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Abstract A new correlation for solution gas–oil ratio (Rs)

for gas condensate reservoir was developed in this paper by

using genetic programming algorithm of a commercial

software (Discipulus) program. Matching PVT experi-

mental data with an equation of state model, a commercial

simulator (Eclipse simulator) was used to calculate the

solution gas–oil ratio (Rs) values used in this study. More

than 1,800 solution gas–oil ratio (Rs) values obtained from

the analysis of eight gas condensate fluid PVT laboratory

reports, selected under a wide range of reservoir tempera-

ture and pressure, composition and condensate yield, were

used. Comparisons of the results showed that currently

published correlations of gas–oil ratio (Rs) for gas con-

densate gave poor estimates of its value (the average

absolute error for Standing correlation was 63.48 with a

standard deviation (SD) equal to 0.724, the average abso-

lute error for Glaso correlation was 61.19 % with a SD

equal to 0.688, the average absolute error for Vasques and

Beggs correlation was 52.22 % with a SD equal to 0.512,

the average absolute error for Marhoun correlation was

56.34 % with a SD equal to 0.519 and the average absolute

error for Fattah et al. correlation was 18.6 % with a SD

equal to 0.049). The proposed new correlation improved

extensively the average absolute error for gas condensate

fluids. The average absolute error for the new correlation

was 10.54 % with a SD equal to 0.035. Also, the hit-rate

(R2) of the new correlation was 0.9799 and the fitness

variance was 0.012. The importance of the new correlation

comes from depending only on readily available produc-

tion data in the field and can have wide applications when

representative PVT lab reports are not available.

Keywords Gas–oil ratio correlation � PVT laboratory

report � Genetic programming � Gas condensate � Modified

black oil simulation

Introduction

Material balance equation is a useful method of reservoir

performance analysis. It is routinely used to estimate oil,

and gas reserves and predict future reservoir performance.

Schilthuis, in 1936, was among the first to formulate and

apply material balance analysis. As time progressed, more

sophisticated material balance models evolved, each

striving for greater generality.

Application of two-hydrocarbon-component, zero-

dimensional material balance model had been restricted to

black-oil or dry-gas reservoirs. As gas condensate reser-

voirs exploration increases, there has been a growing need

to address this limitation.

Spivak and Dixon (1973) introduced the modified black

oil (MBO) simulation approach. The PVT functions for

MBO simulation and material balance calculations of gas

condensate are (condensate–gas ratio Rv, solution gas–oil

ratio Rs, oil formation volume factor Bo, and gas formation

volume factor Bg). The MBO approach assumes that stock-

tank liquid component can exist in both liquid and gas

phases under reservoir conditions in gas condensate

reservoir.
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A few authors have addressed the question of how best

to generate the PVT properties for gas condensate.

Whitson and Trop (1983) used laboratory constant vol-

ume depletion (CVD) data to calculate ‘‘MBO’’ PVT

fluid properties Bo, Rs, Bg and Rv for gas condensate

fluids. Coats (1985) suggested a different approach from

Whitson and Torp’s (W&T) to calculate the MBO

properties for gas condensates. Walsh and Towler (1994)

suggested a new simple method to compute the black-oil

PVT properties of gas condensate reservoirs. Fevang

et al. (2000) presented guidelines to help engineers

choose between MBO and compositional approaches.

Fattah et al. (2009) presented new correlations to develop

MBO PVT properties when PVT fluid samples reports are

not available.

Most of the methods in the literature for generating

MBO PVT fluid properties (Bo, Rs, Bg and Rv) for gas

condensate need a combination of lab experiments and

elaborate calculation procedures.

This study involves two parts: the first part includes a

comparison between the different correlations used to

calculate the solution gas–oil ratio (Rs) for gas condensate

to determine the most accurate one. The second part

involves the development of a new correlation to calculate

Rs for gas condensate reservoir using genetic algorithm

methods. Validation of the new correlation is achieved

through comparison between the new correlation value of

Rs and Rs generated by Whitson and Torp method from

PVT lab data.

