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In the current study, an artificial neural network (ANN)-based breast cancer prediction model was developed
from the data of folate and xenobiotic pathway genetic polymorphisms along with the nutritional and demo-
graphic variables to investigate how micronutrients modulate susceptibility to breast cancer. The developed
ANN model explained 94.2% variability in breast cancer prediction. Fixed effect models of folate (400 μg/day)
and B12 (6 μg/day) showed 33.3% and 11.3% risk reduction, respectively. Multifactor dimensionality reduction
analysis showed the following interactions in responders to folate: RFC1 G80A × MTHFR C677T (primary),
COMT H108L × CYP1A1 m2 (secondary), MTR A2756G (tertiary). The interactions among responders to B12
were RFC1G80A× cSHMTC1420T and CYP1A1m2× CYP1A1m4. ANN simulations revealed that increased folate
might restore ER and PR expression and reduce the promoter CpG islandmethylation of extra cellular superoxide
dismutase and BRCA1.Dietary intakeof folate appears to confer protection against breast cancer through itsmod-
ulating effects on ER and PR expression and methylation of EC-SOD and BRCA1.
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The etiology of breast cancer is complex involving several physiolog-
ical, genetic, environmental, and epigenetic factors (Petrakis, 1977;
McPherson et al., 2000). Given the high incidence of breast cancer in
women, specific emphasiswas givenon the estrogenmetabolismas cat-
echol estrogens were reported to form adducts with DNA, which may
contribute to induce mutagenicity (Cavalieri and Rogan, 2011). On the
other hand, methoxy estrogens were found to be protective (Dawling
et al., 2003). The phase I enzymes belong to cytochrome P450 super
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family and convert estrogens to catechol estrogens (Hachey et al.,
2003). Certain genetic variants of CYP1A1, i.e. CYP1A1 m1, CYP1A1 m4
were reported to induce high expression of CYP1A1 leading to increased
catechol estrogen production (Naushad et al., 2011a). The phase II
enzymes detoxify catechol estrogens by the following mechanisms:
i) O-methylation of catechol estrogens catalyzed by catechol-o-amine
methyl transferase (COMT); ii) conjugation of semiquinones/quinones
(formed by catechol estrogens) with glutathione in the presence of
GSTs (Chen et al., 2004). The COMT H108L and GSTT1/GSTM1 null var-
iants hamper this detoxification process thus exerting the breast cancer
risk (Naushad et al., 2011b).

The methylation of catechol estrogens further depends on the
bioavailability of S-adenosylmethionine (SAM) (JE1 et al., 2002), a
byproduct of one-carbon metabolism (Inoue-Choi et al., 2012). The
dietary folate in the form of folylpolyglutamate enters the intestine
and undergoes hydrolysis to form folylmonoglutamate by the action
of glutamate carboxypeptidase II (GCPII) and thus gets absorbed by
the intestine. Folate reductase catalyzes the two-step reduction of folate
to form dihydrofolate (DHF) and tetrahydrofolate (THF). The THF
from the plasma is transported to RBC with the help of reduced folate
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carrier 1 (RFC1). THF accepts methylene moiety from serine and
forms 5,10-methylene THF in the presence of cytosolic serine
hydroxymethyltransferase (cSHMT). 5,10-methylene THF is the sub-
strate for two enzymes, i.e. thymidylate synthase (TYMS) and methy-
lene tetrahydrofolatereductase (MTHFR), which catalyze the
conversion of dUMP to dTMP, and FAD-dependent reduction of 5,10-
methylene THF to 5-methyl THF. 5-methyl THF remethylates homocys-
teine tomethionine in the presence ofmethionine synthase/methionine
synthase reductase (MTR/MTRR) holoenzyme complex. Methionine is
the precursor for the synthesis of SAM, which is a universal methyl
donor that donates methyl group to DNA, catecholamines and proteins.
Upon donatingmethyl group, SAM is converted to S-adenosyl homocys-
teine (SAH), which gives back homocysteine through hydrolysis
(Naushad et al., 2011a).

