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Abstract 

 
Advances in localization-based technologies and the increase in ubiquitous computing have 
led to a growing interest in location-based applications and services. High accuracy of the 
position of a wireless device is still a crucial requirement to be satisfied. Firstly, the rapid 
development of wireless communication technologies has affected the location accuracy of 
radio monitoring systems employed locally and globally. Secondly, the location is 
determined using standard complex computing methods and needs a relatively long 
execution time. In this paper, two geolocalization techniques, based on trigonometric and 
CORDIC computing processes, are proposed and implemented for Bluetooth-based indoor 
monitoring applications. Theoretical analysis and simulation results are investigated in terms 
of accuracy, scalability, and responsiveness. They show that the proposed techniques can 
locate a target wireless device accurately and are well suited for timing estimation. 
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1. Introduction 

Recently, mobile location estimation has attracted significant attention for various 
types of applications. These applications have stimulated research on location-finding 
techniques [1,2,3,4]. Location-finding refers to the process of obtaining the location 
information of a mobile station (MS) with respect to a set of reference positions within a 
predefined space [5]. Global Positioning System (GPS) is the most popular technology used 
in mobile and wireless networks. It is reliable and accurate in free space and line-of-sight 
(LOS) environments, but its performance deteriorates greatly in non-line-of-sight (NLOS) 
indoor and urban areas. Other techniques have been developed to work in ubiquitous and 
pervasive mobile environments. 

Network-based location-estimation techniques based on radio signals between mobile 
devices and access points (APs) have been widely adopted. Currently, given that many 
buildings are equipped with Wireless Local Area Network (WLAN) access points (shopping 
malls, museums, hospitals, airports, etc.), it may be practical to use these access points to 
determine user location in these indoor environments. However, indoor localization 
techniques are always associated with a set of challenges such as NLOS signals, obstacles, 
and the mobility of humans. 

In the literature, a variety of wireless location techniques have been studied and 
investigated [2,6,7]. Location-estimation techniques can be divided into three general 
categories: proximity, triangulation, and scene analysis. Within the triangulation category, 
location estimation of an MS is based on the measured radio signals (or RS) from its 
neighborhood APs. The representative algorithms for network-based location estimation are 
time of arrival (ToA), time difference of arrival (TDoA), and angle of arrival (AoA). These 
algorithms use location parameters received from different sources, and are based on the 
intersections of circles, hyperbolas, and lines, respectively. The ToA scheme estimates the 
MS’s location by measuring the arrival time of the radio signals coming from different 
wireless APs, while the TDoA method measures the time difference between the arriving 
radio signals. The AoA technique is utilized within the AP by observing the angles of the 
signals coming from the MS. The equations associated with network-based location-
estimation schemes are inherently nonlinear. 
Network synchronization is a crucial functionality in wireless applications where nodes are 
required to operate under a collaborative fashion [8]. Cooperative wireless networks play an 
important role in both data communication and nodes localization [9]. Cooperative location-
aware networks employ two types of measurements: (a) measuring the range to estimate the 
distance between each pair of nodes, and (b) measuring the waveform to identify the range 
and channel state associated with each link [10]. 

Bluetooth is a wireless standard operating in the 2.4-GHz ISM (industrial, scientific, and 
medical) band and is used for wireless personal area networks (WPANs). For the purpose of 
exchanging information between wireless devices, Bluetooth technology provides high 
security, low cost, low power consumption, and small product size. A unique ID is assigned 
to each Bluetooth tag, allowing users to easily locate a static or mobile target. Several 
researchers have been developing Bluetooth-based localization systems [11,12]. However, 
the signaling process is the major drawback of Bluetooth technology. 

This work considers designing new geolocation techniques for confined areas based on 
triangular and COordinate Rotation DIgital Computer (CORDIC) algorithms. The first 
contribution, named Triangular Convergence Location (TCL), is based on received signal 
strength (RSS) information and a trigonometric triangulation process applied in a wireless 
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propagation environment consisting of three APs. The second contribution, called COrdic 
Localization (COL), is based on a rotation process applied on two vectors issued from two 
APs. These two algorithms have been proposed to determine the position of an MS under 
LOS and/or NLOS environments. The MS’s position is obtained by confining the estimation 
based on the signal variations and the geometric layout between the MS and the APs in 
indoor environments.  

The rest of this paper is organized as follows: Section 2 surveys various related works on 
wireless location estimation techniques. Section 3 provides the computational details of the 
proposed geolocation techniques, TCL and COL. The simulation results and performance 
evaluation of the proposed techniques are described in Section 4. Finally, section 5 
concludes the paper and mentions future research objectives. 

2. Literature review 
Accurately locating a wireless node or device is an active research topic. The literature 

provides different solutions, namely RSS, ToA, EToA, AoA, TDoA, and fingerprinting 
(Fig. 1). The main process involved in positioning is based on coordination and 
communication between wireless devices and existing infrastructure (Table 1). 

ToA is one of the most basic triangulation methods used for 2D position measurement 
[13,14]. ToA enables locating a node by calculating the time of arrival of the signal from the 
node to three base stations (BSs). The propagation time can be directly translated into 
distance, based on the known signal propagation speed. Therefore, to determine the time 
difference between the transmitter and receiver, synchronizing the wireless device with the 
locating reference stations is required. The main advantage of ToA is its immunity to 
multipath effects. 

