

> < [Xy — (X /n)(X ,/m)]?
121 2:1 (X fn)(X . 4/n)

has an approximate chi-square distribution with ab — 1 —~ (¢ + b — 2) =
(a — 1)(b — 1) degrees of freedom provided that H, is true. The hypothesis
H,is then rejected if the computed value of this statistic exceeds the constant
¢, where ¢ is selected from Table II so that the test has the desired significance
level a.

In each of the four examples of this section we have indicated that
the statistic used to test the hypothesis H, has an approximate chi-
square distribution, provided that # is sufficiently large and H, is true.
To compute the power of any of these tests for values of the parameters
not described by H,, we need the distribution of the statistic when H,
is not true. In each of these cases, the statistic has an approximate
distribution called a noncentral chi-square distribution. The noncentral
chi-square distribution will be discussed in Section 8.4.

EXERCISES

8.1. A number is to be selected from the interval {#;0 < 2 < 2} by a
random process. Let A; ={x; ({ — 1)/2 <2z <4/2}, ¢ =1,2,3, and let
A, = {z;3 < x < 2}. A certain hypothesis assigns probabilities p,, to these
sets in accordance with $;, = f A G2 — ) dx, 7 = 1, 2, 3, 4. This hypothesis

(concerning the multinomial p.d.f. with &2 = 4) is to be tested, at the 5 per

cent level of significance, by a chi-square test. If the observed frequencies
of the sets 4;, 7 = 1, 2, 3, 4, are, respectively, 30, 30, 10, 10, would H, be
accepted at the (approximate) 5 per cent level of significance?

8.2. Let the following sets be defined. 4, = {x; —0 < 2 < 0}, 4, =
{g;i —2 <z <1 - 1},1=2,...,7, and Ag = {z; 6 < = < 0}. A certain
hypothesis assigns probabilities p;, to these sets 4; in accordance with

1 [ (@~ 3)2] .
o= | ——exp |-E NV i=1t,2,....7.8
Po =) P T om

This hypothesis (concerning the multinomial p.d.f. with & = 8) is to be tested
at the 5 per cent level of significance, by a chi-square test. If the observec
frequencies of the sets 4,7 = 1, 2,.. ., 8, are, respectively, 60, 96, 140, 210,
172, 160, 88, and 74, would H be accepted at the (approximate) 5 per cent
level of significance?
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8.3. A die - . . .
resulio. Was cast # = 120 independent times and the following data
Spots up I ] b 3 4 s ¢

Frequency [ b 20 20 20 20 40-b

If we use a chi-square test, for what valu
fw ‘ , es of b would the hypothesis that
die is unbiased be rejected at the 0.025 significance level? r it the

8.4. Consider the problem from i i
. genetics of crossing two types of peas
The Mendelian theory states that the probabilities of the classiﬁcalt)ions:,

(a) round and yellow, (b) wrinkled and yellow, {¢) round and green, and

(d) wrinkled and green are % 3. -3 i
. 16> » 16, and -l-, T t
independent observations, Ohsors 16 respectively. If, from 160

: the observed frequencie i
CIaSSlﬁC'atl'Ol’lS are 86, 35, 26, and 13, are tl?ese daia chontsl;:::ntrev;?tilct‘zl\;e
Mendel}an theory? That is, test, with « — 0.01, the hypothesis that the
respective probabilities are &, %, 3, and - )
8.5. Two different teaching procedures were used on two different
groups of students. Each group contained 100 students of about the same
ability. At the end of the term, an evaluating team assigned a letter grade t
each student. The results were tabulated as follows. & °

Grade
Group A B C D F Total
| 15 25 32 17 I 100
] 9 18 29 28 16 {00

If we consider these data to be observation
nomial distributions with 2 = 5, test, at the
hypothesis that the two distributions are
teaching procedures are equally effective).
8.6. Let the result of a random experiment be classified as one of the
mutually exclusive and exhaustive ways 4;, Ay, A3 and also as one of th
mutuaﬂy exclusive and exhaustive ways B,, B,, B,;, B,. Two hundreg
independent trials of the experiment result in the follovs;ingédata:

s from two independent multi-
5 per cent significance level, the
the same (and hence the two

Bl Bz B3 B4
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Test, at the 0.05 significance level, the hypothesis of independence of the 4
attribute and the B attribute, namely H,: P(4, © By = P(4,)P(B,),
1 =1,2,3andj = 1, 2, 3, 4, against the alternative of dependence.

8.7. A certain genetic model suggests that the probabilities of a particular
trinomial distribution are, respectively, p, = 2, p, = 2p(1 — p), and p, =
(1 — )%, where 0 < p < 1. If X, X,, X; represent the respective fre-
quencies in # independent trials, explain how we could check on the adequacy
of the genetic model.

8.2 The Distributions of Certain Quadratic Forms

A homogeneous polynomial of degree 2 in » variables is called a
gquadratic form in those variables. If both the variables and the co-
efficients are real, the form is called a real quadratic form. Only real
quadratic forms will be considered in this book. To illustrate, the form
X? + X, X, + X%is a quadratic form in the two variables X, and X,;
the form X? + X% + X2 — 2X,X, is a quadratic form in the three
variables X,;, X,, and Xg; but the form (X, — 1)2 + (X, — 2)2 =
X? + X% — 2X, — 4X, + 5 is not a quadratic form in X; and X,,
although it is a quadratic form in the variables X; — 1 and X, — 2.

Let X and S? denote, respectively, the mean and the variance of a
random sample X, X,,..., X, from an arbitrary distribution. Thus

n

Z(Xi_X)2= i(Xi_X1+X2 NI X")z
1

1 n

nS2

-1
= (X4 KR+ XD)

2
_;L(XIXZ +oot XXy 0+ X, X)

is a quadratic form in the # variables X, X,, ..., X,. If the sample
arises from a distribution that is #(u, 0?), we know that the random
variable nS?/o?is y?(n — 1) regardless of the value of u. This fact proved
useful in our search for a confidence interval for o when u is unknown.

It has been seen that tests of certain statistical hypotheses require a
statistic that is a quadratic form. For instance, Example 2, Section 7.3,

made use of the statistic iX?, which is a quadratic form in the vari-
1
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ables X, X,,..., X,. Later in this chapter, tests of other statistical
hypotheses will be investigated, and it will be seen that functions of
statistics that are quadratic forms will be needed to carry out the tests
in an expeditious manner. But first we shall make a study of the
distribution of certain quadratic forms in normal and stochastically
independent random variables.

The following theorem will be proved in Chapter 12.

Theorem 1. LetQ = Q, + Qg + -+ + Q1 + O, where 3,04, ...,
Q. are k + 1 random variables that are veal quadratic forms in n mutually
stochastically independent random variables which ave normally distrib-
uted with the means py, pg, . . ., py and the same variance o Let Qfo?,
Q./c?, ..., Q,_1/0? have chi-square distributions with degrees of freedom
¥y 1y e e, Y1, Yespectively. Let Q) be nonnegative. Then:

(@) Q, ..., Q. are mutually stochastically independent, and hence

(b) Qifo? has a chi-square distribution withr — (ry + -+ 7, _4) =
7, degrees of freedom.

Three examples illustrative of the theorem will follow. Each of these
examples will deal with a distribution problem that is based on the
remarks made in the subsequent paragraph.

Let the random variable X have a distribution that is n(u, ¢%). Let
a and b denote positive integers greater than 1 and let » = ab. Con-
sider a random sample of size # = ab from this normal distribution.
The items of the random sample will be denoted by the symbols

Xoor oo Xapp o Xan

aly

In this notation the first subscript indicates the row, and the second
subscript indicates the column in which the item appears. Thus X, is
inrow ¢ and column 4,7 = 1,2,...,aandj = 1,2,..., b. By assump-
tion these # = ab random variables are mutually stochastically inde-
pendent, and each has the same normal distribution with mean p and
variance ¢2. Thus, if we wish, we may consider each row as being a
random sample of size 4 from the given distribution; and we may con-
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sider each column as being a random samp}e 'of size a from the given
distribution. We now define a + b + 1 statistics. They are

a b
> 2 Xy
"'+Xa, i=17=1
X=X11+..-+X1b+ab+Xa1+ b= ljab ’
S X
7 Xg + Xig + +X.b=1_=_1b_“, i=1,2,...,4,
- = b
and .
2 X
X X+ Xy -+ X i=la N

In some texts the statistic X is denoted by X.., but dw::n \;s;n fi efg;
simplicity. In any case, X = X..is the mean of the ra‘t;l (i sample 0
size n = ab; the statistics X..X PR X, are, respective Zétively ons
of the rows; and the statistics X1, X P X b are, risg) e fo,uow‘
means of the columns. The examples illustrative of the theo!

Example 1. Consider the varian.ce S2
_ 4b. We have the algebraic identity

a b
abs? = 3 3 Xy = X)?

I
[}
IMe

The last term of the right-hand member of this identity may be written

S 3 S - LX) =0,
25 [ - % 3 00 - K] =2 2 U5 X)X, — bX,)]

and the term

a b

S (X - X
i=1 =1

may be written

bi§1 (X - X)2.

of the random sample of size
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Thus

BS=5 5 (Xy—XP+b 5 (X — X2,
i=1 j=1 i=1

or, for brevity,

Q =0, + Qs

Clearly, Q, @y, and Q, are quadratic forms in the » = ab variables X;;. We
shall use the theorem with 2 = 2 to show that Q, and Q, are stochastically
independent. Since S? is the variance of a random sample of size n = ab
from the given normal distribution, then abS?/¢2 has a chi-square distribution
with ab — 1 degrees of freedom. Now

o_ % [jgl (X, — X,)?

o?

b
For each fixed value of 7, > (X, — X,)?/b is the variance of a random

=1

sample of size b from the given normal distribution, ahd, accordingly,
b

> (Xy; — X;)%/o®> has a chi-square distribution with b — 1 degrees of
i=1

freedom. Because the X;; are mutually stochastically independent, Q,/o® is
the sum of 4 mutually stochastically independent random variables, each
having a chi-square distribution with & — 1 degrees of freedom. Hence
Q1/e® has a chi-square distribution with a(b — 1) degrees of freedom. Now

Q=10 i (X;. — X)2 > 0. In accordance with the theorem, Q; and Q, are
i=1

stochastically independent, and Q,/o? has a chi-square distribution with
ab — 1 — a(b — 1) = a — 1 degrees of freedom.

Example 2. In abS? replace X;; — X by (X;; — X,) + (X, - X) to
obtain

abs? = 3 3 Xy - X)) + (X, - DT,
or

S (Xy— X +e3 (X, - X0,

1 i=1

S = 3
=1
or, for brevity,
Q=0s+0.
It is easy to show (Exercise 8.8) that Q,/¢? has a chi-square distribution
with b(a — 1) degrees of freedom. Since Q, = a1§:1 (X, — X)2 =0, the

theorem enables us to assert that Q; and @, are stochastically independent
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and that Q,/o® has a chi-square distribution with a4 — 1 — bla—1) =
b — 1 degrees of freedom.

Example 3. In abS® replace X;;, — X by (X;. — X) + (X, — X) +
(X — Xi. — X.; + X) to obtain (Exercise 8.9)

i=

[

abS? =b 3 (X, — X)? + aji X, - X)?

I Me
IMe

+
H

Xy — X — X, + X)?,

11

or, for brevity,

Q=02+ Qs+ Qs

where Q, and Q, are as defined in Examples 1 and 2. From Examples 1 and 2,
Q/c?, Qy/c% and Q,/o® have chi-square distributions with ab — 1,a-1,
and b — 1 degrees of freedom, respectively. Since Qs = 0, the theorem
asserts that Q,, 04, and Q5 are mutually stochastically independent and that
Qs/o® has a chi-square distribution with ab — 1 — fa—1)—-@0B-1 =
(@ — 1)(b — 1) degrees of freedom.

Once these quadratic form statistics have been shown to be stochastically
independent, a multiplicity of F statistics can be defined. For instance,

Quflo®0 — 1)] Q46— 1)

Qs/lo*b(a —T)] ~ Quflb(a — 1)]
has an F distribution with & — 1 and b(a — 1) degrees of freedom; and
Quflc*® - 11 Qs
Qslle*(@ — (b - 1)] ~ Qs/(a — 1)
has an F distribution with & — 1 and {a — 1)(b — 1) degrees of freedom. In

the subsequent sections it will be seen that some likelihood ratio tests of
certain statistical hypotheses can be based on these F statistics.

EXERCISES

8.8. In Example 2 verify that Q = Q; + Q, and that Qs/0® has a chi-
square distribution with b(a — 1) degrees of freedom.

8.9. In Example 3 verify that Q = Q, + Q, + Qs.
8.10. Let X, X,, ..., X, be a random sample from a normal distribution
n(u, 6?). Show that
n

2_" na , =1 na
> (X - X) = 2 K= X+ P X, - X

i=1

where X = iZIX,-/n and X' = é:z Xi/(n — 1). Hint. Replace X; — X by
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(X; = Xy — (Xy -~ X')/n. Show that i (X; — X")*/e? has a chi-square
i=2

distribution with #» — 2 degrees of freedom. Prove that the two terms in the
right-hand member are stochastically independent. What then is the distri-
bution of
i ~ D/n)(X, — X)2,
a? )
811. Let X, s=1,...,a; 7=1,...,b; R=1,...,¢c, be a random

sample of size #» = abc from a normal distribution n(u, 0?). Let X =
c b

a (4 b
> > 21 Xix/nand X,.. = 3 > X,/bc. Show that
¢ k=1 4=1

k=1j=1 t=
b

i i kél (X — X)2 = {% 21 kél (X — X,._)2 + bcig1 (X'_. - X)z.

i=14 =1 f=

b
Show that 5 3 3 (X, — X,.)%/0? has a chi-square distribution with
i=1 j=1 k=1
a(bc — 1) degrees of freedom. Prove that the two terms in the right-hand

member are stochastically independent. What, then, is the distribution of

be i (Xi.. — X)?/e?? Furthermore, let X, = }c: ’i Xilac and X, =
i=1 k=1 4=1

02 X, p/c. Show that
k=1

a b ]

2 2 2 (X~ X
{=1 j=1 k=1

=5 3 5 (K- Xl +b0 5 (X — P+ ac 3 (K, — X

t=1 =1 k=1
a b
+c 21 121 Xy — X — Xy + X2
Show that the four terms in the right-hand member, when divided by o2,

are mutually stochastically independent chi-square variables with ab(c — 1),
a—1,b—1,and (@ — 1)(b — 1) degrees of freedom, respectively.

8.12. Let X,, X,, X; X, be a random sample of size » = 4 from the
4
normal distribution #(0, 1). Show that > (X, — X)? equals
i

=1
(X, — Xp)? | [Xs — (Xy + X))/2)? + (X, — (X, + X, + X5)/3]2
2 32 3

and argue that these three terms are mutually stochastically independent,
each with a chi-square distribution with 1 degree of freedom.

+

8.3 A Test of the Equality of Several Means

Consider b mutually stochastically independent random variables
that have normal distributions with unknown means pq, po, . . ., tp,
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respectively, and unknown but common variance ¢®. Let X,;, X,,, ...,
X,; represent a random sample of size a from the normal distribution
with mean p; and variance 0%, j = 1, 2,..., b. It is desired to test the
composite hypothesis Hyipy = py =+ = p, = u, p unspecified,
against all possible alternative hypotheses H,;. A likelihood ratio test
will be used. Here the total parameter space is

Q={(P’11F‘2t"':#bxa2); —0 < py; < W,O < o? < (x)}

and

w={(l‘41’#2:---’llb,02); —0 < @y = pg =
=p, =p < 00,0 < o? < o0}

The likelihood functions, denoted by L(w) and L(£) are, respectively,

1 \av2 1 & &
L(w) = (—2”02) exp [_T Z Z (T — p) ]
and
1 ab/2 1 & a
L@ = (57m) " w0 [ 52 2, 3, s — ]
Now
b a
oln Liw) 2,5 @ —#
a,l. 0'2
and
dIn L(w) ab 1 a
8(c?) 202 T 25 121 421 (i — 1)

If we equate these partial derivatives to zero, the solutions for x and o
are, respectively, in w,

b a
121 izl s -
=Lt =g,
(1) ab
b a
2 2 (xy — x)?
j=1i=1 S
ab !
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and these numbers maximize L(w). Furthermore,

oln L(Q) igl @y — )

Op; a?
and
o 1ln L(Q) ab a _
o(e% —20 20* ]Zl ,zl b )
If we equate these partial derivatives to zero, the solutions for p,,
Pas - - -, iy, and o? are, respectively, in €,
Z Ly
i=1 = Z,; j=12,...,0
(2) “
b a - g
2, 2 (wy — &)
j=11i=1 = w,
ab
and these numbers maximize L(Q). These maxima are, respectively,
b a
[ ab '}“blz ab > (xi; — &)2
=1 i=1
L(d’) = 2 2 )2 exp - ;7 a
‘217 12:1 igl s ? - 2:';1 121 (xu h 5)2
_ B ab 1(11;/28_01”2
b a
20 2 2 (m 9k
L j=11i=1 E
and
B ab abi2
L) = 5 a o abi2
2m 3 3wy — £y)°
L j=1i=1
Finally, . ] s
x; — Z
Lo | A
- - b a
Mo 3 S -2
i=1 i=1

In the notation of Section 8.2, the statistics defined by the functions
# and v given by Equations (1) of this section are
b

< Xy 2 (Xn-—X)z_Q.
X=2 27 = S=22=gF "

j=1i= ji=1i=1
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while the statistics defined by the functions &, Z,,..., &, and w

given by Equations (2) in this section are, respectively, X , = % X,/a,
1=1

;=1,2,...,b and Qufab = fl il (X, — X )?/ab. Thus, in the
1=1l1=

notation of Section 8.2, A%/%® defines the statistic Q5/Q.

We reject the hypothesis H, if A < A;. To find A, so that we have
a desired significance level «, we must assume that the hypothesis H,
is true. If the hypothesis H, is true, the random variables X,, con-
stitute a random sample of size # = ab from a distribution that is
normal with mean p and variance ¢2. This being the case, it was shown

b
in Example 2, Section 8.2, that Q =Q;+Q,, where Q,=a > (X,- X)%;
1=1

that Q; and @, are stochastically independent, and that Q5/0? and
Q4/c? have chi-square distributions with 6(a — 1) and & — 1 degrees
of freedom, respectively. Thus the statistic defined by A?%® may be
written

0 1
Qs + Qs 1+ Qu/0;

The significance level of the test of Hj is

1 2/ab.
a=Pr[T+—Q4/.Q—3S A2 :Ho]
_ Q./(b — 1) .
= Pr [Q_—a/[b(“ _— > c; HO],
where
bla — 1
Cc = % ()\6-2/ab _ 1)
But

po Qu?t - 1] Q40 - 1)

" Quflo*b(a — 1)] ~ Qqf[b(a — 1)]
has an F distribution with & — 1 and &(a — 1) degrees of freedom.
Hence the test of the composite hypothesis Hy: py; = pg =+ = pp = 4,
p unspecified, against all possible alternatives may be based onan F
statistic. The constant ¢ is so selected as to yield the desired value of «.

Remark. It should be pointed out that a test of the equality of the &
means u,, § = 1, 2, ..., b, does not require that we take a random sample of
size a from each of the b normal distributions. That is, the samples may be
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of different sizes, say a,, 4, - - ., 4. A consideration of this procedure is left
to Exercise 8.13.

Suppose now that we wish to compute the power of the test of H,
against H, when H, is false, that is, when we do not have p; = p, =
-+ =pp = w. It will be seen in Section 8.4 that, when H, is true, no
longer is Q,/0? a random variable that is y*(b6 — 1). Thus we cannot use
an F statistic to compute the power of the test when H, is true. This
problem is discussed in Section 8.4.

An observation should be made in connection with maximizing a
likelihood function with respect to certain parameters. Sometimes it is
easier to avoid the use of the calculus. For example, L(£2) of this section
can be maximized with respect to p,, for every fixed positive o2, by
minimizing

z = i i(xu"f":z)2

1=11=1

with respect to p,, 7 = 1,2,..., 5. Now z can be written as

Z = j=il z§:1 (=, — z,) + (‘iy - F'J)]z
= i i (x”—i])2+a§ (z—'J_F’J)z‘
)=1 1451 )=1

Since each term in the right-hand member of the preceding equation
is nonnegative, clearly z is a minimum, with respect to p,, if we take
w,==&,7=12,...,b.

EXERCISES

8.13. Let X,;, X, ..., X,, represent independent random samples of
sizes a, from normal distributions with means g, and variances o?, j =
1,2,..., b. Show that

S $ X, - K= 5 3 (X, X+ 3 aX, - X2

j=1 1=1 j=11=1 ji=1

ay

b b ay
or Q' = Qs + Qi Here X = 121 121 X,/ 121 a, and X., = 21 X ja, 1f

P = pg =--- = w, show that Q’/o? and Qj/e? have chi-square distributions.
Prove that Q3 and Q} are stochastically independent, and hence @3/0® also
has a chi-square distribution. If the likelihood ratio A is used to test
Hypy = po == pp = p, p unspecified and o? unknown, against all
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possible alternatives, show that A < A, is equivalent to the computed
F > ¢, where
P Bt
e -100
What is the distribution of F when H, is true?

8.14. Using the notation of this section, assume that the means satisfy
the condition that p = p; + 0 - 1) =p, —d=p3 —d =---= p, — d.
That is, the last & — 1 means are equal but differ from the first mean p,,
provided that d # 0. Let a random sample of size a be taken from each of the
b independent normal distributions with common unknown variance o2,

(a) Show that the maximum likelihood estimators of x and d are g = X
and

d= [éz XJb—1) — X.l]/b.

(b) Find Qg and Q, = cd? so that when d = 0, Q/o? is x2(1) and

5 3 (Xy— X2 =05+ Qo + On

i=1 j=1

(c) Argue that the three terms in the right-hand member of part (b),
once divided by o2, are stochastically independent random variables with
chi-square distributions, provided that d = 0.

(d) The ratio Q,/(Q; + Q) times what constant has an F distribution,
provided that 4 = 0?

8.4 Noncentral y2 and Noncentral F

Let X,, X,,..., X, denote mutually stochastically independent
random variables that are #n(w;, 6%),7 = 1,2,...,#,andlet Y = iX?/aZ.
1

If each y, is zero, we know that Y is x%(n). We shall now investigate the
distribution of Y when each py,; is not zero. The moment-generating
function of Y is given by

Consider

£X3 ° 1 (- m)z]
i = — Xt TV | dzx,.
E [""‘P ( o2 )] f cwovs P [02 2 |
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The integral exists if ¢ < 4. To evaluate the integral, note that

@ (@ — p)? __xiz (1 -2  2pa,  pf

o? 20 202 202 20

tui I—Zt(x_ P )2
o2(1 = 2¢) 202 ' 1 -2

Accordingly, with ¢ < 4, we have

e ()]

tu2 ® 1 [ 1- Zt( e )2]
= — - d .
exp [ozu = 2t>] f ey, =head BRI G pe7) B

If we multiply the integrand by 4/1 — 2¢, ¢ < 4, we have the integral
of a normal p.d.f. with mean /(1 — 2f) and variance o?/(1 — 2¢). Thus

tX2 1 tu? ]
E [e"p (7)] SVien P [02(1 — 2

n
and the moment-generating function of Y = 3 X?%/o? is given by
1

1 t?"‘? ] t < L
T =2 P | 201 - 29) 2

M) =

A random variable that has a moment-generating function of the
functional form
1

M(t) — (1 — Zt)rlz etol(l—zt)’

where £ < 4, 0 < 6, and 7 is a positive integer, is said to have a non-
central chi-square distribution with » degrees of freedom and noncentrality
parameter 6. If one sets the noncentrality parameter § = 0, one has
M(t) = (1 — 2t)-7'2, which is the moment-generating function of a
random variable that is y2(r). Such a random variable can appro-
priately be called a central chi-square variable. We shall use the symbol
x2(r, 8) to denote a noncentral chi-square distribution that has the
parameters r and #; and we shall say that a random variable is x2(7, 0)
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to mean that the random variable has this kind of distribution. The
symbol y2(z, 0) is equivalent to x?(). Thus our random variable

Y = in/a2 of this section is y2 (n, i ;:.,.2/02). If each p; is equal to
1 1

zero, then Y is x%(n, 0) or, more simply, Y is y%(n).

The noncentral chi-square variables in which we have interest are
certain quadratic forms, in normally distributed variables, divided by
a variance o2. In our example it is worth noting that the noncentrality

parameter of i X?%/0?, which is i u2/o?, may be computed by replacing
1 1

each X; in the quadratic form by its mean p;, ¢ = 1, 2,..., ». This is
no fortuitous circumstance; any quadratic form @ = Q(X,,..., X,) in
normally distributed variables, which is such that Q/s? is ¥2(, ), has
6 = Quy, o, - - -» 1) /0?; and if Q/o? is a chi-square variable (central
or noncentral) for certain real values of pq, po, - . ., p,, it is chi-square
{central or noncentral) for all real values of these means.

It should be pointed out that Theorem 1, Section 8.2, is valid
whether the random variables are central or noncentral chi-square
variables.

We next discuss a noncentral F variable. If U and V are stochasti-
cally independent and are, respectively, y*(r;) and x*(r5), the random
variable F has been defined by F = »,U/r, V. Now suppose, in particu-
lar, that U is y%(ry, 6), V is x*(r,), and that U and V" are stochastically
independent. The random variable »,U/r,V is called a wnoncentral F
variable with 7, and », degrees of freedom and with noncentrality
parameter 6. Note that the noncentrality parameter of F is precisely
the noncentrality parameter of the random wvariable U, which is
x2(r1, 0).

Tables of noncentral chi-square and noncentral I are available in
the literature. However, like those of noncentral ¢, they are too bulky
to be put in this book.

EXERCISES

8.15. Let Y, 2=1,2,...,n, denote mutually stochastically inde-
pendent random variables that are, respectively, x%(#;, 6,), ¢ = 1,2,...,n.

Prove that Z = i Y,is Xz(i 74 i Bi).
1 T T

8.16. Compute the mean and the variance of a random variable that is
2
x2(r, 0).

8.17. Compute the mean of a random variable that has a noncentral ¥
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distribution with degrees of freedom 7, and 7, > 2 and noncentrality
parameter 6.

8.18. Show that the square of a noncentral 7" random variable is a
noncentral F random variable.

8.19. Let X, and X, be two stochastically independent random variables.
Let X; and Y = X, + X, be %@, 6,) and y3(r, 6), respectively. Here
7, < vand 6, < 6. Show that X, is y2(r — »;, 6 — 6,).

8.5 The Analysis of Variance

The problem considered in Section 8.3 is an example of a method
of statistical inference called the amalysis of variance. This method
derives its name from the fact that the quadratic form bS?, which is
a total sum of squares, is resolved into several component parts. In this
section other problems in the analysis of variance will be investigated.

Let X;;,7=1,2,...,aandj = 1,2,..., b, denote » = ab random
variables which are mutually stochastically independent and have
normal distributions with common variance o?. The means of these

a
normal distributions are u; = p + o; + B;, where 2 o = 0 and
1

iﬁj = 0. For example, take a =2, 0 =3, p =5, 0, =1, g = —1,
1

B, =1, By =0, and B3 = —1. Then the ab = six random variables
have means

H11 = 7, P12 = 6, M1z = 5,

M1 = 5, Moo = 4, o3 = 3.

Had we taken B; = B, = B3 = 0, the six random variables would
have had means

11 = 6, 12 = 6, H13 = 6,
Ha1 = 4, Ha2 = 4, Ha23 = 4.

Thus, if we wish to test the composite hypothesis that

K11 = f12 = 0 = Py
Ha1 = Hag == MUgp,
”a1=#a2=...=#ab,
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we could say that we are testing the composite hypothesis that 8, =
By = -+ = B, (and hence each B; = 0, since their sum is zero). On the
other hand, the composite hypothesis

By = P21 =0 = a1y
Big = Mog =" = Hqg,
H1p = Hop =" = gp,
is the same as the composite hypothesis that ¢; = ¢ =+ = «, = 0.

Remarks. The model just described, and others similar to it, are widely
used in statistical applications. Consider a situation in which it is desirable
to investigate the effects of two factors that influence an outcome. Thus the
variety of a grain and the type of fertilizer used influence the yield; or the
teacher and the size of a class may influence the score on a standard test.
Let X,; denote the yield from the use of variety ¢ of a grain and type j of
fertilizer. A test of the hypothesis that 8, = B, =--- = B8, = 0 would then
be a test of the hypothesis that the mean yield of each variety of grain is
the same regardless of the type of fertilizer used.

a b
There is no loss of generality in assuming that 3 e; = > B, = 0. To see
1 1

this, let p;; = p’ + of + Bj. Write @’ = S ajfa and B’ = > B;j/b. We have
py = (0 + & 4+ B) + (i — &) + (B; — B) = p + o + B;, where 3 o =
S8 =0,

To construct a test of the composite hypothesis Hy: By = By = - -
= B, = 0 against all alternative hypotheses, we could obtain the corre-
sponding likelihood ratio. However, to gain more insight into such a test,
let us reconsider the likelihood ratio test of Section 8.3, namely that of
the equality of the means of & mutually independent distributions.
There the important quadratic forms are Q, Q3 and Q,, which are
related through the equation Q@ = Q, + Q. That is,

b a _ a b
abS? = > 2 (X; - X2+ 2 3 (Xy— X)%
j=1li=1 i=1j=1
so we see that the total sum of squares, abS?, is decomposed into a sum
of squares, Q,, among column means and a sum of squares, Qg, within
columns. The latter sum of squares, divided by # = ab, is the maximum
likelihood estimator of ¢%, provided that the parameters are in Q; and

N\
we denote it by o2. Of course, S? is the maximum likelihood estimator
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of ¢? under w, here denoted by o2. So the likelihood ratio A

(a?;_,/crw)“”/2 is a monotone function of the statistic

b 0 -1
Qallo(a — 1)]
upon which the test of the equality of means is based.
To help find a test for Hy: By = By =---= B, = 0, where u;; =

g + o + Bj, return to the decomposition of Example 3, Section 8.2,
namely Q = Q, + @, + Q5. That is,

ast= 5 3 (X - X7+ él él (X, - X2

1[\/1ta

<,

i=1

+ =§( - X, - X, + X3

i

HbAa

thus the total sum of squares, ¢bS?, is decomposed into that among
rows (Q,), that among colummns (Q,), and that remaining (Qs). It is

A\
interesting to observe that o} = Q;/ab is the maximum likelihood
estimator of ¢2 under 2 and

(Xy — X1)?
b

w

;5 (Q4+Qs i i

is that estimator under w. A useful monotone function of the likelihood
VANVAN
ratio A = (03/02)%%? is

o1
E = e - - 11

which has, under H,, an F distribution with 4 — 1 and (@ — 1)(b — 1)
degrees of freedom. The hypothesis H, is rejected if F > ¢, where a =
Pr (F = ¢; Hy).

If we are to compute the power function of the test, we need the
distribution of F when H, is not true. From Section 8.4 we know,
when H, is true, that Q,/0® and Qs/o® are stochastically independent
(central or noncentral) chi-square variables. We shall compute the non-
centrality parameters of Q,/¢% and Qs/o® when H, is true. We have
EXy) =p+a + B E(Xy) = p + o, E(X;) = p + B;and E(X) =
. Accordingly, the noncentrality parameter of Q,/0? is

a3 Gtf-w o3 B

2

[¢a (22
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and that of Q5/0? is

I.Mg

; (w+o+B—p—oa—p— B+ p)?
<45 _o

0,2

Me
.

Thus, if the hypothesis H,, is not true, F has a noncentral F distribution
with & — 1 and (@ — 1)(b — 1) degrees of freedom and noncentrality

b
parameter a > B%/o®. The desired probabilities can then be found in
i=1

tables of the noncentral F distribution.

A similar argument can be used to construct the F needed to test
the equality of row means; that is, this F is essentially the ratio of the
sum of squares among rows and Q5. In particular, this F is defined by

_ Qa1
Qs/l(@ — 1)(6 — 1)]
and, under Hy 0y = &y =---= ¢, = 0, has an F distribution with

a — land (a — 1){b — 1) degrees of freedom.

The analysis-of-variance problem that has just been discussed is
usually referred to as a fwo-way classification with one observation per
cell. Each combination of 7 and j determines a cell; thus there is a total
of ab cells in this model. Let us now investigate another two-way
classification problem, but in this case we take ¢ > 1 stochastically
independent observations per cell.

Let X;;,0=1,2,...,a,7=1,2,...,b,andk = 1,2,..., ¢, denote
n = agbc random variables which are mutually stochastically indepen-
dent and which have normal distributions with common, but unknown,
variance o%. The mean of each X, £ = 1,2,...,c,ispy; = p + o +

a b a b
Bi + vi;, where 3 o, =0, > B; =0, 12'1 y; = 0, and jzl yy = 0. For

t= i=

1
example’ takea = 2’b = 3’!“‘ = 5’al = 1:“2 =_1)/81 = l»ﬁZ =01

Bs= =Ly, =1y3=1y13=—2,90 = —1,y55 = —1,and yy5 = 2.
Then the means are

pu =8, piz =7, piz =3,
por = 4, paz = 3, Moz = 5.
Note that, if each y,; = 0, then

H11 = 7; Hi2 = 6; K13 = 5:
P21 = 5, Paz = 4, oz = 3.
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That is, if y;; = 0, each of the means in the first row is 2 greater than
the corresponding mean in the second row. In general, if each y;; = 0,
the means of row 7, differ from the corresponding means of row 7, by a
constant. This constant may be different for different choices of 7, and
i5. A similar statement can be made about the means of columns j,
and j,. The parameter y;; is called the interaction associated with cell
(¢, ). That is, the interaction between the ith level of one classification
and the jth level of the other classification is y;. One interesting
hypothesis to test is that each interaction is equal to zero. This will
now be investigated.
From Exercise 8.11 of Section 8.2 we have that

a c _ a _ b
$ 5 5 Wy -X2=be 5 (K.~ X2 +ac X (X, - X
i=1 j=1 k=1 i=al , J=_1
+ czl jZI(X”, - X, - X, + X)?
a b 4
+ 2 2 2 (X = Xis)?

i=1 j=1k=1

that is, the total sum of squares is decomposed into that due to row
differences, that due to column differences, that due to interaction, and
that within cells. The test of

Hyiyy =0, i=12...,8j=12...%

against all possible alternatives is based upon an F with (@ — 1)(b — 1)
and ab(c — 1) degrees of freedom,

[c $ S (X, - X - X, + X)z]/[(a - )6 - ]

1=1j=1

222 X — X)) lab(c — 1)]

F:

The reader should verify that the noncentrality parameter of this F
b a .
distribution is equal to ¢3 2 yf/o® Thus Fis central when Hy:y;; =

j=1i=1

0,i=12,...,a,7=1,2,...,b,1s true.

EXERCISES

8.20. Show that
$ (X, ~X)p=5 S(Xy-X X, +X?+a

1=1 1=1 f=1 i=1 )

8.21. If at least one y;; # 0, show that the F, which is used to test that

(X, — X2

i
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each interaction is equal to zero, has noncentrality parameter equal to

b a
¢ 2 2 visle®.
i=1 §=1

8.6 A Regression Problem

Consider a laboratory experiment the outcome of which depends
upon the temperature; that is, the technician first sets a temperature
dial at a fixed point ¢ and subsequently observes the outcome of the
experiment for that dial setting. From past experience, the technician
knows that if he repeats the experiment with the temperature dial set
at the same point ¢, he is not likely to observe precisely the same out-
come. He then assumes that the outcome of his experiment is a random
variable X whose distribution depends not only upon certain unknown
parameters but also upon a nonrandom variable ¢ which he can choose
more or less at pleasure. Let ¢,, ¢,, . . ., ¢, denote # arbitrarily selected
values of ¢ (but not all equal} and let X; denote the outcome of the
experiment when ¢ =¢;, 1 = 1,2,..., n. We then have the » pairs
(X1, ¢1), ..., {X,, ¢,) in which the X, are random variables but the ¢,
are known numbers and ¢ = 1, 2, ..., #. Once the # experiments have
been performed (the first with ¢ = ¢,, the second with ¢ = ¢,, and so on)
and the outcome of each recorded, we have the # pairs of known
numbers (x4, ¢4), . . ., (%,, ¢,). These numbers are to be used to make
statistical inferences about the unknown parameters in the distribution
of the random variable X. Certain problems of this sort are called
regression problems and we shall study a particular one in some detail.

Let ¢y, ¢y, ..., ¢, be n given numbers, not all equal, and let ¢ =

2. c¢/n. Let X, X,, ..., X, be » mutually stochastically independent
1

random variables with joint p.d.f.

L, B, 0% 2y, 25, ..., %,)

= (27}02)”/2 exp{—% i [ — a — Ble; — 5)]2}‘

Thus each X; has a normal distribution with the same variance o2, but
the means of these distributions are « + B(¢c; — ¢). Since the ¢; are not
all equal, in this regression problem the means of the normal distribu-
tions depend upon the choice of ¢4, ¢,, . . ., ¢,. We shall investigate ways
of making statistical inferences about the parameters «, 8, and 2.
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It is easy to show (see Exercise 8.22) that the maximum likelihood
estimators of e, 8, and o? are

2 X
¢=1— =X,
n
2@-9X - X) 2(-0X
I§= 1 = 1 ’
S@-9 S- o
and
ZXi—“— (ci_é)]z
1
Since & and B are linear functions of X;, X,, . . ., X,, each is normally

distributed (Theorem 1, Section 4.7). It is easy to show (Exercise 8.23)
that their respective means are « and B and their respective variances

are o?fn and oz/i (¢; — ©)2.
1

Consider next the algebraic identity (Exercise 8.24)

SIXi—a—fla - P =5{@—o+ - Pl
+[X; - & - B —5]}2
= n(@ — a)? B B2 > (¢, — &)

+§[Xi_&—ﬁ(ci—5)]:
or
%[Xi——a-—ﬂ(c—c)]z—na—a + (8 - ﬁzic—é)2+n62

1

or, for brevity,
Q=0:+0; + s
Here Q, Q,, Q,, and Q, are real quadratic forms in the variables
X, — o — Ble; — ©), i=12,...,n

In this equation, Q represents the sum of the squares of #» mutually
stochastically independent random variables that have normal dis-
tributions with means zero and variances o2. Thus Q/c? has a chi-square
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distribution with # degrees of freedom. Each of the random variables

V(e — @)joand /3 (¢, - §2(B — B)/o has a normal distribution with
1

zero mean and unit variance; thus each of Q,/0% and Q,/0? has a chi-
square distribution with 1 degree of freedom. Since Q; is nonnegative,
we have, in accordance with the theorem of Section 8.2, that Q,, Q,,
and @ are mutually stochastically independent, so that Q;/0® has a
chi-square distribution with » — 1 — 1 = » — 2 degrees of freedom.
Then each of the random variables

_ (Vn@ — o))fe __d-«a
VQslle*(n — 2)] V&% - 2)

and

|3 o - p)/o 5

) B
VeIt =21 [ -2 3 e - 2]

2 =

has a ¢ distribution with # — 2 degrees of freedom. These facts enable
us to obtain confidence intervals for « and . The fact that #62/¢2 has a
chi-square distribution with # — 2 degrees of freedom provides a means
of determining a confidence interval for o2 These are some of the
statistical inferences about the parameters to which reference was made
in the introductory remarks of this section.