Fluid samples

Eight gas condensates (GC) samples are used in this study.

The samples were obtained from reservoirs representing

different locations and depth, and were selected to cover a

wide range of gas condensate fluid characteristics. Some

samples represent near-critical fluids as explained by

McCain and Bridges (1994). Table 1 presents a description

of the major properties of these eight fluid samples.

EOS models in a commercial simulator (Eclipse simu-

lator) were used to develop an EOS model for each sample

in Table 1. Tuning the EOS model that matched as best as

possible the experimental results of all available PVT

laboratory experiments (CCE, DL, CVD, and separator

tests) was constructed. The procedure suggested by Coats

and Smart (1986) to match the laboratory results was fol-

lowed. For consistency, all EOS models were developed

using Peng and Robinson (1976) EOS with volume shift

correction (3-parameter EOS).

Approach

The developed EOS model for each sample in Table 1 was

used to output MBO PVT properties (Rv, Rs, Bo, and Bg) at

six different separator conditions using Whitson and Trop

(1983) procedure. The extracting data for the MBO PVT

properties involves 1,836 points from the different eight

gas condensate samples. The first part was to compare

Table 1 Characteristics of fluid samples

Property GC 1 GC 2 GC 3 GC 4 GC 5 GC 6 GC 7 GC 8

Reservoir temperature (oF) 312 286 238 256 186 312 300 233

Initial reservoir pressure (psig) 14,216 NA 6,000 7,000 5,728 14,216 5,985 17,335

Initial producing gas–oil ratio (SCF/STB) 3,413 4,278 NA 4,697 5,987 8,280 6,500 6,665

Stock oil gravity (o API) 45.6 NA NA 46.5 58.5 50.7 45.6 43

Saturation pressure (psig) 5,210 5,410 4,815 6,010 4,000 5,465 5,800 11,475

Components Composition (mole %)

CO2 2.66 4.48 0.14 0.01 0.18 2.79 6.98 0.36

N2 0.17 0.70 1.62 0.11 0.13 0.14 1.07 0.31

C1 59.96 66.24 63.06 68.93 61.72 66.73 65.25 81.23

C2 7.72 7.21 11.35 8.63 14.1 10.22 8.92 5.54

C3 6.50 4.00 6.01 5.34 8.37 5.90 4.81 2.66

iC4 1.93 0.84 1.37 1.15 0.98 1.88 0.85 0.62

nC4 3.00 1.76 1.94 2.33 3.45 2.10 1.75 1.06

iC5 1.64 0.74 0.84 0.93 0.91 1.37 0.65 0.47

nC5 1.35 0.87 0.97 0.85 1.52 0.83 0.69 0.52

C6 2.38 0.96 1.02 1.73 1.79 1.56 0.83 0.84

C71 12.69 12.2 11.68 9.99 6.85 6.48 8.2 6.39

292 J Petrol Explor Prod Technol (2014) 4:291–299

123



between the extracted RS and the most common Rs corre-

lations to determine the most accurate one.

The second part involved the development of a new

correlation to calculate Rs for gas condensate reservoir

using genetic algorithm program.

Genetic programming

Genetic algorithms, evolution strategies and genetic pro-

gramming belong to the class of probabilistic search pro-

cedures known as evolutionary algorithms that use

computational models of natural evolutionary processes to

develop computer-based problem-solving systems. Solu-

tions are obtained using operations that simulate the evo-

lution of individual structures through mechanism of

reproductive variation and fitness-based selection. Due to

their reported robustness in practical applications, these

techniques are gaining popularity and have been used in a

wide range of problem domain. The main difference

between genetic programming and genetic algorithm is the

representation of the solution. Genetic programming cre-

ates computer programs as solution, whereas genetic

algorithm creates a string of numbers to represent the

solution. Genetic programming is based on the Darwinian

principle of reproduction and survival of the fittest and

analogs of naturally occurring genetic operations such as

crossover and mutation (Koza 1992). Genetic program-

ming uses four steps to solve a problem (Koza 1997):

1. Generate an initial population of random compositions

of the functions and terminals (input) of the problem.