EToA is an extended version of ToA designed by simplifying the recursive and intensive 
computing of the localization process [15]. In EToA, the computing process is only 
performed by the MS with a view to improving handover latency. EoTA is an efficient 
technique that calculates the coordinates of the mobile station based on basic vector 
functions (shift, addition, and rotation). EToA can directly authenticate and associate with 
the nearest base station without a scanning phase, which represents the major part of the 
handover latency. It replaces the scanning phase with a localization mechanism that is 
completed within a fixed number of iterations. The major advantages of EToA are low 
computational cost and simplicity of implementation. 

In [16], the authors proposed a ToA-based iterative geolocation algorithm alternating 
between two steps: probability density function (PDF) estimation and parameter estimation 
(PE). The first step approximates the PDF of the exact measurement error via adaptive kernel 
density estimation. The second step resolves a position estimate from the approximate log-
likelihood function via a quasi-Newton method. This algorithm performs similarly to 
maximum likelihood estimator (MLE), the geolocation accuracy of which is comparable to 
that of other studies found in the literature. However, this accuracy is achieved at a higher 
computational cost. 

The study in [17] used ToA measurements based on cooperative and robust localization in 
mixed LOS and NLOS conditions. It proposed an iterative localization approach to reduce 
the impact of NLOS propagations. This approach mitigates the impacts of scattering, 
diffraction, and reflection caused by the presence of multiple obstacles between the 
transmitter and receiver nodes. It uses the least-median deviation to estimate the initial 
positions of the sensor nodes. Moreover, it improves the convergence likelihood and 
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estimation accuracy of the covariance matrix of the measured noise. 

 
(a) ToA  (b) TDoA (c) AoA  (d) RSSI 

Fig. 1. Basic architecture of geo-localization techniques. 

DOLPHIN (Distributed Object Locating System for Physical-space Internetworking) [18] 
is an ultrasonic peer-to-peer positioning system using both RF and ultrasonic signals. This 
system focuses on innovative positioning hardware and techniques to determine positions 
inside buildings or in the underground. DOLPHIN is easy to configure and provides a high 
degree of accuracy in three dimensions. It allows accuracy of 2 cm on a test bed of 3 m in 
size. 

Cricket [19] is an indoor location system which utilizes RF and ultrasound based on static 
transmitters and mobile receivers. The system has been successfully implemented to obtain 
full 3D real-time coordinates of a mobile device based on a purpose tailored Matlab program. 
Cricket allows easy flexibility and programmability of devices as a beacon or as a listener. 
However, cricket suffers from multipath signals which requires high redundancy of range 
measurements as well as speed of ultrasound which is highly correlated to the temperature. A 
later version, called Cricket Compass [20], is designed to determine orientation as well as 
position of mobile devices. 

The Active Bat [21] is an ultrasonic positioning system based on pulse transmission 
between roaming Active Bat tags and fixed ultrasonic receivers mounted on the ceiling. The 
active Bat computes the tag’s coordinates and provides direction information by performing 
multilateration based on the time-of-flight of the ultrasonic pulse between them. This 
positioning system allows an accuracy of 9 cm within a range of 50 m. However, Active Bat 
employs centralized system architecture and requires a large number of precisely positioned 
ultrasonic receivers. 

The RSS approach uses the strength of the received transmission to estimate the distance 
between nodes. This is performed by calculating the attenuation in the propagation path. The 
ratio of the transmitted to the received power is used to estimate the position of the node. 
Indoor location tracking using RSS [22,23] employs three or more nodes to perform fine-
grained device tracking, similar to ToA [24]. Using the method of ranging, where the 
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distance between two nodes is predefined, the coordinates of the device are computed using 
lateration or angulation approaches. 

 
Table 1. Comparison of various indoor localization techniques. 

Soluti
on 

Meas
urem
ent  

Accur
acy 

Covera
ge 

LOS 
/ 
NL
OS 

Multi
path 
effect 

Cost Notes 

ToA [13] Time of 
arrival  High 

Good / 
Multipath 

issues 
LOS Yes High 

(1) Predefining 
antenna location is 
necessary. (2) Time 
synchronization is 
required. 

Extended 
ToA [15] 

Time of 
arrival  High Good Both Yes Medium 

(1) Geolocation 
replaces scanning 
phase for reduced 
handoff latency. (2) 
Hardware 
implementation is 
undertaken.  

Iterative-
based 
ToA [17] 

Time of 
arrival  High Good LOS Yes High 

(1) Iterative 
geolocation process 
based on two steps: 
PDF and PE. (2) 
Adaptive kernel 
density estimation 
and quasi-Newton 
method result in a 
higher computational 
cost. 

RSS-
based 
[22,23] 

RSS High Good Both Yes Medium 

(1) RSS-based indoor 
localization with 
PDR tracking to 
compensate NLOS 
error. (2) Location 
based on least 
squares lateration 
algorithm. 

TDoA 
[26] 

Time 
differen
ce of 
arrival  

High 
Good / 

Multipath 
issues 

LOS Yes High 

(1) Predefining 
antenna location is 
necessary (2) Time 
synchronization is 
required. 

AoA [28] 
Angle 
of 
arrival  

Medium 
Good / 

Multipath 
issues 

LOS Yes High 

(1) Accuracy depends 
on the antenna’s 
angular properties. 
(2) Predefining 
antenna location is 
necessary. 
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Finger-
printing 
[30, 31] 

RSS  High Good Both No Medium 

(1) Predefining 
antenna location is 
not necessary (2) 
Heavy calibration is 
required. 