Remark. The more discerning reader should quite properly question
our constructions of T; and T, immediately above. We know that the
squares of the linear forms are stochastically independent of Q3 = %42, but we
do not know, at this time, that the linear forms themselves enjoy this
independence. This problem arises again in Section 8.7. In Exercise 12.15,

a more general problem is proposed, of which the present case is a special
instance.

EXERCISES

8.22. Verify that the maximum likelihood estimators of «, 8, and o2 are
the &, B, and 62 given in this section.

8.23. Show that & and B have the respective means « and B a.nd the

respective variances o%/# and 02/2 {e; — ©)2 ‘
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8.24. Verify that i[Xi —a — Bleg — 6)]2 = Q) + @z + @3, as stated in
1
the text.

8.25. Let the mutually stochastically independent random wvariables
X, X,, ..., X, have, respectively, the probability density functions
n(Be;, %), + = 1, 2,..., n, where the given numbers ¢y, ¢,, .. ., ¢, are not
all equal and no one is zero. Find the maximum likelihood estimators of B
and y2.

8.26. Let the mutually stochastically independent random variables
X1, ..., X, have the joint p.d.f.

LB 0% ..., %) = (2—;-2)"'2 exp{—z%i[xi —a— Ble — 5)]2},

where the given numbers ¢y, ¢5, ..., ¢, are not all equal. Let Hy: 8 =0
(o and o2 unspecified). It is desired to use a likelihood ratio test to test Hy
against all possible alternatives. Find A and see whether the test can be
based on a familiar statistic. Hint. In the notation of this section show that

N

(X, — & = Qs + B3 (0 — 2%

8.27. Using the notation of Section 8.3, assume that the means p, satisfy
a linear function of §, namely u; = ¢ 4+ d[7 — (b + 1)/2]. Let a random sample
of size a be taken from each of the b independent normal distributions with
common unknown variance o2.

(a) Show that the maximum likelihood estimators of ¢ and 4 are,
respectively, ¢ = X and

d= 30— 0+ 02~ X35 0+ 2

(b) Show that

i=a1 fil (XU B X)Z
=Z‘1§1[X”_X~é(j—u)] +42 ( b+1)

(c) Argue that the two terms in the right-hand member of part (b), once
divided by o2, are stochastically independent random variables with chi-
square distributions provided that d = 0.

(d) What F statistic would be used to test the equality of the means,
that is, Hy:d = 0?
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8.7 A Test of Stochastic Independence

Let X and Y have a bivariate normal distribution with means g,
and p,, positive variances o2 and o%, and correlation coefficient p. We
wish to test the hypothesis that X and Y are stochastically independent.
Because two jointly normally distributed random variables are sto-
chastically independent if and only if p = 0, we test the hypothesis
H,: p = 0 against the hypothesis Hy: p # 0. A likelihood ratio test
will be used. Let (X,, Y,), (X5, Yy), ..., (X, Y,) denote a random
sample of size » > 2 from the bivariate normal distribution; that is,
the joint p.d.f. of these 2» random variables is given by

f@y, Y1) f (@2, y2) - - - f(®n, Y)-

Although it is fairly difficult to show, the statistic that is defined by the
likelihood ratio A is a function of the statistic

This statistic R is called the correlation coefficient of the random sample.
The likelihood ratio principle, which calls for the rejection of H, if
A < Ay, is equivalent to the computed value of |R| > c¢. That is, if the
absolute value of the correlation coefficient of the sample is too large,
we reject the hypothesis that the correlation coefficient of the distri-
bution is equal to zero. To determine a value of ¢ for a satisfactory
significance level, it will be necessary to obtain the distribution of R,
or a function of R, when H, is true. This will now be done.

LetX;, =2, X, =u,,...,X, =2, % > 2 wherex,, 2, ..., 2, and
n n

# = > x;/n are fixed numbers such that > (z; — £)2 > 0. Consider the
1 1

conditional p.df. of Y,, Y,,..., Y,, given that X; = =, X; = x,, ...,
X, = x, Because Y,, Y, ..., Y, are mutually stochastically inde-
pendent and, with p = 0, are also mutually stochastically independent
of X, Xy, ..., X,, this conditional p.d.f. is given by

The conditional distribution of 3 (Y, — Y)/o2, given X; = @y, ...,
1
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X, = @, is x3(n — 1). Moreover, the conditional distribution of the
linear function W of Y, Yo, ..., Y,

> [lo ~ A(Y: — V)

(1) W=

is n(0, o) (see Exercise 8.30). Thus the conditional distribution (_)f
W2/o2, given X; = 25,..., Xp = Zp, is ¥2(1). We have the algebraic
identity (see Exercise 8.31)

@ S(v.- 72
?m—wn—m
ng(xt - 5)2

(@ — &)

=W2+§ Yl‘—Y—
1

The left-hand member of this equation and the first term of the right-
hand member are, when divided by o2, respectively, conditionally
x%(n — 1) and conditionally x2(1). In accordance with Theorem 1,
the nonnegative quadratic form, say U, which is the second term <?f the
right-hand member of Equation (2), is conditional.ly stochastically
independent of W2, and, when divided by o2, is conditionally x*(» — 2).
Now W/ is n(0, 1). Then (Remark, Section 8.6)

W /o, _ WV — 2)
vV UJlo3(n — 2)] VU

has a conditional # distribution with # — 2 degrees of freedom. Let

(x; — 75)(Yi -~ Y)

=2

R, = = .
S-S -
1 1
Then we have (Exercise 8.32)

Wvn -2 RVn -2
VT vIi-RZ

3)
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this ratio has, given X; = #,,..., X, = %, a conditional £ distribution
with # — 2 degrees of freedom. Note that the p.d.f., say g(¢), of this
¢ distribution does not depend upon z,, %, . . ., Z,. Now the joint p.d.f.

of X;, X5, ..., X, and RVn — 2/V'1 — R2?, where

X, - X)(Y, - Y)

R =
J3 & - xp

is the product of g(f) and the joint p.d.f. of X, X,, ..., X,. Integration
on x,%,,...,%, yields the marginal p.d.f. of RV#n — 2/v/1 — R?;
because g(?) does not depend upon #,, %, . . ., %, it is obvious that this
marginal p.d.f. is g(f), the conditional p.d.f. of R;V#n — 2/V/1 — R2.
The change-of-variable technique can now be used to find the p.d.f.
of R.

==

b

(Y, - 7)?

HM§

Remarks. Since R has, when p = 0, a conditional distribution that
does not depend upon z;, s, . . ., z, (and hence that conditional distribution
is, in fact, the marginal distribution of R), we have the remarkable fact that R
is stochastically independent of X, X,,..., X,. It follows that R is
stochastically independent of every function of X,, X,, ..., X, alone, that is,
a function that does not depend upon any Y,. In like manner, R is stochastic-
ally independent of every function of Y,, Y,, ..., Y, alone. Moreover, a
careful review of the argument reveals that nowhere did we use the fact that
X has a normal marginal distribution. Thus, if X and Y are stochastically
independent, and if Y has a normal distribution, then R has the same
conditional distribution whatever be the distribution of X, subject to the

condition 3 (z, — ? > 0. Moreover, if Pr [z (X, — X2 > o] = 1, then R
1 1

has the same marginal distribution whatever be the distribution of X.

If we write T = RV'n — 2/V'1 — R2, where T has a ¢ distribution
with # — 2 > 0 degrees of freedom, it is easy to show, by the change-
of-variable technique (Exercise 8.33), that the p.d.f. of R is given by

I'l(r — 1)/2]
4 r) = 1 — r2)m-902 -1<7r<l,
@& g - 2" )

= 0 elsewhere.

We have now solved the problem of the distribution of R, when p = 0

and # > 2, or, perhaps more conveniently, that of RV» — 2/v/1 — R2.
The likelihood ratio test of the hypothesis Hy:p = 0 against all
alternatives H;: p # 0 may be based either on the statistic R or on
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the statistic RVn — 2/4/1 — R? = T. In either case the significance
level of the test is

a = Pr(|R| = ¢;; Hy) = Pr(|T| = ¢y; Hy),

where the constants ¢, and ¢, are chosen so as to give the desired
value of «.

Remark. It is also possible to obtain an approximate test of size « by
using the fact that

1 1+ R
W=y (____1 + R)
has an approximate normal distribution with mean %1n[(1 + p)/(1 — p)]

and variance 1/(n — 3), We accept this statement without proof. Thus a
test of Hy: p = 0 can be based on the statistic

_3Wn[(1 + R/ - R)] — $In[(1 + p)/(1 — p)],
V1j(n = 3)
with p = 0 so that 3 In[(1 + p)/(1 — p)] = 0. However, using W, we can

also test hypotheses like Hy: p = po against H;: p # po, where po is not
necessarily zero. In that case the hypothesized mean of W is

VA

1 1 + Po
2 In (1 - Po).
EXERCISES
8.28. Show that
S(X, - XY, - T é';X,Y, _ nXY
R=__1 - :

JZ (X, - %P3 (¥, - ¥)? B A/(; xz—nXe)(S v2 - u¥?)

8.29. A random sample of size # = 6 from a bivariate normal distribu-
tion yields the value of the correlation coefficient to be 0.89. Would we
accept or reject, at the 5 per cent significance level, the hypothesis that
p=0?

8.30. Verify that W of Equation (1) of this section is #(0, 03).
8.31. Verify the algebraic identity (2) of this section.

8.32. Verify Equation (3) of this section.

8.33. Verify the p.d.f. (4) of this section.



Chapter 9
Nonparametric Methods

9.1 Confidence Intervals for Distribution Quantiles

We shall first define the concept of a quantile of a distribution of a
random variable of the continuous type. Let X be a random variable
of the continuous type with p.d.f. f(x) and distribution function F(z).
Let p denote a positive proper fraction and assume that the equation
F(z) = p has a unique solution for z. This unique root is denoted by
the symbol £, and is called the quantile (of the distribution) of order p.
Thus Pr (X < &) = F(§,) = p. For example, the quantile of order 1
is the median of the distribution and Pr (X < &,5) = F(&5) = 1.

In Chapter 6 we computed the probability that a certain random
interval includes a special point. Frequently, this special point was a
parameter of the distribution of probability under consideration. Thus
we were led to the notion of an interval estimate of a parameter. If the
parameter happens to be a quantile of the distribution, and if we work
with certain functions of the order statistics, it will be seen that this
method of statistical inference is applicable to all distributions of the
continuous type. We call these methods distribution-free or nonpara-
metric methods of inference.

To obtain a distribution-free confidence interval for ¢, the quantile
of order p, of a distribution of the continuous type with distribution
function F(x), take a random sample X, X,, ..., X, of size # from that
distribution. Let Y, < Y, <--- < Y, be the order statistics of the
sample. Take Y; < Y; and consider the event Y, < £, < Y,. For the
7th order statistic Y; to be less than £, it must be true that at least ¢

304
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of the X values are less than &,. Moreover, for the jth order statistic
to be greater than £, fewer than j of the X values are less than ¢,.
That is, if we say that we have a “success” when an individual X
value is less than £, then, in the » independent trials, there must be
at least 7 successes but fewer than j successes for theevent Y; < §, < Y;
to occur. But since the probability of success on each trialis Pr (X < §,)
= F(§,) = p, the probability of this event is
il n!

Pr(Y, < ¢, <Y) = gimﬁw(l -

the probability of having at least ¢, but less than 7, successes. When
particular values of #, ¢, and j are specified, this probability can be
computed. By this procedure, suppose it has been found that y =
Pr(Y; < £, < Y,). Then the probability is v that the random interval
(Y;, Y,) includes the quantile of order p. If the experimental values of
Y, and Y, are, respectively, ¥, and y;, the interval (y,, y;) serves as a
100y per cent confidence interval for ¢, the quantile of order p.

An illustrative example follows.

Example 1. 1etY, < Y, < Y3 < Y, be the order statistics of a random
sample of size 4 from a distribution of the continuous type. The probability
that the random interval (Y,, Y,) includes the median &, 5 of the distribution
will be computed. We have

Pr (Y vy= S —* (1) = oss
r (V) < o5 < 4)—w21m(§) = 0.875.
It Y, and Y, are observed to be y, = 2.8 and y, = 4.2, respectively, the

interval (2.8, 4.2) is an 87.5 per cent confidence interval for the median £, 5
of the distribution.

For samples of fairly large size, we can approximate the binomial
probabilities with those associated with normal distributions, as
illustrated in the next example.

Example 2. Let the following numbers represent the order statistics of
n = 27 observations obtained in a random sample from a certain distribution
of the continuous type.

61, 69, 71, 74, 79, 80, 83, 84, 86, 87, 92, 93, 96, 100,
104, 105, 113, 121, 122, 129, 141, 143, 156, 164, 191, 217, 276.

Say that we are interested in estimating the 25th percentile &, 5 (that is,
the quantile of order 0.25) of the distribution. Since (# + 1)p = 28(3) =7,
the seventh order statistic, y; = 83, could serve as a point estimate of &, g5.
To get a confidence interval for £, 45, consider two order statistics, one less



306 Nonparametric Methods [Ch. 9

than y, and the other greater, for illustration, y, and y,. What is the con-
fidence coefficient associated with the interval (yq4, ¥,0)? Of course, before
the sample is drawn, we know that

y=Pr(Yy < fos < Y10) = 2, (ZUZ )(0.25)w(0.75)27-w.

4
That is,
y=Pr(35<W<?95),

where W is b(27,3) with mean %' = 6.75 and variance 8L Hence y is
approximately equal to

N(g,s - 6.75) _ N(s.s - 6.75) _ N(lg_l) _ N(_?) = 0.814.

4 4

Thus (y, = 74, y10 = 87) serves as an 81.4 per cent confidence interval for
£o.95. It should be noted that we could choose other intervals also, for
illustration, (ys = 71, y;; = 92), and these would have different confidence
coefficients. The persons involved in the study must select the desired
confidence coefficient, and then the appropriate order statistics, Y, and Y,
are taken in such a way that 7 and j are fairly symmetrically located about
(n + 1)p.

EXERCISES

9.1. Let Y, denote the nth order statistic of a random sample of size #
from a distribution of the continuous type. Find the smallest value of # for
which Pr (¢4 < Y,) = 0.75.

9.2. Let Y, < Y, < Y, < Y, < Y; denote the order statistics of a
random sample of size 5 from a distribution of the continuous type. Com-
pute:

(@) Pr(Y; < &5 < Yy).

(b) Pr(Y; < o5 < Yg).

(€) Pr(Y, < o0 < Ys)

9.3. Compute Pr(Y; < &5 < Yq) if YV <---< ¥, are the order
statistics of a random sample of size 9 from a distribution of the continuous
type.

9.4. Find the smallest value of # for which Pr (Y; < &5 < Y,) > 0.99,

where Y, <---< Y, are the order statistics of a random sample of size #
from a distribution of the continuous type.

9.5. Let Y, < Y, denote the order statistics of a random sample of size
2 from a distribution which is n{u, o), where ¢ is known.
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(a) Show that Pr (Y, < p < Y,) = 1 and compute the expected value
of the random length Y, — Y,.

(b) If X is the mean of this sample, find the constant ¢ such that
Pr(X —co < p <X + co) =3, and compare the length of this random
interval with the expected value of that of part (a). Hint. See Exercise 4.60,
Section 4.6.

9.6. Let Y, < Y, <---< Yy, be the order statistics of a random sample
of size n = 25 from a distribution of the continuous type. Compute approxi-
mately:

(@) Pr(Ys < o5 < Yya)

(b) Pr(Y; < £p2 < Yy).

() Pr(Yig < os < Yaa).

9.7. Let YV, < Y, <---< Y4 be the order statistics of a random
sample of size » = 100 from a distribution of the continuous type. Find
i < jsothat Pr (Y, < £, < Y,) is about equal to 0.95.

9.2 Tolerance Limits for Distributions

We propose now to investigate a problem that has something of the
same flavor as that treated in Section 9.1. Specifically, can we compute
the probability that a certain random interval includes (or covers) a
preassigned percentage of the probability for the distribution under
consideration? And, by appropriate selection of the random interval,
can we be led to an additional distribution-free method of statistical
inference?

Let X be a random variable with distribution function F(z) of the
continuous type. The random variable Z = F(X) is an important
random variable, and its distribution is given in Example 1, Section
4.1. It is our purpose now to make an interpretation. Since Z = F(X)
has the p.d.f.

h(z) =1, 0<z<1,

= () elsewhere,

then, if 0 < p < 1, we have
Pr(F(X) < p] = [, dz = p.
Now F(zx) = Pr (X < ). Since Pr (X = z) = 0, then F(z) is the

fractional part of the probability for the distribution of X that is
between —oo and x. If F(z) < $, then no more than 100p per cent of
the probability for the distribution of X is between —oo and z. But

recall Pr[F(X) < p] = p. That is, the probability that the random
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variable Z = F(X) is less than or equal to p is precisely the probability
that the random interval (—co, X) contains no more than 100p per cent
of the probability for the distribution. For example, the probability
that the random interval (—oo, X) contains no more than 70 per cent
of the probability for the distribution is 0.70; and the probability that
the random interval (—co, X) contains more than 70 per cent of the
probability for the distribution is 1 — 0.70 = 0.30.

We now consider certain functions of the order statistics. Let
X,, X, ..., X, denote a random sample of size » from a distribution
that has a positive and continuous p.d.f. f(z) if and only ifa < x < b;
and let F(x) denote the associated distribution function. Consider the
random variables F(X,), F(Xy), ..., F(X,). These random variables
are mutually stochastically independent and each, in accordance with
Example 1, Section 4.1, has a uniform distribution on the interval (0, 1).
Thus F(Xy), F(X,),..., F(X,) is a random sample of size # from a
uniform distribution on the interval (0, 1). Consider the order statistics
of this random sample F(X,), F(X,), ..., F(X,). Let Z, be the smallest
of these F(X,), Z, the next F(X,) in order of magnitude, ..., and Z,
the largest F(X,). If Y,, Y,, ..., Y, are the order statistics of the initial
random sample X, X,, ..., X,, the fact that F(z) is a nondecreasing
(here, strictly increasing) function of z implies that Z, = F(Y,),
Zy = F(Yy),..., Z, = F(Y,). Thus the joint p.d.f. of Z,, Z,, ..., Z,
is given by

Mzy, 20, -0y 2y) = N, 0 <z, <2y <---<2Z <1,
= () elsewhere.
This proves a special case of the following theorem.

Theorem 1. Let Y, Y, ..., Y, denote the ovder statistics of a
random sample of size n from a distribution of the continuous type that
has p.d.f. (@) and distribution function F(x). The jont p.d.f. of the
random variables Z; = F(Y)), 1 =1,2,...,n,1s

h(zq, 29, . . ., 2,) = 0!, 0 <2, <29 <---<2 <1,
= 0 elsewhere.

Because the distribution function of Z = F(X) is given by gz,
0 < 2z < 1, the marginal p.df. of Z, = F(Y,) is the following beta

p.d.f.:
n!
(1) Az = TR k)!z’,@”l(l T L 0<z <1,

= 0 elsewhere.
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Moreover, the joint p.d.f. of Z; = F(Y;) and Z; = F(Y,)is, with ¢ < 7,
given by

n!
-G —7-m - )

x 287 Mz;, - ) Y1 = z)m 0<z <2 <1,

(2)  hylz, 2) =

= 0 elsewhere.

Consider the difference Z; — Z; = F(Y;) — F(Y})), © <j. Now
F(y) = Pr(X <y,;) and F(y,) = Pr(X < y;). Since Pr(X =y;) =
Pr (X = y,;) = 0, then the difference F(y,) — F(y;) is that fractional
part of the probability for the distribution of X that is between y; and
4;. Let p denote a positive proper fraction. If F(y;) — F(y;) = p, then
at least 100p per cent of the probability for the distribution of X is
between y; and y;. Let it be given that y = Pr[F(Y,) — F(Y,) = p].
Then the random interval (Y,, Y,) has probability y of containing at
least 100p per cent of the probability for the distribution of X. If now
y; and y; denote, respectively, experimental values of Y; and Y, the
interval (y;, y,) either does or does not contain at least 100p per cent
of the probability for the distribution of X. However, we refer to the
interval (y,, y;) as a 100y per cent tolerance interval for 100p per cent
of the probability for the distribution of X. In like vein, y; and y; are
called 100y per cent tolerance limits for 100p per cent of the probability
for the distribution of X.

One way to compute the probability y = Pr[F(Y,) — F(Y;) = #]
is to use Equation (2), which gives the joint p.d.f. of Z; = F(Y;) and
Z; = F(Y;). The required probability is then given by

1- 1
y=Pr(Z - Zz2p) =" fm‘ hislz, 25) dz; dzy.

Sometimes this is a rather tedious computation. For this reason and
for the reason that coverages are important in distribution-free statistical
inference, we choose to introduce at this time the concept of a coverage.

Consider the random variables W, = F(Y,) = Z,, W, = F(Y;) —
F(Y\) = Zy — Z;, Wy = F(Yy) ~ F(Yy) = Zs — Zy, ..., W, =
F(Y,) - F(Y,_,) = Z, — Z,_;. The random variable W, is called a
coverage of the random interval {&; —0 < # < Y,} and the random
variable W, 7 = 2,3, ..., #, is called a coverage of the random interval
{#z; Yi_; < & < Y;}. We shall find the joint p.d.f. of the # coverages
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Wy, W, ..., W, First we note that the inverse functions of the
associated transformation are given by

2 = Wy,

2 = Wy + Wy

Z3=w1+w2+l?)3,

Zn=w1+U)2+ZW3 + -4 Wy

We also note that the Jacobian is equal to 1 and that the space of
positive probability density is

{(wy, @oy- -, 0,); 0 < w0 =1,2,...,mw; +---+ Wy < 1}.

Since the joint p.d.f. of Zy, Zs, ..., Zyisnl, 0 <2 <2p< &z <1,
zero elsewhere, the joint p.d.f. of the # coverages is

k(wy, ..., w,) = nl, O<w,i2=1...,nw; +---+ w, < 1,
= 0 elsewhere.

A reexamination of Example 1 of Section 4.5 reveals that this is a
Dirichlet p.d.f. with # = nand a; = @y =+ = G4y = 1.

Because the p.d.f. k(wy, . . ., w,) is symmetric in w;, @y, . . ., @y, it is
evident that the distribution of every sum of #, 7 < #, of these coverages
Wi, ..., W,is exactly the same for each fixed value of ». For instance,
ifi < jand7 = j — 1, the distribution of Z; — Z; = F(Y,) — F(Y;) =
Wis1 + Wisa +---+ W, is exactly the same as that of Z;_;
F(Y,.) = Wy + Wy +---+ W,;_;. But we know that the p.d.f. of
Z;_; is the beta p.d.f. of the form

Fn + 1)
Gj—-4)I'm—-j7+2+1)
= 0 elsewhere.
Consequently, F(Y;) — F(Y,) has this p.d.f. and
Pr[F(Y) — F(Y) 2 8] = [ hy-i(0) do.

Example 1. Let Y, < Y, <---< Yq be the order statistics of a
random sample of size 6 from a distribution of the continuous type. We
want to use the observed interval (y,, ¥e) as a tolerance interval for 80 per
cent of the distribution. Then

y = Pr[F(Yq) — F(Yy) 2 0.8]

pi-it(1 — p)r =it 0<v<l,

hi_y(v) =

-1- j0°'830v4(1 — ) dov,
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because the integrand is the p.d.f. of F(Yg) — F(Y,). Accordingly,
y =1 — 6(0.8)° + 5(0.8)% = 0.34,

approximately. That is, the observed values of Y; and Yg will define a
34 per cent tolerance interval for 80 per cent of the probability for the
distribution.

Example 2. Each of the coverages W,, ¢ = 1,2,...,#, has the beta
p.d.f.

ky(w) =n(l —w)*"1, O<w<l,
= 0 elsewhere,

because W, = Z, = F(Y,) has this p.d.f. Accordingly, the mathematical
expectation of each W, is

1

j no(l — W)t dw — ——.

o #n+1

Now the coverage W, can be thought of as the area under the graph of the
p.d.f. f(z), above the z-axis, and between the lines z = Y;,_, and 2 = Y.
(We take Y, = —o0.) Thus the expected value of each of these random
areas W,, i = 1,2,...,n,is 1/(n + 1). That is, the order statistics partition
the probability for the distribution into # + 1 parts, and the expected value
of each of these parts is 1/(» + 1). More generally, the expected value of
F(Y;) — F(Y;), % < j,is{j — i)/(n + 1), since F(Y;) — F(Y})is the sum of
7 — ¢ of these coverages. This result provides a reason for calling Y, where
(n + 1)p = k&, the (100p)th percentile of the sample, since

EF(v)] = g =22,

EXERCISES

9.8. Let Y, and Y, be, respectively, the first and #th order statistics of a
random sample of size # from a distribution of the continuous type having
distribution function F(z). Find the smallest value of » such that
Pr[F(Y,) — F(Y,) = 0.5] is at least 0.95.

9.9. Let Y,and Y, _, denote the second and the (» — 1)st order statistics
of a random sample of size n from a distribution of the continuous type
having distribution function F(x). Compute Pr[F(Y,.,) — F(Y,) = pl,
where 0 < p < 1.

9.10. Let Y, < Y, <--- < Y4 be the order statistics of a random sample
of size 48 from a distribution of the continuous type. We want to use the

observed interval (y,, y,5) as a 100y per cent tolerance interval for 75 per cent
of the distribution.
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(a) To what is y equal? . . '

(b) Approximate the integral in part (a) by noting that it can Pe written
as a partial sum of a binomial p.d.f., which in turn can be approximated by
probabilities associated with a normal distribution.

9.11. Let Y, < Y, <---< Y, bethe order statistics of a randorp sample
of size # from a distribution of the continuous type having distribution func-
tion F(z).

(a) What is the distribution of U = 1- F(Y))?

(b) Determine the distribution of V = F(Y,) — F(Y,) + F(Y)) —
F(Y,), where ¢ < j.

9.3 The Sign Test

Some of the chi-square tests of Section 8.1 are illustrative of the
type of tests that we investigate in the remainder of thi§ cbapt.er.
Recall, in that section, we tested the hypothesis that the dlStI'lbuth}’l
of a certain random variable X is a specified distribution. We did this
in the following manner. The space of X was partitioned into & mutually
disjoint sets A;, 4, - .., A The probability pio t.hat_ X & Ai_ was
computed under the assumption that the specified dlStI‘lbl:ltIOl’l is the
correct distribution, 7 = 1, 2,..., k. The original hypothesis was then
replaced by the hypothesis

Hy:Pr(Xed) =pw =12k

and a chi-square test, based upon a statistic that was denoted ‘by
Q._1, was used to test the hypothesis H, against all alternative
hypotheses. .

There is a certain subjective element in the use of this test, namely
the choice of £ and of 4,, 4, ..., 4,. But it is important to not.e that
the limiting distribution of Q_;, under Hy, is x2(k — 1);.that is, the
distribution of Q. _, is free of p1q, Pao, - - -» Pro and, accordmglx, of the
specified distribution of X. Here, and elsewhere, ‘‘under H o means
when H, is true. A test of a hypothesis H, based upon a Statl‘StIC‘ wh9se
distribution, under H,, does not depend upon the specified distribution
or any parameters of that distribution is called a distribution-free or a
nonparametric test. .

Next, let F(z) be the unknown distribution function of the random
variable X. Let there be given two numbers £ and p,, where 0 < po < 1
We wish to test the hypothesis Hy: F(£) = po, that. is, the hypothesis
that ¢ = §,,, the quantile of order p, of the diStI‘ibl%tlon of X. We Cf)uld
use the statistic Q,_;, with & = 2, to test H, against all alternatives.
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Suppose, however, that we are interested only in the alternative hy-
pothesis, whichis H,: F(£) > p,o. One procedure is to base the test of H,
against H, upon the random variable Y, which is the number of items
less than or equal to £ in a random sample of size # from the distribu-
tion. The statistic Y can be thought of as the number of ““successes”
throughout # independent trials. Then, if H, is true, Yis b[n, po = F(£)];
whereas if H is false, Y is b[n, p = F(§)] whatever be the distribution
function F(x). We reject H, and accept H, if and only if the observed
value y > ¢, where ¢ is an integer selected such that Pr (Y = ¢; Hy) is

some reasonable significance level «. The power function of the test is
given by

K(p) = 3 C)pa-pro posp<t

where p = F(§). In certain instances we may wish to approximate
K(p) by using an approximation to the binomial distribution.

Suppose that the alternative hypothesis to Hy: F(§) = p, is
Hy: F(€) < po. Then the critical region is a set {y; ¥y < ¢;}. Finally, if
the alternative hypothesis is H;: F(£) # p,, the critical region is a set
{y;9 <cgorey < g}

Frequently, p, = 1 and, in that case, the hypothesis is that the
given number ¢ is a median of the distribution. In the following example,
this value of p, is used.

Example 1. Let X, X,, ..., X, be a random sample of size 10 from a
distribution with distribution function F(z). We wish to test the hypothesis
H,: F(72) = 4 against the alternative hypothesis H;: F(72) > 4. Let Y be
the number of sample items that are less than or equal to 72. Let the observed
value of Y be y, and let the test be defined by the critical region {y; ¥ > 8}.
The power function of the test is given by

10

e = > ()pa-pren gsp<t

y=8

where p = F(72). In particular, the significance level is

«=5) = [(5) + (5) + ())&~ 2
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In many places in the literature the test that we have just described
is called the sign test. The reason for this terminology is that the test
is based upon a statistic Y that is equal to the number of nonpositive
signs in the sequence X; — £ X, — £,..., X, — £ In the next section

a distribution-free test, which considers both the sign and the magni-
tude of each deviation X; — ¢, is studied.
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EXERCISES

9.12. Suggest a chi-square test of the hypothesis which states that a
distribution is one of the beta type, with parameters « = 2 and B = 2.
Further, suppose that the test is to be based upon a random sample of size
100. In the solution, give k, define A, 4,, ..., 4,, and compute each p;,. If
possible, compare your proposal with those of other students. Are any of
them the same?

9.13. Let X, X,, ..., X4g be a random sample of size 48 from a distri-
bution that has the distribution function F(x). To test Hy: F(41) = % against
H,: F(41) < 1, use the statistic Y, which is the number of sample items less
than or equal to 41. If the observed value of Yisy < 7, reject H, and accept
H,. If p = F(41), find the power function K(p), 0 < p < 1, of the test.
Approximate o = K(}).

9.14. Let X, X,,..., X140 be a random sample of size 100 from a
distribution that has distribution function F(z). To test Hy: F(90) — F(60)
= % against H,: F(90) — F(60) > %, use the statistic Y, which is the number
of sample items less than or equal to 90 but greater than 60. If the observed
value of Y, say y, is such that y > ¢, reject Hy. Find ¢ so that « = 0.05,
approximately.

9.4 A Test of Wilcoxon

Suppose X, X,,..., X, is a random sample from a distribution
with distribution function F(z). We have considered a test of the
hypothesis F(£) = 1, £ given, which is based upon the signs of the
deviations X; — & Xg — &,..., X, — £ In this section a statistic is
studied that takes into account not only these signs, but also the
magnitudes of the deviations.

To find such a statistic that is distribution-free, we must make two
additional assumptions:

(a) F(x) is the distribution function of a continuous type of random
variable X.

(b} The p.df. f(z) of X has a graph that is symmetric about the
vertical axis through &, 5, the median (which we assume to be unique)
of the distribution.

Thus

F(éo5 —a) =1 — F({o5 + 2)
and

fléos — @) = fléos + 2),
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for all x. Moreover, the probability that any two items of a random
sample are equal is zero, and in our discussion we shall assume that no
two are equal.

The problem is to test the hypothesis that the median &, 5 of the
distribution is equal to a fixed number, say £ Thus we may, in all
cases and without loss of generality, take £ = 0. The reason for this is
that if £ # 0, then the fixed ¢ can be subtracted from each sample item
and the resulting variables can be used to test the hypothesis that their
underlying distribution is symmetric about zero. Hence our conditions
on F(x) and f(x) become F(—z) =1 — F(z) and f(-=z) = f(x)
respectively.

To test the hypothesis Hy: FF(0) = %, we proceed by first ranking
Xy, X,, ..., X, according to magnitude, disregarding their algebraic
signs. Let R; be the rank of | X;| among |X,|, |X,|, ..., |X.]. 7 = 1,2,
..., n. For example, if # = 3 and if we have | X,| < |X;3| < |X,], then
R, =3, Ry, =1, and R; = 2. Thus Ry, R,, ..., R, is an arrangement
of the first # positive integers 1, 2, .. ., n. Further,let Z,,7 = 1, 2, ..., n,
be defined by

]

Z,=—1, ifX, <0,
-1, ifX, >0

If we recall that Pr (X; = 0) = 0, we see that it does not change the
probabilities whether we associate Z; = 1 or Z; = —1 with the out-
come X; = 0.

n
The statistic W = > Z;R; is the Wilcoxon statistic. Note that in
i=1

computing this statistic we simply associate the sign of each X; with
the rank of its absolute value and sum the resulting » products.

If the alternative to the hypothesis Hy: &55 = 0is Hy: &55 > 0,
we reject H, if the observed value of W is an element of the set
{w; w = c¢}. This is due to the fact that large positive values of W
indicate that most of the large deviations from zero are positive. For
alternatives £y 5 < 0 and &, 5 # O the critical regions are, respectively,
thesets{w; w < c;}and {w; w < c;orw > c¢;}. To compute probabilities
like Pr(W = ¢; Hy), we need to determine the distribution of W,
under H,.

To help us find the distribution of W, when Hy: F(0) = 1 is true,
we note the following facts:

(a) The assumption that f(x) = f(—=) ensures that Pr (X; < 0) =
PrX;,>0=1%:=1,2,...,n
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(b) Now Z; = —1if X; < 0and Z; = 1if X; >0,¢=1,2,...,n
Hence we have Pr(Z,=-1)=Pr(Z;=1) =1, i=12,...,n
Moreover, Z, Zg, ..., £, ar€ mutually stochastically independent
because X;, X, - .., X, are mutually stochastically independent.

(c) The assumption that f(z) = f( — ) also assures that the rank R,
of | X,| does not depend upon the sign Z; of X,. More generally, R;, Rs,
..., R, are stochastically independent of Zi, 2oy Ly

(d) A sum W is made up of the numbers 1, 2, ..., #, each number
with either a positive or a negative sign.

The preceding observations enable us to say that W = %Z,-R,-

has the same distribution as the random variable V = ;Vi, where
Vi, Vg ..., V, are mutually stochastically independent and
Pr(Vi=14)=Pr(V,=-1) =14

i=1,2,...,n. That V,, V,...,V, are mutually stochastically
independent follows from the fact that Zy, Zgy ..., Zy have that

property; that is, the numbers 1, 2,..., 7 always appear in a sum W
and those numbers receive their algebraic signs by independent
assignment. Thus each of Vy, Vy, ..., Vy is like one and only one of

Z\Ry, ZyR,, . .., Z,R,. .
Since W and V have the same distribution, the moment-generating
function of W is that of V,

M@ =E [exp (tzz: Vi)] = Il[ E(e)

1=1

ﬁ(e—it + git)
B 2

We can express M({) as the sum of terms of the form (a;/2™)ebs'. When
M) is written in this manner, we can determine by inspection the
p.d.f. of the discrete-type random variable W. For example, the smallest
value of W is found from the term (1/27)e~te=%. . e = (1/27)e~ ™+ DI2
and it is —n(n + 1)/2. The probability of this value of W is the
coefficient 1/2". To make these statements more concrete, take n = 3.

Then
g—t + et B_Zt + e2t (6—3t + eSt)
M@ = ( 2 )( 2 ) 2

= ()% + e+ e+ 2+ & 4 e + ).
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Thus the p.d.f. of W, for » = 3, is given by
3 w = _6; _41 —2; 2; 4: 6;

, w=0,

gw) =3
— 2

8
= 0 elsewhere.

The mean and the variance of W are more easily computed directly
than by working with the moment-generating function M (¢). Because

n n
V =73%V,and W = 3 Z,R; have the same distribution, they have the
1 1

same mean and the same variance. When the hypothesis H,: F(0) = %
is true, it is easy to determine the values of these two characteristics of
the distribution of W. Since E(V;) = 0,2 =1, 2, ..., n, we have

py = EW) = SE(V) = 0.