2. Execute each program in the population and assign a

fitness value.

3. Create a new offspring population of computer

programs by copying the best programs and creating

new ones by mutation and crossover.

4. Designation of the best computer program in the

generation.

Solution gas–oil ratio (Rs) correlations

This part presented the comparison between the common

correlations used to calculate the solution gas–oil ratio (Rs)

for gas condensate in the literature. The comparison of the

Vasques and Beggs correlation (1980) with the observed Rs

for gas condensate result in average absolute error of

52.22 % with a SD equal to 0.512. Figure 1 presents cross-

plots for Rs (Vasques and Beggs) vs. Rs (observed) for gas

condensate samples. The comparison of the Standing cor-

relation (1947) results in average absolute error of 63.48 %

with a SD equal to 0.724. Figure 2 shows cross-plots for

Standing correlation. The comparison of the Glaso correla-

tion (1980) results in average absolute error of 61.19 % with

a SD equal to 0.688. Figure 3 displays cross-plots for Glaso

correlation. The comparison of the Marhoun correlation

(1988) results in average absolute error of 56.34 % with a SD

equal to 0.519. Figure 4 presents cross-plots for Glaso cor-

relation. The comparison of the Fattah et al. correlation

(2009) results in average absolute error of 18.66 % with a SD

equal to 0.049, which is the best correlation in the literature.

Figure 5 shows cross-plots for Fattah et al. correlation.
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Developed gas–oil ratio correlation (Rs) for gas

condensate using Genetic Program

The second part in this study involved the development of

the new correlation to calculate Rs for gas condensate res-

ervoir using genetic algorithm program. A commercial

Genetic Programming system called Discipulus was used to

develop the new Rs correlation (Foster 2001, Francone

2004). ‘‘Discipulus is a steady state genetic programming

system, using tournament selection in which two pairs of

individuals compete each round for reproduction. All the

usual parameters can be adjusted with Discipulus: crossover

rate, mutation rate, population size, instruction set, distri-

bution of initial program sizes, termination criteria, and

parsimony pressure (fitness advantages for smaller pro-

grams).’’ (Foster 2001) The default settings for a Discipulus

project work quite well for almost all projects. In fact,

Discipulus automatically sets, randomizes, and optimizes

the Genetic Programming parameters for the runs that

comprise a project. For that the default setting was used in

our run. The values for the default setting are: the selection

method is tournament selection, the probability of mutation

rate frequency is 90 %, the crossover frequency is 50 %,

and the population size (sets the number of programs in the

population that Discipulus will evolve) is 500. There are

two parameters that control the size of the programs

evolved using Discipulus. Initial Program Size (in bytes)

sets the size of the programs in the first population created

by Discipulus at the start of a run (80 byte in our project).

Maximum Program Size sets the maximum length of the

body of an evolved program in the population (512 bytes in

our project). The Genetic Programming algorithm uses a

‘‘fitness function’’ to determine which evolved programs

survive and reproduce. The fitness function used depends on

whether you present a classification problem or a regression

problem to Discipulus, our problem is a regression problem.

Generally speaking, the better an evolved program models

your training data, the more fit it will be. Discipulus cal-

culates the fitness of evolved programs by determining how

closely the outputs of the evolved program and the target

outputs in the training data match up. The closer the match,

the fitter the evolved program. The two parameters used as

fitness measurements are the hit-rate (R2) of the best genetic

program and the fitness variance.

The input data files for this software are classified into

three semi-equal groups, ‘‘training data’’, ‘‘validation data’’

and ‘‘applied data’’. These input files include measured

inputs and outputs parameters for our correlation.

The inputs parameters for our correlation are:

• Pressure (P), psi;

• Reservoir temperature (T), R�;

• API gravity of the reservoir fluid;

• Specific gravity of surface gas (SGg);

• Specific gravity of surface oil (SGo).

The output is the solution gas–oil ratio, Rs.