Proximity 
[35] 

Signal 
type  

Low to 
high Good Both No Low 

(1) Accuracy is 
approximated to the 
cell boundaries. (2) 
Additional antennae 
improve accuracy but 
increase cost.  

WSNs-
based 
[36,37] 

Signal 
type 

Medium 
to High 

Good / 
Multipath 

issues 
Both Yes High 

(1) Strongly depends 
on the technology 
used and the 
localization 
algorithm. (2) Energy 
efficiency is low. 

 
Extensive researches for indoor positioning system (IPS) has focused on the machine 

learning approaches such as Extreme Learning Machine (ELM) [25]. In this context, [25] 
proposed the ELM in order to overcome the shortcomings faced by the traditional 
positioning methods and provide higher positioning accuracy and robustness. The major 
contribution of that work consists of a Gaussian filter combined with ELM. This positioning 
system has been tested in a real experimental environment and provided an accuracy of 
70 cm within an area of 11 m x 6 m. 

TDoA utilizes an estimation method involving the downlink positioning reference signal 
(PRS) of long term evolution (LTE) [26] technology. As conventional correlation 
approaches are unable to calculate the time difference when the sampling interval is shorter 
than a second, this phase is used to estimate the TDoA by constructing a one-to-one 
relationship table between the time delay and phase. Simulation-based results along with 
theoretical analysis support TDoA's ability to accurately estimate the time difference within 
one sampling interval. Additionally, TDoA satisfies LTE requirements for location-
awareness services. 

In [27], the authors proposed a TDOA-based indoor visible light positioning (VLP) system 
using cross correlation. It uses virtual local oscillator for cross correlation in order to reduce 
the hardware complexity. It applies cubic spline interpolation to reduce the sampling rate and 
enhance the time-resolution of cross correlation. As result, this system provides an average 
accuracy of 9.2 cm in an area of 1.2m x 1.2m.  

The Angle of Arrival (AoA) technique is based on the bearing measurement or the 
direction of arrival measurement. This technique calculates the angle at which the signal 
arrives from the BS to the unknown wireless node [28]. In AoA measurement, at least two 
BSs are needed to calculate the position. AoA's accuracy depends on the directionality of the 
antenna and is sensitive to the presence of shadowing and multipath effects in the 
measurement environment. AoA does not provide high localization performance unless large 
antenna arrays are used [29]. 

For indoor positioning, the authors of [30,31] proposed localization approaches based on 
fingerprinting, in which fingerprint matching is employed to determine wireless device 
location. A fingerprint consists of the features of the scene at certain locations of interest that 
can be used to form a fingerprint database [32]. This enables determining the location of a 
particular object by fingerprint matching from the database. Fingerprint-based indoor 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 3, March 2020                       1343 

localization approaches are carried out in software and do not require specialized hardware. 
In addition, such approaches do not require time synchronization. Recently, support vector 
classification (SVC) involving multiple classes and support vector regression (SVR) have 
been successfully utilized for location fingerprinting [33,34]. 

Proximity-based methods can only provide an approximate position of a device based on 
link or connection information [35]. The target location is approximated to the position of 
the access point directly connected with the user. When more than one antenna detects the 
same mobile target, the location is defined by the antenna receiving the strongest signal. This 
method is relatively simple to implement. It can identify which cell site the device is using at 
a given time [36]. This type of localization method is mostly used in GSM and has an 
accuracy range of 50–200 m. It has high variance, which sometimes might not satisfy the 
requirements of the positioning application. 

Recently, wireless sensors have been used for a variety of new monitoring and control 
applications, especially target positioning and tracking [36]. Communication and 
measurement between multiple pairs of sensors is required to achieve localization for all 
sensors. Most sensor-network-based localization techniques use RSS measurements [37,38]. 
Four sensor-based localization configurations exist: (1) static sensor nodes and static anchor 
nodes [39], (2) mobile sensor nodes and static anchor nodes [40], (3) static sensor nodes and 
mobile anchor nodes [41], and (4) mobile sensor nodes and mobile anchor nodes [42]. The 
study in [43] surveys recent localization techniques considering wireless sensor networks 
and their fundamental limits, challenges, and applications. 

Recently, cooperative techniques have been introduced for localization and navigation to 
improve the accuracy and reliability of position information. Information exchange and 
cooperation in the network is crucial for the design of location-aware networks. To perform 
these tasks, nodes are required to operate under a common clock without being affected by 
various imperfections caused by both internal and environmental issues. In this context, [9] 
explored cooperative network localization and navigation in terms of theoretical foundation, 
technologies and spatiotemporal cooperative algorithms. Later, [10] developed an 
experimentation methodology suited for localization in cooperative wireless networks. It 
established a database based on range and waveform measurements using cooperative 
wireless channels. Then, evaluation of network localization algorithms has been performed 
under various LOS and NLOS conditions. Recently, [8] analyzed the asymptotic 
synchronization performance of large-scale networks for both absolute and relative 
synchronization. [8] used Cramer-Rao bound, cooperative dilution intensity (CDI) and 
relative CDI concepts in order to characterize interaction between agents and evaluate the 
network synchronization in both dense and extended networks. 

3. Proposed solutions 
The proposed solutions locate a mobile device in an indoor environment, enabling the 

support of tracking applications. It is based on computing the distance between an AP and 
the mobile device and then employing a geometrical approach for localization. The position 
of the mobile device is determined using two RF positioning techniques. In the first 
technique, the device is located by the intersection point of three circles. Each circle has a 
radius equal to the distance between the mobile device and the AP under consideration, as 
illustrated in Fig. 3. In the second technique, the position of the mobile device is determined 
by the intersection of two vectors rotated using the CORDIC algorithm. 
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3.1 System model 
The mobile geolocation system considered in this study is based on four major concepts: 

• The indoor environment is equipped with multiple APs organized in a triangular 
structure/architecture, i.e., at any time, a mobile station can be located by two or 
three APs. 