The variance of V,is (—7)2(1) + (¢)%(3) = ¢2. Thus the variance of W is

5 2":1.2 _ n(n + 1?2% + 1)

For large values of #, the determination of the exact distribution of
W becomes tedious. Accordingly, one looks for an approximating
distribution. Although W is distributed as is the sum of » random
variables that are mutually stochastically independent, our form of the
central limit theorem cannot be applied because the #» random variables
do not have identical distributions. However, a more general theorem,
due to Liapounov, states that if U; has mean y; and variance of,
t=1,2,...,n, if U;, U, ..., U, are mutually stochastically inde-
pendent, if E(|U; — w|®) is finite for every ¢, and if

n
) E(]Ui - /~“i|3)
lim =2 =

n— n 3/2
i=1

?

then

n
of
i=1

has a limiting distribution that is #(0, 1). For our variables V;, V,,
..., V, we have

E(Vy — wl®) = i°@) +°@) =%



318 Nonparametric Methods [Ch.9

and it is known that

S - wn + 1)
4

Now

2 2
lim n?(n + 1)%/4

A Tl + )@ + 6P

because the numerator is of order #* and the denominator is of order

#n%2, Thus

w
Van + )2n + 1)/6

is approximately #(0, 1) when H, is true. This allows us to approximate
probabilities like Pr (W = c¢; H;) when the sample size # is large.

Example 1. Let £, s be the median of a symmetric distribution that is
of the continuous type. To test, with « = 0.01, the hypothesis Hy: &, 5 = 75
against H,: &, > 75, we observed a random sample of size# = 18. Let it be
given that the deviations of these 18 values from 75 are the following
numbers:

1.5, -0.5, 1.6, 0.4, 2.3, —0.8, 3.2, 0.9, 2.9,
03,18, —0.1, 1.2, 2.5, 0.6, —0.7, 1.9, 1.3.
The experimental value of the Wilcoxon statistic is equal to
w=11—-4+12+3+15-7+18+8+17+2+13-1
+9+16+5—6+ 14+ 10 = 135,

Since, with # = 18 so that Vu(n + 1)(2n + 1)/6 = 45.92, we have that

W
0.01 = Pr (E@‘z > 2.326) — Pr (W > 106.8).

Because w = 135 > 106.8, we reject H, at the approximate 0.01 significance
level.

There are many modifications and generalizations of the Wilcoxon
statistic. One generalization is the following: Let ¢; < ¢; <--- < ¢, be
nonnegative numbers. Then, in the Wilcoxon statistic, replace the
ranks 1,2,...,%n by ¢, ¢, . . ., ¢,, respectively. For example, if n = 3
and if we have |X,| < |X;| < |X,|, then R, = 3 is replaced by cg,
R, =1 by ¢,, and Ry = 2 by ¢,. In this example the generalized
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statistic is given by Zic; + Zy¢y + Zsc,. Similar to the Wilcoxon
statistic, this generalized statistic is distributed under H,, as is the sum
of # stochastically independent random variables, the ¢th of which
takes each of the values ¢, # 0 and —¢; with probability %; if ¢; = 0,
that variable takes the value ¢; = 0 with probability 1. Some special
cases of this statistic are proposed in the Exercises.

EXERCISES

9.15. The observed values of a random sample of size 10 from a distri-
bution that is symmetric about &, are 10.2, 14.1, 9.2, 11.3, 7.2, 9.8, 6.5,
11.8, 8.7, 10.8. Use Wilcoxon'’s statistic to test the hypothesis Hy: €p5 = 8
against H,: €55 > 8 if « = 0.05. Even though # is small, use the normal
approximation.

9.16. Find the distribution of W for # = 4 and #» = 5. Hint. Multiply
the moment-generating function of W, with # = 3, by (¢™* + €*)/2 to get
that of W, with #n = 4.

9.17. Let X, X,, ..., X, be mutually stochastically independent. If the
p.d.f. of X, is uniform over the interval (—2!-% 217%), /= 1,2,3,..., show

n
that Liapounov’s condition is not satisfied. The sum > X does not have an
t=1

approximate normal distribution because the first random variables in the
sum tend to dominate it.

9.18. If # = 4 and, in the notation of the text, ¢, =1, ¢a = 2, ¢; =
¢, = 3, find the distribution of the generalization of the Wilcoxon statistic,
say W,. For a general #, find the mean and the variance of Wy if ¢, =,
i < m/2,andc, = [#/2] + 1,7 > n/2, where [2] is the greatest integer function.
Does Liapounov’s condition hold here?

9.19. A modification of Wilcoxon’s statistic that is frequently used is
achieved by replacing R, by R, — 1; that is, use the modification W, =
S Z(R, — 1). Show that W,/v/[n — Dn(@n — 1)/6 has a limiting distri-
1
bution that is #(0, 1).

9.20. If, in the discussion of the generalization of the Wilcoxon statistic,
welete, = ¢, =---= ¢, = 1, show that we obtain a statistic equivalent to
that used in the sign test.

9.21. Tf ¢y, ¢, . . ., ¢, are selected so that §/(n + 1) = [o' vV 2[m e~ da,
i=1,2,...,n, the generalized Wilcoxon W, is an example of a normal
scores statistic. If n = 9, compute the mean and the variance of this W,.

922, Ifc, = 2,5 = 1,2, ..., n, the corresponding W, is called the binary
statistic. Find the mean and the variance of this W,. Is Liapounov’s con-
dition satisfied?
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9.23. In the definition of Wilcoxon’s statistic, let W, be the sum of the
ranks of those items of the sample that are positive and let W, be the sum
of the ranks of those items that are negative. Then W = W, — W,

(a) Show that W = 2W, — n(n + 1)/2 and W = n(n + 1)/2 — 2W,.
(b) Compute the mean and the variance of each of W, and W,.

9.5 The Equality of Two Distributions

In Sections 9.3 and 9.4 some tests of hypotheses about one distri-
bution were investigated. In this section, as in the next section, various
tests of the equality of two independent distributions are studied. By
the equality of two distributions, we mean that the two distribution
functions, say F and G, have F(z) = G(z) for all values of z.

The first test that we discuss is a natural extension of the chi-square
test. Let X and Y be stochastically independent variables with distri-
bution functions F(x) and G(y), respectively. We wish to test the
hypothesis that F(z) = G(z), for all z. Let us partition the real line into
k mutually disjoint sets 4, 4, ..., 4. Define

pu = Pr(Xed), i=1,2,...,k
and
P = Pr(Yed), 1=1,2,...,k

If F(z) = G(z), for all z, then p;; = pis, 1 = 1,2, ..., k. Accordingly,
the hypothesis that F(z) = G{2), for all z, is replaced by the less
restrictive hypothesis

Hy: piy = puo 1=1,2,...,k.

But this is exactly the problem of testing the equality of two inde-
pendent multinomial distributions that was considered in Example 3,
Section 8.1, and the reader is referred to that example for the details.

Some statisticians prefer a procedure which eliminates some of the
subjectivity of selecting the partitions. For a fixed positive integer %,
proceed as follows. Consider a random sample of size m from the
distribution of X and a random sample of size # from the independent
distribution of Y. Let the experimental values be denoted by z;, z,,
.o, %y and yq, ¥s, ..., ¥,. Then combine the two samples into one
sample of size m + x and order the m + » values (not their absolute
values) in ascending order of magnitude. These ordered items are then
partitioned into % parts in such a way that each part has the same
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number of items. (If the sample sizes are such that this is impossible, a
partition with approximately the same number of items in each group
suffices.) In effect, then, the partition 4,, 4,, ..., 4 is determined by
the experimental values themselves. This does not alter the fact that the
statistic, discussed in Example 3, Section 8.1, has a limiting distribution
that is y?(k — 1). Accordingly, the procedures used in that example
may be used here.

Among the tests of this type there is one that is frequently used.
It is essentially a test of the equality of the medians of two independent
distributions. To simplify the discussion, we assume that m + #, the
size of the combined sample, is an even number, say m + n = 24,
where 4 is a positive integer. We take 2 = 2 and the combined sample
of size m + n = 2k, which has been ordered, is separated into two parts,
a “lower half” and an “upper half,”” each containing # = (m + #)/2 of
the experimental values of X and Y. The statistic, suggested by Example
3, Section 8.1, could be used because it has, when H is true, a limiting
distribution that is x%(1). However, it is more interesting to find
the exact distribution of another statistic which enables us to test the
hypothesis H, against the alternative H,: F(z) > G(z) or against the
alternative H,: F(z) < G(z) as opposed to merely F(z) # G(z). [Here,
and in the sequel, alternatives F(z) > G(z) and F(z) < G(2) and
F(z) # G(z) mean that strict inequality holds on some set of positive
probability measure.] This other statistic is V, which is the number of
observed values of X that are in the lower half of the combined sample.
If the observed value of V is quite large, one might suspect that the
median of the distribution of X is smaller than that of the distribution
of Y. Thus the critical region of this test of the hypothesis Hy: F(z) =
G(2), for all z, against Hy: F(z) = G(z) is of the form V = ¢. Because
our combined sample is of even size, there is no unique median of the
sample. However, one can arbitrarily insert a number between the Ath
and (& + 1)st ordered items and call it the median of the sample. On
this account, a test of the sort just described is called a median test.
Incidentally, if the alternative hypothesis is H;: F(z) < G(z), the
critical region is of the form V < ¢.

The distribution of V is quite easy to find if the distribution fun-
tions F(x) and G(y) are of the continuous type and if F(z) = G(z), for
all z. We shall now show that 7 has a hypergeometric p.d.f. Let
m + n = 2k, h a positive integer. To compute Pr (V = v), we need the
probability that exactly v of X, X,, ..., X,, are in the lower half of
the ordered combined sample. Under our assumptions, the probability
is zero that any two of the 24 random variables are equal. The smallest
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. : 2h
h of the m + n = 2k items can be selected in any one of 5 ) ways.

Each of these ways has the same probability. Of these (Zhh) ways, we

need to count the number of those in which exactly v of the m values of
X (and hence & — v of the # values of Y) appear in the lower % items.

But thisis (rg)( " ) Thus the p.d.f. of V is the hypergeometric p.d.f.

)

k(v)=Pr(V=v):W’ 7)=0,1,2,...,m,
i)

0 elsewhere,

where m + n = 2h.

The reader may be momentarily puzzled by the meaning of (h ﬁ v)
forv = 0,1,2,..., m Forexample, let m = 17, » = 3, so that 2 = 10.
Then we have (10:1 7)), v =0,1,..., 17. However, we take (h ﬁ v)

to be zero if 4 — v is negative orif # — v > u.

If m + #n is an odd number, say m + n = 2k + 1, it is left to the
reader to show that the p.d.f. 2(v) gives the probability that exactly v
of the m values of X are among the lower % of the combined 24 + 1
values; that is, exactly v of the m values of X are less than the median
of the combined sample.

If the distribution functions F(z) and G(y) are of the continuous
type, there is another rather simple test of the hypothesis that F(z) =
G(z), for all z. This test is based upon the notion of runs of values of X
and of values of Y. We shall now explain what we mean by runs. Let
us again combine the sample of m values of X and the sample of # values
of Y into one collection of m + % ordered items arranged in ascending
order of magnitude. With m = 7 and » = 8 we might find that the 15
ordered items were in the arrangement

XYYy XY T Yy 23T Yy.

Note that in this ordering we have underscored the groups of successive
values of the random variable X and those of the random variable Y.
If we read from left to right, we would say that we have a run of one
value of X, followed by a run of three values of Y, followed by a run of
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two values of X, and so on. In our example, there is a total of eight
runs. Three are runs of length 1; three are runs of length 2; and two
are runs of length 3. Note that the total number of runs is always
one more than the number of unlike adjacent symbols.

Of what can runs be suggestive? Suppose that with m = 7 and
n = 8 we have the following ordering:

TTXXX Y XX Yyyyyyy.

To us, this strongly suggests that F(z) > G(z). For if, in fact, F(2) =
G(z) for all z, we would anticipate a greater number of runs. And if the
first run of five values of X were interchanged with the last run of seven
values of Y, this would suggest that F(z) < G(z). But runs can be
suggestive of other things. For example, with m = 7 and #» = §,
consider the runs.

This suggests to us that the medians of the distributions of X and Y
may very well be about the same, but that the “spread” (measured
possibly by the standard deviation) of the distribution of X is con-
siderably less than that of the distribution of Y.

Let the random variable R equal the number of runs in the com-
bined sample, once the combined sample has been ordered. Because our
random variables X and Y are of the continuous type, we may assume
that no two of these sample items are equal. We wish to find the p.d.f.
of R. To find this distribution, when F(z) = G(2), we shall suppose that
all arrangements of the m values of X and the » values of Y have equal
probabilities. We shall show that

e —2ee ) ={ (" (G0 GO0 )

(1)
SR v [ [y

when 2% and 2k + 1 are elements of the space of R.
To prove formulas (1), note that we can select the m positions for

the m values of X from the m + n positions in any one of (m; %)

ways. Since each of these choices yields one arrangement, the probability
m + n

of each arrangement is equal to 1/( "

). The problem is now to
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determine how many of these arrangements yield X = », where # is an
integer in the space of R. First, let » = 2k + 1, where % is a positive
integer. This means that there must be £ + 1 runs of the ordered values
of X and % runs of the ordered values of Y or vice versa. Consider first
the number of ways of obtaining £ + 1 runs of the m values of X.
We can form & + 1 of these runs by inserting & “dividers” into the
m — 1 spaces between the values of X, with no more than one divider

k
can construct £ runs of the »# values of Y by inserting 2 — 1 dividers
into the # — 1 spaces between the values of Y, with no more than one

) ways. The

per space. This can be done in any one of (m ) ways. Similarly, we

n— 1

divider per space. This can be done in any one of (k _

joint operation can be performed in any one of (m; 1)(’; - i)

ways. These two sets of runs can be placed together to formr» = 2% + 1
runs. But we could also have % runs of the values of X and 2 + 1 runs
of the values of Y. An argument similar to the preceding shows that this

can be effected in any one of (ZL : 11) (n ; 1) ways. Thus

Pr(R =2k + 1) =(mk— 1)(2:1) +(7’:L:11)(n;1)

") |
m
which is the first of formulas (1).
If » = 2%, where & is a positive integer, we see that the ordered
values of X and the ordered values of Y must each be separated into

k runs. These operations can be performed in any one of (Z B i)

-1
and (2 _ 1) ways, respectively. These two sets of runs can be placed
together to form » = 2k runs. But we may begin with either a run of
values of X or a run of values of Y. Accordingly, the probability of 2k

runs is
Pr(R = 2%) = s

")

which is the second of formulas (1).

Sec. 9.5] The Equality of Two Distributions 325

If the critical region of this »un fest of the hypothesis Hy: F(2) =
G(z) forall zis of the form R < ¢, itis easy tocomputea = Pr(R < ¢; H,),
provided that m and #» are small. Although it is not easy to show, the
distribution of R can be approximated, with large sample sizes m and #,
by a normal distribution with mean

and variance

42 (v — Dp = 2)

m+n — 1

The run test may also be used to test for randomness. That is, it can
be used as a check to see if it is reasonable to treat X;, X,, ..., X;asa
random sample of size s from some continuous distribution. To facil-
tate the discussion, take s to be even. We are given the s values of X to
be z;, %, . . ., ¥, which are not ordered by magnitude but by the order
in which they were observed. However, there are s/2 of these values,
each of which is smaller than the remaining s/2 values. Thus we have a
“lower half” and an ‘“‘upper half” of these values. In the sequence
Xy, Xy, .. ., Xs, Teplace each value X that is in the lower half by the
letter L and each value in the upper half by the letter U. Then, for
example, with s = 10, a sequence such as

LLLLULUUUU

may suggest a trend toward increasing values of X; that is, these
values of X may not reasonably be looked upon as being the items of a
random sample. If trend is the only alternative to randomness, we can
make a test based upon R and reject the hypothesis of randomness if
R < ¢. To make this test, we would use the p.d.f. of R withm = n = s/2.
On the other hand if, with s = 10, we find a sequence such as

LHLHLHLHLMH,

our suspicions are aroused that there may be a nonrandom effect which
is cyclic even though R = 10. Accordingly, to test for a trend or a
cyclic effect, we could use a critical region of the form R < ¢; or
R = ¢,.

If the sample size s is odd, the number of sample items in the
‘upper half” and the number in the “lower half”’ will differ by one.
Then, for example, we could use the p.d.f. of R with m = (s — 1)/2
and » = (s + 1)/2, or vice versa. ’

«
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EXERCISES

9.24. Let 3.1, 5.6, 4.7, 3.8, 4.2, 3.0, 5.1, 3.9, 4.8 and 5.3, 4.0, 4.9, 6.2,
3.7, 5.0, 6.5, 4.5, 5.5, 5.9, 4.4, 5.8 be observed samples of sizes m = 9 and
n = 12 from two independent distributions. With £ = 3, use a chi-square
test to test, with « = 0.05 approximately, the equality of the two distri-
butions.

9.25. In the median test, with m = 9 and » = 7, find the p.d.f. of the
random variable V, the number of values of X in the lower half of the

combined sample. In particular, what are the values of the probabilities
Pr(V =0)and Pr (V = 9)?

9.26. In the notation of the text, use the median test and the data given
in Exercise 9.24 to test, with « = 0.05, approximately, the hypothesis of the
equality of the two Independent distributions against the alternative
hypothesis that F(z) > G(z). If the exact probabilities are too difficult to
determine for m = 9 and #» = 12, approximate these probabilities.

9.27. Using the notation of this section, let U be the number of observed
values of X in the smallest 4 items of the combined sample of m 4 # items.
Argue that

== (N2 )3 w=otim

The statistic U could be used to test the equality of the (100p)th percentiles,
where (m + n)p = d, of the distributions of X and Y.

9.28. In the discussion of the run test, let the random variables R; and
R, be, respectively, the number of runs of the values of X and the number of
runs of the values of Y. Then R = R, + R,. Let the pair (r,, r,) of integers
be in the space of (Ry, R,); then |7, — 75| < 1. Show that the joint p.d.f. of

R, and R, is 2(:"' - i) (f B i)/(m:n_ n) if », = 7,; that this joint p.d.f. is
1T 2

(m _ 1) (% _ 1)/(m - n) if |[r; —7y] = 1; and is zero elsewhere. Show
¥y — 1 Yo — 1 m

that the marginal p.d.f. of R, is (m - 1) (n + 1)/(m + n) rn=1..., m,
7, — 1 71 m

and is zero elsewhere. Find E(R,). In a similar manner, find E(R,). Compute

E(R) = E(R;) + E(Ry).

9.6 The Mann-Whitney—Wilcoxon Test

We return to the problem of testing the equality of two independent
distributions of the continuous type. Let X and Y be stochastically
independent random variables of the continuous type. Let F(x) and
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G(y) denote, respectively, the distribution functions of X and Y and let
X, Xy .., Xpand Y,, Y,, ..., Y, denote independent samples from
these distributions. We shall discuss the Mann-~Whitney-Wilcoxon test
of the hypothesis Hy: F(z) = G(z) for all values of z.

Let us define

Zi‘ = 1, Xi < Y

7 i

= 0, Xi > Y),
and consider the statistic
n m
U= Z Z Zij'

i=1 i=1
We note that

m

,Z Zi

i=1
counts the number of values of X that are lessthan Y,,7 = 1,2,..., #.

Thus U is the sum of these # counts. For example, with m = 4 and
n = 3, consider the observations

Ty < Yg < Ty < Xy < Yq < Xg < Yo

There are three values of x that are less than y,; there are four values
of x that are less than y,; and there is one value of x that is less than y;.
Thus the experimental value of Uis % =3 + 4 + 1 = 8.

Clearly, the smallest value which U can take is zero, and the largest
value is mn. Thus the space of U is {u; 4 = 0,1,2,..., mn}. If U is
large, the values of Y tend to be larger than the values of X, and this
suggests that IF(z) > G(z) for all z. On the other hand, a small value of
U suggests that I'(z) < G(z) for all z. Thus, if we test the hypothesis
H,: F(z) = G(2) for all z against the alternative hypothesis H;: F(2) =
G(z) for all z, the critical region is of the form U > c,. If the alternative
hypothesis is H;: F(z) < G(z) for all 2, the critical region is of the form
U < ¢,. To determine the size of a critical region, we need the distri-
bution of U when H, is true.

If u belongs to the space of U, let us denote Pr (U = u) by the
symbol A(u; m, n). This notation focuses attention on the sample sizes
m and #. To determine the probability A(«; m, ), we first note that we
have m + » positions to be filled by m values of X and # values of Y.

We can fill m positions with the values of X in any one of (m;; n)

ways. Once this has been done, the remaining # positions can be filled
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with the values of Y. When Hj, is true, each of these arrangements has
the same probability, 1 / (m;; ) The final right-hand position of an

arrangement may be either a value of X or a value of Y. This position
can be filled in any one of m + » ways, m of which are favorable to X
and » of which are favorable to Y. Accordingly, the probability that
an arrangement ends with a value of X is m/(m + ») and the prob-
ability that an arrangement terminates with a value of Y is n/(m + #).

Now U can equal # in two mutually exclusive and exhaustive ways:
(1) The final right-hand position (the largest of the m + # values) in the
arrangement may be a value of X and the remaining (m — 1) values of
X and the # values of Y can be arranged so as to have U = u. The
probability that U = #, given an arrangement that terminates with a
value of X, is given by A{u; m — 1, n). Or (2) the largest value in the
arrangement can be a value of Y. This value of Y is greater than m
values of X. If we are to have U = u, the sum of # — 1 counts of the m
values of X with respect to the remaining » — 1 values of ¥ must be
# — m. Thus the probability that U = #, given an arrangement that
terminates in a value of Y, is given by 2(u — m; m,n — 1). Accordingly,
the probability that U = u is

m
m + n

h(u, m, n) = (

m + n

)h(u; m— 1, %) + ( )h(u —m;m,n — 1).

We impose the following reasonable restrictions upon the function
h(u; m, n):

and

and
h{u; m,n) = 0, u<0,m=0n2>=0.

Then it is easy, for small values m and #, to compute these probabilities.
For example, if m = n = 1, we have

1h(—1;1,0) = }-

3 1 3.
B(1;0,1) + 34(0;1,0) = 1-0 +

>

+3-0

R(0;1,1) = 1A(0;0, 1) +
3 1=

B(1:1,1) =

(S
Njp=
=
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andif m = 1, n = 2, we have

h0;1,2) = 34(0;0,2) + 4(-1;1,1) =31+ %-0=1%,
M1 1,2) = 3h(1;0,2) + 34(0;1,1) =3-0 + 3-3 = 4,
B2 1,2) = $h(2;0,2) + 3h(1;1,1) = $-0 + 3.4 = &

In Exercise 9.29 the reader is to determine the distribution of U when
m=2n=1,m=2,n=2;m=1,n=3;andm =3, n =1

For large values of m and #, it is desirable to use an approximate
distribution of U. Consider the mean and the variance of U when the
hypothesis Hy: F(z) = G(z2), for all values of z, is true. Since U =
i % Z,, then

17=1 1=1

But
E(Z) = ()Pr(X, < Y,) + (O Pr(X,>Y,) =

[N

because, when H, is true, Pr (X, < Y,) = Pr (X, > Y)) = 1. Thus

LOSNE A | mn
E(U) = (_) = .
( ) 121 JZI 2 2
To compute the variance of U, we first find

EU) = 3 3 5 3 EZ,Zu)

k=1 h=1 3=1 1

S S E@+ 3 3 5 E(Z,Z)

1=11=1 =1 7=11=
k#3

n m m n n m m

+ 2 2 2EZ,Z,)+ 2 2 2 2 EZ,Zu)
TR R AL

Note that there are m# terms in the first of these sums, mn(n — 1)
in the second, m#n(m — 1) in the third, and mn(m — 1)(n — 1) in the
fourth. When H, is true, we know that X,, X,, Y,, and Y, 7 # 4,
j # k, are mutually stochastically independent and have the same
distribution of the continuous type. Thus Pr (X, < Y,) = . Moreover,
Pr(X, <Y, X, <Y, =1 because this is the probability that a
designated one of three items is less than each of the other two.
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Similarly, Pr (X, < Y,, X, < Y,) = :. Finally, Pr(X; < Y, X, < Y})
=Pr(X, <Y)Pr(X, <Y, =L Hence we have

E(Z;) = (1) Pr(X, <Y) =4
E(Z,Z,) =) Pr(X, <Y, X, <Y,) =1 j#k
EZ,Z,,)=(1M1)Pr(X,<Y,X,<Y)=14 i#h,
and
E(Z,Z,)=1H1)Pr(X,<Y,X,<Y,) =1, T hj# kR
Thus

mn  wmun — 1)  mum — 1)  mum — 1)(n — 1)

E(U?) = —
=gt = —+t—5— + i
and
02_mn[l+n—1 m—1 (m—-1mn-1) mn
A T B 4 _T]
_mn(m 4+ n + 1)
= v :

Although it is fairly difficult to prove, it is true, when F(z) = G(z) for
all z, that

mn
V-7
A/mn(m +n + 1)
12

has, if each of m and » is large, an approximate distribution that
is #(0, 1). This fact enables us to compute, approximately, various
significance levels.

Prior to the introduction of the statistic U in the statistical litera-
ture, it had been suggested that a test of Hy: F(z) = G(z), for all z, be
based upon the following statistic, say 7" (not Student’s ¢). Let T be the
sum of the ranks of Y,, Y,,..., Y, among the m + # items X,, ...,
X Yy, ..., Y, once this combined sample has been ordered. In
Exercise 9.31 the reader is asked to show that

wn + 1)

U=T -
2

This formula provides another method of computing U and it shows that
a test of H,, based on U is equivalent to a test based on T'. A generaliza-
tion of T is considered in Section 9.8.
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Example 1. With the assumptions and the notation of this section, let
m = 10 and » = 9. Let the observed values of X be as given in the first row
and the observed values of Y as in the second row of the following display:

43,59,49,3.1,53,64, 6.2, 3.8,75,5.8,
55,79,6.8,9.0,5.6,6.3, 85, 4.6, 7.1.

Since, in the combined sample, the ranks of the values of y are 4, 7, 8, 12, 14,
15, 17, 18, 19, we have the experimental value of T to be equal to { = 114.
Thus # = 114 — 45 = 69. If F(z) = G{2) for all z, then, approximately,

U— 45

> 1.645) = Pr (U > 65.146).

Accordingly, at the 0.05 significance level, we reject the hypothesis
H,: F(z) = G(2), for all 2, and accept the alternative hypothesis H;: F(z) >
G(2), for all z.

EXERCISES

9.29. Compute the distribution of U in each of the following cases:
@m=2,n=1bm=2,n=2;(c)m=1,n=3;,(d)m=3,n=1

9.30. Suppose the hypothesis Hy: F(z) = G(z), for all z, is not true. Let
p = Pr (X, < Y,). Show that U/mn is an unbiased estimator of p and that it
converges stochastically to p as m — 00 and # — co.

9.31. Show that U =T — [n(n + 1)])/2. Hint. Let Y4, < YV, <--- <
Y, be the order statistics of the random sample Y, Y,, ..., Y,. If R, is the
rank of Yy, in the combined ordered sample, note that Y|, is greater than
R, — 4 values of X.

9.32. In Example 1 of this section assume that the values came from
two independent normal distributions with means g, and ps,, respectively,
and with common variance ¢2. Calculate the Student’s £ which is used to test
the hypothesis Hy: py = po. If the alternative hypothesis is H,: py < pg, do
we accept or reject H, at the 0.05 significance level?

9.7 Distributions Under Alternative Hypotheses

In this section we shall discuss certain problems that are related
to a nonparametric test when the hypothesis H, is not true. Let X and
Y be stochastically independent random variables of the continuous
type with distribution functions F(z) and G(y), respectively, and
probability density functions f(z) and g(y). Let X, X,, ..., X,
and Y,, Y, ..., Y, denote independent random samples from these
distributions. Consider the hypothesis Hqy: F(z) = G{z) for all values of
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2. It has been seen that the test of this hypothesis may be based upon
the statistic U, which, when the hypothesis H, is true, has a distribution
that does not depend upon F(z) = G(z2). Or this test can be based upon
the statistic 7 = U + n(n + 1)/2, where T is the sum of the ranks of
Y, Y, ..., Y, in the combined sample. To elicit some information
about the distribution of 7" when the alternative hypothesis is true, let
us consider the joint distribution of the ranks of these values of Y.

Let Y3, < Y <--- < Y, be the order statistics of the sample
Y,, Y,,..., Y, Order the combined sample, and let R, be the rank of
Yo i=1,2,...,n Thus there are ¢ — 1 values of ¥ and R, — ¢
values of X that are less than Y ,,. Moreover, there are R; — R, _; — 1
values of X between Y_,, and Y. If it is given that Y4, = y, <
Yo =ys < - < Y = y, then the conditional probability

(1) Pr(Rl=7’1:R2=72:---;Rn="nlyl<?/2<"'<3/n),

where ry < 75 <--- < #, < m + % are positive integers, can be com-
puted by using the multinomial p.d.f. in the following manner. Define
the following sets: 4, = {&; —0 < & < Y1}, 4, = {&; 9;_1 < x < y;},
1=2,...,m, A,s; = {&;y, < x < 0}. The conditional probabilities
of these sets are, respectively, p; = F(y,), ps = F(ys) — F(yy), -
Pn = Fly,) — Fy,_1), Prni1 = 1 — Fly,). Then the conditional prob-
ability of display (1) is given by

ml T PRI e eea pmn s

=D =7 = Dy — 7y — DI+ 1 — )

To find the unconditional probability Pr (R, = 7;, Ry = 7, ...,
R, = 7,), which we denote simply by Pr (74, ..., 7,), we multiply the
conditional probability by the joint p.d.f. of Y3, < Y5, <+ < Y,

namely #!g(y,)g(y,) - - -g(y,), and then integrate on ¥y, ¥q, ..., ¥n
That is,

Pr(ry, 79, ...,7,) = fl"'ﬁlﬁlf’r Fr e Talys < < g
X gy) - 8Wn) W1+ - WYy,

where Pr (7, ..., 7]y, <--- < y,) denotes the conditional probability
in display (1).
Now that we have the joint distribution of R,, R, ..., R,, we can

find, theoretically, the distributions of functions of Ry, R,, ..., R, and,

in particular, the distribution of 7' = i R,. From the latter we can find
1

that of U = T — n(n + 1)/2. To point out the extremely tedious
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computational problems of distribution theory that we encounter,
we give an example. In this example we use the assumptions of this
section.

Example 1. Suppose that an hypothesis H, is not true but that in fact
f@) =1, 0 <z < 1, zero elsewhere, and g(y) = 2y, 0 < y < 1, zero else-
where. Let m = 3 and # = 2. Note that the space of U is the set {#; u = 0,
1,..., 6. Consider Pr (U = 5). Thisevent U = 5 occurs when and only when
R, = 3, R, = 5, since in this section R; < R, are the ranks of Y5, < Yy
in the combined sample and U = R, + R; — 3. Because F(z) = 2,0 <z < 1,
we have

Pr(U =5)=Pr(R, =3, Ry = 5)

Y2 31! -
f J 3 y3(y2 — v1) yz Y1) o1 (29,)(292) dyr dys

—24‘j (yz—y>d?/2—3s

Consider next Pr (U = 4). The event U = 4 occurs if R; = 2, Ry = 5 orif
R, = 3, R, = 4. Thus

Pr(U=4)=Pr(R, =2 R,=5)+Pr(R, =3, R, = 4);

the computation of each of these probabilities is similar to that of
Pr (R, = 3, R, = 5). This procedure may be continued until we have
computed Pr (U = u) foreachue{u;u =0,1,..., 6}.

In the preceding example the probability density functions and the
sample sizes m and n were selected so as to provide relatively simple
integrations. The reader can discover for himself how tedious, and even
difficult, the computations become if the sample sizes are large or if the
probability density functions are not of a simple functional form.

EXERCISES

9.33. Let the probability density functions of X and Y be those given in
Example 1 of this section. Further let the sample sizes be m = 5and n = 3.
If Ry < Ry < R, are the ranks of Y4, < Y < Y, in the combined
sample, compute Pr (R; = 2, R, = 6, R; = 8§).

9.34. Let X,, X,,..., X,, be a random sample of size m from a distri-
bution of the continuous type with distribution function F(z) and p.d.f.
F'(x) = f(x). Let Y, Y,, ..., Y, be a random sample from a distribution
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with distribution function G(y) = [F(y))%, 0 < 6. If 8 # 1, this distribution
is called a Lehmann alternative. With 6 = 2, show that

2% (rg + Vg + 2)---(r, + 1~ 1)
(m + n
m

Pr{p,7,...,7,) =

)(m+n+ 1)(m+n+2)---(m+2n)'

9.35. To generalize the results of Exercise 9.34, let G(y) = A[F(y)],
where #(z) is a differentiable function such that 4(0) = 0, 4(1) = 1, and
A(z) > 0,0 < z < 1. Show that

_EWW (V) B (V)]
W)

m
where V;, < V, <-+- < V., are the order statistics of a random sample of
size m + » from the uniform distribution over the interval (0, 1).

Prry, 7 ....7,)

9.8 Linear Rank Statistics

In this section we consider a type of distribution-free statistic
that is, among other things, a generalization of the Mann-Whitney—
Wilcoxon statistic. Let V, V,, ..., Vy be a random sample of size N
from a distribution of the continuous type. Let R; be the rank of V,
among Vi, Vo ..., Vy, 2=1,2,...,N; and let ¢(z) be a scoring
function defined on the first N positive integers—that is, let ¢(1), ¢(2),

.., ¢(N) be some appropriately selected constants. If a,, a,, ..., ay
are constants, then a statistic of the form

N
L= 3 acR)
i=1
is called a linear rank statistic.
To see that this type of statistic is actually a generalization of both

the Mann-Whitney-Wilcoxon statistic and also that statistic associ-
ated with the median test, let N = m 4+ #n and

V=X ..., V= Xp Va1 = Y1,..., Vy = Y,

These two special statistics result from the following respective assign-
ments for ¢(¢) and a,, a,, . . ., ay:

(a) Takec(d) =4, a4, =---=ap,=0and a,,, =---=ay =1, so
that
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which is the sum of the ranks of Y, Y,, ..., Y, among the m + #nitems
(a statistic denoted by T in Section 9.6).

(b) Take ¢(i) = 1, provided that ¢ < (m + n)/2, zero otherwise. If
a, = =a,=landa,,, = = ay =0, then

L= 3 aelR) = 5 oR),

which is equal to the number of the m values of X that are in the lower -
half of the combined sample of m + # items (a statistic used in the
median test of Section 9.5).

To determine the mean and the variance of L, we make some
observations about the joint and marginal distributions of the ranks
Ry, R,, ..., Ry. Clearly, from the results of Section 4.6 on the distri-
bution of order statistics of a random sample, we observe that each
permutation of the ranks has the same probability,

1
PI‘(Rl = 1'1, R2 = 72""’RN = 1’N) = “IV!’
where 7., 75, . . ., 7y is any permutation of the first N positive integers.
This implies that the marginal p.d.f. of R, is

1
gi(ry) =5 rnn=12,...,N,

zero elsewhere, because the number of permutations in which Ry = 7,
is (N — 1)! so that

. Z ST TN
Bll(ry ,era T 1aTH 4 L oeees ) N' N' N

In a similar manner, the joint marginal p.d.f. of R; and Ry, ¢ # j, is

1
gij(rf’ 7']-) = N(N — 1)’ 7y # js
zero elsewhere. That is, the ( — 2)-fold summation

1 (V-2 1
ZmZm= Nl NV - 1)

where the summation is over all permutations in which R; = 7, and
R, =7,
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Among other things these properties of the distribution of R,, R,
., Ry imply that

E[(R é n( )=0(1) +-1-\}+c(N).

If, for convenience, we let c(k) = c,, then

By = 5 (%) -2

say, foralli = 1,2,..., N. In addition, we have that

A = 3 o) = (5) = 3 Lt

foralls =1,2,...,N.
A simple expression for the covariance of ¢(R;) and ¢(Rj), 1 #7,isa
little more difficult to determine. That covariance is

Be(R) = fe®) — ) = 3 5 L A6 0

However, since

0= -0]-3 G-9+336-06 -0

k=1 k#h

the covariance can be written simply as
N ~\2
E{[c¢(R) — e(R) — & I el
U= -2 w5
With these results, we first observe that the mean of L is
N N N
M = ELEI “tC(Ri)] = 21 @E[c(R)] = 3 af= N,
< s <
where @ = (3 a;)/N. Second, note that the variance of L is

o =

i

ao2my + Z;g aa,E{[c(R;) — C][¢(R)) — &)}
& (e — 0)*
j[—kzl N(N - 1)]
-3 3 e

i=1 i#]

™

i
M=
«
N
M=
>
=
\xJ)
e
+
M
M
[
®

-
1]
"
[}
-

I
—
M=
2z =
=1
e
o
| IU—
f—
M=
N

s
"
=
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However, we can determine a substitute for the second factor by observ-
ing that

N N
NS (@-a32=NSY a — N2g2
i=1 i=1
N N 2
N 5ot~ (5 a)
i=1 i=1
N N
-N S a- |5 e+ 53]
i=1 i=1 1#7
N
=N -1) 3 a2 — > > aa,.

i=1 i#7

So, making this substitution in a%, we finally have that

r-lE sl

:Nl—lz g

In the special case in which NV = m + # and
N
L= > coR)
i=m+1
the reader is asked to show that (Exercise 9.36)
mn Y

b=, of = g 2 e - 9
=1

A further simplification when ¢, = c(k) = & yields

nim + n + 1) g mmim 4+ n+ 1)
Hr = 2 ERCE 12 ’
these latter are, respectively, the mean and the variance of the statistic
T as defined in Section 9.6.

As in the case of the Mann—Whitney-Wilcoxon statistic, the deter-
mination of the exact distribution of a linear rank statistic L can be
very difficult. However, for many selections of the constants a,, s, . . .,
ay and the scores ¢(1), ¢(2), ..., ¢(N), the ratio (L — p;)/o, has, for
large N, an approximate distribution that is »(0, 1). This approxima-
tion is better if the scores ¢(k) = ¢, are like an ideal sample from a
normal distribution, in particular, symmetric and without extreme
values. For example use of normal scores defined by

f \/_ exp wz) dw
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makes the approximation better. However, even with the use of ranks,
¢(k) = k, the approximation is reasonably good, provided that N is
large enough, say around 30 or greater.

In addition to being a generalization of statistics such as those of
Mann, Whitney, and Wilcoxon, we give two additional applications of
linear rank statistics in the following illustrations.