Thiamine and cofactors of folate pathway, namely folate, riboflavin,
and vitamin B6, were reported to confer protection against breast can-
cer (Cancarini et al., 2015). Several functional polymorphisms in folate
pathway have been investigated by various researchers for their possi-
ble association with breast cancer (Stevens et al., 2007). In our earlier
study, we reported positive association of RFC1 G80A and MTRR A66G
and inverse association of cSHMT C1420T with breast cancer
(Mohammad et al., 2011).We have also showed the cross-talk between
the folate and xenobiotic metabolic pathways modulating the breast
cancer risk (Naushad et al., 2011b). The folate pathway also plays a piv-
otal role in DNA methylation and thus any deregulation might induce
hypermethylation of tumor suppressors and hypomethylation of
proto-oncogenes,which are hallmarks of cancer (Naushad et al., 2012a).

Dietary folate and cobalamin intake were shown to exhibit inverse
association with methylation of breast cancer 1,early onset (BRCA1),
and retinoic acid receptor, beta (RARB1) (Pirouzpanah et al., 2015).
Breast cancer patients with plasma folate levels in the highest tertile
were reported to have less risk for mortality compared to those with
plasma folate in the lowest tertile (McEligot et al., 2015).Mediterranean
diet rich in cofactors of folate pathwaywas shown to reduce breast can-
cer risk in subjects with MTHFR 677 T and MTR 2756 A variant alleles
(Kakkoura et al., 2015). Higher dietary folate intake was shown to re-
duce risk for the ER-negative breast cancer in pre-menopausal women
(de Batlle et al., 2014). BRCA1 methylation in all types of breast cancers
and Ras association (RalGDS/AF-6) domain family member 1 (RASSF1)
methylation in the ER/PR-negative breast cancers was reported to cor-
relate positively with total plasma homocysteine (Naushad et al., 2014).

In the current study, we have aimed to develop a risk prediction
model for breast cancer by incorporating demographic data, family his-
tory, dietary intake of folate, B2, B6, B12 along with data on the fourteen
polymorphisms of folate and xenobiotic metabolic pathways. The ratio-
nale of this risk predictionmodel was to assess the influence of life style
modulation in bringing down breast cancer risk, specifically by modu-
lating micronutrient intake. In parallel, we have studied folate-
mediated changes in methylome at RASSF1, BRCA1, (BCL2/adenovirus
E1B 19 kDa interacting protein 3 (BNIP3), extracellular superoxide dis-
mutase (EC-SOD) loci.
1. Materials and methods

1.1. Sample size calculation

Based on our previous study, the difference in means of plasma
folate levels between controls vs. basal-like breast cancer was 0.62,
standard deviation was 1.2, the ratio of controls to basal-like breast
cancer was 5.0. Hence, 36 basal-like breast cancers and 240 healthy
controls were required to obtain 80% power with type I α error of
0.05. The incidence of basal-like breast cancer in India was reported to
vary from 12.5% to 29.8%. Hence, assuming the incidence to be around
12.5%, the required number of total breast cancer samples was calculat-
ed as 288.
1.2. Recruitment of subjects

We have conducted a case–control study by recruiting 342 breast
cancer patients and 253 normal healthy controls in the Departments
of Medical and Surgical Oncology, Nizam's Institute of Medical Sciences,
Hyderabad, India, during the period of June 2009 to June 2012. The
diagnosis of breast cancer was based on the mammogram and histo-
pathological examination of the biopsy. The inclusion criteria were
i) patients aged between 18 and 70 yr. with confirmed diagnosis of
breast cancer based on mammography and histopathological examina-
tion; ii) controls matched with cases in terms age, ethnicity, and geo-
graphical location with no history of any benign or malignant breast
disease; and iii) subjectswilling to give informed consent. The exclusion
criteria were i) patients with any co-morbid disorder or malignancy;
ii) cases already under radiation and chemotherapy will be excluded
from methylation studies; and iii) patients whose medical records are
not accessible. The Institutional Ethical Committee of Nizam's Institute
of Medical science (NIMS), Hyderabad India, has approved the study
protocol (EC/NIMS/767/2007, dated 05.09.2008). The informed consent
was obtained from all the subjects.

1.3. Measurements

From all the subjects, the demographic characteristics such as age
(yr), body mass index (BMI, kg/m2), age of menarche (yr), parity, and
the menopausal status (pre-/post-menopausal) were recorded during
personal interviews conducted by a team of trained researchers. To cal-
culate bodymass index, height andweightwere recorded to the nearest
measurement of 0.1 cm and 0.1 kg, respectively. The estrogen exposure
time was calculated based on the age of menarche and age of
menopause (post-menopausal)/age at the time of sample collection
(pre-menopausal).

