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Sample programs and descriptions of their usage allow to learn programming 

from scratch. 

Using concrete examples with a minimum portion of theoretical introduction, 

the author has managed to show the first (and, I must say, main) steps of the  

object-oriented programming technology in VBA. 

The author’s approach is very successful, in which a theoretical material on 

each numerical method is accompanied by a description of the program realiza-

tion, by a scenario of the computing experiments for applied problems and by an 

analysis of the calculation results. 

The student can obtain not only mathematical knowledge from the manual, 

but also acquire practical skills, which are very important in a training course on 

numerical methods. 
 

From the reviews of the expert of the Scientific and 

methodical council in computer science at the 

Ministry of Education and Science of the Russian 

Federation on author’s books [1, 2] 

Many things are incomprehensible to us 

not because our comprehension is weak, 

but because those things are not within  

the frames of our comprehension. 
 

Kozma Prutkov, 1854 
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Introduction 

 

 

 

 

 
Because of many advantages (above all, availability), tabular processor  

Excel, which is a part of Microsoft Office, is used in various areas of human  

activity: in economics and finances, electrical engineering and electronics,  

medicine, building construction, etc. This book is about Excel usage in applied 

mathematics. 

While writing this book, the author pursued the following goals: 

 to teach the reader to program in the modern programming language, 

Visual Basic (VB), and its extension, Visual Basic for Applications (VBA); 

 on the basis of these programming languages, to give the reader full 

enough representation about numerical methods aimed at obtaining a solution of 

a task in the form of numbers (instead of formulas that are a result of using  

analytical methods); 

 to show that Excel with programs (macros), written by the reader in VBA, 

is convenient for solving applied tasks by numerical methods. 

The book is intended for the reader familiar with Excel, Windows Explorer, 

Windows Clipboard and text editor Notepad for Windows. Besides, the reader 

should be conversant with higher mathematics and general physics. No prelimi-

nary programming experience is necessary. 

Learning this book is possible only by using a computer equipped with tabu-

lar processor Excel. 

According to the author’s opinion, there is no difference between terms  

“program” and “macro” when these terms concern the programming for Excel. 

Therefore, words “program” and “macro” are synonyms in this book. 

The book contains six chapters, six appendices, a list of references and a sub-

ject index. 

In the first two chapters, we consider elements of Visual Basic Environment 

and main facilities of programming languages VB and VBA. The standard win-

dow of operating system Windows, text file, user-defined form and Excel table 

are considered as the program user interface — the facility of dialogue between 

the user and program. We consider the creation of Excel user-defined functions. 

Besides, we demonstrate how to work with the program debugger, reference  

systems, Excel Macro Recorder and Personal Macro Workbook. 
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In the third chapter, we consider the finite difference method for solving the 

second-order linear differential equation with two kinds of conditions on the  

solution, namely, the boundary and periodicity conditions. This is followed by  

a review of two versions of the decomposition method for solving systems of 

linear algebraic equations of special form called finite difference schemes. The 

simplest scheme is also solved by the Gaussian elimination method. The ques-

tion of stability of the decomposition and Gaussian methods is investigated in 

respect of not increasing the computing error during solving the scheme. Using 

the Shockley-Poisson equation as an example, we consider the quasilinearization 

method for solving the nonlinear differential equation with boundary conditions. 

To demonstrate the possibilities of the finite difference method, we develop sub-

routines and programs for solving mathematical and applied problems. We use 

the Excel scatter diagrams for visualization of calculation results. 

Chapter 4 is devoted to the use of the third-degree (cubic) spline: 

 for interpolation, differentiation and integration of tabular (grid) func-

tions; 

 for solving the nonlinear algebraic and linear differential equations. 

Besides, we consider: 

 two classical methods for solving the nonlinear algebraic equations, 

namely, the bisection and secant methods; 

 the locally one-dimensional scheme for solving the heat equation with 

two spatial coordinates. 

We solve a series of applied problems to demonstrate the possibilities of the 

cubic spline construction. In addition to the macros and user-defined procedures 

(subroutines and function) realizing the numerical methods, a subroutine for  

automatic creation of graphs is developed. 

In Chapter 5, we review the use of the second-degree (quadratic) spline for 

solving the initial value problem (of Cauchy) for the system of differential equa-

tions. The first-degree (linear) spline is used in the least-squares method intended 

for determining parameters of a function. Besides, we review the following 

methods: 

 the Newton method for solving the system of nonlinear algebraic equa-

tions; 

 the tangent, secant and Steffensen methods (called Newton-like methods) 

for solving a single nonlinear algebraic equation; 

 methods for the forward and backward discrete Fourier transforms of  

a periodic function. 

Based on this theoretical material, we develop procedures and programs for 

solving applied problems. 

Chapter 6 is mainly devoted to nonlinear programming, more precisely, to 

the question of finding the minimum of a nonlinear function of one or several 
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variables without calculating the function derivative or partial derivatives. This 

chapter begins with the use of the Solver add-in for Excel to minimize concrete 

linear and nonlinear functions of several variables. Further, we develop subrou-

tines for finding the local minimum of a nonlinear function of general form, 

which are based on the coordinate-descent and Powell methods. 

We review the following applications of the developed minimization subrou-

tines: 

 for optimizing the dimensions of a one-liter tin can; 

 for determining the equilibrium state of a four-spring mechanical system; 

 for minimizing a nonlinear function with nonlinear constraints and a tabu-

lar function of two variables; 

 for determining the local minima of a multimodal function of two varia-

bles (with several local minima); 

 in the shooting method intended for solving the nonlinear differential 

equation with boundary conditions; 

 in the least-squares method. 

Appendix 1 presents the data types of Visual Basic and VBA. 

Appendix 2 contains the Greek alphabet with English names of the letters and 

the Russian alphabet denoted by Latin letters. The inclusion of this appendix is 

justified by the possible lack of Greek and Russian letters on the computer key-

board. English names of Greek letters are used in texts of program modules and 

source data for programs. Russian letters in Latin are mainly used in the refer-

ences list. 

Appendix 3 contains the main mathematical functions of Visual Basic. In ad-

dition, this appendix contains operators allowing the use of mathematical func-

tions not included in the programming language. 

Appendix 4 contains data for tasks intended to consolidate the book material 

and check up its understanding. 

Appendix 5 presents an analytical method for solving the cubic algebraic 

equation. We use this method in Chapter 4. 

Appendix 6 demonstrates the use of circular reference in Excel for solving 

the nonlinear algebraic equation by the tangent method. 

The subject index contains the main terms and designations with numbers  

of pages, on which their sense is uncovered. It will allow using the book as  

a reference manual. 

The present book is based on author’s books [1, 2] approved by the Scientific 

and methodical council in computer science at the Ministry of Education and 

Science of the Russian Federation as a manual on discipline “Computer science” 

for university students. 

In the book, we often speak about mathematical (computer, numerical)  

modeling. The essence of mathematical modeling lies in the replacement of  
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an object, in particular of a process, by an appropriate mathematical model and 

in its further study by using a computer. Operation with the model, instead of the 

object, allows to obtain operatively detailed information, showing internal con-

nections of the object and its qualitative and quantitative characteristics. The 

mathematical modeling is so popular that, when speaking about it, adjective 

“mathematical” may be omitted, as in this book. 

In writing the book, we used a personal computer equipped with 32-bit  

version of the Windows 7 operating system and Microsoft Office Professional 

Plus 2013 Preview. For obtaining information, shown in Fig. 1.8, 2.23 and 3.6, 

the reference system of Excel 2010 was used. The system disk name is C and the 

computer user name is usr in the book. 

We will need the Developer tab in Excel Ribbon (a part of the Excel win-

dow), among tabs Home, Insert, Page Layout, etc. If such a tab does not exist, 

we fulfill the following: 

1) click on the File button in the top left corner of the Excel window  

(in Excel 2007, click on the Office button); 

2) click on the Options button; 

3) in the Excel Options window opened, click on button Customize Ribbon; 

4) in area Customize the Ribbon: 

 set Main Tabs by using the drop-down list; 

 then turn on option Developer; 

5) click on the OK button. 

This operational sequence can be written as the following formula: File > 

Options > Customize Ribbon > Main Tabs > turn on Developer > OK. We will 

frequently use such formulas. 

When opening an Excel workbook containing a macro, the Security Warning 

panel can appear. To allow the macro to work, we must click on the Enable  

Content button of this panel. 

When executing a macro, cycling is possible. To interrupt it, we must press 

the Esc key on the computer keyboard. 

The enclosed compact disk (CD) contains text files with program modules 

and with source data for programs. The texts on the CD correspond to the num-

bered listings in the book. A method of work with these files is described on 

pp. 26 and 245. 

The program texts on the CD may be used as templates when developing 

programs for solving other tasks with the same mathematical formulation as the 

tasks considered in the book. 

For contact with the author, the following internet resources can be used: 

gzgarber@gmail.com, http://gzgarber.narod.ru/. 
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Chapter 1. 

Programming in Visual Basic 

 

 

 
We review elements of Visual Basic Environment, a part of Microsoft Office, 

and constructs of the Visual Basic programming language. The standard window 

of operating system Windows, text file and form are used as the user interface  

of programs. 

In addition, we demonstrate how to work with the program debugger and  

reference systems. 
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1.1. Elements of Visual Basic Environment 

 

 

 

 

 
For writing and debugging programs, we will use Visual Basic Environment, 

which is a part of Microsoft Office. 

Program debugging involves detection and correction of errors that, as a rule, 

are present in a program text just written. 

To go to Visual Basic Environment, we must fulfill the following two opera-

tions: 

1) in the Excel window (with the active workbook by name Book1), activate 

the Developer tab by clicking on it; 

2) click on the Visual Basic button in area Code. 

As a result, the Visual Basic Environment window is displayed (Fig. 1.1).  

In this window, we can perform various actions: entering and editing the pro-

gram text, as well as debugging and executing the program. Further, we will use 

a shorter name for this window and call it “the VB window”. 

The program is also called an application or project. It will be in the Excel 

workbook (by name Book1). 

Let us consider the elements of the VB window. 

1. Menu bar. There are standard menus, like in many windows of the  

operating system: File, Edit, View, Tools and Help. The Insert menu is used  

for organizing a place for program storage (in the workbook). Menus Debug  

and Run are respectively used for debugging and running the program. 

2. Context menu. It serves for convenience of work in the area (of the VB 

window), in which the mouse pointer is located. 

For using the context menu: 

1) place the mouse pointer in the necessary area of the screen and make the 

right click; 

2) click (by the left mouse button) on the required command of the displayed 

menu. 

3. Toolbars: Standard, Edit, Debug and others. Only the standard toolbar is 

displayed by default. To add or remove any toolbar, we have to fulfill View > 

Toolbars and to click on the required command of the displayed menu. The 

check (tick) mark against the command testifies to the presence of the corre-

sponding toolbar on the display screen. 
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Fig. 1.1. The Visual Basic Environment window including the standard  

toolbar, the project explorer window and the properties window 

 

Let us consider the toolbars. 

1. Toolbar Standard is displayed by default. It allows us to perform a wide 

spectrum of actions. 

This toolbar is usually located under the menu bar, however, we can move it 

to other areas of the VB window by using the mouse. 

2. Toolbar Edit is intended for work with the program text. It realizes possi-

bilities of an elementary text editor: 

 copying and moving a text fragment to Windows Clipboard; 

 inserting the text fragment from Windows Clipboard; 

 search and replacement of words and phrases, etc. 

3. Toolbar Debug is intended for debugging the program. Many provisions 

are made for debugging: 

 observation of the current values of the program variables; 

 step-by-step program execution, in which one operator (statement, in-

struction) or its part is performed on each step, etc. 
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As a rule, we will review programs without a user-defined form as the  

program user interface. Development of such program begins with inserting  

a module into the active Excel workbook. For inserting a module, let us fulfill 

the following sequence of operations. 

1. In the Excel window, Developer > Visual Basic in area Code. As a result, 

the VB window appears, including the project explorer window and the proper-

ties window (Fig. 1.1). 

If the project explorer window is not displayed, we have to click on Project 

Explorer in the View menu. We will need the properties window only in  

Section 1.23. 

2. Select line VBAProject (Book1) by clicking on it in the project explorer 

window. 

3. Insert > Module. 

As a result, a line corresponding to the inserted module, Module1, appears in 

the project explorer window. Besides, an empty window opens; it is the code 

window corresponding to Module1 (Fig. 1.2). In this window, we will create the 

program text by using the computer keyboard. 

 

 
 

Fig. 1.2. The VB window, including the code window,  

after inserting Module1 into the Excel workbook 
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For opening the code window corresponding to the module inserted earlier, 

we have to click twice on the name of this module in the project explorer  

window. 

To delete a module: 

1) make the right click on the module name (for example Module1) in the 

project explorer window; 

2) in the context menu opened, click on the Remove command; 

3) click on the No button in the open window with a question about export-

ing the module before removing it. 

Before the computer will execute a program, we (as the program developer) 

must form its text in the code window. The first and last lines (operators) of the 

program are standard: 
 

Sub name() 
 

End Sub 
 

On p. 79, we will consider the origin of word Sub. Word name means the 

program name appointed by us. 

The name must satisfy the following conditions: 

 the first character should be a letter; 

 the name must include only letters, figures and the underscore character; 

 the name must include less than 256 characters. 

As we see, the name cannot include the space character. To use name  

consisting of several words, we have: 

 to begin each word with a capital (uppercase) letter; 

 to use the underscore character instead of the space character. 

Examples of the program name follow: 
 

MyProgram13 

my_program 

MyProgram_13 

 

Between the first and last lines of the program, we have to place other lines 

(operators) of this program. For that, it is possible to use Windows Clipboard and 

habitual commands of editing (as in Notepad). After typing a new line, we have 

to press the Enter key on the keyboard. 

Let us start with a simple program based on the Pythagoras theorem, 
 

22 bac ,                                             (1.1) 
 

for calculating length c of the hypotenuse of a right-angled triangle with legs  

a = 3 and b = 4. 
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In the code window, we type the following program text (Fig. 1.3): 
 

Sub Pythagoras() 

    a = 3 

    b = 4 

    c = Sqr(a ^ 2 + b ^ 2) 

End Sub 
 

In this text, Pythagoras is the program name, a, b and c are names of varia-

bles, Sub is a keyword, End Sub is a keyword combination. The program and 

variable names are appointed by us. 
 

 
 

Fig. 1.3. The VB window with the Pythagoras program in the code window 
 

In a programming language, words used only in the language constructs are 

called keywords. We cannot use keywords as names of programs and variables 

in programs. By default, Visual Basic Environment is tuned in such manner that 

all keywords are highlighted in blue color (at formation of the program text in 

the code window), comments are highlighted in green, syntactic errors — in red. 

It is visible that the power operation (^) is written as in Excel, Sqr is the 

square root function (in Excel, the square root function is SQRT). 
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For convenience, if we need to place an operator on several lines, for carry-

ing over, we have to type the space character with the subsequent underscore 

character. At the finish of typing these characters, we have to press the Enter key 

on the keyboard. 

If we need to place several operators on one line, we have to type a colon  

between these operators. 

An apostrophe means that information following it (up to the line end) is  

a comment, i.e., a character set, which does not influence the program execution. 

Thus, our program can be written as follows: 
 

Sub Pythagoras() 

    a = 3: b = 4 

    c = _ 

        Sqr(a ^ 2 + b ^ 2)   'according to Pythagoras 

End Sub 

 

If a comment occupies several lines, each line must be preceded by an apos-

trophe. For example, program 
 

Sub Pythagoras() 

    a = 3: b = 4 

    c = Sqr(a ^ 2 + b ^ 2)   'according to Pythagoras: 

                             'pythagorean pants are 

                             'equal in all directions 

End Sub 

 

is equivalent to the previous program. 

To save the program, we fulfill the following: 

1) in the Excel window, File > Save As > Browse; 

2) in the Save As window opened, choose a folder intended for saving the 

Excel workbook, for example, My Documents; 

3) by means of drop-down list Save as type, set the following file type: Excel 

Macro-Enabled Workbook; 

4) click on the Save button. 

As a result, the Pythagoras program is saved as a part of the Excel work-

book by name Book1 with extension .xlsm. 

For returning to the Pythagoras program: 

1) open the Book1 workbook; 

2) if the Security Warning panel appears, click on button Enable Content; 

3) go to Visual Basic Environment; 

4) click twice on Module1 in the project explorer window. 

We will execute the Pythagoras program in the next section. 
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1.2. Main commands of the program debugger 

 

 

 

 

 
After typing the program text, the detection and correction of errors in the 

program follows. At this stage, we can use the debugger. 

Let us consider the main commands of the debugger; we can see them in the 

Debug menu of the VB window. 

1. Step Into — the execution of one program operator or its part. The click 

on Step Into is equivalent to pressing the F8 key on the keyboard. This command 

is used for the step-by-step program execution. 

2. Run To Cursor — the execution of the program up to the blinking cursor. 

The click on Run To Cursor is equivalent to pressing Ctrl + F8. 

For setting the blinking cursor in the proper place of the program, we have to 

click on this place. 

If we speak about key presses, the plus sign means the synchronism of these 

presses, i.e., “pressing Ctrl + F8” means “simultaneous pressing the Ctrl and F8 

keys”. 

3. Toggle Breakpoint — the installation or liquidation of the breakpoint at 

the place, where the blinking cursor is located. The breakpoint marks the pro-

gram line, where the program execution stops. This command can also be per-

formed by pressing the F9 key. 

For the installation or liquidation of the breakpoint, we can click on the left 

border of the code window against the proper line. 

4. Clear All Breakpoints — the liquidation of all breakpoints. This com-

mand can also be performed by pressing Ctrl + Shift + F9. 

5. Add Watch — the current visualization of the value of a variable. We will 

review the command usage in Section 1.15. 

In addition to commands Step Into and Run To Cursor, two more commands 

for the program execution, Step Over and Step Out, are in the Debug menu. We 

will review them in Section 1.16. 

Let us consider commands Run and Reset located in the Run menu of the VB 

window. 

1. Run — the start of the program execution (or shorter, of the program) and 

transition from one breakpoint to another. If the breakpoints are absent, the pro-

gram is executed completely. This command is represented by arrow ► on the 

toolbars of the VB window, in particular, on the standard toolbar. 
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The program can be started from the Excel window; we will consider this 

possibility later (p. 113). 

2. Reset — the discontinuation of the program execution. This command is 

represented by square ■ on the toolbars. 

During the program execution stops (in particular, at the breakpoints), yellow 

color highlights the operator, which is not executed yet. If we place the mouse 

pointer on a variable, its value is displayed. 

For obtaining the hypotenuse length by means of the Pythagoras program 

from the previous section, we fulfill the following: 

1) click on the left border of the code window against the last line of the 

program for marking this line by the breakpoint (Fig. 1.4a); 

2) click on arrow ► for executing the Pythagoras program up to the 

breakpoint; 

3) if window Macros appears, successively click on the Pythagoras line and 

the Run button in this window; 

4) in the code window, whose state is depicted in Fig. 1.4b, place the mouse 

pointer on the c variable in the program text; c = 5 appears (Fig. 1.5); 

5) click on arrow ► for terminating the program execution. 

After starting the program execution, a window containing message Can’t 

execute code in break mode may appear, indicating that we forgot to terminate 

(or to discontinue) the previous program execution. For correcting this error, we 

fulfill the following: 

1) click on the OK button in the message window; 

2) click on arrow ► (or on square ■) for termination (or discontinuation) of 

the program execution; 

3) restart the program. 

The program execution means consecutive execution of its operators: at first, 

the computer sets the values of variables a and b, and then calculates the value 

of c. To be convinced, we have to liquidate the breakpoint (by clicking on it) and 

to execute the Pythagoras program step-by-step by the F8 key, watching the 

change in variables a, b and c. 

Let us assume that an error was committed: when typing operator 
 

c = Sqr(a ^ 2 + b ^ 2) 
 

we pressed the minus key on the keyboard instead of the plus key. In this case, 

the program execution stops, and a window appears with the following message: 

Run-time error ‘5’: Invalid procedure call or argument. 

To understand our error, we click on button Debug in the message window. 

As a result, the place, where the stop occurred, is highlighted in yellow color. 

Looking at the values of a and b, we can understand the reason of the stop — the 

negative value of the argument of the square root function. 
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a 
 

 
 

b 
 

Fig. 1.4. The Pythagoras program with the breakpoint  

(a) before and (b) after starting the program execution 

 

 
 

Fig. 1.5. The visualization of the value of c during the execution stop 
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For fuller information on the possible reasons of the stop, we fulfill the fol-

lowing: 

1) remaining in Visual Basic Environment, start the Excel help system by 

pressing the F1 key; 

2) type Error 5 in the text box of the Excel Help window; 

3) click on the Search button; 

4) click on the following line of the open list: Invalid procedure call or  

argument (Error 5). 

After correcting our error (that is, after changing minus to plus), we have to 

restart the program. 

During the execution, our program (as a set of zeros and units) is located in 

the main memory of the computer. This program is being executed by the pro-

cessor that performs different operations including, among others, arithmetic 

operations. 

Now we will pass to the Visual Basic programming language. 
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1.3. Variables. Data types 

 

 

 

 

 
Variables in programming have about the same meaning as variables in  

algebra. We recommend declaring a variable before its usage. 

The declaration operator has the following syntax: 
 

Dim variable [As type] 

 

In this language construct: 

 Dim (from “dimension”) is the keyword testifying the appearance of  

a new variable; 

 variable is the variable name; 

 As is the keyword; 

 type is the data type (Appendix 1) of the declared variable. 

Here and below, the square brackets indicate an optional part of the syntax, 

i.e., the part that may be absent. Such usage of the brackets is acceptable because 

the square and curly brackets are not used in constructs of Visual Basic. 

In other words, the declaration operator has the following two versions: 
 

Dim variable As type 

Dim variable 

 

Initially, we will consider the first version. 

When (during the program execution) the computer meets the Dim operator, 

it allots a memory cell for the variable by name variable. The cell size (in 

bytes) is defined by type — the data type of the variable; type is keyword 

Boolean, Byte, Integer, Long, Currency or so on (Appendix 1). 

According to the second column of the table in Appendix 1, the memory cell 

sizes, corresponding to different variables, can strongly differ. 

To understand how much information is contained in one byte, let us notice 

that three bytes are usually enough for storing information on one pixel (the  

color point on the display screen) — one byte each for intensities of the red, 

green and blue colors. 

One Dim operator allows declaring several variables if we list them through  

a comma. The example operators follow: 
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Dim my_variable As Double 

Dim i As Byte, j As Integer, k As Integer 

 

The restrictions on names of variables are the same as on names of programs 

(p. 16), at that, the upper or lower case of letters does not matter. For example,  

if the Alpha variable is declared and we try to declare the alpha variable,  

Alpha will be automatically replaced by alpha. 

Alpha is the English name of a Greek letter. If the keyboard does not support 

the Greek language, we recommend to use English names of Greek letters  

according to Appendix 2 when naming variables and programs. 

For reducing programming errors, we recommend to tune Visual Basic Envi-

ronment so that it demands the declaration of variables. For this purpose, we 

fulfill the following: 

1) open menu Tools in the VB window; 

2) click on Options; 

3) activate the Editor tab; 

4) turn on option Require Variable Declaration; 

5) click on the OK button. 

As a result, the code window corresponding to a new module will contain the 

following first line: 
 

Option Explicit 

 

We can also put this line into the code window (or remove it) manually, as  

a usual program line. 

In the presence of line Option Explicit, the computer diagnoses the use 

of an undeclared variable in the program text: during the program execution, the 

computer displays message Variable not defined. 

Data types Byte, Integer, Long, Currency, Single and Double 

(Appendix 1) are called numerical data types. 

According to the third column of the table in Appendix 1: 

 in a memory cell, corresponding to a variable of the Byte data type, non-

negative integers (up to 255) can only be stored; 

 in a cell, corresponding to a variable of the Integer or Long data type, 

integers can be stored; 

 in a cell, corresponding to a variable of the Currency, Single or 

Double data type, decimal numbers can be stored. 

Let us pass to the second version of the Dim operator (p. 23). 

If we do not specify the data type when declaring a variable (for example, by 

operator Dim W), the variable (by name W) automatically receives the Variant 

data type. It means that any information can be stored in a memory cell, corre-
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sponding to this variable; i.e., the Variant data type is similar to the general 

format of Excel. 

Let us consider operator 
 

Dim i, j As Integer 

 

This operator is equivalent to the following: 
 

Dim i As Variant, j As Integer 

 

If we need the Integer data type for both variables, i and j, we should 

declare them as follows: 
 

Dim i As Integer, j As Integer 

 

or 
 

Dim i As Integer 

Dim j As Integer 

 

Later we will consider ways of declaring variables without the use of the Dim 

keyword (p. 81). 

As an example of using the declaration operator, let us consider the following 

program for calculating the number of days in the 20th century and defining the 

current date and time: 
 

Listing 1.1 
 

Sub Century_20() 

    Dim D1 As Date, D2 As Date, D3 As Date 

    Dim N As Long 

    D1 = #1 Jan 1900#       'beginning date of century 

    D2 = #31 Dec 1999#      'ending date of century 

    N = D2 - D1 + 1         'number of days in century 

    D1 = Time               'current time 

    D2 = Date               'current date 

    D3 = Now                'date and time 

End Sub 

 

In the second and third lines of this program, Date and Long are the data 

types (Appendix 1); #1 Jan 1900# and #31 Dec 1999# mean dates on Janu-

ary 1, 1900 and December 31, 1999. The subtraction of the first date from the 

second date determines the number of days between these dates. 
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Word Time means determination of the current time by means of the VB 

function by name Time. In other words: 

 Time is the call of the Time function of VB; 

 the value of this function is the current time of the day or, that is the 

same, the Time function returns the current time of the day into the program 

(“into the program” may be omitted). 

In operator 

 
D2 = Date 

 

word Date means the call of the Date function returning the current date into 

the program. 

We see that Date is a name of the VB function and a name of the data type. 

Thanks to various contexts, it does not lead to confusion. 

Word Now means the call of the Now function returning the current date and 

time together. 

Regarding the VB functions, we will talk in more details later, in particular, 

in Sections 1.4 and 1.9. 

To be convinced of the operational capability of the Century_20 program, 

we fulfill the following operations: 

1) insert a module into the active Excel workbook (p. 15); 

2) enter the Century_20 program text into the code window of the new 

module; 

3) make the step-by-step execution of this program by means of the F8 key, 

watching the values of variables D1, D2, D3 and N. 

It should be emphasized that, before the first press of key F8, we must place 

the blinking cursor inside the program text, not in line Option Explicit. 

Text Listing 1.1 of the Century_20 program can be entered into the code 

window by means of the keyboard. We can also copy it from the enclosed CD. 

For copying: 

1) open file Listing_1_01.txt with the Notepad editor, for example, by dou-

ble click on the pictogram of this file in Windows Explorer; 

2) in the Notepad window opened, highlight the program text and copy it  

into Windows Clipboard, for example, by pressing Ctrl + C; 

3) by the click, locate the blinking cursor in the code window of Visual 

Basic Environment; 

4) paste the program text from Windows Clipboard into the code window, 

for example, by pressing Ctrl + V; 

5) close the Notepad window with file Listing_1_01.txt. 

 



1.4. Two main functions for conversion of data types 

27 

1.4. Two main functions for conversion of data types 

 

 

 

 

 
A string is a quoted sequence of characters. The example strings follow: 

 

"Hello, World!" 

"13.333" 

"37 RUR" 

"$ 37" 

" " 
 

The last string contains only the space character. 

Let us supplement the string definition by the empty string, "", which does 

not contain any characters. 

Strings " " and "" are used in program Listing 1.7. In Section 1.19, we will 

expand the string definition even more. 

Converting string to number is often necessary. For this purpose, the Val 

function is used. It converts the numerical beginning of string to number. If the 

Val function cannot perform this, it returns zero into the program. The argument 

of the Val function is a string; this function returns a number. 

For the backward conversion (that is, number to string), the Str function is 

used. The argument of this function is a number, variable of numerical data type 

(p. 24) or arithmetic expression (Section 1.8). The Str function returns a string. 

Let us make the step-by-step execution of the program below. 
 

Listing 1.2 
 

Sub StrVal() 

    Dim strA As String 

    Dim curB As Currency 

    strA = "45.77" 

    curB = Val(strA)          'result: curB = 45.77 

    strA = Str(curB)          'result: strA = " 45.77" 

    curB = Val("4.7 = X")     'result: curB = 4.7 

    curB = Val("4,7 = X")     'result: curB = 4 

    curB = Val("X = 4.7")     'result: curB = 0 

    curB = Val("")            'result: curB = 0 

End Sub 
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The first comment corresponds to the case when operator 

 
strA = Str(curB) 

 

is highlighted in yellow color during the step-by-step program execution. This 

comment means the following: if the mouse pointer is located on curB, infor-

mation curB = 45.77 appears. 

Information curB = 45.77 is the result of executing operator 

 
curB = Val(strA) 

 

which is in the same line with the comment. 

The second comment corresponds to the case when operator 

 
curB = Val("4.7 = X") 

 

is highlighted in yellow color during the step-by-step execution. This comment 

means the following: if the mouse pointer is located on strA, information  

strA = “ 45.77” appears. And so on. 

All comments, which begin with word “result” or “Returns” (p. 33), have 

similar sense. 

Let us remind that, during the stops of the program execution, yellow color 

highlights the operator, which is not executed yet. 

In addition to the Val and Str functions, there are other functions for con-

version of data types. We will review them in Section 1.8. 
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1.5. Constants 

 

 

 

 

 
Constants are similar to variables. However, unlike a variable, the content of 

the memory cell, corresponding to a constant, cannot be changed during the pro-

gram execution. There are two versions of constants in Visual Basic, named 

built-in and user-defined constants. 

The user-defined constant can be declared by means of operator 

 
Const invariable [As type] = value 

 

In this operator: 

 Const is the keyword testifying the appearance of a new constant; 

 invariable is the constant name; 

 As is the keyword, as in the Dim operator (p. 23); 

 type is the data type (Appendix 1) of the declared constant; 

 value is a value of the declared constant. 

The restrictions on names of constants are the same as on names of variables 

and programs (p. 16). 

Examples of the constant declaration follow: 

 
Const e As Double = 2.718281828 

                            'base of natural logarithm 

Const e = 2.718281828 

Const phi = 1.618033989                 'gold relation 

Const Flag As Boolean = False 

Const Message = "End of Work" 

Const Millennium As Date = #1 Jan 2000# 

Const beta As Currency = 2 ^ 0.5 

 

In the fourth example operator, Boolean is the so-called logical data type 

(Appendix 1). 

When executing the last operator, the rounded square root of 2 (that is, 

1.4142) is assigned to constant beta. This example shows that value in the 

Const operator can be an elementary arithmetic or logical expression (Sec-
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tions 1.8 and 1.10). In this case, the content of the memory cell, corresponding to 

the constant, is determined by the expression value rounded according to the 

type data type. 