• Each AP is capable of detecting the mobile station’s RSSI and measuring the 
corresponding/associated distance. 

• A centralized geolocation system is designed to determine the relative position of the 
mobile device. A positioning algorithm is integrated to estimate the position of the 
mobile device by computing metrics from the APs. 

• Additional iterations can easily be built into the positioning algorithm for more 
accuracy as well as to track the mobile device. 

3.2 Signal transmission model 
The path-loss model allows calculating the distance between a mobile device and an AP of 

known location. Various path-loss models exist. Generally, path-loss models use trilateration 
to determine the location of the mobile device [44,45]. However, measurements from indoor 
radio communication channels [46] have shown the presence of outliers that result in heavy-
tailed measurement noise. Therefore, Bluetooth-based transmission in indoor environments 
can be affected by noise, multipath and signal attenuation. Therefore, NLOS factors should 
be considered by the proposed algorithms to provide accurate localization in realistic 
conditions. 

3.3 Triangular Convergence Localization – TCL 
In geometrical triangulation, researchers assume that the measured noise is additive and 

the NLOS error is a large positive bias where the measured ranges are greater than the 
acceptable values [2]. These techniques require three wireless links to be established 
simultaneously with three access points. Therefore, they assume that the MS is located in the 
overlapping region (ABC) of the transmission ranges of the three access points (Fig. 2). 
However, (a) the MS may be elsewhere in the triangle defined by three access points, and (b) 
in some cases, no overlapping area may exist [47,48]. In this section, we propose 
improvements, including a geometric localization process able to coordinate with the MS 
with low computational cost based on the locations of three access points. 

The TCL technique is based on the network architecture given in Fig. 3, containing three 
access points and an MS. The MS is located inside the triangle defined by the three access 
points (AP1, AP2, AP3) and coordinated by the distance dj (j = 1,2,3) far from each access 
point APj. The MS position defines three triangles: AP1MSAP2, AP2MSAP3, and AP3MSAP1. 
TCL focuses on them successively in order to reduce the localization field of the MS. TCL is 
an iterative geometric process, which consists of reducing the localization field until it 
converges on the MS location. 
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Fig. 2. Three neighboring APs and the associated overlapping area. 

The main assumptions of TCL are as follows: 
• AP coordinates are predefined 
• D is the distance between two APs 
• d1 + d2 > D,   d2 + d3 > D, and   d3 + d1 > D 

where: 

A0, B0, and C0 are the orthogonal projections of the MS on the sides (AP1, AP2), (AP2, 
AP3), and (AP3, AP1), respectively. 

d1, d2, and d3 are the distances separating the MS from AP1, AP2, and AP3, respectively. 
The MS is able to measure the distance dj based on the power received from APj. 

θ12 is the geometrical angle (MS − AP1, AP1 − AP2)� . θ13, θ21, θ23, θ31, and θ32 are defined 
similarly. 

 
TCL focuses primarily on the triangle AP1MSAP2. The same tests will be repeated for the 

triangles mentioned above (AP2MSAP3 and AP3MSAP1). Based on the above assumptions 
and Fig. 3, we can propose the following approach: 

r1 = d1cosθ12 
d2

2 = (D − r1)2 + (d1
2 − r12) ⟹ 

d2
2 = (D − d1cosθ12)2 + (d1

2 − d1cosθ12
2) ⟹ 

d2
2 = D2 + d1

2 − 2Dd1cosθ12 = D2 + d1
2 − 2Dr1 ⟹ 

r1 =
D2 + d1

2 − d2
2

2D
 (1) 

We define here the first factor q1 as follows: 

q1 =
r1
D

=
D2 + d1

2 − d2
2

2D2  (2) 

The range of parameter q1 can determine the shape of the triangle AP1MSAP2 (Table 2). 

 

AP3 

AP1 

AP2 A 

B 

C 
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Fig. 3. Network architecture and geometric representation of triangles for MS positioning. 

Table 2. Different forms of the triangle (AP1MSAP2). 

0 < q1 < 1 q1 > 1 ⇔ d1 > d2 q1 < 0 ⇔ d1 < d2 

   
We propose to narrow the size of the triangle containing the MS location. In this context, 

we orthogonally project the MS location on the (AP1, AP2), (AP2, AP3), and (AP3 AP1) sides, 
which results in triangles A0, B0, and C0 respectively. Consequently, the triangle (A0, B0, C0) 
is smaller than (AP1, AP2, AP3). In other terms, we have just created three new virtual APs, 
placed at A0, B0, and C0. Based on [49], the coordinates (x12, y12) of the point A0 are given 
as follows: 

x12 = q1X2 + (1 − q1)X1  

y12 = q1Y2 + (1 − q1)Y1  

d3 

d2 d1 

AP3 

AP2 AP1 

MS 

B0 (x23,y23) 

A0 (x12,y12) 

C0 (x13,y13) 

D 

θ
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θ
13

 
θ
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θ
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θ
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 θ
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Where (X1, Y1) and (X2, Y2) are the coordinates of AP1 and AP2, respectively. 