Discipulus program gives different types of data and

charts that show how the run in progress improved its

performance. Discipulus creates thousands of models

(programs) from given data files that allow us to predict

outputs from similar inputs and for each model (program)

gives us its performance [the hit-rate (R2) and the fitness

variance]. At the end of the run, we choose the best model

(program) depending on its hit-rate (R2) and fitness vari-

ance to calculate the solution gas–oil ratio; Rs.

Figure 6 shows the fitness improvement of the best

genetic program for our correlation with time. The hit-rate

(R2) of the best genetic program (the new correlation), was

0.9799 and the fitness variance was 0.012. Figures 7, 8 and

9 present the match between the observed Rs and the cal-

culated Rs for the new correlation. Each figure shows that

the match between all input points of the observed Rs and

the calculated Rs for the same point from the best program

developed by the software, the best team (During a project,

Discipulus assembles the best programs into teams. The

output from all of the programs that comprise a team are
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assembled into one collective output that is frequently

better than any particular member of the team), and the

selected program (almost is the best program if the default

of the software is not changed). The results for our case

indicated that the new correlation (best program output

from the software) almost completely matches the

observed Rs data.

The model outputs from the software are created as

computer programs in Java, C?? code, or assembler

program. For that, this correlation is a regression model

correlation. So the second step to use this correlation is to

run the code resulting from the genetic algorithm to get the

value of the correlation. The output C?? code of the

genetic model correlation from the Discipulus to calculate

the new RS correlation is given in the Appendix. This code

was used with C?? compiler to develop a windows

interface program to calculate Rs value (Fig. 10). This code

can be modified to generate a solution gas–oil ratio array

for different temperature, pressure values of a given

reservoir.

For more model validation, cross-plots between

observed and calculated Rs were drawn (Fig. 11) and the

average absolute error and the SD for the new correlation

was calculated and equal to 10.54 % and 0.035, respec-

tively. Table 2 summarizes the statistical comparison

between the different correlations and the new correlation.

From this table, we found that the new correlation is the

best matched correlation.

The new correlation presented in this work can be used

with other set of correlations to generate MBO PVT

properties for material balance calculation, or reservoir

simulation without the need for fluid samples or elaborate

procedure for EOS calculations. The application of these

correlations is of particular importance, especially when

representative fluid samples are not available.

Conclusions

Based on work presented in this study, the following

conclusions were made:
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1. The comparison of the literature gas–oil ratio correla-

tions for gas condensate shows that Fattah et al.

correlation was the best correlation to calculate gas–oil

ratio Rs with average absolute error of 18.66 % and a

SD equal to 0.049.

2. New Rs correlation was developed for gas–oil ratio Rs

of gas condensates. The Discipulus software, a com-

mercial Genetic Programming system, was used to

develop the new correlation program. It is based on the

concept of genetic algorithm.

3. The hit-rate (R2) of the new correlation was 0.9799 and

the fitness variance for the new correlation was 0.012.

4. Comparison of the new correlation with the observed

gas–oil ratio Rs result in average absolute error of

10.54 % with a SD equal to 0.035.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

Appendix

This appendix gives the output C?? code of the best

genetic program from the Discipulus to calculate the new

Rs correlation. This program is a sequential type program.

************************************

************************************

#define TRUNC(x)(((x)[=0) ? floor(x) : ceil(x))

#define C_FPREM (_finite(f[0]/f[1]) ? f[0]-

(TRUNC(f[0]/f[1])*f[1]) : f[0]/f[1])

#define C_F2XM1 (((fabs(f[0]) \=1) && (!_is-

nan(f[0]))) ? (pow(2,f[0])-1) : ((!_finite(f[0]) && !_is-

nan(f[0]) && (f[0] \ 0)) ? -1 : f[0]))

float DiscipulusCFunction(float v[])

{

long double f[8];

long double tmp=0;

Fig. 10 The windows interface

of the C?? program
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Table 2 Statistical comparison of all correlations using observed data

Vas and Beggs correlation Standing correlation Glaso correlation Marhoun correlation Khaled correlation New correlation

