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ABSTRACT 

In this paper, we introduce a new class of distributions by compounding the generalized class of 
Lindley and power series family of distributions. This new class of distributions contains several 
lifetime subclasses, such as Lindley Poisson, Lindley geometric, Lindley logarithmic and Lindley 
binomial classes of distributions. It also can generate as many statistical distributions such as 
power Lindley Poisson, power Lindley geometric, power Lindley logarithmic and power Lindley 
binomial distributions. The proposed class has flexibility in the sense that it can generates many 
new lifetime distributions as well as some existing distributions. For the proposed class, several 
properties, such as survival functions, hazard rate functions, limiting behavior, quantile 
functions, moments, and distribution of order statistics are derived. The method of maximum 
likelihood estimation will be used to estimate the model parameters of this new class. We will 
study the Lindley logarithmic distribution in some details including simulation as an example of 
the proposed class. At the end, we will demonstrate applications of three real data sets to show 
the flexibility and potential of the new class of distributions. 

 Keywords: Generalized Lindley power series distributions, Lindley power series 
distributions, power Lindley logarithmic distribution 

 

 

1. Introduction 

 

Consider the lifetime of a system with N components where the life of each component is 

a positive continuous random variable, say .iX  Then, the life of such a system can be modeled 

as a non-negative random variable 1min{ }N

i iX X  or 1max{ }N

i iY X  based on whether the 

components are in a series or parallel. In some applications, we have an unknown random 
number of causes for the failure of a system and each will live randomly according to the 

distribution .iX  The discrete random variable N can have several distributions, such as zero-

truncated Poisson, geometric, logarithmic, binomial, and the generalized power series of 
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distributions. The continuous random variables , 1,...,iX i N are independent and can be 

have any lifetime distribution, such as exponential, gamma, Weibull, or Lindley. We should 
emphasize that we have a choice of two distribution types: Weibull type and Lindley type. The 
relation between these two types was established in a larger class called, "a class of Lindley and 
Weibull distributions", as discussed in Alkarni [1]. However, the Weibull types of distributions 
cannot exhibit bathtub shapes for their hazard rate functions. Lindley [2] suggested an 
alternative for exponential distribution and developed in many types of Lindley distributions. 
These distributions have been able to overcome the weakness of the Weibull distribution by 
exhibiting all types of hazard rate functions.  

 
In this paper, we introduce the generalized Lindley power series of distributions since the Weibull 
power series of distributions were studied intensively by Alkarni [3]. The proposed class of 
distributions is obtained by compounding the generalized class of Lindley with the power series 
of distributions. We call it generalized Lindley power series (GLPS) family of distributions. The 
GLPS class of distributions is a flexible family and contains many types of Lindley compounded 
with discrete distributions (truncated at one), such as Lindley Poisson (Gui et al. [4]), Lindley 
geometric (Zakerzadeh and Mahmoudi [5], and Lindley logarithmic distribution (Liyanage and 
Pararai [6]). In a similar manner, some classes of distributions are proposed in the literature: 
Lindley power series (LPS) class of distributions (Liyanage and Pararai [6]), generalized extended 
Weibull power series family of distributions (Alkarni [3]), exponentiated extended Weibull-
power series class of distributions (Tahmasebi and Jafari [7]), the exponential-power series of 
distributions (Chahkandi and Ganjali [8]), Weibull-power series of distributions (Morais and 
Barreto-Souza [9]), generalized exponential-power series of distributions (Mahmoudi and Jafari 
[10]), complementary exponential power series (Flores et al. [11]), extended Weibull-power 
series of distributions (Silva et al. [12]), double bounded Kumaraswamy power series (Bidram 
and Nekoukhou [13]), Burr XII power series (Silva and Cordeiro [14]), generalized linear failure 
rate-power series of distributions (Alamatsaz and Shams [15]), Birnbaum Saunders power series 
of distribution (Bourguignon et al. [16]), linear failure rate-power series (Mahmoudi and Jafari 
[17]), and complementary extended Weibull-power series (Cordeiro and Silva [18]). To 
compound continuous distribution with discrete distribution, Nadarajah et al. [19] introduced 
the package Compounding in R software (R Development Core Team, [20]). 
 We introduce the GLPS class of distributions for the following reasons: 

(1) Lindley distributions are widely used in modeling lifetime data. 
(2) The GLPS class of distributions exhibits some interesting behavior with non-

monotonic failure rates, such as bathtub, upside bathtub, and increasing-
decreasing-increasing failure rates. 

(3) The theoretical results of this paper can be used to obtain new useful 
distributions with all mathematical properties verified in this study. 

 
The proposed family of distributions can be applied to other fields, such as business, 

environment, actuarial science, biomedical studies, demography, and industrial reliability. This 
family contains several subclasses and lifetime models as special cases. In addition, it gives us 
the flexibility of choosing any compound lifetimes for modeling any type of lifetime data. 
 

The remainder of this paper is organized as follows. In Section 2, we define the generalized 
class of Lindley distributions, and demonstrate that many existing models can be deduced as 
special cases of the proposed unified model. In Section 3, we define the GLPS class of 
distributions in terms of cumulative distribution functions (cdf) and introduce some special cases 
of some existing classes. In Section 4, we provide the general properties of the GLPS class, 
including probability density function (pdf), survival and hazard rate function (hrf), quantile 
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function, moments, moments generating functions, and distribution of order statistics. The 
estimation of the GLPS parameters is investigated in Section 5 using the method of maximum 
likelihood estimation and a large sample inference. In Section 6, special subclasses and some 
special distributions are introduced along with the flexible mathematical forms of their 
properties. In Section 7, the Lindley logarithmic distribution is introduced with some 
mathematical properties as a special application of GLPS to show the benefits of this class. In 
Section 8, we present some real data to illustrate the applicability and flexibility of the GLPS 
distributions. Finally, some concluding remarks are addressed in Section 9. 

