
*These are notes + solutions to herstein problems(second edition TOPICS IN 

ALGEBRA) on groups,subgroups and direct products.It is a cute pdf print of a MS word 

doc which explains er..:P 

Group theory 

Group: closure,associative,identity,inverse 

a’ denotes inverse of a 

identity  is unique: 

 Let e,e’ be two identity elements 

 e.e’=e  (e’ is identity) 

 e.e’=e’ (e is identity) 

 e=e’ 

unique inverse: 

 let a,a’ be two inverses of b 

 a.b=e=b.a=a’.b=b.a’ 

 (a.b).a’=e.a’=a’ 

 a.(b.a’)=a.e=a 

 a=a’ 

(a’)’=a: 

 a’.(a’)’=e 

 a’.a=e 

(a.b)’=b’.a’: 

 (a.b).b’.a’=a.(b.b’).a’=a.a’=e 

 

Problems (some preliminary lemmas on grp theory): (Pg 35 Herstein) 

1)See whether group axioms hold for the following: 

 a)G=Z  a.b=a-b 

  associativity fails: (4-3)-1=0,4-(3-1)=2 

 b)G=Z+  a.b=a*b 

  inverse may not exist: 

   2’ doesn’t exist 

 c)G=a0,a1,..a6 where ai.aj=ai+j   (i+j)<7 

            ai.aj=ai+j-7 (i+j)>=7 

  It is a group 

  Closure satisfied by definition 

  (ai.aj).ak: 

   If i+j<7 

    If i+j+k>=7 

     =ai+j+k-7  

     (if j+k<7,ai.(aj.ak)=ai.aj+k and done) 

     (if j+k>=7,ai.(aj.ak)=ai.aj+k-7 but note that \ 

       i+j+k-7<7 as i+j<7 and so done) 

    If i+j+k<7 (=>j+k<7,so ai.(aj.ak)=ai+j+k)  

     =ai+j+k  

   If i+j>=7 

    If i+j+k-7>=7 

     =ai+j+k-14 



     (j+k cant be less than 7 and so done) 

    If i+j+k-7<7 

     =ai+j+k-7 

     (if j+k>=7.done..If j+k<7,note as i+j>=7.done) 

    

  Indentity:a0 

  Inverse: 

   ai’=a7-i’ 

 d)G=rational numbers with odd denominators, a.b=a+b 

  it is a group  

 

2)PT if G is abelian, then (a.b)
n
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n
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3)PT if (a.b)
2
=a

2
.b

2
 for all a,b, G is abelian 

 (a.b).(a.b)=a
2
b

2
 

 Cancelling we get b.a=a.b 

4)If G is a group such that (a.b)
i
=a

i
.b

i
 for 3 consecutive integers for all a,b.PT G is 

abelian 
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5)PT conclusion of 4 is not attained when we assume the relation for just 2 consecutive 

integers 

 … 

6)In S3 give example of 2 elements x,y such that (x.y)
2
!=x

2
y

2 

     
  S3={e,x,x

2
,y,yx,yx

2
} x.y.x.y=e 

 x,y are the required elements 

7)In S3 PT there are 4 elements satisfying x
2
=e and 3 elements satisfying x

3
=e 

  e,y,yx,yx
2
 and e,x,x

 2 

8)If G is a finite group, PT there exists a positive integer N such that a
N
=e for all a 

 As G is finite, for all x in G,there exists n(x)
 
 where x

n(x)
=e 

 N=LCM of {n(x) for all x in G} 

9)If order of G is 3 , 4 or 5 PT G is abelian
 
  

 a) G={e,x1,x2} 

  x1.x2=e (as else one of x1,x2 will be e) 

  hence cyclic-done 

 b)G = {e,x1,x2,x3,x4} 

  if x1.x1=e then x1.x2=x3 (it cant be e,x1,x2) so x1.x1.x2=x1.x3 so x2=x1.x3    

  x1.x2=x1.x1.x3=x3 So x1.x2=x3..then x1.x4 poses a problem 

  so x1.x1=x2 

x1.x1=x2 and so x2.x2=x3 (it cant be e by above reasoning and if x2.x2=x1 

then x1
3
=e and as x1.x3 cant be x1

2
, so x1.x3=x4 .x1

2
x3 poses problem) 

x3.x3 can only be x4 or x1.It cant be x1 as then x1
7
=e x1.x3=x1

5
=x4 



 (x1
5
=x1

2
 will lead to x1=x3) so x1.x4 will pose a problem. 