Example 1. Let X,, X,, ..., X, denote # random variables. However,
suppose that we question whether they are items of a random sample due
either to possible lack of mutual stochastic independence or to the fact that
X,, X,, ..., X, might not have the same distributions. In particular, say
we suspect a trend toward larger and larger values in the sequence X, X,,
..., X,. If R, = rank (X)), a statistic that could be used to test the alterna-
n

tive (trend) hypothesis is L = > 4R;. Under the assumption (H,) that the
i=1

»n random variables are actually items of a random sample from a distri-

bution of the continuous type, the reader is asked to show that (Exercise
9.37)

_nn+ 12, i+ 1)n — 1)
ML = 4 ’ L — 144 .

The critical region of the test is of the form L > 4, and the constant 4 can be
determined either by using the normal approximation or referring to a tabu-
lated distribution of L so that Pr (L > 4; H,) is approximately equal to a
desired significance level c.

Example 2. Let (X,,Y,), (X,, Y,),..., (X,, Y,) be a random sample
from a bivariate distribution of the continuous type. Let R, be the rank of
X; among X, X,, ..., X, and Q, be the rank of Y, among Y,, Y,,..., Y,.
If X and Y have a large positive correlation coefficient, we would anticipate
that R; and Q, would tend to be large or small together. In particular, the

correlation coefficient of (R, Q;), (Rg, @), ..., (Ry, @), namely the Spear-
man rank correlation coefficient,

1=1
J3 ®-Rr 3 0 -0r
would tend to be large. Since R;, R,,..., R, and Q,, Q,,..., Q, are

permutations of 1,2,...,#s, this correlation coefficient can be shown
(Exercise 9.38) to equal

121 RQy — n(n + 1)%/4
n(n? — 1)/12

>
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which in turn equals

g;un—m
1‘_n(n2—1)

From the first of these two additional expressions for Spearman’s statistic,

it is clear that i R0, is an equivalent statistic for the purpose of testing
i=1 .

the stochastic independence of X and Y, say H,. However, note that if Hy

is true, then the distribution of i Q,R,, which is not a linear rank statistic,
’ =1

n

and L = 3 iR, are the same. The reason for this is that the ranks Ry, Ry,
1=1

R and the ranks Q,, Q,, . . ., @, are stochastically independent because
of the stochastic independence of X and Y. Hence, under H,, pairing R,
R R. at random with 1,2, ..., % is distributionally equivalent to
2 n . ; : .
pairing those ranks with 01, Q2 - - -, Qn, which is 51rr.1p1y a permutation of
1,2,...,n The mean and the variance of L is giv;an in Example 1.

EXERCISES

9.36. Use the notation of this section. .
S ¢(R;) are equal to

(a) Show that the mean and the variance of L = "

i
the expressions in the text.

N
(b) In the special case in which L = > R, show that u; and o? are

t=m+1

those of T considered in Section 9.6. Hint. Recall that

v, NN+ D@N+1
2K

9.37. If X,, X5, ..., X, is a random sample from a distribution of the
continuous type and if R, = rank (X)), show that the mean and tbe variance
of L = 3 iR, are n(n + 1)/4 and n*(n + 1)2(n — 1)/144, respectively.

9.38. Verify that the two additional expressions, given in Example 2,
for the Spearman rank correlation coefficient are equivalent to the first one.
Hint. S R2 = n(n + 1)(2n + 1)/6 and 3 (R, — 0)22 = > (R? + Q8)/2 —
2 RQ.

9.39. Let X,, X,, ..., X¢ be a random sample of size n = 6 from a
distribution of the continuous type. Let R, = rank (X,) and take a, = :ze =9,
a, = as = 4, a; = a, = 1. Find the mean and the variance of L = igl a,R,,

a statistic that could be used to detect a parabolic trend in X, X, o0, X



340
Nonparametric Methods [Ch. 9

9.40. In the notation of this section show that the covariance of the two

. . . N
linear rank statistics, L, = 21 ac(R;) and L, = % bd(R,), is equal to
i= =1 v

i

2, @ =86~ b) 3 (6, — ), — D/ — 1),

N
k=1
where, for convenience, d, = d(k).

Chapter 10
Sufficient Statistics

10.1 A Sufficient Statistic for a Parameter

In Section 6.2 we let X,, X,,..., X, denote a random sample of
size # from a distribution that has p.d.f. f(x; 8}, 8 € Q. In each of several
examples and exercises there, we tried to determine a decision function
w of a statistic Y = «(X,, X,,..., X,) or, for simplicity, a function w
of X,, X,,..., X, such that the expected value of a loss function
Z(0, w) is a minimum. That is, we said that the “best” decision
function w(X,, X,, ..., X,) for a given loss function .#(6, w) is one that
minimizes the risk R(6, w), which for a distribution of the continuous
type is given by

RO, w) = [7 - [7 L0, wlxy, ..., 2)]f @05 0)- - f@a; 0) davy - - -dup.

In particular, if E[w(X,,.... X,)] = 8 and if £(8, w) = (6 — w)?, the
best decision function (statistic) is an unbiased minimum variance
estimator of §. For convenience of exposition in this chapter, we con-
tinue to call each unbiased minimum variance estimator of 6 a best
estimator of that parameter. However, the reader must recognize that
“best”’ defined in this way is wholly arbitrary and could be changed by
modifying the loss function or relaxing the unbiased assumption.

The purpose of establishing this definition of a best estimator of 6 is
to help us motivate, in a somewhat natural way, the study of an
important class of statistics called sufficient statistics. For illustration,
note that in Section 6.2 the mean X of a random sample of X, X,, ...,

341
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X, of size w = 9 from a distribution that is #(0, 1) is unbiased and has
variance less than that of the unbiased estimator X,. However, to
claim that it is a best estimator requires that a comparison be made
with the variance of each other unbiased estimator of 8. Certainly, it is
impossible to do this by tabulation, and hence we must have some
mathematical means that essentially does this. Sufficient statistics
provide a beginning to the solution of this problem.

To understand clearly the definition of a sufficient statistic for a
parameter §, we start with an illustration.

Example 1. Let X, X,, ..., X, denote a random sample from the
distribution that has p.d.f.

flz; 6) = 6=(1 — 6)*~=, x=010<0<1;
= 0 elsewhere.

The statistic Y, = X; + X, + .-+ X, has the p.d.1f.

g1(v1; ) = (:1)0%(1 —oru, oy =0,1,...,m,
= 0 elsewhere.
What is the conditional probability
PrX;=a, X, =2,5,...,X, =2,]Y, = y,) = P(4]B),

say, where y; = 0, 1,2, ..., n? Unless the sum of the integers z;, z,, ..., 2,
(each of which equals zero or 1) is equal to y,, this conditional probability
obviously equals zero because 4 N B = @. But in the case y, = > z,, we
have that 4 C B so that A N B = 4 and P(4|B) = P(4)/P(B); thus the
conditional probability equals

671(1 — 0)17%16%2(1 — 6)! 2. - 6%a(l — 6)1 "% g37(1 — f)»-32
n e T n
()00 = o ()t - o
1

()

>

Slpce Yr=12 + z, + - - - + z, equals the number of 1’s in the »# independent
trials, this conditional probability is the probability of selecting a particular

arr.a'ngement of y, I's and (n — y,) zeros. Note that this conditional prob-
ability does not depend upon the value of the parameter 6.

In general, let g,(y,; 6) be the p.df. of the statistic Y; =
u (X, Xo, ..., X,), where X;, X,, ..., X, is a random sample arising
from a distribution of the discrete type having p.d.f. f(z; 6), 8 € Q. The
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conditional probability of X; = x;, Xy = %3,..., X, =z, given
Y, = y,, equals

flas; 0)f(@sg; 6)- - -f (@ 6)

gl[ul(xl: Loy + oy xn); 0] ’

provided that z,, %, . ., @, are such that the fixed y; = u,(%1,25, - .., %),
and equals zero otherwise. We say that Y, = (X, Xogyoorr X0)
is a sufficient statistic for 8 if and only if this ratio does not depend
upon 6. While, with distributions of the continuous type, we cannot
use the same argument, we do, in this case, accept the fact that if
this ratio does not depend upon 6, then the conditional distribution of
X, X, ..., X, given Y, = y,, does not depend upon 8. Thus, in both
cases, we use the same definition of a sufficient statistic for 6.

Definition 1. Let X,, X,, ..., X, denote a random sample of size
n from a distribution that has p.df. f(z; 6), 6 € Q. Let Y, =
uy (X4, Xg, . - ., X,) be a statistic whose p.d.f.is g,(y,; 6). Then Y isa
sufficient statistic for 6 if and only if

[y 0)f (@25 0) - - - (%03 9)

= H(xy, g, - - -, %y),

gll:ul(xly Loy v v vy xn)x 0] ( b )

where H(x,, %3, ..., %,) does not depend upon 6 e Q for every fixed
value of y; = #y(%1, Zg, - - -, %)

s

Remark. Why we use the terminology “sufficient statistic”” can be
explained as follows: If a statistic Y, satisfies the preceding definition, then
the conditional joint p.d.f. of X;, X,, ..., X,, given Y, = ¥, and hence of
each other statistic, say Yy = u5(X;, X5, ..., X,), does not depend upon the
parameter 8. As a consequence, once given Y,; = y,, it is impossible to use
Y, to make a statistical inference about 8; for example, we could not find a
confidence interval for 6 based on Y. In a sense, Y, exhausts all the informa-
tion about 6 that is contained in the sample. It is in this sense that we
call Y, a sufficient statistic for 6. In some instances it is preferable to call Y,
a sufficient statistic for the family {f(x; 6); 6 € Q} of probability density
functions.

We now give an example that is illustrative of the definition.

Example 2. Let Y, < Y, <---< Y, denote the order statistics of a
random sample X, X,, ..., X, from the distribution that has p.d.f.

flz; 6) = e~ =9, § < x < o0 —0<b <00,

0 elsewhere.
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The p.d.f. of the statistic Y, is

&1(yy; 0) = ne @179, 0 <y, <o,
= () elsewhere.

Thus we have that

g~ (@ —Bg-(xy-0), . e~ E—0) gLy~ Tg =Ty,
£:(min z;; 6) T pe™minz)
which is free of 8 for each fixed , = min (;), since y, < 2,t=1,2,...,n.

That is, neither the formula nor the domain of the resulting ratio depends
upon 8, and hence the first order statistic Y, is a sufficient statistic for 6.

If we are to show, by means of the definition, that a certain statistic
Y, is or is not a sufficient statistic for a parameter 8, we must first of
all know the p.d.f. of Y,, say g:(y; 6). In some instances it may be
quite tedious to find this p.d.f. Fortunately, this problem can be avoided
if we will but prove the following factorization theorem of Neyman.

Theorem 1. Let X, X,,..., X, denote a random sample
Sfrom a distribution that has p.d.f. f(x; 0), 0 € Q. The statistic Y, =
u (X, Xo, ..., X,) 1s a sufficient statistic for 0 if and only if we can find
two nonnegative functions, ky and ky, such that

f(le 6)f(x2, 0) oo f(xn’ 0) = kl[“l(xl’ xz» ey xn): 0]k2(x1) xZ: ] xn):

where, for every fixed value of y, = (%, &g, . . ., T,), Ra®1, 2o, ..., 2,)
does not depend upon 6.

Proof. We shall prove the theorem when the random variables are
of the continuous type. Assume the factorization as stated in the
theorem. In our proof we shall make the one-to-one transformationy, =
Ue( Xy ey Tn)y Yo = UgZy, ooy Tp), o ooy Y = Uy(Xy, . .., ,) having the
inverse functions o; = @, (Y1, ..+, Yn) Tg = Wo(Y1, - o) Yn)s oo, Ty =
wo(yy, - - -, ¥, and Jacobian J. The joint p.d.f. of the statistics Y, Y,

, Y, is then given by

EW1 Yar - s Yns 0) = kiys; Oko(wy, w,, . . ., wn)l]l’

where w;, = w;(¥1,Ya,---,Yn), ¢ = 1,2,...,n. The p.df. of Y, say
g1(yy; 0), is given by

a0 = |7 [T e Yo yas ) dys- - dy,

-— 0

kl(yl; 9) ffw o 'fiow |]Ik2(wlr w2: LECIE ) wn) dyz‘ N ‘dyn.
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Now the function k,, for every fixed value of y; = uy(2y,..., 2,),
does not depend upon 6. Nor is 6 involved in either the Jacobian J or
the limits of integration. Hence the (» — 1)-fold integral in the right-
hand member of the preceding equation is a function of y, alone, say
m(y;). Thus

81(y1; 0) = ki(ys; O)mly,).
If m(y,) = 0, then g,(y,; 8) = 0. If m(y,) > 0, we can write

gl (T, - . ., T,); 9],
mluy(xq, .. ., T,)]

Ryu ey, ..., 2,); 0] =

and the assumed factorization becomes

] ) Roloey, . oo, )
z.;0)- - flx = . ; 2 .
Sy 0) - flag; 0) = galws (@1, . .., 2,); 6] Mty (e, - s 2]
Since neither the function %, nor the function m depends upon 6, then
in accordance with the definition, Y, is a sufficient statistic for the
parameter 6.

Conversely, if Y, is a sufficient statistic for 6, the factorization can
be realized by taking the function %; to be the p.d.f. of Y, namely the
function g;. This completes the proof of the theorem.

Example 3. Let X,, X,, ..., X, denote a random sample from a distri-
bution that is #(f, ¢2), —00 < 0 < o0, where the variance o2 is known. If

z = i x;/n, then
1

A S YRy
because
ZZ(x—x)(x—())—Z(x_e)g( —® =0

i=1

Thus the joint p.d.f. of X, X,, ..., X, may be written
1 n
— 6)%/2
vz o[- 2 - o]

= {exp [—n(® - o)Z/zafq}{eXP -2 o - f)z/zaz]}.
(0\/211')"

Since the first factor of the right-hand member of this equation depends upon
Zy, g, . . ., %, only through Z, and since the second factor does not depend
upon 6, the factorization theorem implies that the mean X of the sample is,
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for any particular value of ¢?, a sufficient statistic for 6, the mean of the
normal distribution.

We could have used the definition in the preceding example because
we know that X is #(6, o?/n). Let us now consider an example in which
the use of the definition is inappropriate.

Example 4. Let X,, X,, ..., X, denote a random sample from a distri-
bution with p.d.f.

flz; 6) = 62°-1, O<z<1,

0 elsewhere,

il

where 0 < 6. We shall use the factorization theorem to prove that the
product #,(X,;, X,,..., X,) = X;X,---X, is a sufficient statistic for 6.
The joint p.d.f. of X, X,,..., X, is

o) = [P 5 )

xlxz. ..
where 0 < 2, < 1,7 = 1,2,..., n In the factorization theorem let

B[y (2, 2, . . ., 2,); 0] = O (wy2y- - -,)0
and

1

Ro(y, gy ..y 2y) = ——— .
xlxzn - -xn

Since ko1, %o, - . -, &,) does not depend upon 6, the product X,X,- - X,
1s a sufficient statistic for 6.

There is a tendency for some readers to apply incorrectly the
factorization theorem in those instances in which the domain of
positive probability density depends upon the parameter 6. This is
due to the fact that they do not give proper consideration to the domain
of the function Zy(zy, z,,...,x,) for every fixed value of y; =
(%), @y, . . ., #,). This will be illustrated in the next example.

Example 5. In Example 2, with f(2; 6) = ¢~@-9 § < 2z < 00, —00 <
8 < oo, it was found that the first order statistic Y, is a sufficient statistic
for 8. To illustrate our point, take # = 3 so that the joint p.d.f. of Xy, X,, X,
is given by
e~ (F1 0@y =g (x3 -0 <z <o

1 =1, 2, 3. We can factor this in several ways. One way, with » = 3, is
given in Example 2. Another way would be to write the joint p.d.f. as the
product

e—(maxz¢)+388—:cl—xz—x3+maxx‘.
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Certainly, there is no 8 in the formula of the second factor, and it might be
assumed that Y5 = max X; is itself a sufficient statistic for . But what is the
domain of the second factor for every fixed value of y; = maxz;? If
max %; = z,, the domain is 8 < 2, < x;, § < z3 < 2y; if max z; = z,, the
domain is 0 < z; < z,, 0 < x3 < x,; and if max z; = x;, the domain is
0 < x; < a3, 8 < xy < z5. That is, for each fixed y3 = max z;, the domain
of the second factor depends upon 6. Thus the factorization theorem is not
satisfied.

If the reader has some difficulty using the factorization theorem
when the domain of positive probability density depends upon 8, we
recommend use of the definition even though it may be somewhat
longer.

Before taking the next step in our search for a best statistic for a
parameter 6, let us consider an important property possessed by a
sufficient statistic Y, = #,(X,, X,,..., X,) for 0. The conditional
p.d.f. of another statistic, say Y, = #y(X;, Xo, ..., X,), given Y, = y,,
does not depend upon 4. On intuitive grounds, we might surmise that
the conditional p.d.f. of Y, given some linear function aY, + b,
a # 0, of Y,, does not depend upon 6. That is, it seems as though the
random variable aY; + b is also a sufficient statistic for . This con-
jecture is correct. In fact, every function Z = u(Y,;), or Z =
wluy (X, Xo, ..o, X)) = v(X, X,, ..., X,), not involving 4, with a
single-valued inverse Y, = w(Z), is also a sufficient statistic for 6. To
prove this, we write, in accordance with the factorization theorem,

Slxy; 0)- - - flxn; 0) = kylug(xy, @, . . ., )5 ORo(@y, @5, . . ., 2,).

However, y, = w(z) or, equivalently, u,(z,, Zs,..., Z,) = wv(ry, %s,
.., %,)], which is not a function of 6. Hence

f@y; 0) - -flaey; 0) = kiwlv(xy, ..., x,)]; Okalxy, 2o, . . ., 2,).

Since the first factor of the right-hand member of this equation is a
function of z = v(xy, ..., z,) and 6, while the second factor does not
depend upon 6, the factorization theorem implies that Z = u(Y,) is
also a sufficient statistic for 6.

The relationship of a sufficient statistic for ¢ to the maximum
likelihood estimator of 6 is contained in the following theorem.

Theorem 2. Let X,, X,, ..., X, denote a rvandom sample from a
distribution that has p.d.f. f(x; 6), 0 € Q. If a sufficient statistic Y, =
(X1, X, - - -, X,) for 0 exists and if a maximum likelihood estimator 0
of 0 also exists uniquely, then  is a function of Y, = uy(X,, Xs, ..., X,).
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Proof. Let g,(y,; 0) be the p.d.f. of Y,. Then by the definition of
sufficiency, the likelihood function

L(0; %y, o - - -, @) = fl@y; 0)f(2g; 0) - -f(2n; 0)
= giluy(y, ..., 2,); O H(xy, ..., 2,),

where H(z,, . . ., z,) does not depend upon 6. Thus L and g,, as functions
of §, are maximized simultaneously. Since there is one and only one
value of ¢ that maximizes L and hence g,[u (x4, ..., ,); 0], that value
of 6 must be a function of u,(x,, 2y, ..., x,). Thus the maximum
likelihood estimator § is a function of the sufficient statistic Y, =
uy( Xy, Xo, ..., X)-

EXERCISES

10.1. Let Xy, X,, ..., X, be a random sample from the normal distribu-
tion #(0, §), 0 < 6 < oo. Show that i X? is a sufficient statistic for 6.
1

10.2. Prove that the sum of the items of a random sample of size # from
a Poisson distribution having parameter 6, 0 < 8 < o0, is a sufficient
statistic for 6.

10.3. Show that the nth order statistic of a random sample of size # from
the uniform distribution having p.d.f. f(x; 6) = 1/6,0 <z < 6,0 < 0 < o0,
zero elsewhere, is a sufficient statistic for 8. Generalize this result by consider-
ing the p.d.f. flz; 0) = Q(O)M(z), 0 <z < 8, 0 < 8 < o0, zero elsewhere.
Here, of course,

o 1
M = -
j o M@ dz =5,
10.4. Let X,, X,, ..., X, be a random sample of size # from a geometric

distribution that has p.d.f. f(z; §) = (1 — 6)*0,2=10,1,2,...,0 < 0 < 1,

n
zero elsewhere. Show that > X, is a sufficient statistic for 8.
I

10.5. Show that the sum of the items of a random sample of size # from
a gamma distribution that has p.d.f. f(z; 6) = (1/8)e~*%, 0 <z < o,
0 < 6 < o0, zero elsewhere, is a sufficient statistic for 6.

10.6. In each of the Exercises 10.1, 10.2, 10.4, and 10.5, show that the
maximum likelihood estimator of 6 is a function of the sufficient statistic
for 6.

10.7. Let X, X,,..., X, be a random sample of size » from a beta
distribution with parameters o = 6 > 0 and 8 = 2. Show that the product
XX, X, is a sufficient statistic for 0.
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10.8. Let X, X, ..., X, be a random sample of size # from a distribution
with p.d.f. f(z; &) = 1a[l + (x — 0)%], —0 < ¥ < 0, —p <« 0 < o0. Can
the joint p.d.f. of Xy, X,, ..., X, be written in the form given in Theorem 1?
Does the parameter ¢ have a sufficient statistic?

10.2 The Rao-Blackwell Theorem

We shall prove the Rao—Blackwell theorem.

Theorem 3. Let X and Y denote random variables such that Y has
mean w and positive variance oy. Let E(Y|x) = o(x). Then Elp(X)] = p
and o2 x, < of.

Proof. We shall give the proof when the random variables are of
the continuous type. Let f(z, ¥), f1(%), f2(), and A(y|x) denote, respec-
tively, the joint p.d.f. of X and Y, the two marginal probability density
functions, and the conditional p.d.f. of Y, given X = . Then

o |7 @y d
R R
so that
[7 uf@ 9)dy = e@filo).
We have

Elgp(X)] = [* @) do = [7[[7 o/ y) dy]

= [* o[[7, flay) da] dy
= 7 uhl) dy =
and the first part of the theorem is established. Consider next
of = E[(Y — p)?] = E{[(Y — ¢(X)) + (p(X) — pw)]%
= E{[Y — ¢(X)1%} + E{{p(X) ~ u]%} + 2E{{Y — o(X))p(X) — pl}-

We shall show that the last term of the right-hand member of the
immediately preceding equation is zero. We have

EQY — o(X)gp(X) — pl} = [7, [7_ v — o@)]le() ~ plf(@ y) dy dz.

In this integral we shall write f(z, y) in the form A(y|a)fi(z), and we
shall integrate first on y to obtain

|2 e - w{[7, v ~ e@hle) dy} i) do
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But g(z) is the mean of the conditional p.d.f. 4(y|z). Hence

7.y — p@)1hlyla) dy = 0,
and, accordingly,

E{[Y — o(X))p(X) — pl} = 0.

Moreover,

oo = E{le(X) - pl?}
and

E(Y - ¢(X)1%} > 0.
Accordingly,

2 2
Oy > O'a,(x),

and the theorem is proved when X and Y are random variables of the
continuous type. The proof in the discrete case is identical to the proof
given here with the exception that summation replaces integration.

It is interesting to note, in connection with the proof of the theorem,
that unless the probability measure of the set {(z, y); ¥ — ¢(x) = 0} is
equal to 1 then E{[Y — ¢(X)]?} > 0, and we have the strict inequality

2 2
Oy > Tu(X)-
We shall give an illustrative example.

Example 1. Let X and Y have a bivariate normal distribution with
means p, and p,, with positive variances o7 and ¢%, and with correlation
coefficient p. Here E(Y) = p = py and of = o2. Now E(Y|x) is linear in «
and it is given by

ﬂﬂﬂ=ﬂ@=m+p%@—m%

Thus ¢(X) = pa + plog/o)(X — py) and E[p(X)] = p,, as stated in the
theorem. Moreover,

oo = E{{p(X) — pol®}

-#{pzoc-n)

— 2,2
= p703.
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With —1 < p < 1, we have the strict inequality o2 > pZ¢2. It should be
observed that ¢(X) is not a statistic if at least one of the five parameters is
unknown.

We shall use the Rao—Blackwell theorem to help us in our search
for a best estimator of a parameter. Let X,, X,, ..., X, denote a
random sample from a distribution that has p.d.f. f(x; 0), 8 € Q, where
itis known that Y, = u,(X,, X,, ..., X,) is a sufficient statistic for the
parameter 0. Let Y, = uy(X,;, X,,..., X,) be another statistic (but
not a function of Y, alone), which is an unbiased estimator of 6; that is,
E(Y,) = 0. Consider E(Y,|y,). This expectation is a function of y,
say ¢(y,). Since Y, is a sufficient statistic for 8, the conditional p.d.f.
of Y,, given Y, = y,, does not depend upon 8, so E(Y,|y,) = o(y,)
1s a function of y, alone. That is, here ¢(Y,) is a statistic. In accordance
with the Rao-Blackwell theorem, ¢(Y,) is an unbiased estimator of &;
and because Y, is not a function of Y, alone, the variance of ¢(Y,)
is strictly less than the variance of Y,. We shall summarize this
discussion in the following theorem.

Theorem 4. Let X, X,, ..., X, na fixed positive integer, denote a
random sample from a distribution (continuous or discrete) that has
pad.f f(x;0),0eQ. Laa¥, = u(X,, Xy, ..., X,) be a sufficient statistic
for 0, and let 'Y, = uy(Xy, X,, ..., X,), not a function of Y, alone,
be an unbiased estimator of 0. Then E(Y,|y,) = o(y,) defines a statistic
o(Y,). This statistic o(Yy) 1s a function of the sufficient statistic for 6,
it 1s an unbiased estimator of 0, and its variance is less than that of Y ,.

This theorem tells us that in our search for a best estimator of a
parameter, we may, if a sufficient statistic for the parameter exists,
restrict that search to functions of the sufficient statistic. For if we
begin with an unbiased estimator Y, that is not a function of the
sufficient statistic Y, alone, then we can always improve on this by
computing E(Y,|y;) = ¢(y;) so that ¢(Y,) is an unbiased estimator
with smaller variance than that of Y,.

After Theorem 4 many students believe that it is necessary to find
first some unbiased estimator Y, in their search for ¢(Y,), an unbiased
estimator of 6 based upon the sufficient statistic Y,. This is not the case
at all, and Theorem 4 simply convinces us that we can restrict our
search for a best estimator to functions of Y. It frequently happens
that E(Y,) = af + b, where a # 0 and b are constants, and thus
(Y, — b)/a is a function of Y, that is an unbiased estimator of 6.



352 Sufficient Statistics [Ch. 10

That is, we can usually find an unbiased estimator based on Y, without
first finding an estimator Y, In the next two sections we discover
that, in most instances, if there is one function ¢(Y,) that is unbiased,
@(Y,) is the only unbiased estimator based on the sufficient statistic Y.

Remark. Since the unbiased estimator ¢(Y,), where ¢(y,) = E(Y,|y,),
has variance smaller than that of the unbiased estimator Y, of 0, students
sometimes reason as follows. Let the function Y{(ys) = E[p(Y)|Ys = yal,
where Y, is another statistic, which is not sufficient for 6. By the Rao-
Blackwell theorem, we have that E[Y(Y3)] = 6 and Y(Y;) has a smaller
variance than does ¢(Y,). Accordingly, Y(Y,) must be better than ¢(Y,)
as an unbiased estimator of 6. But this is #ot true because Y, is not sufficient;
thus 6 is present in the conditional distribution of Y, given Y3 = y,, and
the conditional mean Y{y;). So although indeed E[Y(Y;)] = 0, Y(Y,) is not
even a statistic because it involves the unknown parameter 6 and hence
cannot be used as an estimator.

EXERCISES

109. LetY, < Y, < Y; < Y, < Y; be the order statistics of a random
sample of size 5 from the uniform distribution having p.d.f. f(z; 8) = 1/8,
0<z<6 0< 8 < oo, zero elsewhere. Show that 2Y,; is an unbiased
estimator of 6. Determine the joint p.d.f. of Y, and the sufficient statistic Y
for 6. Find the conditional expectation E(2Y,|ys) = ¢(ys). Compare the
variances of 2Y; and ¢(Y5). Hint. All of the integrals needed in this exercise
can be evaluated by making a change of variable such as z = /8 and
using the results associated with the beta p.d.f.; see Example 5, Section 4.3.

10.10. If X,, X, is a random sample of size 2 from a distribution having
p-df. flz; 0) = (1/0)e % 0 <z < o0, 0 < 0 < 0, zero elsewhere, find
the joint p.d.f. of the sufficient statistic Y, = X, + X, for fand Y, = X,.
Show that Y, is an unbiased estimator of & with variance 62. Find E(Y,|y,) =
o(y,) and the variance of ¢(Y ).

10.11. Let the random variables X and Y have the joint p.d.f. f(z, y) =
(2/6%)e~=+¥8 0 < x < y < o0, zero elsewhere.

(a) Show that the mean and the variance of Y are, respectively, 36/2
and 56%/4.

{b) Show that E(Y|x) = 2 + 8. In accordance with the Rao-Blackwell
theorem, the expected value of X + 6 is that of Y, namely, 36/2, and the
variance of X + 8 is less than that of Y. Show that the variance of X + 6
is in fact 6%/4.

10.12. In each of Exercises 10.1, 10.2, and 10.5, compute the expected
value of the given sufficient statistic and, in each case, determine an un-
biased estimator of # that is a function of that sufficient statistic alone.
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10.3 Completeness and Uniqueness

Let X;, X,, ..., X, be a random sample from the distribution that
has p.d.f.

%0

x!

f@; 8) = , 2=0,1,2,...; 0<8

= 0 elsewhere.

From Exercise 10.2 of Section 10.1 we know that Y, = i X;is a
=1

sufficient statistic for ¢ and its p.d.f. is

ne ]Ile—ne
&y 0) = (~)yl—, y, =0,1,2,...

= 0 elsewhere.

Let us consider the family {g,(y,; 6); 0 < 6} of probability density
functions. Suppose that the function u(Y;) of Y, is such that
ETu(Y,)] = 0 for every § > 0. We shall show that this requires #%(y,)
to be zero at every point y; = 0,1,2,.... That is,

E[u(Y,)] = 0, 0<9
implies that
We have for all 8 > 0 that

ng)yle—ne

0 = E[u(Y,)] = f ) vl

- e‘""[u(()) +ul) 2 4 u(2) %‘i')—z o ]

Since ¢~ does not equal zero, we have that

0 = %(0) + [nu(1)]6 + [”2%(2)]02 +oe

However, if such an infinite series converges to zero for all § > 0, then
each of the coefficients must equal zero. That is,

n?u(2)
) 2
and thus 0 = %(0) = u(l) = u(2) =---, as we wanted to show. Of

~

=0,...
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course, the condition E[%(Y,)] = 0 for all § > 0 does not place any
restriction on #(y,) when y, is not a nonnegative integer. So we see that,
in this illustration, Efu(Y,)] = 0 for all § > 0 requires that u(y,)
equals zero except on a set of points that has probability zero for each
p.d.f. gi(y1; 0), 0 < 6. From the following definition we observe that
the family {g;(y;; 6); 0 < 6} is complete.

Definition 2. Let the random variable Z of either the continuous
type or the discrete type have a p.d.f. that is one member of the family
{h(z; 6); 0 € Q}. If the condition E{u(Z)] = 0, for every 6 € Q, requires
that #(z) be zero except on a set of points that has probability zero for
each p.d.f. A(z; 8), 6 € Q, then the family {A(z; 8); 0 € Q} is called a
complete family of probability density functions.

Remark. In Section 1.9 it was noted that the existence of E[u(X)]
implies that the integral (or sum) converge absolutely. This absolute con-
vergence was tacitly assumed in our definition of completeness and it is
needed to prove that certain families of probability density functions are
complete.

In order to show that certain families of probability density functions
of the continuous type are complete, we must appeal to the same type
of theorem in analysis that we used when we claimed that the moment-
generating function uniquely determines a distribution. This is illus-
trated in the next example.

Example 1. Let Z have a p.df. that is a member of the family
{h{z; 0), 0 < 6 < o}, where

h(z; 6) = %e‘z"’, 0<z< oo,

= ( elsewhere.

Let us say that E{u(Z)] = 0 for every # > 0. That is,
lj u(z)e"#dz = 0, for 6 > 0.
o [y

Readers acquainted with the theory of transforms will recognize the integral
in the left-hand member as being essentially the Laplace transform of u(z).
In that theory we learn that the only function #(z) transforming to a function
of 6 which is identically equal to zero is #(z) = 0, except (in our terminology)
on a set of points that has probability zero for each A(z; 6), 0 < 6. That is,
the family {A(z; 0); 0 < 6 < oo} is complete.

Let the parameter § in the p.d.f. f(x; ), 0 € Q, have a sufficient
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statistic Y, = #,(X,, X, ..., X,), where X, X,,..., X, is a random
sample from this distribution. Let the p.d.f. of Y, be g,(y,; 8), 6 € Q.
1t has been seen that, if there is any unbiased estimator Y, (not a func-
tion of Y, alone) of 8, then there is at least one function of Y, that is
an unbiased estimator of 6, and our search for a best estimator of § may
be restricted to functions of Y,. Suppose it has been verified that a
certain function ¢(Y,), not a function of 6, is such that E{e(Y,)] = 6
for all values of 8, 6 € Q. Let (Y ) be another function of the sufficient
statistic Y, alone so that we have also E[¢(Y,)] = 6 for all values of 6,
6 € Q. Hence

Elp(Yy) — (Y] =0, deQ

If the family {g,(y;; 0); 0 € Q} is complete, the function ¢(y,) —
Y(y,) = 0, except on a set of points that has probability zero. That
is, for every other unbiased estimator (Y,) of 4, we have

oly1) = )

except possibly at certain special points. Thus, in this sense [namely
o(y,) = ¥ly,), except on a set of points with probability zero], ¢(Y,) is
the unique function of Y, which is an unbiased estimator of 8. In
accordance with the Rao-Blackwell theorem, ¢(Y,) has a smaller
variance than every other unbiased estimator of 8. That is, the statistic
(Y ) is the best estimator of 4. This fact is stated in the following
theorem of Lehmann and Scheffé.

Theorem 5. Let X, X,, ..., X,, n a fived posttive integer, denote a
random sample from a distribution that has p.d.f. f(x; 0), 0 Q, let
Y, = u(Xy, Xo, - .., X,) be a sufficient statistic for 6, and let the family
{g:(yy; 8); 0 € Q} of probability density functions be complete. If there is
a function of Y, that is an unbiased estimator of 0, then this function of Y,
is the unique best estimator of 0. Here “unique’’ is used in the sense
described in the preceding paragraph.

The statement that Y, is a sufficient statistic for a parameter 8,
6 e Q, and that the family {g,(y,; 6); 6 € Q} of probability density
functions is complete is lengthy and somewhat awkward. We shall
adopt the less descriptive, but more convenient, terminology that Y,
is a complete sufficient statistic for 9. In the next section we shall study a
fairly large class of probability density functions for which a complete
sufficient statistic Y, for # can be determined by inspection.
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EXERCISES

10.13. If az2 + bz + ¢ = 0 for more than two values of z, thena = b =
¢ = 0. Use this result to show that the family {6(2, 0); 0 < 8 < 1} is complete.

10.14. Show that each of the following families { f(z; 6); 0 < 6 < co}isnot
complete by finding at least one nonzero function #(z) such that E[#(X)] = 0,
for all & > 0.

(a) f(x;O):%: -8 <xz<,

= ( elsewhere.

10.15. Let X, X,, ..., X, represent a random sample from the discrete
distribution having the probability density function

fl@;0) = 6=(1 — )=, 2£=01,0<6<1,

= () elsewhere.

Show that Y, = i X, is a complete sufficient statistic for . Find the unique
1

function of Y, that is the best estimator of 6. Hint. Display E{u(Y,)] = 0,
show that the constant term %(0) is equal to zero, divide both members of
the equation by # # 0, and repeat the argument.

10.16. Consider the family of probability density functions {k(z; 6); 6 € Q},
where A(z; 0) = 1/8, 0 < z < 0, zero elsewhere.

(a) Show that the family is complete provided that Q = {#; 0 < § < oo}.
Hint. For convenience, assume that u(z) is continuous and note that the
derivative of E[#(Z)] with respect to 6 is equal to zero also.

(b) Show that this family is not complete if Q = {8;1 < 6 < o0}.
Hint. Concentrate on the interval 0 < z < 1 and find a nonzero function
u(z) on that interval such that F[u(Z)] = 0 for all 8 > 1.

10.17. Show that the first order statistic Y, of a random sample of size »
from the distribution having p.d.{. f(z; 8) = e <=9, § <z < 00, —© <
0 < oo, zero elsewhere, is a complete sufficient statistic for 8. Find the
unique function of this statistic which is the best estimator of 6.

10.18. Let a random sample of size » be taken from a distribution of the
discrete type with p.d.f. f(z; 6) = 1/6, 2z = 1,2, ..., 6, zero elsewhere, where
6 is an unknown positive integer.

(a) Show that the largest item, say Y, of the sample is a complete sufficient
statistic for 6.

(b) Prove that

[Vl — (Y — )" HY[Y" — (Y — 1)7]

is the unique best estimator of 6.
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10.4 The Exponential Class of Probability Density Functions

Consider a family {f(x; 6); 6 € Q} of probability density functions,
where Q is the interval set Q = {f;y < § < 8}, where y and & are
known constants, and where

() S0

]

exp [p(6)K(x) + S(z) + ¢(6)], a <z <),

= 0 elsewhere.

A p.df. of the form (1) is said to be a member of the exponential
class of probability density functions of the continuous type. If, in
addition,

(a) neither @ nor b depends upon 8, y < 8 < 8,

(b) #(0) is a nontrivial continuous function of 6, y < 6 < 8.

(c) each of K'(x) # 0 and S(z) is a continuous function of z,
a<xz<b,

we say that we have a regular case of the exponential class. A p.d.f.