 2. The generalized Lindley class of distributions 

Lindley distribution is among the most widely used lifetime distributions in terms of 

reliability. Many modifications have been suggested for Lindley distribution to improve the 

shape of the hazard rate function. Peng and Yan [21] presented many references on this 

matter. The following definition introduces the generalized Lindley (GL) class of 

distributions, which generates most of the existing Lindley types of distributions and can be 

used to generate new distributions. 

Definition. Let H( ; )x  be a non-negative function that depends on a non-negative parameter 

vector 0  , the GL class of distributions is defined by its cumulative cdf, ,G  as follows, 

                

H( ; )H( ; )
( ; , , ) 1 ; , , , 0.xx

G x e x    
     

 

  
   

 
            (2.1) 

The corresponding probability distribution function (pdf) becomes, 
 

           

2
H(x; )( ; , , ) (1 H( ; ))h(x; ) ; , , , 0,g x x e x 

        
 

   


                (2.2)     

where h(x; ) is the first derivative of H( ; ).x   

Many Lindley distributions can be written in form (2.1) depending on the parameters ,   and 

the choice of the function H( ; ),x  see Alkarni [1]. In the following sub section, we present 

some special distributions of this class. 

2.1 Special cases 

2.1.1 Lindley distribution 

If ( )H x x and 1.  Then the cdf in (2.1) is then, 

   
1

( ; ) 1 , , 0,
1

xx
F x e x 

 


  
   

 
                                              (2.1.1) 

which is the cdf of Lindley distribution introduced by Lindley [2]. From (2.2), the pdf is given by  

https://vpn.ksu.edu.sa/science/article/pii/,DanaInfo=www.sciencedirect.com+S0167947312003386#s000035
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2

( ; ) (1 ) , , 0.
1

xf x x e x
 



  


                                             (2.1.2) 

2.1.2 Two parameters Lindley distribution 

If ( ) .H x x  Then the cdf in (2.1) is then, 

   ( ; , ) 1 , , , 0,xx
F x e x  

   
 

  
   

 
                     (2.1.3)   

which is the cdf of Lindley distribution introduced by Shanker et al. [22]. From (2.2), the pdf is 
given by  

2

( ; , ) (1 ) , , , 0.xf x x e x
    

 

  


                                (2.1.4) 

2.1.3 Power Lindley distribution 

If ( ) , 1.H x x     Then the cdf in (2.1) is then, 

   
1

( ; , ) 1 , , , 0,
1

xx
F x e x




 
   



  
   

 
                      (2.1.5) 

which is the cdf of power Lindley distribution introduced by Ghitany et al. [23]. From (2.2), the 
pdf is given by  

2
1( ; , ) (1 ) , , , 0.

1

xf x x x e x
  

   


   


                      (2.1.6)  

2.1.4 Extended power Lindley distribution 

If ( ) .H x x   Then the cdf in (2.1) is then, 

   ( ; , , ) 1 , , , , 0,xx
F x e x




  
     

 

  
   

 
       (2.1.7) 

which is the cdf of extended power Lindley distribution introduced by Alkarni [24]. From (2.2), 
the pdf is given by  

2
1( ; , , ) (1 ) , , , , 0.xf x x x e x

  
      

 

   


         (2.1.8)   

3. The GLPS family 
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In this section, we derive the family of GLPS distributions by compounding the GL class of 
distributions and the power series distributions. 

 

Let N  be a zero-truncated discrete random variable having a power series distributions 
with the following probability mass function:  

( ) ,   1,2,...,
( )

n

n
n

a
p p N n n

c




   

                                                          

where 0na   depends only on 
1

,  ( ) ,n

nn
n c a 




  and (0, )s   is chosen in such a way 

that ( )c   is finite. The power series family of distributions, including Poisson, geometric, 

logarithmic, and binomial distribution, are presented in Johnson et al. [25]. Useful quantities 

such as , ( ), ( )na c c   and ( )c 
 are introduced in Table 1.  

  
Table 1: Useful quantities for some power series distributions 

Distribution       na            ( )c           ( )c                     ( )c 
            Parameter Space           

 

    Poisson              
1

n
             e                e

                           e
                           (0, )   

    Geometric          1           
1




            2

1

(1 )
              3

2

(1 )
                   (0,1)  

    Logarithmic      
1

n
      log(1 )       2

1

(1 )
              3

2

(1 )
                   (0,1)  

    Binomial         
m

n

 
 
 

     (1 ) 1m      
1(1 )mm       

2( 1)(1 )mm m          

 
   

Given ,N  let (1) 1min( ,..., ),NX X X  where , 1,...,iX i N are independent and 

identically distributed (iid) random variables following (2.1). Then, the cdf of (1)X N n is 

given by  

(1)

H( ; )

X

H( ; )
(x) 1 ,   x 0, n 1.

n

n x

N n

x
F e     

 





  
    

   

The GLPS distribution is then defined by the marginal cdf of (1)X  which is given by 

(1)

H( ; )

1

H( ; )
( ) ( ) 1

( )

nn
n xn

GLPS X

n

a x
F x F x e

c

     

  






   
    

   


 

 

H( ; )H( ; )

1 ,   , , , , 0,
( )

xx
c e

x
c

    


 
   



   
  

                       (3.1)                           

which can be written as  

1

( (1 ( )))
( ) (1 ( ( )) ) 1 ,   x 0.