One Const operator allows declaring several constants if we list them 

through a comma. The example operator follows: 

 
Const Min = 0, Max = 1000, tau As Double = 6.283185307 

 

As an example of using constants, let us consider the following program for 

conversion of an angle from degrees to radians: 

 
Sub deg2rad() 

    Dim angleD As Double 

    Dim angleR As Double 

    Const pi As Double = 3.141592654     'pi = tau / 2 

    angleD = 270             'angle equals 270 degrees 

    angleR = angleD * pi / 180 

                             'result: angle in radians 

End Sub 

 

As we see, operator 
 

Const pi As Double = 3.141592654 

 

declares the pi constant before its usage in operator 
 

angleR = angleD * pi / 180 

 

The rad2deg program below, which converts an angle from radians to  

degrees, is similar to the above program. 

 
Sub rad2deg() 

    Dim angleD As Double 

    Dim angleR As Double 

    Const pi180 As Double = 3.141592654 / 180 

    angleR = 4.5             'angle equals 4.5 radians 

    angleD = angleR / pi180 

                             'result: angle in degrees 

End Sub 

 

On p. 82, we will consider the declaration of a constant by means of keyword 

combination Public Const. 
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The built-in constant does not need any declaration. Names of the built-in 

constants of Visual Basic begin with prefix vb, for example, vbFriday (this con-

stant equals 6). 

For names (in particular, names of constants), the developers of Windows  

accepted the following agreement: names of similar data begin with the same 

short prefix. In particular, the built-in constants of Visual Basic have prefix vb, 

the built-in constants of Excel have prefix xl. 

In addition to vbFriday, we will come across the following built-in constants: 

vbYesNo, vbYes, vbTab, vbCrLf, vbCr, vbLf, xlR1C1, xlCalculationAutomatic, 

xlCalculationManual, xlDialogOpen, xlDialogSaveAs, xlCenter, etc. 
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1.6. Obtaining information 

 

 

 

 

 
For obtaining information on a built-in constant, we must press the F2 key 

when the VB window is active. As a result, the object browser window appears 

(Fig. 1.6). In the top box of this window, we should set <All Libraries>  

by means of the drop-down list. In the text box below, we should type what is 

interesting for us, for example, vbFriday. Then we click on the binoculars picto-

gram. The answer is in the Search Results area (Fig. 1.7). 

For closing the object browser window, we have to click on the little cross at 

the right end of the menu bar. 

 

 
 

Fig. 1.6. The VB window with the object browser  

window instead of the code window 
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Fig. 1.7. Information on the built-in vbFriday constant 

 

The Excel help system, started by pressing the F1 key, is useful too (p. 22). 

For accelerating the process of finding the necessary information, the blinking 

cursor must be preliminarily located on the word of interest. 

By means of the Excel help system, we will study the Val function. For this 

purpose, let us fulfill the following. 

1. Enter the StrVal program (p. 27) into the code window. 

2. Locate the blinking cursor on the Val word by clicking on it. 

3. Press the F1 key. As a result, the Excel Help window, containing the full 

information on the Val function, is displayed (Fig. 1.8). 

4. After studying the last information, copy fragment 

 

Dim MyValue 

MyValue = Val("2457")    ' Returns 2457. 

MyValue = Val(" 2 45 7")    ' Returns 2457. 

MyValue = Val("24 and 57")    ' Returns 24. 

 

from the bottom part of the Excel Help window into the StrVal program as 

follows: 
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1) highlight this fragment by the mouse, as in Notepad; 

2) copy it into Windows Clipboard by pressing Ctrl + C; 

3) locate the blinking cursor in the code window, against the last line of the 

StrVal program; 

4) paste the fragment from Windows Clipboard into the program text by 

pressing Ctrl + V. 

 

 
 

Fig. 1.8. The Excel Help window with information on the Val function 
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As a result, the StrVal program takes the following form: 

 
Sub StrVal() 

    Dim strA As String 

    Dim curB As Currency 

    strA = "45.77" 

    curB = Val(strA)          'result: curB = 45.77 

    strA = Str(curB)          'result: strA = " 45.77" 

    curB = Val("4.7 = X")     'result: curB = 4.7 

    curB = Val("4,7 = X")     'result: curB = 4 

    curB = Val("X = 4.7")     'result: curB = 0 

    curB = Val("")            'result: curB = 0 

Dim MyValue 

MyValue = Val("2457")    ' Returns 2457. 

MyValue = Val(" 2 45 7")    ' Returns 2457. 

MyValue = Val("24 and 57")    ' Returns 24. 

End Sub 

 

We advise the reader to execute this program step-by-step (by means of the 

F8 key), watching the value of the MyValue variable. 
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1.7. Assignment operator 

 

 

 

 

 
The assignment operator has the following syntax: 

 
variable = expression 

 

Here, variable is the variable name, expression is an arithmetic or logical 

expression (Sections 1.8 and 1.10) or string, which can be considered as an  

expression (Section 1.19). A separately taken number, constant, variable or func-

tion is also an arithmetic expression. In the assignment operator, = is the  

so-called assignment sign. 

The assignment operator works as follows: 

1) the value of expression is calculated; 

2) the resulting value is assigned to variable, i.e., is written into the cor-

responding memory cell. 

If the data type of the variable in the left-hand side of the assignment operator 

does not coincide with the type of the expression value in the right-hand side, the 

value type is generally converted (transformed) during the execution of the  

assignment operator. 

Let us make the step-by-step execution of the following program for convert-

ing strings "78.8", "78,8" and "78;8" to numbers of the Currency data 

type. 

 
Sub Conversion() 

    Dim curA As Currency 

    Dim curB As Currency 

    Dim curC As Currency 

    curA = "78.8"                 'result: curA = 78.8 

    curB = "78,8"                 'result: curB = 78.8 

    curC = "78;8"                 'result is absent 

End Sub 

 

Because of executing the first and second assignment operators, strings 

"78.8" and "78,8" are successfully converted to number 78.8. 

When executing assignment operator 
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curC = "78;8" 

 

the stop occurs with the following information: Run-time error ‘13’: Type mis-

match. It speaks about the following: 

 the types of variable on the left and of value on the right of the assign-

ment sign (=) are different; 

 the computer cannot convert string "78;8" to a number. 

We will continue considering the data type conversion in the next section of 

the book. 

Unlike other programming languages, for example C++, multiple assign-

ments, for example x = y = z = 1.3, are inadmissible in VB. We have to use 

several assignment operators with the same right-hand side, i.e., language con-

struct 

 
x = 1.3 

y = 1.3 

z = 1.3 

 

or 

 
x = 1.3: y = 1.3: z = 1.3 

 

is correct. 
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1.8. Arithmetic expression 

 

 

 

 

 
In Visual Basic, an integer is represented by a sequence of figures with the 

minus sign or without any sign. Examples of integers are 
 

–18     32     0 
 

If a number has the fractional part, it separates from the integral part by  

a point. In this case, we may omit the integral part if it equals zero. Examples  

of decimal numbers follow: 
 

0.5     –5.68     –.12     .035     3. 

 

In the last example, 3 with a point means a number with zero fractional part, i.e., 

an integer, in fact. 

We reviewed the main form of decimal numbers. 

Decimal numbers may also be represented in exponential form. For example, 

-1.6E-19 is the electron charge, -1.6·10
-19

 C (its absolute value is figured in 

Section 3.13). Instead of E, letter D may be used in the exponential representa-

tion, i.e., the electron charge, -1.6·10
-19

 C, may be written as -1.6D-19 

One of the main constructs of any programming language is an arithmetic 

expression similar to the algebraic expression in mathematics. However, we can-

not omit the multiplication sign in the arithmetic expression. Table 1 below con-

tains equivalent algebraic and arithmetic expressions. 
 

Table 1. Examples of expressions 
 

Algebraic expression Arithmetic expression of VB 

yx 125  5 * x + 12 * y 

y

x
 x / y 

xy  y ^ x 

x x 

19.55·10
-6

 19.55E-6 or 19.55D-6 
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The arithmetic expression contains the invariables (numbers and constants), 

variables and/or functions related by arithmetic operations. As we already men-

tioned in the previous section, an individual number, constant, variable or func-

tion is also an arithmetic expression. 

The expressions in Table 1 do not include functions. We will review arithme-

tic expressions with functions in the next section. 

Arithmetic operations are denoted as follows: + (addition), - (subtraction or 

sign change operation), * (multiplication), / (division), ^ (power operation),  

\ (integer division, i.e., division of integers neglecting the integer remainder), 

Mod (modulus operation, i.e., determining the integer remainder after division of 

integers). 

According to the assignment operator syntax, the arithmetic expression is on 

the right of sign =. For example, assignment operator 

 
z = 5 * x + 12 * y 

 

includes arithmetic expression 

 
5 * x + 12 * y 

 

Let us consider the following program: 

 
Sub Arithmetic1() 

    Dim m As Integer 

    Dim n As Integer 

    Dim x As Double 

    m = 5 

    n = 2 

    x = m / n                         'result: x = 2.5 

    x = m \ n                         'result: x = 2 

    x = m Mod n                       'result: x = 1 

End Sub 

 

To verify the correctness of this program, we advise the reader to make the 

step-by-step execution (by means of the F8 key), watching the change in the 

value of x. 

If the arithmetic expression contains several operations, the order of their per-

formance is defined by the following rules of priorities of arithmetic operations: 

1) first of all, the power operation (^) is performed; 

2) next, the multiplication and division (*, /) are performed in that sequence 

as they are in the expression; 
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3) the integer division ( \ ); 

4) the modulus operation (Mod); 

5) the sign change operation (–); 

6) finally, the addition and subtraction (+, –) are performed in that sequence 

as they are in the expression. 

As we see, the power operation (^) has the highest priority in VB. 

The rules of priorities of arithmetic operations in VB differ from the rules of 

priorities in Excel regarding the power operation, multiplication, division, the 

sign change operation (so-called negation), addition and subtraction: the nega-

tion (–) is performed first, i.e., has the highest priority in Excel. 

To be convinced, we put 
 

=-1^2 

 

into the Excel formula box and click on the tick button of the Excel formula bar 

(or press the Enter key). As a result, value 1 appears in the active cell on the 

worksheet. After the execution of VB operators 
 

Dim i As Integer 

i = -1 ^ 2 

 

the i variable is equal to -1. 

In both VB and Excel, parentheses are used for changing the sequence of the 

operations: the values of the parenthesized arithmetic expressions are calculated 

at first. 

We will not see the square and curly brackets in the arithmetic expressions of 

Table 2 below because, as it was already told, such brackets are not used in the 

VB constructs. 

When calculating the expression value, results of performance of intermedi-

ate arithmetic operations remain in the processor or are written into cells of the 

cache memory (from where they are read when required). 

The cache memory has a short time of reference (that is, of writing and read-

ing information); this time is much shorter than the time of reference for the 

main memory. The cache memory is intended for temporary storage of interme-

diate results and contents of memory cells often used. The program fragment, 

which is being executed, may also be stored in the cache memory. 

Let us consider the following assignment operator with the arithmetic expres-

sion in the right-hand side: 
 

z = 5 * x + 12 * y 

 

The processor is performing this operator approximately thus: 
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1) multiplies 5 by the content of cell x; 

2) writes the result into a cache memory cell, for example, cache1; 

3) multiplies 12 by the content of cell y; 

4) adds the result to the value of cache1; 

5) writes the result into cell z. 
 

Table 2. Examples of expressions 
 

Algebraic  

expression 
 

Arithmetic expression of VB 

7{3[a+b(c+d)]+8}+2 7 * (3 * (a + b * (c + d)) + 8) + 2 

-a
b
 

-a ^ b 

or 
–(a ^ b) 

a
-b

 a ^ (-b) 

a
b-c 

a ^ (b - c) 

10
-4.7

 10 ^ (-4.7) 

10
4.7 

10 ^ 4.7 

A·B A * B 

A(-B) 

A * (-B) 

-A * B 

or 
-(A * B) 

cba  a ^ (b ^ c) 

cba )(  

a ^ b ^ c 

or 
(a ^ b) ^ c 

dc

ba
 

(a * b) / (c * d) 

or 
a * b / (c * d) 

a ·10
4
 

a * 1E4 

a * 10E3 

or 
a * 10000 

 

In mathematics and programming, participants of operations are called  

operands, both in the case of arithmetic operations and in the case of logical  

operations (Section 1.10). For example, arithmetic expression 5 * x includes  

the following two operands: integer 5 and variable x. 
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For a better understanding of the rules of priorities of arithmetic operations, 

let us consider the following program: 

 
Sub Arithmetic2() 

    Dim m As Integer 

    Dim n As Integer 

    Dim x As Single 

    Dim y As Single 

    x = 3 

    m = 2 

    n = -1 

    y = (-3) ^ m                       'result: y = 9 

    y = -(3 ^ m)                       'result: y = -9 

    y = -3 ^ m                         'result: y = -9 

    y = 10 + (x + 7) ^ (m + n)         'result: y = 20 

    y = 10 + x + 7 ^ m + n             'result: y = 61 

End Sub 

 

We advise the reader to make the step-by-step execution of this program, 

watching the value of the y variable and explaining the value origin. 

In addition, we advise the reader to verify that 

 
(m \ n) * n + m Mod n 

 

equals m for arbitrary integers m and n (naturally, n ≠ 0). For that, the reader has 

to write a program, which is similar to Arithmetic1, and to execute the new 

program step-by-step. 

Arithmetic expressions may contain variables and invariables of different 

types. If the type of the value of arithmetic expression in the right-hand side of 

the assignment operator (on the right of sign =) does not coincide with the data 

type of the variable in the left-hand side of the assignment operator (on the left of 

sign =), the type of the value is converted during the assignment. 

Let us consider the situation when the value of arithmetic expression on the 

right of sign = has a fractional part and the variable on the left of sign = is of the 

Integer or Long data type. During the assignment, the value is transformed 

according to the following rules for rounding off: 

 if the fractional part of the value is equal to 0.5, this value is rounded up 

to the even number from two nearest integers; 

 otherwise, the value is rounded up to the nearest integer. 

Because operations \ and Mod are applicable only to integers, the execution 

of these operations over numbers with a fractional part begins with the rounding 
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off the operands to integers according to the formulated rules. The results of  

operations \ and Mod are integers. 

An operation with one operand is called a unary operation. Among the arith-

metic operations, only the sign change operation (–) is unary. An operation with 

two operands (^, *, /, \, Mod, +, – as subtraction) is called a binary operation. 

VB includes special functions for converting data types. Two of these func-

tions (Str and Val) were reviewed in Section 1.4; the remaining functions are 

listed in Table 3 below. 

 

Table 3. Functions for converting data types 

 

Function name 
 

Resulting data type 
 

CBool Boolean 

CByte Byte 

CCur Currency 

CDate Date 

CDbl Double 

CInt Integer 

CLng Long 

CSng Single 

CStr String 

CVar Variant 

 

Requirements to the argument of these functions and examples of their usage 

are given in the Excel help system. For accelerating the process of finding the 

necessary information, we must press the F1 key when the VB window is active. 

Let us make the step-by-step execution of the program below. 

 
Sub Functions() 

    Dim intN As Integer 

    Dim strN As String 

    Dim curN As Currency 

    intN = -15 

    strN = Str(intN)             'result: strN = "-15" 

    strN = CStr(intN)            'result: strN = "-15" 

    intN = 15                    '8th operator 

    strN = Str(intN)             '9th operator 

                                 'result: strN = " 15" 

    strN = CStr(intN)            '10th operator 

                                 'result: strN = "15" 

    curN = 25.5                  '11th operator 
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    intN = 1 + CInt(curN)        '12th operator 

                                 'result: intN = 27 

    intN = CInt(1 + curN)        '13th operator 

                                 'result: intN = 26 

    intN = CInt("78.8")          '14th operator 

                                 'result: intN = 79 

    intN = CInt("78,8")          '15th operator 

                                 'result: intN = 79 

End Sub 

 

Note the following: 

 if the argument of the Str and CStr functions is a non-negative number, 

these functions return different strings (see the 9th and 10th operators); 

 the CInt function rounds the argument value according to the rules for 

rounding off (see the 12th and 13th operators); 

 a string may be the CInt function argument (see the 14th and 15th  

operators). 
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1.9. Mathematical functions.  

Functions of date and time 
 

 

 

 
Let us start with an analysis of the mathematical functions given in the table 

of Appendix 3. 

We already used the square root function, Sqr(x), in our first program — 

Pythagoras on p. 17. 

The argument of trigonometric functions (cosine, sine and tangent) is an  

angle in radians, not in degrees. 

Function Atn(x) is an inverse trigonometric function, xarctan . The 

arctangent returns (into the program) the angle in radians from -π/2 to π/2 whose 

tangent is equal to the value of x. Such angle is called the principal angle of 

xtan . 

The sign function, Sgn(x), returns -1, 0, 1 at x < 0, x = 0, x > 0, respec-

tively. 

The Log(x) function is the natural logarithm of x, xln . According to  

the logarithm properties [3], the following expressions are valid for the decimal 

logarithm: xlg  = 10ln/ln x  = 302585093.2/ln x . 

In Appendix 3, in addition to the main mathematical functions of Visual 

Basic, the VB operators are given for counting the values of trigonometric func-

tion xcot , of inverse trigonometric functions xarcsin , xarccos  and xarccot  

and of decimal logarithm xlg . 

In addition to the mathematical functions of Appendix 3, let us consider func-

tion Round(x[, n]) intended for rounding off numbers with a fractional part. 

As we know, the square brackets separate an optional part of the construct.  

In other words, this function of VB has the following two versions: 

 the Round(x, n) function returns the value of x, rounded up to n deci-

mal places; 

 the Round(x) function returns the integer obtained by rounding off the 

value of x according to the rules formulated on p. 42; this function is identical to 

the Round(x, 0) and CInt(x) functions. 

Arguments of the mathematical functions are arithmetic expressions.  

Assignment operator 
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c = Sqr(a ^ 2 + b ^ 2) 

 

in the Pythagoras program (p. 17) is an example of this. 

The mathematical functions are used in arithmetic expressions, and the func-

tions have a priority as compared to the arithmetic operations when calculating 

the expression value. For example, during the execution of operator 

 
e = b / c * Cos(a) ^ 3 – d 

 

the processor first calculates the cosine value, and then: 

1) cubes this value; 

2) writes the result into the cache1 cell of the cache memory; 

3) successively performs the division, multiplication and subtraction for cal-

culating the value of arithmetic expression 

 
b / c * cache1 – d 

 

4) writes the result into the memory cell corresponding to variable e. 

To learn the use of the mathematical functions, let us do the following: 

1) put operator block 

 
Dim V As Single, W As Single 

V = intN + Round(Sqr(2 * intN), 2) 

W = Round(V) ^ 2 

 

into the code window containing the Functions program (p. 43), above the 

last line; 

2) mark the last line of the program by the breakpoint; 

3) click on arrow ► for the program execution up to the breakpoint; 

4) make sure that the calculated values of V and W are equal to 33.21 and 

1089, respectively; 

5) explain these results; 

6) click on arrow ► for terminating the program execution. 

In addition to the considered functions with one and two arguments, there is 

the Rnd function (from “random”) without arguments. This function is intended 

for generation of random numbers used for modeling random phenomena. The 

simplest random phenomenon can be described as follows: there is a 50 % 

chance that the “head” or “tail” will be the result of a coin flip. 

The idea of modeling random phenomena is known for a long time. Follow-

ing the advent of the electronic computers, this idea was developed in the 1950s 

under the name of the Monte Carlo method. 
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The Monte Carlo method is used for modeling financial risks, semiconductor 

devices and evolution of stars. It is only a part of the problems demanding  

generation of random numbers. 

The use of the Rnd function is described in the Excel help system, which 

must be started by pressing the F1 key when the VB window is active. The 

RandomNumbers program in Section 1.15 and code Listing 6.11 in Section 6.8 

are examples of the Rnd function’s usage. 

Functions of date and time, Time, Date and Now, are without arguments 

too. These functions return the following values of the Date data type: current 

time, date and date together with time, respectively. They appeared in program 

Century_20 (p. 25). We will encounter these functions of date and time more 

than once. 
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1.10. Logical expression 

 

 

 

 

 
In addition to arithmetic expressions, logical expressions are also important 

in Visual Basic. 

The logical expression uses the following well known comparison signs: < 

(less than), > (greater than), = (equal to), <= (less than or equal to, ≤ in mathe-

matics), >= (greater than or equal to, ≥ in mathematics), <> (unequal to, ≠ in 

mathematics). 

The logical expression accepts one of the two Boolean (logical) values, True 

(logical unit) or False (logical zero). Separately taken True or False is also 

a logical expression. 

Examples of the logical expression follow: 
 

5 >= 3 

5 < 3 

False 
 

The first logical expression accepts True; the second and third logical expres-

sions accept False. 

Let us consider the following program: 
 

Sub Logic1() 

    Dim x As Integer 

    Dim y As Integer 

    Dim blnA As Boolean 

    x = 5: y = 2 

    blnA = x > y                 'result: blnA = True 

    blnA = x = y                 'result: blnA = False 

End Sub 
 

In this program, we see four assignment operators and two logical expres-

sions (x > y and x = y). According to the assignment operator syntax, the logical 

expressions are on the right of the assignment sign. The values of the logical 

expressions for x = 5 and y = 2 are given in the corresponding comments. 

In complicated logical expressions, logical operations are used. We will con-

sider three of them: Not, And, Or. 
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Operation Not is the so-called logical negation. It is defined as follows: 

 if A equals True, then Not A equals False; 

 if A equals False, then Not A equals True. 

Operation Not has one operand (A), i.e., it is a unary operation. 

Definitions of logical operations And and Or are given by the following two 

tables. 

 

Definition of the And operation 

 
A B A And B 

True True True 

True False False 

False True False 

False False False 

 

Definition of the Or operation 

 
A B A Or B 

True True True 

True False True 

False True True 

False False False 

 

According to these tables, the And and Or operations have two operands  

(A and B), i.e., they are binary operations. 

Logical expression A And B is equal to True only in that case when both 

operands are equal to True. In all other cases, expression A And B is equal to 

False. The And operation is called conjunction or logical multiplication. 

Expression A Or B is equal to False only in that case when both operands 

are equal to False. In all other cases, expression A Or B is equal to True. The 

Or operation is called disjunction or logical addition. 

In the presence of several logical operations in a logical expression, the order 

of their performance is defined by the following rules of priorities: 

1) first of all, operation Not (logical negation) is performed; 

2) further, And (logical multiplication); 

3) in last turn, Or (logical addition) is performed. 

For change of sequence of the operations’ performance, parentheses are used, 

as in arithmetic expressions. Parentheses may be also used for readability of  

logical expressions. 
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For a better understanding of the logical operations, let us consider the  

following program: 

 
Sub Logic2() 

    Dim x As Double 

    Dim y As Double 

    Dim z As Double 

    Dim blnA As Boolean 

    x = 1 

    y = 2.87 

    z = 3.12 

    blnA = (x > y) And (y < z)   'result: blnA = False 

    blnA = x < y And y < z       'result: blnA = True 

    blnA = x > y Or y > z        'result: blnA = False 

    blnA = Not (x < y Or Not y < z) 

                                 'result: blnA = False 

    blnA = Not x > y And x > y   'result: blnA = False 

    blnA = Not (x > y And x > y) 'result: blnA = True 

End Sub 

 

In operator 

 
blnA = (x > y) And (y < z) 

 

parentheses are used for readability of logical expressions x > y and y < z.  

These parentheses may be omitted. 

We advise the reader to verify the correctness of the Logic2 program by 

means of the step-by-step execution. 

Note that double logical expressions, for example 0 < x <= 1, are inadmissi-

ble in VB. Instead of 0 < x <= 1, we have to write 

 
0 < x And x <= 1 

 

or 

 
x > 0 And x <= 1 

 

For grasping the material of this and the previous sections, we advise the 

reader to write a program allowing to define the values of y, for which 

CInt(y), Fix(y), Int(y), Round(y) are equal to each other if y accepts 

the following values: 
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 -1.8, -1.25, 1.27, 1.68; 

 )(af , )5.05.0( baf , )(bf , )(5.0)(5.0 bfaf . 

Here, functions Fix(y) and Int(y) of VB are described in Appendix 3, func-

tions CInt(y) and Round(y) are from Sections 1.8 and 1.9, function )(xf  is 

from Appendix 4, a and b are the boundaries of the )(xf  function’s domain. 

In addition, we advise the reader to replace condition “CInt(y), Fix(y), 

Int(y), Round(y) are equal to each other” of the previous task by one of the 

following conditions: 

1) Fix(y) = CInt(y) And Fix(y) <> Int(y) 

2) Int(y) = CInt(y) And Int(y) <> Fix(y) 

3) Fix(y) = Int(y) Or Fix(y) <> CInt(y) 

4) Fix(y) = CInt(y) Or Fix(y) <> Int(y) 

5) Int(y) = CInt(y) Or Int(y) <> Fix(y) 

6) Fix(y) = Int(y) Or Fix(y) = CInt(y) 

7) Int(y) = CInt(y) Or Int(y) = Fix(y) 

8) CInt(y) = Fix(y) Or CInt(y) = Int(y) 

9) Fix(y) = Int(y) And Fix(y) <> CInt(y) 
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1.11. GoTo operator 

 

 

 

 

 
Operators of the previous programs are executed by turn. Such programs are 

called linear programs. 

The GoTo operator is used to change the order of execution of the program 

operators. It has the following syntax: 

 
GoTo lbl 

 

In this syntax, the so-called label, lbl, may be one of the following: 

 a non-negative integer without a sign (0, 1, 2, 3, …); 

 a sequence of letters, figures and underscores beginning with a letter, for 

example, start_53a. 

We have to place the lbl label in front of the operator, to which the jump 

must be performed (or, that is the same, to which the control must be trans-

ferred). We have to type a colon behind the label. 

After executing the operator with lbl in front, the next operator will be exe-

cuted if the labeled operator is not GoTo. 

Examples of GoTo usage are given on p. 54: we see two labels in the IT2 

program, 2 and LastLine. 

If the label is a non-negative integer, this label may be called an operator’s 

(line’s) number. For example, operator 

 
If X > 9 And X < 12 Then GoTo LastLine 

 

in the IT2 program with label 2 in front may be named as operator 2 (line 2). 

The GoTo operator is often called the unconditional jump operator. In the 

next section, we will consider GoTo as a part of the so-called conditional jump 

operator. 
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1.12. Decision-making constructs 

 

 

 

 

 
This is a typical situation when, in a certain place of a program, it is neces-

sary to execute those or other operators depending on some conditions. The 

choice of the operators is performed by means of one of two decision-making 

constructs, If…Then or Select Case. 

The first decision-making construct, If…Then, is called the conditional 

operator. Below are several versions of this operator. 

The simplest conditional operator follows: 
 

If condition Then statement1 

 

where condition is a logical expression. 

The computer calculates the value of condition. If True (False) is the 

result, we will say that the condition is true (false). 

If the condition is true, operator statement1 is executed; if the condition 

is false, operator statement1 is not executed. 

Further, the next operator (following the If…Then construct) is executed, 

regardless of whether or not statement1 was executed (if statement1 is 

not the GoTo operator). 

Let us consider the following example program: 
 

Sub IT1() 

    Dim X As Byte 

    X = 12                         'initial value of X 

    If (X > 9 And X < 12) Then X = X + 1 

    X = X + 2 

    X = X * 2                      'final value of X 

End Sub 

 

For understanding this program, we advise the reader to do the following: 

1) install the breakpoint against the End Sub line; 

2) click on arrow ► for the program execution up to the breakpoint; 

3) make sure that the calculated value of X is equal to 28 during the stop of 

the program execution; 
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4) explain this result; 

5) click on arrow ► for terminating the program execution. 

A special case of the reviewed If…Then construct is the conditional jump 

operator with the following syntax: 
 

If condition Then GoTo lbl 

 

According to this construct including GoTo, if the condition is true, the jump is 

performed to the operator labeled by lbl. 

The program below is an example of using the conditional jump operator. 
 

Sub IT2() 

    Dim X As Integer 

    X = 12 

2:  If X > 9 And X < 12 Then GoTo LastLine 

    X = X - 2 

    GoTo 2 

LastLine: 

End Sub 

 

We advise the reader to make the step-by-step execution of this program and 

to explain why the value of X changes so, instead of differently. 

The quantity of operators, which must be executed when the condition is true, 

may be greater than one. In this case, the following construct is used: 
 

If condition Then 

    statements 

End If 

 

where statements is an operator block. This conditional operator is per-

formed as follows. 

If the condition is true, block statements (below the Then keyword) is 

executed. If the condition is false, block statements is not executed. 

Further, the jump is performed to the operator following the If…Then con-

struct, regardless of whether or not block statements was executed (if this 

block does not include the GoTo operator). 

Let us consider the following If…Then construct: 
 

If condition Then statement1 Else statement2 
 

If the condition is true, operator statement1 (behind keyword Then) is 

executed. If the condition is false, operator statement2 (behind keyword 



1.12. Decision-making constructs 

55 

Else) is executed. Further, the jump is performed to the operator following the 

If…Then construct, without dependence of what operator was executed earlier, 

statement1 or statement2 (if these operators are not GoTo). 

The program below is an example of using the last construct. 
 

Sub IT3() 

    Dim X As Byte 

    X = 12                         'initial value of X 

    If (X > 9 And X < 12) Then X = X + 3 _ 

        Else X = X + 2 

    X = X * 2                      'final value of X 

End Sub 

 

We will assume that operator blocks statements1, statements2, ..., 

statementsN, statements do not include GoTo (for brevity). 

Let us consider the following construct, which is similar to the previous 

If…Then construct, but contains blocks instead of operators: 
 

If condition Then 

    statements1 

Else 

    statements2 

End If 
 

If the condition is true, block statements1 (which is below keyword 

Then) is executed. If the condition is false, block statements2 (which is 

below keyword Else) is executed. Further, the jump is performed to the opera-

tor following the End If keyword combination, without dependence of what 

block was executed earlier, statements1 or statements2. 

Let block statementsN be executed after checking not one but several 

conditions. In this case, we use the following If…Then construct: 
 

If condition1 Then 

    statements1 

ElseIf condition2 Then 

    statements2 

    ∙  ∙  ∙  ∙ 

ElseIf conditionN Then 

    statementsN 

[Else 

    statements] 

End If 
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If the first condition is true (that is, logical expression condition1 accepts 

True), then block statements1 is executed. If this condition is false, the 

second condition (which is behind keyword ElseIf) is checked. If this condi-

tion is true (condition2 = True), then block statements2 is executed, 

and so on. If conditionN = True, then block statementsN is executed.  

If none of the N conditions is true, then block statements (located below the 

Else keyword) is executed. 

Further, the jump is performed to the operator following the End If key-

word combination, without dependence of what block was executed earlier, 

statements1, statements2, ..., statementsN or statements. 

An example of using the last construct is in codes Listings 5.7 and 5.8 of  

Section 5.11. 

We reviewed several versions of the conditional operator. In addition, let us 

consider function 

 
IIf(condition, expression1, expression2) 

 

Arguments of this function have the following sense: 

 condition is a logical expression; 

 expression1, expression2 are arithmetic or logical expressions 

(Sections 1.8 and 1.10) or strings, which can be considered as expressions  

(Section 1.19). 