So group is {e,x,x2,x3,x4} which is cyclic 

 c)G={e,x1,x2,x3} 

  x1.x1=x2 or x1.x1=e 

1) x1.x1=e 

then x1.x2=x3 (it cant be x1,x2 or e) 

similarly x2.x1=x3 

likewise x1.x3=x3.x1=x2 

so x2.x3=x1.x3.x3   x3.x2=(x3.x1).x3=x1.x3.x3 

so abelian 

2) x1.x1=x2 

then x1.x2=x3 

so group is cyclic {e,x,x
2
,x

3
} 

 

10)PT if every element of G is its own inverse,then G is abelian 

 a=a’ b=b’ 

 x=ab 

 x=x’ so (ab)’=b’a’=ba = ab 

11) If G is a group of even order PT it has an element a!=e such that a
2
=e 

If there exists an element of even order, a!=e say a
2x

=e then b=a
x
 satisfies 

condition. 

If all elements except e have odd order,then list down group as the following 

G={e}U{a…a2x}U{b…b2y}…… 

So G has odd order which is a contradiction 

12)Let G be a nonempty set closed under associative product which also satisfies 

 a)e such that a.e=a for all a 

 b)given a , y(a) exists in G such that a.y(a)=e 

      PT G is a group 

 Its closed,associative 

 PT a.e=e.a for all a 

  If e.a=x  

  e.a.y(a)=x.y(a) 

   e.a.y(a)=e.e=e 

  x.y(a)=e=a.y(a) 

  x.y(a).y(y(a))=a.y(a).y(y(a)) 

  x.e=a.e 

  x=a 

 PT y(a).a=e for all a 

       Let y(a).a=x   

        x.y(a)=y(a).a.y(a)=y(a).e=y(a)=e.y(a) 

       (Cancellation law: a.b=c.b a.b.y(b)=c.b.y(b) so a.e=c.e so a=c ) 

       So x=e 

13)Prove by example that if a.e=a for all a and there exists y(a).a=e that G neednt be a 

group 

 …. 



14)Suppose a finite set G is closed under associative product and both cancellation laws 

hold. PT G is a group 

 Since G is finite let G={x1,x2..xn} 

 Look at S(x1)= {x1.x1, x1.x2, x1.x3,…..x1.xn} 

            All these are distinct because of left cancellation law 

            So S (x1) in some order is G 

 Let xi be the element such that x1.xi=x1 

 Claim:For all y in G  y.xi=y 

 Proof: 

Any y can be written as y1.x1 (because look at 

 Z(x1)={x1.x1, x2.x1…xn.x1}.By similar reasoning Z=G (right cancellation 

law). So y.xi=y1.x1.xi=y1.x1=y. 

Also by looking at S(y),we know that given any y,there exists y’ such that 

y.y’=x1 . 

Hence done by prev problems 

15) So look at nonzero integers relatively prime to n.PT they form a group under 

multiplication mod n 

Multiplication is associative.And a,b relatively prime to n =>ab is also relatively 

prime to n.There are only finite residues mod n.And cancellation laws hold 

(because of “relative primeness”)Hence by 14 done 

18)Construct a non abelian group of order 2n (n>2) 

 D(n)={e,x,..x
n-1

,y,yx,yx
2
..yx

n-1
} xyxy=e 

*26)Done in vector spaces chapter 

 

*PT e=e’ 

 e.e=e 

 hence done 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Examples of some groups: 

* 1 a          (gen by 1 1  )        

   0 1                       0 1  

* {n|n in Z , x
n
=1} 

 

Subgroup:Nonempty subset H of G forms a group under the same operation  

 

� (G,*) is a group.H is a subset of G is a subgrp iff it is  closed under * and for all a, a’ 

belongs to H 

If H is a subgrp then by def true 

Reverse way: 

Associativity holds as it holds for operation in G 

a,a’ is in H 

=>a.a’ = e is in H 

=>  if H is a finite subset of G closed under *,it is a subgrp 

 

 

Some problems done in class: 