( )

n

GLPS n

n

c G x
F x p G x

c










                        (3.2) 
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Remark. Let ( ) 1max{ }N

n i iX X  , then the cdf of ( )nX  is given by, 

 

       
( )

1

( ( ))
( ) ( ( )) ,

( )n

n

X n

n

c G x
F x p G x

c









                                                                (3.3)   

H( ; )H( ; )
1

= , , , , , 0.
( )

xx
c e

x
c

    


 
   




    

   
                                 (3.4) 

                   
 
      Note that if H( ) x, 1x   , then (3.1) is reduced to 

            

          

1

1
( ) 1 ,

( )

x

LPS

x
c e

F x
c

 






   
  

    the Lindley power series (LPS) class of 

distributions introduced by Liyanage and Pararai [6].   
                                                                 

Based on the choice of , ( ), (x) and na c H    with form (3.1) and (3.4), this class covers the 

entire compound truncated discrete distributions with all the Lindley types of distributions for a 
series and parallel components. 

4. General properties 

4.1 Density, survival, and hazard rate functions 

The pdfs associated with (3.1), (3.2), (3.3) and (3.4), respectively, are given by 

            
'( (1 ( )))

( ) g(x) ,
( )

GPLS

c G x
f x

c







                                                                            (4.1.1) 

                                                                                                         

 

           

 

H( ; )

2
H(x; )

H( ; )

= (1 H( ; )) h(x; )
( )

xx
c e

x e
c

 

 

   


 
   
  

 



   
  

    


     (4.1.2)

 

and    

( )

( G(x))
( ) g(x) ,

( )nX

c
f x

c








                                                                                             (4.1.3) 
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2
H(x; ) H( ; )H( ; )

= (1 H( ; ))h(x; ) 1 xx
x e c e       

    
   

  
    

      
     

 

(4.1.4) 

The survival functions (sf) are given by 

H( ; )H( ; )

( (1 ( ))
( )

( ) ( )

x

GPLS

x
c e

c G x
s x

c c

    


 

 

   
  

                        (4.1.5) 

and 

( )

H( ; )H( ; )
1

( ( ))
( ) 1 1

( ) ( )n

x

X

x
c e

c G x
s x

c c

    


 

 


    

   
               (4.1.6)   

  The corresponding hazard rate functions (hrf) are 

(1)

(1)

'(x) ( (1 ( )))
( ) g(x) ,

( ) ( (1 ( )))

X

GPLS

X

f c G x
x

s x c G x


 




 


                                                              (4.1.7) 

H( ; )

2
H(x; )

H( ; )

H( ; )

   = (1 H( ; )) h(x; )
H( ; )

x

x

x
c e

x e
x

c e

 

 

 

   


 
   
     


 

 





   
  

    
    

  
  

  (4.1.8)     

and  

( )

( )

( )

(x) ( ( ))
( ) ( ) ,

( ) ( ) ( ( ))

n

n

n

X

X

X

f c G x
x g x

s x c c G x


 

 



 


                                                   (4.1.9) 

H( ; )

2
H(x; )

H( ; )

H( ; )
1

= (1 H( ; )) h(x; )
H( ; )

( ) 1

x

x

x
c e

x e
x

c c e

 

 

 

   


 
   
     

 
 

 





    
   

     
     

    
   

(4.1.10) 

The limiting distribution of the GLPS when   is  
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0 0 0

, ,1

0

1

1

0

( (1 ( ))) ( (1 ( )))
lim ( ) lim 1 1 lim

( ) ( )

(1 ( ))

ˆ                      =1 lim ,  using the LHopital s rule, we obtain

(

1 lim

GPLS

n n

n

n

n

n

n

c G x c G x
F x

c c

a G x

a

a

 

 





  





  












 
   





 





1

2

1

1

2

H( ; )

1 ( )) (1 ( ))

H( ; )
1 (1 ( )) ( ) 1 .

n n

n

n

n

n

n

x

G x na G x

a na

x
G x G x e  





   

 













  



  
       

 





 

The pdf of GLPS distributions can be expressed as an infinite number of linear combinations 

of densities of the order statistics. Given that 
1

1

( ) ,n

n

n

c na 


 



  therefore, 

(1)

'

1

( (1 (x)))
( ) g(x) (N n)g ( ; )

( )
GLPS Y

n

c G
f x p x n

c











   ,

 

where 
(1)

g ( ; )Y x n is the pdf of (1) 1min( ,..., ),nY Y Y  given by 

 
(1)

1

1
2

H(x; ) H( ; )

( ; ) ( )(1 ( ))

H( ; )
(1 H( ; )) h(x; ) ,

n

Y

n

x

g x n ng x G x

x
n x e e       

  
   





 

 

   
     

   
 hence 

 
2

1 H(x; )

1

( ) (1 H( ; ))h(x; ) H( ; )
( ) ( )

n
n nn

GLPS n
n

na
f x x x e

c

  
      

  


 



    




(4.1.1) 

4. 2 Moments, and moments generating function 

The thr moment of a random variable X from the GLPS distribution, r

is given by 

(1) (1)

1 10 0

[ ] ( ) ( ) ,
( )

n
r r

r Y Y

n n

an
P N n x g x dx x g x dx

c






  


 

      

which can be obtained for any function ( )H x . 