[(@:0) = exp[pOK@) + S@) + q(0)], = = a, a5, a5, .-,
= 0 elsewhere

I

is said to represent a regular case of the exponential class of probability
density functions of the discrete type if

(a) The set {&; z = ay, as, ...} does not depend upon 6.
(b) p(8) is a nontrivial continuous function of 6, y < 6 < &.
(c) K(z) is a nontrivial function of x on the set {&; x = a,, ag, ...}

For example, each member of the family {f(; 6);0 < 6 < oo},
where f(x; 0) is #(0, 8), represents a regular case of the exponential
class of the continuous type because

1
x; 0) = —_ e~ x%28
£ 9) \V2x8
=exp(—51éx2—ln\/§;¢—9), —0 < & < .

Let X,, X,,..., X, denote a random sample from a distribution
that has a p.d.f. which represents a regular case of the exponential
class of the continuous type. The joint p.d.f. of X, X,, ..., X, is

exp | p(6) 3 K + 35 + nq(e)]
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fora <z, <b1=12,...,n v < <8, and is zero elsewhere. At
points of positive probability density, this joint p.d.f. may be written
as the product of the two nonnegative functions

wﬂﬂmémm+mmﬂw4§ﬂm}

In accordance with the factorization theorem (Theorem 1, Section 10.1)

Y, = iK(X,) is a sufficient statistic for the parameter . To prove
1

n
that Y; = > K(X,) is a sufficient statistic for 6 in the discrete case,
1

we take the joint p.d.f. of X,, X,,..., X, to be positive on a discrete
set of points, say, when z, €{x;x = ay,a,,...}, 7 =1,2,...,n We
then use the factorization theorem. It is left as an exercise to show that
in either the continuous or the discrete case the p.d.f. of Y, is of the
form

£1(y1; 0) = R(yy) exp [p(0)y, + ng(6)]

at points of positive probability density. The points of positive prob-
ability density and the function R(y,) do not depend upon 6.

At this time we use a theorem in analysis to assert that the family
{g1(y1; 0);y < 8 < 8} of probability density functions is complete.
This is the theorem we used when we asserted that a moment-generating
function (when it exists) uniquely determines a distribution. In the
present context it can be stated as follows.

Theorem 6. Let f(x; 0), y < 8 < 3, be a p.d.f. which represents a
regular case of the exponential class. Then of X,, X, ..., X, (where n s
a fixed positive integer) is a random sample from a distribution with p.d.f.

Sflx; 0), the statistic Y, = %K(Xl) is a sufficient statistic for 0 and the
1

Jamily {g,(yy; 0);y < 0 < 8} of probability density functions of Y, s
complete. That is, Y, is a complete sufficient statistic for 0.

This theorem has useful implications. In a regular case of form (1),
we can see by inspection that the sufficient statistic is ¥, = iK (X,).
1

If we can see how to form a function of Y, say ¢(Y,), so that E[e(Y,)]
= 6, then the statistic ¢(Y,) is unique and is the best estimator of 6.
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Example 1. Let X,, X,, ..., X, denote a random sample from a normal
distribution that has p.d.f.

fla; 6) =

1 (x — 0)?
E,exp[—-——-], -0 < & <0, —0 < 8 <,
7

o 20’2

or
0 z2? — 6?
f(x; 6) = exp (;2.7: > In v/ 2wo® — Z—’E)-

Here o is any fixed positive number. This is a regular case of the exponential
class with

9
PO == K@=z
2 - o2
S(z) = —;;5 ~ V2R, qlf) = —5z

Accordingly, Y, =X, + X, +- -+ X, = nX is a complete sufficient
statistic for the mean @ of a normal distribution for every fixed value of
the variance o?. Since E(Y,) = #0, then ¢(Y,) = Y,/n = X is the only
function of Y, that is an unbiased estimator of 8; and being a function of
the sufficient statistic Y, it has a minimum variance. That is, X is the
unique best estimator of 6. Incidentally, since Y, is a single-valued function
of X, X itself is also a complete sufficient statistic for 8.

Example 2. Consider a Poisson distribution with parameter §,0 < 6 < co.
The p.d.f. of this distribution is

x,—8
flz; ) 9; —exp[nfz—In(al) — 60, =z=012...,

il

= 0 elsewhere.

n . » .
In accordance with Theorem 6, Y; = 3 X, is a complete sufficient statistic
1

for 6. Since E(Y,) = n0, the statistic o(Y;) = Yy/n = X, which is also a
complete sufficient statistic for 6, is the unique best estimator of 6.

EXERCISES
10.19. Write the p.d.f.

f(x;0)=g%2x3e‘1’9, 0<z<w,0< <o,

zero elsewhere, in the exponential form. If X,, X,,..., X, is. a random
sample from this distribution, find a complete sufficient statistic Y, for 8
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and the unique function ¢(Y) of this statistic that is the best estimator of 6.
Is @(Y,) itself a complete sufficient statistic?

10.20. Let X,, X,, ..., X, denote a random sample of size » > 2 from a
distribution with p.d.f. f(z; §) = 8¢9, 0 < x < o0, zero elsewhere, and

0 > 0. Then Y = iX, is a sufficient statistic for 6. Prove that (v — 1)/Y
1
is the best estimator of 6.

10.21. Let X,, X,,..., X, denote a random sample of size » from a
distribution with p.d.f. f(z; 0) = 62°~*,0 < x < 1, zero elsewhere, and § > 0.

(a) Show that the geometric mean (X,X,-.-X,)Y" of the sample is a
complete sufficient statistic for 6.

(b) Find the maximum likelihood estimator of 8, and observe that itis a
function of this geometric mean.

10.22. Let X denote the mean of the random sample X, X, . .., X, from
a gamma-type distribution with parameters « > 0 and B = 6 > 0. Compute
E[X,|Z]. Hint. Can you find directly a function $(X) of X such that E[(X)]
= 07 Is E(X,|%) = (z)? Why?

10.23. Let X be a random variable with a p.d.f. of a regular case of the
exponential class. Show that E[K(X)] = —¢'(6)/p'(0), provided these
derivatives exist, by differentiating both members of the equality

[Cexp (p(OK@) + S(@) + g(6)] dz = 1

with respect to 6. By a second differentiation, find the variance of K(X).

10.24. Given that f(z; 8) = exp [0K(z) + S{x) + ¢(6)], a < x < b,
y < 0 < §, represents a regular case of the exponential class. Show that the
moment-generating function M (f) of Y = K(X)is M (t) = exp[q(0) — ¢q(0 + )],
y<0+it<a

10.25. Given, in the preceding exercise, that E(Y) = E[K(X)] = 0.
Prove that Y is n(6, 1). Hint. Consider M’'(0) = 6 and solve the resulting
differential equation.

10.26. If X,, X,, ..., X, is a random sample from a distribution that has
a p.d.f. which is a regular case of the exponential class, show that the p.d.f. of

Y, = gK(Xl) is of the form g(y:; 0) = Rly,) exp [p(8)y: + nq(6)]. Hint.

Let Y, =X,,..., Y, = X, be n — 1 auxiliary random variables. Find the
joint p.d.f. of Yy, Y,, ..., Y, and then the marginal p.d.f. of Y.

10.27. Let Y denote the median and let X denote the mean of a random
sample of size # = 2k + 1 from a distribution that is n(g, %). Compute
E(Y|X = z). Hint. See Exercise 10.22.
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10.5 Functions of a Parameter

Up to this point we have sought an unbiased and minimum variance
estimator of a parameter 6. Not always, however, are we interested in 6
but rather in a function of #. This will be illustrated in the following
examples.

Example 1. Let X, X,, ..., X, denote the items of a random sample of
size # > 1 from a distribution that is b(1, 6), 0 < 6 < 1. We know that if

n
Y = 3 X,, then Y/n is the unique best estimator of §. Now the variance of
1

Y/n is 6(1 — 8)/n. Suppose that an unbiased and minimum variance esti-
mator of this variance is sought. Because Y is a sufficient statistic for 6, it is
known that we can restrict our search to functions of Y. Consider the
statistic (Y/n){1 — Y/n)/n. This statistic is suggested by the fact that Y/n
is the best estimator of 6. The expectation of this statistic is given by

Le[X (1= 3)] = E@) - ).

Now E(Y) = n8 and E(Y?) = n6(1 — 6) + n?6>. Hence

;LE[Y(I_X)]=n——16(1—0).

n n n n

If we multiply both members of this equation by n/(r — 1), we find that the
statistic (Y/n)(1 — Y/n)/(n — 1) is the unique best estimator of the variance
of Y/n.

A somewhat different, but very important problem in point estima-
tion is considered in the next example. In the example the distribution
of a random variable X is described by a p.d.f. f(z; 6) that depends
upon 6 e Q. The problem is to estimate the fractional part of the
probability for this distribution which is at or to the left of a fixed
point ¢. Thus we seek an unbiased, minimum variance estimator of
F(c; 0), where F(z; 6) is the distribution function of X.

Example 2. Let X, X,, ..., X, be a random sample of size » > 1 from
a distribution that is #(6, 1). Suppose that we wish to find a best estimator
of the function of 4 defined by

c 1 .
Pr(X <c¢ =f L o gy — N - 6),
( ) — © '\/27T
where ¢ is a fixed constant. There are many unbiased estimators of N(c — ).
We first exhibit one of these, say #(X}), a function of X, alone. We shall then
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compute the conditional expectation, E[u(X,}|X = z] = ¢(Z), of this un-
biased statistic, given the sufficient statistic X, the mean of the sample. In
accordance with the theorems of Rao-Blackwell and Lehmann-Scheffé, o(X)
is the unique best estimator of N(c — 6).

Consider the function #(z,), where

u(xy) = 1, z < ¢,

=0, x; > c.

The expected value of the random variable (X)) is given by

<«

Elu(X,)] =f u(z,) g_exp [_(:c;;__ﬁ)z] dz,

- T

[0 e[ en

because #(x;) = 0, z; > c. But the latter integral has the value N (c — 0).
That is, #(X,) is an unbiased estimator of N(c — 6).

We shall next discuss the joint distribution of X, and X and the condi-
tional distribution of X;, given X = #. This conditional distribution will
enable us to compute E[u(X,)|X = z] = ¢(7). In accordance with Exercise
4.81, Section 4.7, the joint distribution of X, and X is bivariate normal with
means ¢ and 6, variances o7 = 1 and o3 = 1/x, and correlation coefficient
p = 1/v/n. Thus the conditional p.d.f. of X,, given X = %, is normal with
linear conditional mean

0+ @z -0 =z

G2

and with variance

n—1
—

o1 — p?) =

The conditional expectation of #(X,), given X = %, is then
N n 1 n(x, — x)2
o) = [ s e [ = e

f Jn—lv—ep[ T

The che:nge of variable z = V/#(x, — &)/v/n — 1 enables us to write, with
¢’ = v/n(c — F/Vn = 1, this conditional expectation as

7= e = N[22

Thus the unique, unbiased, and minimum variance estimator of N {c — 6)is,
for every fixed constant ¢, given by ¢(X) = Nivu(e — X)[Vn — 1].
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Remark. We should like to draw the attention of the reader to a
rather impoitant fact. This has to do with the adoption of a principle, such
as the principle of unbiasedness and minimum variance. A principle is not a
theorem; and seldom does a principle yield satisfactory results in all cases. So
far, this principle has provided quite satisfactory results. To see that this is
not always the case, let X have a Poisson distribution with parameter 6,
0 < 8 < 0. We may look upon X as a random sample of size 1 from this
distribution. Thus X is a complete sufficient statistic for §. We seek the best
estimator of ¢~2%, best in the sense of being unbiased and having minimum
variance. Consider Y = (—1)*. We have

E(Y) = i = e,

Accordingly, (—1)* is the (unique) best estimator of ¢72¢, in the sense
described. Here our principle leaves much to be desired. We are endeavoring
to elicit some information about the number e¢~?¢, where 0 < ¢72¢ < 1.
Yet our point estimate is either —1 or +1, each of which is a very poor
estimate of a number between zero and 1. We do not wish to leave the
reader with the impression that an unbiased, minimum variance estimator
is bad. That is not the case at all. We merely wish to point out that if one tries
hard enough, he can find instances where such a statistic is #ot good.
Incidentally, the maximum likelihood estimator of ¢~29 is, in the case where
the sample size equals 1, ¢e=2%, which is probably a much better estimator in
practice than is the “best” estimator (—1)%.

EXERCISES

10.28. Let X, X,, ..., X, denote a random sample from a distribution
that is #(6, 1), —o0 < 6 < co. Find the best estimator of 62. Hint. First
determine E(X?).

10.29. Let X,, X,, ..., X, denote a random sample from a distribution

that is #(0, ). Then Y = > X? is a sufficient statistic for §. Find the best
estimator of 62.

10.30. In the notation of Example 2 of this section, is there a best esti-
mator of Pr (—¢ < X < ¢}? Herec > 0.

10.31. Let X,, X,,..., X, be a random sample from a Poisson distri-
bution with parameter § > 0. Find the best estimator of Pr(X < 1) =
(1 + 0)e®. Hint. Let wux,) =1, =z, <1, zero elsewhere, and find

E[u(X,)]Y = y), where Y = in. Make use of Example 2, Section 4.2.
1

10.32. Let X,, X,,..., X, denote a random sample from a Poisson
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distribution with parameter § > 0. From the Remark of this section, we
know that E[(—1)%1] = =29,

(a) Show that E[{(—1)*:|Y; = o] = (1 — 2/n)*1, where YV, = X; + X,
+ -+ + X,. Hint. First show that the conditional p.d.f. of X, X,, ..., X,_4,
given Y, = y;, is multinomial, and hence that of X; given Y, =y, is
by, 1/n).

(b) Show that the maximum likelihood estimator of =2 is ¢~2%.

(c) Since y, = nZ, show that (1 — 2/n)%: is approximately equal to e~2*
when # is large.

10.6 The Case of Several Parameters

In many of the interesting problems we encounter, the p.d.f. may
not depend upon a single parameter §, but perhaps upon two (or more)
parameters, say 0, and 6, where (0y, 6;) € Q, a two-dimensional
parameter space. We now define joint sufficient statistics for the
parameters. For the moment we shall restrict ourselves to the case of
two parameters.

Definition 3. Let X, X,,..., X, denote a random sample from a
distribution that has p.d.f. f(x; 6,, 8,), where (8,, 6,) € Q. Tet Y, =
u (X, X, ..o, Xp) and Y, = u(Xy, X,, ..., X,) be two statistics
whose joint p.d.f. is gi,(y,, ¥e; 01, 02). The statistics Y, and Y, are
called joint sufficient statistics for ¢, and 6, if and only if

Sy 04, 05) f(wg; 0y, 05) - - - flwy,; 04, )

= H(xy, @g, .. ., X,),
Gualta (g, - . ., @), ua(@y, - - -, @); 01, 0] @1, )
where, for every fixed y, = uy(2y,...,,) and yy = uy(xy, ..., %),
H(xy, z,, . . ., 2,) does not depend upon 8, or §,.

As may be anticipated, the factorization theorem can be extended.
In our notation it can be stated in the following manner. The statistics
Y, =u (X, X,,...,X,) and Y, = uy(Xy, X,,..., X,) are joint
sufficient statistics for the parameters 6, and 6, if and only if we can
find two nonnegative functions %, and &, such that

S(@1; 04, 05)f (xa; 01, O5) - - - fl2y; 01, 05)

= ka1 (2, o, - - -, ), Ug(thy, Tp, . o, X); 01, O5)ko(20, 2, - - -, 2n),
where, for all fixed values of the functions y; = u,(z;, 25, ..., ,) and
Yo = Ug(X1, X, . . ., X,), the function ky(x,, 2, . . ., z,) does not depend

upon both or either of 8, and 0,
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Example 1. Let X;, X,, ..., X, be a random sample from a distribution
having p.d.f.

1
flx; 0y, 05) = 57— 6, — 0, <z < 0, + 0,
204
= 0 elsewhere,

where —c0 < 68, < 00,0 < 8, < 0. Let Y, < Y, <--- < Y, be the order
statistics. The joint p.d.f. of Y, and Y, is given by

nn — 1)

E1n(y1, Yn; 01, 03) = —W (¥ — y)" % 0, — 0; <Yy <Yn< b+ 6y

and equals zero elsewhere. Accordingly, the joint p.d.f. of X, X, ..., X, can
be written, for points of positive probability density,

1\* _ n(n — 1)[max(z,) — min (x)]" 2
(2_9—2) B (26;)"

1 )
X (n(n — 1)[max (z,) — min (a,))2

Since the last factor does not depend upon the parameters, either the det-
inition or the factorization theorem assures us that Y, and Y, are joint
sufficient statistics for 6; and 6,.

The extension of the notion of joint sufficient statistics for more
than two parameters is a natural one. Suppose that a certain p.d.f.
depends upon m parameters. Let a random sample of size % be taken
from the distribution that has this p.d.f. and define m statistics. These
m statistics are called joint sufficient statistics for the s parameters if
and only if the ratio of the joint p.d.f. of the items of the random
sample and the joint p.d.f. of these m statistics does not depend upon
the m parameters, whatever the fixed values of the m statistics. Again
the factorization theorem is readily extended.

There is an extension of the Rao-Blackwell theorem that can be
adapted to joint sufficient statistics for several parameters, but that
extension will not be included in this book. However, the concept of a
complete family of probability density functions is generalized as
follows: Let

{f(wy, g .., v 04, Oy oo, 0n); (01, 0, - -+, 6,) € Q}

denote a family of probability density functions of £ random variables
Vi, Va ..., V, that depends upon m parameters (6, 0y, ..., Om) € 2.
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Let u(vy, vg, . - ., vy) be a function of vy, vy, ..., vy (but not a function
of any or all of the parameters). If

Em(Vy, Vg ..., V)] =0

for all (6,8, ..., 0,) € Q implies that u(vy, v, ..., v,) = 0 at all
points (v;, ¥a, - - -, ¥;), except on a set of points that has probability
zero for all members of the family of probability density functions,
we shall say that the family of probability density functions is a
complete family.

The remainder of our treatment of the case of several parameters
will be restricted to probability density functions that represent what
we shall call regular cases of the exponential class. Let X, Xy, ..., Xy,
n > m, denote a random sample from a distribution that depends on
m parameters and has a p.d.f. of the form

(1) f(x: 91: 02: et em)
— exp [élpj(el, By, ..., 00K (@) + S(z) + gbs, b5, ..., 9m)]

for a < x < b, and equals zero elsewhere.

A p.d.f. of the form (1) is said to be a member of the exponential
class of probability density functions of the continuous type. I, in
addition,

(a) neither a nor b depends upon any or all of the parameters
04, 0g,...,0p

(b) the $;(0y, 0,5, ...,04), 7=1,2,...,m, are nontrivial, func-
tionally independent, continuous functions of 8;, y; < 6; < §;, 7 =
1,2,...,m,

(c) the Kj(z), j = 1,2,...,m, are continuous for a < « < b and
no one is a linear homogeneous function of the others,

(d) S(x) is a continuous function of z, 4 < x < b,
we say that we have a regular case of the exponential class.

The joint p.d.f. of X;, X,,..., X, is given, at points of positive
probability density, by

exp [ 3 0000 3 Ko + 3, 5) + a0y, 0]

s

1

= exp [él BBy 0a) 3 Kofe) + nglfy, -, 0,")] exp [

In accordance with the factorization theorem, the statistics

S(xi)] .

n n LA
Yy = 2 Ky(X), Vo= 2 KalXy).oo Y, = 2 Kn(X))
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are joint sufficient statistics for the m parameters 6,, 6,, ..., 8,. It is
left as an exercise to prove that the joint p.d.f. of Y, ..., Y, is of the
form

(2) R(yl’ ] ym) €xp Lglpi(el) L] Om)yj + nQ(el) LR em)]

at points of positive probability density. These points of positive
probability density and the function Ry, .. ., ¥,) do not depend upon
any or all of the parameters 0,, 0, ..., 6,. Moreover, in accordance
with a theorem in analysis, it can be asserted that, in a regular case
of the exponential class, the family of probability density functions of
these joint sufficient statistics Y,, Y,, ..., Y, is complete when n > m.
In accordance with a convention previously adopted, we shall refer to
Y, Y, ..., Y, as joint complete sufficient statistics for the parameters
61,8, ...,60,

Example 2. Let X,, X,,..., X, denote a random sample from a
distribution that is #(8,, 8,), —c0 < 8, < o, 0 < 8, < co. Thus the p.d.f.
Slx; 64, 05) of the distribution may be written as

) -1, 60 0% —
flx; 0., 8,) = exp |57 22 + 2t & — - — InV2r0,)-
26, 0, 2

Therefore, we can take XK;(x) = 2® and K,(x) = z. Consequently, the
statistics

n n
Y, =>X3? and Y, =2 X,
1 1
are joint complete sufficient statistics for 6, and 6,. Since the relations

— 2 —
n-iig g Vi Y 3(- X

define a one-to-one transformation, Z; and Z, are also joint complete sufficient
statistics for 6, and 6,. Moreover,

E(Z,) = 6, and E(Z,;) = 0,.
From completeness, we have that Z; and Z, are the only functions of Y,
and Y, that are unbiased estimators of 8, and 6,, respectively.
A pdfi
f(x: 01: 92» ] 9,")

=w4§@%%wum&@+wwwm%wwm}

j=1

X = a;, g dg, ...,
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zero elsewhere, is said to represent a regular case of the exponential
class of probability density functions of the discrete type if

(a) the set {x;x = a,, a,, ...} does not depend upon any or all of
the parameters 8,, 6, ..., 0,

(b) the p,(0y,0,,...,0,), 7=12,...,m, are nontrivial, func-
tionally independent, continuous functions of 0;, v; < 8, < §;, j =
1,2,...,m,

(c) the K,(x),7 = 1, 2,..., m, are nontrivial functions of  on the
set {; x = ay, a,,...} and no one is a linear function of the others.

Let X, X,,..., X, denote a random sample from a discrete-type
distribution that represents a regular case of the exponential class.
Then the statements made above in connection with the random
variable of the continuous type are also valid here.

Not always do we sample from a distribution of one random variable
X. We could, for instance, sample from a distribution of two random
variables V and W with joint p.d.f. f(v, w; 04, 0,, . . ., 8,). Recall that by
a random sample (V,, W), (Vg, Wy), ..., (V,, W,) from a distribution
of this sort, we mean that the joint p.d.f. of these 2# random variables
is given by

flog, wy; 0y, ..., Op) f{vg, @a; 0y, ..o, On) -+ - flog,, wy; 04, ..., Op).

In particular, suppose that the random sample is taken from a distribu-
tion that has the p.d.f. of V and W of the exponential class

(3) f('U, w: 017 MR} om)
= exp Lg pibs, -, 0K (0, @) + S, w) + g0, . .., em)]
d

fora < v < b, ¢ < w < d, and equals zero elsewhere, where a, b
do not depend on the parameters and conditions similar to (a),
(c), and (d), p. 366, are imposed. Then the m statistics

b C}
(b),
3 n
Y= 3 KV W), ..., YYo= 3 KV, W)
i=1 i=1
are joint complete sufficient statistics for the m parameters 64, 0,, .. ., 0,,.

EXERCISES

10.33. Let Y, < Y, < Y, be the order statistics of a random sample of
size 3 from the distribution with p.d.f.

flx; 0., 8,) —_—b}—exp (_z; 01), b, <z <00, —00< b <00,0< 8, < oo,
2 2
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zero elsewhere. Find the joint p.d.f. of Z, =Y,;, Z,=Y,, and Z; =
Y, + Y, + Y, The corresponding transformation maps the space
{1, ¥2, ¥a); 61 < ¥y < Yo < y3 < o0} onto the space {(z1, 25, 23); 0, < 2, <
2y < (23 — #1)/2 < o0}. Show that Z, and Z; are joint sufficient statistics
for 4, and 6,.

10.34. Let X, X,, ..., X, be a random sample from a distribution that
has a p.d.f. of form (1) of this section. Show that Yy = 3 K,(XJ),...,

i=1

Y, = él K,.(X;) have a joint p.d.f. of form (2) of this section.

10.35. Let (X,, Yy), (X, V), ..., (X,, Y,) denote a random sample of
size # from a bivariate normal distribution with means p, and u,, positive

n 13
variances ¢ and o%, and correlation coefficient p. Show that > X;, > Y,
1 1

> X2,> Y2 and i X,;Y,; are joint sufficient statistics for the five parameters.
1 1 1

Are X =SXn, ¥ =3 Y/n S2 =5 (X, - X)¥n,S2 =3 (Y, — V)2n,
1 1 1

1
and > (X, — X)(Y; — Y)/nS,S, also joint sufficient statistics for these
1

parameters?
10.36. Let the p.d.f. f(z; 6,, 8,) be of the form
exp [p1(01, ) K1 (2) + pa(01, 05)Ka(@) + S(2) + 9(61, 65)], a<z<b,

zero elsewhere. Let Ki(x) = cKj(x). Show that f(z; 6,, 8,) can be written in
the form

exp [p(0;, 02)K(x) + Slx) + ¢:(61, 6], a<x <),

zero elsewhere. This is the reason why it is required that no one Kj(x) be a
linear homogeneous function of the others, that is, so that the number of
sufficient statistics equals the number of parameters.

1037. Let Y, < ¥, <---< Y, be the order statistics of a random
sample X, X,, ..., X, of size # from a distribution of the continuous type
with p.d.f. f(x). Show that the ratio of the joint p.d.f. of X;, X,,..., X, and
that of YV, < Y, <---< Y, is equal to 1/n!, which does not depend upon
the underlying p.d.f. This suggests that Y, < Y, <---< Y, are joint
sufficient statistics for the unknown “ parameter” f.



Chapter 11

Further Topics in
Statistical Inference

11.1 The Rao-Cramér Inequality

In this section we establish a lower bound for the variance of an
unbiased estimator of a parameter.

Let Xy, X,, ..., X, denote a random sample from a distribution
with p.d.f. f(z; 8), 8 Q = {f;y < 6 < 8}, where y and 3 are known.
Let Y = u(X,, X,, ..., X,) be an unbiased estimator of §. We shall
show that the variance of Y, say o3, satisfies the inequality

1 ¥ 1
(1) Y 2 WE(@nf(X; )01

Throughout this section, unless otherwise specified, it will be assumed
that we may differentiate, with respect to a parameter, under an
integral or a summation symbol. This means, among other things, that
the domain of positive probability density does not depend upon 6.

We shall now give a proof of inequality (1) when X is a random
variable of the continuous type. The reader can easily handle the
discrete case by changing integrals to sums. Let g(y; 6) denote the
p-d.f. of the unbiased statistic Y. We are given that

1= [° fgO)dm,  i=12...m

:ffw..,fw W(Ty, Tgy - - o, Ta)[(@1; 0) - - f(@0n; 0) daty - - - dy.

370
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The final form of the right-hand member of the second equation is
justified by the discussion in Section 4.7. If we differentiate both mem-
bers of each of these equations with respect to 8, we have

(7 Of(x; 0) (" 2ln f(z; 6) )
) O_LO 20 d’”"‘f-w og /0

1 :ffm...fiw u(z,, xz,...,xn)L§ (xll’ 6) W]

I

Jw Jw u(xl,xz,...,xn)—i*—l—n‘fé%ﬂ]

X f(@1; 0) - -~ flay; 6) day - - - da,
Define the random variable Z by Z = %[8 In f(X,; 6)/06]. In accordance
1

with the first of Equations (2) we have E(Z) = iE[a In f(X;; 6)/06] = 0.
1

Moreover, Z is the sum of #» mutually stochastically independent random
variables each with mean zero and consequently with variance
E{[o1n f(X; 6)/061%}. Hence the variance of Z is the sum of the #

variances,
oln f(X; 6)\2
2 - pEl | .
= [( 20 )]

Because ¥V = #(X,,..., X,) and 7 = i[@ In f(X;; 6)/06], the second
1
of Equations (2) shows that E(YZ) = 1. Recall (Section 2.3) that
E(YZ) = E(Y)E(Z) + poyog,

where p is the correlation coefficient of ¥ and Z. Since E(Y) = 6 and
E(Z) = 0, we have

1 =260+ poyo, or p =

Now p? < 1. Hence

[y

A
[y

1
or -3
oy0z oy

34
[
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If we replace o% by its value, we have inequality (1),
1

0§ = nE[(a ln];(;(; 0))2].

Inequality (1) is known as the Rao—Cramér inequality. It provides, in
cases in which we can differentiate with respect to a parameter under
an integral or summation symbol, a lower bound on the variance of an
unbiased estimator of a parameter, usually called the Rao—Cramér
lower bound.

We now make the following definitions.

Definition 1. Let Y be an unbiased estimator of a parameter § in
such a case of point estimation. The statistic Y is called an efficient
estumator of 8 if and only if the variance of Y attains the Rao—Cramér
lower bound.

It is left as an exercise to show, in these cases of point estimation,
that E{[0In f(X; 6)/06]%} = —E[0%1n f(X; 6)/06%]. In some instances
the latter is much easier to compute.

Definition 2. In cases in which we can differentiate with respect
to a parameter under an integral or summation symbol, the ratio of the
Rao—Cramér lower bound to the actual variance of any unbiased
estimator of a parameter is called the efficiency of that statistic.

Example 1. Let X, X,, ..., X, denote a random sample from a Poisson
distribution that has the mean 8 > 0. It is known that X is a maximum
likelihood estimator of @; we shall show that it is also an efficient estimator
of 8. We have

IInf@ 8 _ 2 (\in6— 6—Inal

20 26
x x— 0
=§—1= 0-
Accordingly,
5 olnf(X;0\?| _EX -6 o 6 1
o9 B 62 2R

The Rao-Cramér lower bound in this case is 1/[#(1/8)] = 0/n. But 6/» is the
variance oZ of X. Hence X is an efficient estimator of 6.

Example 2. 1et S? denote the variance of a random sample of size
# > 1 from a distribution that is #(u, 8), 0 < 8 < co. We know that
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E[nS?/(n — 1)] = 0. What is the efficiency of the estimator nS2/(n — 1)? We
have

(= p)® In(2n6)

Inf(x; 0) = 70 7
dlnflz; 6) (@—p? 1
20~ 262 26’
and
Plnf6) _ @—p?, 1
002 - [ 262
Accordingly,

afPae] gL
08? TR 267 262

Thus the Rao-Cramér lower bound is 28%/n. Now #S2/8 is x*(n — 1), so

the variance of #52/0is 2(n — 1). Accordingly, the variance of #S%/{(n — 1) is

2(n — 1)[0%(n — 1)2] = 26%/(n — 1). Thus the efficiency of the estimator

nS%/(n — 1) is (n — 1)/n.

Example 3. Let X, X,, ..., X, denote a random sample of size n > 2
from a distribution with p.d.f.

f(z;6) = 622" =exp(flnzx — Inz + In 0), 0<z<l,
= 0 elsewhere.

It is easy to verify that the Rao—-Cramér lower bound is 6?/n.Let Y, = —In X,.
We shall indicate that each Y, has a gamma distribution. The associated
transformation y, = —In x,, with inverse x, = ™%, is one-to-one and the
transformation maps the space {z,; 0 < z, < 1} onto the space {y,; 0 < ¥
< o}. We have |J| = e %. Thus Y, has a gamma distribution with « = 1

and B =1/0. Let Z = —iln X,. Then Z has a gamma distribution with
1

o = n and B = 1/0. Accordingly, we have E(Z) = «f = n/6. This suggests
that we compute the expectation of 1/Z to see if we can find an unbiased
estimator of 6. A simple integration shows that E(1/Z) = 6/(n — 1).
Hence (n — 1)/Z is an unbiased estimator of §. With » > 2, the variance
of (n — 1)/Z exists and is found to be %/(n — 2), so that the efficiency of
(n — 1)/Z is (n — 2)/n. This efficiency tends to 1 as » increases. In such an
instance, the estimator is said to be asymptotically efficient.

The concept of joint efficient estimators of several parameters has
been developed along with the associated concept of joint efficiency of
several estimators. But limitations of space prevent their inclusion in
this book.
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EXERCISES

11.1. Prove that X, the mean of a random sample of size # from a distri-
bution that is #(f, 6?), —0 < 8 < o, is, for every known o? > 0, an
efficient estimator of 6.

11.2. Show that the mean X of a random sample of size # from a distribu-
tion which is 5(1, 8), 0 < 8 < 1, is an efficient estimator of 6.

11.3. Given f(z; 6) = 1/6, 0 < x < 0, zero elsewhere, with § > 0, form-
ally compute the reciprocal of

0]}

Compare this with the variance of (# + 1)Y,/n, where Y, is the largest
item of a random sample of size » from this distribution. Comment.

11.4. Given the p.d.f.

1

f(x;ﬁ):m, -0 <z <o, — < < oo

Show that the Rao—Cramér lower bound is 2/n, where # is the size of a
random sample from this Cauchy distribution.

11.5. Show, with appropriate assumptions, that

E{[a lnj;(g(; 0)]2} _ _E[az lnafg(g(; 0)].

Hing. Differentiate with respect to 8 the first equation in display (2) of this
section,

0= fw ali]a(——l(f’o)f(x, 0) dz.

-

11.2 The Sequential Probability Ratio Test

In Section 7.2 we proved a theorem that provided us with a method
for determining a best critical region for testing a simple hypothesis
against an alternative simple hypothesis. The theorem was as follows.
Let X,, X,,..., X, be a random sample with fixed sample size » from
a distribution that has p.d.f. f(z; 6), where 8€{6; 0 = ¢, 8"} and ¢’
and 8" are known numbers. Let the joint p.d.f. of X;, X,,..., X, be
denoted by

L(0, n) = f(21; 0)f(xa; 0) - - - fl@n; 0),
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a notation that reveals both the parameter 6 and the sample size #. If
we reject Hy: § = 6" and accept H,: § = 6" when and only when

L(#, n)
="

where £ > 0, then this is a best test of H, against H,.

Let us now suppose that the sample size # is ot fixed in advance.
In fact, let the sample size be a random variable N with sample space
{n;n =1,2,3,...}). An interesting procedure for testing the simple
hypothesis Hy: 6 = 6’ against the simple hypothesis H;: 8 = 8" is the
following. Let %k, and %, be two positive constants with &, < &.
Observe the mutually stochastically independent outcomes X, X,
X3, ... in sequence, say x;, ¥y, Z, - . ., and compute

L@, 1) L(,2) L(#,3)

L(6", 1) L(6",2) L(9",3)

The hypothesis Hy: 6 = 8’ is rejected (and H,: § = 6” is accepted) if
and only if there exists a positive integer # so that (x;, @,,..., a,)
belongs to the set

L(¥', ) .
C, = sy ) R — =1...,n —
{(xl x,); ko < . 7) <k,j=1,...,n—1,
L(8', n)
and m < ko}

On the other hand, the hypothesis H,: 6 = 6’ is accepted (and
H,: 8 = 8" is rejected) if and only if there exists a positive integer #

so that (z, #,, .. ., x,) belongs to the set
Lo, .
an{(xl,...,xn);ko<%<k1,]_1, =1,

L&, n
and _u Z kl}.
That is, we continue to observe sample items as long as

L(#', n)

() ko < (0", n)

< k.
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We stop these observations in one of two ways:
(a) With rejection of H,: 6 = 6’ as soon as

L0, n) n) <k

L(e",n) ~

or
(b) with acceptance of H,: § = 6" as soon as

L,n)
L0, m) =Y

A test of this kind is called a sequential probability ratio test. Now,
frequently inequality (1) can be conveniently expressed in an equivalent
form

Colm) < u(wy, Ty, ..., 2,) < €1(n),

where u(X,, X,, ..., X,) is a statistic and ¢,(#) and ¢,(#) depend on
the constants &, &,, 6, 8”, and on #. Then the observations are stopped
and a decision is reached as soon as

U(Xy, Loy - - -, ) < Co(M) or w(Xq, Ty -+ ., Xy) = C1(n).
We now give an illustrative example.
Example 1. Let X have a p.d.f.
flx; 0 =61 — 6)*-=, x=0,1,
= 0 elsewhere.

In the preceding discussion of a sequential probability ratio test, let Hy: 6 = %
and H;: 8 = %; then, with > z;, = gz,,

L) _ (REE s,

LZ,m)  ()=F)r s
If we take logarithms to the base 2, the inequality

1
by < L7
with 0 < &, < k,, becomes

log, kg < — Zéjxi < logg &y,

or, equivalently,

—

1
co(n) =g 3 logz ky < in <2 5~ —log2 ko = ¢y(n).
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Note that L(4, #n)/L(%, n) < kyif and onlyif ¢,(n) < ? z;; and L3, n)/L(%, n)
> ky if and only if ¢4(n) > é‘:xi. Thus we continue to observe outcomes as
long as cy(n) < éx,- < ¢,(n). The observation of outcomes is discontinued
with the first value # of N for which either ¢,(n) < %x,- or ¢o(n) = 2:::::1. The
inequality ¢,(n) < % z; leads to the rejection of Hy: 6 = 1 (the acceptance of

H,), and the inequality cq(n) > ix, leads to the acceptance of Hy: 6 = %
1
(the rejection of H,).

Remarks. At this point, the reader undoubtedly sees that there are
many questions which should be raised in connection with the sequential
probability ratio test. Some of these questions are possibly among the
following:

(a) What is the probability of the procedure continuing indefinitely?

(b) What is the value of the power function of this test at each of the
points § = ¢ and 0 = 6"?

(c) If 6”is one of several values of @ specified by an alternative composite
hypothesis, say H;: § > 6, what is the power function at each point § > 6'?

(d) Since the sample size N is a random variable, what are some of the
properties of the distribution of N? In particular, what is the expected value
E(N) of N?

(e} How does this test compare with tests that have a fixed sample size % ?

A course in sequential analysis would investigate these and many other
problems. However, in this book our objective is largely that of acquainting
the reader with this kind of test procedure. Accordingly, we assert that the
answer to question (a) is zero. Moreover, it can be proved that if 8§ = ¢ or
if 8 = 6", E(N) is smaller, for this sequential procedure, than the sample size
of a fixed-sample-size test which has the same values of the power function
at those points. We now consider question (b) in some detail.

