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GENERATING RANDOMNESS
IN SIMULATION

LEARNING OBJECTIVES

• To be able to describe and use linear congruential pseudorandom number generation
methods

• To be aware of current state-of-the-art pseudorandom number generation methods.

• To be able to define and use key terms in pseudorandom number generation methods
such as streams, seeds, and period.

• To be able to explain the key issues in pseudorandom number testing.

• To be able to derive and implement an inverse cumulative distribution function
(CDF)-based random variate generation algorithm.

• To be able to explain and implement the convolution algorithm for random variate
generation.

• To be able to explain and implement the acceptance rejection algorithm for random
variate generation.

2.1 THE STOCHASTIC NATURE OF SIMULATION

One of the most important advantages of using simulation models to characterize system
performance is the flexibility that simulation allows for incorporating randomness into the
modeling. As discussed briefly in Chapter 1, randomness in simulation is often modeled by
using random variables and probability distributions. Thus, simulation languages require
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the ability to generate random variates. A random variate is an instance (or realization) of
a random variable.

In this chapter, you will learn how simulation languages allow for the generation of
randomness. Generating randomness requires algorithms that permit sequences of numbers
to act as the underlying source of randomness within the model. A basic understanding
of these algorithms will be the focus of the first part of the chapter. Then, given a good
source of randomness, techniques that permit the sequences to be transformed so that they
can represent a wide variety of random variables (e.g., normal and Poisson) have been
established. The algorithms that govern these procedures are described in the second part
of the chapter.

2.2 RANDOM NUMBERS

This section will indicate how uniformly distributed random numbers over the range from
0 to 1 are obtained within simulation programs. While commercial simulation packages
provide substantial capabilities for generating random numbers, we still need to understand
how this process works for the following reasons:

1. The random numbers within a simulation experiment might need to be controlled in
order to take advantage of them to improve decision making.

2. In some situations, the commercial package does not have ready-made functions for
generating the desired random variables. In these situations, you will have to do it
yourself.

In addition, simulation is much broader than just using a commercial package. You can
perform simulation in any computer language and the informed modeler should know how
the key inputs to simulations are achieved.

In simulation, large amount of cheap (easily computed) random numbers are required.
In general, consider how random numbers might be obtained:

1. Dice, coins, colored balls

2. Specially designed electronic equipment

3. Algorithms.

Clearly, within the context of computer simulation, it might be best to rely on algorithms;
however, if an algorithm is used to generate the random numbers, then they cannot be truly
random. For this reason, the random numbers that are used in computer simulation are
called pseudorandom.

Definition 2.1 (Pseudorandom Numbers) A sequence of pseudorandom numbers, Ui, is
a deterministic sequence of numbers in (0, 1) having the same relevant statistical prop-
erties as a sequence of truly random U(0, 1) numbers. (Ripley [1987])

A set of statistical tests are performed on the pseudorandom numbers generated from
algorithms in order to indicate that their properties are not significantly different from a
true set of U(0, 1) random numbers. The algorithms that produce pseudorandom numbers
are called random number generators. In addition to passing a battery of tests, the random
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number generators need to be fast and they need to be able to reproduce a sequence of
numbers if and when necessary.

The following section discusses random number generation methods. The approach will
be practical, with just enough theory to motivate future study of this area and to allow you
to understand the important implications of random number generation. A more rigorous
treatment of random number and random variable generation can be found in texts such as
Fishman [2006] and Devroye [1986].

2.3 RANDOM NUMBER GENERATORS

Over the history of scientific computing, there have been a wide variety of techniques and
algorithms proposed and used for generating pseudorandom numbers. A common tech-
nique that has been used (and is still in use) within a number of simulation environments
is discussed in this chapter. Some new types of generators that have been recently adopted
within many simulation environments, especially the one used within Arena™, will also be
briefly discussed.

A linear congruential generator (LCG) is a recursive algorithm for producing a sequence
of pseudorandom numbers. Each new pseudorandom number from the algorithm depends
on the previous pseudorandom number. Thus, a starting value called the seed is required.
Given the value of the seed, the rest of the sequence of pseudorandom numbers can be
completely determined by the algorithm. The basic definition of an LCG is as follows:

Definition 2.2 (LCG) An LCG defines a sequence of integers, R0,R1, … between 0 and
m − 1 according to the following recursive relationship, where i = 0, 1, 2, ...:

Ri+1 = (aRi + c) mod m for i = 0, 1, 2, .… (2.1)

where R0 is called the seed of the sequence, a is called the constant multiplier, c is
called the increment, and m is called the modulus. (m, a, c,R0) are integers with a > 0,
c ≥ 0,m > a,m > c,m > R0, and 0 ≤ Ri ≤ m − 1.