The moment generating functions (mgf) are obtained as follows:  
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(1)

1 0
(

( ) ( ) .
)

n
tx

GLPS Y

n

M
an

t e g x dx
c









   

Using the series expansion 
0

,
k k

tx

k

t x
e

k








  the above expressions are reduced to 

           
1 1 ( )

( ) .
k

GLPS

n k

n

k

t
M

an
t

k c


















  

4. 3 Quantile function and order statistics  

In this section, the quantile function of GLPS distributions will be derived. Let X be a 

random variable with cdf as in (3.1). The quantile function, i.e., 
(1)

( ),XQ p is the root of the 

equation 
(1) (1)

( (p)) p,p (0,1)X XF Q   . Therefore, 

(1) (1)
H( (p))H( (p))

1 ,
( )

XQXQ
c e

p
c

  


 



    
          

multiply both sides by ( )c   and apply 
1(.)c 

 for both sides, then multiply both sides by  

 
e  

 

 


 leads to 

(1)

(1)

1
H( (p)) ( ) ((1 ) ( ))

H( (p))
XQ

X

c p c
Q e

e

  

 

  
  




  



 
      

Let 
(1)

( ) H( (p)),Xz p Q       then we have 

1
( ) ( ) ((1 ) ( ))

( ) .z p c p c
z p e

e  

  







 
  Then the solution for ( )z p is 

1( ) ((1 ) ( ))
( )

c p c
z p W

e  

  







  
  

 
 

Where (.)W is the negative branch of Lambert W functions. See Corless et al. [26]. Hence, the 

quantile functions of GLPS is given by  

(1)

1
1 1 1 1 ( ) ((1 ) ( ))

( ) ( ) .GLPS X

c p c
Q p Q p H W

e  

  

   






   
       

  
         (4.2.1)                 
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Order statistics are among the most fundamental tools in non-parametric statistics and 

inference. These can be used to tackle estimation problems and hypothesis tests in many ways. 

The pdf of the thk order statistics from a random sample 1,..., nX X  from the GLPS is given by 

1

: ( ) ( ( ( ,
( 1) )

k n k

k n GLPS GLPS GLPS

n
f x f x F x F x

k n k

 


   
     

1

0

( (
( 1) )

n k
i k i

GLPS GLPS

i

n kn
f x F x

ik n k


 



 
  

     
                (4.2.2) 

The associate cdf can be obtained as 

:

0

.

( 1)
!

( ) [ ( )]
( 1)!( )!

i

n

G

k
k i

k n

i

LPS

n k

in
F x F x

k k i k i






 
 

 
  

                        (4.2.3) 

 

5. Estimation and inference 

Let 1,..., nX X be a random sample, with the observed value 1( ,..., )nx x x obtained 

from the GLPS distribution with parameters , ,  and     . Let ( , , , )T     be the 

1p   parameter vector. The log likelihood function is given by 

1

( , ) log 2 log log( ) log(c( )) log(1 ( ))
n

n n i

i

l l x n n n n H x     


          

H( ; )

1 1 1

H( ; )
log(h( )) (H( )) log .

n n n
x

i i

i i i

x
x x c e     

 
 

 

  

     
      

    
       (5.1) 

Consider
H( ; )H( ; )

 ,  / , / .x

i i i i i

x
p e p p p p 

 

   
 

 

    
       

 
Then the 

score function is given by ( ) ( / , / , / , / )T

n n n n nU l l l l            .  

1

1 1

1 1

1 1

( )( )
,

( ) ( )

( )2
( ) ,

( )

( )( )
,

1 ( ) ( )

H( ) ( )1

1 ( ) ( )

n
n i i

i i

n n
i in

i

i i i

n n
i in i

i ii i

n n
n i i

i ik i k i k

l p c pn nc

c c p

c p pl n n
H x

c p

c p pl H xn

H x c p

l x h x

H x h x







   




    




    









 



 

 

 
  

 


   

  


   

   

  
 

   



 

 

 
   1 1

( ) ( )
,

( )

n n
i i i

i ik i k

H x c p p

c p


 

 

  
 

  
 

 
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Where 
k  is the kth element of the vector  .  

The maximum likelihood estimation (MLE) of  say   is obtained by solving the 

nonlinear system
 (x; ) 0nU   . Since this nonlinear system of equations does not have a 

closed form solution, any numerical method such as the Newton-Raphson procedure can 

be used. For the interval estimation and hypothesis tests on the model parameters, we 

require the following observed information matrix:  

( )

T

T

T
n

I I I I

I I I I

I I I I I

I I I I

   

   

   

  

 
 

 
    
 
     

  







   

 , 

where the elements of  nI   are the second partial derivatives of ( )nU  . Under the 

standard regular conditions for the large sample approximation in Cox and Hinkley [27], which 

was fulfilled for the proposed model, the distribution of  is approximately 
1( , ( ) ),p nN J    

where ( ) E[I ( )].n nJ    Whenever the parameters are in the interior of the parameter space 

but not on the boundary, the asymptotic distribution of ( )n  is
1(0, ( ) ),pN J  where 

1 1( ) lim ( )n
n

J n I 


   is the unit information matrix and p is the number of parameters of 

the distribution. The asymptotic multivariate normal 1( , ( ) )p nN I    distribution of  can be 

used to approximate the confidence interval for the parameters, the hazard rate, and the survival 

functions. An 100(1 )  asymptotic confidence interval for parameter 
i  is given by  

2 2

( , ),ii ii
i iZ I Z I       

where iiI  is the ( , )i i  diagonal element of 
1( )nI   for 1,...,i p  and 

2

Z  is the quantile 

1
2


  of the standard normal distribution. 

6. Special subclasses 

In this section, we present some subclasses of GLPS distributions. Using (3.2), (3.3), 

(4.1.1), (4.1.3), (4.1.5), (4.1.6), (4.1.7), and (4.1.9), we provide the forms of the cdf, pdf, sf, and 

hrf for (1)X  and (n)X  for Poisson, geometric, logarithmic, and binomial distributions 

compounded with any continuous lifetime distributions defined in (2.1).  