In this section we shall denote the power of the test when H, is true
by the symbol « and the power of the test when H, is true by the
symbol 1 — B. Thus « is the probability of committing a type I error
(the rejection of H, when H, is true), and B is the probability of com-
mitting a type II error (the acceptance of H, when H, is false). With
the sets C,, and B, as previously defined, and with random variables of
the continuous type, we then have

«w

a= 3 anL(H',n), 1-8= zf L0, n

n=1
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Since the probability is 1 that the procedure will terminate, we also
have

l—a=3 [ L@n,  p=3 [, LE».
If (xy, %, ..., 2,) €C,, we have L(8', n) < kyL(6", n); hence it is clear

that
o = 21 [, 1@ < 21 [, BoL (8", n) = ko(l = B)

Because L(0, n) > k,L(8", n) at each point of the set B,, we have

1 —a= z jBn 2 3 fB“ B L(0", 7) = kyf.
Accordingly, it follows that
o 1l -«
k k< ,
(2) 1 _ /3 < (13] 1 =< B

provided that B is not equal to zero or 1.
Now let «, and B, be preassigned proper fractions; some typical
values in the applications are 0.01, 0.05, and 0.10. If we take

a 1 -«
— a , k — a,
kO 1 - Ba ! :80.
then inequalities (2) become
o o, l—e, 1-«

o BT R T B

or, equivalently,
ol = Ba) < (1~ Bag, Bl —a)) < (1 = B,

If we add corresponding members of the immediately preceding
inequalities, we find that

°‘+:8_alga_ﬁaaSaa+lga_lgaa_“/ga
and hence
O‘+Bsaa+lga'

That is, the sum o + B of the probabilities of the two kinds of errors is
bounded above by the sum «, + B, of the preassigned numbers.

Sec. 11.2] The Sequential Probability Ratio Test 379

Moreover, since « and B are positive proper fractions, inequalities (3)
imply that

consequently, we have an upper bound on each of « and B. Various
investigations of the sequential probability ratio test seem to indicate
that in most practical cases, the values of « and 8 are quite close to «,
and B,. This prompts us to approximate the power function at the
points § = §’ and 0 = 8" by a, and 1 — 8,, respectively.

Example 2. Let X be »(8, 100). To find the sequential probability ratio
test for testing Hy: 0 = 75 against H,: § = 78 such that each of « and B
is approximately equal to 0.10, take

0.10 1 1-10.10

fh=1—o10=-9 ®~="910 =%

Since

L(75,m) _ exp[=3 (x, — 75)%/2(100)] _ exp (_ 6> x; — 459%),
I078,n)  exp[—> (z — 78)%/2(100)] 200

the inequality

can be rewritten, by taking logarithms, as

63z, — 459

—In9 < — 200

< In9.

This inequality is equivalent to the inequality

n
co(n)=l§—3n—%ln9<;xi 1330 + 1391 9 = ¢ (n).

Moreover, L(75, n)/L(78 #n) < Ry and L(75 n)/L(78, n) > k; are equivalent
to the inequalities zz, > ¢;(n) and zx, < ¢o(n), respectively. Thus the
observation of outcomes is dlscontlnued with the first value # of IV for which

either %x, > ¢,(n) or ix, < ¢o(n). The inequality ixi > ¢4(n) leads to the
1 1 1

rejection of Hy: 8 = 75, and the inequality ixl < co(m) leads to the accept-
1

ance of Hy: 8 = 75. The power of the test is approximately 0.10 when H, is
true, and approximately 0.90 when H, is true.

Remark. It is interesting to note that a sequential probability ratio test
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can be thought of as a random-walk procedure. For illustrations, the final
inequalities of Examples 1 and 2 can be rewritten as

—logy by < S 2(x; — 0.5) < —log, ko
1

and

_100
3

In9 <> (x4 — 76.5) < 1(3)—01119,
1

respectively. In each instance we can think of starting at the point zero and
taking random steps until one of the boundaries is reached. In the first
situation the random steps are 2(X, — 0.5), 2(X, — 0.5), 2(X;3 — 0.5), ...
and hence are of the same length, 1, but with random directions. In the second
instance, both the length and the direction of the steps are random variables,
X, —76.5, X, — 76.5, X3 — 76,5, ....

EXERCISES
11.6. Let X be #(0, 6) and, in the notation of this section, let 0" = 4,
0" =9, o, = 0.05, and B, = 0.10. Show that the sequential probability

n
ratio test can be based upon the statistic > X7. Determine cq(n) and ¢, ().
1

11.7. Let X have a Poisson distribution with mean 6. Find the sequential
probability ratio test for testing H,: § = 0.02 against H;: # = 0.07. Show

that this test can be based upon the statistic i X;. If ¢, = 0.20 and 8, =
1
0.10, find co(n) and ¢, ().

11.8. Let the stochastically independent random variables ¥ and Z be
n(uy, 1) and n(u,, 1), respectively. Let 6 = u; — po. Let us observe mutually
stochastically independent items from each distribution, say Yy, Y,, ...
and Z;, Z,,.... To test sequentially the hypothesis Hy: = 0 against
H:0 =1 usethesequence X; = Y, — 2,4 = 1,2,.... If o, = B, = 0.05,
show that the test can be based upon X = Y — Z. Find ¢y(#) and c,(n).

11.3 Multiple Comparisons

Consider & mutually stochastically independent random variables
that have normal distributions with unknown means py, po, - . ., fe,
respectively, and with unknown but common variance o®. Let %, &,,
..., k, represent b known real constants that are not all zero. We

b
want to find a confidence interval for > &;u;, a linear function of the
1

Means [y, ig, - - -, - 10 do this, we take a random sample X,;, X,
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..., X, of size a from the distribution #{u;, %), 7 = 1,2,..., 6. If we

denote % X,/a by X, then we know that X ; is #n(u;, ¢®/a), that
i=1

i (Xi; — X.;)%/o?is x*(a — 1), and that the two random variables are

stochastically independent. Since the random samples are taken from
mutually independent distributions, the 26 random variables X,

S (X, — X,)%o% j = 1,2,...,b, are mutually stochastically inde-

pendent. Moreover, X.;, X.,,..., X, and

$ § @ - X
=1 i=1 o?
are mutually stochastically independent and the latter is x?[b(a — 1)].

b b
Let Z = Y kX, Then Z is normal with mean } k;u; and variance
1 1

b
(Z k?)az/a, and Z is stochastically independent of
1

J

1

1 ¢ .
V= e =1 =1(Xii - X2

Hence the random variable
b b
gk,X 5 ; Rips
7\ b b
A/(%: kiz)az/“ 21: kin - % Ly
- 70N
Vo? / (z k]?) Via
1

has a ¢ distribution with 5(a — 1) degrees of freedom. A positive number
¢ can be found in Table IV in Appendix B, for certain values of «,

0 < a < 1,such that Pr(—¢c < T < ¢) = 1 — « It follows that the
probability is 1 — « that

b b 1% b b b | 4
Sx, o J(58) LSk s Sax, o [(S0) L
1 1 a 1 1 1 a

The experimental values of X ;, 7 = 1,2,...,b, and V will provide a

T:

b
100(1 — o) per cent confidence interval for > &,u,;.
1

b
It should be observed that the confidence interval for X kju;
1

depends upon the particular choice of &y, &, . . ., k,. It is conceivable
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that we may be interested in more than one linear function of u,, g,
-y iy SUch as py — g, g — (py + po)/2, 0r py + -+ + pp. We can,

b
of course, find for each > %;u; a random interval that has a preassigned
1

b
probability of including that particular > &;u,. But how can we compute
1

the probability that simultaneously these random intervals include their

respective linear functions of uy, po, ..., up? The following procedure

of multiple comparisons, due to Scheffé, is one solution to this problem.
The random variable

1 (X o .“j)2

d?la
is ¥2(b) and, because it is a function of X ;, ..., X, alone, it is stochasti-
cally independent of the random variable

1
V=mz Z (Xy; — X,)2

f=1 i=1

M\

3

Hence the random variable

has an F distribution with 6 and #(a — 1) degrees of freedom. From
Table V in Appendix B, for certain values of «, we can find a constant
d such that Pr(F <d) =1 — aor

2 vV
Pr [Z (X — p)? < bd—] =1-a
i=1 a
b
Note that 3 (X, — u;)? is the square of the distance, in 4-dimensional
j=1

space, from the point (us, pg, ..., gp) to the random point (X, X,

.., X ). Consider a space of dimension b and let (¢, ¢,,. . ., £,) denote

the coordinates of a point in that space. An equation of a hyperplane
that passes through the point (uq, po, - - -, pp) is given by

(1) kyty — p1) + Ralta — po) + -+ Rplty — o) = 0,

where not all the real numbers %;,7 = 1,2,...,b, are equal to zero.
The square of the distance from this hyperplane to the point (f, = X j,
tz = X.z, . "tb = Xb) iS

(R Xy — pn) + Bo(X g — po) + -+ Rp(Xp — mw)]?
kI + k3 +---+ k3

(2)
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b

From the geometry of the situation it follows that > (X, — p;)? is
1

equal to the maximum of expression (2) with respect to &y, &, . . ., k.

b
Thus the inequality > (X.; — p;)? < (bd)(V/a) holds if and only if
1

b _ 2
[Z kj(X~J' - #j)] 174
=1 < bd —
2 K
=1

a
for every real %y, Ry, ..., k,, not all zero. Accordingly, these two
equivalent events have the same probability, 1 — «. However, in-
equality (3) may be written in the form

Thus the probability is 1 — « that simultaneously, for 4/l real %,, &,
., Ry, not all zero,

b —‘ﬁ/ b b _ -b_V
4 > kX, — A/bd(z k?) - < Dk < D kX, + A/baz(E k,?) >
1 1 1 1 1

Denote by A the event where inequality (4) is true for all real
ki, ..., k,, and denote by B the event where that inequality is true
for a finite number of b-tuples (&, ..., &,). If the event A occurs,
certainly the event B occurs. Hence P(4) < P(B). In the applications,

one is often interested only in a finite number of linear functions

3)

b
> kju;. Once the experimental values are available, we obtain from (4)
1

a confidence interval for each of these linear functions. Since P(B) >
P(A) = 1 — o, we have a confidence coefficient of at least 100(1 — «)
per cent that the linear functions are in these respective confidence
intervals.

Remarks. If the sample sizes, say a;, 4, ..., 4, are unequal, in-
equality (4) becomes

b p2 b b —W‘
#) ZkX A/Z—’Vszk,-,ujsEk,}?.,+A/balzh—’.V,
1 1

where




384 Further Topics in Statistical Inference [Ch. 11

b
and d is selected from Table V with b and ;(aj — 1) degrees of freedom.

Inequality (4') reduces to inequality (4) when a; = a3 =+ = a.
Moreover, if we restrict our attention to linear functions of the form

ikjpj with i k; = 0 (such linear functions are called contrasts), the radical
1 1

in inequality (4') is replaced by

4]

b kj
ab -1 > =V,
Z a;
]
where d is now found in Table V with b — 1 and ;(a,- — 1) degrees of

freedom.
In these multiple comparisons, one often finds that the length of a
confidence interval is much greater than the length of a 100(1 — «) per cent

b . .
confidence interval for a particular linear function » &,u;. But this is to be
1

expected because in one case the probability 1 — « applies to just one event,
and in the other it applies to the simultaneous occurrence of many events.
One reasonable way to reduce the length of these intervals is to take a larger
value of o, say 0.25, instead of 0.05. After all, it is still a very strong statement
to say that the probability is 0.75 that all these events occur.

EXERCISES
11.9. If A4,, 4,,..., A, are events, prove, by induction, Boole’s in-
k
equality P(4, U 4, U---U 4;) < > P(4,). Then show that
1

k
PA*NnAin-- N4} =1 - ;P(Ai).
11.10. In the notation of this section, let (k;y, &g, . -, ki), 2 = 1,2, ..., m
represent a finite number of b-tuples. The problem is to find simultaneous
b -
confidence intervals for > kyu; ¢ = 1, 2,..., m, by a method different from
i=1

that of Scheffé. Define the random variable T by

(élkuX Z k,]y,)/J(Z B)Vie, i=12..m

(a) Let the event AF be given by —¢; < T;
the random variables U; and W, such that U; <

to AF.
(b) Select ¢; such that P(4¥) = 1 — a/m; that is, P(4,) = ao/m. Use. t_he
results of Exercise 11.9 to determine a lower bound on the probability

¢,1=12 ..., m Find

<
b
z gy < W, is equivalent
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that simultaneously the random intervals (U, W), ..., (U,, W,) include
b b

21 Byttg, ooy 2 Ry, respectively.
j= =1

{c) Let a =3, b =06, and « = 0.05. Consider the linear functions

P1 = Bo P2 — Po, s — pa, e — (s + pe)/2, and (ug + pp + -+ pg)/6.
Here m = 5. Show that the lengths of the confidence intervals given by the
results of part (b) are shorter than the corresponding ones given by the
method of Scheffé, as described in the text. If m becomes sufficiently large,
however, this is not the case.

11.4 Classification

The problem of classification can be described as follows. An investi-
gator makes a number of measurements on an item and wants to place
it into one of several categories (or classify it). For convenience in our
discussion, we assume that only two measurements, say X and Y,
are made on the item to be classified. Moreover, let X and Y have a
joint p.d.f. f(z, y; 6), where the parameter 6 represents one or more
parameters. In our simplification, suppose that there are only two
possible joint distributions (categories) for X and Y, which are indexed
by the parameter values §’ and 6", respectively. In this case, the problem
then reduces to one of observing X = zand Y = y and then testing the
hypothesis 6 = 6’ against the hypothesis § = 6", with the classifi-
cation of X and Y being in accord with which hypothesis is accepted.
From the Neyman—Pearson theorem, we know that a best decision of
this sort is of the form: If

f@y®) _,
fay; o) =

choose the distribution indexed by 6”; that is, we classify (z, y) as
coming from the distribution indexed by 6”. Otherwise, choose the
distribution indexed by 6’; that is, we classify (, y) as coming from the
distribution indexed by §'.

In order to investigate an appropriate value of %, let us consider a
Bayesian approach to the problem (see Section 6.6). We need a p.d.f.
h(8) of the parameter, which here is of the discrete type since the
parameter space £ consists of but two points 8 and 8”. So we have that
”(O') + h(8") = 1. Of course, the conditional p.d.f. g(8|z, y) of the
parameter, given X = 2, Y = y, is proportional to the product of
1(6) and f(=, y; 0),

g(0lz, y) oc 1(6) f(z, y; ).
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In particular, in this case,

mO)f(x. y; 6)
09 = 5 v 0) + WOV T3 61

Let us introduce a loss function #[8, w(x, y)], where the decision
function w(x, y) selects decision w = 8" or decision w = 6”. Because
the pairs (§ = ', w = 8') and (0 = 0", w = §") represent correct
decisions, we always take £(¢, §') = £(6", 8") = 0. On the other hand,
positive values of the loss function should be assigned for incorrect
decisions; that is, Z(#', ") > 0 and £(6", §') > 0.

A Bayes’ solution to the problem is defined to be such that the
conditional expected value of the loss {6, w(x, y)], given X = «z,
Y = y, is a minimum. If w = ¢, this conditional expectation is

L6, V(0" f(x, y; 87)
(@) (@, y; 0) + h(O)f(z,y; 0")
because £ (¢, §') = 0; and if w = 6", it is

> 20, )60l 9) = 5

L, V8 f (=, y; 6')
fle.y: 8) + h(0")f (@, y; 07)
because £(8", 8") = 0. Accordingly, a Bayes’ solution is one that

decides w = 6" if the latter ratio is less than or equal to the former;
or, equivalently, if

L, 0h(0) ] (@, y; 0) < (0", 60" [ (e, y; 0).

320 0%l 9) = 5

That is, the decision w = 6" is made if

fle,y; ) _ 206", 0)n(6") _
fle,y; 87) = 26, 0)0(e)

otherwise, the decision w = 6 is made. Hence, if prior probabilities
R{0") and A(8") and losses L(0 = ¢, w = 6") and L(0 = 0", w = &)
can be assigned, the constant % of the Neyman—Pearson theorem can be
found easily from this formula.

Example 1. Let (z,y) be an observation of the random pair (X, Y),
which has a bivariate normal distribution with parameters yu;, u,, o3, o,
and p. In Section 3.5 that joint p.d.f. is given by
_ 1

2n610,V 1 — p?

—00 < T < 00, —0 < Y < 00,

e q(z.y:ul.uz)m’

f(x’ Y5 11> Mo, 0%’ U%’ P)
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where 0, > 0,0, > 0, -1 < p < 1, and

1 — 2 _ _ _ .
o=l () ) (5]

Assume that ¢f, 63, and p are known but that we do not know whether the
respective means of (X, Y) are (u}, pa) or (u3, u3). The inequality

[y ¢, g2, 03, 95, p)

n " S k
f(x; ?/, Ha, H2, U%l 0%: P)

is equivalent to

3q(@, y; pi, pa) — q(@, y; p1, py)] < Ink.

Moreover, it is clear that the difference in the left-hand member of this
inequality does not contain terms involving x2, xy, and 2. In particular, this
inequality is the same as

1 7 — ” ’ — ” ’ _ ” ’ — "
M = Pz{[#x () Hz)]x N [#2 - 42 _ plp ul)]y}

021') G109 o2 0102

< Ink + g(0, 0; wi, pz) — q(0, 0; pi, p3)],
or, for brevity,
ar + by < c.

That is, if this linear function of  and y in the left-hand member of inequality
(1) is less than or equal to a certain constant, we would classify that (z, y) as
coming from the bivariate normal distribution with means i and 3. Other-
wise, we would classify (z, y) as arising from the bivariate normal distri-
bution with means pj and ps. Of course, if the prior probabilities and losses
are given, k and thus ¢ can be found easily; this will be illustrated in Exercise
11.11.

Once the rule for classification is established, the statistician
might be interested in the two probabilities of misclassifications using
that rule. The first of these two is associated with the classification of
(z, y) as arising from the distribution indexed by ¢” if, in fact, it comes
from that index by #’. The second misclassification is similar, but with
the interchange of 6" and §”. In the previous example, the probabilities
of these respective misclassifications are

Pr(aX + bY < ¢; pi, pa) and Pr (aX + 0Y > c; pf, pa)-

Fortunately, the distribution of Z = aX + bY is easy to determine,
so each of these probabilities is easy to calculate. The moment-generating
function of Z is

E(et?) = E[MaX+bD)] — F(qutX +biv),
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Hence in the joint moment-generating function of X and Y found in
Section 3.5, simply replace ¢, by af and ¢, by &, to obtain

o?(at)? + 2po,04(at)(bt) + aﬁ(bt)z]
2

E(e?) = exp [,ulat + bt +

Il

2.2 2ab b2 2)42
exp [(“Hl + bt + (2203 + 2a pgloz + b%03) ]

However, this is the moment-generating function of the normal
distribution

n(ap, + bug, a%0% + 2abpoyoy + 0%03).

With this information, it is easy to compute the probabilities of mis-
classifications, and this will also be demonstrated in Exercise 11.11,

One final remark must be made with respect to the use of the
important classification rule established in Example 1. In most in-
stances the parameter values uj, py and pj, pg as well as o%, o3, and p
are unknown. In such cases the statistician has usually observed a
random sample (frequently called a training sample) from each of the
two distributions. Let us say the samples have sizes #»’ and »”, respec-
tively, with sample characteristics

Z, 7, (s)? (sy)% 7' and ", 9", (sz)2, (sy)%, 7.

n 14

Accordingly, if in inequality (1) the parameters uj, pa, pi, g3, o3, 03,
and po,0, are replaced by the unbiased estimates

B A S O Y e 1
» ’ ’ ’ n/+nll_2 nl+nll_2

W O A nn . nn

n'r'sySy + n'r'sysy
n +n -2

3

the resulting expression in the left-hand member is frequently called
Fisher’s linear discriminant function. Since those parameters have been
estimated, the distribution theory associated with aX + Y is not
appropriate for Fisher’s function. However, if #" and »#” are large, the
distribution of aX + bY does provide an approximation.

Although we have considered only bivariate distributions in this
section, the results can easily be extended to multivariate normal
distributions after a study of Chapter 12.
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EXERCISES

11.11. In Example 1let u) = pp = 0, pf = p3 = 1,0? = 1, 02 = 1, and
p =14

(a) Evaluate inequality (1) when the prior probabilities are A{u}, ub) =
and A(u7, ug) = % and the losses are Z[0 = (4, us), w = (4], ug)] = 4 and
L10 = (p1, p3), w = (u3, pa)] = 1.

(b) Find the distribution of the linear function aX + Y that results
from part (a).

{(c) Compute Pr(aX + 0Y < ¢;pf = py = 0) and Pr (aX + Y > ¢;
p = pp = 1).

11.12. Let X and Y have the joint p.d.f.

. 1 x Y
f(x’y’gl’gz)—me){p(_?l_ﬁ_z)’ 0<z<o,0<y <o,

zero elsewhere, where 0 < 6;, 0 < 6,. An observation (z, y) arises from the
joint distribution with parameters equal to either 67 = 1, 6, = 5 or 6] = 3,
85 = 2. Determine the form of the classification rule.

11.13. Let X and Y have a joint bivariate normal distribution. An
observation (z, y) arises from the joint distribution with parameters equal to
either

pr=p3 =0, (1) =(of) =1,p =%

or
pr=pz=1(0})" =4 (8" =9, p" = %

Show that the classification rule involves a second-degree polynomial in x
and y.

11.5 Sufficiency, Completeness, and Stochastic Independence

In Chapter 10 we noted that if we have a sufficient statistic Y,
for a parameter 6, € Q, then A(z|y,), the conditional p.d.f. of another
statistic Z, given Y, = y,, does not depend upon 6. If, moreover, Y,
and Z are stochastically independent, the p.d.f. g,(2) of Z is such that
&2(2) = h(z|y,), and hence g,(z) must not depend upon 8 either. So the
stochastic independence of a statistic Z and the sufficient statistic Y,
for a parameter § means that the distribution of Z does not depend
upon 0 € Q.

It is interesting to investigate a converse of that property. Suppose
that the distribution of a statistic Z does not depend upon 8; then, are
Z and the sufficient statistic Y, for 8 stochastically independent? To
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begin our search for the answer, we know that the joint p.d.f. of Y,
and Z is gi(yy; O)h(zlyy), where gi(y;; 6) and A(z|y,) represent the
marginal p.d.f. of ¥, and the conditional p.d.f. of Z given Y, = y,,
respectively. Thus the marginal p.d.f. of Z is

f_ww &1(y1; Ohlzyy) dyy = gal2),

which, by hypothesis, does not depend upon 6. Because

7 eedeslyns 0) dy, = ga(a),

it follows, by taking the difference of the last two integrals, that

(1) 7 leate) — hiely)lealys; 6) dy, = 0

for all € Q. Since Y, is a sufficient statistic for 8, (z]y,) does not
depend upon 8. By assumption, g,(z) and hence g,(z) — h(z|ly,) do
not depend upon f. Now if the family {g,(y,; 6); 6 € Q} is complete,
Equation (1) would require that

82(2) — hlzly,) = 0 or 8a(2) = hlzly,)-
That is, the joint p.d.f. of Y, and Z must be equal to

g1y O)h(zly,) = g1(y1; 0)82(2)-

Accordingly, Y, and Z are stochastically independent, and we have
proved the following theorem.

Theorem 1. Let X, X,,..., X, denote a randowm sample from a
distribution having a p.d.f. f(z; ), 0€ Q, where Q is an interval set.
Let Yy = uy(Xy, X, ..., X,) be a sufficient statistic for 8, and let the
Jamily {g:(y,; 6); 0 € Q} of probability density fumctions of Y, be com-
plete. Let Z = u(X,, X,, ..., X,) be any other statistic (not a function of
Y, alone). If the distribution of Z does not depend upon 6, then Z is
stochastically independent of the sufficient statistic Y.

In the discussion above, it is interesting to observe that if Y, is a
sufficient statistic for §, then the stochastic independence of Y, and Z
implies that the distribution of Z does not depend upon 8 whether
{g1(y1; 0); 6 € Q} is or is not complete. However, in the converse, to
prove the stochastic independence from the fact that g,(z) does not
depend upon 6, we definitely need the completeness. Accordingly, if
we are dealing with situations in which we know that the family
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{g(y,; 0), 6 € Q} is complete (such as a regular case of the exponential
class), we can say that the statistic Z is stochastically independent of
the sufficient statistic Y, if, and only if, the distribution of Z does not
depend upon 8.

It should be remarked that the theorem (including the special
formulation of it for regular cases of the exponential class) extends
immediately to probability density functions that involve m param-
eters for which there exist m joint sufficient statistics. For example,
let X,, X,,..., X, be a random sample from a distribution having the
p.d.f. f(x; 6,, ;) that represents a regular case of the exponential class
such that there are two joint complete sufficient statistics for 6, and 6,
Then any other statistic Z = u(X,;, X,,..., X,) is stochastically
independent of the joint complete sufficient statistics if and only if
the distribution of Z does not depend upon 6, or 4,.

We give an example of the theorem that provides an alternative
proof of the stochastic independence of X and S2, the mean and the
variance of a random sample of size » from a distribution that is
n(u, o%). This proof is presented as if we did not know that nS5%/s? is
x?(n — 1) because that fact and the stochastic independence were
established in the same argument (see Section 4.8).

Example 1. 1et X,, X,,..., X, denote a random sample of size »
from a distribution that is #(u, 0%). We know that the mean X of the sample
is, for every known o2, a complete sufficient statistic for the parameter p,
—o0 < p < oo. Consider the statistic

S2 — X__X)z
&%

RN=

and the one-to-one transformation defined by W, = X; — p,2=1,2,..., n.
Since W = X — 1, we have that

13 —
ST == (W, - W)
n 1=1
moreover, each W, is #(0, ¢?), ¢ = 1, 2, ..., n. That is, S% can be written as a
function of the random variables W,, W,, ..., W,, which have distributions

that do not depend upon w. Thus S? must have a distribution that does not
depend upon g; and hence, by the theorem, S? and X, the complete sufficient
statistic for g, are stochastically independent.

The technique that is used in Example 1 can be generalized to situations
in which there is a complete sufficient statistic for a location parameter §. Let
X,, Xo, ..., X, be a random sample from a distribution that has a p d.f.
of the form f(x — 6), for every real 6; that is, § is a location parameter. Let
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Y, = (X, X,, . .., X,) be a complete sufficient statistic for 6. Moreover,
let Z = u(Xy, X, ..., X,) be another statistic such that

w@, +d,x; +d,...,x, +d) = ulx, 2,...,%,),

for all real 4. The one-to-one transformation defined by W, = X, — §,
i =1,2,...,n, requires that the joint p.d.f. of Wy, W,, ..., W, be

f)f(wg) - - - f(wn),

which does not depend upon 6. In addition, we have, because of the special
functional nature of #(x,, z,, . . ., z,), that

Z=u(Wy+ 0, Wy+6,..., W, + 0) = u(Wy, Wy, ..., W)

is‘ a function of W;, W,, ..., W, alone (not of ). Hence Z must have a
distribution that does not depend upon € and thus, by the theorem, is
stochastically independent of Y.

Example 2. Let X,, X,, ..., X, be a random sample of size # from the
distribution having p.d.f.

flzx; ) = e~=-9, f<x <o, —0 < 8 < oo

= 0 elsewhere.

Here the p.d.f. is of the form f(z — 6), where f(z) = ¢ %, 0 < < 0, zero
elsewhere. Moreover, we know (Exercise 10.17, Section 10.3) that the first
order statistic ¥, = min (X,) is a complete sufficient statistic for ¢. Hence
Y, must be stochastically independent of each statistic #(X,, X, ..., X,),
enjoying the property that

>

ue, +d,xg+d,...,x, +d) = uxy, g, ..., T,)

for all real 4. Illustrations of such statistics are S2, the sample range, and

i [X, — min (X})].

St

There is a result on stochastic independence of a complete sufficient
statistic for a scale parameter and another statistic that corresponds to that
associated with a location parameter. Let X, X, ..., X, be arandom sample
trom a distribution that has a p.d.f. of the form (1/6) f(z/6), for all 8 > 0;
that is, @ is a scale parameter. Let Y, = u,(X,, X,, ..., X,) be a complete
sufficient statistic for 6. Say Z = u(X,, X,, ..., X,) is another statistic
such that

u(cxy, cxy, . . ., CT,) = Uy, Xq, . . ., X,)
~
for all ¢ > 0. The one-to-one transformation defined by W; = X,/0, 4+ =
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1,2, ..., n, requires the following: (a) that the joint pafof Wy, Wy, ..., W,
be equal to

flwi)f(ws) - - - f(wn),
and (b) that the statistic Z be equal to

Z = u(Wy, OW,, ..., OW,) = w(Wy, W, ..., W,).

Since neither the joint p.d.f. of Wy, W, ..., W, nor Z contain 6, the distri-
bution of Z must not depend upon # and thus, by the theorem, Z is stochastic-
ally independent of the complete sufficient statistic Y, for the parameter 6.

Example 3. Let X, and X, denote a random sample of size # = 2 from
a distribution with p.d.f.

f(x;B):%e‘x/", 0<x<w0<8 <o,

= 0 elsewhere.

The p.d.f. is of the form (1/6)f(x/6), where f(x) = ¢7%, 0 < & < c0, zero
elsewhere. We know (Section 10.4) that Y, = X; 4+ X, is a complete suffi-
cient statistic for 6. Hence Y, is stochastically independent of every statistic
w(X,, X,) with the property u(cz;, cxs) = u(z1, 2)- Illustrations of these are
X,/X, and X,/(X; + X,), statistics that have F and beta distributions,
respectively.

Finally, the location and the scale parameters can be combined in a
p.d.f. of the form (1/68,) f[(x — 0,)/85], —0 < 6; < ©,0 < #, < co. Through
a one-to-one transformation defined by W, = (X, — 6,)/0;,1 = 1,2,...,%,
it is easy to show that a statistic Z = u(Xy, Xy, . - ., X,) such that

w(cx, + d, ..., cx, + @) = ul®@y, ..., %)

for —o0 < d < 00, 0 < ¢ < o0, has a distribution that does not depend
upon 6, and 6,. Thus, by the extension of the theorem, the joint complete
sufficient statistics Y, and Y, for the parameters 6, and 6, are stochastically
independent of Z.

Example 4. Let X, X,, ..., X, denote a random sample from a distri-
bution that is #(8;, 8,), —c0 < 6; < 0,0 < 6, < . In Example 2, Section
10.6, it was proved that the mean X and the variance S* of the sample are
joint complete sufficient statistics for 8, and 8,. Consider the statistic

n—1

Z (X1+1 - Xz)z
Z = ~——"—_—1n = M(le X2)"':X‘n)’
3 - X
which satisfies the property that u(cz, + d, ..., cx, + ) = u(®y, . . ., %n)-

That is, Z is stochastically independent of both X and S2.
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Let n(f,, 5) and n(8,, 8,) denote two independent normal distri-
butions. Recall that in Example 2, Section 7.4, a statistic, which was
denoted by T, was used to test the hypothesis that 6, = 0,, provided
the unknown variances 8; and 6, were equal. The hypothesis that
9, = 0, is rejected if the computed |7| > ¢, where the constant ¢ is
selected so that ay = Pr(|T| = ¢; 6, = 6,5, 65 = 8,) is the assigned
significance level of the test. We shall show that, if §; = 0,, F of
Example 3, Section 7.4, and T are stochastically independent. Among
other things, this means that if these two tests are performed sequenti-
ally, with respective significance levels «; and «,, the probability of
accepting both these hypotheses, when they are true, is (1 — o }{1 — o).
Thus the significance level of this joint testise = 1 — (1 — ay)(1 ~ o).

The stochastic independence of F and T, when 83 = 6,, can be
established by an appeal to sufficiency and completeness. The three

statistics X, Y, and i(Xi - X)? + g(Yi — Y)2 are joint complete
T 1

sufficient statistics for the three parameters 6;, 6,, and 6; = 0,.
Obviously, the distribution of F does not depend upon 6,, §,, and
0; = 8,, and hence F is stochastically independent of the three joint
complete sufficient statistics. However, T is a function of these three
joint complete sufficient statistics alone, and, accordingly, T is
stochastically independent of F. It is important to note that these two
statistics are stochastically independent whether 8, = 0, or 6, # 6,,
that is, whether 7 is or is not central. This permits us to calculate
probabilities other than the significance level of the test. For example,
if 8; = 8, and 6, # 0,, then

Prc; < F<ey |T| 2¢) =Pre; < F <) Pr(|T] = o).

The second factor in the right-hand member is evaluated by using the
probabilities for a noncentral ¢ distribution. Of course, if 6; = 6, and
the difference 6, — 0, is large, we would want the preceding probability
to be close to 1 because the event {¢; < F < ¢,, |T| = ¢} leads to a

correct decision, namely accept 6; = 6, and reject 8, = 6,.

EXERCISES

11.14. Let Y, < Y, < Y3 < Y, denote the order statistics of a random
sample of size # = 4 from a distribution having p.d.f. f(z; 0) = 1/0, 0 <
x < 0, zero elsewhere, where 0 < 8 < c0. Argue that the complete sufficient
statistic Y, for 8 is stochastically independent of each of the statistics Y,/Y,

Sec. 11.5] Sufficiency, Completeness, and Stochastic Independence 395

and (Y, + Y,)/(Y; + Y,). Hint. Show that the p.d.f.is of the form (1/6) f(x/6),
where f(z) = 1, 0 < « < 1, zero elsewhere.

11.15. Let ¥, < Y, <---< Y, be the order statistics of a random
sample from the normal distribution #(6, ¢%), —o0 < 6 < c0. Show that the

distribution of Z = ¥, — ¥ does not depend upon §. Thus ¥ = % Yi/n, a
complete sufficient statistic for 6, is stochastically independent of Z.

11.16. Let X,, X,, . . ., X, be a random sample from the normal distribu-
tion #(f, ¢?), —o0 < 6 < co. Prove that a necessary and sufficient condition

kid n . . .
that the statistics Z = > @;X;and Y = >, X;, a complete sufficient statistic
1 1

for 6, be stochastically independent is that ;ai = 0.

11.17. Let X and Y be random variables such that E(X*) and E(Y*) # 0
exist for £ =1,2,3,.... If the ratio X/Y and its denominator Y are
stochastically independent, prove that E[(X/Y)¥] = E(X*)[E(Y"), k=
1,2,3,.... Hint. Write E(X*) = E[Y*X/Y)*].

11.18. Let YV, < Y, <---< Y, be the order statistics of a random
sample of size # from a distribution that has p.d.f. f(z; 6) = (1/6)e~,

n
0 <z < o0,0< 8 < o0, zero elsewhere. Show that the ratio R = nYl/Z1 Y,

and its denominator (a complete sufficient statistic for 6) are stochastically
independent. Use the result of the preceding exercise to determine E(R¥),
kR=123,....

11.19. Let X,, X,, ..., X; be a random sample of size 5 from the distri-
bution that has p.d.f. f(z) =e % 0 < 2z < 0, ze10 elsewhere. Show' that
(X: + X)/(Xy + Xy +- -+ X;) and its denominator are stochastically
independent. Hint. The p.d.f. f(z) is a member of {f(x; 6);0 < 6 < oo}, where
fla; 8) = (1/6)e=%, 0 < < o0, zero elsewhere.

11.20. Let Y, < Y, <---< Y, be the order statistics of a random
sample from the normal distribution n(8,, 0), —00 < 6’1_< 0,0 < 0, < .
Show that the joint complete sufficient statistics X' = Y and S? for 8, and
6, are stochastically independent of each of (Y, — Y)/S and (Y, — Y3)/S.

11.21. Let Y, < Y, <---< Y, be the order statistics of a random
sample from a distribution with the p.d.f.

L6, 0,) = L ex (-x'()‘)
flz; 6., 05) = X p 9,
6, < z < oo, zero elsewhere, where —oo < 6; < o0, 0 < 6, < o.Show that
the joint complete sufficient statistics Y, and X = Y for 6, and 0, are

stochastically independent of (Y, — Y1)/2 (Y, — Y3).

1
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11.6 Robust Nonparametric Methods

Frequently, an investigator is tempted to evaluate several test
statistics associated with a single hypothesis and then use the one
statistic that best supports his or her position, usually rejection.
Obviously, this type of procedure changes the actual significance level
of the test from the nominal « that is used. However, there is a way in
which the investigator can first look at the data and then select a test
statistic without changing this significance level. For illustration,
suppose there are three possible test statistics W,, W, W, of the
hypothesis H, with respective critical regions C,, C,, C3 such that
Pr(W,eCy; Hy) = o, ¢ = 1, 2, 3. Moreover, suppose that a statistic Q,
based upon the same data, selects one and only one of the statistics
Wi, Ws, W, and that W is then used to test H,. For example, we
choose to use the test statistic W;if Q € D,, ¢ = 1, 2, 3, where the events
defined by D,, D,, and D; are mutually exclusive and exhaustive.
Now if Q and each W, are stochastically independent when H, is true,
then the probability of rejection, using the entire procedure (selecting
and testing), is, under H,,

Pr(@eD,, W,eCy) + Pr(Qe Dy, WyeCy) + Pr(Qe D, Wi e(Cy)
=Pr(Qe D) Pr(W,eC,) + Pr(Qe D) Pr (W, e Cy)
+ Pr(Q e Dg) Pr (W;eCy)
=o[Pr(QeDy) + Pr(QeD,) + Pr(Qe D,)] = «

That is, the procedure of selecting W, using a stochastically indepen-
dent statistic Q and then constructing a test of significance level « with
the statistic ¥, has overall significance level a.

Of course, the important element in this procedure is the ability
to be able to find a selector Q that is independent of each test statistic
W. This can frequently be done by using the fact that the complete
sufficient statistics for the parameters, given by H,, are stochastically
independent of every statistic whose distribution is free of those
parameters (see Section 11.5). For illustration, if random samples of
sizes m and # arise from two independent normal distributions with
respective means p, and p, and common variance o2, then the complete
sufficient statistics X, ¥, and

V=

=13

(X, - Xp2 + S (v, - 7
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for uy, we, and o? are stochastically independent of every statistic
whose distribution is free of u;, py, and o? such as

_ X2 YIX — i .
(X; — X) ; | X; — median (X))| range (X, Xg, ..., X;)
Y, Y, ...,Y)

G L%

(¥, - 92 31V, - median (v, range (

Thus, in general, we would hope to be able to find a selector ¢ that
is a function of the complete sufficient statistics for the parameters,
under H, so that it is independent of the test statistics.