Depending on the value of condition (True or False), the IIf func-

tion returns into the program the value of expression1 or expression2, 

respectively. 

The program below is an example of the function usage. 

 
Sub IT4() 

    Dim intA As Integer, strA As String 

    intA = 6 

    strA = IIf(intA Mod 2 = 0, "Even", "Odd") 

End Sub 

 

The second decision-making construct, Select Case, is called the case 

operator. The syntax of this construct is as follows: 

 
Select Case expression 

    Case value1 

        statements1 

    Case value2 
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        statements2 

        ∙  ∙  ∙  ∙ 

    Case valueN 

        statementsN 

    [Case Else 

        statements] 

End Select 

 

where expression is an arithmetic or logical expression or string, value1, 

value2, ..., valueN are given numbers, Boolean values or strings. The case 

operator is performed as follows. 

If expression accepts the value of value1, block statements1 is  

executed. If expression accepts the value of value2, block statements2 

is executed, and so on. If expression is not equal to any of the N values 

(value1, value2, ..., valueN ), then block statements (located below the 

Case Else keyword combination) is executed. 

Further, the jump is performed to the operator following the case operator, 

without dependence of what block was executed earlier, statements1, 

statements2, ..., statementsN or statements. 

When the same block must be executed at several values of expression, 

we have to enumerate these values (through a comma) behind the Case key-

word. 

As an example, let us consider the following program: 

 
Sub Choice() 

    Dim x As Integer 

    x = 1 

    Select Case 2 * x + 1 

        Case 1 

            x = x + 1 

        Case 2, 3, 4 

            x = 10 

        Case Else 

            x = 20 

    End Select 

    x = x Mod 3 

End Sub 

 

We advise the reader to execute this program step-by-step and to explain 

why the value of x changes so, instead of differently. 
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1.13. Cycles 

 

 

 

 

 
To execute repeatedly an operator block, we can use one of three cycle opera-

tors, For…Next, While…Wend and Do…Loop. 

The For…Next cycle is used when the number of the block’s executions is 

known in advance, i.e., before the first execution of this block. This construct has 

the following syntax: 

 
For counter = beginning To ending [Step growth] 

    statements 

Next [counter] 

 

where counter is a variable of numerical data type (p. 24), beginning and 

ending are the boundaries of the counter change, growth is the step of this 

change; beginning, ending and growth are the cycle parameters. 

Let us consider the For…Next cycle at a positive value of growth. 

At first, the value of beginning is assigned to the counter variable.  

Further, condition counter > ending is checked. If the result is True, the 

cycle is completed, at that, block statements is not executed even once. 

If the result of checking condition counter > ending is equal to False, 

then block statements is executed for the first time. After that, the jump  

occurs to the cycle beginning. Further, the counter variable’s value increases 

by growth, and condition counter > ending is checked again. If the result 

is equal to False, then block statements is executed for the second time, 

and so on. 

The cycle is completed when the check of condition counter > ending 

gives True. In this case, the operator following the cycle is executed. 

As an example of the cycle usage, let us consider the following program for 

calculating the factorial of number 6: 

 
Sub Factorial1() 

    Dim I As Byte 

    Dim F As Long 

    F = 1 
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    For I = 1 To 6 Step 1 

        F = F * I 

    Next I 

End Sub 

 

According to handbook [3], factorial of natural number n (n! is the designa-

tion) is the product of the positive integers from 1 to n: nn ...21!  ( 1!1 ). 

We advise the reader to do the following: 

1) execute the Factorial1 program step-by-step, watching the F varia-

ble’s value; 

2) replace 6 (parameter ending) by 13 in the cycle operator; 

3) run the resulting Factorial1 program for calculating 13!; 

4) explain the reason of the stop with information Run-time error ‘6’: Over-

flow, using the description of the Long data type in Appendix 1. 

At a negative value of the growth parameter, the For…Next cycle works 

as at a positive value, but: 

 condition counter < ending is being checked; 

 the counter variable cannot be of the Byte data type. 

The following 2nd version of the program for calculating 6! is an example of 

using a negative value of the growth parameter. 
 

Sub Factorial2() 

    Dim I As Integer 

    Dim F As Long 

    F = 1 

    For I = 6 To 1 Step -1 

        F = F * I 

    Next I 

End Sub 

 

If the Step keyword is omitted, the step of the counter change is equal to 

unity by default. 

Arithmetic expressions may be used as the cycle parameters (beginning, 

ending and growth). It is important that all variables in these arithmetic  

expressions had numerical values before the For…Next cycle work. 

As an example of such usage of arithmetic expressions, let us consider the 

following 3rd version of the program for calculating 6!: 
 

Sub Factorial3() 

    Const e As Double = 2.718281828 

    Dim J As Byte 
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    Dim N As Byte 

    Dim F As Long 

    N = Round(e) 

    F = 1 

    For J = 1 To N ^ 2 - 3 

        F = F * J 

    Next J 

End Sub 

 

In this program, arithmetic expression N ^ 2 - 3 is used as parameter ending. 

The N variable is equal to 3, and N ^ 2 - 3 is equal to 6. 

The absence of the Step keyword says that the step of the J variable change 

is equal to 1, and J changes from 1 to 6. 

Frequently it is required to leave the cycle before completion of its execution. 

In this case, the For…Next cycle has the following syntax: 

 
For counter = beginning To ending [Step growth] 

    [statements1] 

    If condition Then Exit For 

    [statements2] 

Next [counter] 

 

The Exit For operator is used for immediate exit from the cycle. It is a part 

of the simplest conditional operator. The last cycle works as follows. 

For each value of the counter variable, after executing the statements1 

block, the computer calculates the value of logical expression condition.  

If this value is False, the cycle continues to work. Otherwise, the jump is per-

formed to the operator following the cycle construct (without executing block 

statements2). 

As an example of using the Exit For operator, let us consider the following 

4th version of the program for calculating 6!: 

 
Sub Factorial4() 

    Dim I As Byte 

    Dim F As Long 

    F = 1 

    For I = 1 To 13 

        F = F * I 

        If I = 6 Then Exit For 

    Next I 

End Sub 
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The While…Wend cycle is used when the number of the block’s executions 

is not known in advance. The syntax of this cycle follows: 

 
While condition 

    statements 

Wend 

 

The While…Wend cycle work begins with calculating the value of logical 

expression condition. If condition = False, the cycle is completed, i.e., 

the jump is performed to the operator following the Wend keyword.  

If condition = True, block statements is executed. After that, the value 

of logical expression condition is calculated again, and so on. 

The 5th version of the program for calculating 6! follows: 

 
Sub Factorial5() 

    Dim I As Byte 

    Dim F As Long 

    F = 1 

    I = 1 

    While I <= 6 

        F = F * I 

        I = I + 1 

    Wend 

End Sub 

 

The Do…Loop cycle, as well as the While…Wend cycle, is used when the 

number of the block’s executions is not known in advance. Four versions of this 

construct exist. 

The first version is the Do While…Loop cycle with the following syntax: 

 
Do While condition 

    statements 

Loop 

 

The Do While…Loop cycle work begins with calculating the value of logi-

cal expression condition. If condition = False, the cycle is completed, 

i.e., the jump is performed to the operator following the Loop keyword. If  

condition = True, block statements is executed. After that, the value of 

logical expression condition is calculated again, and so on. 

The Do While…Loop cycle is equivalent to the While…Wend cycle  

reviewed above. 
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The 6th version of the program for calculating 6! follows: 

 
Sub Factorial6() 

    Dim I As Byte 

    Dim F As Long 

    F = 1 

    I = 1 

    Do While I <= 6 

        F = F * I 

        I = I + 1 

    Loop 

End Sub 

 

One more example of using the Do While…Loop cycle is the following 

program for the movement along the x axis: 

 
Sub Steps1() 

    Dim x As Single 

    Dim h As Single 

    h = 0.5              'step equals 0.5 

    x = 44               'initial value of x equals 44 

    Do While x < 55      'final value of x equals 55 

        x = x + h        'value of x increases by h 

    Loop 

End Sub 

 

We advise the reader to make the step-by-step execution of the Steps1 

program, watching the x variable change. 

The Do Until…Loop cycle, which is the second version of the Do…Loop 

construct, has the following syntax: 

 
Do Until condition 

    statements 

Loop 

 

The Do Until…Loop cycle work begins with calculating the value of logi-

cal expression condition. If condition = True, the cycle is completed, 

i.e., the jump is performed to the operator following the Loop keyword.  

If condition = False, block statements is executed. After that, the value 

of logical expression condition is calculated again, and so on. 
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The program with the Do Until…Loop cycle for the movement along the x 

axis has the following form: 

 
Sub Steps2() 

    Dim x As Single 

    Dim h As Single 

    h = 0.5              'step equals 0.5 

    x = 44               'initial value of x equals 44 

    Do Until x >= 55     'final value of x equals 55 

        x = x + h        'value of x increases by h 

    Loop 

End Sub 

 

There is a situation when, during the work of the Do While…Loop and 

Do Until…Loop cycles, block statements is not executed even once  

because the condition of completing the cycle is checked before the block execu-

tion. Sometimes it is inconvenient. 

The Do…Loop While cycle, which is the third version of the Do…Loop 

construct, has the following syntax: 

 
Do 

    statements 

Loop While condition 

 

The Do…Loop While cycle work begins with executing operator block 

statements. After that, the value of logical expression condition is  

calculated. If condition = False, the cycle is completed. Otherwise, block 

statements is executed again, and so on. 

The program with the Do…Loop While cycle for the movement along the x 

axis has the following form: 

 
Sub Steps3() 

    Dim x As Single 

    Dim h As Single 

    h = 0.5              'step equals 0.5 

    x = 44               'initial value of x equals 44 

    Do 

        x = x + h        'value of x increases by h 

    Loop While x < 55    'final value of x equals 55 

End Sub 
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The Do…Loop Until cycle, which is the fourth version of the Do…Loop 

construct, has the following syntax: 

 
Do 

    statements 

Loop Until condition 

 

The Do…Loop Until cycle work begins with executing operator block 

statements. After that, the value of logical expression condition is  

calculated. If condition = True, the cycle is completed. Otherwise, block 

statements is executed again, and so on. 

The program with the Do…Loop Until cycle for the movement along the x 

axis has the following form: 

 
Sub Steps4() 

    Dim x As Single 

    Dim h As Single 

    h = 0.5              'step equals 0.5 

    x = 44               'initial value of x equals 44 

    Do 

        x = x + h        'value of x increases by h 

    Loop Until x >= 55   'final value of x equals 55 

End Sub 

 

During the work of the Do…Loop While and Do…Loop Until cycles, 

block statements is executed at least once because the condition of complet-

ing the cycle is checked after the block execution. 

All four versions of the Do…Loop cycle can contain the Exit Do operator 

intended for immediate exit from the cycle. In the usage, this operator is similar 

to the Exit For operator of the For…Next cycle. 

For the While…Wend cycle, there is no operator similar to the Exit For 

and Exit Do operators. 
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1.14. Manifestation of the error of real  

numbers’ computer representation 

 

 

 

 
In the last program of the previous section, we will reduce the value of h to 

one-fifth. We can expect that the number of repeated executions of operator 

x = x + h will increase fivefold as a result and the final value of x will remain 

equal to 55. However, it is not so: the final value of x is equal to 55.09983.  

In order to verify this assertion, we do the following: 

1) enter program 

 
Sub Steps5() 

    Dim x As Single 

    Dim h As Single 

    h = 0.1               'this operator distinguishes 

                          'Steps5 from Steps4 

    x = 44 

    Do 

        x = x + h 

    Loop Until x >= 55 

End Sub 

 

into the code window; 

2) install the breakpoint against the End Sub line; 

3) click on arrow ► for the program execution up to the breakpoint; 

4) place the mouse pointer on the x variable in the program text; as a result, 

x = 55.09983 appears (Fig. 1.9); 

5) click on arrow ► for terminating the program execution. 

We see “the phenomenon” of changing the final value of x after reducing the 

value of h because “almost all” real numbers in the computer are represented 

with an error. 

In our case, the value of variable h of the Single data type is slightly less 

than 0.1. Therefore, there is the “superfluous” execution of the x = x + h  

operator during the cycle. This explains the difference between the observed 

value of 55.09983 and the expected value of 55. 
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Fig. 1.9. The code window with the Steps5  

program and with the final value of x 

 

Let us replace Single by Currency in the declaration of the h variable. 

The new version of the program follows: 

 
Sub Steps6() 

    Dim x As Single 

    Dim h As Currency     'this operator distinguishes 

                          'Steps6 from Steps5 

    h = 0.1 

    x = 44 

    Do 

        x = x + h 

    Loop Until x >= 55 

End Sub 

 

The final value of x, calculated by means of the Steps6 program, is equal 

to 55 (Fig. 1.10). This is because the value of variable h of the Currency data 

type is exactly equal to 0.1, therefore, there is not the superfluous execution of 

the x = x + h operator during the cycle. 

According to what has been said above, when working with real numbers, we 

have to consider possible inaccuracy of their computer representation because 

the error can lead to unexpected results. 
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Fig. 1.10. The code window with the Steps6  

program and with the final value of x 
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1.15. Arrays 

 

 

 

 

 
An array is a sequence or table (two-dimensional, three-dimensional, and so 

on) with variables of the same data type, which are called elements of the array. 

Every reference to an element includes the array name and one index (the ele-

ment number in the sequence) or several indices (coordinates of the element in 

the table). If there are two indices, they determine the coordinates of the element 

in the two-dimensional table, i.e., the numbers of row and column whose inter-

section is the element. 

Before usage, the array must be declared. Besides, we have to specify the 

lower and upper boundaries of each index’s change. 

There are two kinds of arrays — static and dynamic. For each of them,  

we will use the following scheme: we will consider the one-dimensional array 

(with one index) followed by the multidimensional array (with several indices) 

together with the one-dimensional array. 

The static array is used when the quantity of its elements is known in  

advance. In the declaration of a static one-dimensional array, for the index, we 

have to specify the lower and upper boundaries defining the quantity of ele-

ments, and these boundaries cannot be changed during the program execution. 

Static arrays are declared as variables, i.e., by means of keywords Dim and 

As. The boundaries are integers in parentheses. The To keyword must be  

between the lower and upper boundaries. Examples of the declaration follow: 

 
Dim arrB(1 To 10) As Currency 

Dim A(-10 To 10) As String 

 

If a single integer is given in the parentheses, it is the upper boundary. In this 

case, the lower boundary is equal to zero by default. For example, operator 

 
Dim arrA(9) As Byte 

 

is equivalent to operator 

 
Dim arrA(0 To 9) As Byte 
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If the lower boundary of indices must be equal to unity by default, we have  

to type 

 
Option Base 1 

 

above the first line of the program. In this case, operator 

 
Dim arrA(9) As Byte 

 

is equivalent to operator 

 
Dim arrA(1 To 9) As Byte 

 

Further, we will consider that line Option Base 1 is absent. 

The values of the boundaries should be between the limits for the Long data 

type (Appendix 1), i.e., from -2147483648 to 2147483647. 

Let us consider the following program: 

 

Sub StaticArrays() 

    Dim B1(1 To 6) As Byte, S1 As Byte 

    Dim B2(1 To 6) As Currency, S2 As Currency 

    Dim B3(1 To 6) As Byte, S3 As Byte 

    Dim I As Byte 

'Determination of first five elements of arrays: 

    For I = 1 To 5                   'first cycle 

        B1(I) = I                    'first power of I 

        B2(I) = I ^ .333             'cubic root of I 

        B3(I) = I ^ 3                'I cubed 

    Next 

'Determination of sixth elements of arrays: 

    S1 = 0 

    S2 = 0 

    S3 = 0 

    For I = 1 To 5                   'second cycle 

        S1 = S1 + B1(I) 

        S2 = S2 + B2(I) 

        S3 = S3 + B3(I) 

    Next 

    B1(6) = S1 

    B2(6) = S2 

    B3(6) = S3 

End Sub 
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In this program: 

 the first cycle is used for determination of the first five elements of arrays 

B1, B2 and B3; upon completing the cycle, these elements of the arrays contain 

the numerical values, which are equal to the 1st, 1st / 3rd and 3rd powers of I: 

B1(1) = 1, B1(2) = 2, …, B1(5) = 5; B2(1) = 1, B2(2) = 1.2596, …, 

B2(5) = 1.7091; B3(1) = 1, B3(2) = 8, …, B3(5) = 125; 

 the second cycle is used for summation of the earlier determined elements 

of the arrays; upon completing the cycle, the sums of the first five elements of 

arrays B1, B2 and B3 are respectively equal to S1 = 15, S2 = 6.9971 and 

S3 = 225; 

 the remaining operators of the program assign the calculated values of the 

sums to the sixth elements of the arrays: B1(6) = 15, B2(6) = 6.9971 and 

B3(6) = 225. 

It was noted above that one-dimensional and multidimensional arrays exist. 

We reviewed one-dimensional arrays, which are similar to rows and columns on 

the Excel worksheet and to vectors in mathematics. 

For declaration of multidimensional arrays (with several indices), we use  

a construct similar to operator Dim for one-dimensional arrays. The difference 

consists in that several boundaries are given through a comma. 

For example, operators 

 
Dim A(4, 6) As Byte 

Dim B(1 To 5, -7 To -1) As Byte 

 

declare two-dimensional arrays A and B, which contain identical quantities of 

elements. This quantity is equal to 5 × 7 = 35. 

A two-dimensional array is similar to a range of cells on the Excel worksheet 

and to a matrix in mathematics. A three-dimensional array is similar to a range of 

cells on several worksheets of the same Excel workbook. A four-dimensional 

array is similar to a range of cells on several worksheets of several open work-

books. 

Open Excel workbooks are represented by buttons on the taskbar of Win-

dows Desktop. 

The reference to an element of a multidimensional array includes the array 

name and the indices listed through a comma. Examples of the reference are  

figured in the following assignment operators: 

 
A(i, j + 1) = 17 

D(K) = A(i, 0) 

 

As we see, the reference may be on the left and/or right of the assignment sign. 
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Operator 

 
Dim C(1 To 5, -5 To -1, 4) As Byte 

 

declares a three-dimensional array containing 5 × 5 × 5 = 125 elements. 

The number of indices is called the dimension of an array. The dimension of 

the above C array is equal to 3. The largest dimension equals 60. 

An array occupies S × Q + 4 × D + 20 bytes of the main memory, where: 

 S is the memory size (in bytes) occupied by one element; 

 Q is the quantity of the elements; 

 D is the dimension. 

It concerns both static and dynamic arrays. The last array is reviewed below. 

The dynamic array is used when the quantity of its elements is not known in 

advance and must be defined during the program execution. When finishing 

work with the dynamic array, it is possible to free the memory cells occupied by 

this array. It is important for problems demanding large size of the main 

memory. 

The declaration of the dynamic array has the following two parts. 

1. The array is declared by means of the Dim operator without boundaries of 

indices. A pair of parentheses must follow the array name. 

2. The boundaries of indices are specified by means of the ReDim operator 

in a proper place of the program, at that, we can use not only integers as bounda-

ries, but also arithmetic expressions. It is important that all variables in these 

expressions have numerical values before the ReDim operator execution. 

The following program is an example of using the dynamic array. 

 
Sub DynamicArray() 

    Dim A() As Byte       'declaration of array 

    Dim M As Integer, N As Integer 

    M = 3 

    ReDim A(-5 To M ^ 2)  'specification of boundaries 

    For N = -5 To M ^ 2 

        A(N) = N + 30 

    Next 

    ReDim A(5)            'specification of boundaries 

    N = 0 

    Do 

        A(N) = N ^ 3 

        N = N + 1 

    Loop Until N ^ 2 > 10 

End Sub 
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After typing this program in the code window, let us do the following. 

1. By clicking, set the blinking cursor on variable A, more precisely, in front 

of or behind A. Fulfill operations Debug > Add Watch. The Add Watch window, 

containing the variable name in text box Expression, appears. 

2. Click on OK. The Watches window, intended for the current visualization, 

appears with a line corresponding to the A array. 

3. Set the blinking cursor in any place of the program text. 

4. Execute the program step-by-step (Fig. 1.11), watching the A array values 

by means of the Watches window. 

 

 
 

Fig. 1.11. The step-by-step execution of the DynamicArray program 

 

For visualization of the A array values in the Watches window, we must click 

on the plus sign in front of A in this window. As a result, plus turns to minus and 

the A array values appear below. 

We can edit the contents of the Watches window. 

Let us admit that we want to watch the value of variable n instead of the A  

array values. For this purpose, during the step-by-step program execution  

(between presses of the F8 key), we must: 
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1) click on the minus sign in front of A; as a result, the plus sign appears but 

the A array values disappear; 

2) highlight A by clicking on it (in the Watches window); 

3) type n instead of A highlighted; 

4) press the Enter key; 

5) continue the step-by-step program execution, watching the value of n. 

To remove the line, corresponding to the A array, from the Watches window, 

we must: 

1) highlight this line by clicking on the glasses pictogram; 

2) press the Delete key. 

To add a line, we must fulfill Debug > Add Watch, and so on. 

To close the Watches window, we must click on the little cross in the top 

right corner of this window. To open the Watches window, we must fulfill  

View > Watch Window. 

The ReDim operator can be used for changing the array’s dimension, as in 

the following program: 

 
Sub Dimension() 

    Dim arrA() As Byte 

    ReDim arrA(1, 1)          'two-dimensional array 

    arrA(0, 0) = 13: arrA(0, 1) = 14 

    arrA(1, 0) = 15: arrA(1, 1) = 16 

    ReDim arrA(1 To 3, 3, 3)  'three-dimensional array 

    arrA(1, 0, 0) = 17 

End Sub 

 

Note that, at repeated execution of the ReDim operator, the array values will 

be lost because the ReDim operator nulls all elements of the array. 

To keep the array values, we have to insert the Preserve keyword between 

ReDim and the array name. As an example, see operators 0, 1 and 2 in the fol-

lowing program: 

 
Sub Conservation1() 

    Dim J As Integer 

0:  Dim arrA() As Integer        'declaration of array 

1:  ReDim arrA(-5 To 1)   'specification of boundaries 

    For J = -5 To 1 

        arrA(J) = J ^ 2 

    Next J 

2:  ReDim Preserve arrA(-5 To 4) 

                          'specification of boundaries 
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    For J = 2 To 4 

        arrA(J) = J ^ 3 

    Next J 

End Sub 
 

Labels 0, 1 and 2 may be omitted. 

We advise the reader to execute the Conservation1 program step-by-

step, watching the arrA array values by means of the Watches window. 

In the Conservation1 program, the Preserve keyword is used to 

change the upper boundary of the one-dimensional array’s index without nulling 

the array values. When changing the lower boundary, we cannot use this key-

word. 

In the case of a multidimensional array, the Preserve keyword can be used 

only when changing the upper boundary of the last index. As an example of such 

usage of the Preserve keyword, see operators 0, 1 and 2 in the following pro-

gram: 
 

Sub Conservation2() 

    Dim I As Integer, J As Integer 

0:  Dim arrA() As Integer        'declaration of array 

1:  ReDim arrA(2, -5 To 1) 

                          'specification of boundaries 

    For I = 0 To 2 

        For J = -5 To 1 

            arrA(I, J) = (I + 1) * J ^ 2 

        Next J 

    Next I 

2:  ReDim Preserve arrA(2,-5 To 4) 

                          'specification of boundaries 

    For I = 0 To 2 

        For J = 2 To 4 

            arrA(I, J) = (I + 1) * J ^ 3 

        Next J 

    Next I 

End Sub 

 

We advise the reader to make the step-by-step execution of the last program, 

watching the arrA array values by means of the Watches window. 

The values of the lower and upper boundaries of any index can be returned to 

the program. For this purpose, functions LBound and UBound are respectively 

used. We can look the description of these functions in the Excel help system 

started by pressing the F1 key when the VB window is active. 
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If arrA is a one-dimensional array, the LBound and UBound functions are 

used as in the operator block below: 

 
Dim lower As Long, upper As Long 

lower = LBound(arrA)          'lower boundary of index 

upper = UBound(arrA)          'upper boundary of index 

 

Function UBound is necessary, for example, when the value of the upper 

boundary is unknown and, at the same time, we have to increase this value by 

certain number. 

As it was already told, advantage of the dynamic array over the static is that 

we can free the memory cells, earlier occupied by the dynamic array. Operator 

Erase is used for this, as in the following example program: 

 
Sub Memory() 

    Dim A() As Byte 

    Dim B() As Byte 

    ReDim A(8)  'memory for A: 9 + 4 + 20 = 33 bytes 

    Erase A     'memory for A: 0 bytes 

    ReDim B(2, 3) 

                'memory for B: 12 + 8 + 20 = 40 bytes 

End Sub 

 

After inputting the Memory program into the code window, let us make the 

following: 

1) generate the lines corresponding to arrays A and B in the Watches win-

dow, fulfilling Debug > Add Watch twice; 

2) click on any place of the program text to set the blinking cursor there; 

3) execute the program step-by-step, watching the memory distribution by 

means of the Watches window. 

For solving a series of mathematical problems, arrays of random numbers are 

required. They can be generated by means of the Rnd function (p. 46). 

Let us consider the following program: 

 
Sub RandomNumbers() 

    Dim N As Long 

    Dim I As Long 

    Dim S() As Single 

    N = 20 

    ReDim S(1 To N) 
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    Randomize          'it must be before calls of Rnd 

    For I = 1 To N 

        S(I) = Rnd 

    Next I 

End Sub 

 

This program calculates 20 random real numbers from 0 to 1 and writes them 

into dynamic array S. The Rnd function is being called in cycle For…Next. 

Function Rnd is the built-in generator of random real numbers uniformly  

distributed on segment ]1,0[ : a number, being returned by the Rnd function, 

appears in any place of segment ]1,0[  with equal probability. 

Before a series of the Rnd function calls, the Randomize operator must be 

executed for preparing the random-number generator for work. 

We advise the reader to execute the RandomNumbers program step-by-

step, watching the S array by means of the Watches window. 

Operator Randomize and function Rnd are used in code Listing 6.11  

intended for minimization of the multimodal function (Section 6.8). 
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1.16. User-defined procedures 

 

 

 

 

 
A user-defined procedure allows executing an operator block in different 

places of our program. 

According to this VB construct: 

1) we have to write the block, intended for multiple executions, only once; 

2) a name with formal parameters or without them must be written in the 

header of the block. 

This expanded block is called a procedure declaration. 

Generally, the user-defined procedure has: 

 input parameters, which are considered given; 

 output parameters, which are determined while executing the block. 

After forming the procedure declaration, we locate the calls of this procedure 

with the actual parameters in those places of the program, which should be occu-

pied by the block being the procedure prototype. 

The procedures are divided into functions and subroutines (subprograms). 

The function, returning a value, is intended for usage in arithmetic and logical 

expressions and in strings. The subroutine usage in expressions and strings is 

impossible. This is the main difference between the function and subroutine. 

The declaration of the user-defined function has the following syntax: 

 
Function name([formal_parameters]) [As type] 

    statements 

End Function 

 

where name is the function name, type is the data type (Appendix 1) of  

name, i.e., of the function value, formal_parameters are the parameter 

(argument) names listed through a comma, statements is the operator block. 

The parameter names can be accompanied by keywords. 

Block statements must include at least one assignment operator whose 

left-hand side (on the left of sign =) is the function name. 

The function call looks like 

 
name([actual_parameters]) 
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where actual_parameters are variables, arrays, expressions (arithmetic, 

logical) and/or strings listed through a comma. 

As a result of calling the name function, the function value, corresponding to 

actual_parameters, is returned into the program. 

Records and arrays of records may be among formal and actual parameters. 

We will review the record construct in Section 1.18. 

Let us consider the following code: 

 
Sub Program1() 

    Dim L As Long 

    Dim W As Double 

    L = Fact(12) 

    W = 4.2 + Fact(10) / 2 

End Sub 

 

Function Fact(N) As Long                       'N < 13 

    Dim I As Byte 

    Dim J As Long 

    J = 1 

    For I = 1 To N 

        J = J * I 

    Next I 

    Fact = J 

End Function 

 

The first group of operators is program Program1; the second group is the 

declaration of function Fact. They are in one or different modules of the same 

Excel workbook, i.e., we can type the program and the function declaration in 

one or different code windows. 

The Fact function calculates N!, i.e., factorial of natural number N, which is 

the formal parameter. 

We see two calls of the Fact function in the program, with 12 and 10 as the 

actual parameter. 

1. The Fact function call is located in the right-hand side of assignment 

operator 

 
L = Fact(12) 

 

As a result of the operator execution, the Fact function value (that is, the value 

returned by the Fact function into the program when N is equal to 12) is  

assigned to the L variable. 
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2. The Fact function call is figured in arithmetic expression 

 
4.2 + Fact(10) / 2 

 

The value of this arithmetic expression is assigned to the W variable. 

The declaration of the user-defined subroutine has the following syntax: 

 
Sub name([formal_parameters]) 

    statements 

End Sub 

 

where name is the subroutine name, formal_parameters are the parameter 

names listed through a comma, as in the above declaration of the user-defined 

function, statements is the operator block. 

Keyword Sub occurs from word “subroutine”. It is in the beginning and end 

not only of the subroutine declaration (or simply of the subroutine), but also of 

the program because “main subroutine” is synonym of “program”. 

There are two equivalent operators of calling the subroutine: 

 
Call name([actual_parameters]) 

name [actual_parameters] 

 

where actual_parameters is the list of actual parameters, as in the above 

call of the user-defined function. In the presence of the Call keyword, the  

actual parameters are in parentheses; in the absence of Call, the parentheses are 

not used. 

The example program and subroutine follow: 

 
Sub Program2() 

    Dim aa As Single, bb As Single 

    Dim cc1 As Single, cc2 As Single, cc3 As Single 

    aa = 3 

    bb = 4 

    Call Hypotenuse(aa, bb, cc1) 

                               '1st call of subroutine 

    Call Hypotenuse(3, 4, cc2) 

                               '2nd call of subroutine 

    Hypotenuse aa, bb, cc3 

                               '3rd call of subroutine 

End Sub 
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Sub Hypotenuse(ByVal A, ByVal B, ByRef C) 

    C = Sqr(A ^ 2 + B ^ 2) 

End Sub 

 

The first group of operators is program Program2, the second group is the 

declaration of subroutine Hypotenuse for calculating the length of the hypote-

nuse of a right-angled triangle. They are located in one or different modules. 

We see three operators of calling the Hypotenuse subroutine in program 

Program2, and two of them contain the Call keyword. 

Formal parameters A and B (in the subroutine declaration) are the input pa-

rameters, lengths of the legs. The ByVal keyword in front of A and B in the first 

line of the subroutine declaration (i.e., in the header of the operator block) means 

that these parameters must be passed by value (when calling Hypotenuse). In 

this case, the values of parameters A and B (3 and 4, respectively) are transferred 

to the Hypotenuse subroutine at all three calls. 