AAE SD AAE SD AAE SD AAE SD AAE SD AAE SD

52.2 % 0.51 63.4 % 0.73 61.2 % 0.69 56.3 % 0.52 18.6 % 0.05 10.5 % 0.035
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int cflag=0;

f[0]=f[1]=f[2]=f[3]=f[4]=f[5]=f[6]=f[7]=0;

L0: f[0]/=-1.238061666488648f;

L1: f[0]?=0.9177978038787842f;

L2: f[0]=-f[0];

L3: tmp=f[3]; f[3]=f[0]; f[0]=tmp;

L4: f[0]/=f[3];

L5: f[0]-=f[2];

L6: cflag=(f[0]\f[2]);

L7: f[2]*=f[0];

L8: cflag=(f[0]\f[3]);

L9: tmp=f[0]; f[0]=f[0]; f[0]=tmp;

L10: cflag=(f[0]\f[3]);

L11: f[0]=cos(f[0]);

L12: f[0]-=v[2];

L13: f[0]=fabs(f[0]);

L14: f[0]*=-0.7297487258911133f;

L15: f[0]=sin(f[0]);

L16: f[0]=-f[0];

L17: f[3]-=f[0];

L18: f[0]=sin(f[0]);

L19: f[0]-=-1.174947738647461f;

L20: if (cflag) f[0]=f[3];

L21: f[3]-=f[0];

L22: f[0]-=f[0];

L23: f[0]*=pow(2,TRUNC(f[1]));

L24: f[0]=cos(f[0]);

L25: f[0]?=f[3];

L26: f[0]=sin(f[0]);

L27: if (!cflag) f[0]=f[0];

L28: f[0]=fabs(f[0]);

L29: f[0]*=pow(2,TRUNC(f[1]));

L30: f[0]=-f[0];

L31: f[2]?=f[0];

L32: f[0]-=f[2];

L33: f[0]=cos(f[0]);

L34: f[0]*=v[2];

L35: f[0]=sin(f[0]);

L36: f[0]=-f[0];

L37: cflag=(f[0]\f[1]);

L38: f[2]/=f[0];

L39: f[0]?=f[0];

L40: f[3]-=f[0];

L41: f[3]-=f[0];

L42: f[0]=sin(f[0]);

L43: f[1]?=f[0];

L44: f[0]?=1.258495330810547f;

L45: f[2]*=f[0];

L46: f[0]=cos(f[0]);

L47: f[0]?=-1.360518217086792f;

L48: f[0]*=v[2];

L49: f[0]=sin(f[0]);

L50: f[0]=-f[0];

L51: f[0]/=0.1387641429901123f;

L52: f[0]?=1.77857518196106f;

L53: f[3]-=f[0];

L54: f[0]=sin(f[0]);

L55: f[0]?=f[0];

L56: f[0]=fabs(f[0]);

L57: f[3]-=f[0];

L58: f[0]*=f[3];

L59: f[0]-=f[1];

L60: f[2]/=f[0];

L61: tmp=f[2]; f[2]=f[0]; f[0]=tmp;

L62: f[0]/=v[4];

L63: f[2]?=f[0];

L64: f[0]*=pow(2,TRUNC(f[1]));

L65: if (!cflag) f[0]=f[3];

L66: f[0]/=f[1];

L67: f[0]/=f[0];

L68: f[0]*=-1.174947738647461f;

L69: f[0]=fabs(f[0]);

L70: f[0]=sin(f[0]);

L71: f[3]-=f[0];

L72: f[0]=sin(f[0]);

L73: f[0]?=f[0];

L74: f[3]-=f[0];

L75: if (!cflag) f[0]=f[3];

L76: f[0]=cos(f[0]);

L77: f[0]*=v[0];

L78: f[0]?=f[1];

L79: f[0]*=f[1];

L80: f[0]-=v[0];

L81: f[0]=fabs(f[0]);

L82: f[0]=sqrt(f[0]);

L83: f[0]-=f[3];

L84: f[0]/=v[2];

L85: f[3]*=f[0];

L86: if (!cflag) f[0]=f[1];

L87: f[0]*=f[0];

L88: cflag=(f[0]\f[3]);