1) PT  every subgroup of (Z,+) consists of only multiples of some integers 

If a is in S(subgrp),then a’ is in S.if S!={0} 

 So assume a>0 which is the smallest +ve number in S 

a+a’=0 

qa  in S for all q in Z 

If possible let b=qa + r be in Z 

� r is in Z but 0<=r<a  

� r=0 

2) If (a,b)=c PT c= na +mb 

Wlog assume a>b 

a=q1b + r1 

b=r1q2 + r2 

r1=r2q3 + r3 

.. 

rn-1=rnqn+1 

= >rn/rn-1 …=>rn/a   rn/b => rn/d 

Where d=(a,b) 

d/a d/b =>d/r1..d/rn 

=>d=rn 

     

 

  

 

 

 

 

 

 



Equivalence relations,partitions: 

Partitions: 

S = union of nonempty disjoint subsets.the set of these subsets forms a partition of S 

Relation: 

Relation on S is a subset of S X S 

Equivalence relation: 

a~a(reflexive) 

a~b => b~a (symmetric) 

a~b , b~c => c~a (transitive) 

 

An eq relation on a set S defines a partition of S: 

 Eqclass(a) = { x in S | x~a} 

 Note that a is in Eqclass(a) 

 And if x belongs to Eqclass(a) and Eqclass(b) 

             => x~b ,x~a  

 =>a~b 

 =>Eqclass(a) = Eqclass(b) 

 So Eqclasses form a partition of S 

A partition of S defines an Eq relation 

 a~b iff  a and b belong to the same partition 

 

Cosets: 

H is a subgrp of G 

aH={ah|h in H} is a left coset of H. Similarly right cosets can be defined 

Properties: 

1)eH = H 

 2)hH=H 

 3)aH = bH iff b’a is in H 

  If aH = bH  

o a = bh 

o b’a  = h 

if b’a = h 

o a = bh 

o ah1 = bhh1 = bh2 

o aH  is a subset of bH 

bh1= bhh’h1 = ah’h1 = ah2 

o bH is a subset of aH 

4)every coset of a subgrp has the same number of elements 

 X:aH � bH  

      ah �bh. 

 This map is one one onto 

5)G is union of  left(right)cosets of H 

 Claim:cosets form equivalence classes (verify) 

6) |aH| =|Ha|  (ah � ha) 

 

Index:No of left(right) cosets of a subgrp in a grp is called index of the subgrp in the grp 



Index of H in G = [G:H] 

 

Lagrange’s theorem: 

 |G|=|H|[G:H]  

 Proof: 

  G = U (left cosets of H) 

  |aH|=|H| 

  So G = (no of cosets)|H| 

 

 

Problems done in class: 

1) If G has p (prime) no. of elements ,PT it is cyclic 

|G|!=1 

So let a!= e belong to G. 

H= subgrp generated by a 

|H| /|G| 

And |H| >1 => |H| =|G| 

2) Write down the multiplication table for groups of order 2,3,4 

* e A 

e e A 

a a E 

 

* e a b c 

e e a b c 

a a e c b 

b b c e a 

c c b a e 

 

From Lagrange’s theorem 

1) If G is finite, a in G then o(a)/o(G) 

2) a
o(G)

=e ( a
o(a)

 = e. and o(G) = k.o(a) ) 

so euler’s theorem follows (a 
phi(n)

 = 1 mod n (a,n)=1) 

fermat’s little theorem is a corollary (n = p (prime) ) 

 

Some “flavour” of group theory: 

 

HK=KH ���� HK is a subgroup 

 HK=KH 

 Closure:h1k1.h2k2 = h1k1(k
2
h

2
) = h1kxh2= h1hxk

x
= hyk

x
 

 Associativity – as * in G is associative 

 Identity : e.e = e 

 Inverse: (h1k1)’ = k1’h1’ = h2k2 

 

 HK is a subgrp: 

  kh = (h’k’)’ which belongs to HK . So KH is contained in HK 

* e a b 

e e a b 

a a b e 

b b e a 

* e a B c 

e e a B c 

a a e C b 

b b c A e 

c c b E a 



 let x be in HK ,x’ is in HK, x’ = hk so x’’ = x = k’h’ in KH .so HK contained in 

 KH   

   

☺ the one theorem I keep on using 

O(HK) = o(H)o(K)/o(H∩K) 

 Supposing (H∩K) = {e} 

 Now if  h1k1= h2k2  

� h2’h1=k2k1’ 

� h1 =h2 , k1=k2 

so o(HK) = o(H)o(K) 