Formal parameter C is the output parameter, i.e., the hypotenuse length. The 

ByRef keyword in front of C means that this parameter must be passed by  

reference (when calling Hypotenuse). In this case, the address of the memory 

cell, corresponding to variable cc1 (at the first call), cc2 (at the second call)  

or cc3 (at the third call), is transferred to the Hypotenuse subroutine. 

Keyword ByRef may be omitted. 

In the code under consideration, the parameters of the Hypotenuse subroutine 

are simple variables (not arrays). If the parameters are arrays, both input and 

output parameters must be passed by reference. 

Let us consider the following code located in one module: 

 
Dim N1 As Integer 

 

Sub Program3() 

    Dim xx(50) As Double 

    Dim yy(50) As Double 

    Dim i As Integer 

    N1 = 3 

    For i = N1 To 30 

        xx(i) = 0.1 * i 

    Next i 

    Call XSINX(30, xx, yy)         'call of subroutine 

End Sub 

 

Sub XSINX(ByVal N2, ByRef X() As Double, _ 

    ByRef F() As Double) 
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    Dim j As Integer 

    For j = N1 To N2 

        F(j) = X(j) * Sin(X(j)) 

    Next j 

End Sub 

 

In addition to usage of arrays as the subroutine parameters, we see something 

new in the last code: the N1 variable is declared above the first line of the pro-

gram. This is done for making N1 visible (in respect of the usage possibility) in 

both the program and subroutine. Let us return to the variable declaration. 

So far, we have been speaking about how to declare variables, but have not 

mentioned where to declare. We can declare them in two places: 

 inside the program or user-defined procedure; 

 in the general declarations area occupying the top part of the code  

window. 

The place of the variable declaration defines the area of the variable usage. 

For example, if a variable is declared in the user-defined procedure (as variable j 

in the last code), only this procedure “sees” this variable. Other procedures  

(if they exist) and the program cannot use this variable’s value and change it. 

Such variable is called a local variable. We can also say that the variable is 

visible at the procedure level. 

For letting a variable’s value be accessible to all user-defined procedures of 

the given module, we have to declare this variable in the general declarations 

area (as variable N1 in the last code). In this case, the program and all user-

defined procedures, declared in the given module, can use this variable’s value 

and change it. 

Such variable is called a module variable. The Dim keyword in front of N1 

may be replaced by the Private keyword: 

 
Private N1 As Integer 

 

All that was said about variables also concerns the user-defined constants, but 

the constant’s value, naturally, cannot be changed. 

If the declaration of the XSINX subroutine is located in the separate module, 

the first line of the last code should be as follows: 

 
Public N1 As Integer 

 

Such variable is called a public variable. The declaration of public variable N1 

can be in each of two modules or only in one, the first (with text of Program3) 

or second (with text of XSINX). 
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At the similar declaration of a constant, instead of a variable, the correspond-

ing line of the general declarations area should begin with keyword combination 

Public Const. 

The debugger command, being fulfilled by pressing the F8 key, is called Step 

Into: during the step-by-step program execution by means of the F8 key, the  

entrance into the user-defined procedure takes place. If we do not need the step-

by-step execution inside the user-defined procedure, we use the following two 

commands of the Debug menu. 

1. Step Over — the step-by-step program execution without entrance into 

the user-defined procedure. This command can also be performed by pressing 

Shift + F8. 

2. Step Out — exit from the user-defined procedure. It is used when the pro-

cedure remainder should be executed in the automatic mode. This command can 

also be performed by pressing Ctrl + Shift + F8. 

We advise the reader to execute programs Program1, Program2 and 

Program3 by pressing F8, Ctrl + F8, Shift + F8 and Ctrl + Shift + F8. Before 

the execution, the blinking cursor must be located inside the program text (not in 

the procedure declaration and not in the general declarations area). 

One or several last parameters of the list of parameters of the user-defined 

procedure (function or subroutine) can be optional, i.e., they can be absent in the 

procedure call. 

If the parameter is not obligatory, the Optional keyword must be in front 

of this parameter’s name in the first line of the procedure declaration. The  

optional parameter must have the Variant data type (Appendix 1). 

Let us consider the following example code: 

 
Sub Program4() 

    Dim bytA As Byte, bytB As Byte 

    Dim intC As Integer 

    bytA = 5 

    bytB = 10 

    intC = Apt(bytA, bytB) 

                        'result: bytB = 6, intC = 625 

    bytB = 10 

    intC = Apt(bytA)    'result: bytB = 10, intC = 625 

End Sub 

 

Function Apt(ByVal a, Optional b As Variant) 

    If Not IsMissing(b) Then b = a + 1 

    Apt = a ^ 4 

End Function 
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In this example, the b parameter of the Apt function is optional; keyword 

Optional in front of this parameter tells about it. Keyword combination 

As Variant behind b may be omitted. 

Other features of the Apt function declaration: 

 Not is the logical negation; 

 IsMissing is the following function. 

The value of IsMissing(b) is equal to True or False as follows: 

 True in the absence of the optional parameter in the Apt function call; 

 False in the presence of the optional parameter. 

We advise the reader to execute the Program4 program step-by-step, 

watching the values of variables bytB and intC. 

We can specify a value of the optional parameter in the absence of this  

parameter in the call of the user-defined procedure. 

The example program and procedure follow: 
 

Sub Program5() 

    Dim bytA As Byte, bytB As Byte, bytC As Byte 

    bytA = 5: bytB = 2 

    Call Ept(bytA, bytC, 5 * bytB)  'result: bytC = 15 

    Call Ept(bytA, bytC)            'result: bytC = 8 

End Sub 

 

Sub Ept(ByVal a, c, Optional b = 3) 

    c = a + b 

End Sub 

 

In this code: 

 the b parameter of the Ept subroutine is optional; 

 if the call of Ept contains only two actual parameters, b = 3 is used when 

executing operator c = a + b. 

We advise the reader to make the step-by-step execution of the Program5 

program, watching the value of bytC. 

Operators 
 

Exit Sub 

Exit Function 

 

are intended for immediate terminating the procedure execution. The first opera-

tor should be in the subroutine declaration, the second — in the function declara-

tion. At their execution, the jump is being performed to the same point, as upon 

the normal terminating the procedure execution. 
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The programs in this section use only one user-defined procedure; for exam-

ple, program Program1 uses only the Fact function. However, several user-

defined procedures may be used by one program. 

According to the computer terminology, as a program, we can consider the 

program itself (the main subroutine) together with the declarations of the user-

defined procedures (used by the program) and/or together with the general decla-

rations area. For example, program Program3 together with operator 

 
Dim N1 As Integer 

 

can also be called program Program3. The following can also be called pro-

gram Program3: the program itself, the XSINX subroutine declaration and the 

general declarations area. Sometimes term “program” is used in the extended 

sense, which is equivalent to “code”. 
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1.17. Built-in procedures. Usage of standard windows 

 

 

 

 

 
Visual Basic includes a considerable quantity of the built-in procedures, 

which differ from the user-defined procedures in the following: developers of the 

Visual Basic features programmed their declarations. These declarations are hid-

den from us as the program developer. 

The built-in procedures, as well as the user-defined procedures, are divided 

into functions and subroutines. 

We have already encountered the built-in functions of VB. They are: 

 functions reviewed in Section 1.9; 

 IIf in Section 1.12; 

 IsMissing in Section 1.16, etc. 

Below is considered built-in function InputBox intended for input of in-

formation (into the program) by means of the standard windows of operating 

system Windows. 

An example of the built-in subroutine is the MsgBox procedure intended for 

output of information (from the program) into the standard windows. 

We will use InputBox and MsgBox in the program from Section 1.1, in-

tended for calculating the hypotenuse length, with which we began studying VB. 

1. Let us enter the following program into the code window: 
 

Listing 1.3 
 

Sub Pythagoras1() 

    Dim a As Single 

    Dim b As Single 

    Dim c As Single 

    Dim s As String 

1:  s = InputBox( _ 

        "Enter length of the first leg and click OK") 

2:  a = Val(s) 

3:  s = InputBox( _ 

        "Enter length of the second leg and click OK") 

4:  b = Val(s) 

5:  c = Sqr(a ^ 2 + b ^ 2)    'according to Pythagoras 

6:  s = Str(c) 
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7:  MsgBox s 

End Sub 

 

2. Let us run the Pythagoras1 program. The window appears (Fig. 1.12), 

offering to input the length of the first leg of a right-angled triangle. Let us put, 

for example, 400 (without inverted commas) into the text box of this window by 

means of the keyboard and click on the OK button. 

 

 
 

Fig. 1.12. The first window (on the Excel worksheet)  

for inputting the source data 

 

3. The window appears (Fig. 1.13), offering to input the length of the second 

leg. Let us put, for example, 300 and click on OK. 

 

 
 

Fig. 1.13. The second window for inputting the source data 

 

4. The window appears (Fig. 1.14), containing the hypotenuse length calcu-

lated. Let us click on the OK button to close this window and terminate the pro-

gram execution. 
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Fig. 1.14. The window with the result 

 

In the above program, operator 1 includes the InputBox function call, 

which is used for entering information from the keyboard. This function returns 

the string, which was entered into the text box of the window in Fig. 1.12, i.e., 

"400". This string is assigned to the s variable of the String data type. 

Operator 2 converts the s string’s value to number 400 and assigns this  

number to the a variable of the Single data type. 

Operator 3 assigns string "300", which was entered into the text box of the 

window in Fig. 1.13, to the s variable. Operator 4 converts the s string’s value 

to number 300 and assigns this number to the b variable. 

Operator 5 calculates the hypotenuse length according to the Pythagoras the-

orem. The calculated value of 500 is assigned to variable c. Operator 6 converts 

500 to string; as a result, the s string’s value becomes "500". 

Operator 7, which is the call of the built-in MsgBox subroutine, opens the 

window with value 500 calculated (Fig. 1.14). As in the case of the user-defined 

subroutine, operator 7 may be written in the following form: 

 

Call MsgBox(s) 

 

The calls of built-in procedures InputBox and MsgBox have only one  

parameter (of the String data type), which is obligatory. However, these pro-

cedures also have optional parameters, whose appointment may be looked in the 

Excel help system started by pressing the F1 key when the VB window is active. 

Before pressing this key, we recommend to locate the blinking cursor on the  

required word (InputBox or MsgBox) in the code window containing program 

Pythagoras1. 

In the Excel help system, the MsgBox procedure is termed as a function,  

instead of a subroutine, because the call of MsgBox may be a part of arithmetic 
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expressions. In this case, MsgBox returns (into the program) the integer value 

depending on the button, on which the user clicked. In the example below, we 

will consider using the MsgBox procedure as a function. 

For calculating the area of a right-angled triangle by the Pythagoras1 

program, we replace operator 7 by three operators labeled by 7, 8 and 9. The 

following program is the result: 

 

Sub Pythagoras2() 

    Dim a As Single 

    Dim b As Single 

    Dim c As Single 

    Dim s As String 

1:  s = InputBox( _ 

        "Enter length of the first leg and click OK") 

2:  a = Val(s) 

3:  s = InputBox( _ 

        "Enter length of the second leg and click OK") 

4:  b = Val(s) 

5:  c = Sqr(a ^ 2 + b ^ 2)    'according to Pythagoras 

6:  s = Str(c) 

7:  Dim Ret As Integer 

8:  Ret = MsgBox(s, vbYesNo, _ 

        "Do you want to calculate area?") 

9:  If Ret = vbYes Then MsgBox Str(a * b / 2) 

End Sub 

 

In operator 8, procedure MsgBox is a function. In this case, the procedure 

parameters are in parentheses. 

When executing the Pythagoras2 program, the window with the hypote-

nuse length calculated has other content (Fig. 1.15). After clicking on the Yes 

button, the window with the triangle area calculated is displayed (Fig. 1.16).  

By clicking on the OK button, we terminate the program execution. 

Operators 7 — 9 of the last program may be replaced by operator 

 
If MsgBox(s, vbYesNo, _ 

    "Do you want to calculate area?") = vbYes _ 

    Then MsgBox Str(a * b / 2) 

 

This also gives the results shown in Fig. 1.15 and 1.16. 
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Fig. 1.15. The first resulting window 

 

 
 

Fig. 1.16. The second resulting window 
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1.18. Records 

 

 

 

 

 
A record or user-defined data type is a collection of variables, possibly of dif-

ferent data types, grouped together under a single name for convenient handling. 

Each variable of the record is called a field. 

Before usage of a record, we must create it by means of the Type operator 

with the following syntax: 

 
Type struct 

    field1 As type1 

    field2 As type2 

    ∙  ∙  ∙  ∙  ∙ 

    fieldN As typeN 

End Type 

 

where struct is a name of the record, field1, field2, …, fieldN are the 

field names, type1, type2, …, typeN are data types (Appendix 1) for the 

corresponding fields. 

The record creation operator must be placed in the general declarations area 

of the program, which uses this record. 

For example, we have to work up results of a university session, where the 

following three subjects were evaluated: physics, mathematics and informatics. 

In this case, the following fields are necessary: 

1) name of the student; 

2) number of the test book; 

3) mark in physics; 

4) mark in mathematics; 

5) mark in informatics. 

Let the name of the record be Session, and let the field names be Name,  

Number, Physics, Math and Inform. In this case, the record creation opera-

tor has the following form: 

 
Type Session 

    Name As String 

    Number As Long 
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    Physics As Byte 

    Math As Byte 

    Inform As Byte 

End Type 

 

To get access to the created record (by name struct), we have to declare 

one or several variables in the program by means of the Dim operator, in the 

same way as we declared variables in Section 1.3. 

The declaration operator has the following syntax:  
 

Dim variable As struct 

 

where variable is the variable name, struct is the variable’s data type. 

For example, operator 
 

Dim Sess As Session, BestSess As Session 

 

declares variables (records) Sess and BestSess of the Session data type. 

For the reference to the record field, we use the variable and field names  

separated by a point. 

For example, assignment operator 
 

Sess.Name = "Maksim Zakharkin" 

 

contains the reference in the left-hand side. As a result of the operator execution, 

string 
 

"Maksim Zakharkin" 

 

is assigned to the Name field of the Sess variable (of type Session). 

For filling the fields, it is convenient to use the With operator, which has the 

following syntax: 
 

With variable 

    .field1 = expression1 

    .field2 = expression2 

    ∙  ∙  ∙  ∙  ∙  ∙  ∙ 

    .fieldN = expressionN 

End With 

 

In this operator, expression1, expression2, ..., expressionN are 

arithmetic or logical expressions (Sections 1.8 and 1.10) or strings, which can  

be considered as expressions (Section 1.19). 
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For example: 

 
With Sess 

    .Name = "Maksim Zakharkin" 

    .Number = 02237 

    .Physics = 4 

    .Math = 5 

    .Inform = 5 

End With 

 

The assignment operator can be applied both to fields and to entire records, 

as in the following examples: 

 
BestSess.Number = Sess.Number 

BestSess = Sess 

 

Arrays of records may be used. For example, it is natural to store the marks 

obtained by students of group E13 in array SessE13. If this array of records is 

static, it is declared as follows: 

 
Dim SessE13(1 To 15) As Session 

 

For example, let us consider the following code for calculating distance  

between Tushino and Ostankino on the Moscow map. 
 

Listing 1.4 
 

Type Point 

    Name As String 

    x As Single 

    y As Single 

End Type 

 

Sub TushinoOstankino() 

    Dim P() As Point 

    ReDim P(0 To 1) 

    With P(0) 

        .Name = "Tushino" 

        .x = 17.6 

        .y = 29.7 

    End With 
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    With P(1) 

        .Name = "Ostankino" 

        .x = 44.1 

        .y = 37.5 

    End With 

    MsgBox Str(Distance(P()))      'output of 27.62408 

End Sub 

 

Function Distance(positions() As Point) As Single 

    Distance = _ 

    Sqr((positions(0).x - positions(1).x) ^ 2 + _ 

    (positions(0).y - positions(1).y) ^ 2) 

End Function 

 

Code Listing 1.4 includes the operator creating the Point record, program 

TushinoOstankino and the Distance function. This code has the follow-

ing peculiarities: 

 P is the dynamic array of records of the Point data type; 

 the Distance function argument is the array of records of type Point. 

To understand the work of program TushinoOstankino, we advise the 

reader to execute it step-by-step, watching the P array in window Watches.  

Before the first press of the F8 key, the blinking cursor should be located in the 

TushinoOstankino program, not in the operator creating the Point record 

and not in the Distance function. 
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1.19. Work with strings 

 

 

 

 

 
The string is not only a pair of quotation marks "" and a sequence of charac-

ters enclosed in quotes (p. 27), but also a variable of the String data type,  

declared by means of the String keyword. For example, in operator block 
 

Dim A As String 

Dim B As String * 15 

A = "Informatics" 

B = "Informatics" 

 

we see the following strings: A, B, "Informatics". 

The string as a variable may have inconstant or constant length (Appendix 1). 

 The variable-length string occupies a part of the main memory, which can 

change during the program execution. In the above example, A is a string of  

variable length. According to Appendix 1, after performing assignment operator  
 

A = "Informatics" 
 

the A string occupies 21 bytes of the main memory. 

 The fixed-length string occupies a fixed part of the main memory. At the 

end of the string declaration (behind an asterisk), we must specify the size of the 

main memory (in bytes) for this string. In the above example, B is a string of 

fixed length, which occupies 15 bytes of the main memory. 

The quantity of characters of the value, assigned to the fixed-length string, 

may differ from the quantity specified in the declaration, i.e., may be less or 

greater than 15. In the first case, instead of missing characters, spaces will be 

automatically added to the end of the string. In the second case, superfluous 

characters will be automatically removed. 

For association of two or more strings, we must use one of signs & (amper-

sand) and + (plus). The resulting string, as a quoted sequence of characters, does 

not depend on the sign. 

The program below is an example of using signs & and + as the string con-

nector. 
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Sub Strings1() 

    Dim strA As String, strB As String, strC As String 

    strA = "String ": strB = "variable" 

    strC = strA & strB 

                     'result: strC = "String variable" 

    strC = "String " + strB 

                     'result: strC = "String variable" 

End Sub 
 

Owing to the presence of the connector, strings 
 

strA & strB 

"String " + strB 
 

are called compound strings. They can be considered as expressions similar to 

arithmetic and logical expressions. 

Term “substring” is used below. It is a string, not containing the space and 

tabulation characters. Substrings are put together into a string by means of the 

space character or vbTab — the built-in constant corresponding to the tabulation 

character. The space character and vbTab (or the tabulation character) are called 

the substring connectors. 

Let us complete the last program by operators 
 

strA = "String variable" 

                'result: strA = "String variable" 

strB = "String" & " " & "variable" 

                'result: strB = "String variable" 

strC = "String" & vbTab & "variable" 

                'result: strC = "String|variable" 
 

According to the comments, the resulting first and second strings are the 

same quoted set of characters. This string differs from the resulting third string 

by only the character between substrings "String" and "variable". It is: 

 the space character in the first and second strings; 

 the tabulation character in the third string. 

If we place the mouse pointer on strC in the program text (after execution 

of the last operator), information String□variable or String  variable appears. 

It should be emphasized that the connection result is a string, not a substring. 

When working with strings, three functions of removing spaces are used: 

 Trim deletes the beginning and ending spaces of the string that is the 

function argument; 

 LTrim deletes the beginning spaces of the string (on the left); 

 RTrim deletes the ending spaces of the string (on the right). 
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The following program is an example of using these functions. 
 

Sub Strings2() 

    Dim strA As String, strB As String 

    strA = "   String variable   " 

    strB = Trim(strA) 

                  'result: strB = "String variable" 

    strB = LTrim(strA) 

                  'result: strB = "String variable   " 

    strB = RTrim(strA) 

                  'result: strB = "   String variable" 

End Sub 
 

As already mentioned in Sections 1.4 and 1.8, for converting number to 

string, the CStr or Str function is used; for the inverse conversion, the Val 

function is used. 

Function Space returns a string of spaces into the program; the quantity of 

spaces is determined by the function argument. 

The following program uses functions CStr, Val and Space. 
 

Sub Strings3() 

    Dim strA As String, curB As Currency 

    Dim strC As String 

    strA = "X = " 

    curB = 45.77 

    strC = strA & CStr(curB) 

                   'result: strC = "X = 45.77" 

    curB = Val("45.77 = X")      'result: curB = 45.77 

    curB = Val(strC)             'result: curB = 0 

    strC = "String" & Space(3) & "variable" 

                   'result: strC = "String   variable" 

End Sub 
 

It is possible to transform a string so that all letters in it become uppercase or 

lowercase. For this purpose, functions UCase and LCase are used, respectively, 

as in the following example program: 
 

Sub Strings4() 

    Dim strA As String, strB As String 

    strA = "Pavel Ivanov" 

    strB = UCase(strA)  'result: strB = "PAVEL IVANOV" 

    strB = LCase(strA)  'result: strB = "pavel ivanov" 

End Sub 
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To replace any part of a string by certain characters, the Replace function 

is used. The example program follows: 

 
Sub Strings5() 

    Dim strA As String 

    Dim strB As String 

    strA = "Pavel Ivanov" 

    strB = Replace(strA, "Ivanov", "Gusev") 

                         'result: strB = "Pavel Gusev" 

End Sub 

 

To determine the quantity of characters in a string (without considering  

inverted commas), function Len (from “length”) is used, at that, its argument  

is the string. Here is the example program: 

 
Sub Strings6() 

    Dim strA As String 

    Dim intA As Integer 

    strA = "String variable" 

    intA = Len(strA)                'result: intA = 15 

End Sub 

 

Functions Replace and Len have additional possibilities, which can be 

studied by means of the Excel help system started by pressing the F1 key when 

the VB window is active. 

Quite often, we have to extract a part from a string. For this purpose, func-

tions Left, Right and Mid (from “middle”) are used. 

The calls of functions Left and Right are as follows: 

 
Left(string, quantity) 

Right(string, quantity) 

 

These functions return the string containing the specified quantity of charac-

ters of the beginning and end of string, respectively. 

The call of function Mid follows: 

 
Mid(string, number[, quantity]) 

 

This function returns the string containing quantity characters of string, 

starting from the character whose number equals number. If quantity is 

omitted, the Mid function returns all characters up to the end of string. 
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Functions Left, Right and Mid are used in the following program: 

 
Sub Strings7() 

    Dim strA As String 

    Dim strB As String 

    strA = "My string variable" 

    strB = Left("My string variable", 9) 

                           'result: strB = "My string" 

    strB = Right(strA, 8)  'result: strB = "variable" 

    strB = Mid(strA, 4, 6) 'result: strB = "string" 

    strB = Mid(strA, 11)   'result: strB = "variable" 

End Sub 

 

Let us consider an example of using the compound string in the call of the 

MsgBox procedure. 

1. In Listing 1.4, we replace operator MsgBox Str(Distance(P())) 

on p. 93 by the following operator block: 

 
Dim L As Single 

Dim S As String 

Dim M As Single 

L = Distance(P()) 

S = InputBox("Enter scale and click OK") 

                    'input of scale, Fig. 1.17 

M = Val(S) 

L = M * L 

MsgBox "Distance from " & P(0).Name & " to " & _ 

    P(1).Name & vbCrLf & "equals" & Str(L) & " km" 

                    'output of distance, Fig. 1.18 

 

2. Let us click on arrow ► to start the program execution. 

3. We put 0.4 into the text box of the displayed window (Fig. 1.17) and click 

on the OK button. 

4. Let us click on the OK button in the emerging window (Fig. 1.18) to  

terminate the program execution. 

In the above operator block, the calls of InputBox and MsgBox appeared. 

As already mentioned, the built-in InputBox function is used to input infor-

mation from the keyboard; this function returns (into the program) the string, 

which was put into the text box. The build-in MsgBox procedure is used to  

depict information on the display screen. The parameter of this procedure is  

a compound string, which includes built-in constant vbCrLf. 
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Fig. 1.17. The window for inputting the scale 

 

 
 

Fig. 1.18. The window with the calculation result 

 

Because of using the vbCrLf constant, we see two lines in the resulting 

window (Fig. 1.18). The vbCrLf constant can be replaced by association 

vbCr & vbLf of built-in constants “return” vbCr (from “Carriage return”) and 

“new line” vbLf (from “Linefeed”). 

The TimeValue function is useful, which converts time from the String 

data type to the Date data type. As an example of using this function, let us 

consider the following program: 

 
Sub TV() 

    Dim dTime1 As Date 

    Dim dTime2 As Date 

    Dim dTime3 As Date 

    dTime1 = #2:30:45# + TimeValue("00:15:00") 

                             '1st assignment operator 

                             'result: dTime1 = 2:45:45 
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    dTime2 = Now + TimeValue("00:25:00") 

                             '2nd assignment operator 

    dTime3 = Time + TimeValue("00:00:10") 

                             '3rd assignment operator 

End Sub 

 

Because of executing the 2nd assignment operator, the dTime2 variable has 

a value, which is equal to the current date and time plus 25 minutes. Because of 

executing the 3rd assignment operator, dTime3 is equal to the current time plus 

10 seconds. 

In Listing 2.10 on p. 170, we will use the Format function intended for  

converting a value to a string of the given form. To see the full information on 

this function, we must press the F1 key when the blinking cursor is located on 

Format in the code window. 
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1.20. Work with text files 

 

 

 

 

 
A file is an area on a hard disk, compact disk, USB flash drive (UFD) or any 

other medium that: 

 contains single-type information; 

 has a name. 

When working with files, we will use operations for reading information 

from a file and writing information into a file. 

Several types of files exist; we will consider text files. The contents of such 

file are lines of characters with a combination of characters “return” and “new 

line” at the end of each line. 

For viewing text files, we will use the Notepad editor. At its window, we will 

not see characters “return” and “new line”. 

To start working with a text file, operator Open is used for opening this file. 

This operator has the following syntax: 

 
Open name For purpose As number 

 

In this construct, name is the file full name, i.e., the file name together with its 

path (in the file system of Windows) and extension, number is the file number, 

purpose is keyword Input, Output or Append (from “appending”). 

The last three keywords have the following sense: 

 Input means that the file must be opened for reading information from 

this file; 

 Output — the file must be opened for writing information into it; 

 Append — the file must be opened for adding information into it. 

As the file number, we recommend to use the number variable of the  

Integer data type whose value is the result of executing the following assign-

ment operator: 

 
number = FreeFile 

 

where FreeFile is the built-in function that returns (into the program) the free 

file number. 
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The last assignment operator must be placed above the Open operator, more 

precisely, it must be executed before the Open operator. 

After finishing the work with the file, it must be closed by the Close opera-

tor as follows: 
 

Close number 

 

For addition of new lines into the file, operator Print is used, which has the 

following syntax: 
 

Print #number, line1 

 

where line1 is a string (the digit may be different). 

Let the file with specified number be opened by means of the Output 

keyword. When performing the Print operator, string line1 (with a combina-

tion of characters “return” and “new line” at the end, not in inverted commas) is 

written into the file beginning. When repeated performing the Print operator, 

string line2 is added into the file, and so on. 

Let the file with specified number be opened by means of the Append 

keyword. When performing the Print operator, line1 is added into the file. 

Below, we will consider two ways of extracting information from the file 

with specified number, which is opened by means of the Input keyword. 

1. Extracting information by using operator Line Input with the follow-

ing syntax: 
 

Line Input #number, variable 

 

This operator reads the next line from the file, at that, this line (without “return” 

and “new line” at the end) is assigned to variable of the String data type. 

2. Extracting information by means of built-in function 
 

Input(quantity, number) 

 

This function returns (into the program) the string, which contains the subse-

quent characters from the file. The quantity of these characters is specified by 

quantity. 

In programs Creation and Addition, given below, we will use the re-

viewed operators and built-in functions intended for work with text files. Using 

these programs as examples, we will also consider other useful operators and 

functions. 
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The first program follows: 
 

Listing 1.5 
 

Sub Creation() 

    Dim FName1 As String 

    Dim FName2 As String 

    Dim FNum1 As Integer 

    Dim FNum2 As Integer 

    Dim n1 As Long 

    Dim n2 As Long 

    Dim strA As String       'auxiliary string 

1:  MkDir("c:\Users\usr\texts") 

                             'creating folder texts 

2:  FName1 = _ 

        "c:\Users\usr\texts\a.txt" 

                             'full name of 1st file 

3:  FName2 = _ 

        "c:\Users\usr\texts\b.txt" 

                             'full name of 2nd file 

'Creating file a.txt: 

    FNum1 = FreeFile 

    Open FName1 For Output As FNum1 

                             'opening file a.txt 

    strA = "Text file is created," 

    Print #FNum1, strA 

    Print #FNum1, _ 

        "it contains several strings." 

'Determining quantity of characters in file a.txt: 

    n1 = LOF(FNum1) 

    Close FNum1              'closing file a.txt 

    MsgBox "In file a.txt" & Str(n1) & " characters" 

'Copying information from file a.txt to file b.txt: 

    FNum1 = FreeFile 

    Open FName1 For Input As FNum1 

                             'opening file a.txt 

    FNum2 = FreeFile 

    Open FName2 For Output As FNum2 

                             'opening file b.txt 

    Do Until EOF(FNum1)      'cycle of reading-writing 

        Line Input #FNum1, strA 

        Print #FNum2, strA 

    Loop 
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    Close FNum1              'closing file a.txt 

'Adding new string into file b.txt: 

    strA = "New string is added." 

    Print #FNum2, strA 

'Determining quantity of characters in file b.txt: 

    n2 = LOF(FNum2) 

    Close FNum2              'closing file b.txt 

    FNum2 = FreeFile 

    Open FName2 For Input As FNum2 

                             'opening file b.txt 

    strA = Input(1, FNum2)   'reading character 

    Close FNum2              'closing file b.txt 

    MsgBox "In file b.txt" & Str(n2) & _ 

        " characters, " & _ 

        "and first character is " & _ 

        strA 

End Sub 

 

In operators 1, 2 and 3, usr is the computer user name. Before the program 

execution, the reader should type his concrete user name instead of usr in these 

operators. 

During the program execution, operator 

 
MkDir("c:\Users\usr\texts") 

 

creates folder texts inside folder usr; MkDir is the abbreviation of “make 

directory”. 

The built-in LOF function returns into the program the quantity of characters 

in the file, at that, characters “return” and “new line”, which are at the end of 

each line, are taken into consideration. The argument of this function is the file 

number; LOF is the abbreviation of “length of file”. 

The argument of the built-in EOF function is the file number too. This func-

tion, figuring in the condition of the Do Until…Loop cycle termination, returns 

(into the program) True at achievement of the file end. The function name is the 

abbreviation of “end of file”. 

The MsgBox procedure is intended for depicting the string, which is its  

parameter, on the display screen. Two calls of MsgBox are in the Creation 

program, therefore, two windows, represented in Fig. 1.19 and 1.20, appear  

during the program execution. 

After termination of the program execution, files a.txt and b.txt have 

the following contents. 
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Fig. 1.19 

 

 
 

Fig. 1.20 

 

File a.txt: 

 
Text file is created, 

it contains several strings. 

 

File b.txt: 

 
Text file is created, 

it contains several strings. 