It is particularly interesting to note that it is relatively easy to use
this technique in nonparametric methods by using the independence
result based upon complete sufficient statistics for parameters. How
can we use an argument depending on parameters in nonparametric
methods? Although this does sound strange, it is due to the unfortunate
choice of a name in describing this broad area of nonparametric methods.
Most statisticians would prefer to describe the subject as being destri-
bution-free, since the test statistics have distributions that do not
depend on the underlying distribution of the continuous type, de-
scribed by either the distribution function F or the p.d.f. f. In addition,
the latter name provides the clue for our application here because we
have many test statistics whose distributions are free of the unknown
(infinite vector) “‘parameter” F (or f). We now must find complete
sufficient statistics for the distribution function F of the continuous
type. In many instances, this is easy to do.

In Exercise 10.37, Section 10.6, it is shown that the order statistics
Y, <Y, <---< Y, of a random sample of size # from a distribution
of the continuous type with p.d.f. F'(x) = f(x) are sufficient statistics
for the “parameter” f (or F). Moreover, if the family of distributions
contains all probability density functions of the continuous type, the
family of joint probability density functions of Y,, Y,,..., Y, is also
complete. We accept this latter fact without proof, as it is beyond the
level of this text; but doing so, we can now say that the order statistics
Y,, Y, ..., Y, are complete sufficient statistics for the parameter f
(or F).

Accordingly, our selector Q will be based upon those complete
sufficient statistics, the order statistics under H,. This allows us to
independently choose a distribution-free test appropriate for this type
of underlying distribution, and thus increase our power. Although it is
well known that distribution-free tests hold the significance level « for
all underlying distributions of the continuous type, they have often
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been criticized because their powers are sometimes low. The inde-
pendent selection of the distribution-free test to be used can help
correct this. So selecting—or adapting the test to the data—provides
a new dimension to nonparametric tests, which usually improves the
power of the overall test.

A statistical test that maintains the significance level close to a
desired significance level « for a wide variety of underlying distri-
butions with good (not necessarily the best for any one type of distri-
bution) power for all these distributions is described as being robust.
As an illustration, the T used to test the equality of the means of two
independent normal distributions (see Section 7.4) is quite robust
provided that the underlying distributions are rather close to normal
ones with common variance. However, if the class of distributions
includes those that are not too close to normal ones, such as the Cauchy
distribution, the test based upon T is nof robust; the significance level
is not maintained and the power of the T test is low with Cauchy
distributions. As a matter of fact, the test based on the Mann—Whitney-
Wilcoxon statistic (Section 9.6) is a much more robust test than that
based upon T if the class of distributions is fairly wide (in particular,
if long-tailed distributions such as the Cauchy are included).

An illustration of the adaptive distribution-free procedure that is
robust is provided by considering a test of the equality of two inde-
pendent distributions of the continuous type. From the discussion in
Section 9.8, we know that we could construct many linear rank statis-
tics by changing the scoring function. However, we concentrate on
three such statistics mentioned explicitly in that section: that based on
normal scores, say L;; that of Mann-Whitney—-Wilcoxon, say L,; and
that of the median test, say L,. Moreover, respective critical regions
C,, Cy, and C; are selected so that, under the equality of the two
distributions, we have

«=Pr(LeCy) = Pr(L,eCy) = Pr(LyeCy).

Of course, we would like to use the test given by L, e C; if the tails
of the distributions are like or shorter than those of the normal distri-
butions. With distributions having somewhat longer tails, L, e C,
provides an excellent test. And with distributions having very long
tails, the test based on L; € C; is quite satisfactory.

In order to select the appropriate test in an independent manner
welet V, < V, <.+ < Vy, where N = m + n, be the order statistics
of the combined sample, which is of size N. Recall that if the two inde-
pendent distributions are equal and have the same distribution function
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F, these order statistics are the complete sufficient statistics for the
parameter F. Hence every statistic based on V,, V,, ..., Vy is sto-
chastically independent of L,, Lo, and L;, since the latter statistics
have distributions that do not depend upon F. In particular, the
kurtosis (Exercise 1.98, Section 1.10) of the combined sample,

1

V, - V)t
. Ni=1(f ) |

[ & w7

is stochastically independent of L;, L,, and Ls. From Exercise 3.56,
Section 3.4, we know that the kurtosis of the normal distribution is 3;
hence if the two distributions were equal and normal, we would expect
K to be about 3. Of course, a longer-tailed distribution has a bigger
kurtosis. Thus one simple way of defining the independent selection
procedure would be by letting

D, ={k;k<3, Dy={k3<k<8, Dy={k8<Hk.

M=

These choices are not necessarily the best way of selecting the appro-
priate test, but they are reasonable and illustrative of the adaptive
procedure. From the stochastic independence of K and (Ly, Ly, Lg), we
know that the overall test has significance level «. Since a more
appropriate test has been selected, the power will be relatively good
throughout a wide range of distributions. Accordingly, this distri-
bution-free adaptive test is robust.

EXERCISES

11.22. Let F(x) be a distribution function of a distribution of the con-
tinuous type which is symmetric about its median ¢. We wish to test Ho: € = 0
against H;: ¢ > 0. Use the fact that the 2» values, X; and —X,, 7 = 1,2,
..., n, after ordering, are complete sufficient statistics for F, provided that
H, is true. Then construct an adaptive distribution-free test based upon
Wilcoxon’s statistic and two of its modifications given in Exercises 9.20 and
9.21.

11.23. Suppose that the hypothesis H, concerns the stochastic inde-
pendence of two random variables X and Y. That is, we wish to test
H,: Fx,y) = Fy(x)F,(y), where F, F,, and F, are the respective joint and
marginal distribution functions of the continuous type, against allalternatives.
Let (X,,Y)), (X35, Yy), ..., (X, Y,) be a random sample from the joint
distribution. Under H,, the order statistics of X;, X,, ..., X, and the order
statistics of Y, Y, ..., Y, are, respectively, complete sufﬁcien_t statistics for
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F, and F,. Use Spearman’s statistic (Example 2, Section 9.8) and at least
two modifications of it to create an adaptive distribution-free test of Hy. Hint.
Instead of ranks, use normal and median scores (Section 9.8) to obtain two
additional correlation coefficients. The one associated with the median
scores is frequently called the quadrant test.

11.7 Robust Estimation

In Examples 2 and 4, Section 6.1, the maximum likelihood estimator
@i = X of the mean p of the normal distribution #(u, o2} was found by
minimizing a certain sum of squares,

M3

(@ — @)

l

i=1

Also, in the regression problem of Section 8.6, the maximum likelihood
estimators ¢ and B of the « and B8 in the mean « + B(¢c; — &) were
determined by minimizing the sum of squares

3 -« = Blo - AP

Both of these procedures come under the general heading of the
method of least squares, because in each case a sum of squares is mini-
mized. More generally, in the estimation of means of normal distri-
butions, the method of least squares or some generalization of it is
always used. The problems in the analyses of variance found in Chapter
8 are good illustrations of this fact. Hence, in this sense, normal
assumptions and the method of least squares are mathematical
companions.

It is interesting to note what procedures are obtained if we consider
distributions that have longer tails than those of a normal distribution.
For illustration, in Exercise 6.1(d), Section 6.1, the sample arises from
a double exponential distribution with p.d.f.

fla; 0) = 4o+,

= 0 elsewhere,

—0 < ¥ < 00,

where —o0 < 6 < . The maximum likelihood estimator, 8§ =
median (X;), is found by minimizing the sum of absolute values,

n
Z Ixi - le
i=1

and hence this is illustrative of the method of least absolute values.
Possibly a more extreme case is the determination of the maximum
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likelihood estimator of the center 8 of the Cauchy distribution with
p-d.f.

1
7l + (x — 6)%]

where —o0 < 8 < oo. The logarithm of the likelihood function of a
random sample X,, X,, ..., X, from this distribution is

fl@; 6) =

—00 < & < 00,

L) = —nlnm— 3 W[l + (z - 6)2.
1=1
To maximize, we differentiate In L(O) to obtain

dlnL i 2m-0

xi—e)

The solution of this equation cannot be found in closed form, but the
equation can be solved by some iterative process (for example, Newton’s
method), of course checking that the approximate solution actually
provides the maximum of L(f), approximately.

The generalization of these three special cases is described as
follows. Let X;, X,, ..., X, be a random sample from a distribution
with a p.d.f. of the form f(x — 6), where 8 is a location parameter
such that —c0 < 6 < . Thus

InL(6) = 3 Inf@ - 6 = - > pla - 0,
where p(x) = —In f(z), and
dinL(6) & flz -6

) Z

where p’(z) = ¥(z). For the normal, double exponential, and Cauchy
distributions, we have that these respective functions are

1 x?
px) = =1ln 27 + —; plx) = In2 + |z|;
2 2
p®) =In7w + In (1 + 2?),
and
V@) =2 W) = —Lw<0 F) =
) = x; ) = -1,z < 0; (x)_1+x2

=1, 0<ux

Clearly, these functions are very different from one distribution to
another; and hence the respective maximum likelihood estimators may
differ greatly. Thus we would suspect that the maximum likelihood
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estimator associated with one distribution would not necessarily be a
good estimator in another situation. This is true; for example, X is a
very poor estimator of the median of a Cauchy distribution, as the
variance of X does not even exist if the sample arises from a Cauchy
distribution. Intuitively, X is not a good estimator with the Cauchy
distribution, because the very small or very large values (outliers) that
can arise from that distribution influence the mean X of the sample too
much.

An estimator that is fairly good (small variance, say) for a wide
variety of distributions (not necessarily the best for any one of them)
is called a #obust estimator. Also estimators associated with the solution
of the equation

Ms

Pz, — 6) = 0

i=1

are frequently called M-estimators (denoted by 8) because they can be
thought of as maximum likelihood estimators. So in finding a robust
M-estimator we must select a ¥ function which will provide an esti-
mator that is good for each distribution in the collection under con-
sideration. For certain theoretical reasons that we cannot explain at
this level, Huber suggested a ¥ function that is a combination of
those associated with the normal and double exponential distributions,

Y(x) = —&, x < —k
=, -k <z <k,
=k, k<

In Exercise 11.25 the reader is asked to find the p.d.f. f(x) so that the
M-estimator associated with this ¥ function is the maximum likelihood
estimator of the location parameter 6 in the p.d.f. f(x — 6).

With Huber’s ¥ function, another problem arises. Note that if we
double (for illustration) each X, X,, ..., X,, estimators such as X and
median (X;) also double. This is not at all true with the solution of the
equation

S W - 6) =0,

i=1
where the ¥ function is that of Huber. One way to avoid this difficulty
is to solve another, but similar, equation instead,

where d is a robust estimate of the scale. A popular 4 to use is

d = median |x; — median (z;)|/0.6745.
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The divisor 0.6745 is inserted in the definition of d because then the
expected value of the corresponding statistic D is about equal to o, if
the sample arises from a normal distribution. That is, o can be approxi-
mated by 4 under normal assumptions.

That scheme of selecting d also provides us with a clue for selecting
k. For if the sample actually arises from a normal distribution, we would

want most of the items &y, 5, . . ., &, to satisfy the inequality
x, — 0 <’
a
because then
x; — 8 x — 0
qf( a ) T d

That is, for illustration, if all the items satisfy this inequality, then
Equation (1) becomes

n x; — 0 nox — 0
‘P‘(’ )= - =
izl d =1 d

This has the solution #, which of course is most desirable with normal
distributions. Since d approximates o, popular values of % to use are
1.5 and 2.0, because with those selections most normal variables would
satisfy the desired inequality.

Again an iterative process must usually be used to solve Equation
(1). One such scheme, Newton’s method, is described. Let ; be a first
estimate of , such as 0, = median (x;). Approximate the left-hand
member of Equation (1) by the first two terms of Taylor’s expansion

about 8 to obtain
7] z x; — 0, I
) -y 5w () -

n xl_
;T(d

approximately. The solution of this provides a second estimate of 0,

which is called the one-step M-estimate of 6. If we use 8, in place of 8,
we obtain f,, the two-step M-estimate of 6. This process can continue
to obtain any desired degree of accuracy. With Huber’'s ¥ function,
the denominator of the second term,

n - 9’
&Y\
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is particularly easy to compute because ¥'(x) = 1, —% < z < &, and
zero elsewhere. Thus that denominator simply counts the number of
Xy, Ty, . . ., T, such that |z — 6,|/d < k.

Although beyond the scope of this text, it can be shown, under very
general conditions with known ¢=1, that the limiting distribution of

Vu(d - 6)
VEWXX — 0)JE[Y'(X - 0)))°

where §is the M-estimator associated with ¥, is #(0, 1). In applications,
the denominator of this ratio can be approximated by the square root
of

%é Y2z, — 6) / E é W, — é)]z.

Moreover, after this substitution has been made, it has been discovered
empirically that certain ¢-distributions approximate the distribution
of the ratio better than does (0, 1).

These M-estimators can be extended to regression situations. In
general, they give excellent protection against outliers and bad data
points; yet these M-estimators perform almost as well as least-squares
estimators if the underlying distributions are actually normal.

EXERCISES

11.24. Compute the one-step M-estimate 8, using Huber’s ¢ with & = 1.5
if # = 7 and the seven observations are 2.1, 5.2, 2.3, 1.4, 2.2, 2.3, and 1.6.
Here take §; = 2.2, the median of the sample. Compare §, with Z.

11.25. Let the p.d.f. f(x) be such that the M-estimator associated with
Huber’s ¢ function is a maximum likelihood estimator of the location
parameter in f(x — 6). Show that f(z) is of the form ce=?1®, where p,(z) =
x2/2, |x| < kand py(2) = klz| — £%/2, k < [a].

11.26. Plot the i functions associated with the normal, double ex-
ponential, and Cauchy distributions in addition to that of Huber. Why is the
M-estimator associated with the i function of the Cauchy distribution
called a descending M-estimator?

11.27. Use the data in Exercise 11.24 to find the one-step descending
M-estimator 8, associated with i(z) = sin (#/1.5), |z| < 1.5, zero elsewhere.
This was first proposed by D. F. Andrews. Compare this to Z and the one-step
M-estimator of Exercise 11.24.

Chapter 12

Further Normal
Distribution Theory

12.1 The Multivariate Normal Distribution

We have studied in some detail normal distributions of one and of
two random variables. In this section, we shall investigate a joint
distribution of » random variables that will be called a muitivariate
normal distribution. This investigation assumes that the student is
familiar with elementary matrix algebra, with real symmetric quadratic
forms, and with orthogonal transformations. Henceforth the expression
quadratic form means a quadratic form in a prescribed number of
variables whose matrix is real and symmetric. All symbols which
represent matrices will be set in boldface type.

Let A denote an # x n real symmetric matrix which is positive
definite. Let p. denote the » x 1 matrix such that p’, the transpose of
&, is &' = [K1, pa, - - -» 4y}, Where each p; is a real constant. Finally, let
x denote the # x 1 matrix such that x' = [z, %, .. ., ®,]. We shall
show that if C is an appropriately chosen positive constant, the non-
negative function

@1, @z ..., &) = Cexp [_(x - F)'g(x — p.)],

—0 <z <oo,t=12...,n,

is a joint p.d.f. of » random variables X, X,, ..., X, that are of the
continuous type. Thus we need to show that

(1) ff_"w.--ffw f(@y, @, - . ., ¥,) A2y daog- - -d, = 1.

405
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Let t denote the # x 1 matrix such that t' = [, 4, ...,¢,], where
¢, ta, . . ., L, are arbitrary real numbers. We shall evaluate the integral
@) cf f exp [t'x _x-w ‘;(x — “)] dw,- - -d,,

and then we shall subsequently set ¢, = ¢, =---={, = 0, and thus

establish Equation (1). First we change the variables of integration in
integral (2) from z,, %y, . .., %, tO ¥y, Yg, ..., ¥, Dy writing x — u =y,
where y' = [¥4, ¥s, - . ., ¥]. The Jacobian of the transformation is one
and the »n-dimensional z-space is mapped onto an #-dimensional
y-space, so that integral (2) may be written as

’

’ ® ° 4 A

Because the real symmetric matrix A is positive definite, the »
characteristic numbers (proper values, latent roots, or eigenvalues)
a;, 4q, ..., a, of A are positive. There exists an appropriately chosen
n x n real orthogonal matrix L(L’ = L~1, where L1 is the inverse of
L) such that

a, 0 -+ 0
0 a, --- 0
L'AL = : : .

0 0 - a,
for a suitable ordering of a5, a,, ..., 4,. We shall sometimes write
L’AL = diag[a,, 4,, . . ., 4,]. In integral (3), we shall change the vari-
ables of integration from ¥y, ¥,, ..., ¥, to %, 2,4, ..., 2, by writing
y = Lz, where 2’ = [24, %, . . ., 2,]. The Jacobian of the transformation

is the determinant of the orthogonal matrix L. Since L'L = I, where
I, is the unit matrix of order », we have the determinant |[L'L] = 1
and |[L|2 = 1. Thus the absolute value of the Jacobian is one. Moreover,
the #-dimensional y-space is mapped onto an #-dimensional z-space.
The integral (3) becomes

4 Cexp (t'p) f . f exp [t’Lz - ﬂli#] dzy- - -dz,.

It is computationally convenient to write, momentarily, t'L = w’,
where W' = [w,, w,, ..., ®,]. Then

exp [t'Lz] = exp [W'z] = exp (i w{zi).
1
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Moreover,

exp _z’(L'AL)z _ %u"zfz
—z T

Then integral (4) may be written as the product of # integrals in the
following manner:

(5) Cexp (WL'w) ﬁ [fw exp (w,-zi - —aizi‘z) dz,-]

i=1 - 0

agz}
~ B 5= po €XP (wiz,- - _)
—Cexp(WLu)g[/a—:Tf 2/ .

V' 2nla,

The iptegral that involves 2, can be treated as the moment-generating
function, with the more familiar symbol ¢ replaced by w,, of a distribu-

tion which is (0, 1/a;). Thus the right-hand member of Equation (5) is
equal to

6) Cexp(wLw]] [A/%:l o (%)]

1 1

o, 27\ n 2
= CeXp (WLp.) “a a( ﬂ) 2 exp (Z w_i)
18-+,

Now, because L= = L’, we have
(L'AL)-* = L’'A-1L = diag [i, i,- . i]
an

a, a,

Thus,

n wz , ,
271 = W(L'AT'L)w = (Lw)’A-}(Lw) = t'A-1t.

1

Moreover, the determinant |A-2| of A-1 is

1

alaz. . -an

A=Y = AL

Accordingly, the right-hand member of Equation (6), which is equal to
integral (2), may be written as

7) Cetsr/Za)TTAT] exp (t'Az_lt).

If, in this function, we set ly =l =---=1t, =0, we have the value
of the left-hand member of Equation (1). Thus, we have

CVE2m" AT = 1.
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Accordingly, the function

o (x = w'AX — )
fley, zp, .., ) _Wexp[_ 7 ]’
—0 < % < 0,1 =1,2,...,#n,is a joint p.d.f. of » random variables

X,, X,, ..., X, that are of the continuous type. Such a p.d.f. is called
a nonsingular multivariate normal p.d.f.

We have now proved that f(x,, ®,, ..., 2,) is a p.d.f. However, we
have proved more than that. Because f(x,, x5, ...,%,;) is a p.d.f,
integral (2) is the moment-generating function M (¢4, £,, . . ., ¢,) of this
joint distribution of probability. Since integral (2) is equal to function
(7), the moment-generating function of the multivariate normal
distribution is given by

tA-'t
M2y, ta, ..., t,) = exp (t’p. + )

2

Let the elements of the real, symmetric, and positive definite
matrix A~! be denoted by o;;,7,7 = 1,2,..., n. Then

oyt?
M(@©,...,0,4,0,...,0) = exp (t,p,, + %)
is the moment-generating function of X,, ¢ = 1,2,..., n. Thus, X; is
n(uy, 05), ¢ = 1,2, ..., n. Moreover, with ¢ # 7, we see that M(0, ..., 0,
4, 0,...,0,¢,0,...,0), the moment-generating function of X; and
X, is equal to

12 + 20,4t + 0,42
exp (tﬂ“i + by + 2 012“] = J)'

But this is the moment-generating function of a bivariate normal distri-
bution, so that oy is the covariance of the random variables X; and X,.
Thus the matrix @, where g’ = {uy, pg, . . ., 1,], is the matrix of the
means of the random variables X,, ..., X,. Moreover, the elements on
the principal diagonal of A1 are, respectively, the variances o, = o7,
t=1,2,...,n, and the elements not on the principal diagonal of A~
are, respectively, the covariances o;; = p;0i0;, ¢ # j, of the random
variables X, X,, ..., X,. We call the matrix A~!, which is given by

011, 032, ceey O1q
012, OJ22, .., Ogp
. . 3y
Uln, Oans ey Tnn
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the covariance matriz of the multivariate normal distribution and
henceforth we shall denote this matrix by the symbol V. In terms of
the positive definite covariance matrix V, the multivariate normal
p-d.f. is written

1 . [_(X —wWVix - u)],

—0 < ¥ < O,

—————ex

(22 [V] 2
1 =1,2,...,n and the moment-generating function of this distribution
is given by

( , t'Vt)
exp{tp + 5~
for all real values of t.

Example 1. Let X, X,, ..., X, have a multivariate normal distribution
with matrix p of means and positive definite covariance matrix V. If we
let X' ={X,, X,, ..., X,], then the moment-generating function M(¢,, ¢,,
..., t,) of this joint distribution of probability is

(8) E(¥%) = exp (t'y. + ‘_;’_t.)

Consider a linear function Y of X,, X,, ..., X, which is defined by ¥ =
c¢X = i ¢;X,;, where ¢’ = [¢q, ¢y, . . ., ¢,] and the several ¢; are real and not
1

all zero. We wish to find the p.d.f. of Y. The moment-generating function
M (#) of the distribution of Y is given by

M(t) = E(¢) = E(e°%).

Now the expectation (8) exists for all real values of t. Thus we can replace t’
in expectation (8) by fc’ and obtain

Vo2
M(t) = exp (tc’y. + ¢ ‘;Ct )
Thus the random variable Y is n(c’'w, ¢'Vc).
EXERCISES
12.1. Let X,, X,, ..., X, have a multivariate normal distribution with

positive definite covariance matrix V. Prove that these random variables are
mutually stochastically independent if and only if V is a diagonal matrix.

12.2. Let » = 2 and take

V = O‘% P‘Tl“z] .
poioy  0F

Determine |V|, V-1, and (x — p)'V~!(x — p). Compare the bivariate normal
p.d.f. with the multivariate normal p.d.f. when # = 2.
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12.3. Let X,, X,, ..., X, have a multivariate normal distribution, where
t is the matrix of the means and V is the positive definite covariance matrix.
Let ¥ =c¢'X and Z = d'X, where X' =[X,,..., X,], ¢ =[cy,..., ),
and d’ = [dy, ..., d,] are real matrices. (a) Find M(¢,, ¢5) = E(eh¥ *%%) to
see that Y and Z have a bivariate normal distribution. (b) Prove that Y
and Z are stochastically independent if and only if ¢'Vd = 0. (¢) If X,,
X,, ..., X, are mutually stochastically independent random variables which
have the same variance o%, show that the necessary and sufficient condition
of part (b) becomes ¢'d = 0.

124. Let X' = [X,, X,, ..., X,] have the multivariate normal distribu-
tion of Exercise 12.3. Consider the p linear functions of X, ..., X, defined
by W = BX, where W =[W,,...,W,], »p <#n, and B is a p x »n real
matrix of rank p. Find M(v,, ..., v,) = E(¢"'W), where v’ is the real matrix
[vs,...,v,], to see that W,,..., W, have a p-variate normal distribution
which has By for the matrix of the means and BVB’ for the covariance
matrix.

12.5. Let X' = [X,, X, ..., X,] have the n-variate normal distribution
of Exercise 12.3. Show that X, X,, ..., X,, # < #, have a p-variate normal
distribution. What submatrix of V is the covariance matrix of X, X,, ..
X,? Hint. In the moment-generating function M (¢, 4,,...,¢,) of X,,X,,..
Xplett,,;=---=1¢,=0.

*3

A

12.2 The Distributions of Certain Quadratic Forms

Let X,,2 =1, 2,..., n, denote mutually stochastically independent
random variables which are n(u;, ¢f), ¢ = 1,2,..., n, respectively.

Then Q = % (X, — uy)?/o? is ¥?(n). Now Q is a quadratic form in the
1

X, — p, and Q is seen to be, apart from the coefficient —1, the random
variable which is defined by the exponent on the number ¢ in the joint
p.df. of X, X,, ..., X,. We shall now show that this result can be
generalized.

Let X,, X,,..., X, have a multivariate normal distribution with
p.d.f.
1 @~mwﬂx—ﬂ
——exp | — >
@y e[V T [ 2

where, as usual, the covariance matrix V is positive definite. We shall
show that the random variable Q (a quadratic form in the X; — u),
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which is defined by (x — @)'V™1(x — p), is x*(n). We have for the
moment-generating function M (¢) of Q the integral

J f (2 nl2«\/|—v—l

X exp[ X —wWVix - @ - (x - p.)’VZ‘l(x - p.)] dz,- - -dzx,

=wafwm

X exp [_(x — p')lv—l(); — @ - Zt)] dx, - - -dx,.

With V-1 positive definite, the integral is seen to exist for all real
values of ¢ < 4. Moreover, (1 — 2{)V~1, ¢ < %, is a positive definite
matrix and, since |[(1 — 2§)V~3| = (1 — 2f)*|V 1|, it follows that

1 (%= )V = (1 - 29
2m) [V = 2t)neXp[ 2 }

can be treated as a multivariate normal p.d.f. If we multiply our
integrand by (1 — 2¢™2, we have this multivariate p.d.f. Thus the
moment-generating function of Q is given by
M@ = 1 t <3
(1 — 22’ 2
and Q is (x?n), as we wished to show. This fact is the basis of the
chi-square tests that were discussed in Chapter 8.

The remarkable fact that the random variable which is defined by
(x — )’ V-1(x — p) is y*(n) stimulates a number of questions about
quadratic forms in normally distributed variables. We would like to
treat this problem in complete generality, but limitations of space
forbid this, and we find it necessary to restrict ourselves to some special
cases.

Let X,, X,, ..., X, denote a random sample of size # from a distri-
bution which is #(0, 6?), 02 > 0. Let X' = [X;, X,, .. ., X,] and let A
denote an arbitrary # x # real symmetric matrix. We shall investigate
the distribution of the quadratic form X'AX. For instance, we know

that X'I X/o? = X'X/0? = iX?/az is y2(n). First we shall find the
1

moment-generating function of X’AX/o% Then we shall investigate
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the conditions which must be imposed upon the real symmetric matrix
A if X'AX/o® is to have a chi-square distribution. This moment-
generating function is given by

R *® 1 \» X'Ax  xX'x
A

=J'°° fw ( 1 )"ex [_x'(I—ZtA)X i s
- -w \oV 27 P 202 Ty Ay,

where'z I = I,. The matrix I — 2¢A is positive definite if we take It
sufficiently small, say |¢| < %, # > 0. Moreover, we can treat

1 exp [_x’(l — 2tA)x
(2m)m2V/|(T = 2tA)~ 1] 20°

as a multivariate normal p.df. Now |(I — 2tA) 10212 =

o*/|T — 2tA|Y2. If we multiply our integrand by |I — 2tA|*2, we have

this multivariate p.d.f. Hence the moment-generating function of
X’AX/q? is given by

(1) M@) = |1 — 26A|-172, |7} < A
It proves useful to express this moment-generating function in a
different form. To do this, let a,, ay, ..., a, denote the characteristic

numbers of A and let L denote an # x » orthogonal matrix such that
L’AL = diag[ay, a,, ..., a,]. Thus,

(1 - 2tal) 0 e 0
L'(I - ZIA)L = 0 (1 - 2tag) - 0
Then ( an)

}i (1 - 2ta) = [L'(I — 2IA)L]| = |T — 2A.

Accordingly we can write M (f), as given in Equation (1), in the form

n -1/2
2) M) = [nl (1 - zm,)] oY <
=
Let 7, 0 < 7 < u, denote the rank of the real symmetric matrix A.
Then exactly 7 of the real numbers @y, Ag, - .., Ay, SAY Ay, ..., a,, are
not zero and exactly # — » of these numbers, say a,,q,..., d,, are

zero. Thus we can write the moment-generating function of X'AX/o? as
M@ =[(1 — 2ta))(1 — 2tay)---(1 — 2ta,)]~ 2.

Now that we have found, in suitable form, the moment-generating
function of our random variable, let us turn to the question of the con-
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ditions that must be imposed if X'AX/o? is to have a chi-square
distribution. Assume that X'AX/o? is ¥2(%). Then

M) = [(1 — 2ta;)(1 — 2tag).--(1 — 2a,)] 72 = (1 — 2%) k2,
or, equivalently,
(1 — 2ta,)(1 — 2tay)- - -(1 — 2ta,) = (1 — 28)%, lt] < &.

Because the positive integers » and %k are the degrees of these poly-
nomials, and because these polynomials are equal for infinitely many
values of ¢, we have & = 7, the rank of A. Moreover, the uniqueness of
the factorization of a polynomial implies that ¢, = a, =--- = a, = 1.
If each of the nonzero characteristic numbers of a real symmetric
matrix is one, the matrix is idempotent, that is, A2 = A, and con-
versely (see Exercise 12.7). Accordingly, if X'AX/o? has a chi-square
distribution, then A? = A and the random variable is y2(r), where 7 is
the rank of A. Conversely, if Aisof rank7, 0 < » < #, and if AZ = A,
then A has exactly » characteristic numbers that are equal to one, and
the remaining # — 7 characteristic numbers are equal to zero. Thus the
moment-generating function of X'AX/o? is given by (1 — 2£)~72
t < %, and X’AX/o? is x%(r). This establishes the following theorem.

Theorem 1. Let Q denote a random variable which is a quadratic
form in the items of a random sample of size n from a distribution which is
#n(0, 62). Let A denote the symmetric matrix of Q and let v, 0 < 7 < n,
denote the rank of A. Then Q[o® 1s x*(r) if and only if A2 = A.

Remark. If the normal distribution in Theorem 1 is #(u, %), the
condition A% = A remains a necessary and sufficient condition that Q/o?
have a chi-square distribution. In general, however, Q/o? is not %) but,
instead, Q/¢? has a noncentral chi-square distribution if A% = A. The
number of degrees of freedom is 7, the rank of A, and the noncentrality
parameter is p’Ap/o?, where @' = [u, pu,..., ). Since wAp = p? ‘Zjau,

where A = [a,)], then, if p # 0, the conditions A? = A and > 4;; = 0 are
i,

necessary and sufficient conditions that Q/o* be central x%(r). Moreover, the
theorem may be extended to a quadratic form in random variables which
have a multivariate normal distribution with positive definite covariance
matrix V; here the necessary and sufficient condition that Q have a chi-square
distribution is AVA = A.

EXERCISES

12,6. LetQ = X, X, — X X, where X, X,, X,;, X, is a random sample
of size 4 from a distribution which is #(0, 0%). Show that Q/o? does not have
a chi-square distribution. Find the moment-generating function of @/
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12.7. Let A be a real symmetric matrix. Prove that each of the nonzero
characteristic numbers of A is equal to one if and only if A% = A. Hint.
Let L be an orthogonal matrix such that L’'AL = diag [a,, 4,, . . ., a,] and
note that A is idempotent if and only if L’AL is idempotent.

12.8. The sum of the elements on the principal diagonal of a square
matrix A is called the trace of A and is denoted by tr A. (a) If Bis # x m
and Cis m x n, prove that tr (BC) = tr (GB). (b) If A is a square matrix
and if L is an orthogonal matrix, use the result of part (a) to show that
tr (L'AL) = tr A. (c) If A is a real symmetric idempotent matrix, use the
result of part (b) to prove that the rank of A is equal to tr A.

12.9. Let A = [g;;] be a real symmetric matrix. Prove that > > a3 is
FAE!

equal to the sum of the squares of the characteristic numbers of A. Hint.
If L is an orthogonal matrix, show that > > a% = tr (A2%) = tr (L'A%L) =
PN 1

tr [(L’AL)(L'AL)].

12.10. Let X and S? denote, respectively, the mean and the variance of a
random sample of size # from a distribution which is #(0, ¢2). (a) If A denotes
the symmetric matrix of #X?, show that A = (1/n)P, where P is the n x #
matrix, each of whose elements is equal to one. (b) Demonstrate that A is
idempotent and that the tr A = 1. Thus #X?/0? is y2(1). (c) Show that the
symmetric matrix B of #5% is I — (1/#)P. (d) Demonstrate that B is
idempotent and that tr B = # — 1. Thus #5%/¢? is y?(n — 1), as previously
proved otherwise. (e) Show that the product matrix AB is the zero matrix.

12.3 The Independence of Certain Quadratic Forms

We have previously investigated the stochastic independence of
linear functions of normally distributed variables (see Exercise 12.3).
In this section we shall prove some theorems about the stochastic
independence of quadratic forms. As we remarked on p- 411, we shall
confine our attention to normally distributed variables that constitute
a random sample of size » from a distribution that is #(0, ¢2).

Let X, X,,..., X, denote a random sample of size # from a
distribution which is #(0, ¢2). Let A and B denote two real symmetric
matrices, each of order #n. Let X' = [X,, X, ..., X,] and consider the
two quadratic forms X'AX and X'BX. We wish to show that these
quadratic forms are stochastically independent if and only if AB = 0,
the zero matrix. We shall first compute the moment-generating
function M(Y,, ¢;) of the joint distribution of X'AX/o? and X'BX/e?.
We have
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s = (o [

LX'Ax  L,x'Bx xX'x
exp(1 + 2

5 _ T.‘Z) dxl"'dzn
=(_l_)"fw.“f”
a\/_Z; — -
x'(I — 24,A — 2,B)X

exp (— 503 ) dzy- - -dx,,

The matrix I — 24,A — 2£,B is positive definite if we take |,| and
|to| sufficiently small, say |t < Ay, |fo| < g, where Ay, By > 0. Then,
as on p. 412, we have

Mt ty) = |1 — 24,A — 2t,B| 712, |t1] < By, |ta] < Ao
Let us assume that X'AX/o? and X'BX/¢? are stochastically indepen-

dent (so that likewise are X’AX and X'BX) and prove that AB = 0.
Thus we assume that

(1) Mty t3) = M(ts, )M (0, t5)

o? c

for all ¢, and £, for which |t} < A, ¢ = 1, 2. Identity (1) is equivalent
to the identity

(2) |I—26,A — 26,B| = [T — 26,A[ [T - 26,B|, [t <hy i=1,2

Let » > 0 denote the rank of A and let ay,a,, ..., a, denote the 7
nonzero characteristic numbers of A. There exists an orthogonal
matrix L such that

a;, 0 01 7
0 a, -+~ 010
. . . : Cll i 0
L’AL =| : : Do = |---=- i--1 =0GC
l 0 :0

0 0 a, |

o o]

for a suitable ordering of a;, @, . . ., 4,. Then L'BL may be written in

the identically partitioned form

The identity (2) may be written as
2 LI - 24A — 26,B||L| = |[L'|{I — 26,A| |L] |L'| {T — 24,B| {L],
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or as
@) I - 2t,G — 2,D| = |I — 24,G| |I = 24,D|.

The coefficient of (—2¢,)" in the right-hand member of Equation (3)
is seen by inspection to be aya,---a,|I — 2t,D|. It is not so easy to
find the coefficient of (—2¢)" in the left-hand member of Equation (3).
Conceive of expanding this determinant in terms of minors of order »
formed from the first » columns. One term in this expansion is the
product of the minor of order 7 in the upper left-hand corner, namely,
|I, — 2¢,CG;; — 2t,D4,|, and the minor of order n — 7 in the lower
right-hand corner, namely, |I,_, — 2£,D,,|. Moreover, this product is
the only term in the expansion of the determinant that involves
(—2¢,)". Thus the coefficient of (—2¢)" in the left-hand member of
Equation (3) is a,a,- - -a,|I,_, — 2£,D4,|. If we equate these coefficients
of (—2t,)7, we have, for all ¢,, |£5| < ks,

(4) T — 26,D| = |I,_, — 2£,D,,].

Equation (4) implies that the nonzero characteristic numbers of the
matrices D and Dy, are the same (see Exercise 12.17). Recall that the
sum of the squares of the characteristic numbers of a symmetric matrix
is equal to the sum of the squares of the elements of that matrix (see
Exercise 12.9). Thus the sum of the squares of the elements of matrix D
is equal to the sum of the squares of the elements of D,,. Since the
elements of the matrix D are real, it follows that each of the elements of
D,;, Dyy, and Dy, is zero. Accordingly, we can write D in the form

0i 0
D = L'BL = [ ----- ]
0

Thus CD = L'ALL'BL =0 and L’ABL =0 and AB =0, as we
wished to prove. To complete the proof of the theorem, we assume that
AB = 0. We are to show that X’AX/o? and X'BX/o? are stochastically
independent. We have, for all real values of ¢, and ¢,,

(I —24A)(1 — 2¢,B) = 1 — 24,A — 2¢,B,
since AB = 0. Thus,
I — 26,A — 26,B| = [T — 26,A] [T — 26,B|.

Since the moment-generating function of the joint distribution of
X'AX/o? and X'BX/o? is given by

M(tl, t2) = II - 2t1A - thBI_llz, ltll < hi’ i = 1, 2,
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we have
Mty t) = M(t,, 0)M(0, 2,),
and the proof of the following theorem is complete.

Theorem 2. Let Q, and Q, denote random variables which are
quadratic forms in the items of a vandom sample of size n from a distribu-
tion which is n(0, o?). Let A and B denote respectively the real symmetric
matrices of Qy and Qy. The random variables Q, and Qg are stochastically
mdependent if and only if AB = 0.