Let r2 be the distance between AP2 and B0 and r3 be the distance between AP3 and C0. 
As described previously, we can obtain the coordinates of the points B0 and C0 as follows: 
 

x23 = q2X3 + (1 − q2)X2  

y23 = q2Y3 + (1 − q2)Y2  

x31 = q3X1 + (1 − q3)X3  

y31 = q3Y1 + (1 − q3)Y3  

Where: 

q2 =
r2
D

=
D2 + d2

2 − d3
2

2D2  q3 =
r3
D

=
D2 + d3

2 − d1
2

2D2  

Using the Pythagorean Theorem, we can calculate the distances between the MS and the new 
points A0, B0, and C0: 

d(MS, A0) = �d1
2 − r12 d(MS, B0) = �d2

2 − r22 d(MS, C0) = �d3
2 − r32 (3) 

Now, the MS exists inside a smaller triangle defined by three new virtual APs located at 
A0, B0, and C0. As a result, we return to the first step of the computational process for a new 
iteration using the distances between the MS and each access point as well as the location of 
those APs. During the second iteration, the orthogonal projections of the MS on the (A0B0), 
(B0C0), and (C0A0) sides lead to three new points, A1, B1, and C1 (i.e., their coordinates) as 
well as their distances from the MS. Moreover, the area of A1B1C1 is smaller than that of 
A0B0C0. 

At the ith iteration, the MS will be located in a triangle AiBiCi that is smaller than Ai-1Bi-

1Ci-1. The triangle AiBiCi allows the designing of the next triangle Ai+1Bi+1Ci+1. After a few 
iterations, the coordinates of the three vertices of the triangle (A, B, and C) converge to the 
actual MS coordinates. At this stage, the triangle AconvBconvCconv with vertices Aconv, Bconv, 
and Cconv is considered a point. It is therefore possible to write the following: 

xAconv ≈ xBconv ≈ xCconv                and yAconv ≈ yBconv ≈ yCconv 

We suppose that the MS coordinates can be obtained by the average, as given in Eq. 4. The 
division by 3 assumes that the MS exists at the center of gravity of the triangle 
AconvBconvCconv. 

xMS =
xAconv + xBconv + xCconv

3
 ,            yMS =

yAconv + yBconv + yCconv
3

 (4) 

3.4 CORDIC-based localization (COL) 
Location-based services are the most significant characteristic of 3G/4G wireless 

communication systems, which enables support for several new types of applications. The 
ToA localization technique is most frequently used for MS position estimation. This 
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technique uses standard methods based on complex computing processes that are generally 
implemented with software tools [1,50]. The main challenge of ToA resides in the power 
limitations of MSes, which requires optimization combined with the ability to be used in an 
indoor environment. 

To overcome these limitations, we propose a CORDIC approach based on our previous 
contributions [47,48,16] considering two technical aspects. Firstly, the proposal is expected 
to simplify the intensive and recursive computation of the localization process by reducing 
the execution time, cost, and power consumption. Secondly, a suitable topological 
architecture including only two APs has been considered to adapt to indoor environment 
localization. 

Fig. 4 represents the basic architecture of the network topology considered for the COL 
algorithm. We assume that the coordinates (Xj, Yj) (j = 1, 2) of two APs are predefined. For 
signal propagation, we consider two path-loss models: free space and noisy. Using these 
models, dj (j = 1, 2) values are calculated based on the measured received signal strength 
indicator (RSSI), as outlined in Eq. 5. These parameters are illustrated in a local coordinate 
system, as shown in Fig. 4. 

𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃.𝐺𝐺𝐺𝐺.𝐺𝐺𝐺𝐺. [ λ 4 πd� ]2 (5) 

Consider the following: 

• (X1, Y1) = (0, 0) and (X2, Y2) = (D, 0) 
• 𝛉𝛉 = (AP1 −MS, AP1 − AP2)�  
• 𝛃𝛃 = (AP2 − MS, AP2 − AP1)�  
• D is the distance between AP1 and AP2. 
• d is obtained in the convergence state (i.e., when MS location is identified). 

 
Fig. 4. Basic network architecture of COL deployment. 

 

The question now is how do we calculate the coordinates of the MS from these two angles 
and the parameters mentioned above? 

θ β 

D 

d1 d2 

MS 

AP1 AP2 

d 
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The proposed technique is based on using two vectors V��⃗ 1 and V��⃗ 2 whose origins are located 
at the positions of the APs and ends on the circle ζi (APi, di). The principle of this technique 
is rotating these two vectors V��⃗ 1 and V��⃗ 2until they cross at a focal point, denoted by (xc, yc) 
(Fig. 5). 

The initial positions (x1,y1) and (x2,y2) of the ends of the vectors V��⃗ 1 and V��⃗ 2 are (d1,0) and 
(D - d2,0), respectively. The initial and final positions of the first vector V��⃗ 1 are the following, 
respectively: 

V1���⃗ �x1y1� = �d10 � and  �x1
n

y1n
� = �xcyc�. 

 
Fig. 5. Localization principle of COL. 

This vector undergoes a global rotation with an angle θ, which we propose here to study 
its complete evolution. Elementary rotations with angles θi were performed on the vector V1���⃗  
to reach the final position and therefore calculate the MS position with a given accuracy. To 
simplify the computing complexity, an iterative process has been developed by following 
these steps: 

1. Applying CORDIC process to θ and β variations, 

2. Checking/testing vector convergence condition, 

3. Optimizing for more accuracy, 

4. Computing MS coordinates. 

Applying CORDIC process to θ and β variations 

From Fig. 5(b), the angles θ and β can be defined using Eq. 6: 

θ = sin−1(𝑑𝑑11 𝑑𝑑1� ), β = sin−1(𝑑𝑑22 𝑑𝑑2� ) (6) 

where θ and β are managed by the CORDIC process within the rotation interval 
[−𝜋𝜋 2⁄ ,𝜋𝜋 2⁄ ]. The convergence conditions on vectors V��⃗ 1 and V��⃗ 2 must be checked and verified 
constantly. Two conditions are required to satisfy vector convergence (Eqs. 7 and 8). Only 
one condition is useful but not sufficient for the convergence state. 