New string is added. 

 

We advise the reader to look through the contents of files a.txt and 

b.txt by using the Notepad editor to be convinced of the correctness of the 

program work. 

Before restarting the Creation program, the MkDir operator of creating 

the texts folder must be omitted, for example, by means of an apostrophe. 
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The liquidation of files a.txt and b.txt and folder texts may be  

required at the end of the program execution. For this purpose, the following 

operators are used: 

 
Kill(FName1) 

Kill(FName2) 

RmDir("c:\Users\usr\texts") 

 

where RmDir is the abbreviation of “remove directory”. We must insert these 

operators above operator End Sub. 

At the end of this section, we will consider how to tune Windows Explorer 

for displaying not only the file names, but also the extension of these names, for 

example, extension .txt for the above text files. 

The following second program adds a line into file b.txt and runs the 

Notepad editor. 
 

Listing 1.6 
 

Sub Addition() 

    Dim FNum As Integer, n As Long 

    Dim RetVal As Integer          'for function Shell 

    FNum = FreeFile 

'Opening file b.txt and adding new string: 

    Open "c:\Users\usr\texts\b.txt" _ 

        For Append As FNum 

    Print #FNum, "Second new string is added." 

'Determining quantity of characters in file b.txt: 

    n = LOF(FNum) 

    Close FNum                     'closing file b.txt 

    MsgBox "In file b.txt" & Str(n) & " characters" 

'Starting editor Notepad: 

0:  RetVal = Shell("c:\Windows\notepad.exe",1) 

End Sub 

 

The Shell function (operator 0) is intended for running any executable file 

whose name has extension .exe. The first argument of the Shell function is the 

full name of the executable file (here, the full name must be without spaces). The 

second argument, which may be omitted, defines the style of the window being  

a result of calling the Shell function. 

To see the full information on the Shell function, we must press the F1 key 

when the blinking cursor is located on Shell in the code window. 
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We will run the Addition program after the execution of the Creation 

program (without the operators liquidating the files and folder). 

The window, shown in Fig. 1.21, appears during the Addition program 

execution. After clicking on OK in this window, operator 0 is executed, which 

starts the Notepad editor (Fig. 1.22), and then operator End Sub is executed, i.e., 

the Addition program is terminated. 

 

 
 

Fig. 1.21 

 

 
 

Fig. 1.22. The Notepad window 

 

After terminating the Addition program, the Notepad window remains 

open. By means of this window, we can view the contents of a text file (in par-

ticular, b.txt) and, if necessary, create a new file or edit an existing file. 

After the Addition program execution, file b.txt has the following con-

tents: 
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Text file is created, 

it contains several strings. 

New string is added. 

Second new string is added. 

 

If a file is opened for adding information (by using keyword Append), this 

file may not exist. In this case, the file is created. If a file is opened for reading 

information (by using keyword Input), this file, naturally, should exist. 

To see file names with extension in Windows Explorer, we must fulfill the 

following: 

1) in Windows Explorer, open the folder, which contains files of interest; 

2) on the menu bar of Windows Explorer, fulfill Organize > Folder and 

search options; 

3) in open window Folder Options, activate tab View; 

4) in list Advanced settings, turn off option Hide extensions for known file 

types; 

5) successively click on buttons Apply and OK. 

To expand the chosen operation mode of Windows Explorer to all folders, we 

must click on button Apply to Folders before clicking on the Apply button. In 

open window Folder Views, we must click on the Yes button. 

We advise the reader to write a program for creating a text file including 

1n  lines of the following form: 

ii
fx )f( , 

where 
i

x , 
i

f  are the values of argument and function, ni0 ; 
0

xa  < 
1

x  < 

2
x  < ... < 

2n
x  < 

1n
x  < bx

n
. Function )(xf  and corresponding values of 

a and b from Appendix 4 must be used. 

The constructs of Visual Basic considered above can be used for solving  

sufficiently complicated tasks, two of which will be formulated in the next  

section. 
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1.21. Matrix terminology. Formulation  

of demonstration tasks 
 

 

 

 
In the previous sections, we were solving the task of calculating the hypote-

nuse length. However, this task is very simple, and it is impossible to show all 

possibilities of Visual Basic on it. Therefore, we will also solve two tasks of 

transposing a numerical matrix, relative to the main and auxiliary diagonals. Let 

us formalize the concept of matrix transposition. 

Let A be a matrix containing m rows and n columns, B be a matrix containing 

n rows and m columns: 
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If elements of matrix B “are calculated” according to formula 

ijji
ab                                                   (1.2) 

at 1 ≤ i ≤ m, 1 ≤ j ≤ n, mathematicians say that matrix B is obtained by transpos-

ing matrix A relative to the main diagonal (or simply, by transposing matrix A). 

The main (left-to-right) diagonal of the matrix is an imaginary straight line 

from the top left corner of the matrix to the bottom right corner. 

If formula (1.2) is replaced by formula 

jnimji
ab

1,1
,                                       (1.3) 

then matrix B is obtained by transposing A relative to the auxiliary diagonal. 

The auxiliary (right-to-left) diagonal of the matrix is an imaginary straight 

line from the top right corner to the bottom left corner. 

To solve the task of transposing matrix A, we must generate matrix B accord-

ing to formula (1.2) or (1.3). Note that A
T
 is the usual designation of the A ma-

trix transposed relative to the main diagonal, i.e., according to (1.2). 
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Let us notice the following obvious fact: when transposing the matrix relative 

to the main diagonal, its rows and columns interchange their positions. 

If m = n, matrix A is called a square matrix. In this case, elements 
ii

a  are  

located on the main diagonal, elements 
imi

a
1,

 are located on the auxiliary 

diagonal, 1 ≤ i ≤ m. 

When transposing square matrix A relative to the main (auxiliary) diagonal, 

the mirror reflection of A relatively the main (auxiliary) diagonal takes place. 

Further, we will use the following terms and definitions. 

The A matrix, containing m rows and n columns, is named as “the A matrix 

of size m × n” or “the A matrix m × n”. The matrix, containing one column or one 

row, is called a vector. 

The product of the A matrix m × n and the C matrix n × s is the AC matrix 

m × s, which is a result of the scalar multiplication of the rows of A and the  

columns of C, namely: 
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More precisely, the elements of R = AC are defined by the following formula: 

n

j

jqijiq
car

1

)( , 

1 ≤ i ≤ m, 1 ≤ q ≤ s. 
 

The A matrix m × n and the D matrix m × n are called equal if the correspond-

ing elements of these matrices are equal: 
ijij

da , 1 ≤ i ≤ m, 1 ≤ j ≤ n. 

Square matrix E is called the unit matrix if the main diagonal of E contains 

only units, and all remaining elements of E are equal to zero. 

The inverse A matrix is the A
-1

 matrix of size n × m, which satisfies the fol-

lowing condition: A
-1

A = E, where E is the unit matrix of size n × n. 
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1.22. Program for transposing a matrix  

relative to its auxiliary diagonal 
 

 

 

 
The program for solving one of the two tasks formulated in the previous sec-

tion is given below. This program uses file a.txt with the source data (values 

of m and n and matrix A) and creates file b.txt with the result (the B matrix). 
 

Listing 1.7 
 

Sub TRANSPA() 

Dim FNameA As String, FNameB As String 

Dim FNum As Integer 

Dim strC As String, strD As String, strE As String 

Dim m As Integer, n As Integer 

Dim i As Integer, j As Integer 

Dim k As Integer, l As Integer 

Dim A() As Double, B() As Double 

1:  FNameA = _ 

        "c:\Users\usr\texts\a.txt" 

2:  FNameB = _ 

        "c:\Users\usr\texts\b.txt" 

3:  FNum = FreeFile 

'Opening file a.txt: 

4:  Open FNameA For Input As FNum 

'Reading values of m and n from file a.txt: 

5:  Line Input #FNum, strC 

6:  strC = Mid(strC, 3) 

7:  m = Val(strC) 

8:  Line Input #FNum, strC 

9:  strC = Mid(strC, 3) 

10: n = Val(strC) 

'Setting size of matrices: 

11: ReDim A(1 To m, 1 To n) 

12: ReDim B(1 To n, 1 To m) 

'Reading matrix A from file a.txt: 

13: For i = 1 To m 

14:    Line Input #FNum, strC 
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15:    j = 0 

16:    strD = "" 

                 'string "" is not equal to string " " 

17:    l = Len(strC) 

18:    For k = 1 To l 

19:       strE = Mid(strC, k, 1) 

20:       If strE <> " " Then strD = strD & strE 

21:       If strE = " " Or k = l Then 

22:          j = j + 1 

23:          A(i, j) = Val(strD) 

24:          strD = "" 

25:       End If 

26:    Next k 

27: Next i 

'Closing file a.txt: 

28: Close FNum 

29: FNum = FreeFile 

'Opening file b.txt: 

30: Open FNameB For Output As FNum 

'Forming matrix B, its writing into file b.txt: 

31: For j = 1 To n 

32:    strC = "" 

33:    For i = 1 To m 

34:       B(j, i) = A(m + 1 - i, n + 1 - j) 

35:       strC = strC & Str(B(j, i)) & " " 

36:    Next i 

37:    Print #FNum, strC 

38: Next j 

'Closing file b.txt: 

39: Close FNum 

End Sub 

 

In operators 1 and 2, usr is the user name. 

Program TRANSPA is intended for transposing a numerical matrix relative to 

its auxiliary diagonal. In operators 16, 24 and 32, we see string "", not contain-

ing any character. Operators 20, 21 and 35 include string " ", which contains 

only the space character. 

Operator 34 corresponds to formula (1.3), which defines the operation of 

transposing a matrix relative to its auxiliary diagonal. 

File 
 

c:\Users\usr\texts\a.txt 
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contains the source data, i.e., values of m and n and matrix A. This file may be 

created by means of the Notepad editor whose window is represented in 

Fig. 1.23. 

 

 
 

Fig. 1.23. The source data: elements of the matrix’s  

rows separate from each other by one space 

 

For starting the execution, we can use one of the following two ways: 

 clicking on arrow ► in the VB window; 

 fulfilling the following operations in the Excel window: Developer (or 

View) > Macros > line TRANSPA > Run. 

It is possible to appoint a combination of keys starting the program execu-

tion. For that, being in the Excel window, we fulfill operations Developer  

(or View) > Macros > line TRANSPA > Options. In open window Macro  

Options, we fulfill the following: 

 appoint the startup key combination, for example, Ctrl + t; 

 click on the OK button; 

 close the window by clicking on the little cross in the top right corner. 

After that, the simultaneous press of the Ctrl and t keys runs the TRANSPA 

program. 

The result of the TRANSPA program execution is matrix B, which is in file 

 
c:\Users\usr\texts\b.txt 

 

The Notepad window with matrix B is represented in Fig. 1.24. 

Let us consider ways of transition from the VB window to the Excel window 

and back. 

The transition from the VB window to the Excel window is possible in one of 

the following four ways: 
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 clicking on the Excel button at the left end of the standard toolbar in the 

VB window; 

 simultaneous pressing the Alt and F11 keys; 

 rolling the VB window down by means of the underscore button in the 

top right corner; 

 clicking on the Excel button on the taskbar of Windows Desktop. 

 

 
 

Fig. 1.24. The calculation result 

 

For returning to the VB window from the Excel window, we should fulfill 

Developer (or View) > Macros > line TRANSPA > Edit. As a result, the VB win-

dow with the TRANSPA program text in the code window appears. Further, we 

can correct the program, for example, change names of files with the source data 

and for the calculation result. 

If we click on button Step Into (instead of button Edit), the VB window will 

also be opened. Further, the step-by-step execution of the TRANSPA program 

(by means of the F8 key) is possible. 

Other ways of transition from the Excel window to the VB window follow: 

 pressing Alt + F11; 

 rolling the Excel window down by means of the underscore button; 

 clicking on the VBA button on the taskbar of Windows Desktop. 

The TRANSPA program text almost coincides with the text of the program, 

which will be reviewed in the next section. Therefore, the TRANSPA program 

will still be required. 

For further usage of the TRANSPA program, we have to save it on the com-

puter’s hard disk by fulfilling the following operations similar to the operations 

described on p. 18: 

1) in the Excel window, File > Save As > Browse; 

2) in the Save As window, choose a folder intended for saving the Excel 

workbook, for example, c:\Users\usr; 
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3) enter BookTRANSPA into text box File name; 

4) set file type Excel Macro-Enabled Workbook by means of drop-down list 

Save as type; 

5) click on the Save button. 

The TRANSPA program is saved as a part of the BookTRANSPA.xlsm 

workbook of Excel. 

As we see, the user interface of the TRANSPA program is a pair of text files. 

 



Chapter 1. Programming in Visual Basic 

116 

1.23. User-defined forms 

 

 

 

 

 
As the program user interface, the form is sometimes convenient. For creat-

ing this rectangle with text boxes, buttons and other control elements, Form  

Designer exists in Visual Basic Environment. 

Let us create the form for the program intended for calculating the length of 

the hypotenuse of a right-angled triangle. 

The following control elements are suitable for the form: 

 place for displaying the calculation result; 

 text box for inputting (into the program) the length of the first leg; 

 text box for inputting the length of the second leg; 

 button for starting the calculation. 

Let Book1 be the name of the active Excel workbook. Developing the pro-

gram (project) with the form begins with the following sequence of operations 

for inserting the form into the active Excel workbook (instead of inserting the 

module). 

1. In the Excel window, fulfill Developer > Visual Basic in area Code.  

As a result, the VB window (Fig. 1.1) containing the project explorer window 

and the properties window appears. 

In the absence of the properties window, we can open it by fulfilling View > 

Properties Window. 

2. In the project explorer window, highlight line VBAProject (Book1) by 

clicking on it. 

3. Fulfill Insert > UserForm. 

As a result, the following features appear (Fig. 1.25): 

 blank form UserForm1, a rectangle with points; 

 line UserForm1 in the project explorer window; 

 the Toolbox window, containing the control elements. 

If the last window is not displayed, for displaying it, we must click on the 

form and then fulfill View > Toolbox. 

The properties window “is tied” to the form because this element is selected 

by the frame with 8 markers (five black and three white, Fig. 1.25). 

To change the width of the UserForm1 form, we have to drag the form’s right 

border by using the mouse, having seized the white marker in the center of this 
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border. Thus, the value of the Width property (in the properties window) also 

changes. 

 

 
 

Fig. 1.25. The VB window after inserting  

UserForm1 into the Excel workbook 

 

Expression “to seize a point” means the following: to place the mouse pointer 

on this point, and then to press the left button on the mouse. 

The value of property Width (that is, the form width) can also be set in the 

properties window. 

Similarly, we can change the height of the UserForm1 form (property 

Height). 

After clicking on property Caption (in the properties window), we will 

change it to the following: My first form. 

The Toolbox window (Fig. 1.25) contains pictograms of the control elements, 

which can be simply used in the project. We will use the following four ele-

ments: Label, TextBox, CommandButton and CheckBox. To see the element 

name, we have to place the mouse pointer on this element in Toolbox. 

To insert an element into the form and to edit this element, we fulfill the  

following operations. 
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1. Select the form by clicking on it. 

2. Click on the required element of the Toolbox window. 

3. Move the mouse pointer into the form. At that, the pointer becomes  

a crosshair. 

4. Place the crosshair into the required part of the form and press the left 

button on the mouse. After that, release the button. 

Or in another way, without releasing the left button, drag the mouse pointer, 

for example, downwards and to the right. After that, release the button. 

5. Move the element (if needed), having seized its center. 

6. Move the element’s borders (if needed), by turn having seized the white 

markers. 

7. Set the element’s properties by means of the properties window, which is 

tied to this element (selected by the frame with 8 white markers). 

Upon termination of the element editing, we must remove its selection by 

clicking on area outside the element limits. To return to the element editing, we 

must select this element by clicking on its image in the form. For removing the 

selected element from the form, we must press the Delete key. 

In the form, we should create the message place, where the calculation result 

will be displayed during the program execution. For this purpose, we will use 

element Label. 

To insert element Label into the form and to change several properties of this 

element, we fulfill the following. 

1. Click on the Label element, which is in the Toolbox window. 

2. Move the mouse pointer into the form. At that, the pointer becomes  

a crosshair. 

3. Place the crosshair into the top left part of the form and press the left but-

ton on the mouse. Without releasing the button, drag the mouse pointer down-

wards and to the right. After that, release the button. 

The message place with default name Label1 (that is, the Label1 element) is 

the result (Fig 1.26). 

4. Use the Font property for setting the font fashion and size. When clicking 

on this property, a button appears in the properties window. The dots on this but-

ton mean that a window exists for setting the Font property. 

5. Click on the dots image button. At that, the Font window appears for set-

ting the message parameters. 

6. Click on line Cambria Math (Fig. 1.27) for setting this font. In the Sample 

area, the font fashion is pictured. 

7. Set the font size at 10. 

8. Click on the OK button. 



1.23. User-defined forms 

119 

 
 

Fig 1.26. The VB window after inserting  

element Label1 into form UserForm1 

 

 
 

Fig. 1.27. The window for setting font 
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9. Set the following values of other properties of the message place. 

TextAlign: 2   (horizontal center alignment, taken from the drop-down list) 

Caption: Enter source data and click button "Account" 

Name: LabelMessage   (we change the element name) 

10. By means of the mouse, change the height and width of the message place 

and the height and width of the form to get the message image as in Fig. 1.28. 

 

 
 

Fig. 1.28. The form after the program start 

 

Similarly, we can insert the text box into the form. For that, the TextBox  

element is used. 

We will insert two text boxes (Fig. 1.28), with names TextBoxA and 

TextBoxB. On the left of the text boxes, we will create inscriptions a and b by 

using the Label element. 

To insert the button into the form, we fulfill the following. 

1. Click on the CommandButton element, which is in the Toolbox window. 

2. Depict the button in the form. 

3. Set the following properties of this button. 

Caption: Account 

Name: ComButCalc 

4. Remove the button selection by clicking on area outside its limits. 

The development of the form by means of Form Designer is completed. Now 

we have to develop the program. 

Let us click twice on the Account button, which is in the UserForm1 form.  

At that, there appears the code window (corresponding to the form) with the 

blank of the program, being started by clicking on the Account button. 
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The following first and last lines of the program are generated automatically: 
 

Private Sub ComButCalc_Click() 
 

End Sub 

 

We already encountered the Private keyword on p. 81. Here, it means the 

following: if ComButCalc_Click is used as a subroutine, its call should be in 

the same code window, in which the subroutine declaration is located. However, 

we are not going to use ComButCalc_Click as a subroutine. Therefore, the 

Private keyword may be deleted. 

The ComButCalc_Click program for calculating the hypotenuse length 

follows: 
 

Private Sub ComButCalc_Click() 

    Dim a As Single, b As Single, c As Single 

    Dim s As String 

1:  s = TextBoxA.Text 

2:  a = Val(s) 

3:  s = TextBoxB.Text 

4:  b = Val(s) 

5:  c = Sqr(a ^ 2 + b ^ 2)    'according to Pythagoras 

6:  s = Str(c) 

7:  LabelMessage.Caption = "c =" & s 

End Sub 

 

This program is similar to the Pythagoras1 program (p. 85). 

Unlike program Pythagoras1, the ComButCalc_Click program con-

tains the following three constructs similar to the record: TextBoxA, 

TextBoxB and LabelMessage. 

In operator 1, “field” Text of “record” TextBoxA (of “type” TextBox), 

more precisely, property Text of element TextBoxA is a variable of the 

String data type whose value coincides with the string being entered into the a 

text box of the form during the program usage. In operator 3, property Text of 

element TextBoxB coincides with the string being entered into the b text box. 

The values of a and b are the results of executing operators 1 — 4. 

Operator 5 calculates length c of the hypotenuse; operator 6 converts this 

value to string s. 

Operator 7 assigns the string (which includes the s string) to property 

LabelMessage.Caption (that is, to property Caption of element 

LabelMessage). The value of this property is put into the form. 
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We can start the developed program by clicking on arrow ► of the VB win-

dow. The form (Fig. 1.28), loaded into the Excel window, is the result of this 

click. Fig. 1.29 shows the form’s state upon finishing the calculation, i.e., after 

putting the lengths of the triangle’s legs into text boxes a and b and clicking on 

the Account button. 

 

 
 

Fig. 1.29. The form upon finishing the calculation 

 

Further, the calculation may be repeated for other source data, i.e., other 

lengths of the triangle’s legs. Upon termination of the series of calculations, we 

have to close the form by clicking on the little cross in the top right corner 

(Fig. 1.29). 

We can simplify the ComButCalc_Click program as follows: 

 
Private Sub ComButCalc_Click() 

    Dim a As Single, b As Single, c As Single 

1:  a = TextBoxA.Value 

2:  b = TextBoxB.Value 

3:  c = Sqr(a ^ 2 + b ^ 2)    'according to Pythagoras 

4:  LabelMessage.Caption = "c =" & Str(c) 

End Sub 

 

In this program, we used property Value of element TextBox. At that, when 

performing operator 1, the information, which is in the corresponding text box of 

the form, is interpreted according to the data type of the variable on the left of 

sign =, that is, as a number. The same can be said about operator 2. 
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In the previous section, we developed the TRANSPA program, Listing 1.7, for 

transposing a number matrix relative to its auxiliary diagonal. This program is 

inconvenient to use because names of files are a part of the program text (see 

operators 1 and 2). To eliminate this drawback, we will add the form, already 

designed, to the TRANSPA program. In this case, the form elements have the 

following sense (from top to down, Fig. 1.28): 

 place for displaying messages; 

 text box for inputting the full name of the source data file; 

 text box for inputting the full name of the result file; 

 button for starting the calculation. 

The basis of the new ComButCalc_Click program is the TRANSPA pro-

gram text, which is in the BookTRANSPA workbook. To gain access to this text, 

we fulfill the following (p. 18): 

1) open the BookTRANSPA workbook with Excel, for example, by means 

of the context menu; 

2) go to Visual Basic Environment in the standard way; 

3) open the code window with the TRANSPA program text by clicking twice 

on the corresponding module name in the project explorer window. 

The TRANSPA program text is also contained in file Listing_1_07.txt of the 

enclosed CD. 

By using the TRANSPA program text, Listing 1.7, we will transform the 

ComButCalc_Click program developed above to the following view by 

means of Windows Clipboard. 

 
Private Sub ComButCalc_Click() 

Dim FNameA As String, FNameB As String 

Dim FNum As Integer 

Dim strC As String, strD As String, strE As String 

Dim m As Integer, n As Integer 

Dim i As Integer, j As Integer 

Dim k As Integer, l As Integer 

Dim A() As Double, B() As Double 

1:  FNameA = TextBoxA.Text 

2:  FNameB = TextBoxB.Text 

3:  FNum = FreeFile 

'Opening file a.txt: 

4:  Open FNameA For Input As FNum 

'Reading values of m and n from file a.txt: 

5:  Line Input #FNum, strC 

6:  strC = Mid(strC, 3) 

7:  m = Val(strC) 
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8:  Line Input #FNum, strC 

9:  strC = Mid(strC, 3) 

10: n = Val(strC) 

'Setting size of matrices: 

11: ReDim A(1 To m, 1 To n) 

12: ReDim B(1 To n, 1 To m) 

'Reading matrix A from file a.txt: 

13: For i = 1 To m 

14:    Line Input #FNum, strC 

15:    j = 0 

16:    strD = "" 

                 'string "" is not equal to string " " 

17:    l = Len(strC) 

18:    For k = 1 To l 

19:       strE = Mid(strC, k, 1) 

20:       If strE <> " " Then strD = strD & strE 

21:       If strE = " " Or k = l Then 

22:          j = j + 1 

23:          A(i, j) = Val(strD) 

24:          strD = "" 

25:       End If 

26:    Next k 

27: Next i 

'Closing file a.txt: 

28: Close FNum 

29: FNum = FreeFile 

'Opening file b.txt: 

30: Open FNameB For Output As FNum 

'Forming matrix B and its writing into file b.txt: 

31: For j = 1 To n 

32:    strC = "" 

33:    For i = 1 To m 

34:       B(j, i) = A(m + 1 - i, n + 1 - j) 

35:       strC = strC & Str(B(j, i)) & " " 

36:    Next i 

37:    Print #FNum, strC 

38: Next j 

'Closing file b.txt: 

39: Close FNum 

40: LabelMessage.Caption = _ 

        "Account is terminated. Input..."     'message 

End Sub 
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Property Text of element TextBoxA is a variable whose value coincides 

with the full name of the text file, containing values of m and n and matrix A; 

this full name is entered into the a text box of the UserForm1 form during the 

program usage. Property Text of element TextBoxB is a variable whose value 

coincides with the full name of the text file for matrix B; this full name is entered 

into the b text box. When executing the program, operators 1 and 2 specify the 

files’ full names. Operators 4 and 30 open the corresponding files. 

When executing operator 40, string 
 

"Account is terminated. Input..." 

 

is assigned to property LabelMessage.Caption, i.e., this string is put into 

the message place of the form. 

We can start the developed program by clicking on arrow ► of the VB win-

dow. As a result, the form (Fig. 1.28) is loaded. Fig. 1.30 shows the form’s state 

upon finishing the calculation, i.e., after inputting 
 

c:\Users\usr\texts\a.txt 

c:\Users\usr\texts\b.txt 

 

into text boxes a and b, respectively, and clicking on button Account (usr is the 

user name in these two full names). 

Further, the calculation may be repeated for other names of the files and for 

other contents of the source data file. Upon termination of the series of calcula-

tions, we have to close the form, depicted in Fig. 1.30, by clicking on the little 

cross in the top right corner. 

The source data file, which contains values of m and n and matrix A, can be 

created and/or edited by using the Notepad editor. We can view the calculation 

result by means of the same editor. Fig. 1.23 and 1.24 show the Notepad window 

with the source data and calculation result. 

We can use element TextBox not only for input of information but also for 

output. In this case, property Text of the corresponding TextBox element (for 

example, property TextBox3.Text) must be in the left-hand side of the assign-

ment operator. 

We advise the reader to modify the form and the text of the last program so 

that "Account is terminated. Input..." is being put into the text box of the form. 

We learned how to use the following three elements of the Toolbox window: 

Label, TextBox and CommandButton. Let us also consider element CheckBox, 

which is used in the following cases: 

 an option should either be turned on or turned off; 

 one of two alternatives must be chosen. 
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Fig. 1.30. The form upon termination of the matrix transposition 

 

In the form, the CheckBox element looks like a little square field. At the click 

on this field, the check (tick) mark appears in it; at the repeated click, the check 

mark disappears. 

Property Value of element CheckBox has value True or False as follows: 

 True when the check mark is present in the field; 

 False when the check mark is absent. 

Let us expand the form, depicted in Fig. 1.28, by the CheckBox element 

placed on the left of the button and return to the program, which calculates the 

hypotenuse length. 

The new version of the ComButCalc_Click program (p. 121) follows: 

 
Private Sub ComButCalc_Click() 

    Dim a As Single, b As Single, c As Single 

    Dim s As String, out As String 

    a = TextBoxA.Value 

    b = TextBoxB.Value 

    c = Sqr(a ^ 2 + b ^ 2)    'according to Pythagoras 

    out = "c =" & Str(c) 

    If CheckBox1.Value Then 
        s = Str(a * b / 2) 

        out = out & vbCrLf & "s =" & s 

    End If 

    LabelMessage.Caption = out 

End Sub 
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In this program, CheckBox1 is the CheckBox element’s name. In the  

presence of the check mark, the triangle area is calculated in addition to the  

hypotenuse length. 

Fig. 1.31 and 1.32 show the initial and final states of the form. To get the re-

sult, depicted in Fig. 1.32, we must fulfill the following operations: 

1) put 3 and 4 into text boxes a and b of the form in Fig. 1.31; 

2) set the check mark by clicking on element s; 

3) click on the Account button. 

Let us save the Excel workbook on the hard disk of the computer under name 

BookForm, having done File > Save As > Browse, and so on (p. 114). At that, the 

project (with the form), which is a part of the workbook, is saved too. 

For returning to the project, the double click on line UserForm1 in the project 

explorer window is required. We can delete the form, as well as the module, by 

means of the context menu. For that: 

1) right click on the form name in the project explorer window; 

2) in the open context menu, fulfill the Remove command; 

3) click on the No button in the open window with a question about export-

ing the form before removing it. 

We advise the reader to use the form with the CheckBox element for the  

matrix transposition and to modify the program on p. 123 so that: 

 in the presence of the check mark, the matrix transposition relative to the 

main diagonal would be performed according to formula (1.2) on p. 109; 

 in the absence of the check mark, the matrix transposition relative to the 

auxiliary diagonal would be performed according to formula (1.3). 

 

 
 

Fig. 1.31. The form after the program start 
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Fig. 1.32. The form upon finishing the calculation 

 



1.24. Digression. Developing programs with the form in Microsoft Visual Studio 

129 

1.24. Digression. Developing programs with  

the form in Microsoft Visual Studio 

 

 

 

 
The programs, which were reviewed above and will be reviewed below, have 

the following drawback: we must equip our computer with tabular processor 

Excel for calculations by means of these programs. If we want to execute a pro-

gram without using Excel, this program should be developed in Visual Basic 

Environment, which is not a part of Microsoft Office. Let us consider singulari-

ties of developing the program (project) with the form in Visual Basic Environ-

ment, which is a part of package Microsoft Visual Studio 2010. 

Microsoft Visual Studio 2010 is installed on the computer in the standard 

way. To start Visual Studio, we fulfill the following operations on Windows 

Desktop: Start > All Programs > Microsoft Visual Studio 2010 > Microsoft  

Visual Studio 2010. The Start Page window is the result. 

For setting the necessary operation mode of Visual Studio, we must fulfill the 

following operations: 

1) click on the New Project hyperlink; 

2) in the left area of the open New Project window, click on the plus sign 

against Other Languages; 

3) in the open list, click on the plus sign against Visual Basic; 

4) in the open list, click on line Windows; 

5) in the list of the central area of the New Project window, click on line 

Windows Forms Application. 

The necessary operation mode of Visual Studio is the result. The following 

information in the right area of the New Project window speaks about it:  

A project for creating an application with a Windows user interface. 

Further, the project name and the folder, intended for the project, must be 

given by means of text boxes Name and Location. By default, the project and 

folder have the same name, WindowsApplication1 (the digit in the name may be 

different). 

After clicking on the OK button, the window of Visual Basic Environment  

is displayed. Blank form Form1 is a part of this window. Fig. 1.33 shows the 

window after fulfilling View > Toolbox. To open the properties window, we must 

fulfill the following operations: View > Other Windows > Properties Window. 

The properties window (Fig. 1.34) appears in place of the Toolbox window. 
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Fig. 1.33. The window of Visual Basic Environment (a part  

of Microsoft Visual Studio 2010) with the Toolbox window 

 

The development of forms and corresponding programs is similar to the  

development described in the previous section. 