L89: f[0]/=f[3];

L90: f[0]=sin(f[0]);

L91: f[0]=-f[0];

L92: f[3]-=f[0];

L93: f[1]?=f[0];

L94: tmp=f[1]; f[1]=f[0]; f[0]=tmp;

L95: f[3]-=f[0];

L96: f[0]/=f[2];

L97: f[0]=-f[0];

L98: cflag=(f[0]\f[1]);

L99: if (!cflag) f[0]=f[3];

L100: f[0]?=f[2];

L101: f[0]=cos(f[0]);

L102: f[0]*=v[1];
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L103: f[0]?=f[0];

L104: f[0]=fabs(f[0]);

L105: f[0]-=v[0];

L106: f[0]-=f[2];

L107: f[0]=fabs(f[0]);

L108: f[0]=sqrt(f[0]);

L109: f[0]-=f[3];

L110: f[0]/=v[2];

L111: f[3]*=f[0];

L112: f[0]=sqrt(f[0]);

L113: f[2]-=f[0];

L114: tmp=f[1]; f[1]=f[0]; f[0]=tmp;

L115: f[2]?=f[0];

L116: f[3]-=f[0];

L117: f[2]?=f[0];

L118: if (cflag) f[0]=f[2];

L119: f[0]*=f[3];

L120: f[0]-=f[3];

L121: f[0]*=pow(2,TRUNC(f[1]));

L122: f[0]-=v[0];

L123: f[0]-=f[3];

L124: f[0]=-f[0];

L125: f[0]=sqrt(f[0]);

L126: f[0]-=f[3];

L127: f[0]/=v[2];

L128: f[3]*=f[0];

L129: f[0]=-f[0];

L130: f[0]=sin(f[0]);

L131: tmp=f[1]; f[1]=f[0]; f[0]=tmp;

L132: f[0]-=-0.9765300750732422f;

L133: f[0]=sin(f[0]);

L134: f[0]=-f[0];

L135: f[0]*=f[1];

L136: f[3]/=f[0];

L137: f[0]*=pow(2,TRUNC(f[1]));

L138: f[0]=-f[0];

L139: f[0]?=f[1];

L140: if (cflag) f[0]=f[1];

L141: tmp=f[0]; f[0]=f[0]; f[0]=tmp;

L142: f[3]-=f[0];

L143: cflag=(f[0]\f[2]);

L144: f[3]-=f[0];

L145: f[0]=cos(f[0]);

L146: f[0]*=v[1];

L147: tmp=f[0]; f[0]=f[0]; f[0]=tmp;

L148: f[0]*=f[0];

L149: f[0]/=f[2];

L150: f[0]=sin(f[0]);

L151: f[0]?=f[0];

L152: f[0]/=f[1];

L153: f[0]*=f[0];

L154: cflag=(f[0]\f[2]);

L155: f[0]*=f[0];

L156: f[0]=sin(f[0]);

L157: cflag=(f[0]\f[3]);

L158: f[0]=sin(f[0]);

L159: if (cflag) f[0]=f[1];

L160: f[0]/=v[4];

L161: f[0]*=pow(2,TRUNC(f[1]));

L162: if (!cflag) f[0]=f[1];

L163: f[3]-=f[0];

L164: f[0]=sin(f[0]);

L165: f[1]?=f[0];

L166: f[3]-=f[0];

L167: f[0]=sin(f[0]);

L168: f[0]?=f[1];

L169: f[3]-=f[0];

L170: f[0]=cos(f[0]);

L171: f[0]*=v[2];

L172: f[0]?=1.366016626358032f;

L173: if (!cflag) f[0]=f[0];

L174: f[0]*=f[0];

L175: f[0]?=v[1];

L176: f[0]-=v[0];

L177: f[0]=fabs(f[0]);

L178: f[0]=sqrt(f[0]);

L179: f[0]-=f[3];

L180: f[0]/=v[2];

L181:

if (!_finite(f[0])) f[0]=0;

return f[0];

}

//This program was evolved with Discipulus(tm).
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