1.4. Dietary assessment

All the participantswere asked to complete a dietary record of all the
food items consumed and their quantity for 4-day period fromThursday
to Sunday as this method is validated and being followed by National
Diet and Nutrition Survey in the United Kingdom. The data obtained
were segregated into white vegetables, green vegetables, leafy vegeta-
bles, fruits, milk products, and non-vegetarian foods. The dietary intake
of folate, vitamins B2, B6, and B12 was assessed based on these diaries.
The nutritive value of Indian foods (Gopalan et al., 1989), McCance
and Widdowson's the composition of foods (Krebs, 2002), and the
United States Department of Agriculture's National Nutrient Database
for Standard Reference release 18 (USDA, Washington, DC, USA) (U.S.
Department of Agriculture and Agricultural Research Service., 2006)
were referred to calculate micronutrient quantity per food item. Aver-
age daily nutrient intakes were calculated as grams of food multiplied
by the amount of each micronutrient in the food and the frequency of
consumption, summing over all the foods consumed. None of the sub-
jects enrolled in this study were on any vitamin supplements.

1.5. Immunohistochemistry

Immunohistochemistry for ER, PR, HER2/Neu was performed on the
serial sections of paraffin-embedded breast cancer tissues using the
standard streptavidin–biotin complexmethodwith 3, 3′-diaminobenzi-
dine as the chromogen. ER antibody (Clone SP1, Lab Vision)was used at
1:250 dilution in 10 mM citrate buffer (pH 6.0) with an 8-min micro-
wave antigen retrieval. PR antibody (Clone 1E2, Ventana) was used as
per the Ventana automated stainer standard CC1 protocol. HER2 anti-
body (Clone SP3, Lab Vision) was used at 1:100 dilution in 0.05 M Tris
buffer (pH 10.0) with heat-induced antigen retrieval at 95 °C for 30min.

Biomarker expression from immunohistochemistry assays was
scored by two pathologists, whowere blinded to the clinicopathological
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characteristics. If immunostaining was observed in more than 1% of
tumor nuclei, the tumor was considered positive for ER or PR. If immu-
nostaining was scored as 3+ according to HercepTest criteria, the
tumor was considered positive for HER2.

1.6. Genetic analysis

Whole blood in EDTA vacutainer and tumor biopsies were collected
from the breast cancer patients and only blood samples were collected
from the controls. DNA was isolated using proteinase K digestion
followed by phenol–chloroform extraction from these samples. PCR-
RFLP approach was used for the analysis of GCPII C1561T, RFC1 G80A,
cSHMT C1420T, TYMS 3′-UTR ins6/del6, MTHFR C677T, MTR A2756G,
MTRR A66G, CYP1A1m1, CYP1A1m2, CYP1A1m4, and COMT H108L
polymorphisms. PCR-AFLP method was used for the analysis of TYMS
5′-UTR 28 bp tandem repeat. Multiplex PCR was used to detect GSTT1
and GSTM1 null variants. The detailed protocols of all this analysis
were described elsewhere (Mohammad et al., 2011; Naushad et al.,
2014). In order to ensure quality in genotyping, all restriction digestion
experiments were accompanied by positive and negative controls that
ensure quality of digestion. The genotyping was repeated in 70 random
samples and 100% concordance in genotyping was obtained. (Supple-
mentary Table 1).

1.7. Methylome analysis

The linear sequence of candidate genes (including the promoter re-
gion)was retrieved from Fasta (NCBI database). Using CpG islandfinder
software (http://dbcat.cgm.ntu.edu.tw/), CpG motifs were identified in
target genes (Fig 1). By using methylation primer designing software
(http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi), spe-
cific primers were designed for melting curve methylation analysis
and bisulfite-sequencing. The genomic DNA isolated from tissues was
denatured for 10 min in 2 M NaOH at 37 °C before the addition of
30 μl of 10 mM hydroquinone (SIGMA) and 520 μl of 3 M sodium
bisulphite (pH 5.0). Themixturewas incubated for 16 h at 50 °C. The re-
sultantmodifiedDNAwaspurified using aWizardDNAPurification Sys-
tem (Promega,Madison,WI, USA), afterwhich it was again treatedwith
NaOH and precipitated. Finally, the DNAprecipitate was resuspended in
20 μl of millipore water and stored at −20 °C until used. Methylation-
specific PCR (MSP) was performed to study promoter methylation of
RASSF1, BRCA1, and EC-SOD. Combined bisulfite restriction analysis
(COBRA) was performed to study promoter methylation of BNIP3
(Naushad et al., 2011b; Naushad et al., 2014; Naushad et al., 2012b).
(Supplementary Table 2)
Fig. 1. CpG island methylome mapping. The promoter sequence of RASSF1A, BRCA1, BNIP3, and E
The most dense CpG islands were represented in red. Other CpG islands were represented in b
1.8. Estradiol estimation

For the estimation of estradiol in serum, the commercially available
ELISA KIT (DRG Diagnostics, Marburg, Germany) was used. The assay
was performed as per the manufacturer's instructions.