The text of the programs, developed in Microsoft Visual Studio 2010, is  

close to the text of the programs, developed in Excel. For example, program 

ComButCalc_Click for calculating the hypotenuse length (p. 121) becomes 

as follows: 

 
Public Class Form1 

    Private Sub ComButCalc_Click(ByVal sender _ 

    As System.Object, ByVal e As System.EventArgs) _ 

    Handles ComButCalc.Click 

        Dim a As Single, b As Single, c As Single 

        Dim s As String 

        s = TextBoxA.Text 
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        a = Val(s) 

        s = TextBoxB.Text 

        b = Val(s) 

        c = Math.Sqrt(a ^ 2 + b ^ 2) 

                              'according to Pythagoras 

        s = Str(c) 

        LabelMessage.Text = "c=" & s 

    End Sub 

End Class 

 

The beginning and end of the program were generated automatically when 

we clicked twice on the button inserted into the form. 

 

 
 

Fig. 1.34. The properties window as a part  

of Visual Basic Environment 

 

The project contains several files and folders. By default, it is located in the 

folder with the following full name: 

 
c:\Users\usr\WindowsApplication1 

 

where usr is the user name. 
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To save the current state of the project, we must fulfill File > Save. For  

returning to the project, we can use one of the following two ways: 

 the double click on the WindowsApplication1.vbproj file in the project 

folder; 

 the click on the WindowsApplication1 hyperlink in area Recent Projects 

of the Start Page window of Visual Studio. 

When we execute the program during its development, the debug version of 

the program executable file is created automatically. The full name of this file 

follows: 

 
c:\Users\usr\WindowsApplication1\bin\Debug\ _ 

    WindowsApplication1.exe 

 

Upon termination of the program development, we must create the release 

(working) version of the executable file. For that, we fulfill the following opera-

tions: 

1) Build > Configuration Manager; 

2) in the Configuration Manager window opened, enter Release into the  

Active solution configuration box by means of the drop-down list; 

3) click on the Close button; 

4) Build > WindowsApplication1. 

The release version of the executable file is the result. Its full name follows: 

 
c:\Users\usr\WindowsApplication1\bin\Release\ _ 

    WindowsApplication1.exe 

 

The release version of the executable file is more efficient (in respect of the exe-

cution rate) in comparison with the debug version. 

For loading the form, we must click twice on the program executable file in 

Windows Explorer. Further, we can use the form for the calculation. 

If we want to transfer the program with the form to another user, it is enough 

to transfer the program executable file. 

Let us return to programming in tabular processor Excel. 
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Chapter 2. 

Programming in VBA 

 

 

 
We review the main objects of the VBA programming language, which is the 

Visual Basic extension in the sense that VBA includes the VB constructs. The 

Excel table is considered as the user interface of macros. 

Besides, we also consider creating Excel user-defined functions and working 

with Excel Macro Recorder, Personal Macro Workbook and the reference sys-

tems. 
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2.1. Loading the form from the Excel window.  

Running the program executable file 
 

 

 

 
The user-defined forms, developed in Section 1.23, were loading from the 

VB window, for example, by clicking on arrow ► of the standard toolbar. How-

ever, it is desirable to load the form from the Excel window. 

Below, we will consider the form-loading program. 

Let us open the BookForm workbook of Excel (p. 127), go to the VB window 

and fulfill Insert > Module. 

We enter the following simple program into the code window of the inserted 

module: 

 
Sub LoadingForm() 

    UserForm1.Show 

End Sub 

 

Here, UserForm1 is the form name. 

Now the form, pictured in Fig. 1.31, can be loaded from the Excel window as 

follows: Developer (or View) > Macros > line LoadingForm > Run. By fulfilling 

Developer (or View) > Macros > line LoadingForm > Options > …, we can  

appoint a combination of keys for loading the form. 

The loaded form may be used for transposing a numerical matrix or calculat-

ing the length of the hypotenuse of a right-angled triangle and its area. 

If we want the blinking cursor to be, for example, in text box b of the loaded 

form, it is necessary to insert operator 

 
UserForm1.TextBoxB.SetFocus 

 

above operator UserForm1.Show. The LoadingForm program becomes as 

follows (Fig. 2.1): 

 
Sub LoadingForm() 

    UserForm1.TextBoxB.SetFocus 

    UserForm1.Show 

End Sub 
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Fig. 2.1. The VB window with lines UserForm1  

and Module1 in the project explorer window 

 

Let us save the Excel workbook with the LoadingForm program under the 

old name of BookForm. 

The following program (in the code window) allows opening the Notepad 

window in Excel: 

 
Sub StartEXE() 

    Dim RetVal As Integer          'for function Shell 

    RetVal = Shell("c:\Windows\notepad.exe",1) 

End Sub 

 

In this program, we see the call of the Shell function, as in the Addition 

program on p. 106. 

To open the Notepad window, we must run the StartEXE program by ful-

filling Developer (or View) > Macros > line StartEXE > Run. Besides, we can 

appoint a combination of keys for opening the Notepad window. 

By using the StartEXE macro, we can run any executable file, in particular, 

created in Visual Basic Environment, which is a part of Microsoft Visual Studio 

(Section 1.24). For that, c:\Windows\notepad.exe must be replaced by 

the full name (without spaces) of this executable file. 
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2.2. Layout of the control elements  

on the Excel worksheet 
 

 

 

 
The control elements of Section 1.23 can be placed on the Excel worksheet. 

For example, to create the form-loading button, we must fulfill the following. 

1. In the Excel window with open workbook BookForm, fulfill Developer >  

Insert in area Controls. The window with control elements appears (Fig. 2.2). 
 

 
 

Fig. 2.2. The Excel window with control elements below the Insert button 
 

2. Click on the Button element in the Form Controls area of the last win-

dow, and then click on any cell of the Excel worksheet. The Assign Macro win-

dow opens (Fig. 2.3). 

3. Click on the New button. The VB window opens (Fig. 2.4), and button 

Button1 selected by 6 markers appears on the worksheet (Fig. 2.5). 

4. Insert operator UserForm1.Show into the program blank in the code 

window depicted in Fig. 2.4. The following program is the result: 
 

Sub Button1_Click() 

    UserForm1.Show 

End Sub 

 

5. Click on area outside Button1 to remove the button selection. 
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Fig. 2.3 

 

 
 

Fig. 2.4. The VB window with Module1 and Module2 in the project window 
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Fig. 2.5. The created button on the worksheet 

 

Now, for loading the form pictured in Fig. 1.31, all we have to do is click on 

button Button1. 

To change the inscription on the button: 

1) select the button as follows: 

 right click on it; 

 then perform the Cancel command in the context menu opened; 

2) edit the inscription as usual text; 

3) click on area outside the button to remove its selection. 

To remove the selected button, we must press the Delete key. 

The Excel worksheet with the control elements plays the role of the form. For 

beauty of this “form”, it is possible to remove gridlines from the Excel work-

sheet. For that, in the Excel window, we must fulfill View > turn off Gridlines in 

area Show. 

If we want to use the button for opening the Notepad window, program  

Button1_Click must be changed as follows: 

 
Sub Button1_Click() 

    Dim RetVal As Integer          'for function Shell 

    RetVal = Shell("c:\Windows\notepad.exe",1) 

End Sub 

 

In this program, we can replace c:\Windows\notepad.exe by the full 

name of any other executable file (p. 135). In this case, the above program is 

suitable for running this executable file from the Excel window. 
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2.3. User-defined functions of Excel 

 

 

 

 

 
Our study of Visual Basic began with the Pythagoras program (p. 17)  

intended for calculating the hypotenuse length. Let us consider the following 

function for solving this simple task: 

 
Function Hypotenuse(a, b) 

    Hypotenuse = Sqr(a ^ 2 + b ^ 2) 

End Function 

 

This function declaration should be entered into the code window after insert-

ing a module, for example Module1, into the active Excel workbook. As a result, 

the Hypotenuse function appears in the User Defined category of the Excel 

functions library. To verify this, we must fulfill the following two operations: 

1) click on the fx button of the Excel formula bar; 

2) in the Insert Function window opened (the first window of Function  

Wizard), enter User Defined into box Or select a category by means of the drop-

down list. 

We see line Hypotenuse in list Select a function (Fig. 2.6), i.e., the considered 

function is available in category User Defined of the Excel functions library. 

Let us interrupt the operation of Function Wizard by clicking on the Cancel 

button in the Insert Function window. 

The created function is used, for example, as follows: 

1) into two cells on the Excel worksheet, enter the lengths of the triangle’s 

legs, for example, 30.02 and 40 into A2 and B2, respectively; 

2) select a cell for the hypotenuse length, for example, C2; 

3) in the Excel formula box after =, put the Hypotenuse function whose 

arguments are the addresses of the cells with the lengths of the triangle’s legs 

(we must type a semicolon between the arguments instead of a comma accepted 

in Visual Basic); 

4) calculate in one of the following two ways: 

 by clicking on the tick button of the Excel formula bar; 

 by pressing the Enter key. 

As a result, the hypotenuse length appears in the selected cell (Fig. 2.7). 
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Fig. 2.6. The first window of Function Wizard 

 

 
 

Fig. 2.7. The use of the Hypotenuse function 

 

While using Function Wizard, we have to click on OK in the Function Argu-

ments window (the second window of Function Wizard) for calculation. 
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The second window of Function Wizard is intended for inputting arguments 

of a function, in particular, of a user-defined function. This window appears as  

a result of clicking on OK in the first window of Function Wizard (Fig. 2.6). We 

will use the second window of Function Wizard in Section 2.15 (Fig. 2.32). 

User-defined functions are used in Excel formulas, just like built-in func-

tions. 

The Hypotenuse function can be considered as the user-defined function 

of Visual Basic (p. 77). Therefore, we can use the Hypotenuse function in  

a program as follows: 

 
Sub Pythagoras() 

    Dim a As Single 

    Dim b As Single 

    Dim c As Single 

    a = 3 

    b = 4 

    c = Hypotenuse(a, b) 

End Sub 

 

This text must be put into a new module, for example, by name Module2. 

By executing the last program step-by-step, we can verify its operational  

capability. 

In Excel, when transposing a matrix (cell range) relative to the main diagonal 

(Section 1.21), its rows and columns interchange their positions. For such trans-

position, Excel has the built-in TRANSPOSE function, which is available in 

category Lookup & Reference of the functions library. It is an example of the 

function returning an array of numbers, instead of one number (the SQRT func-

tion returns a number, see p. 17). 

The TRANSPOSE function is used as follows: 

1) enter a matrix (containing, for example, 3 rows and 4 columns) into Excel 

cells; 

2) select the cell range (containing 4 rows and 3 columns) for the transposi-

tion result; 

3) into the Excel formula box after =, enter the TRANSPOSE function 

whose argument is the source range (containing 3 rows and 4 columns); 

4) calculate in one of the following two ways: 

 by clicking on the tick button of the Excel formula bar when keys Ctrl 

and Shift are simultaneously pressed; 

 by pressing the Enter key when keys Ctrl and Shift are simultaneously 

pressed (that is, by pressing Ctrl + Shift + Enter). 

The transposition result appears in the selected cell range. 
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Function Wizard simplifies the use of the TRANSPOSE function. For trans-

posing the matrix, we have to click on OK in the Function Arguments window 

when keys Ctrl and Shift are simultaneously pressed. 

It is interesting to create a user-defined function for transposing a matrix (cell 

range) relative to its auxiliary diagonal according to formula (1.3) on p. 109. 

This function’s declaration follows: 
 

Listing 2.1 
 

Function TRANSPOSEA(massive As Variant) As Variant 

    Dim m As Integer, n As Integer 

    Dim i As Integer, j As Integer 

    Dim R() As Variant          'resulting matrix 

    m = massive.Rows.Count      'quantity of rows 

    n = massive.Columns.Count   'quantity of columns 

    ReDim R(1 To n, 1 To m)     'specification of size 

    For j = 1 To n 

        For i = 1 To m 

            R(j, i) = massive(m + 1 - i, n + 1 - j) 

        Next i 

    Next j 

    TRANSPOSEA = R 

End Function 

 

Formal parameter massive may be considered as a record (Section 1.18). 

More precisely, massive is a variable of the Range type, but we will talk about 

it later. 

Upon putting Listing 2.1 into the code window, the TRANSPOSEA function 

appears in category User Defined of the Excel functions library. 

TRANSPOSEA is used as the TRANSPOSE function: 

1) enter a matrix (intended for transposing relative to its auxiliary diagonal) 

into Excel cells, for example, A1:D3; 

2) select the cell range for the transposition result, for example, A5:C8; 

3) into the Excel formula box, enter 
 

=TRANSPOSEA(A1:D3) 

 

4) calculate in one of the following two ways: 

 by clicking on the tick button of the Excel formula bar when keys Ctrl 

and Shift are simultaneously pressed; 

 by pressing Ctrl + Shift + Enter. 

The result of transposing the matrix relative to its auxiliary diagonal appears 

in the selected A5:C8 range (Fig. 2.8). 
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Fig. 2.8. The result of the TRANSPOSEA function usage 

 

While using Function Wizard for the matrix transposition, we have to click 

on OK in the Function Arguments window when keys Ctrl and Shift are simulta-

neously pressed. 

It is interesting to compare the TRANSPOSEA function with the program of 

Section 1.22. By the number of operators, the function is four times shorter than 

the program. Besides, the function can be used when creating Excel macros by 

means of Excel Macro Recorder (Section 2.5). 

Note that the name of the formal parameter of the TRANSPOSEA function 

can differ from massive, for example, name diapason may be used. 

When operating with the matrices containing a large number of columns, it is 

convenient to use the R1C1 reference style, in which the Excel columns are 

numbered by natural numbers instead of letters. 

For setting the R1C1 reference style, we must fulfill the following operations: 

1) click on the File button in Excel; 

2) Options > Formulas; 

3) turn on option R1C1 reference style in area Working with formulas of the 

Excel Options window; 

4) click on the OK button. 
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2.4. Two methods for developing Excel macros 

 

 

 

 

 
An Excel macro is a set of operators, which can be executed automatically. 

The macro is written in a programming language called Visual Basic for Appli-

cations or VBA. 

The VBA programming language includes the reviewed constructs of Visual 

Basic. 

The following two methods are used for creating macros: 

1) programming in Visual Basic Environment; 

2) creating by means of Excel Macro Recorder. 

We used the first method in the previous sections, in particular, for develop-

ing two macros for loading the UserForm1 form (Sections 2.1 and 2.2). 

The second method is simpler but less universal in comparison with the first 

method; it is normally considered when learning Excel. We will consider the 

second method because Excel Macro Recorder is an excellent helper in the first 

method for creating macros: if we do not know how to write down any action  

(or set of actions) in VBA, we have to create a macro for performing this action 

(or set of actions) by using Excel Macro Recorder and then study the VBA code 

generated automatically. 

This is how we will develop: 

 the operator blocks for automatic creation of graphs in Listings 3.10, 3.13 

and 3.18; 

 operator 12 in Listing 6.15 for the horizontal center alignment of the  

Excel cell content. 

Excel Macro Recorder also facilitates the use of the first method for creating 

macros. The fact is that the program in VBA can be created not from scratch, but 

by starting from a prototype, which was created by means of Excel Macro  

Recorder. 

It is precisely in this way that we will develop the graph subroutine for  

automatic creation of graphs (Section 4.8). 

Creating macros by editing the prototype leads to a considerable “thought 

saving”. 
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2.5. Excel Macro Recorder 

 

 

 

 

 
Excel Macro Recorder operation is similar to recording by means of a video-

disk recorder. Excel Macro Recorder: 

 records the operations being fulfilled by the user in the Excel window; 

 then transforms these operations into a set of VBA operators, that is, into 

a program. 

By means of Excel Macro Recorder, we will create a macro for performing 

the following operational sequence: 

1) removal of gridlines from the Excel worksheet; 

2) setting the R1C1 reference style; 

3) assignment of the Currency format to all cells on the worksheet; 

4) selection of the R14C5 cell, that is, E14. 

For creation of the macro, we fulfill the following operations. 

1. Developer > Record Macro (in area Code) or View > arrow Macros  

(in area Macros) > Record Macro. 

2. Enter a name of the macro and other information into text boxes of the 

Record Macro window opened: 

Macro name: MR 

Shortcut key: Ctrl+m   (it will be used for starting the macro execution) 

Store macro in: This Workbook   (taken from the drop-down list) 

Description: Result of using Excel Macro Recorder 

3. In the window with the filled text boxes (Fig. 2.9), click on button OK.  

At that, the Record Macro button changes its status to Stop Recording. Macro 

record is started. 

4. Remove gridlines from the active Excel worksheet, for example, by name 

Sheet1: View > turn off Gridlines in area Show. 

5. Set the R1C1 reference style as follows: 

1) click on the File button; 

2) Options > Formulas; 

3) turn on the R1C1 reference style option in area Working with formulas of 

the Excel Options window; 

4) click on the OK button. 

6. Assign the Currency format to all cells on the active worksheet as  

follows: 
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1) select all cells on the worksheet by clicking on the intersection of the top 

line (with numbers of columns) and the left column (with numbers of rows); 

2) activate the Home tab; 

3) in area Number, set the Currency format by using the drop-down list. 

7. Select the R14C5 cell by clicking on it. 

8. Developer > Stop Recording (in area Code) or View > arrow Macros  

(in area Macros) > Stop Recording. 

 

 
 

Fig. 2.9. The Record Macro window before clicking on the OK button 

 

The record is finished; macro MR is the result. 

Before verifying the operational capability of the created macro, we return to 

the A1 reference style. For that: 

1) click on the File button; 

2) Options > Formulas; 

3) turn off the R1C1 reference style option in area Working with formulas of 

the Excel Options window; 

4) click on button OK. 

Before starting the macro, let us create a worksheet, for example Sheet2, for 

which operations written in the macro must be performed. For creating Sheet2, 

we use the New Sheet command, depicted by the round plus icon in the bottom 

part of the Excel window (see  in Fig. 2.5). 
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For starting the MR macro from the Excel window, one of the following two 

ways is used: 

 simultaneous pressing keys Ctrl and m; 

 Developer (or View) > Macros > line MR > Run. 

When executing the macro, the computer repeats actions enumerated in items 

4 — 7. 

After restoring the A1 reference style, let us save the Excel workbook with 

the MR macro (which is the result of using Excel Macro Recorder) under the 

name of BookMacrorecorder. During the save, we have to set the following file 

type: Excel Macro-Enabled Workbook. 

For removing the MR macro, we must fulfill the following operations:  

Developer (or View) > Macros > line MR > Delete > Yes. However, we will not 

delete the macro because it will be required in the next sections. 
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2.6. VBA code generated by Excel Macro Recorder 

and its editing 

 

 

 

 
In the previous section, we created the VBA macro corresponding to the  

sequence of Excel operations performed with Excel Macro Recorder turned on. 

For displaying the macro text, we must fulfill the following in the Excel win-

dow with workbook BookMacrorecorder: Developer (or View) > Macros > line 

MR > Edit. At that, the VB window appears with the code window containing 

the required text. 

The macro code follows: 
 

Listing 2.2 
 

Sub MR() 

' 

' MR Macro 

' Result of using Excel Macro Recorder 

' 

' Keyboard Shortcut: Ctrl+m 

' 

    ActiveWindow.DisplayGridlines = False 

    Application.ReferenceStyle = xlR1C1 

    Cells.Select 

    Selection.NumberFormat = "#,##0.00$" 

    Range("E14").Select 

End Sub 

 

There is the possibility of editing this code created by using Excel Macro  

Recorder. 

Let us assume that we want to set content of cell R14C5 (that is, E14) by 

means of the standard window. For that, we type the following operator above 

the last line of Listing 2.2: 

 

ActiveCell.Formula = _ 

InputBox("Enter price in dollars" _ 

& vbCrLf & "into the active cell") 
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Fig. 2.10 shows the expanded text of the MR macro. 

Let us create the Sheet3 worksheet and start the MR macro with the additional 

operator when Sheet3 is active. At that, the window represented in Fig. 2.11  

appears. 

 

 
 

Fig. 2.10. The VB window with the macro text  

after typing the additional operator 

 

 
 

Fig. 2.11. The standard window for inputting  

information into the selected cell 
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We put a value, for example 12, into text box Enter price in dollars into the 

active cell. After clicking on the OK button, the text box content appears in cell 

R14C5 (Fig. 2.12). The dollar sign in front of 12.00 is because of the Currency 

format of the cell. 

 

 
 

Fig. 2.12. The result of the MR macro execution 

 

Let us restore the A1 reference style. 

Further, we will consider constructs of VBA, which are absent in Visual 

Basic. 
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2.7. Objects and events 

 

 

 

 

 
All modern programming languages (in particular, Visual Basic and VBA) 

are object- and event-oriented. 

The object orientation is based on partitioning the subject area (for which we 

are developing a program) and clustering the parts. 

 The program’s part, which corresponds to the cluster, is named object. 

 The object’s characteristics are named properties. 

 Actions performed over the object are named methods. 

Examples of the subject area are problems of modeling financial risks, semi-

conductor devices and evolution of stars (p. 47), as well as Visual Basic and 

VBA themselves. 

Examples of the object are the Visual Basic objects, which were considered 

in Section 1.23: UserForm, Label, TextBox, CommandButton and CheckBox. 

The event orientation is based on the following concepts: 

 “event” — the object’s qualitative change, which follows from work of 

the user or computer; 

 “handler for event” — the command set, executed by the computer when 

the event occurs. 

An example of the event is the click on the Account button in the user-

defined form, for example, depicted in Fig. 1.28. Because of handling this event, 

the ComButCalc_Click program execution is started. 

The VBA programming language is intended for creating programs in the 

Microsoft Office applications, such as word processor Word, tabular processor 

Excel, technical editor Visio, database management system Access, etc. VBA 

differs from Visual Basic in the presence of specific objects of Microsoft Office 

and of its applications. 

We will be interested in the so-called Excel objects intended for Excel VBA 

Programming. Examples of such objects are Workbook, Worksheet, Range and 

ActiveCell. 

Operators intended for work with an object make the following: 

 setting object properties; 

 returning object properties into the program; 

 applying object methods. 
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The syntax of setting object properties follows: 
 

object.property = expression 
 

where expression is an arithmetic or logical expression or string. The com-

puter executes this operator as the normal assignment operator: 

1) calculates the value of expression; 

2) assigns this value to property object.property. 

The syntax of returning object properties follows: 
 

object.property 
 

Property object.property may be a part of operators, in particular, it 

may be in the right-hand side of the assignment operator, i.e., the property is 

similar to built-in functions of Visual Basic. Often, object.property itself 

is an object. 

Note that not all object properties can be returned and set. There are proper-

ties, which can be only returned or set. To study possibilities of this or that object 

property, we must use the reference systems, which are started by pressing the 

F1 and F2 keys when the VB window is active (Sections 1.6 and 2.12). 

The operator of applying object methods has the following form: 
 

object.method 
 

The operator of applying the Add method is the exception. It creates a new 

object, subobject, and adds it to object. The syntax of this operator  

follows: 
 

[Set variable = ]object.Add 
 

In this syntax, Set is the keyword, variable is a variable of the same data 

type as subobject. 

Applying the Add method is similar to calling the MsgBox procedure of  

Visual Basic, which is both a subroutine and function. 

An object hierarchy exists. The highest in the hierarchy of the application is 

the Application object, i.e., all other objects “are included” in it. The Application 

object reminds the Russian nested doll, but (unlike the nested doll) several  

objects may be included in each object. 

The full object name is a sequence of the object names separated by a point, 

at that, this sequence begins with Application. For example, 
 

Application.Workbooks("Archive").Worksheets("Cod"). _ 

    Range("A1") 
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in VBA for Excel is the full name of the Range("A1") object or the reference 

to the A1 cell on the Cod worksheet of the Archive workbook. 

The use of the full object name is not necessary. Often, we can use the  

incomplete name, i.e., without names of the objects activated at present. For  

example, if the Archive workbook is active, then the full name of the 

Range("A1") object may be shortened as follows: 

 
Worksheets("Cod").Range("A1") 

 

As before, this is the reference to the A1 cell on the Cod worksheet of the  

Archive workbook. 

In the above VBA notations, strings are in the parentheses. These strings may 

be compound. 

An example of using compound strings is the following operator: 

 
Range("G" & CStr(CInt(Now - #1 Jan 2000#))).Select 

 

Because of its execution, the following cell is selected on the active Excel work-

sheet: the intersection of the G column and the row whose number is equal to the 

number of days from the century beginning. 

We advise the reader to do the following: 

1) type the last operator above line End Sub of program Century_20 

(p. 25); 

2) execute the obtained program; 

3) pay attention to the position of the Excel cell activated. 

We see that the object construct is similar to the record (Section 1.18). There-

fore, as the first approximation, the object can be considered as the built-in  

record whose creation operator (the Type operator) is hidden from the program 

developer. 

In addition to properties and methods, some objects of VBA are also charac-

terized by events. However, it does not relate to the main Excel objects, which 

will be considered below. 
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2.8. Object Application 

 

 

 

 

 
It was mentioned above that the Application object occupies the top level in 

the object hierarchy of Excel. This means that the Application object controls the 

settings of the application, i.e., such settings as are in window Excel Options  

(to open this window, we must fulfill File > Options). Operator 

 
Application.ReferenceStyle = xlR1C1 

 

in the MR macro text, which was created by means of Excel Macro Recorder (see 

Listing 2.2 on p. 148), speaks about this role of the Application object. 

However, the Application object not only changes parameters of Excel. If we 

want to use Excel functions when programming in VBA, the Application object 

is also necessary for us. 

Let us use built-in functions AVERAGE and SUM of Excel for processing 

range A1:A4 on the Sheet1 worksheet. 

1. Insert a module into the active Excel workbook. Enter program 
 

Listing 2.3 
 

Sub BuiltinFunctions() 

    Dim W As Single 

1:  W = Application. _ 

        Average(Worksheets("Sheet1").Range("A1:A4")) 

    MsgBox "Average = " & CStr(W) 

2:  W = Application. _ 

        Sum(Worksheets("Sheet1").Range("A1:A4")) 

    MsgBox "Sum = " & CStr(W) 

End Sub 

 

into the code window. 

2. Go to worksheet Sheet1 of the active workbook. 

3. Enter number 100 into cell A1, 200 into A2, 300 into A3 and 400 into A4. 

4. Run the BuiltinFunctions macro. The window with the average of 

the entered numbers appears (Fig. 2.13). 
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5. To continue the program execution, click on the OK button. The window 

containing the sum of the entered numbers appears (Fig. 2.14). 

6. To terminate the program execution, click on the OK button. 
 

 
 

Fig. 2.13. The window with the first processing result 
 

 
 

Fig. 2.14. The window with the second processing result 
 

The built-in Excel functions are properties of the Application object. When 

executing operators 1 and 2, properties Average and Sum return with parameter 

Worksheets("Sheet1").Range("A1:A4"). 

In addition to Excel functions, the Application object has other properties. 

From the long list of the properties, we will consider the following. 

 ActiveWorkbook — the active workbook. 

 ActiveSheet — the active worksheet of the active workbook (in our opin-

ion, ActiveWorksheet would be a more suitable name of this property). 

 ActiveCell — the active cell on the active worksheet of the active work-

book. 

As an example of returning the ActiveCell property, let us consider the fol-

lowing program, which sets the italic font for the active cell and puts text Report 

for May into this cell. 
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Sub ItalicFont() 

    With Application.ActiveCell 

        .Font.Italic = True 

        .Value = "Report for May" 

    End With 

End Sub 

 

The With operator was defined on p. 91. 

Properties ActiveWorkbook, ActiveSheet and ActiveCell are objects. We will 

consider them in greater detail in the next three sections. 

 Calculation — the calculation mode (see area Calculation options of the 

Excel Options window after fulfilling File > Options > Formulas). 

The main values of this property are: 

1) xlCalculationAutomatic — the automatic calculation: recalcula-

tion according to formulas is performed automatically when Excel cells’ contents 

change; it is the default operation mode of Excel; 

2) xlCalculationManual — the manual calculation, for example, 

when pressing the F9 key. 

As an example of setting the Calculation property, let us consider the follow-

ing operator intended for setting the automatic calculation mode: 

 
Application.Calculation = xlCalculationAutomatic 

 

 Dialogs — the collection of the Excel dialog boxes. 

In VBA, word “collection” means a group of single-type objects. 

By means of the Dialogs property, it is possible to display the Excel dialog 

boxes. For example, the execution of operator 

 
Application.Dialogs(xlDialogOpen).Show 

 

leads to displaying window Open familiar to us; xlDialogOpen is the  

parameter of the Dialogs property. 

In the last operator, Application.Dialogs(xlDialogOpen) is the 

object (of the Balloon type), Show is the object’s method. 

We already encountered the Show method in Sections 2.1 and 2.2. It is  

operator 

 
UserForm1.Show 

 

figuring in the programs of loading the user-defined form. 

Let us use the Show method for saving an Excel workbook. 
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1. Above the last line of the BuiltinFunctions macro (p. 154), insert 

the following operator of displaying the document saving window: 
 

Application.Dialogs(xlDialogSaveAs).Show 

 

The macro has the following expanded text: 

 
Sub BuiltinFunctions() 

    Dim W As Single 

1:  W = Application. _ 

        Average(Worksheets("Sheet1").Range("A1:A4")) 

    MsgBox "Average = " & CStr(W) 

2:  W = Application. _ 

        Sum(Worksheets("Sheet1").Range("A1:A4")) 

    MsgBox "Sum = " & CStr(W) 

    Application.Dialogs(xlDialogSaveAs).Show 

End Sub 

 

2. Go to the Excel window. 

3. Enter arbitrary numbers, for example 100, 200, 300 and 400, into range 

A1:A4 on the Sheet1 worksheet. 

4. Run the above macro (the windows, depicted in Fig. 2.13 and 2.14, will 

appear during the execution). 

5. In the displayed Save As window, enter file name BookApplication. 

6. Set file type Excel Macro-Enabled Workbook by means of drop-down list 

Save as type; 

7. Click on the Save button. 

8. Make sure that the obtained BookApplication workbook contains macro 

BuiltinFunctions and the file name has extension .xlsm. 

On p. 108, we considered the order of tuning Windows Explorer to see file 

names with extension. 

In the above ItalicFont macro, operator With was used for setting ob-

ject properties. However, we can use this operator for applying object methods. 

For example, operator 
 

Application.Dialogs(xlDialogSaveAs).Show 

 

can be replaced by construct 

 
With Application.Dialogs(xlDialogSaveAs) 

    .Show 

End With 
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The With operator may include both properties and methods. As an exam-

ple, let us consider the following new version of the BuiltinFunctions 

macro: 

 

Sub BuiltinFunctions() 

    Dim W As Single 

1:  W = Application. _ 

        Average(Worksheets("Sheet1").Range("A1:A4")) 

    MsgBox "Average = " & CStr(W) 

2:  W = Application. _ 

        Sum(Worksheets("Sheet1").Range("A1:A4")) 

    MsgBox "Sum = " & CStr(W) 

    With Application 

        .ActiveCell.Value = "Report for May" 

                                       'property Value 

        .Dialogs(xlDialogSaveAs).Show  'method Show 

    End With 

End Sub 

 

During the execution, text Report for May appears in the active cell. 