AP1 
(0,0) 

AP2 
(D,0) 

d1 d2 d22 
d11 

θ β 

MS (xc, yc) 

AP1 
(0,0) 

AP2 
(D,0) 

d
1
 

d
2
 

V��⃗ 2 V�⃗ 1 

(a) 

(b) 
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𝑑𝑑11 = 𝑑𝑑22   𝑑𝑑1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑑𝑑2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (7) 

𝑑𝑑1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑑𝑑2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐷𝐷 (8) 

If the MS is located in area 1, defined by θ∈[0, π/2], θ and β are assigned the middle 
value (θ = β = π/4). Then, θ and β are adjusted according to three different cases of the 
vectors V��⃗ 1 and V��⃗ 2 (Table 3). In case (a), θ and β are increased by a certain fraction (ε) of 
their values. However, in cases (b) or (c), only one angle θ or β has to be adjusted by 
decreasing its value by a certain fraction (ε). This fraction decreases with the iteration 
number. 

Table 3. Three cases for adjusting θ and β. 
Case (a) Case (b) Case (c) 

   

D < d1cosθ + d2cosβ  
θ = θ + θ*ε, β = β + β*ε 

ε = f(1/iteration) 

D > d1cosθ + d2cosβ & d11 > 
d22 

 θ = θ – θ*ε 

D > d1cosθ + d2cosβ & d22 > 
d11 

 β = β – β*ε 

Checking/testing vector convergence condition 

However, the equalities in Eqs. 7 and 8 represent a strict requirement/condition that may 
not be satisfied due to the estimation error when measuring d1 and d2 from signal strength. 
Therefore, these conditions should be satisfied within a certain range that reflects the 
accuracy level with which we are computing the convergence conditions. In other terms, the 
convergence conditions are now given by Eqs. 9 and 10, using a predefined accuracy level α. 

𝛼𝛼 ≤ 𝑑𝑑1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑑𝑑2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� ≤ 1 𝛼𝛼⁄  

Where α is the accuracy level. 
(9) 

𝛼𝛼 ≤ (𝑑𝑑1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑑𝑑2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
𝐷𝐷� ≤ 1 𝛼𝛼⁄  (10) 

Optimizing for more accuracy 

Within the optimization phase, θ and β are adjusted in order to improve their localization 
accuracy. Once the convergence conditions are justified/verified, additional iterations are 
performed with finer variations to obtain coordinates close to the ideal case, as defined in 
Eqs. 7 and 8. The optimization process continues adjusting θ and β while the convergence 
conditions are limited within a narrow interval. 
Computing MS coordinates 

The optimization phase outlines the most suitable values of θ and β that represent the most 
accurate values of the convergence conditions of vectors V��⃗ 1 and V��⃗ 2. As a result, the mobile 

V�⃗ 1 V�⃗ 2 

D 

Area 1 

Area 2 

θ β 

V�⃗ 1 V�⃗ 2 
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Area 1 

Area 2 

d22 
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θ β 
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station coordinates are expressed by Eqs. 11 and 12, based on the representation in Fig. 4. 

𝑋𝑋𝑀𝑀𝑀𝑀 = 𝑑𝑑1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≈ 𝑑𝑑2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (11) 

𝑌𝑌𝑀𝑀𝑀𝑀 = 𝑑𝑑1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≈ 𝑑𝑑2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (12) 

 
Fig. 6. COL flowchart. 

Fig. 6 shows the COL localization flowchart, primarily consisting of processes and 
conditions responsible for computing MS coordinates. COL constitutes an efficient 
geolocation method able to estimate MS coordinates based on fundamental vector rotation 
functions in a 2D space. 

4. Simulation results and performance evaluation 
In an effort to design two new localization techniques, this framework was thoroughly 

focused on the utilization and employment of Matlab-based platform coding, for a 
sophisticated simulation of an MS and two or three APs. Matlab was selected as the most 
suitable tool for the design of the TCL and COL algorithms, since they are mainly based on 
computational algorithms ranging from elementary functions to more sophisticated ones. 
Matlab is a high-level matrix/array language with control flow statements, functions, data 
structures, input/output, and object-oriented programming features and is fit for our purpose. 

4.1 Performance metrics 
The performance criteria associated with localization systems can be classified into the 

following areas: 
Accuracy or location estimation error (LEE). This measures the Euclidean distance 

between the real and estimated positions of the MS (13). 

APs identification & locations 
RSSIs measurements & di computing 

CORDIC process 
(θ , β) 

Convergence conditions? 
Eqs 9 & 10 

Optimization process? 
(θ,β) adjusted  accuracy improved 

MS coordinates computing 
𝑋𝑋𝑀𝑀𝑀𝑀 = 𝑑𝑑1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑌𝑌𝑀𝑀𝑀𝑀 = 𝑑𝑑1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
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LEE = �(𝑋𝑋𝑋𝑋 − 𝑋𝑋𝑋𝑋)2 + (𝑌𝑌𝑌𝑌 − 𝑌𝑌𝑌𝑌)2    r: real , e: estimated (13) 

Responsiveness. Responsiveness is how fast the geolocation technique/system is able to 
determine the location of a certain target (or to update the location of a moving target). In our 
results, responsiveness corresponds to the number of iterations useful for localization. It 
reflects the amount of time in which the location is determined. 