To compute the corresponding pseudorandom uniform number, we use

Ui =
Ri

m
(2.2)

Notice that an LCG defines a sequence of integers and subsequently a sequence of real
(rational) numbers that can be considered pseudorandom numbers. Remember that pseu-
dorandom numbers are those that can “fool” a battery of statistical tests. The choice of the
seed, constant multiplier, increment, and modulus, that is, the parameters of the LCG, will
determine the properties of the sequences produced by the generator. With properly cho-
sen parameters, an LCG can be made to produce pseudorandom numbers. To make this
concrete, let us look at a simple example of an LCG.

EXAMPLE 2.1 Simple LCG

Consider an LCG with parameters (m = 8, a = 5, c = 1,R0 = 5). Compute the first
nine values for Ri and Ui from the defined sequence.



20 GENERATING RANDOMNESS IN SIMULATION

Let us first remember how to compute using the mod operator. The mod operator is
defined as

z = y mod m

= y − m
⌊ y

m

⌋
where ⌊⋅⌋ is the floor operator, which returns the greatest integer that is less than or equal
to x. For example,

z = 17 mod 3

= 17 − 3
⌊17

3

⌋
= 17 − ⌊5.66⌋
= 17 − 3 × 5 = 2

Thus, the mod operator returns the integer remainder (including zero) when y ≥ m and y
when y < m. For example, z = 6 mod 9 = 6 − 9⌊ 6

9
⌋ = 6 − 9 × 0 = 6. Using the parameters

of the LCG in Equation (2.1), the pseudorandom numbers are

R1 = (5R0 + 1) mod 8 = 26 mod 8 = 2 ⇒ U1 = 0.25

R2 = (5R1 + 1) mod 8 = 11 mod 8 = 3 ⇒ U2 = 0.375

R3 = (5R2 + 1) mod 8 = 16 mod 8 = 0 ⇒ U3 = 0.0

R4 = (5R3 + 1) mod 8 = 1 mod 8 = 1 ⇒ U4 = 0.125

R5 = 6 ⇒ U5 = 0.75

R6 = 7 ⇒ U6 = 0.875

R7 = 4 ⇒ U7 = 0.5

R8 = 5 ⇒ U8 = 0.625

R9 = 2 ⇒ U9 = 0.25

In Example 2.1, the Ui are simple fractions involving m = 8. Certainly, this sequence
does not appear very random. The Ui can only take on rational values in the range,
0, 1

m
,

2
m
,

3
m
, … ,

(m−1)
m

since 0 ≤ Ri ≤ m − 1. This implies that if m is small, there will be
gaps on the interval [0, 1) and if m is large, then the Ui will be more densely distributed on
[0, 1).

Notice that if a sequence generates the same value as a previously generated value, then
the sequence will repeat or cycle. An important property of an LCG is that it has a long cycle,
as close to length m as possible. The length of the cycle is called the period of the LCG.
Ideally, the period of the LCG is equal to m. If this occurs, the LCG is said to achieve its full
period. As can be seen in the example, the LCG is full period. Until recently, most computers
were 32-bit machines and thus a common value for m is 231 − 1 = 2, 147, 483, 647, which
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represents the largest integer number on a 32-bit computer using 2’s complement integer
arithmetic. This choice of m also happens to be a prime number, which leads to special
properties.

A proper choice of the parameters of the LCG will allow desirable pseudorandom num-
ber properties to be obtained. The following result due to Hull and Dobell [1962], see also
Law [2007], indicates how to check if an LCG will have the largest possible cycle.

Theorem 2.1 (LCG Full Period Conditions) An LCG has full period if and only if the
following three conditions hold:

1. The only positive integer that (exactly) divides both m and c is 1 (i.e., c and m have
no common factors other than 1).

2. If q is a prime number that divides m then q should divide (a − 1) (i.e., (a − 1) is a
multiple of every prime number that divides m).

3. If 4 divides m, then 4 should divide (a − 1) (i.e., (a − 1) is a multiple of 4 if m is a
multiple of 4).

Now, let us apply this theorem to the example LCG and check whether or not it should
obtain full period.

EXAMPLE 2.2 Checking if LCG Reaches Full Period

Use Theorem 2.1 to check if the LCG of Example 2.1 should reach its full period.

To apply the theorem, you must check if each of the three conditions holds for the generator.

• Condition 1: c and m have no common factors other than 1.
The factors of m = 8 are (1, 2, 4, 8), since c = 1 (with factor 1) condition 1 is true.