From the list of methods of the Application object, we will consider the fol-

lowing: Quit, Calculate, OnTime. 

 Quit — quit Excel. 

The operator of applying the Quit method follows: 
 

Application.Quit 

 

 Calculate — the forced calculation. 

As examples of using the Calculate method, let us consider the following  

operators: 
 

Application.Calculate 

Worksheets("Report7").Calculate 

Worksheets("Report7").Range("A1:C10").Calculate 

 

If mode “manual calculation” is set in Excel, then: 

 the execution of the first operator leads to the calculation according to the 

formulas in all open Excel workbooks (which are represented by buttons on the 

taskbar of Windows Desktop); this execution is equivalent to pressing key F9; 

 the execution of the second operator leads to the calculation on the  

Report7 worksheet of the active workbook; 
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 the execution of the third operator leads to the calculation in the A1:C10 

range on the Report7 worksheet of the active workbook. 

As we know, the execution of operator 
 

Application.Calculation = xlCalculationManual 

 

tunes Excel for the manual calculation. 

To tune Excel for the manual calculation, we can also fulfill the following 

operational sequence in the Excel window: File > Options > Formulas > turn on 

Manual > OK. 

 OnTime — the start of the macro at the given moment of time; the time 

and the macro name are the method parameters. 

As an example of applying the OnTime method, let us consider the following 

macro, which writes the current time into cell A1 (on the active worksheet) after 

starting the macro. 
 

Listing 2.4 
 

Sub MyMacro() 

1:  Range("A1") = Time 

2:  Application.OnTime Now + TimeValue("00:00:01"), _ 

        "MyMacro" 

End Sub 

 

In the MyMacro macro, operator 1 writes the current time into the A1 cell. 

Operator 2 starts MyMacro one second after the current moment; therefore,  

operator 1 is executed every second, i.e., the A1 cell content is updated every 

second. 

For the initial start of MyMacro, we must fulfill Developer (or View) >  

Macros > line MyMacro > Run. 

Let us depict the time starting from the moment of opening the Excel work-

book (containing the corresponding macro). For this purpose, we use name  

Auto_Open instead of MyMacro. The new version of the last program follows: 
 

Sub Auto_Open() 

1:  Range("A1") = Time 

2:  Application.OnTime Now + TimeValue("00:00:01"), _ 

        "Auto_Open" 

End Sub 

 

We save the workbook, containing this macro, as a macro-enabled workbook, 

for example, by name BookOnTime. After that, we close the BookOnTime 

workbook. 
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Further, let us fulfill the following: 

1) open the BookOnTime workbook; 

2) to allow the macro to work, click on the Enable Content button of the  

Security Warning panel. 

At that, the Auto_Open macro is started automatically. So is happened 

thanks to the macro name (Excel so is arranged). 

After the auto start, the Auto_Open macro is working as MyMacro: 

 every second, Auto_Open starts; 

 therefore, every second, operator 1 writes the current time into cell A1 on 

the active worksheet. 

For consolidating the material of this section, we advise the reader to under-

stand the work of the following code, which contains the Auto_Open macro 

with two operators of applying the OnTime method. 
 

Listing 2.5 
 

Sub Auto_Open() 

    Application.OnTime TimeValue("12:30:00"), "MyMa1" 

    Application.OnTime TimeValue("12:31:00"), "MyMa2" 

End Sub 

 

Sub MyMa1() 

    Range("G1") = 13.333 

End Sub 

 

Sub MyMa2() 

    Range("G2") = Time 

    Application.OnTime Now + TimeValue("00:00:01"), _ 

        "MyMa2" 

End Sub 

 

These three macros should be put into one module or different modules of the 

same Excel workbook. 
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2.9. Objects Workbook, Workbooks  

and ActiveWorkbook 
 

 

 

 
Object Workbook follows right after object Application in the object hierar-

chy. It is easy to understand the following properties of the Workbook object. 

 Name — the workbook name with its extension. 

The possible extensions of the name follow: 

 .xlsm if the workbook contains macros; 

 .xlsx if macros are absent in the workbook, etc. 

The file name together with its extension frequently is also called the file name. 

As a rule, it does not lead to any confusion. 

 Path — the path to the workbook in the file system of Windows. 

 FullName — the workbook name with its path and extension, i.e., the 

workbook full name. 

Let us consider the following three methods of the Workbook object: 

 Close — closing the workbook; 

 Save, SaveAs — saving the workbook. 

The SaveAs method differs from the Save method in that SaveAs has a list of 

optional parameters, which includes FileName, FileFormat and Password. 

Examples of using the properties and methods of the Workbook object are 

given below, when considering objects of the Workbook data type. Here, “data 

type” has the same sense as in expression “variables (records) of the Session data 

type” on p. 91. 

Objects of the Workbook type (“data” is omitted for brevity) have the proper-

ties and methods of the Workbook object. 

The Workbooks object is an object containing all open Excel workbooks. 

This object is also named as the Workbooks collection. 

In VBA, 

 
Workbooks("Personnel_department") 

 

is the Workbook type object corresponding to the open workbook by name  

Personnel_department. 

Let us consider the main methods of the Workbooks object. 

 Activate — activation of the specified workbook (from a number of the 

open Excel workbooks) when its first worksheet becomes active. 
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As an example of applying the Activate method, let us consider the following 

operator of activating the above Personnel_department workbook: 

 
Workbooks("Personnel_department").Activate 

 

 Add — the creation of a new workbook, which becomes active at once. 

Applying the Add method is accompanied by return (into the program) of  

the created workbook, which is the Workbook type object. As an example, see 

operator 2 in the NewBook macro (p. 164). 

Note that all collections have the Add method. Its application adds (to the 

collection) a new object of the corresponding type. In particular, a new object of 

the Workbook type is added to the Workbooks collection. 

All collections, in particular Workbooks, have useful property by name 

Count that allows determining the quantity of objects in the collection. 

An example of returning the Count property is in the following program: 
 

Listing 2.6 
 

Sub NumberofBooks() 

    MsgBox Str(Workbooks.Count) 

End Sub 

 

The window, containing the number of open workbooks and the OK button, 

is displayed when executing the NumberofBooks macro. To terminate the 

execution, we must click on OK. 

It was mentioned in the previous section that ActiveWorkbook is a property 

of the Application object, corresponding to the active workbook. As the Work-

book type object, the ActiveWorkbook property has the properties and methods 

of the Workbook object. 

To obtain examples of returning properties Name and FullName of the 

Workbook object and of applying the Save method, let us fulfill the following: 

1) in the Excel window with the BookMacrorecorder workbook (p. 147), 

click on the Enable Content button of the Security Warning panel to allow the 

MR macro to work; 

2) Developer (or View) > Macros > line MR > Edit; 

3) put operator block 

 
1:  Dim S As String 

2:  S = ActiveWorkbook.Name 

3:  MsgBox S 

4:  MsgBox ActiveWorkbook.FullName 

5:  ActiveWorkbook.Save 
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above the last line of the MR macro (Fig. 2.15); 

4) start the MR macro execution, for example, by clicking on arrow ► in the 

VB window. 

 

 
 

Fig. 2.15. The VB window with the macro text  

after inserting the additional operator block 

 

Because of executing operator 2, the S string has a value that is equal to the 

name of the active workbook. Operator 3 displays this string (Fig. 2.16). 

Let us click on the OK button (in the window depicted in Fig. 2.16) to con-

tinue executing the MR macro. Operator 4 displays the active workbook’s full 

name (Fig. 2.17). After clicking on the OK button, operator 5 saves the active 

workbook. 

To obtain an example of returning the Path property of the Workbook object, 

we will execute the MR macro with the following form of the operator intended 

for displaying the full name: 

 
4:  MsgBox ActiveWorkbook.Path & "\" & _ 

        ActiveWorkbook.Name 
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The window, depicted in Fig. 2.17, appears during the execution, as in the case 

of the previous version of operator 4. 

 

 
 

Fig. 2.16. The window with the active workbook’s name 

 

 
 

Fig. 2.17. The window with the full name of the active workbook 

 

In the following example, a workbook is created, a numerical value is entered 

into it, this workbook is saved and closed, and the Excel window is closed too. 

1. Insert a module into a blank workbook, for example Book1, and put the 

following text into the code window (Fig. 2.18): 
 

Listing 2.7 
 

Sub NewBook() 

1:  Dim wbNewWorkbook As Workbook 

2:  Set wbNewWorkbook = Workbooks.Add 

3:  wbNewWorkbook.Worksheets("Sheet1").Range("A1"). _ 

        Value = 100 

4:  wbNewWorkbook.SaveAs _ 

        "c:\Users\usr\Hour0.xlsx" 

5:  wbNewWorkbook.Close 
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6:  MsgBox "Workbook is closed" 

7:  Application.Quit 

End Sub 

 

2. Start the NewBook macro execution. 

3. When the window with message Workbook is closed appears (Fig. 2.19), 

click on the OK button in it. At that, the NewBook macro closes the Excel win-

dow. When closing the Excel window, we may disagree with the offer to save 

Book1. 

4. Open the Hour0 workbook in folder 
 

c:\Users\usr 

 

Number 100 is in cell A1 on worksheet Sheet1. 

 

 
 

Fig. 2.18. The VB window with the NewBook macro text 

 

The NewBook macro begins with the declaration of the wbNewWorkbook 

variable (operator 1). Because of executing operator 2, a workbook is created 

and assigned to the wbNewWorkbook variable. Operator 3 puts number 100 

into the A1 cell on the Sheet1 worksheet of this workbook. 

When creating a workbook, tabular processor Excel gives it a default name, 

for example, Book2. Because the workbook name is known inexactly, the 

wbNewWorkbook variable is used instead of Workbooks("Book2") in the 

macro. Operator 4 saves this workbook under the following full name: 
 

c:\Users\usr\Hour0.xlsx. 
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Operator 5 closes the Hour0 workbook, and operator 6 displays the message 

about it (Fig. 2.19). Operator 7 performs exit from Excel. 

In operator 1, we may replace the Workbook type by the Object data type 

(Appendix 1) similar to the Variant data type familiar to us. 

 

 
 

Fig. 2.19. The window with the OK button for  

terminating the NewBook macro execution 
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2.10. Objects Worksheet, Worksheets  

and ActiveSheet 

 

 

 

 
The Worksheet object follows Workbook in the object hierarchy. Let us con-

sider the following properties of object Worksheet: 

 Name — the worksheet name; 

 Cells — one of the following: 

 the collection of all cells on the worksheet; 

 the single cell if we specify (by two integers in parentheses, through a 

comma) the numbers of row and column whose intersection defines this cell. 

The Cells property will be also considered in the next section, as applied to 

the Range object. 

We will consider the following two methods of the Worksheet object: 

 Activate — activating the worksheet; 

 Delete — deleting the worksheet. 

Examples of using the properties and methods of the Worksheet object are 

given below, when considering objects of the Worksheet type. The last objects 

have the properties and methods of the Worksheet object. 

The Worksheets object is an object containing all worksheets of the Excel 

workbook. This object is also named as the Worksheets collection. 

Its number or name can identify each worksheet of the Worksheets object. 

For example, Worksheets(1) designates the 1st worksheet of the workbook, and 

Worksheets(“Sheet1”) is the worksheet by name Sheet1. Worksheets(1) and 

Worksheets(“Sheet1”) are objects of the Worksheet type. 

As examples of applying the Activate and Delete methods of the Worksheet 

object, let us consider the following operators: 

 
Worksheets(3).Activate 

Worksheets("Sheet2").Delete 

 

The first operator activates the 3rd worksheet of the active workbook, and the 

second operator deletes worksheet by name Sheet2 of the active workbook. 

When working with object Worksheets, the application of the Add method 

adds to the collection a new worksheet that becomes active at once. This applica-

tion is accompanied by return (into the program) of the created worksheet, which 



Chapter 2. Programming in VBA 

168 

is the Worksheet type object. As an example, see operator 2 in the NewSheet 

macro on p. 170. 

The Worksheets collection (as well as other collections) has the Count  

property that allows determining the number of objects in the collection. 

An example of returning property Count is in the following macro: 
 

Listing 2.8 
 

Sub NumberofSheets() 

    MsgBox Str(Worksheets.Count) 

End Sub 

 

The window, containing the number of worksheets in the active Excel work-

book and the OK button, is displayed when executing the NumberofSheets 

macro (Fig. 2.20). For terminating the execution, we have to click on OK. 

 

 
 

Fig. 2.20 

 

As we already mentioned in Section 2.8, ActiveSheet is a property of the  

Application object, corresponding to the active worksheet of the active work-

book. As the Worksheet type object, the ActiveSheet property has the properties 

and methods of the Worksheet object. 
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An example of setting the Name property of the Worksheet object is the fol-

lowing operator: 
 

ActiveSheet.Name = "July" 

 

This operator assigns the month name to the active worksheet. 

As an example of returning the Cells property of the Worksheet object, let us 

consider the following program: 
 

Listing 2.9 
 

Sub Color() 

    Dim i As Integer 

    Dim j As Integer 

    For i = 1 To 4 

        For j = 1 To 5 

0:          With ActiveSheet.Cells(i, j) 

                If .Value < 0 Then 

                    .Font.Color = QBColor(10) 

                    .Font.Italic = True 

                End If 

            End With 

        Next j 

    Next i 

End Sub 

 

This program: 

1) examines the values in cells A1:E4 on the active worksheet; 

2) sets the green italic font when the value is negative. 

Note that the object name can be excluded from VBA notation 

 
ActiveSheet.Cells(i, j) 

 

In this case, line 0 becomes as follows: 

 
With Cells(i, j) 

 

Besides, note that operator Cells.Select in macro Listing 2.2 on p. 148 

(programmed by means of Excel Macro Recorder) is equivalent to operator 

ActiveSheet.Cells.Select. 

As an example of applying the Add method of the Worksheets object, let us 

consider the program for inserting a new worksheet into the active Excel work-

book. For that, we fulfill the following: 
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1) put text 
 

Listing 2.10 
 

Sub NewSheet() 

1:  Dim wsNewWorksheet As Worksheet 

2:  Set wsNewWorksheet = Worksheets.Add 

3:  wsNewWorksheet.Name = Format(Date, "d mmmm yyyy") 

End Sub 

 

into the code window; 

2) execute the NewSheet macro. 

The name of the inserted worksheet is the current date. This worksheet is  

active; it is placed in front of the former active worksheet. 

The NewSheet macro (which is similar to NewBook on p. 164) begins with 

the declaration of variable wsNewWorksheet (operator 1). The created work-

sheet is assigned to this variable (operator 2). Operator 3 sets the worksheet 

name by means of the wsNewWorksheet.Name property. 

Operator 3 includes the call of the Format function intended for converting 

a value (in particular, of the Date data type) to a string of the given form. The 

first argument is the Date function returning the current date. The second argu-

ment is the string, which gives the following format of the date: the day of 

month, the name of month, the year completely. 

Note that the Set keyword is used not only in the operator of applying the 

Add method: any assignment operator, where objects are present, begins with the 

Set keyword. For example, the NewSheet program will also work if we  

replace Worksheets.Add by object Worksheets(1) in operator 2. The 

new version of the program follows: 

 
Sub NewSheet1() 

1:  Dim wsNewWorksheet As Worksheet 

2:  Set wsNewWorksheet = Worksheets(1) 

3:  wsNewWorksheet.Name = Format(Date, "d mmmm yyyy") 

End Sub 

 

As the execution result, the current date becomes the 1st worksheet’s name. 
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2.11. Objects Range, Selection and ActiveCell 

 

 

 

 

 
Object Range follows the Worksheet object in the object hierarchy. It allows 

working with the following elements of Excel: 

 range of cells; 

 range of columns; 

 range of rows; 

 single cell. 

Let us consider some properties of the Range object. 

 Formula — the Excel formula with operands (cell addresses) in the A1 

reference style. 

For example, operators 
 

Range("C2:F8").Formula = "=$A$4+COS($A$10)" 

Range("D:E").Formula = "=$A$4+COS($A$10)" 

Range("2:2").Formula = "=$A$4+COS($A$10)" 

Range("B3").Formula = "=$A$4+COS($A$10)" 

 

set the Formula property. These operators are respectively used to put formula 
 

=$A$4+COS($A$10) 
 

into the following parts of the active worksheet: 

 range C2:F8; 

 columns D and E; 

 the 2nd row; 

 the B3 cell. 

 FormulaR1C1 — the Excel formula with operands (cell addresses) in the 

R1C1 reference style. 

For example, operator 
 

Worksheets("Sheet1").Range("G1:H4").FormulaR1C1 = _ 

    "=SQRT(R5C8)^3+7.3" 

 

sets the FormulaR1C1 property. This operator is used for entering formula 
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=SQRT($H$5)^3+7.3 

 

into the G1:H4 range on the Sheet1 worksheet (the R1C1 reference style option 

may be turned on or off, see p. 143). 

 Address — the cell address. 

 Offset — the range shifted relative to the selected (active) range accord-

ing to two integers in parentheses. 

In the Offset property, the first parameter (in parentheses) is the vertical shift, 

and the second parameter is the horizontal shift. A comma is placed between 

these parameters. 

 Value — one of the following: 

 the array of the range values; 

 the cell value, if the Range object corresponds to the single cell. 

 Columns — the collection of the range columns. 

 Rows —  the collection of the range rows. 

 Cells — the collection of the range cells. 

Note that we considered the Cells property regarding the Worksheet object in 

the previous section. 

Below, we will list some methods of the Range object. 

 Clear — the removal of the range contents. 

For example, the following application of the Clear method clears cells 

A1:F7 on the Sheet1 worksheet: 

 
Worksheets("Sheet1").Range("A1:F7").Clear 

 

 Select — the selection (activation) of the range. 

Objects of the Range type have properties and methods of the Range object. 

When working with the Range type objects, it is convenient to use the 

For Each…Next cycle, which is similar to cycle For…Next (p. 58). The syntax 

of this operator may be studied by means of the Excel help system started by 

pressing the F1 key when the VB window is active. 

In the following program example, operator For Each…Next is used for 

squaring the values of range A1:A6 on Sheet1 of the active workbook: 
 

Listing 2.11 
 

Sub Square() 

    Dim x As Range 

    For Each x In Worksheets("Sheet1").Range("A1:A6") 

        x.Value = x.Value ^ 2 

    Next 

End Sub 
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The Selection object allows working with the active (selected) cells. As the 

Range type object, the Selection object has properties Columns, Rows and Cells. 

Thus, properties 
 

Selection.Columns 

Selection.Rows 

Selection.Cells 

 

are the collections of columns, rows and cells of the selected range, respectively. 

The following example program inserts the multiplication table into the  

selected range on the active worksheet: 
 

Listing 2.12 
 

Sub MultiplicationTable() 

    Dim m As Integer, n As Integer 

    Dim i As Integer, j As Integer 

1:  m = Selection.Rows.Count      'quantity of rows 

2:  n = Selection.Columns.Count   'quantity of columns 

3:  For i = 1 To m 

4:      For j = 1 To n 

5:          Selection.Cells(i, j).Value = i * j 

6:      Next j 

7:  Next i 

End Sub 

 

Operators 1 and 2 contain the Count property whose return allows defining 

the quantity of objects in the Selection.Rows and Selection.Columns 

collections. Because of executing these operators, the quantities of rows and  

columns in the selected range are assigned to the m and n variables, respectively. 

Operator 5 may have the following form: 
 

Selection.Cells(i, j) = i * j 

 

Here, .Value is present implicitly. 

We advise the reader to do the following: 

1) enter program MultiplicationTable into the code window; 

2) go to the Excel window and select the range for the multiplication table; 

3) run program MultiplicationTable; 

4) looking the execution result, verify the program correctness. 

The Selection object can be used for recovering the selection. For example, in 

the graph subroutine (Section 4.8): 

 in the beginning, operator 
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Set wbOldSelection = Selection 

 

assigns the selected range to the wbOldSelection variable of the Range 

type; 

 in the end, operator 

 
wbOldSelection.Select 

 

selects the wbOldSelection range. 

It was mentioned in Section 2.8 that ActiveCell is a property of the Applica-

tion object, corresponding to the active cell on the active worksheet of the active 

workbook. As the Range type object, the ActiveCell property has the properties 

and methods of the Range object. 

The PropofRange program, given below, contains examples of using the 

properties and methods of the Range object. 

1. Put 100 into cell B1, 200 into B2 and 300 into B3 on the Sheet1 work-

sheet. 

2. Put formula 

 

=SUM(B1:B3) 

 

into cell B4 on Sheet1, and click on the tick button of the Excel formula bar. 

3. Go to Visual Basic Environment and insert a module into the active 

workbook. 

4. Enter the following text into the code window: 
 

Listing 2.13 
 

Sub PropofRange() 

1:  Worksheets("Sheet1").Range("A1").Select 

2:  ActiveCell.Offset(2, 3).Select 

3:  MsgBox "Current cell — " & ActiveCell.Address 

4:  MsgBox "Value in cell B4 = " & _ 

        Range("B4").Value 

5:  MsgBox "Formula in cell B4: " & _ 

        Range("B4").Formula 

End Sub 

 

5. Run the PropofRange program execution after activating the Sheet1 

worksheet. The window with message Current cell - $D$3 and the OK button 

appears (Fig. 2.21a). 
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6. Click on the OK button. The window with message Value in cell B4 = 

600 and the OK button appears (Fig. 2.21b). 

7. Click on the OK button. The window with message Formula in cell B4: 

=SUM(B1:B3) and the OK button appears (Fig. 2.21c). 

8. Click on the OK button for terminating the execution. 

Operator 1 of the PropofRange program selects cell A1 on the Sheet1 

worksheet. Operator 2 selects the D3 cell, shifted 2 vertically and 3 horizontally 

relative to the A1 cell (property Offset and method Select of the Range object are 

figured in this operator). Further, three windows with the message and OK but-

ton are sequentially displayed (Fig. 2.21). 

 

 
 

Fig. 2.21a. The Excel worksheet with the first window 

 

 
 

Fig. 2.21b. The second window 
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Fig. 2.21c. The third window 
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2.12. Study of objects 

 

 

 

 

 
We can obtain information on any object by means of the reference systems 

started by pressing keys F1 and F2. For that, we press the F2 key when the VB 

window is active. As a result, the object browser window appears. 

If the Range object is interesting for us, we highlight Range in list Classes  

by click. At that, list Members of 'Range', containing properties and methods of 

object Range, appears in the object browser window (Fig. 2.22). 

 

 
 

Fig. 2.22. The VB window containing the object browser window 
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For obtaining information on the Select method of the Range object, we high-

light line Select in list Members of 'Range' and press the F1 key. As a result,  

the Excel Help window, containing the necessary information, is displayed 

(Fig. 2.23). 

 

 
 

Fig. 2.23. The Excel Help window with the description  

of the Range.Select method 
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We advise the reader to obtain information on the Add method of object 

Worksheets in a similar way. 

In addition, we advise the reader to obtain information on the ActiveCell  

object by means of the binoculars pictogram in the object browser window, such 

as we obtained information on vbFriday on p. 32. 
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2.13. Using the Excel table as the user  

interface of programs 

 

 

 

 
We considered the main Excel objects. Now we can use the Excel table as the 

user interface of programs. 

Initially, we will create a macro for calculating the length of the leg of  

a right-angled triangle with given lengths of the hypotenuse and the other leg.  

In this macro, we will realize formula 

22 acb  
 

following from formula (1.1) on p. 16. 

Let length a of the leg be in the A4 cell, length c of the hypotenuse be in C4. 

Let B5 be intended for resulting length b. The macro has the following text: 
 

Listing 2.14 
 

Sub Leg() 

    Dim a As Single, b As Single, c As Single 

    a = Range("A4").Value 

    c = Range("C4").Value 

    If c < a Then 

        Range("B5").Value = "Error" 

        End            'immediate termination of macro 

    End If 

    b = Sqr(c ^ 2 - a ^ 2)    'according to Pythagoras 

    Range("B5").Value = b 

End Sub 

 

We advise the reader to do the following: 

1) enter the Leg macro text into the code window of a new module; 

2) go to the Excel window; 

3) enter 4.3 and 5.1 into cells A4 and C4, respectively; 

4) run the Leg macro; 

5) make sure that number 2.742261 appears in the B5 cell on the active 

worksheet. 

As we know, length c of the hypotenuse must be greater than or equal to 

length a of the leg. If the C4 cell value is less than the A4 cell value, logical  
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expression c < a accepts True when executing the Leg macro. In this case, 

message Error appears in cell B5 and the End operator terminates the macro 

execution. We encounter the End operator for the first time. 

It is easy to understand the work of the following macro intended for trans-

posing a numerical matrix relative to its auxiliary diagonal according to formula 

(1.3) on p. 109: 
 

Listing 2.15 
 

Sub TRANSPA() 

    Dim m As Integer, n As Integer 

    Dim i As Integer, j As Integer 

    m = Selection.Rows.Count      'quantity of rows 

    n = Selection.Columns.Count   'quantity of columns 

    For j = 1 To n 

        For i = 1 To m 

            Selection.Cells(j + m + 1, i) = _ 

                Selection.Cells(m + 1 - i, n + 1 - j) 

        Next i 

    Next j 

End Sub 

 

This macro is used as follows: 

1) on the Excel worksheet, select the matrix intended for the transposition; 

2) run the TRANSPA macro. 

The result of the macro execution appears below the original matrix 

(Fig. 2.24). 

 

 
 

Fig. 2.24. The Excel worksheet with the initial matrix and  

the result of its transposing relative to the auxiliary diagonal 
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2.14. Two more Excel macros.  

Personal Macro Workbook 
 

 

 

 
Let us create a macro fulfilling the following operations: 

1) at the 1st run, the macro writes the value of cell A3 on worksheet Sheet1 

into cell B2 on worksheet Sheet2; 

2) at the 2nd run, the macro writes the value of the same cell, Sheet1!A3,  

into cell Sheet2!B4; 

3) at the 3rd run, the macro writes the value of cell Sheet1!A3 into cell 

Sheet2!B6, and so on. 

Into cell Sheet1!A3, the values are entered manually before the next run of 

the macro. 

Let us use Sheet1!A4 as an auxiliary cell. We have to write zero into this cell 

before a series of the macro runs. 

Into the code window of a new module, we enter the following text of the 

macro: 
 

Listing 2.16 
 

Sub Macr1() 

    Dim i As Integer, M As Range 

    Set M = Range("Sheet2!B1:Sheet2!B200") 

    i = Range("Sheet1!A4").Value + 2 

    M(i) = Range("Sheet1!A3").Value 

    Range("Sheet1!A4").Value = i 

End Sub 

 

In the above Macr1 macro: 

 i is an auxiliary variable; 

 M is the array corresponding to range B1:B200 on worksheet Sheet2; 

 Range("Sheet1!A4").Value, Range("Sheet1!A3").Value 

are the values in cells A4 and A3 on worksheet Sheet1. 

At the 1st run of the Macr1 macro: 

1) number 2 is assigned to variable i; 

2) the value of cell A3 on worksheet Sheet1, for example 100, is assigned to 

variable M(2), i.e., to cell B2 on worksheet Sheet2; 

3) the value of i (number 2) is written into cell A4 on worksheet Sheet1. 
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At the 2nd run of the Macr1 macro: 

1) number 4 is assigned to variable i; 

2) the value of cell A3 on worksheet Sheet1, for example 200, is assigned to 

variable M(4), i.e., to cell B4 on worksheet Sheet2; 

3) the value of i (number 4) is written into cell A4 on worksheet Sheet1. 

And so on. We see that the Macr1 macro fulfills the necessary operations 

(Fig. 2.25). 

 

 
 

a 

 

 
 

b 

 

Fig. 2.25. Worksheets Sheet1 (a) and Sheet2 (b) after  

the fourth run of the Macr1 macro: numbers 100, 200, 300  

and 400 are put into cell Sheet1!A3 before the macro runs 
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The developed macro, Macr1, has two drawbacks: 

 we can use this macro only in the Excel workbook, where it was created; 

 the number of the macro runs (in one series) should not exceed 100  

because the M array, containing the fixed quantity of elements, is used in this 

macro. 

For liquidation of the first drawback, we will create Personal Macro Work-

book. For that, let us fulfill the following operations. 

1. Open a blank workbook. 

2. Open window Record Macro by fulfilling Developer > Record Macro  

(in area Code) or View > arrow Macros (in area Macros) > Record Macro. 

3. Enter Personal Macro Workbook into box Store macro in by using the 

drop-down list (Fig. 2.26) and click on OK. 
 

 
 

Fig. 2.26. The Record Macro window before clicking on the OK button 
 

4. Developer > Stop Recording (in area Code) or View > arrow Macros  

(in area Macros) > Stop Recording. 

5. Open the VB window. 

6. Click on line VBAProject (PERSONAL.XLSB) in the project explorer 

window, and fulfill File > Save PERSONAL.XLSB. 

7. Close the Excel window by clicking on the little cross in the top right 

corner. If the window with a question about saving changes in Personal Macro 

Workbook is displayed (when closing the Excel window), click on the Yes  

button. 
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Because of these operations, the PERSONAL.XLSB file is created. This file 

is Personal Macro Workbook of the computer user by name usr. 

Personal Macro Workbook opens automatically when starting Excel. Macros 

and user-defined functions, placed in Personal Macro Workbook, can be used  

in Excel workbooks that are in folder c:\Users\usr (and in folders enclosed 

in it). 

The automatic opening of Personal Macro Workbook does not lead to  

appearance of any button on the taskbar of Windows Desktop. 

Let us fulfill the following operations: 

1) open a blank workbook; 

2) go to the VB window; 

3) click on the VBAProject (PERSONAL.XLSB) line in the project explorer 

window; 

4) Insert > Module (it means the module insertion into Personal Macro 

Workbook); 

5) put macro 
 

Listing 2.17 
 

Sub Macr2() 

    Dim i As Integer 

    i = Range("Sheet1!A4").Value + 2 

    Range("Sheet2!B" & CStr(i)) = _ 

        Range("Sheet1!A3").Value 

    Range("Sheet1!A4").Value = i 

End Sub 

 

into the code window. 

In Fig. 2.27, Module1 in the project explorer window is the result of opera-

tion of Excel Macro Recorder that was used for creating Personal Macro Work-

book. This module may be removed or used in further work with Personal Macro 

Workbook, for example, for storage of the Func9 function (Section 2.15). The 

Macr2 macro is placed in the Module2 module. 

To save changes made in Personal Macro Workbook, we must fulfill the fol-

lowing in the VB window: File > Save PERSONAL.XLSB. At that, the Macr2 

macro, which is a part of file PERSONAL.XLSB, is saved on the hard disk of 

the computer. 

Macro Macr2, used as macro Macr1, has the following advantages: 

 macro Macr2 can be used in all Excel workbooks that are in folder 

c:\Users\usr; 

 the number of the macro runs is not limited because the M array is absent 

in the macro code. 
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Fig. 2.27. The VB window with the Macr2 macro  

in the code window of the Module2 module 

 

It is possible to transfer Personal Macro Workbook to other user. For this 

purpose, the PERSONAL.XLSB file should be copied into the appropriate folder 

of this user. Let us consider the location of Personal Macro Workbook on the 

hard disk of the computer. 