Remark. Theorem 2 remains valid if the random sample is from a
distribution which is #{u, ¢?), whatever be the real value of u. Moreover,
Theorem 2 may be extended to quadratic forms in random variables that
have a joint multivariate normal distribution with a positive definite
covariance matrix V. The necessary and sufficient condition for the stochastic
independence of two such quadratic forms with symmetric matrices A and
B then becomes AVB = 0. In our Theorem 2, we have V = ¢2I, so that
AVB = Ad%IB = ¢?AB = 0.

We shall next prove the theorem that was used in Chapter 8
(p. 279).

Theorem 3. Let Q =Q; +---+ Q1 + Qn, where Q, Q4,...,
Qn_1, O are & + 1 rvandom variables that are quadratic forms in the ttems
of a random sample of size n from a distribution which is n(0, 0?). Let
QJo? be x2(7), let Q,Jo® be x2(r,), 1 = 1,2,..., k — 1, and let Q, be non-
negative. Then the yandom variables Qq, Q,, . . ., Qi are mutually stochasti-
cally independent and, hence, Q,Jo% is x?(r, =7 — 71 — -+« — ¥_y)-

Proof. Take first the case of & = 2 and let the real symmetric
matrices of @, Q;, and @, be denoted, respectively, by A, Ay, A,. We are
given that Q = Q, + Q, or, equivalently, that A = A; + A, We
are also given that Q/o? is x%(#) and that Q,/¢® is x*(#;). In accordance
with Theorem 1, p. 413, we have A2 = A and A? = A,. Since Q, > 0,
each of the matrices A, A,, and A, is positive semidefinite. Because
A? = A, we can find an orthogonal matrix L such that

LLi0
L’'AL = }---i-- |.
[0 : 0]

If then we multiply both members of A = A; + A, on the left by L’
and on the right by L, we have

p—
o=

i 0
"6] = L'A,L + L'A,L.
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Now each of A, and A,, and hence each of L’A;L and L'A,L is positive
semidefinite. Recall that, if a real symmetric matrix is positive semi-
definite, each element on the principal diagonal is positive or zero.
Moreover, if an element on the principal diagonal is zero, then all
elements in that row and all elements in that column are zero. Thus
L’AL = L’A,L + L’A,L can be written as

0 G i0 H, | 0]
® BHRFE o4

Since A? = A, we have
G, 0
(LAL? = LAL = |-

If we multiply both members of Equation (5) on the left by the matrix
L'A,L, we see that

G, io0 G,i0] [GH, 0
P = J.a-a t —= + ______ 1 =-=]
[0 5 0] 0:0 0 0

or, equivalently, L'A;L = L’'A,L + (L’A,L)(L'A,L). Thus, (L'A;L) x
(L’'A,L) = 0 and A;A, = 0. In accordance with Theorem 2, Q, and Qz
are stochastically independent. This stochastic independence immedi-
ately implies that Qgfo? is x2(ry = » — ;). This completes the proof
when & = 2. For £ > 2, the proof may be made by induction. We shall
merely indicate how this can be done by using k = 3. Take A‘=
A, + A, + Ay, where A2 = A, A2 = A}, A = Ay and A, is positive
semidefinite. Write A = A; + (A; + Ag) = A, + B, say. Now
A? = A, A? = A,, and B, is positive semidefinite. In accordance with
the case of 2 = 2, we have A;B, = 0, so that B = B;. With B, =
A, + A, where B2 = B;, A = A,, it follows from the case of k =2
that A,A; = 0 and A% = A;. If we regroup by writing A = A, +
(A; + A;), we obtain A;A; = 0, and so on.

Remark. In our statement of Theorem 3 we took X, Xo, ..., X, "co
be items of a random sample from a distribution which is #n(0, o?). We dl‘d
this because our proof of Theorem 2 was restricted to that case. Ip fact: if
Q',0i,...,Q, are quadratic forms in any normal variables (mclud,mg
multivariate normal variables), if Q' = Q} + -+ @, if 0,01, ..., Qk-1
are central or noncentral chi-square, and if Qj is nonnegative, thenQ, ..., Q%
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are mutually stochastically independent and Qj, is either central or noncentral
chi-square.

This section will conclude with a proof of a frequently quoted
theorem due to Cochran.

Theorem 4. Let X,, X,, ..., X, denote a random sample from a
distribution which is n(0, o2). Let the sum of the squares of these ttems be
written tn the form

?X?=91+Qz+"'+9k:

where Q, is a quadratic form in X, X,, ..., X,, with matrix A, which
has vank v, § = 1,2,..., k. The random variables Q,Q,, ..., Q, are
mutually stochastically independent and Q,[c is x?(r,), 1 = 1,2,...,k,

k
if and only if > v, = n.
1

k n k
Proof. First assume the two conditions %r, = » and %X? = %QJ

to be satisfied. The latter equation implies that I = A; + Ay +---
+ A, Let B, = I — A, That is, B, is the sum of the matrices A,, ...,
A, exclusive of A,. Let R, denote the rank of B,. Since the rank of the
sum of several matrices is less than or equal to the sum of the ranks,

k
we have R, < X7, — 7, =n ~ r,. However, I = A, + B, so that
1

n<vr, + R and n — 7, < R,. Hence R, = n — 7. The characteristic
numbers of B, are the roots of the equation |B, — XI| = 0. Since
B, =1 — A, this equation can be written as |I — A, — AlI| = 0.
Thus, we have |A, — (1 — A)I| = 0. But each root of the last equation
is one minus a characteristic number of A, Since B, has exactly
n — R, = 7, characteristic numbers that are zero, then A, has exactly
7, characteristic numbers that are equal to one. However, 7, is the rank
of A,. Thus, each of the 7, nonzero characteristic numbers of A, is one.
That is, A? = A, and thus Q,/0?is x%(r,),» = 1, 2,..., k. In accordance
with Theorem 3, the random variables @y, Qy, ..., ¢, are mutually
stochastically independent.

To complete the proof of Theorem 4, take iX? =Q; + Qs+
1
+ @y, let 01, 0,, ..., Q, be mutually stochastically independent, and
K K
let Q0% be x2(r,), j=1,2,...,k Then 5 0,/o? is Xﬂ(z r,). But
1 1

k n k
>0Q,/0? = % X2?|o? is x*(n). Thus, > 7, = n and the proof is complete.
1 1
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EXERCISES

12.11. Let X, X,,..., X, denote a random sample of size » from a
distribution which is #(0, o%). Prove that iX? and every quadratic form,
which is nonidentically zero in X, X,, ..., ;( », are stochastically dependent.

12.12 Let X,, X,, X3, X, denote a random sample of size 4 from a distri-
bution which is #(0, 0%). Let ¥ = iaiXi, where a,, a5, @3, and a, are real
constants. If Y2 and Q = X, X, Z X3X, are stochastically independent,
determine a,, ay, a5, and a,.

12.13. Let A be the real symmetric matrix of a quadratic form @ in the
items of a random sample of size # from a distribution which is #(0, o?).
Given that Q and the mean X of the sample are stochastically independent.
What can be said of the elements of each row (column) of A? Hint. Are Q
and X? stochastically independent ?

12.14. Let A,, A,, ..., A, be the matrices of 2 > 2 quadratic forms
Q1,Qs, . . ., O, In the items of a random sample of size # from a distribution
which is #(0, o%). Prove that the pairwise stochastic independence of these
forms implies that they are mutually stochastically independent. Hint. Show
that AA; =0, ¢ 5 j, permits Efexp (£,Q; + 40, + -+ #0,)] to be

written as a product of the moment-generating functions of @y, Q,, - . ., Q.
12.15. Let X' = [X,, X,, ..., X,], where X;, X,, ..., X, are items of a
random sample from a distribution which is #({0, 02). Let ' = [by, b, . . ., b,]

be a real nonzero matrix, and let A be a real symmetric matrix of order .
Prove that the linear form b'X and the quadratic form X’AX arestochastically
independent if and only if b’A = 0. Use this fact to prove that b’X and
X'AX are stochastically independent if and only if the two quadratic forms,
(b'X)2 = X'bb'X and X'AX, are stochastically independent.

12.16. Let Q; and Q, be two nonnegative quadratic forms in the items of
a random sample from a distribution which is #(0, ¢%). Show that another
quadratic form ( is stochastically independent of Q; + Q, if and only if Q is
stochastically independent of each of Q, and Q,. Hint. Consider the orthogonal
transformation that diagonalizes the matrix of @, + Q,. After this trans-
formation, what are the forms of the matrices of Q, Q,, and @, if Q and
Q; + Q, are stochastically independent?

12.17. Prove that Equation (4) of this section implies that the nonzero
characteristic numbers of the matrices D and D,, are the same. Hint. Let
X = 1/(28,), t; # 0, and show that Equation (4) is equivalent to |D — AI| =
(=A)"Dge — AL_,|.
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Appendix B
Tables

TABLE |

The Poisson Distribution

z “we‘ﬂ

PriX <z2) = Z

\OOO\Jom_p.wr\)-r—ol x

7.0

8.0

9.0

10.0

0.007
0.040
0.125
0.265
0.440
0.616
0.762
0.867
0.932
0.968
0.98¢
0.995
0.998
0.999
1.000

0.002
0.017
0.062
0.151
0.285
0.446
0.606
0.744
0.847
0.916
0.957
0.980
0.991
0.996
0.999
0.99%
1.000

0.607
0.910
0.986
0.998
1.000

0.368
0.736
0.920
0.981
0.996
0.999
1.000

0.223
0.558
0.809
0.934
0.98!
0.996
0.999
1.000

0.135
0.406
0.677
0.857
0.947
0.983
0.995
0.999
1.000

0.050
0.199
0.423
0.647
0.815
0.916
0.966
0.988
0.99¢
0.999
1.000

0.018
0.092
0.238
0.433
0.629
0.785
0.889
0.949
0.979
0.992
0.997
0.999
1.000

0.001
0.007
0.030
0.082
0.173
0.301
0.450
0.599
0.729
0.830
0.90t
0.947
0.973
0.987
0.994
0.998
0.999
1.000

0.000
0.003
0.014
0.042
0.100
0.191
0.313
0.453
0.593
0.717
0.816
0.888
0.936
0.966
0.983
0.992
0.996
0.998
0.999
1.000

0.000
0.001
0.006
0.021
0.055
0.116
0.207
0.324
0.45¢
0.587
0.706
0.803
0.876
0.926
0.959
0.978
0.989
0.995
0.998
0.999
{.000

0.000
0.000
0.003
0.010
0.029
0.067
0.130
0.220
0.333
0.458
0.583
0.697
0.792
0.864
0.917
0.95!
0.973
0.986
0.993
0.997
0.998
0.999
1.000
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TABLE I
The Chi-Square Distribution*
— 1 7/2—1,—-w
Pr(X < x) —f F(7/2)2”211)/ e~ Y% dw
Pr(X < x)

r 0.01 0.025 0.050 0.95 0.975 0.99

! 0.000 0.001 0.004 3.84 5.02 6.63

2 0.020 0.051 0.103 599 7.38 9.21

3 0.115 0.216 0.352 7.81 9.35 1.3

4 0.297 0.484 0.711 9.49 N 3.3

5 0.554 0.831 .15 (1.1 12.8 15.1

6 0.872 1.24 1.64 12.6 4.4 16.8

7 1.24 1.69 2.17 4.1 16.0 18.5

8 {.65 2.18 2.73 15.5 17.5 20.1

9 2.09 2.70 3.33 16.9 19.0 21.7
10 2.56 3.25 3.94 18.3 20.5 23.2
[ 3.05 3.82 4.57 19.7 219 24.7
12 3.57 4.40 523 21.0 233 26.2
13 4.11 5.0 5.89 22.4 24.7 27.7
14 4.66 5.63 6.57 23.7 26.1 29.1
I5 523 6.26 7.26 25.0 27.5 30.6
6 5.8i 6.91 7.96 26.3 28.8 320
|7 6.41 7.56 8.67 27.6 30.2 334
18 7.01 8.23 9.39 28.9 305 34.8
19 7.63 8.91 (0.1 30.1 329 36.2
20 8.26 9.59 10.9 3.4 34.2 37.6
21 8.90 10.3 1.6 32.7 35.5 38.9
22 9.54 1.0 2.3 33.9 36.8 40.3
23 0.2 1.7 3.1 35.2 38.1 41.6
24 10.9 12.4 13.8 36.4 394 43.0
25 1.5 [3.1 4.6 37.7 40.6 44.3
26 2.2 3.8 15.4 389 41.9 45.6
27 12.9 4.6 16.2 40.1 43.2 47.0
28 13.6 153 16.9 41.3 44.5 48.3
29 4.3 6.0 17.7 42.6 45.7 49.6
30 15.0 16.8 18.5 43.8 47.0 50.9

* This table is abridged and adapted from " Tables of Percentage Points of the
Incomplete Beta Function and of the Chi-Square Distribution,” Biometrika, 32 (1941).
It is published here with the kind permission of Professor E. S. Pearson on behalf of

the author, Catherine M. Thompson, and of the Biometrika Trustees.
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Appendix B
TABLE 111
The Normal Distribution
x 1 5
< = = —— e W2 dw
Pr(X < 2) = N(z) f v .
[N(-z) = 1 — N(z)]

X N(x) X N(x) X N(x)
0.00 0.500 [.10 0.864 2.05 0.980
0.05 0.520 .15 0.875 2.10 0.982
0.10 0.540 [.20 0.885 2.15 0.984
0.15 0.560 1.25 0.894 2.20 0.986
0.20 0.579 1.282 0.900 2.25 0.988
0.25 0.599 1.30 0.903 2.30 0.989
0.30 0.618 [.35 0911 2.326 0.990
0.35 0.637 |.40 0.919 2.35 0.991
0.40 0.655 .45 0.926 2.40 0.992
0.45 0.674 }.50 0.933 2.45 0.993
0.50 0.691 [.55 0.939 2.50 0.994
0.55 0.709 1.60 0.945 2.55 0.995
0.60 0.726 |.645 0.950 2.576 0.995
0.65 0.742 1.65 0.951 2.60 0.995
0.70 0.758 [.70 0.955 2.65 0.996
0.75 0.773 |.75 0.960 2.70 0.997
0.80 0.788 1.80 0.964 2.75 0.997
0.85 0.802 1.85 0.968 2.80 0.997
0.90 0.816 (.90 0.971 2.85 0.998

0.95 0.829 1.95 0.974 2.90 0.998

1.00 0.841 1.960 0.975 2.95 0.998

|.05 0.853 2.00 0.977 3.00 0.999
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TABLE V
The F Distribution*
I T(ry + 7’2)/2]("1/72)r1 IZyra /21
= d
Pe(F <) = ||t aTpa R
r
Pr(F<f) ry | 2 3 4 5 6 7 8 9 10 12 15
0.95 | 161 200 216 225 230 234 237 239 24l 242 244 246
0.975 ¢48 800 864 900 922 937 948 957 963 969 977 985
0.99 4050 4999 5403 5625 5764 5859 5928 5982 6023 6056 6106 6157
0.95 2 185 190 192 192 193 193 194 194 194 194 194 194
0.975 385 390 392 392 393 393 394 394 394 394 394 394
0.99 985 990 992 992 993 993 994 994 994 94 994 994
0.95 3 0.1 955 928 902 90l 89 889 885 88 879 874 870
0.975 174 160 154  I50 149 147 146 145 145 144 143 143
0.99 341 308 295 287 282 27.9 277 275 273 272 270 269
0.95 4 771 694 659 639 626 616 609 604 600 596 591 586
0.975 122 10.6 998 960 936 920 907 898 890 884 875 866
0.99 Sl2 180 167 160 155 152 150 148 147 145 144 142
0.95 5 66l 579 5S40 519 505 495 483 482 477 474 468 462
0.975 10.0 843 776 739 7.5 698 685 676 668 662 652 643
0.99 63 133 121 4 110 107 105 103 102 101 989 972

9Z%

g xipuaddy

g spuaddy

LTy



6Z¥

r
Pr(F<f) Iy I 2 3 4 5 6 7 8 9 10 12 15
0.95 6 5.99 5.14 4,76 4.53 4.39 4,28 42| 4.15 4.10 4.06 4.00 3.94
0.975 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.37 5.27
0.99 13.7 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56
0.95 7 5.59 4.74 435 412 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51
0.975 8.07 6.54 5.89 5.52 5.29 5.42 4,99 4.90 482 4.76 4.67 4,57
0.99 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31
0.95 8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22
0.975 7.57 6.06 5.42 5.05 482 4.65 4.53 4.43 4,36 4.30 4.20 4.10
0.99 i1.3 8.65 7.59 7.0l 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52
0.95 9 5.12 426 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01
0.975 7.21 571 5.08 4.72 4,48 4.32 420 4.10 4,03 3.96 3.87 3.77
0.99 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 535 5.26 5.11 4.96
0.95 10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85
0.975 6.94 5.46 4.83 4,47 424 4.07 3.95 3.85 3.78 3.72 3.62 3.52
0.99 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 494 4.85 471 4.56
0.95 12 475 3.89 3.49 3.26 3.1 3.00 2.91 2.85 2.80 2.75 2.69 2.62
0.975 6.55 5.10 4,47 4.2 3.89 3.73 3.6l 3.51 3.44 3.37 3.28 3.18
0.99 9.33 6.93 5.95 5.41 5.06 4.82 4,64 4.50 4.39 4,30 4.16 4,01
0.95 15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40
0.975 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 2.96 2.86
0.99 8.68 6.36 5.42 4,89 4,56 432 4.4 4.00 3.89 3.80 3.67 3.52

* This table is abridged and adapted from “* Tables of Percentage Points of the Inverted Beta Distribution,”” Biometrika, 33 (1943). It is
published here with the kind permission of Professor E. S. Pearson on behalf of the authors, Maxine Merrington and Catherine M. Thompson,

and of the Biometrika Trustees.
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1.63

1.64

1.65

1.67

1.70

1.72

1.74
1.75
1.76
1.78
1.79
1.80
1.83
1.84

1/3Vy,0 < y < 1;1/6VYy,
1 < y < 4; 0 elsewhere.

o (1)
o (/)
)
o= (/%)

—Inz,0 <2< 1;

0 elsewhere.

(& — 1)(10 — 2)(9 — =)/
420, = 2,3,...,8.

2; 86.4; —160.8.

3;11; 27.

1

&

x

@®
G

NS
=L
=
=
=
1
=

Wi £
TN
[*.2]
<o

®

1.5, 0.75. (b) 0.5, 0.05.
2; does not exist.
(2-6),t<In2;2;2

—

C
et

| —
B ol ==
> o
<
[TV
Bl
-
wn
(9,43
o

Q»—nlu»—n
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[ it
o
PN

CHAPTER 2

2.3

2.6

(@) 7. (b) 5%s-

o [0}/ (-

1.

Appendix C
28 35 %
29 <.
210 3z, + 2)/(6x; + 3);
(623 + 6z, + 1)/
(2)(6x; + 3)2.
2,12 3z,/4; 322/80.
2.17 (b) 1/e.
2.18 (a) 1. (b) —1.(c) 0.
2.19 7/V804.
226 by = g1(py2 — P13P23)/
[oo(1 — P%a)]i
by = 01(P13 - P12P23)/
[03(1 - P%a)]-
231 .
233 1-(1-y920<y<1;
121 — )1, 0 <y < 1.
234 gy =[¥° - (v — 1)%/6%
y=1273,4756.
235 &
CHAPTER 3
31 %9
34 1%L
3.6 5.
39 $3.
3.1 5.
3.14 1.
3.15 &%
317 Az 2; 1
3.18 23,
3.19 0.09.
3.22 4% tzxl,x=0,1,2,....
3.23 0.84.
3.27 (a) exp[—2 + eta(1 + )]

(b) Hy = 1, Mo = 2,

o2 =103=2,
p = V2/2.
(c) y/2.

Appendix C

3.28
3.29
3.30
3.31
3.33
3.34
3.39
3.40
3.42
3.44

3.45
3.49

3.50
3.51
3.52
3.53
3.54
3.55
3.56
3.61
3.62

3.64
3.65

0.05.

0.831, 12.8.

0.90.

x*(4).

3¢"%, 0 <y < 0.
2, 0.95,

.
[N

2).

0.067, 0.685.

71.3, 189.7.
ViR

0.774.

V2 (m — 2)/m.
0.90.

0.477.

0.461.

n(0, 1).

0.433.

0,3

n(0, 2).

(a) 0.264. (b) 0.440,
) 0.433. (d) 0.642.

> =

wip

{c
p =
(38.2, 43.4).

CHAPTER 4

4.3
44
4.6
4.7
4.8
4.11

4.12
4.13

4.14
4.16

0.405.

oo

(n + 1)/2; (n? — 1)/12.
a + bx; b2,

x*(2).

3, 0<y<1;

1/2¢%, 1 <y < 0.
5,0 < y < 1; 1544,

4.17

4.20
4.23

4.24
4.25
4.34
4.37

4.42

4.43

4.47
4.48

4.50
4.51
4.56
4.57

4.58
4.63

4.68
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—
o
-
3
Ll

f.-\oc\-;awmy_xl
t

af(e + B);
eBfl(e + B + (= + B)%].
(a) 20. (b) 1260. (c) 495.

0.05.

1/4.74, 3.33.
(1/V2m)Pyfe=v12 sin y,,

0 <y, <0,0 <y, <2,
0 <y <

Yay3e~¥, 0 < g, < 1,

0 <y, <1,0 < y; < 0.
1/2Vy), 0 <y < 1.

e~ 12/(2mVy;: — 43),
—vyl < Yz < \/yl,

0 <y, < 0.

1 — (1 —e 34

1

§.
5
16-
482,2325,0 < z;, < 1,

0<z2,<1,0<z3 <1

iz

6uv(n + v),
O<u<v<l.
Y | &)

2| 4%

3| %

4 5%

5| 4%

6| 5%

71 5%

81 3%
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4.69
4.77
4.80

4.81

4.83
4.84
4.86

4.87
4.89
4.90
491
4.93
4.95
4.96
499

0.24.

0.818.

(b) —1lor 1.

(© Zi=0aY; + p

%dibi = 0.
1

6.41.

n = 16.

(n — 1)o?/n;
2(n — 1)o*/n?.
0.90.

0.78.

8.2

3,0

7.

2.5: 0.25.

—5: 60 — 12V6.
01/\/01 + 0%.
22.5, 281,

4.100 7, > 4

4.102 pyo./V o303 + plod + p3os.

4.105 5//39.
4.109 cr+o%2; 2u+0%(g0% 1),

CHAPTER 5

5.1
5.2
5.3
5.4
5.13
5.14
5.17

5.18
5.19
5.21

Degenerate at p.
Gamma (« = 1,
Gamma (« = 1,
Gamma (« = 2
0.682.

(b) 0.815.
Degenerate at p,

W T ™
ll
—_=

>

+ (og/a1)(® — pa)-

—

b) #(0, 1).
b) # (,1)-
95

O/'\
.p

5.23
5.26
5.28
5.29
5.34

Appendix C

0.840.
0.08.
0.267.
0.682.
7n(0, 1).

CHAPTER 6

6.1

6.2

6.4
6.5

6.7

6.11
6.12
6.13
6.14
6.16
6.17
6.18
6.19
6.25
6.26
6.30
6.32
6.34
6.36
6.41
6.42

(@) X

(b) —n/ln (XX, - X)),
(¢) X. (d) The median.

(e) The first order statistic.
The first order statistic Y,,

S (Xi = Yo

4a_ 11 1

25> 25 25-

b = 0; does not exist.
Does not exist.
(77.28, 85.12).

24 or 25.

(3.7, 5.7).

160.

(5¢/6, 5&/4).
(-3.6,2.0).

135 or 136.

(0.43, 2.21).

(2.68, 9.68).

(0.71, 5.50).

[yr® + pojn)(s2
Bly + a)/(nB + 1).

CHAPTER 7

7.1
7.2

T+ 3ng; i + §lni.
3, (13

+ o?/n).

Appendix C

7.5
7.6

7.10

7.12

7.13
7.14
7.15
7.16
7.17

7.19
7.22
7.23

7.24

7.27
7.28

n = 19 or 20.

K() = 0.062;

K(5) = 0.920.

10

Z xZ > 18.3; yes; yes.

10
3Zx,. +2%x,=¢
1 1

95 or 96; 76.7.

38 or 39; 15.

0.08; 0.875.

(1 — 0)°(1 + 99).

1,0 < 8 < §;1/(166%),

F< 0 <1;1— 15/(166%,

1 <o

53 or 54, 5.6.

Reject H, if & = 77.564.
26 or 27;

reject Hy if £ < 24.

220 or 221;

reject Hyif y = 17.

t =3 > 2.262, reject H,.
lg| = 2.27 > 2.145,
reject H,.

CHAPTER 8

8.1

8.3
8.4

8.5
8.7

8.16
8.17

8.25

8.29

g; = L& > 7.81,
reject H,,.
b<8or32 <.
g, = % < 11.3,
accept H,.

6.4 < 9.49, accept H,,.
P = (X, + Xo/2)/

(X1 + Xy + Xg).

v+ 0,27 + 486.

790 + 711)[[r1(re — 2)],
vy > 2.

B =3 (Xincy),

> X - Bci)Z/”C?]-
Reject H,.

CHAPTER 9

9.2

9.4
9.6
9.8
9.11

9.13
9.15
9.22
9.33
9.39

(a) 13- (b) 675/1024;

(c) (0.3)%

8.

0.954; 0.92; 0.788.

8.

(a) Beta(n — 5 + 1,7).

(b) Beta(n —j + 4 — 1,
J =1+ 2).

0.067.

Reject H,,.

0; 4(4" — 1)/3; no.

CHAPTER 10

10.9

10.10

10.12
10.14
10.15
10.17

10.19
10.27
10.28

10.31

60y3(ys — ¥3)/6°; 6ys/5;
62/7; 62/35.

(1/6%)e- e,

0 <y, <y, < o0;
¥1/2; 0%/2.

2 Xin; 2 Xfn; 2 Xyfn.
X; X.

Y,/n.

Y, - 1/n.

Y, % Xi; Y /4n; yes.
1

ff

CHAPTER 11

11.3
11.6

co(n) =

6%/n; %[n(n + 2).
(14.4)
x (nln 1.5 — In 9.5);

c,(n) = (14.4)

X (nln 1.5 + In 18).
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11.7

11.12
11.24
11.27

co(n) = (0.05%2 — 1n 8)/
In 3.5;

¢,(n) = (0.05% + In 4.5)/
In 3.5.

9y — 202)/30 < c.

2.17; 2.44.

2.20.

Appendix C
CHAPTER 12

12.3  (a) exp{(t,;c + tod)'p +
[(tie + £,d)'V
X (e + tad)]/2).
1212 a2, =0,7=1,2,3,4.

1213 S a,=0:=12,...
i=1

Index

Analysis of variance, 291
Andrews, D. F., 404
Approximate distribution(s), chi-square,
269
normal for binomial, 195, 198
normal for chi-square, 190
normal for Poisson, 191
Poisson for binomial, 190
of X, 194
Arc sine transformation, 217

Bayes’ formula, 65, 228

Bayesian methods, 227, 229, 385

Bernstein, 87

Beta distribution, 139, 149, 310

Binary statistic, 319

Binomial distribution, 90, 132, 190, 195,
198, 305

Bivariate normal distribution, 117, 170

Boole’s inequality, 384

Box—Muller transformation, 141

Cauchy distribution, 142
Central limit theorem, 192
Change of variable, 128, 132, 147
Characteristic function, 54
Characterization, 163, 172
Chebyshev’s inequality, 58, 93, 188
Chi-square distribution, 107, 114, 169,
191, 271, 279, 413

Chi-square test, 269, 312, 320
Classification, 385
Cochran’s theorem, 419
Complete sufficient statistics, 355
Completeness, 353, 358, 367, 390
Compounding, 234
Conditional expectation, 69, 349
Conditional probability, 61, 68, 343
Conditional p.d.f., 67, 71, 118
Confidence coefficient, 213
Confidence interval, 212, 219, 222

for difference of means, 219

for means, 212, 214

for p, 215, 221

for quantiles, 304

for ratio of variances, 225

for regression parameters, 298

for variances, 222
Contingency tables, 275
Contrasts, 384
Convergence, 186, 196, 204

in probability, 188

with probability one, 188

stochastic, 186, 196, 204
Convolution formula, 143
Correlation coefficient, 73, 300
Covariance, 73, 179, 408
Covariance matrix, 409
Coverage, 309
Cramér, 189
Critical region, 236, 239, 242

best, 243, 245

size, 239, 241

uniformly most powerful, 252
Curtiss, J. H., 189

Decision function, 208, 228, 341, 386
Degenerate distribution, 56, 183
Degrees of freedom, 107, 264, 273, 279,
289

Descending M-estimators, 404
Distribution, beta, 139, 149, 310

binomial, 90, 132, 190, 195, 198, 305

bivariate normal, 117, 170, 386

Cauchy, 142

chi-square, 107, 114, 169, 191, 271,

279, 413

conditional, 65, 71

continuous type, 24, 26

of coverages, 310

degenerate, 56, 183

Dirichlet, 149, 310

discrete type, 23, 26

double exponential, 140

exponential, 105, 163

exponential class, 357, 366

of F, 146, 282

function, 31, 36, 125

of functions of random variables, 122

of F(X), 126
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Distribution, beta (cont.)

gamma, 104

geometric, 94

hypergeometric, 42

limiting, 181, 193, 197, 270, 317
of linear functions, 168, 171, 176, 409
logistic, 142

lognormal, 180

marginal, 66

multinomial, 96, 270, 332
multivariate normal, 269, 405
negative binomial, 94

of noncentral chi-square, 289, 413
of noncentral F, 290, 295

of noncentral T, 264

normal, 109, 168, 193

of nS2/062, 175

of order statistics, 154

Pareto, 207

Poisson, 99, 131, 190

posterior, 228

prior, 228

of quadratic forms, 278, 410

of R, 302

of runs, 323

of sample, 125

of T, 144, 176, 260, 298, 302
trinomial, 95

truncated, 116

uniform, 39, 126

Weibull, 109

Index

of a product, 47, 83
Exponential class, 357, 366
Exponential distribution, 105, 163

F distribution, 146, 282
Factorization theorem, 344, 358, 364
Family of distributions, 201, 354
Fisher, R. A, 388
Frequency, 2, 271
relative, 2, 12, 93
Function, characteristic, 54, 192
decision, 208, 228, 341, 386
distribution, 31, 36, 125
exponential probability density, 105,
163
gamma, 104
likelihood, 202, 260
loss, 209, 341
moment-generating, 50, 77, 84, 164
of parameter, 361
point, 8
power, 236, 239, 252
probability density, 25, 26, 31
probability distribution, 31, 34, 36
probability set, 12, 17, 34
of random variables, 35, 44, 122
risk, 209, 229, 341
set, 8

Geometric mean, 360

Index

Lehmann alternative, 334
Lehmann-Scheffé, 355
Lévy, P., 189
Liapounov, 317
Likelihood function, 202, 205, 260
Likelihood ratio tests, 257, 284
Limiting distribution, 181, 193, 197, 317
Limiting moment-generating function,
188
Linear discriminant function, 388
Linear functions, covariance, 179
mean, 176, 409
moment-generating function, 171, 409
variance, 177, 409
Linear rank statistic, 334
Logistic distribution, 142
Lognormal distribution, 180
Loss function, 309, 341

Mann--Whitney—Wilcoxon, 326, 334
Marginal p.d.f., 66
Maximum likelihood, 202, 347
estimator, 202, 205, 347, 401
method of, 202
Mean, 49, 124
conditional, 69, 75, 118, 349
of linear function, 176
of a sample, 124
of X, 49
of X, 178
Median, 30, 38, 161
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method of, 206
Multinomial distribution, 96, 270, 332
Multiple comparisons, 380
Multiplication rule, 63, 64
Multivariate normal distribution, 269,
405

Neyman factorization theorem, 344, 358,
364

Neyman-Pearson theorem, 244, 267, 385

Noncentral chi-square, 289, 413

Noncentral F, 290, 295

Noncentral parameter, 264, 289, 413

Noncentral T, 264

Nonparametric, 304, 312, 397

Normal distribution, 109, 168, 193

Normal scores, 319, 337, 398

Order statistics, 154, 304, 308, 369
distribution, 155
functions of, 161, 308

Parameter, 91, 201

function of, 361
Parameter space, 201, 260
Pareto distribution, 207
Percentile, 30, 311
PERT, 163, 171
Personal probability, 3, 228
Poisson distribution, 99, 131, 190
Poisson process, 99, 104

Power, see also Function, Test of a statis-
tical hypothesis, 236, 239
Prediction interval, 218
Probability, 2, 12, 34, 40
conditional, 61, 68, 343

of X, 173, 194 Gini’s mean difference, 163 M-estimators, 402
Distribution-free methods, 304, 312, 397 Method
Double exponential distribution, 140 Huber, P., 402 of least absolute values, 400
Hypothesis, see Statistical hypothesis, of least squares, 400

Efficiency, 372 Test of a statistical hypothesis of maximum likelihood, 202

Estimation, 200, 208, 227, 341 of moments, 206 induced, 127 0
Bayesian, 227 Independence, see Stochastic M%dyange, 161 ion. 210 mezés?re,z’g,
interval, see also Confidence intervals, independence Minimax, criterion, modets,

decision function, 210
Minimum chi-square estimates, 273

posterior, 228, 233

212 i
Inequality, Boole, 384 subjective, 3, 228

maximum likelihood, 202, 347, 401 Chebyshev, 58, 93, 188

minimax, 210 Rao-Blackwell, 349 Mode, 30,98 ) Probability density function, 25, 26, 31

point, 200, 208, 370 Rao_Cramér, 372 Moment-generating function, 50, 77, 84, condmon.al, 67

robust, 400 Interaction, 295 gy exponential class, 357, 366
Estimator, 202 Interval of binomial distribution, 91 posterior, 228

of bivariate normal distribution, 119 prior, 228

best, 341, 355, 363

consistent, 204

efficient, 372

maximum likelihood, 202, 347, 401

minimum chi-square, 273

minimum mean-square-error, 210

unbiased, 204, 341

unbiased minimum variance, 208, 341,
355, 361

Events, 2, 16

exhaustive, 15
mutually exclusive, 14, 17

Expectation (expected value), 44, 83,

176

confidence, 212
prediction, 218
random, 212
tolerance, 309

Jacobian, 134, 135, 147, 151

Joint conditional distribution, 71
Joint distribution function, 65

Joint probability density function, 65

Kurtosis, 57, 98, 103, 109, 116, 399

Law of large numbers, 93, 179, 188
Least squares, 400

of chi-square distribution, 107

of gamma distribution, 105

of multinomial distribution, 97

of multivariate normal distribution,
408

of noncentral chi-square distribution,
289

of normal distribution, 111

of Poisson distribution, 101

of trinomial distribution, 95

of X, 171

Moments, 52, 206
factorial, 56

Probability set function, 12, 17, 34
p-values, 255

Quadrant test, 400

Quadratic forms, 278
distribution, 278, 410, 414
independence, 279, 414

Quantiles, 30, 304
confidence intervals for, 305

Random experiment, 1, 12, 38
Random interval, 212
Random sample, 124, 170, 368
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Random sampling distribution theory,
125
Random variable, 16, 23, 35
continuous-type, 24, 26
discrete-type, 23, 26
mixture of types, 35
space of, 16, 19, 20, 27
Random walk, 380
Randomized test, 255
Range, 161
Rao-Blackwell theorem, 349
Rao-Cramér inequality, 372
Regression, 296
Relative frequency, 2, 12, 93
Risk function, 209, 229, 341
Robust methods, 398, 402

Sample, correlation coefficient, 300
mean of, 124
median of, 161
random, 124, 170, 368
space, 1, 12, 61, 200
variance, 124
Scheffé, H., 382
Sequential probability ratio test, 374
Set, 4
complement of, 7
of discrete points, 23
element of, 4
function, 8, 12
null, 5, 13
probability measure, 12
subset, 5, 13
Sets, algebra, 4
intersection, S
union, 5
Significance level of test, 239, 241
Simulation, 127, 140
Skewness, 56, 98, 103, 109, 116
Space, 6, 16, 23, 24
parameter, 201, 260
product, 80
of random variables, 16, 19, 20, 23, 24
sample, 1, 12, 61, 200
Spearman rank correlation, 338, 400
Standard deviation, 49, 124
Statistic, see also Sufficient statistic(s),
122
Statistical hypothesis, 235, 238
alternative, 235
composite, 239, 252, 257
simple, 239, 245, 252
test of, 236, 239
Statistical inference, 201, 235
Stochastic convergence, 186, 196, 204
Stochastic dependence, 80
Stochastic independence, 80, 120, 132,
140, 275, 300, 390, 414

Index

mutual, 85
of linear forms, 172
pairwise, 87, 121
of quadratic forms, 279, 414
test of, 275, 300
of X and $2, 175, 391
Sufficient statistic(s), 343, 364, 390
joint, 364

T distribution, 144, 176, 260, 264, 298,
302
Technique, change of variable, 128, 132,
147
distribution function, 125
moment-generating function, 164
Test of a statistical hypothesis, 236, 239
best, 243, 252
chi-square, 269, 312, 320
critical region of, 239
of equality of distributions, 320
of equality of means, 261, 283, 291
of equality of variances, 266
likelihood ratio, 257, 260, 284
median, 321
nonparametric, 304
power of, 236, 239, 252
of randomness, 325
run, 322
sequential probability ratio, 374
sign, 312
significance level, 239, 241
of stochastic independence, 275, 300
uniformly most powerful, 251
Tolerance interval, 307
Training sample, 388
Transformation, 129, 147
of continuous-type variables, 132, 147
of discrete-type variables, 128
not one-to-one, 149
one-to-one, 129, 132
Truncated distribution, 116
Types I and I errors, 241

Uniqueness, of best estimator, 355
of characteristic function, 55
of moment-generating function, 50

Variance, analysis of, 291
conditional, 69, 76, 118, 349
of a distribution, 49
of a linear function, 177
of a sample, 124
of X, 49
of X, 178

Venn diagram, 6

Weibull distribution, 109
Wilcoxon, 314, 326, 334