1.9. Development of artificial neural network (ANN)

The ANN model was developed using the computation tool
“MATLAB (R2013a).” To develop this model, 26 input variables and 1
target variable were used. The input variables were plasma estradiol
(pg/ml), estrogen exposure time (yr), age (yr), BMI (kg/m2), age of
menarche (yr), parity, menopausal status (pre/post), family history of
breast cancer (yes/no), GCPII C1561T, RFC1 G80A, cSHMT C1420T,
TYMS 5′UTR 28 bp tandem repeat, TYMS 3′UTR ins6/del6, MTHFR
C677T, MTR A2756G, MTRR A66G, COMT H108L, CYP1A1m1, CYP1A1
m2, CYP1A1 m4, GSTT1, GSTM1, folate, B2, B6, B12. The target variable
represented the presence or absence of the disease.

Neural network pattern recognition tool of MATLAB was used to
generate a two-layered feed forward network with sigmoid hidden
neurons and linear output neurons. The number of hidden layers opti-
mized to be 10. For training the ANN, 75% of the data were used and
for validation and testing, 15% of the data each was used. Training was
based on the conjugate gradient back propagation. The receiver operat-
ing characteristic (ROC) curves and confusion matrix plots were gener-
ated indicating the performance of the ANN model.

Neural network clustering toolwas used to ascertain the potential of
four gene methylome in classifying the breast cancer cases. The data
were arranged based on immunohistochemical phenotypes and self-
organizing map (SOM) batch algorithm was used to train the network.
The data were presented in the form of SOM weight planes.

1.10. Multifactor dimensionality reduction (MDR) analysis

All the genetic polymorphisms were considered as input variables
and computed as×1, ×2, ×3, and the presence or absence of the disease
was used as a class. MDR analysis was performed using computational
platform www.multifactordimensionalityreduction.org. This platform
strategically identified the most important genetic variables and
explored bivariate and trivariate interactions. Furthermore,
Frutcherman–Rheingold plots were obtained that identify epistatic
and hypostatic alleles based on entropy values. The strength of interac-
tion between the variables measured in terms of color scale and entro-
py, wherein blue represents redundancy and gradation upto red
(BGYOR) showing increasing strength of interaction.
C-SODwas computed using “http://dbcat.cgm.ntu.edu.tw/” to identify dense CpG islands.
lue while the CpG sites were represented in yellow.

http://dbcat.cgm.ntu.edu.tw
http://www.multifactordimensionalityreduction.org
http://dbcat.cgm.ntu.edu.tw


Table 1
Distribution of continuous variables in breast cancer cases and controls.

Input variable Mean ± SD P value

Cases Controls

Age (yr) 51.34 ± 13.20 49.92 ± 12.04 0.17
Body mass index (kg/m2) 26.25 ± 6.23 25.38 ± 4.81 0.06
Age of menarche (yr) 13.24 ± 1.26 13.18 ± 1.37 0.58
Parity 2.57 ± 1.51 2.65 ± 1.58 0.53
Estradiol (pg/ml) 124.96 ± 32.52 118.25 ± 21.72 b0.005
Estrogen exposure time (yr) 38.10 ± 13.29 35.73 ± 12.10 0.03
Folate intake (μg/day) 341.56 ± 110.45 377.25 ± 140.97 0.0006
B2 intake (μg/day) 1.27 ± 0.42 1.22 ± 0.46 0.17
B6 intake (μg/day) 1.51 ± 0.36 1.47 ± 0.40 0.20
B12 intake (μg/day) 5.96 ± 1.51 5.94 ± 1.26 0.86

SD: standard deviation; p b 0.05: statistically significant. Bold entries represent statistical
significance.
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1.11. Statistical analysis

Fisher exact test was performed for the univariate analysis by com-
puting the genetic data in 2× 2 contingency table based on the presence
or absence of variable in cases and controls. Odds ratio (OR) and 95%
confidence interval (CI) and phi coefficient were obtained by this anal-
ysis. In order to minimize the confounding effects of other risk factors,
multiple logistic regression analysis was performed,which demonstrat-
ed independent genetic effects in terms of adjusted odds ratios and 95%
CI. Student t-test was performed to analyze the distribution of continu-
ous variables in cases and controls. For all the analyses, only data avail-
able were used without considering any missing values.