Scalability. Scalability measures the performance of the location system/technique when it 
operates with a larger number of location requests and coverage. In this regard, several 
simulations have been performed with various coverage areas.  

Adaptiveness. Adaptiveness is the ability of the localization system to cope with 
environmental changes. Better adaptiveness reduces the need for repeated calibration. 

Cost and complexity. Cost may include extra infrastructure, additional bandwidth, lifetime, 
weight, energy, and nature of deployed technology. Complexity is related to the signal 
processing and algorithms used to estimate the location. 

In this study, performance is measured in terms of accuracy, responsiveness, and 
scalability. 

4.2 Simulation parameters 
In this section, we illustrate the validity of the proposed methods for wireless device 

localization in indoor environment using Bluetooth technology. The simulation parameters 
employed to evaluate the performance of our algorithms are shown in Table 4. 

 
Table 4. Parameters of the simulation system. 

Mac / phy  Bluetooth 
Channel  Wireless channel 
Propagation model Free space and noisy models 
Area (m2) 4, 8, 16, 20, 30, 36, 42, 49, 64. 
Number of nodes  2 / 3 APs and 1 MS 

4.3 Comparative study 
A comparative study is conducted in this section between different localization approaches 

found in the literature. The major metrics featuring localization techniques reside on: 
complexity (cost), accuracy and responsiveness. These metrics allow evaluating the 
localization performances and outlining the targeted applications. 

Complexity of a system can be attributed to hardware, software or computational 
processes. The key idea of “mathematical programming” based approaches is to formulate 
the position estimation problem as a constraint optimization problem, which can be solved 
by iterative (e.g. [16-21, 32, 36, 42]) or direct methods (e.g., [23, 25, 28, 31]). Direct 
methods are generally based on factorization of the matrix where this operation is absent in 
iterative methods. Such operations can accomplish/perform execution efficiency on 
advanced computer architectures, but are the major factor for high computational complexity 
(Table 5). However, iterative methods are usually simpler to implement than direct methods 
since no full factorization has to be stored. 

Furthermore, the basic operations in our proposed iterative method relies on an effective 
combination between (a) simplifying the trigonometric operators and (b) optimizing the 
iterative process. This combination implies low computational complexity and reduces the 
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total solution time for the positioning system. The recent iterative localization techniques 
[16-21, 32, 36, 42] are based on very complex computational aspect in terms of operators, 
matrices, long iterative processes and components (broadband ultrasound, filters, correlators 
etc…) which impact their implementation cost (Table 5). 

 

Table 5. Comparison of indoor localization techniques. 

Wireless 
positioning system 

Localization 
technique 

Range (m) 
Area (m2) 

Accuracy (cm) Computational 
/ Hardware 
Complexity Existing 

𝐓𝐓𝐓𝐓𝐓𝐓
𝐂𝐂𝐂𝐂𝐂𝐂

 

Dolphin [18] ToA, trilateration 3 m 2  0.18 10-12 

4.5 Medium 

Cricket [19][20] ToA, trilateration 10 m 2  0.76 10-12 

9.4 Medium 

TDoA-based VLP 
[27] 

TDoA, hyperbolic 
trilateration 1.44 m2 9.2  0.03 10-12 

1.7 Medium 

ELM-Gauss 
filtering [25] 

RSSI - Extreme 
Learning Machine 66 m2 70  0.52 10-12 

6.7 High 

PSO-Gauss 
filtering [25] 

RSSI - Extreme 
Learning Machine 66 m2 80.2  0.52 10-12 

6.7 High 

Geometric [47] RSS, 
triangulation 66 m2 6.14  0.52 10-12 

6.7 Low 

TCL – proposed RSS, 
triangulation variable -- -- Low 

COL – proposed RSS, bilateration variable -- -- Low 
 
Accuracy is the key factor to describe how close the estimation from a positioning 

technique is to match the actual position of devices for indoor areas. It is usually determined 
by the location estimation error (13). Table 5 shows the results of comparison between the 
state of the art and the proposed approaches TCL and COL. Table 4 compares Dolphin [18], 
Cricket [19,20], TDoA-based VLP [27], ELM-Gauss filtering [25], PSO-Gauss filtering [25] 
and Geometric localization [47] approaches with the proposed approaches. To do that, we 
used unified conditions under which the simulations have been performed for both existing 
and proposed algorithms. In other terms, the accuracy of our proposed algorithms are 
extracted/collected within the same condition under which each existing algorithm has been 
applied. 

It is very clear from this table that our approaches TCL and COL performs well not only 
in terms of accuracy but as well in terms of computational complexity. It also reflects that 
the accuracy requirements depend on the scale of the transmission; hence, it will impact the 
type of application supported by the corresponding localization technique. Furthermore, TCL 
and COL perform localization process within a reduced delay which allows to support real-
time tracking applications (section 4.4 - responsiveness). 

4.4 Performance evaluation and analysis 
Two different localization scenarios are created and analyzed for the proposed localization 

techniques COL and TCL. In the first scenario, a grid of stationary APs in an indoor 
environment is maintained and an MS is randomly placed in an area with variable size. In the 
second scenario, measurements are generated by adding white Gaussian noise introducing a 
certain deviation in the range domain from the true values. For TCL, simulation is performed 
with three stationary APs. However, only two APs are sufficient for simulating COL. The 
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performance evaluation compares these algorithms in terms of accuracy, scalability, and 
responsiveness. 