  6.1 The Lindley Poisson class of distributions 
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The Lindley Poisson (LP) class of distributions is a special case of the GLPS class, with 

1
na

n



 and ( ) 1, 0.c e     Table 2 shows the cdf, pdf, sf, and hrf for this class in 

both (series and parallel) systems. 

                          Table 2: cdf, pdf, sf, and hrf for the LP class 

(1) 1min( ,..., )NX X X   
(n) 1max( ,..., )NX X X  

(1 G(x) )
( )

1

e e
F x

e

 







 

(1 G(x))( )
( )

1

g x e
f x

e





 




 

(1 G(x)) 1
( )

1

e
s x

e





 



 

(1 G(x))

(1 G(x))

( )
( )

1

g x e
x

e














 

(1 G(x))

( )
1

e e
F x

e

 



  







 

(1 G(x))( )
( )

1

g x e
f x

e





  





 

(1 G(x))

1
( )

1

ee
s x

e





 







 

(1 G(x))

(1 G(x))

( )
( )

1

e

e

g x e
x

e








 

 



 

The Lindley Poisson distribution, which was proposed by Gui et al. [4], is a special case of the LP 

class with ( ) and ( )G x g x  the cdf and pdf of Lindley distribution as in (2.1.1) and (2.1.2), 

respectively. 

6.2 The Lindley geometric class of distributions 

The Lindley geometric (LG) class of distributions is a special case of GLPS class, with 

1na   and ( ) , (0,1).
1

c


 


 


 Table 3 shows the cdf, pdf, sf, and hrf for this 

class in both (series and parallel) systems. 

                 Table 3: cdf, pdf, sf, and hrf for the LG class 

(1) 1min( ,..., )NX X X
   

 

G(x)
( )

1 (1 G(x))
F x




 
 

2

(1 )g(x)
( )

(1 (1 G(x)))
f x








 
 

(1 )(1 G(x))
( )

1 (1 G(x))
s x





 


 
 

( )
( )

[1 (1 G(x))][1 G(x)]

g x
x




  
 

(1 )G(x)
( )

1 G(x)
F x









 

2

(1 ) ( )
( )

(1 G(x))

g x
f x









 

(1 )G(x)
( ) 1

1 G(x)
s x






 


 

(1 ) ( )
( )

(1 G(x))(1 G(x))

g x
x









 
 

 The Lindley geometric distribution was introduced and studied by Zakerzadeh and Mahmoudi 

[5] belongs to the LG with ( ) and ( )G x g x  the cdf and pdf of Lindley distribution as in (2.1.1) 

and (2.1.2), respectively.       
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 6.3 The Lindley logarithmic class of distributions 

The Lindley logarithmic (LL) class of distributions is a special case of GLPS class, with 
1

na
n

  and 

( ) log(1 ), (0,1).c        Table 4 shows the cdf, pdf, sf, and hrf for this class in both (series 

and parallel) systems. 

Table 4: cdf, pdf, sf, and hrf for the LL class 

(1) 1min( ,..., )NX X X   (n) 1max( ,..., )NX X X  

log(1 (1 G(x)))
( ) 1

log(1 )
F x





 
 


 

( )
( )

(1 (1 G(x))) log(1 )

g x
f x



 




  
 

log(1 (1 G(x)))
( )

log(1 )
s x





 



 

( )
( )

log(1 (1 G(x)))[1 (1 G(x))]

g x
x




 




   
 

log(1 G(x))
( )

log(1 )
F x









 

( )
( )

(1 G(x)) log(1 )

g x
f x



 




 
 

log(1 G(x)))
( ) 1

log(1 )
s x






 


 

( )
( )

(1 G(x))[log(1 G(x)) log(1 )]

g x
x




  


   
 

The Lindley logarithmic distribution was proposed by Liyanage and Pararai [6] belongs to the LL 

class with ( ) and ( )G x g x  the cdf and pdf of Lindley distribution as in (2.1.1) and (2.1.2), 

respectively.       

6.4 The Lindley binomial class of distributions 

The Lindley binomial (LB) class of distributions is a special case of GLPS class, with n

m
a

n

 
  
 

 

and ( ) ( 1) 1, [0,1].mc         Table 5 shows the cdf, pdf, sf, and hrf for this class in 

both (series and parallel) systems.    

    Table 5: cdf, pdf, sf, and hrf for the LB class 

(1) 1min( ,..., )NX X X   (n) 1max( ,..., )NX X X  

[ (1 G(x)) 1] 1
( ) 1

( 1) 1

m

m
F x





  
 

 
 

1m g(x)( (1 G(x)) 1)
( )

( 1) 1

m

m
f x

 



 


 
 

( (1 G(x)) 1) 1
( )

( 1) 1

m

m
s x





  


 
 

1m g(x)( (1 G(x)) 1)
( )

( (1 G(x)) 1) 1

m

m
x

 




 


  
 

( G(x) 1) 1
( )

( 1) 1

m

m
F x





 


 
 

1m g(x)( G(x) 1)
( )

( 1) 1

m

m
f x

 






 
 

( G(x) 1) 1
( ) 1

( 1) 1

m

m
s x





 
 

 
 

1m g(x)( G(x) 1)
( )

( 1) ( G(x) 1)

m

m m
x

 


 




  
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7. Power Lindley logarithmic distribution 

  In this section, the power Lindley logarithmic (PLL) distribution is introduced as a special 

case of the GLPS family of distributions. The PLL will be introduced in some details. 