1.12. Results

As shown in the flowchart 1, out of 342 cases and 253 controls, DNA
samples extracted from whole blood samples were available from all
the subjects and were used for genetic analysis. The DNA extracted
Table 2
Distribution of folate and xenobiotic polymorphisms in breast cancer cases and controls.

Polymorphism Study group WW WM M

GCPII C1561T Cases 297 45
Controls 203 50

RFC1 G80A Cases 112 162
Controls 99 137

SHMT C1420T Cases 64 181
Controls 24 154

TYMS 5′ 3R/2R Cases 136 152
Controls 111 116

TYMS 3′ ins6/del6 Cases 87 165
Controls 59 136

MTHFR C677T Cases 269 69
Controls 222 30

MTR A2756G Cases 165 160
Controls 126 117

MTRR A66G Cases 93 233
Controls 80 161

COMT H108L Cases 122 154
Controls 120 107

CYP1A1 m1 Cases 168 125
Controls 140 98

CYP1A1 m2 Cases 221 108
Controls 144 99

CYP1A1 m4 Cases 274 68
Controls 240 13

GSTT1 Cases 255 87
Controls 205 48

GSTM1 Cases 228 114
Controls 168 85

WW: wild; WM: heterozygous; MM: homozygous mutant; OR: odds ratio; CI: confidence inte
from tissues was adequate for methylome analysis in 300 samples.
Only 258 cases and 245 controls responded with 4-day food frequency
dietary records. Paraffin-embedded tissue blocks for immunohisto-
chemistry were available only in 262 breast cancer cases.
1.13. Univariate analysis

The mean age of breast cancer cases and controls were 51.34 ±
13.20 yr. and 49.92 ± 12.04 yr., respectively. The body mass index of
breast cancer cases was higher than controls, but not statistically signif-
icant. Breast cancer cases exhibited higher estradiol levels and increased
exposure time to estrogens than the controls. Breast cancer cases had
lower dietary intake of folate as compared to healthy controls. (Table 1).

Based on the ER, PR, and HER2/Neu, breast cancer cases were classi-
fied as luminal A (ER and PR positive and HER2 negative): 92, luminal B
(ER/PR weakly positive and HER2 negative): 41, luminA-HH (ER, PR,
and HER2 positive): 47, luminB-HH (ER/PR weakly positive and HER2
positive): 21, HER-enriched (ER/PR negative and HER2 positive): 21,
and basal-like (ER, PR and HER2 negative): 40.

Table 2 represents the distribution of 14 genetic polymorphisms in
breast cancer cases and controls. All the cases and controls showed ge-
notype distribution in accordance with Hardy–Weinberg equilibrium
except for MTR A2756G and MTRR A66G polymorphisms in both the
groups; and RFC1 G80A and cSHMT C1420T in controls. As shown in
Fig 1, out of fourteen polymorphisms, three were protective, seven
were associated with risk, and four showed null association with breast
cancer. RFC1 G80A, TYMS 5′-UTR 28 bp tandem repeat, MTHFR C677T,
COMT H108L, CYP1A1 m1, CYP1A1 m4, GSTT1 null variant were
shown to increase risk for breast cancer. GCPII C1561T, cSHMT
C1420T, CYP1A1 m2 were found to confer protection. Multiple logistic
regression analysis showed no independent protective role of GCPII
C1561T and cSHMT C1420T after adjusting for the confounding factors.
Null association was observed with TYMS 3′-UTR ins6/del6, MTR
A2756G, MTRR A66G, and GSTM1 null variant (Fig 2).
M PHWE Adjusted
OR

95% CI P value

0 0.58 0.64 0.40–1.04 0.07
0 0.31

68 0.80 1.60 1.22–2.10 0.0006
17 0.003
97 0.42 0.81 0.61–1.07 0.14
75 0.002
54 0.60 1.35 1.04–1.76 0.03
26 0.85
90 0.81 1.02 0.79–1.32 0.87
58 0.45
4 1.00 2.00 1.25–3.22 0.004
1 1.00

17 0.02 1.19 0.88–1.62 0.26
10 0.03
16 0.0001 1.32 0.94–1.85 0.11
12 0.0001
66 0.41 1.52 1.17–1.96 0.002
26 0.96
49 0.01 1.48 1.13–1.94 0.005
15 0.96
13 1.00 0.63 0.46–0.87 0.005
10 0.38
0 0.16 4.99 2.60–9.56 b0.0001
0 1.00
- 0.53 1.64 1.06–2.54 0.03
- 0.74
- 0.24 0.86 0.59–1.26 0.44
- 0.34

rval; p b 0.05: statistically significant. Bold entries represent statistical significance.