 

Claim: an element hk appears as many times as o(H∩K) times 

hk = (hh1)(h1’k) which belongs to HK if h1 belongs to H∩K 

so hk duplicated at least o(H∩K) times 

 

if  hk = h1k1 

� h1’h = k1k’ = u 

� u is in H∩K 

� h1 = hu’ 

� k1 = uk 

�  

Corollary:  

If sqrt o(G)<o(H),o(K)=> H∩K is non empty 

 o(HK) <o(G) 

 o(HK) = o(H)o(K)/o (H∩K) < o(G)/o(H∩K) 

 So o(G) > o(G)/o(H∩K) 

 

O(G)= pq (p>q are primes) then there is atmax one subgrp of order p 

 If H,K are different order p subgrps 

 Then they are cyclic 

 So H∩K is {e}  

 So o(HK) = p
2 

> pq = o(G) -><- 

 

Herstein (subgrps) Pg  46: 

Problems 

1) If H,K are subgroups,PT H∩K is a subgroup 

Closure: h is in H∩K, k is in H∩K  

� h, k is in H 

� h.k is in H 

� similarly h.k is in K 

� h.k is in H∩K 

associativity - * in G is associative 

identity: e is in H,e is in K 

inverse : h is in H∩K 

� h is in H,h is in K 

� h’ is in H, h’ is in K  (this can be extended to any number of groups) 



2) Let G be a group such that intersection of all non {e} subgrps is non {e}.PT every 

element in G has a finite order 

If x is an element with infinite order,{ ….x’,e,x,x
2
,x

3
…} is a subgrp 

So intersection of all subgrps  contain x
k
. 

Now consider subgrp generated by x
k+1

 

x
k
 belongs to the above subgrp 

x
(k+1)m

 = x
k
 

so x has finite order -><- 

3) If G has no nontrivial subgrps,PT G must be cyclic of prime order 

G!={e} 

Let a !=e belong to G 

H= subgrp generated by a 

H !={e} 

So H=G 

G is cyclic 

Now if G is finite, let d/o(G) 

Look at subgrp generated by a
d
 -><- 

If G is infinite look at subgrp generated by a
2
 -><- 

4) If H is a subgrp of G and a is in G,let aHa’ = {aha’ |h in H}.PT aHa’ is a 

subgrp,what is order of o(aHa’) 

Proving it is a subgrp is left as an exercise (yawn!) 

o(aHa’) = o(H) 

aha’ � h 

it is one one ,onto 

5) PT there is a one one corr bet left cosets and right cosets 

aH � Ha 

      6,7,8 – enumeration , boring 

9) If H is a subgrp of G such that whenever Ha!=Hb , then aH!= bH. 

PT gHg’ is contained in H for all g 

 Ha!=Hb => aH!=bH 

� aH=bH => Ha=Hb 

� a’b is in H => ab’ is in H 

� a = g b =gh’ 

� So ghg’ is in H 

10) H(n) = { kn | k in Z}.index of H(n)? right cosets of H(n) 

Index  H(n) = n 

Cosets = 0+H, 1+H, 2+H, ..n-1+H 

11) what is H(n)∩H(k)? 

l=[k,n] 

{ml|m in Z} 

12) If G is a grp, H,K are finite index subgrps.PT H∩K is of finite index in G.can you 

find an upper bound 

a1H U a2H…U ahH  = G 

b1K U b2K…U bkK =  G 

� (a1H U a2H…U ahH) ∩ (b1K U b2K…U bkK) = G 

� U (aiH ∩ bjK) = G 



Claim : (aiH ∩ bjK), (amH ∩ bnK) are disjoint  

   If x is in intersection  

� x=aih= bjk = amh1 = bnk1 

� am’ai is in H, bn’bj is in K 

� aiH=amH and bjK=bnK 

Claim: if (aiH ∩ bjK)!={} , it is contained in a coset of (H∩K) 

 a is in (aiH ∩ bjK) 

 => aiH = aH 

 => bjK = aK 

 So (aiH ∩ bjK)= (aH ∩ aK) 

Claim:  (aH ∩ aK) is contained a(H ∩ K) 

 Let b be in (aH ∩ aK) 

 => b = ah = ak 

 =>  h =k  and belongs to (H ∩ K) 

 => b is in a(H ∩ K) 