7.1 The model 

The PLL distribution is defined directly in Table 4 with ( )G x  and g( )x  to be the cdf and pdf of 

power Lindley distributions as in (2.1.5) and (2.1.6), respectively, Gaitany et al. [23]. In the case 

of GLPS ( )H x x  and 1   with 
1

na
n

  and ( ) log(1 ), (0,1).c        The cdf, pdf, 

and hrf are given respectively by 

 

1
log 1

1
( ; , , ) 1

log(1 )

x

PLL

x
e

F x




 



  




   
  

   


, 

2 1(1 )
( ; , , ) ,

( 1) log(1 ) 1
1

1

x

PLL

x

x x e
f x

x
e





  





  

   




 






     
  

  

  and 

2 1(1 )
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( 1) log 1 1

1 1

x

PLL

x x

x x e
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   
  

 

 

 




         
        

       

  

  Figure 1 shows the pdf and hrf of the PLL distribution for the selected parameter values.  
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Figure 1. Plots of the density and hazard rate functions of the PLL for different values of 

,  and .    

It can be seen that for 1,   PLL distribution is reduced to Lindley logarithmic (LL) distribution 

as in Liyanage and Pararai [6]. 

 

7. 2 Quantile function and order statistics  

The quantile function of the PLL can be obtained by substituting in (4.2.1) with 

11, ( ) 1c e       and 

1

1 ( )H x x    to be 

1

(1 )log(1 )

1

1 1 ( 1)(1
( ) 1 ,  0

p

PLL

e
Q p W

e

 






  

 



   
        

    

Where (.)W  is the negative branch of the Lambert functions. 
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The pdf and cdf of the kth order statistics of the PLL distribution can be obtained directly 

from (4.2.2) and (4.2.3) as   

1

:

0

( ) ( (
( 1) )

n k
i k i

k n PLL PLL

i

n kn
f x f x F x

ik k i


 



 
  

     
                   (7.2.1) 

:

0

( 1)
!

( ) ( ) [ ( )]
( 1)!( )!

.

i

n k
k i

k n PLL PLL

i

n k

in
F x f x F x

k k i k i






 
 

 
  

                 (7.2.2)      

7.3 Moments and related measures 

In this section, moments, moments generating function (mgf) and some related 

measures, such as means, variance, skewness, and kurtosis, are discussed. The moments and the 

mgf are presented in the following theorem. 

Theorem 1. Let X be a random variable that follows the PLL distribution, then the thr  row 

moment (about the origin) is given by 
1 1

/ 1 / 1
1 0 0

1 ( / 1)
( ) ,

log(1 ) ( 1)

nn i
r

r n r j r j i
n i j

n i i r j
E X

i j n  

 


  

  


    
  

      
  

 
  
  

      (7.3.1)                                        

and the mgf is given by  
1 1

/ 1 / 1
1 1 0 0

1 ( / 1)
( ) ,

log(1 ) ( 1)

k nn i

X n k j k j i
n k i j

n i it k j
M t

i jk n  

 

  

   

    
   

    
 

  

  
  
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     (7.3.2) 

where 1

0

.a xa x e dx



     

Proof: ( ) ( ) .r r

r XE X x f x dx






    

For ( ) , 0H x x     and a power series [ ] , 1,2,3,...,
( )

n

na
p N n n

c




    , we have 

(1)

1 0

1 2
1 1

1 0

( )
( )

(1 )(1 (1 )) ,
log(1 ) ( 1)

n
r

r X

n

n
r n n x

n
n
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c

n n
x x x e dx

   






 


 







   





   
  

 

 

 

using 
0

(1 )a i

i

a
z z

i





 
 
 

  and using integral by substitute, we have r

proved. 

The mgf of a continuous random variable ,X  when it exists, is given by 

( ) ( ) .tx

XM t e f x dx



     
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Using the series expansion, 
0

,
k k

tx

k

t x
e

k








  we get the mgf using the same ideas above. 

Therefore, the mean and the variance of the PLL distributions, respectively, are                 

 
1 1

1 1/ 1 1/ 1
1 0 0

1 (1/ 1)
,

log(1 ) ( 1)

nn i

n j j i
n i j

n i i j

i j n  

 
 

  

  


    
  

      
     

   
  

 and 

             
2 2

2 .      

The skewness and kurtosis measures can be obtained from the expressions, 

3

3 2

3

2 4

4 3 2

4

3 2

4 6 3
,

skewness

curtosis

   



     



 

  

 


  


 

upon substituting for the row moments in (7.3.1). 

 

7.4 Maximum likelihood estimation 

Let 1, 2 ,..., nx x x be a random sample with size n  obtained from the PLL distribution 

with parameters ,  and    . Let ( , , )T     be the 3 1  unknown parameter vector. 

From equation (5.1), the log likelihood function of the PLL distribution is given by 

1 1 1 1

( , ) log log 2 log log( 1) log[log(1 )]

1
log(1 ) ( 1) log log 1 .

1
i

n n

n n n n
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i i i

i i i i

l l x n n n n n
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x x x e
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

 

    

 
  





   

        

   
        

  



      

The associate score function is  ( ) ( / , / , / )T

n n n nU l l l          where the elements of 

( )nU   are given by  
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respectively. 

The maximum likelihood estimates of  can be obtained as a solution of ( ) 0nU    by any 

numerical method, such as Newton-Raphson in R. Fisher information matrix is a 3 3  matrix 

consisting of the second partial derivatives of ( )nU   and given by 

                                                 ( ) ,n

I I I

I I I I

I I I

  

  

  

 
 

   
 
 

 

Where 

2 ln( ; )
( )ij

i j

x
I E

 

  
    

   
. These elements can be obtained from R or MATLAB to get 

a confidence interval for the estimates. 

7.5. Simulation study 

In this section, the performances of the mle's estimators are discussed using their Average bias 

(AB), Root mean squared error (RMSE), Coverage probability of 95% confidence intervals of the 

parameters (CP) and Average width (AW) of 95% confidence intervals of the parameters. 