Fig. 2. Association of genetic polymorphisms with breast cancer risk. This illustrates the
association of fourteen genetic polymorphisms with breast cancer risk in terms of phi
coefficients. The “+” and “−”symbols of the phi coefficient are suggestive of positive
and inverse association. The digital value is an index of strength of association with
breast cancer. RFC1 G80A,TYMS5′ UTR 28 bp tandem repeat, MTHFR C677T, COMT
H108L, CYP1A1m1, CYP1A1m4, and GSTT1 null polymorphisms showed positive
association while GCPII C1561T and cSHMT C1420T showed inverse association with
breast cancer.

Fig. 3. Receiver operating characteristic curves of artificial neural networkmodel. This illustrates th
(B) validation, (C) testing, and (D) whole datasets.
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1.14. ANN model

The training, validation, and testing datasets showed 100%, 84.6%,
and 76.9% accuracy in predicting the breast cancer risk. The whole
dataset showed 94.2% accuracy (Figs 3 & 4). In order to assess the ben-
eficial effects of micronutrients, we have developed fixed effect models
of folate and B12. Dietary intake of 400 μg folate was shown to reduce
risk for breast cancer by 33.3%. The fixed effect model of folate showed
benefit in reducing breast cancer risk in the following genotype combi-
nations: RFC1 G80A × MTHFR C677T, COMT H108L × CYP1A1 m2, and
MTR A2756G (Fig 5).

The fixed effect model of B12 showed 11% risk reduction with
6 μg/day intake. The MDR analysis revealed the possible benefit
with B12 in following genotype combinations: RFC1 G80A × cSHMT
C1420T and CYP1A1 m2 × CYP1A1 m4 (Fig 6).

In order to ensure nutri-genomics potential of this ANN model, we
have performed simulations on the data of a 40 yr. old pre-
menopausal woman whose BMI was 28.4 kg/m2 and was affected
with triple negative breast cancer. This woman has multiple risk alleles
as shown below: RFC1 80 AA, cSHMT 1420 CT, TYMS 3′-UTR del6/del6,
MTR2756 AG,MTRR 66 AG, COMT108HL, CYP1A1m1/m1, GSTM1 null.
Her folate intake at the time of diagnosis was 224 μg/day. The ANN sim-
ulations showed restoration of ER and PR expression with increased
e performance of ANNmodel in terms of true positive vs false positive rates in (A) training,



Fig. 4. Confusion matrix ANN model. This illustrates confusion matrix of ANN model, which suggests 100%, 84.6%, 76.9%, 94.2% accuracy in (A) training, (B) validation, (C) testing, and
(D) whole datasets.
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folate. However, no improvement was observed in HER2 expression
(Fig 7).

This ANN model was also capable of predicting methylation at four
loci, i.e. extracellular superoxide dismutase (EC-SOD), RASSF1A,
BRCA1, and BNIP3with an accuracy of 98.7%, 99.6%, 99.8%, and 99.9%, re-
spectively. The distribution of these four markers was found to be dis-
tinct from one another and together they are forming four clusters
(Fig 8). Triple negative breast cancer cases, which formed the top
nodes of the clustering model, exhibited hypermethylation of RASSF1A
and BRCA1 in comparison to other immunohistochemical phenotypes.
The pattern of input 1 (RASSF1) showed inverse association with
input 4 (BNIP3) methylation. EC-SOD methylation showed no specific
association with any immunohistochemical breast cancer phenotype.
The ANN simulations showed reversal of CpG methylation in EC-SOD
and BRCA1 with increased folate intake (Fig 9).
Fig. 5. Fixed folate model. The ANNmodelwas used to simulate breast cancer risk patternwhen d
analysiswas performed to identify genotype combinations that are likely to be benefitedwith fo
andMTHFR, second-order interactions between COMT and CYP1A1m2, and third-order interac
important polymorphisms that are benefited by folate. The interactions among RFC1 MTHFR, C
2. Discussion