  So as the former is finite in no. so will the latter be 

some trivial stuff – so just convert to definitions 

 Following are some subgroups 

Normalizer of a : N(a) = { x | x in G, xa=ax}  

Centralizer of H = { x | x in G , xh = hx for all h in H} 

Center of G = Z = centralizer of G 

N(H) = { a | aHa’ = H}  

H is contained in N(H) 

  C(H) is contained in N(H) 

  In D3, C({1,x,x
2
}) != N({1,x,x

2
}) 

18) If H is a subgrp of G, let N =  ∩ x in G xHx’.PT N is a subgrp and aNa’=N for all a  

 Proving it is a subgrp is boring 

 Now aNa’ = a (∩ x in G xHx’ ) a’ = ∩ x in G axHx’a’ = ∩ x in G (ax)H(ax)’ 

  = ∩ ax in G (ax)H(ax)’ = N 

19)If H is a subgrp of finite index in G,PT there is only a finite no. of distinct subgrps in 

G of form aHa’ 

 aH = bH  

� a’b is in H 

�a’b = k 

� ( aha’ = akk’hkk’a’ = (ak) (k’hk) (ak)’  

�aHa’ is contained in bHb’ 

20) If H is of finite index, PT there is a subgrp N of H and of finite index in G such that 

aNa’ = N for all a in G. Upper bound for [G:N]? 

 Let N =  ∩ x in G xHx’ 

 N is contained in xHx’ for all x (put x =e, so N is in H) 

 H is of finite index, then only finite subgrps of form aHa’ 

 If we PT xHx’ is of finite index in G, then by prob 12, and above we are done 

 TPT xHx’ is of finite index if H is of finite index: 

  *(involves quotienting  � though ) 

  Phi : G/H -> G/aHa’ 

           gH � ga’ (aHa’) 



  this map is well defined!! 

 Why? 

 If bH = cH  

� b’c is in H 

PT ba’(aHa’) = ca’(aHa’) 

PT (ba’)’(ca’) is in aHa’ 

PT ab’ca’ is in aHa’ (but b’c is in H ☺ ) 

 Phi is onto : k(aHa’) = kaa’(aHa’) = phi( kaH) 

Hence done 

21-23 again boring enumerative stuff 

24) Let G be a finite group whose order is not divisible by 3.If (ab)
3
 = a

3
b

3
 for all a,b. 

PT G is abelian 

(aba’b’)
3
 = (ab)

3
(a’b’)

3
 = a

3
b

3
a’

3
b’

3
 = a

3
(bab’)

3
 

� b
2
a’

3
 = a’

3
b

2
 

� so x
2
y

3
 = y

3
x

2
 for any x,y 

� so a
6
b

6
 = b

6
a

6
 

� (a
2
b

2
)
3
 = (b

2
a

2
)
3
 

if x
3
 = y

3
 =>x

3
y’

3
 = e => (xy’)

3
 = e 

� xy’=e as order not div by 3 

� x =y 

 so a
2
b

2
 = b

2
a

2
 

 proved bfr a
2
b

3
 = b

3
a

2 

 
(a

2
b

2
)(b’

3
a’

2
) = (b

2
a

2
)(a’

2
b’

3
) 

� a
2
b’a’

2
 = b’ 

� x
2
y = yx

2
 for any x,y 

� xy = x’yx
2
 

Now (yx)
3
 = y

3
x

3
 

� yxyxyx = y
3
x

3
 

� xyxy = y
2
x

2
 = yyxx = y(xx’)yxx = (yx)(x’yx

2
) = yx(xy) (as xy = x’yx

2
) 

� xyxy = (yx)(xy) 

� xy = yx 

 

 

 

  

  

(25,26 � I got discouraged inspite of what herstein had to say :P (see exercises on finite 

abelian groups for this) 

27)PT subgrp of a cyclic grp is cyclic 

  let G = cyclic grp generated by a , H be a subgrp 

 let H’ = { x| a
x
 is in H} 

 and d = HCF of  elements in H’ 

 claim : H = <a
d
 > 

  if we PT a
d
 belongs to H, then we are done as H is a subgrp and any 

element of H = a
x
 = (a

d
)
x’

 

 Note that if a
x
 , a

y
 belongs to H, then a

 HCF(x,y)
 belongs to H 



 Hence done 

28) How many generators does a cyclic grp of order n have? 