Table 6 shows the comparative behavior of AB, RMSE, CP and AW. We generated 5000 random 

samples of different sizes for two sets of parameters using the following Lemma. 

Lemma 7.5.1. Let U be a standard uniform variable between zero and one. Then the random 

variable 

1

(1 )log(1 )

1

1 1 ( 1)(1
1 ,

Ue
X W

e

 





  

 



   
      

  
  

is said to be come from the PLL distribution with parameters ,   and .   
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For each samples of size 800,1000,2000,3000,4000n  and 5000  combined with two sets of 

parameters: ( 0.75, 0.5, 0.95)      and ( 0.75, 2, 4)     , for simulation on the 

basis of 5000samples generated by using Lemma 7.5.1. It can be seen that as the sample size 

increase, the RMSE and the bias decrease toward zero. Moreover, the average confidence width 

decreased as the sample size increases and the coverage probabilities of the confidence interval 

are quite close to the nominal 95% level. We conclude that the mle's estimate and their 

asymptotic results can be used in inference applications such as hypothesis and confidence 

intervals. 

Table 6: The AB, RMSE, CP and AW for varying , ,  and .n     

 

0.75, 0.5, 0.95                                                                      0.75, 2, 4      

                                                                               

Par.    n           AB                 RMSE       CP         AW                   AB            RMSE          CP            AW          

 

      800   -0.134   0.315  0.983  1.508    -0.066  0.205  0.975  0.937 

   1000   -0.085   0.222  0.997  1.100    -0.058  0.191  0.961  0.819  

        2000   -0.054   0.176  0.958  0.709    -0.028  0.136  0.925  0.523 

   3000   -0.033   0.142  0.935  0.545    -0.015  0.106  0.923  0.408 

   4000   -0.024   0.122  0.935  0.459    -0.011  0.091  0.929  0.348 

        5000   -0.018   0.105  0.938  0.402       -0.011     0.082    0.938  0.311 

 

     800   0.0308   0.112  0.998  0.567    0.038   0.234  0.997  1.148  

   1000   0.0240   0.097  0.999  0.520    0.035   0.221  0.994  1.026 

   2000   0.0133   0.082  0.990  0.363    0.009   0.174  0.963  0.717                                   

   3000   0.0062   0.071  0.975  0.295    0.000   0.145  0.957  0.584  

   4000   0.0038   0.063  0.961  0.254    0.000   0.127  0.953  0.505      

   5000   0.0023   0.056  0.955  0.227    0.000   0.114  0.952  0.452                                                

 

      800  -0.008    0.063  0.974  0.325   -0.008   0.276  0.986  1.391 

   1000  -0.004    0.029  0.989  0.160   -0.006   0.260  0.980  1.246 

   2000  -0.001    0.025  0.966  0.114    0.009   0.211  0.970  0.887 

   3000   0.000    0.022  0.965  0.094    0.016   0.183  0.959  0.727 

   4000   0.000    0.020  0.958  0.081    0.012   0.161  0.951  0.628 

   5000   0.000    0.018  0.958  0.073    0.006   0.143  0.951  0.561 
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8. Applications  

In this section, we fit the ( , , )PLL    distribution to three real data sets and compare it with 

some of the other distributions, such as the Lindley logarithmic distribution (LL) introduced by 

Liyanage and Pararai [6], the Weibull logarithmic distribution (LW) introduced by Ciumara and 

Preda [28], exponential logarithmic distribution (LE) introduced by Tahmasebi and Rezaei [29], 

the Weibull distribution (W), and the Lindley distributions(L), whose densities are given by 
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for , , x 0,0     respectively. The first data set represents the number of successive 

failures for the air-conditioning system of each member in a fleet of 13 Boeing 720 jet airplanes 
as shown in Proschan [30]. This data consists of 188 observations and has the following values: 
1, 1, 3, 3, 3,4, 5, 5, 5, 5, 5, 7, 7, 7, 9, 9, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 14, 14, 14, 14, 14, 
14, 14, 14, 15, 15, 16, 16, 16, 18, 18, 18, 18, 18, 18, 20, 20, 21, 22, 22, 22,  23, 23, 23, 24, 25, 26, 
26, 27, 27, 29, 29, 29, 30, 31, 31, 32, 33, 33, 34, 34, 34, 35, 35, 36, 36, 37, 39, 39, 41, 42, 43, 44, 
44, 44, 46, 46, 48, 49, 50, 50, 51, 52, 54, 54, 55, 56, 57, 57, 57, 58,  59, 59, 60, 61, 61, 62, 62, 63, 
65, 66, 67, 70, 71, 71, 72, 74, 76, 79, 79, 80, 82, 84, 87, 88, 90,  90, 95, 97, 97, 98, 100, 100, 101, 
102, 102, 104, 104, 106, 111, 118, 118, 120, 120, 130, 130, 130, 134, 139, 141, 152, 153, 156, 
163, 181, 182, 184, 186, 188, 191, 194, 201, 206, 208, 208, 209, 210, 216, 220, 230, 230, 239, 
246, 254, 261, 270, 283, 310, 320, 326, 359, 386, 413, 438, 487, 493, 502, 603. 