In the current study, we have attempted to explore the individual
genetic effects and the gene–gene interactions that are likely to bemod-
ulated through intake of folate and B12 thus contributing to reduced risk
of breast cancer. The univariate analysis results justify the rationale of
the study by demonstratinghigher plasmaestradiol, increased exposure
time to estrogens, and folate deficiency in the breast cancer patients.
Due to complexity of interaction among the physiological, nutritional,
and genetic factors, we have employed artificial neural network model
to simulate these interactions. The risk prediction model exhibited
94.2% accuracy in the prediction of breast cancer risk. Earlier studies
have used the additive genetic model (Kraft et al., 2009; Naushad
et al., 2015), MDR model (Naushad et al., 2011b), and recursive
partitioning analysis (Xu et al., 2007) to explore gene–gene interactions.
ietary folate intakewas considered to be 400 μg/day.Multifactor dimensionality reduction
late supplementation. (A) The dendrogram revealedfirst-order interactions between RFC1
tionwithMTR. (B) The Frutcherman–Rheingold plot showed RFC1 CYP1A1m2 as themost
OMT, and MTR were found to be stronger.



Fig. 6. Fixed B12model. TheANNmodelwas simulated to assess breast cancer risk patternwhendietary B12 intakefixed to be 6 μg/day. (A) The dendrogram showed that RFC1× cSHMTand
CYP1A1m2× CYP1A1m4 genotype combinations likely to be benefitedwith B12. (B) The Frutcherman–Rheingold plot showed CYP1A1m2 as the important predictorwith interactions of
RFC1 × cSHMT and CYP1A1 m2 × CYP1A1 m4 being stronger.

Fig. 7. Impact of folate intake on ER, PR, HER2/Neu expression. The ANNmodelwas simulated
based on a triple negative breast cancer case whose dietary intake of folate was 224 μg/
day. Increased folate was shown to restore ER and PR expression. However, no
significant change was observed in HER2/Neu expression.
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Earlier, we have reported lower plasma folate levels in the breast
cancer patients compared to healthy controls (Naushad et al., 2012a),
which substantiated the current association between folate deficiency
and breast cancer. Higher intake of folate, vitamin B6, and vitamin B12
was found to nullify the risk for breast cancer associated with MTHFR
677 T and MTR 2756G variant alleles in Chinese population (Jiang-Hua
et al., 2014). Although, no direct protective role of plasma vitamin B12
was observed in our previous study (Naushad et al., 2014), we have
shown inverse association of plasma vitamin B12 with CpG methylation
of RASSF1 and BRCA1 loci (Naushad et al., 2014).

An ANN model for the breast cancer prediction using demographic
risk factors such as age, BMI, age of menarche, estrogen exposure dura-
tion, age of first full-term pregnancy, number of children, menopausal
status, and family history of breast cancer as input variables showed
moderate predictability (AUC = 0.64) (Lee et al., 2015). The current
study also highlighted higher plasma estradiol levels, increased expo-
sure to estrogens, and low folate intake as the important risk factors
for breast cancer. Another ANN model showed moderate predictability
for breast cancer with genetic (AUC = 0.603) or imaging parameters
(AUC = 0.693) while the combined model showed improvement in
predictability (AUC = 0.731) (Liu et al., 2013). In our current model,
the inclusion of nutritional and genetic factors along with the demo-
graphic factors enhanced the predictability (AUC= 0.99). Furthermore,
an attempt was made to predict ER, PR, and HER2/Neu expressions
with the demographic, nutritional, and genetic polymorphisms as the
predictors. This model performed well with excellent predictability
(AUC = 0.99).

The ANN simulations of the current study demonstrated the benefi-
cial effects of folate in reversing the methylation of BRCA1, which is in
agreement with a previous study that showed increased BRCA1 and
mRNA expression in HepG2, Huh-7D12, Hs578T, and JURKAT cell lines
following treatment with folic acid (Price et al., 2015). The inverse
association of folate intake and SODmethylation corroborated with an-
other study that showed beneficial effects of folate and B12 in the up-
regulation of anti-oxidant defense enzymes (Majumdar et al., 2012).
High consumption of fruits and vegetables was reported to confer pro-
tection against the breast cancer risk (Karimi et al., 2015). The positive
association of folate with ER and PR expression is in agreement with a
previous study that showed increased methylation and more ER nega-
tivity in subjects having low dietary folate intake (Christensen et al.,
2010). Earlier, we have reported lower plasma folate levels in basal-
like breast cancer and higher folate levels in Luminal A-HH, which sup-
ports the association of ER and PR expressionwith folate (Naushad et al.,
2012a). The current study showing BRCA1 hypermethylation in basal-
like breast cancer denotes the link between the folate deficiency and
BRCA1 methylation.