 U(n) = { x |x<=n, (x,n)=1} 

 |U(n)| is the answer 

 let G = <a> and o(a) = n 

 if G = <ax> then a is in G, so (ax)y = e 

� xy = 1 mod n 

� (x,n) = 1 

and once a is in G, then rest are in G 

35)Hazard a guess at what all n such that Un is cyclic 

 chk no. theory book as herstein suggests :P 

36)If a is in G, a
m

 = e.PT o(a) | m. 

 o(a) is the smallest integer such that a
o(a)

 = e 

 let m = qo(a) + r 

� a
r
=e 

� r=0 

37) If in group G, a
5
 = e, aba’ = b

2  
. for some a,b.Find o(b) 

 aba’ = b
2
 

� ab
2
a’ = b

4
 

� a(aba’)a’ = b
4
 

� a
2
ba’

2
 = b

4
 

� a
2
b

2
a’

2
 = b

8
 

� a
2
(aba’)a’

2
 = b

8
 

� a
3
ba’

3
 = b

8
 

� a
3
b

2
a’

3
 = b

16
 

� a
4
ba’

4
 = b

16
 

� a
4
b

2
a’

4
 = b

32
 

� a
5
ba’

5
 = b

32
 

� b = b
32

 

� b
31

 = e 

� as 31 is a prime,o(b) = 31 

  

38) Let G be a finite abelian grp in which the number of solutions in G for x
n
=e is at most 

n for all n. PT G is cyclic 

 now let o(a) =m , o(b)=n and b is not in <a> 

 there exists an element x such that o(x) = lcm(m,n)  (see exercise on finite abelian 

grp) 

 so for lcm(m,n) there are solutions e,x,x
2
…x

[m.n]-1
 

 but a, b are also solutions 

 so a is in <x>,b is in <x> 

 

39) Double coset AxB. 

 {axb| a in A, b in B} 

40)If G is finite,PT no. of elements in AxB is o(A)o(B)/o(A ∩ xBx’) 

 imitating proof for o(AB) 

 if y in A ∩ xBx’, say y = xbx’ 



 axb* = ayxb’b* 

 so each axb* repeated A ∩ xBx’ times 

also if axb = a*xb* 

 => a*’a = xb*b’x’ which is in A ∩ xBx’ 

41)If G is finite and A is a subgrp such that all AxA have same number number of 

elements,PT gAg’ = A for all g 

|AxA| = o(A)o(A)/0(A ∩ xAx’)  

so o(A ∩ xAx’) = o(A ∩ x*Ax*’) 

� putting x = e , o(A ∩ x*Ax*’) = o(A) 

�  x*Ax*’ contains A 

but |xAx’| = |A| 

map xax’ � a 

so xAx’ = A 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Direct product 

 

External direct product: 

G = A X B. 

A,B are groups => under pointwise multiplication G is also a group 

(can be extended to any finite number of groups) 

e,f are identity elements in A,B respectively 

A’={(a,f)|a in A} 

A’ is normal in G: 

  (a,b).(a1,f).(a’,b’)=(aa1a’,f) and aa1a’ belongs to A 

  A’ is isomorphic to A: 

 (a1,f)-> a1 

 

Internal direct product 



G is internal direct product of Ni s when: 

G=N1N2N3..Nn where Ni is normal in G for all i 

Any g in G can be written in a unique way as n1n2..nn  where ni is in Ni 

Lemma:Ni ∩ Nj = {e} and if a is in Ni ,b in Nj => ab=ba 

 If x belongs to Ni ∩ Nj , then x = e.e….(x)…e…e = ee….e…x.…e 

� x = e 

look at aba’b’ . ba’b’ is in Ni as it is normal. So aba’b’ belongs to Ni 

Similarly aba’b’ belongs to Nj. So aba’b’=e So ab=ba 

 

Isomorphism 

If T is internal direct product of Ais, and G is external direct product of them 

Then T is isomorphic to G 

 (a1,a2….an)-> a1a2..an 

 This map is well defined clearly 

 It is one one because of the unique way in which each element of G can be 

expressed. 