• Condition 2: (a − 1) is a multiple of every prime number that divides m. The first
few prime numbers are (1, 2, 3, 5, 7). The prime numbers, q, that divide m = 8 are
(q = 1, 2). Since a = 5 and (a − 1) = 4, clearly q = 1 divides 4 and q = 2 divides 4.
Thus, condition 2 is true.

• Condition 3: If 4 divides m, then 4 should divide (a − 1).
Since m = 8, clearly 4 divides m. Also, 4 divides (a − 1) = 4. Thus, condition 3 holds.

Since all three conditions hold, the LCG achieves full period.
There are some simplifying conditions, see Banks et al. [2005], which allow for easier

application of the theorem. For m = 2b (m a power of 2) and c not equal to 0, the longest
possible period is m and can be achieved, provided that c is chosen so that the greatest
common factor of c and m is 1 and a = 4k + 1 where k is an integer. The previous example
LCG satisfies this situation.

For m = 2b and c = 0, the longest possible period is (m∕4) and can be achieved, provided
that the initial seed, R0 is odd and a = 8k + 3 or a = 8k + 5 where k = 0, 1, 2, · · ·.

The case in which m is a prime number and c = 0 defines a special case of the LCG
called a prime modulus multiplicative linear congruential generator (PMMLCG).

For this case, the longest possible period is m − 1 and can be achieved if the smallest
integer, k, such that ak − 1 is divisible by m is m − 1.
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Thirty-Two-bit computers have been very common for over 20 years. In addition, 231 −
1 = 2, 147, 483, 647 is a prime number. Because of this, 231 − 1 has been the choice for m
with c = 0. Two common values for the multiplier, a, have been

a = 630, 360, 016

a = 16, 807

The latter of which was used within Arena™ for a number of years. Notice that for
PMMLCG, the full period cannot be achieved (because c = 0), but with the proper selection
of the multiplier, the next best period length of m − 1 can be obtained. In addition, for
this case, R0 ∈ {1, 2, … ,m − 1} and thus Ui ∈ (0, 1). The limitation of Ui ∈ (0, 1) is very
useful when generating random variables from various probability distributions, since 0
cannot be realized.

When using an LCG, you must supply a starting seed as an initial value for the algorithm.
This seed determines the sequence that will come out of the generator when it is called
within software. Since generators cycle, you can think of the sequence as a big circular list as
indicated in Figure 2.1. Starting with seed R0 = 5, you get a sequence {2, 3, 0, 1, 6, 7, 4, 5}.
Starting with seed, R0 = 1, you get the sequence {6, 7, 4, 5, 2, 3, 0, 1}. Notice that these two
sequences overlap with each other, but that the first half {2, 3, 0, 1} and the second half
{6, 7, 4, 5} of the sequence do not overlap. If you only use 4 random numbers from each of
these two subsequences, then the numbers will not overlap. This leads to the definition of
a stream:

Definition 2.3 (Random Number Stream) The subsequence of random numbers gener-
ated from a given seed is called a random number stream.

You can take the sequence produced by the random number generator and divide it
up into subsequences by associating certain seeds with streams. You can call the first

R7 = 4
R1 = 2

R2 = 3

R3 = 0

R5 = 6

R6 = 7

R4 = 1

R0 = 5 = R8

Figure 2.1 Ri sequence for Example 2.1.
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subsequence stream 1 and the second subsequence stream 2, and so forth. Each stream can
be further divided into subsequences or substreams of nonoverlapping random numbers.

In this simple example, it is easy to remember that stream 1 is defined by seed, R0 = 5,
but when m is large, the seeds will be large integer numbers, for example, R0 = 123098345.
It is difficult to remember such large numbers. Rather than remembering this huge integer,
an assignment of stream numbers to seeds is made. Then, the sequence can be reference by
its stream number. Naturally, if you are going to associate seeds with streams, you would
want to divide the entire sequence so that the number of nonoverlapping random numbers in
each stream is quite large. This ensures that as a particular stream is used that there is very
little chance of continuing into the next stream. Clearly, you want m to be as large as pos-
sible and to have many streams that contain as large as possible number of nonoverlapping
random numbers. With today’s modern computers, even m is 231 − 1 = 2, 147, 483, 647 is
not very big. For large simulations, you can easily run through all these random numbers.

Random number generators in computer simulation languages come with a default set of
streams that divide the “circle” up into independent sets of random numbers. The streams
are only independent if you do not use up all the random numbers within the subsequence.
These streams allow the randomness associated with a simulation to be controlled. During
the simulation, you can associate a specific stream with specific random processes in the
model. This has the advantage of allowing you to check if the random numbers are causing
significant differences in the outputs. In addition, this allows the random numbers used
across alternative simulations to be better synchronized.