The RFC1 G80A polymorphism was reported to be a risk factor for
gastro-esophageal cancer (Wang et al., 2006), cleft lip (Vieira et al.,
2008), pre-term birth (Wang et al., 2015), and colorectal adenoma
(Levine et al., 2011). Shorter telomere length was observed in subjects
with RFC1 80 AA-genotype (Milne et al., 2015).

Our results showing association of CYP1A1 m1 with breast cancer
risk are in agreementwith Li et al. (Li et al., 2005). However, this associ-
ation was not consistent across the different ethnic groups and popula-
tion (Singh et al., 2007; Okobia et al., 2005; Li et al., 2004; Zhang et al.,
2004). Our study explains these discrepancies by highlighting the im-
portance of the gene–gene and gene-nutrient interactions rather than
the individual genetic effects.

The beneficial effects of folate in subjects with RFC1 G80A and
MTHFR C677T can be explained based on the biological mechanisms.
RFC1 is a folate carrier that facilitates transport of folate into RBC.
RFC1 G80Apolymorphismwas reported to be associatedwith lower cir-
culating folate levels (Naushad et al., 2011c). Under conditions of severe
folate deprivation, RFCmRNA levels were reported to decrease 2.5-folds
(Ifergan et al., 2008). These two studies support that higher dietary
folate may negate RFC1 impairment by inducing RFC1 expression.
MTHFR is a rate-limiting enzyme of folate pathway whose activity dic-
tates the direction of flux of folate and when folate availability is ade-
quate, both processes, i.e. thymidine synthesis and remethylation of
homocysteine, will not be affected. COMTH108L induces heat labile var-
iant of COMT thus impairing the conversion of catechol estrogen to
methoxyestrogen. When folate is adequate, it increases SAM synthesis
and thus facilitates more methoxyestrogen production. The beneficial
effects of B12 in RFC1 G80A and cSHMT C1420T could be due to possible
stabilization of MTR/MTRR holoenzyme complex through adequate
availability of co-factor methyl cobalamin that increases rate of
remethylation thus maintaining adequate SAM.

The major strength of the current study is the utilization of artificial
neural network platform to delineate complex gene–gene and gene–
nutrient interactions. The current study provides rationale for folate
supplementation programsbyhighlighting the genotypes that are likely
to benefit by such programs. The utilization of MDR analysis along with
ANN helped in achieving this objective. However, this retrospective
study should be confirmed in the future through the prospective stud-
ies. Inter-observer variability in gathering the information of the sub-
jects was minimized by using standardized protocols for the data
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Fig. 9. Impact of dietary folate intake on CpG island methylation of the promoter. The ANN
model of methylome predicted inverse association of folate with SOD, BRAC1, and BNIP3
methylation. However, RASSF1A methylation showed positive association with folate.
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collection and training the personnel. The personnel involved in the an-
alytical aspects of the studywere blinded regarding the case/control sta-
tus of the sample. In order to detect any selection bias, Hardy–Weinberg
equilibrium statistics was employed. Multiple logistic regression analy-
sis was performed to adjust for the confounding effects of other vari-
ables. The current ANN model can be upgraded by including ethnicity
as a variable so as to improve the generalizability of the model. Never-
theless, the previous studies (Pirouzpanah et al., 2015; McEligot et al.,
2015; Kakkoura et al., 2015; de Batlle et al., 2014; Naushad et al.,
2014) corroboratewith ourfindings bydemonstrating folate as an effect
modifier, specifically when the risk is mediated through aberrations in
folate metabolism.

To conclude, higher plasma estradiol, higher exposure time to estro-
gen, folate deficiency, and perturbations in folate and xenobiotic path-
way may increase the breast cancer risk. Fixed dose effects of folate
and B12 suggest that increased intake of these two micronutrients
might reduce the breast cancer risk by correcting the intracellular folate
levels. Folate can influence breast cancer phenotype by modulating ER
and PR and also by altering the methylome of SOD and BRCA1.
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