It is clearly onto 

Herstein Pg :108 (direct products) 

Problems: 

1)If A,B are groups,PT A X B isomorphic to B X A 

 (a,b)->(b,a) 

2)G,H,I are groups.PT (G X H) X I isomorphic to G X H X I 

 ((g,h),i) -> (g,h,i) 

3)T = G1 X G2…X Gn.PT for all i there exists an onto homomorphism  h(i) from T to Gi 

    What is the kernel of h(i)? 

 h(i) : (g1,g2..gn) -> gi 

 Kernel of h(i) = {(g1,g2..gi-1,ei,gi+1,…gn)| gj in Gj} 

4)T= G X G. D={(g,g)| g in G}.PT D is isomorphic to G and normal in T iff G is abelian 

 x:(g,g)->g. 

 if D is normal in T  

� (a,b)(g,g)(a’,b’) is in D 

� aga’=bgb’ for any a,b 

� put b= e. so aga’=g 

If G is abelian 

� (a,b)(g,g)(a’,b’)=(aga’,bgb’)=(g,g) which is in D .  

5)Let G be finite abelian group.PT G is isomorphic to direct product of its sylow       

subgroups 

Now since G is abelian,every subgroup is normal.In particular all sylow 

subgroups are normal.Let O(G) = p1
a(1)

.p2
a(2)

..pn
a(n)

 and Hi denote the pi th sylow 

subgroup. 

As G is abelian,HiHj=HjHi .So HiHj is a subgroup 

And Hi∩Hj ={e} as they are different sylow subgroups 

So O(HiHj)=pia(i)pja(j) 

Like wise O(H1H2..Hn) = O(G) 

So G = H1H2..Hn 

 



If g = h1h2…hn = x1x2…xn 

Rearranging terms(Note G is abelian) we get h1x1’=(h2’x2)…(hn’xn) 

Order of h1x1’ is a power of p1 whereas RHS term’s order is product of powers of 

p2,..pn 

� hi=xi 

Hence done 

6)PT G =Zm X Zn is cyclic iff (m,n)=1 

 If (m,n)=1 then na is 1 mod m and mb is 1 mod n 

 Claim: (1,1) generates group 

 (1,0) = (1,1)
na

 

 (0,1) =(1,1)
mb

 

 (x,y)=(1,0)
x
(0,1)

y
 

  

 If (m,n)=d 

 If (x,y) generates G 

 =>(1,0)=(x,y)
k
 

 Note y cant be 0 as then elements like (1,1) cant be generated 

� k is a multiple of n say k’n 

� x(k’n) is 1 mod m 

� xnk’ = qm +1 

� d/n , d/m =>d/1  

7)Using 6 PT chinese reminder theorem(ie) (m,n)=1 and given u,v in Z there exists x in Z 

such that x = u mod m and x=v mod n 

 As (1,1) generates Zm X Zn, 

 (u’,v’) = (1,1)
x
 where u=u’ mod m (u’<m) and v=v’ mod n (v’<n) 

� x=u’ mod m 

� x= v’ mod n 

 

8)Give an ex of a group  G and normal subgroups N1,N2..Nk such that G=N1N2..Nk and  

Ni ∩ Nj = {e} for i!=j and G in not the internal direct product 

 G = { e, a, a
2
,b,b

2
,ab,a

2
b

2
} (ab=ba,a

3
=b

3
=e) 

 

N1={e,a,a
2
} N2={e,ab,a

2
b

2
} N3={e,b,b

2
} 

All are normal as G is abelian 

ab= a.e.b = e.ab.e (no unique representation) 

9)PT G is internal direct product of Nis (normal) iff G=N1..Nk and 

 Ni ∩ N1N2..Ni-1Ni+1..Nk ={e} for all i 

 Note : xi belongs to Ni for any variable x in the following 

 

 If G is internal product ,then clearly G=N1N2..Nk 

 If the second condition isn’t true  

� ni = n1n2..ni-1ni+1..nk = e.e.e….ni.e.e.e..e = n1n2…ni-1.e.ni+1….nk 

(no unique rep) 

 

If the two conditions hold , PT any g in G has a unique rep as n1n2..nk 

If n1n2..nk=w1w2…wk 



� n1’w1=n2..nk.wk’…w2’ 

� n2…nk-1(nkwk’)..w2’ = n2..nk-1(xk)wk-1’..w2’ 

�  = n2…(nk-1(xk)nk-1’)nk-1wk-1’…w2’ = n2..nk-2(yk)(xk-1)wk-2’..w2’ (as Nk is 

normal) 

� = n2…nk-3(nk-2yknk-2’)(nk-2xk-1nk-2’)(nk-2wk-2’)wk-3’..w2’ 