Now a common question for beginners using random number generators can be
answered. That is, If the simulation is using random numbers, why do I get the same results
each time I run my program? The corollary to this question is, If I want to get different
random results each time I run my program, how do I do it? The answer to the first question
is that the underlying random number generator is starting with the same seed each time
you run your program. Thus, your program will use the same pseudorandom numbers
today as it did yesterday and the day before, etc. The answer to the corollary question is
that you must tell the random number generator to use a different seed (or, alternatively,
a different stream) if you want different invocations of the program to produce different
results. The latter is not necessarily a desirable goal. For example, when developing your
simulation programs, it is desirable to have repeatable results so that you can know that
your program is working correctly. Unfortunately, many novices have heard about using
the computer clock to “randomly” set the seed for a simulation program. This is a bad
idea and very much not recommended in our context. This idea is more appropriate within
a gaming simulation, in order to allow the human gamer to experience different random
sequences.

Given current computing power, the previously discussed PMMLCGs are insufficient
since it is likely that all the 2 billion or so of the random numbers would be used in per-
forming serious simulation studies. Thus, a new class of random number generators that
have extremely long periods was developed. The random number generator described in
L’Ecuyer et al. [2002] is one example of such a generator. It is based on the combina-
tion of two multiple recursive generators resulting in a period of approximately 3.1 × 1057.
This is the same generator that is now used in many commercial simulation packages. The
generator as defined in Law [2007] is

R1,i = (1, 403, 580R1,i−2 − 810, 728R1,i−3)[mod(232 − 209)] (2.3)

R2,i = (527, 612R2,i−1 − 1, 370, 589R2,i−3)[mod(232 − 22, 853)] (2.4)
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Yi = (R1,i − R2,i)[mod(232 − 209)] (2.5)

Ui =
Yi

232 − 209
(2.6)

To illustrate how this generator works, consider generating an initial sequence of pseu-
dorandom numbers from the generator. The generator takes as its initial seed a vector of six
initial values (R1,0,R1,1,R1,2,R2,0,R2,1,R2,2). The first initially generated value, Ui, will start
at index 3. Example 2.3 illustrates the recursion to generate five pseudorandom numbers.

EXAMPLE 2.3 L’Ecuyer et al. (2002) Generator

Produce five pseudorandom numbers from the L’Ecuyer et al. [2002] generator using
the initial seed vector:

{R1,0,R1,1,R1,2,R2,0,R2,1,R2,2} = {12345, 12345, 12345, 12345, 12345, 12345}

i = 3 i = 4 i = 5 i = 6 i = 7
Z1,i−3 = 12345 12345 12345 3023790853 3023790853
Z1,i−2 = 12345 12345 3023790853 3023790853 3385359573
Z1,i−1 = 12345 3023790853 3023790853 3385359573 1322208174
Z2,i−3 = 12345 12345 12345 2478282264 1655725443
Z2,i−2 = 12345 12345 2478282264 1655725443 2057415812
Z2,i−1 = 12345 2478282264 1655725443 2057415812 2070190165

Z1,i = 3023790853 3023790853 3385359573 1322208174 2930192941
Z2,i = 2478282264 1655725443 2057415812 2070190165 1978299747

Yi = 545508589 1368065410 1327943761 3546985096 951893194
Ui = 0.127011122076 0.318527565471 0.309186015655 0.82584686312 0.221629915834

While it is beyond the scope of this text to explore the theoretical underpinnings of this
generator, it is important to note that the use of this new generator is conceptually similar to
that which has already been described. The generator allows multiple independent streams
to be defined along with substreams.

The fantastic thing about this generator is the sheer size of the period. Based on their
analysis, L’Ecuyer et al. [2002] stated that it will be “approximately 219 years into the
future before average desktop computers will have the capability to exhaust the cycle of the
(generator) in a year of continuous computing.” In addition to the period length, the gener-
ator has an enormous number of streams, approximately 1.8 × 1019 with stream lengths of
1.7 × 1038 and substreams of length 7.6 × 1022 numbering at 2.3 × 1015 per stream. Clearly,
with these properties, you do not have to worry about overlapping random numbers when
performing simulation experiments. The generator was subjected to a rigorous battery of
statistical tests and is known to have excellent statistical properties.

2.4 TESTING RANDOM NUMBERS

This subsection closes with an overview of what is involved in testing the statistical prop-
erties of random number generators. Essentially a random number generator is supposed
to produce sequences of numbers that appear to be independent and identically distributed