   The second data set consists of 69 observations, which were introduced by Bader and Priest 

[31] as the tensile strength measurements on 1,000 carbon fiber-impregnated tows at four 

different gauge lengths. Its values are 1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 

1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 2.027, 2.055,  2.063, 2.098, 2.140, 2.179, 2.224, 2.240, 

2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359,   2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 

2.511, 2.514, 2.535, 2.554, 2.566, 2.570,    2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 

2.770, 2.773, 2.800, 2.809, 2.818,    2.821, 2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 

3.128, 3.233, 3.433,3.585,    3.585. 
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The third data set represents the waiting times (in minutes) before service of 100 bank 

customers, which was examined and analyzed by Ghitany et al. [32] after fitting the Lindley 

distributions. The values of this data are 0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 

3.3, 3.5, 3.6, 4.0, 4.1, 4.2, 4.2, 4.3, 4.3, 4.4, 4.4, 4.6, 4.7, 4.7, 4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 

6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8.0, 8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 

8.9, 9.5, 9.6, 9.7, 9.8, 10.7, 10.9, 11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13.0, 

13.1, 13.3, 13.6, 13.7, 13.9, 14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 

21.3, 21.4, 21.9, 23.0, 27.0, 31.6, 33.1, 38.5. 

For each distribution, we derive the maximum likelihood estimates (MLE), the maximized 

log likelihood (Log L), the Kolmogorov‒Smirnov statistics (K-S) with its respective p-value, the 

Akaike Information Criterion (AIC), and the Bayesian Information Criterion (BIC). The K-S test is 

valid to test the goodness of fit of underlying distributions to the failure data, as shown in Bagheri 

et al. [33]. The results of all data sets are presented in Table 7, Table 8, and Table 9, respectively. 

The fitted densities and the empirical distribution versus the fitted cdfs for all the data sets are 

shown in Figures 2, 3, and 4, respectively. They indicate that the PLL distribution fits the data 

better than the other distributions, except the first data, which was all mostly the same with LL 

distributions. The KS test statistic takes the smallest value with the largest value of its 

corresponding p-value for the PLL distribution. Moreover, this conclusion is confirmed from the 

log likelihood, the AIC, and the BIC for all the fitted models.  

Table 7: Parameter estimates, KS statistic, P-value, log likelihood, AIC, and BIC of the air-conditioning system. 

Dist.      MLE                          K-S                 p-value             -log(L)              AIC                 BIC          

PLL     

ˆ 0.9907

ˆ 0.0107

ˆ 0.9727













              0.0362            0.9663            1031.9            2069.8        2079.5 

    

LL      

ˆ 0.9932

ˆ 0.008897








             0.0359            0.969              1031.9            2067.8        2074.3   

 

LW     

ˆ 0.9926

ˆ 0.0001

ˆ 1.6344













                0.0403           0.921             1031.8             2069.6        2079.3 

 

LE       

ˆ 0.6669

ˆ 0.0082








                0.0523           0.6815           1035.1             2074.2        2080.7 

  

W       
ˆ

ˆ

0.0170

0.9110








                0.0562            0.5918           1036.8            2078           2084 

  

L        0. 15ˆ 02                    0.2134            0.0000          1082.7             2167.3       2170.5 
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Figure 2. Plots of fitted models of the air-conditioning system data. 

Table 8: Parameter estimates, KS statistic, P-value, log likelihood, AIC, and BIC for carbon fiber tensile strength. 

Dist.      MLE(std.)                K-S                  p-value                 -log(L)               AIC             BIC       

PLL     

0.6094

0.0314

ˆ

ˆ

ˆ 4.1465









          0.0422              0.9993                     49                 104            110.7 

    

LL      
ˆ 0.00001

ˆ 0.6545








        0.4011              0.000                      119.2             242.4         250.9  

LW     

ˆ

ˆ 0.0006

0.861

ˆ 6.9

4

313













             0.0571             0.9684                     49.2              104.3          111  
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LE        
ˆ 0.000001

ˆ 0.4079








         0.4483             0.0000                    130.7              265.4        269.9 

 

W       
ˆ

ˆ

0.0047

5.5049








             0.0563             0.9725                   49.6                103.2         107.7 

 

L        ˆ 0.6545                0.4012              0.000                     119.2              240.4         242.6 

 

 

 

 

 

Figure 3. Plots of fitted models of the carbon fiber tensile strength data. 
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Table 9: Parameter estimates, KS statistics, P-value, log likelihood, AIC, and BIC for the waiting times. 

Dist.      MLE                          K-S                 p-value             -log(L)              AIC                 BIC          

PLL     

ˆ 0.9582

ˆ 0.0385

ˆ 1.3962













            0.0349            0.9997             317.1             640.2            648 

    

LL      

ˆ 0.00001

ˆ 0.1866








              0.0674            0.7542              319                642              647.2   

LW     

ˆ 0.9544

ˆ 0.0023

ˆ 2.1039













             0.0496            0.9664              317.4             640.8           648.6 

 

LE       

ˆ 0.000001

ˆ 0.1012








          0.1739             0.0047               329                662              667.2 

 

W       
ˆ 0.0305

ˆ 1.4585








             0.0587             0.8807              318.7               641.4         646.6 

 

   L        ˆ 0.1866             0.0686              0.7344              319                 640             642.6  
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Figure 5. Plots of fitted models of the waiting time data. 

9. Concluding remarks  

The purpose of this paper was to define a new family of lifetime distributions called the 

GLPS family of distributions, which generalizes the Lindley power series class of distributions 

introduced by Liyanage and Pararai [6]. The GLPS class contains some lifetime subclasses and can 

generates as many useful distributions. The properties of the GLPS class of distributions were 

derived in flexible and useful forms, including density, survival function, hazard rate function, 

quantile function, moments, moments generating function, distribution of order statistics, and 

maximum likelihood estimates. We introduced four subclasses of GLPS distributions in simple 

and flexible ways for researchers. In addition, we introduced power Lindley logarithmic (PLL) 

distribution in details to illustrate the befits of the proposed class. Finally, we fitted the PLL 

distribution to three real data sets and compared it with some existing distributions. 
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