� =n2..nk-3(lk)(yk-1)(zk-2)wk-3’..w2’ 

� …= sksk-1..s2 

� w1’n1=s2’…sk’ 

� w1=n1 etc(due to second cond) 

10)Let G be a group .K1,K2..Kn be normal subgroups.K1∩K2..∩Kn ={e}.Vi=G/Ki 

     PT there is an isomorphism from G into V1 X V2..Vn 

 Phi:G� V1 X V2..X Vn 

        g� (gK1,gK2…gKn) 

Phi is a homomorphism  

It is one one as 

 If (gK1,gK2…gKn)=(hK1,..hKn) 

� h’g is in K1,K2..Kn 

� h’g= e 

� h=g 

11,12 – I don’t know 

13)Give an example of a finite nonabelian group G which contains a subgroup H0 != {e} 

such that H0 is contained in all subgroups H !={e} 

 G={e,a,a
2
,a

3
,b,b

2
,b

3
,ab,ba,ab

3
,ba

3
} 

 Where a
2
=b

2
,a

4
=b

4
=e and ab

3
=ba 

 (Hopefully this is a group ☺ .And H0 ={e,a
2
=b

2
}) 

 Note {e,ab,a
2
,a

3
b} is a group etc 

14)PT every group of order p
2
 is cyclic or direct product of 2 cyclic groups of order 

p(prime) 

 G of order p
2
 is abelian(proved earlier..using conjugacy of classes) 

 And any element has order 1,p or p
2
 

 If there is one element of order p
2
 then cyclic 

 Else pick an element g of order p ,let H be the subgrp generated by g 

 And pick h not in H and let K be the subgrp generated by h 

 As G is abelian,H,K are normal 

Also H ∩ K ={e}.So G = HK (the usual o(G)=o(H)o(K) ) 

Also if x=g
a
h

b
= g

c
h

d
 => g

a-c
 = h

d-b
 => a=c, b= d (unique rep) 

� internal direct product 

 

15) Let G =A X A whereA is cyclic of order p, p a prime.How many automorphisms?  

 p
2
 ? (� this is a star problem !!) 

 (e,a)� (e,a
i
) (a,e)�(a

j
,e) fixes the automorphism 

 

16) If G = K1 X K2..X Kn what is center of G? 

 Zi = center of Ki 

� center of G = Z1 X Z2…Zn 

((k1,..kn)(g1,..gn) =(g1,..gn)(k1,..kn) for all gi ) 



 

17) Describe N(g) ={ x in G | xg=gx} 

 g=k1k2..kn 

 N(g)=N(k1) X N(k2)..X N(kn) 

 (or so I think..verify) 

18) If G is a finite group and N1,..Nk are normal subgrps such that G=N1N2..Nk and 

      o(G)=o(N1)o(N2)..o(Nk), PT G is the direct product of these Ni’s 

 

 Note : xi belongs to Ni for any variable x in the following 

 by prob 9 enough to PT Ni ∩ N1N2..Ni-1Ni+1..Nk ={e} for all i 

 Since all Ni’s are normal, NiNjNk..Nm is a subgrp 

 O(G)=o(N1N2..Nk)=o(N1)o(N2..Nk)/o(N1∩ N2....Nk ) =  

            o(N1)o(N2)o(N3..Nk)/ o(N1∩ N2....Nk ) o(N2∩ N3....Nk ) and so on 

= o(N1)o(N2)o(N3)…o(Nk)/ o(N1∩ N2....Nk ) o(N2∩ N3....Nk ).. o(Nk-1∩ Nk ) 

� o(Ni∩ Ni+1....Nk )=1 for all i 

if x is in Ni∩ N1.Ni-1Ni+1...Nk   

� x = n1…ni-1ni+1..nk 

� n1’=n2…nk.x’ =n2..nk-1x’x(nk)x’=n2..nk-1x’mk (as Nk is normal) 

� and so on…= n2…ni-1(si)si+1..sk 

� n1’= e as o(N1∩ N2....Nk ) =1 

� and so x = n2…ni-1ni+1..nk and we can follow the same procedure to establish 

n2=e etc 

� x = e 

 

* No idea abt : Prob 11,12 in direct products 

* Prob 25,26 in subgrps solved in finite abelian grps chapter 

 

  

 

 

  

  