Accuracy 

The LEE represents the Euclidian distance between the estimated and real target locations. 
The MS locations have been selected randomly in an area defined by the APs' positions. This 
area forms a triangle ABC for TCL and a square for COL. Figs. 7 and 8 illustrate the 
performance of the TCL and COL algorithms in terms of localization accuracy for different 
channel models. 

In a free channel model, TCL provides a very high accuracy level of around 10–14 m. TCL 
is also capable of determining the position of any MS located outside the triangle ABC. 
However, the accuracy level increases significantly when moving away from the triangle 
ABC, as shown in Fig. 9. On the other hand, COL provides an acceptable accuracy level, 
averaging at 10–2 m based on several scenarios. This result is very interesting since in a 
Bluetooth environment with a range 10 m, the positioning error is around 10 cm, which is 
considered a reasonable error for various types of Bluetooth-based applications. 

In the noisy channel model, the TCL and COL algorithms provide similar performances 
with LEE slightly lower than 10 cm (Fig. 8). 

 

  
Fig. 7. Localization accuracy: LEE for free space 

channel. 
Fig. 8. Localization accuracy: LEE for noisy 

channel. 
 

 
Fig. 9. LEE for MS located outside the triangle ABC (LEE in meter for TCL). 

These types of results have been averaged over N random MS positions (N=30), and then 
re-extracted for various coverage area sizes in order to provide more credibility to both 
algorithms. These results provide, in the following section, the scalability effectiveness of 
TCL and COL. 
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Scalability 

In order to measure the scalability performance of the proposed localization techniques, 
several simulations have been performed with various coverage areas. The coverage area is 
determined by the APs locations in a rectangular form. For the first scenario, where the path-
loss model is deployed in free space, Fig. 10(a) shows that TCL is capable of identifying the 
location of the MS with a negligible LEE of around 10–15 m. As expected, LEE increases 
slightly with coverage area. For the second scenario, the LEE is around 10-2 m and increases 
almost linearly with the coverage area (Fig. 10(b)). 

 

  
Fig. 10. TCL: location estimation error vs. coverage in (a) noiseless and (b) noisy environments. 

Similar simulations have been performed with COL, where Figs. 11(a) and 11(b) show 
the LEE obtained for several coverage areas. In Fig. 11(a), the COL technique has an LEE of 
around 10-2 m in the free space path-loss model. COL maintains almost the same accuracy 
level in the noisy channel model (Fig. 11(b)) compared to the free space. This result proves 
that COL is less sensitive to noise and multipath compared to TCL. Moreover, similar 
variations in LEE for the same area is a common feature of TCL and COL (Figs. 10 and 11). 

 

  
Fig. 11. COL: location estimation error vs. coverage for (a) noiseless and (b) noisy environments. 

Responsiveness 

Fig. 12 shows how coordinates (X,Y) of the triangle vertices (A,B,C) converge on the MS 
coordinates. It shows the number of iterations required to determine the MS position. By 
running TCL and based on several simulations performed for random positions of the MS, 
around 10 iterations are required to determine the coordinates of the MS. This result reflects 
a high responsiveness level of the TCL algorithm, especially when operating on fast 
hardware. It is an indication of the usefulness of TCL for tracking applications, where the 
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localization process must recompute and update the MS position within a restricted period. 
In a noisy channel, the responsiveness is almost similar, and the number of iterations is 
around 11 (Fig. 13). 

  

 
Fig. 12. Number of iterations useful for locating the MS (TCL noiseless). 

  
Fig. 13. Number of iterations useful for locating the MS (TCL noisy). 

Fig. 14 shows the number of iterations useful to determine MS position based on COL 
technique. The number of iterations is mainly affected by (a) the predefined accuracy level 
and (b) the elementary angle value used for rotating vectors V��⃗ 1  and V��⃗ 2  during the 
optimization phase. The responsiveness is slightly lower with COL compared to TCL, which 
requires 7 iterations for MS positioning. This result has been averaged based on 30 different 
scenarios. Fig. 14 outlines the number of iterations and the real and estimated (x,y) 
coordinates of the MS for an accuracy level of α = 0.99. COL was also tested in a noisy 
channel, and the average number of iterations increased by 1. 
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Fig. 14. Number of iterations useful for locating the MS (COL noiseless). 

5. Conclusion 
This paper covers different technological solutions for wireless indoor positioning and 

outlines several trade-offs amongst them. It proposed COL and TCL, which are recent 
advances in wireless indoor localization. COL and TCL are based on 2D geometric 
approaches consisting of trigonometric computing models. The performance of both 
techniques was evaluated. Accuracy, responsiveness, and scalability were considered for 
comparison. TCL displayed better performance particularly in terms of accuracy and 
responsiveness. In addition, the implementation simplicity and low computational overhead 
are major advantages. 

In future work, two alternatives will be investigated. (1) Propagation channel modeling 
already realized in [51] will be considered in order to improve localization for line of sight 
(LOS) and non-line of sight (NLOS) positions of the MS. (2) A hardware implementation of 
these techniques can be designed in order to reduce the cost, an area in which most 
positioning systems suffer. Localization speed is also a very interesting factor in evaluating 
an explicit hardware implementation and proving the efficiency of these techniques for 
tracking. 
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