The workbooks, which are in the XLSTART folder, are opening automatical-

ly when starting Excel. The full name of this folder follows: 

 
c:\Users\usr\AppData\Roaming\Microsoft\Excel\XLSTART 

 

where usr is the user name. File PERSONAL.XLSB is located in this folder. 

If we want to transfer our Personal Macro Workbook to the user whose name 

is usr2, we must copy the PERSONAL.XLSB file into folder 

 
c:\Users\usr2\AppData\Roaming\Microsoft\Excel\XLSTART 

 

of his computer. 

Note that folder AppData (from “Application Data”) may be hidden in 

Windows Explorer. To make a folder or file visible, we must fulfill the following 

operations: 

1) open the folder containing the hidden folder or file of interest; 

2) Organize > Folder and search options; 
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3) in open window Folder Options, activate tab View; 

4) in list Advanced settings, turn on option Show hidden files, folders, and 

drives; 

5) successively click on buttons Apply and OK. 

To expand the chosen operation mode of Windows Explorer to all folders, we 

must click on button Apply to Folders before clicking on the Apply button. In 

open window Folder Views, we must click on the Yes button. 
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2.15. One more user-defined function of Excel 

 

 

 

 

 
There are value h and two-dimensional numerical array (matrix) A, whose  

elements are in cells of the Excel table. We will consider a user-defined function, 

which returns the number of the A array values exceeding h. 

Let us create an Excel workbook and then open the VB window. Further, let 

us insert a module into Personal Macro Workbook, already created, and then put 

the following text of the user-defined function into the code window of the  

inserted module. 
 

Listing 2.18 
 

Function Func9(massive As Variant, h As Variant) _ 

    As Integer 

1:  Dim k As Integer, i As Integer, j As Integer 

2:  k = 0 

3:  If TypeName(massive) = "Range" Then 

4:      For i = 1 To massive.Rows.Count 

5:          For j = 1 To massive.Columns.Count 

6:              If massive(i, j) > h Then 

7:                  k = k + 1 

8:              End If 

9:          Next j 

10:     Next i 

11:     Func9 = k 

12: Else 

13:     MsgBox "Func9: Argument is not range" 

14: End If 

End Function 

 

The current state of the project is depicted in Fig. 2.28. 

The built-in TypeName function (in line 3) returns its argument’s data  

type as a string. This function is used for verifying the type of input parameter 

massive. In the correct call of the Func9 function, the massive variable has 

the Range type. 
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Fig. 2.28. The VB window with text of the Func9 function in the code window 

 

In line 4, the quantity of rows in the massive range is the result of return-

ing property massive.Rows.Count. In line 5, the quantity of columns is the 

result of returning property massive.Columns.Count. 

In line 6, massive(i, j) is the reference to the corresponding cell of the 

massive range. 

The Func9 function is used as follows. 

1. Enter values of matrix A, for example, into range D5:E8 on worksheet 

Sheet4. 

2. Assign a name, for example Test9, to the D5:E8 range. For this purpose: 

1) select this range, and fulfill Formulas > Define Name in area Defined 

Names; 

2) in the open New Name window, type Test9 in text box Name; 

3) enter Sheet4 into box Scope by means of the drop-down list (Fig. 2.29); 

4) click on the OK button. 

3. Enter formula 

 
=PERSONAL.XLSB!Func9(Test9;2) 

 

into any cell on worksheet Sheet4, for example, E11. 
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In the above formula, an exclamation mark means that the Func9 function is 

a part of file PERSONAL.XLSB. 

4. Click on the tick button of the Excel formula bar. 

 

 
 

Fig. 2.29. The New Name window with automatically filled box Refers to 

 

The resulting number of values in the D5:E8 cells exceeding 2 appears in the 

E11 cell (Fig. 2.30). 

Below is the second way of using the Func9 function, without assigning  

a name to the range with the A array. 

Let us use Function Wizard as follows: 

1) select a cell for the result, for example, Sheet4!E11; 

2) click on the fx button of the Excel formula bar to start Function Wizard; 

3) in the User Defined category of the open Insert Function window, high-

light the line corresponding to the Func9 function (Fig. 2.31), and click on the 

OK button; 

4) in the open Function Arguments window (Fig. 2.32), enter: 

 the source range (for example, D5:E8 on the Sheet4 worksheet) into the 

first text box; 

 the h value, for example 2, into the second text box; 

5) click on the OK button. 

We see the former result: five values exceed h = 2 (Fig. 2.30). 

Note that cell E11 and range D5:E8 may be on one or different worksheets of 

the same Excel workbook. 
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Fig. 2.30. The source data and calculation result in the Excel window 

 

 
 

Fig. 2.31. The first window of Function Wizard 
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Fig. 2.32. The second window of Function Wizard 

 

We advise the reader to calculate the values of function )(xf  from Appen-

dix 4 and also of functions )()( xfxxg  and )()( 2 xfxxh  at not less than 10 

points of segment ],[ ba , including a and b, in the following ways: 

 creating a macro by means of Excel Macro Recorder; 

 programming an Excel user-defined function in VBA; 

 programming a macro in VBA. 

Use the Excel tools to create the graphs of functions )(xf , )(xg  and )(xh . 
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2.16. Digression. Change of Excel options 

 

 

 

 

 
In the next four chapters of the book, languages VB and VBA will be used 

for programming numerical methods. Besides, we will consider the Excel proce-

dures, which are a part of the add-ins, for solving some of our tasks. 

For installing the necessary Excel add-ins, let us fulfill the following opera-

tions: 

1) File > Options > Add-Ins; 

2) enter Excel Add-ins into the Manage box by means of the drop-down list, 

and click on the Go button; 

3) in the open Add-Ins window, turn on options Analysis ToolPak and Solver 

Add-in, and click on the OK button. 

As a result, the Data Analysis and Solver commands appears in Excel Rib-

bon — on the Data tab, in the Analysis area. 

We will need to tune Excel so that formulas are displayed in cells, instead of 

results of calculations according to these formulas. For this purpose, we must 

fulfill the following operations: 

1) File > Options > Advanced; 

2) turn on option Show formulas in cells instead of their calculated results 

located below box Display options for this worksheet; 

3) click on the OK button. 

In this way, we change the contents of the cells with formulas on the work-

sheet specified in box Display options for this worksheet. The contents of the 

cells without formulas do not change. 

Upon turning off option Show formulas in cells instead of their calculated  

results, the worksheet returns to the customary form, with values in the cells. 

We will also need a workbook with the module for programs, realizing  

numerical methods. To obtain it, let us fulfill the following: 

1) open a blank workbook, and insert the Module1 module into it; 

2) put text 

 
Sub main() 

 

End Sub 
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into the code window of this module; 

3) in the VB window, fulfill File > Save; 

4) in the open Save As window, choose the c:\Users\usr folder familiar to us 

(usr is the user name); 

5) enter the workbook name, BookNM, into text box File name (NM is the 

abbreviation of “numerical methods”); 

6) set file type Excel Macro-Enabled Workbook by using the drop-down list; 

7) click on the Save button; 

8) close the VB and Excel windows. 

We will enter texts of programs by name main into the Module1 module. 

Upon termination of work with the BookNM workbook, we will always save it. 
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Chapter 3. 

Finite Difference Method  

for Solving Differential Equations 

 

 
Two kinds of conditions on the solution of the second-order linear differen-

tial equation are reviewed, namely, the boundary and periodicity conditions.  

Replacing the derivatives by their finite difference analogs, we obtain the  

so-called finite difference schemes — systems of linear algebraic equations  

of special form. 

We review several versions of the decomposition method [4] for solving  

the finite difference schemes. The simplest scheme is also solved by the Gaussi-

an elimination method. The question of stability of these two methods is investi-

gated in respect of not increasing the computing error during solving this 

scheme. 

The finite difference method for solving the linear differential equation is 

used for solving the nonlinear differential equation by the quasilinearization 

method. For demonstration of the finite difference method’s possibilities,  

we develop subroutines and programs for solving mathematical and applied 

problems. We use the Excel scatter diagrams for visualization of calculation  

results. 
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3.1. Finite difference analogs  

of derivatives for a uniform grid 
 

 

 

 
Let us introduce an increasing sequence of points, 

k
x  < 

1k
x  < 

2k
x  < ... < 

2r
x  < 

1r
x  < 

r
x , 

on segment a ≤ x ≤ b, at that, ax
k

, bx
r

. In other words, segment ],[ ba  is 

covered with a grid whose nodes have coordinates 
k

x , 
1k

x , 
2k

x , ..., 
2r

x , 

1r
x , 

r
x . 

For simplicity, we will consider that the grid is uniform, i.e., the grid step, 

hxx
ii 1

, does not depend on i, k + 1 ≤ i ≤ r (later, we will consider  

a nonuniform grid). 

In addition to this grid (Fig. 3.1), called the main grid, we will use the so-

called auxiliary grid with the following nodes: 

2/)(
1][ kkk

xxx , 2/)(
21]1[ kkk

xxx , ..., 2/)(
1]1[ iii

xxx ,  

2/)(
1][ iii

xxx , ..., 2/)(
12]2[ rrr

xxx , 2/)(
1]1[ rrr

xxx .  

As we see, numbers (indices) of the auxiliary grid nodes are in square brackets. 

 

 
 

Fig. 3.1. Grids on segment ],[ ba : main — indices without brackets;  

auxiliary — indices in square brackets 

 

Let 
k

u , 
][k

u , 
1k

u , 
]1[k

u , 
2k

u , ..., 
1i

u , 
]1[i

u , 
i

u , 
][i

u , 
1i

u , ..., 

2r
u , 

]2[r
u , 

1r
u , 

]1[r
u , 

r
u  be the )(xu  function values at the corre-

sponding nodes of the main and auxiliary grids. 

A function, set on a grid, is called a grid function or a function in tabular 

form (tabular function). An example of such function is )(xu  considered above. 



3.1. Finite difference analogs of derivatives for a uniform grid 

197 

We will come across grids and grid functions more than once. 

Let us assume that function )(xu  is continuous in segment ],[ ba , has con-

tinuous derivatives of 1m  orders, and the m-th derivative exists, in other 

words, function )(xu  is differentiable m times. At that, in a neighborhood of any 

interior point x of ],[ ba , we can use Taylor’s formula [3] in the following form: 

...)(
!3

)(
!2

)(
!1

)()(
3

33

2

22

x
dx

ud
x

dx

ud
x

dx

du
xuxu  

)()(
)!1( 1

11
m

m

mm

Ox
dx

ud

m
.                                (3.1) 

The O notation, )( mO , has the following sense (for natural m). 

If ε is a small quantity, as in (3.1), )( mO  means the quantity whose absolute 

value is less or equal to || mC , where C is a positive constant, i.e., C is inde-

pendent of ε. In this case, )( mO  is called the quantity of m-th order of small-

ness or the quantity of m -th order. 

If Ε is a large positive quantity, )( mΕO  means the positive quantity whose 

value tends to 
mCΕ  when Ε , C is a positive constant. 

If the grid step, h, is a small quantity, we have the following chain of equali-

ties according to formula (3.1): 
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Similarly, we can obtain two more expressions for the first derivative of the 

)(xu  function: 
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)()( 21
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x

dx
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i
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x

dx

du ii

i
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Using formulas (3.2) and (3.3), we can also obtain an expression for the  

second derivative of )(xu  as follows: 
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.    (3.5) 

After neglecting summands )( 2hO  in (3.2), (3.4) and (3.5), we have finite 

difference analogs of the first two derivatives of the )(xu  function at point 
i

x . 
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3.2. Finite difference scheme for the linear  

differential equation. The decomposition method 
 

 

 

 
Let us consider the following second-order linear differential equation of 

general form on segment ],[ ba : 

)()()(
2

2

xfuxe
dx

du
xg

dx

ud
,                               (3.6) 

where )(xg , )(xe  and )(xf  are given functions, )(xu  is an unknown function. 

For uniqueness of the solution of this equation, we use the following left and 

right boundary conditions: 

AauAauA )()(
10

,                                      (3.7) 

BbuBbuB )()(
10

,                                      (3.8) 

where A  and B  are given parameters, 1
00

BA , 0
11

BA  to begin with. 

Let us consider a method for solving this boundary value problem, based on 

replacing the derivatives by their finite difference analogs, 

h
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i 2
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dx
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These expressions follow from (3.4) and (3.5) if we neglect the summands of 

second order of smallness, )( 2hO . 

Let 
i

x  be an internal node of the main grid (Fig. 3.1), i.e., node 
i

x  does not 

coincide with points a and b. Equation (3.6) at this node looks like 

)()()()()()(
2

2

iiiiii
xfxuxex

dx

du
xgx

dx

ud
. 

Multiplying both sides of this equality by 2h  and substituting the finite differ-

ence analogs of the derivatives, we get the following linear algebraic equation: 

iiiiiii
uuu

11
,                                  (3.9) 

where 
1i

u , 
i

u , 
1i

u  are unknown variables, i = k + 1, k + 2, ..., r – 2, r – 1, 
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hg
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, 
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5.01 ,                                          (3.10) 
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In the last four expressions, 
i

g , 
i

e  and 
i

f  are the values of the coefficients 

and right-hand side of equation (3.6) at node 
i

x : )(
ii

xgg , )(
ii

xee , 

)(
ii

xff , i = k + 1, k + 2, ..., r – 2, r – 1. 

Boundary conditions (3.7) and (3.8) can be written as follows: 
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1
,                                      (3.11) 

rrrrr
uu

1
,                                       (3.12) 

where 2
rk

, 0
rk

, A
k

2 , B
r

2 . 

The system of linear algebraic equations (3.9), (3.11) and (3.12) is called the 

finite difference scheme for boundary value problem (3.6) — (3.8). More pre-

cisely, this system is called the one-dimensional finite difference scheme because 

it corresponds to the problem with one spatial coordinate. 

Using the definitions of matrix multiplication and equality (Section 1.21), we 

can write scheme (3.9), (3.11), (3.12) as the following matrix equation: 

rr

rrr

rrr

kkk

kkk

kk

00...0000

0...0000

0...0000

.........

0000...0

0000...0

0000...00

111

222

222

111

 

.......

1

2

2

1

1

2

2

1

r

r

r

k

k

k

r

r

r

k

k

k

u

u

u

u

u

u
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The coefficient (system) matrix, which is a part of this matrix equation, has 

the so-called tridiagonal form: nonzero elements are only on the main diagonal, 

the first “diagonal” below this and the first “diagonal” above the main diagonal. 

Finite difference scheme (3.9), (3.11), (3.12) is usually solved by the decom-

position method [4] whose main advantage is its efficiency in comparison with 

other methods for solving this system of linear algebraic equations: 

 for calculating the values of the 1krn  unknowns (
k

u , 
1k

u , 

2k
u , ..., 

2r
u , 

1r
u , 

r
u ) by the decomposition method, )(nO  arithmetic 

operations must be performed (p. 203); 

 the solution of the system of equations (3.9), (3.11) and (3.12) by the 

Gaussian elimination method (Sections 3.9 and 3.10) requires )( 3nO  arithmetic 

operations (p. 227). 

The decomposition method includes two stages, which are called the forward 

and backward sweeps. To obtain formulas for the sweeps, let us connect the  

unknowns, 
1i

u  and 
i

u , through formula 

iiii
QuPu

1
,                                         (3.13) 

where 
i

P , 
i

Q  are the auxiliary unknowns, i = r, r – 1, ..., k + 1. 

After substituting the last expression into equation (3.9), we obtain 

iii

iii

i

iii

i

i P

Q
u

P
u

1
 

or 

111 iiii
QuPu , 

where 
1i

P  and 
1i

Q  are determined by the following recurrence formulas: 

iii

i

i P
P

1
,                                      (3.14) 

iii

iii

i P

Q
Q

1
.                                        (3.15) 

 

According to the last two formulas, if the values of 
1k

P , 
1k

Q  are known, 

the use of these formulas at i = k + 1, k + 2, ..., r – 1 gives the values of 
2k

P , 

2k
Q , 

3k
P , 

3k
Q , ..., 

r
P , 

r
Q . 

The values of 
1k

P , 
1k

Q  are determined by formulas 
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k

k

k
P

1
,                                             (3.16) 

k

k

k
Q

1
,                                              (3.17) 

 

which follow from left boundary condition (3.11). 

The recurrence calculation of unknown 
i

P , 
i

Q  using formulas (3.16), (3.17) 

and (3.14), (3.15) is called the forward sweep. 

Knowing the values of 
r

u , 
i

P , 
i

Q  (k + 1 ≤ i ≤ r), we can calculate unknown 

1r
u , 

2r
u , ..., 

k
u  using recurrence formula (3.13). 

For determining the value of 
r

u , let us consider the following system of two 

linear algebraic equations with unknown 
1r

u  and 
r

u : 

rrrrr
uu

1
, 

rrrr
QuPu

1
. 

 

The first equation is right boundary condition (3.12); the second equation is 

(3.13) at i = r. Let us solve this system for 
1r

u  and 
r

u  by means of Cramer’s 

rule [3]. 

The determinant of the system looks like 

r

rr

P
D

1
. 

The following determinants are obtained from D by replacing the first and  

second columns by the column of the right-hand sides: 

rr

rr

PQ
D

1
,   

r

rr

Q
D

12
. 

According to Cramer’s rule, we have 

rrr

rrrr

r P

QP

D

D
u 1

1
, 

rrr

rrr

r P

Q

D

D
u 2 .                                     (3.18) 

The recurrence calculation of unknown 
i

u  using formulas (3.18) and (3.13) 

is called the backward sweep. 
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The use of the forward and backward sweeps gives the values of unknown 

k
u , 

1k
u , 

2k
u , ..., 

2r
u , 

1r
u , 

r
u , i.e., the solution of finite difference 

scheme (3.9), (3.11), (3.12) for linear differential equation (3.6) with boundary 

conditions (3.7) and (3.8). The calculated values of 
k

u , 
1k

u , 
2k

u , ..., 
2r

u , 

1r
u , 

r
u  approximate the exact solution of problem (3.6) — (3.8) at the nodes 

of the main grid on segment ],[ ba . 

A simple analysis of formulas (3.14) and (3.15) of the forward sweep shows 

that it requires )(nO  arithmetic operations, n . A similar analysis of formu-

la (3.13) shows that the backward sweep also requires )(nO  arithmetic opera-

tions. Thus, the solution of finite difference scheme (3.9), (3.11), (3.12) by the 

decomposition method requires )(nO  arithmetic operations. 
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3.3. Sufficient stability conditions  

for the decomposition method 
 

 

 

 
A repeatable algorithm (computing process) is called stable if the error aris-

ing at any step (for example, the rounding-off error) does not increase during the 

computing process. 

The decomposition method includes the forward and backward sweeps. Each 

of these sweeps can be unstable. Let us investigate this question. 

It is easiest to write the sufficient condition of the backward sweep stability, 

i.e., the stability of the calculation process corresponding to recurrence formula 

(3.13). This condition has the following form: 

1
i

P                                                   (3.19) 

for all values of i from k + 1 to r. If this condition is satisfied, then: 

1) small error 
i
 (which is a part of the calculated value of 

i
u ) goes into the 

value of 
1i

u  without increase; 
iii

P
1

 is the come error of 
i
-th order; 

2) because the additional error (
1i
 generated when calculating the value 

of 
1i

u ) may be positive or negative with probability 0.5, the total error 

(
1i
 = 

1i
+

1i
) is of 

i
-th order. 

Similarly, the sufficient condition of stability of the calculation according to 

recurrence formula (3.15) of the forward sweep is 
 

1

iii

i

P
                                        (3.20) 

for all values of i from k + 1 to r – 1. If this condition is satisfied, then: 

1) small error 
i
 (which is a part of the calculated value of 

i
Q ) goes into 

the value of 
1i

Q  without increase; 

i
iii

i

i P1
 

is the come error of 
i
-th order; 



3.3. Sufficient stability conditions for the decomposition method 

205 

2) because the additional error (
1i
 generated when calculating the value 

of 
1i

Q ) may be positive or negative with probability 0.5, the total error 

(
1i
 = 

1i
+

1i
) is of 

i
-th order. 

 

Let us show that the simultaneous satisfaction of inequalities (3.19) and 

(3.20) is the sufficient condition of stability of the calculation according to recur-

rence formula (3.14) of the forward sweep. 

Let 
i
 be a small error in the calculated value of 

i
P . Using formula (3.14) 

and expansion ...1)1/(1 32 xxxx  from table “Important Series  
 

Expansions” [3], we have the following chain of equalities: 

)/(1

1

)(11
iiiiiiii

i

iiii

i

ii PPP
P  

)(1 2

1 ii

iii

i

i
O

P
P )( 2

11 ii
iii

i

ii
O

P
PP . 

 

By comparing the beginning and end of this chain, we obtain 

i
iii

i

ii P
P

11
.                                 (3.21) 

If inequality (3.19), which looks like 1
1i

P , and inequality (3.20) are  

satisfied, then 

1
1

iii

i

i P
P . 

According to (3.21) and the last inequality, we can state the following: 

1) small error 
i
 (which is a part of the calculated value of 

i
P ) goes into the 

value of 
1i

P  without increase; the come error, 
1i

, is defined by formula 

(3.21), i.e., 
1i

 is of 
i
-th order; 

2) because the additional error (
1i
 generated when calculating the value 

of 
1i

P ) may be positive or negative with probability 0.5, the total error 

(
1i
 = 

1i
+

1i
) is of 

i
-th order. 

 

That is, the algorithm of the calculation according to formula (3.14) is stable. 
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Thus, the simultaneous satisfaction of inequalities (3.19) and (3.20) for all 

values of i is enough for stability of the forward and backward sweeps, i.e., of 

the decomposition method in general. 

By means of conditions (3.19) and (3.20), we will obtain other stability con-

ditions of the decomposition method, which are more convenient to use. 

Let us assume that 
 

10
1k

P                                              (3.22) 

and inequalities 

ii
,   

iii
,                                   (3.23) 

0
i

                                                  (3.24) 

are simultaneously satisfied for all values of i. Then inequalities (3.19) and 

(3.20) are satisfied for all values of i, i.e., the decomposition method is stable. 

To prove the last assertion, we transform formula (3.14) as follows: 

ii

i

iiiiii

i

iii

i

i PP
P

)1()(1
, 

 

where )1()(
iiiiii

P . 

Similarly, we obtain the following expression for a part of formula (3.15): 

ii

i

iii

i

P
. 

If 10
i

P , inequality 01
i

P  is satisfied. Then (3.23) and (3.24) result 

in 0
i

 and 

10
1i

P ,                                            (3.25) 

10

iii

i

P
.                                       (3.26) 

According to (3.22), inequalities (3.25) and (3.26) are satisfied for i = k + 1, 

k + 2, ..., r – 1. As the consequence of this, inequalities (3.19) and (3.20) are satis-

fied for all values of i, i.e., the decomposition method is stable. 

We proved that conditions (3.22) — (3.24), as well as conditions (3.19) and 

(3.20), are the sufficient stability conditions for the decomposition method. 

Because coefficients 
i
, 

i
 and 

i
 are defined by expressions (3.10), the 

consequence of the obtained stability conditions is the unconditional stability of 

the decomposition method for solving boundary value problem (3.6) — (3.8), for 

which the following conditions are satisfied: 
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1) 0)(xg  for all values of x from a to b, i.e., equation (3.6) looks like 

)()(
2

2

xfuxe

dx

ud
; 

 

2) 0)(xe  for all values of x; 

3) left boundary condition (3.7) is such that 10
1k

P . 

The unconditional stability means the stability for arbitrary step h of the grid. 
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3.4. Simplification of the second-order  

linear differential equation 

 

 

 

 
Thanks to the unconditional stability of solving the last boundary value prob-

lem (formulated at the end of the previous section), the substitution into equation 

(3.6), which excludes the first derivative of )(xu , is of interest. We will show 

that such substitution looks like 

x

a

dyygxUxu )(5.0exp)()( .                            (3.27) 

The exponential function (Appendix 3) is figured in this expression. 

Let us differentiate function (3.27) twice. Using the basic rules of differentia-

tion [3], we obtain 

x

a

dyyggU
dx

dU

dx

du
)(5.0exp5.0 ,                    (3.28) 

x

a

dyygUgg
dx

dU
g

dx

Ud

dx

ud
)(5.0exp)5.025.0(

2

2

2

2

2

.  (3.29) 

By substituting expressions (3.27) — (3.29) into equation (3.6), we obtain the 

following equation without the first derivative of unknown function )(xU : 

)()(
2

2

xFUxE

dx

Ud
,                                     (3.30) 

where 

)(5.0)(25.0)( 2 xgxgxeE ,                            (3.31) 

x

a

dyygxfF )(5.0exp)( .                                (3.32) 

 

Let expressions (3.27) and (3.28), in which ax , be substituted into condi-

tion (3.7). We obtain the following left boundary condition for )(xU : 
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312
)()( AaUAaUA ,                                    (3.33) 

where 

)(5.0
102

agAAA ,                                      (3.34) 

AA
3

.                                                 (3.35) 

After substituting expressions (3.27) and (3.28), in which bx , into condi-

tion (3.8), we have the following right boundary condition: 

312
)()( BbUBbUB ,                                   (3.36) 

where 

)(5.0
102

bgBBB ,                                     (3.37) 

b

a

dyygBB )(5.0exp
3

.                                 (3.38) 

We will use substitution (3.27) not only in this chapter, but in the next chap-

ter too. 
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3.5. Program realization of the decomposition method 

 

 

 

 

 
For solving equation (3.6) with boundary conditions (3.7) and (3.8) by the 

decomposition method, we insert module Module2 into the BookNM workbook 

(p. 194) and put the following subroutine declaration into this module: 
 

Listing 3.1 
 

Sub fb(ByVal k, ByVal r, ByVal h, ByVal A, ByVal B, _ 

    ByRef G() As Double, ByRef E() As Double, _ 

    ByRef F() As Double, ByRef U() As Double) 

    Const BETAK = -2, GAMMAK = 0 

    Dim DELTAK As Double 

    Const ALPHAR = 0, BETAR = -2 

    Dim DELTAR As Double 

    Dim alpha As Double, beta As Double 

    Dim gamma As Double, delta As Double 

    Dim i As Integer, w As Double 

    Dim P() As Double: ReDim P(k + 1 To r) 

    Dim Q() As Double: ReDim Q(k + 1 To r) 

    DELTAK = -2 * A 

    DELTAR = -2 * B 

'Forward sweep: 

    P(k + 1) = -GAMMAK / BETAK 

    Q(k + 1) = DELTAK / BETAK 

    For i = k + 1 To r - 1 

        w = 0.5 * G(i) * h 

        alpha = 1 - w 

        beta = E(i) * h ^ 2 - 2 

        gamma = 1 + w 

        delta = F(i) * h ^ 2 

        w = alpha * P(i) + beta 

        P(i + 1) = -gamma / w 

        Q(i + 1) = (delta - alpha * Q(i)) / w 

    Next i 

'Backward sweep: 
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    U(r) = (DELTAR - ALPHAR * Q(r)) / _ 

    (ALPHAR * P(r) + BETAR) 

    For i = r To k + 1 Step -1 

        U(i - 1) = P(i) * U(i) + Q(i) 

    Next i 

End Sub 

 

The subroutine name (fb) occurs from “forward-backward”: in the decom-

position method, we use the sweep from left to right (in the direction of the x 

axis) and then from right to left (in the opposite direction). 

If necessary, it is easy to obtain formulas of the “backward-forward” decom-

position method, in which the sweep from right to left is used, and then from left 

to right. 

The fb subroutine parameters have the following sense: 

 k, r are numbers of the left and right boundary nodes of the main grid on 

segment ],[ ba  (Fig. 3.1); 

 h is a grid step, )/()( krabh ; 

 A, B are values of the solution of equation (3.6) on the left and right 

boundaries of segment ],[ ba  according to boundary conditions (3.7) and (3.8); 

 G, E are arrays of values of the coefficients of equation (3.6) at the nodes 

of the main grid; 

 F is an array of values of the right-hand side of equation (3.6); 

 U is an array intended for the solution values. 
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3.6. Examples of using the decomposition method 

 

 

 

 

 
As an example of using the decomposition method, we will solve equation 

032

2

2

uxc
dx

du
x

dx

ud
                                  (3.39) 

 

on segment 0 ≤ x  ≤ b with boundary conditions 

1)0(u ,   0)(bu                                       (3.40) 

for c = 10 and b = 1.5. 

According to Task 3 of the second chapter in book [5], equation (3.39) was 

obtained while studying temperature characteristics of a radial flow between 

parallel round disks. The radial flow is a horizontal movement of liquid, gas or 

plasma from the general center or to the center. 

Equation (3.39) can be written in form (3.6), where 

2)( xxg ,   xcxe 3)( ,   0)(xf . 
 

It is easy to verify that conditions (3.23) and (3.24) are satisfied for all values 

of x from 0 to b if 2/2 bh  = 0.889 (that is, if r – k ≥ 2). Besides, according  

to (3.16) and (3.11), 0
1k

P , i.e., condition (3.22) is satisfied too. Thus, the 

sufficient stability conditions for the decomposition method are satisfied if  

r – k ≥ 2. 

For solving problem (3.39), (3.40), let us consider a program with the follow-

ing source data table. 
 

c 10 

b 1.5 

l 15 

x u 

 

The first three rows of this table contain the values of parameters c and b and 

the number of steps, l = r – k. The bottom row contains titles of the Excel  

columns intended for the solution result, i.e., for the )(xu  function in tabular 

form. 
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Instead of text 

 
Sub main() 

 

End Sub 

 

we enter the following program text into Module1 of the BookNM workbook: 
 

Listing 3.2 
 

Sub main() 

    Dim X() As Double 

    Dim G() As Double 

    Dim E() As Double 

    Dim F() As Double 

    Dim U() As Double 

    Dim c As Double, b As Double, l As Integer 

    Dim h As Double, i As Integer 

    c = Selection.Cells(1, 2) 

    b = Selection.Cells(2, 2) 

    l = Selection.Cells(3, 2) 

    h = b / l 

    ReDim X(5 To 5 + l) 

    ReDim G(5 To 5 + l) 

    ReDim E(5 To 5 + l) 

    ReDim F(5 To 5 + l) 

    ReDim U(5 To 5 + l) 

    For i = 5 To 5 + l 

        X(i) = (i - 5) * h 

1:      G(i) = X(i) ^ 2 

2:      E(i) = -3 * c * X(i) 

3:      F(i) = 0 

    Next i 

4:  Call fb(5, 5 + l, h, 1, 0, G, E, F, U) 

    For i = 5 To 5 + l 

        Selection.Cells(i, 1) = X(i) 

5:      Selection.Cells(i, 2) = U(i) 

    Next i 

End Sub 

 

It was mentioned above that the source data for this program are the values 

located in the Excel table (Fig. 3.2a). We must select this table before the pro-

gram execution (Fig. 3.2b). 
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a 
 

 
 

b 
 

Fig. 3.2. The Excel worksheet (a) before and  

(b) after selection of the source data table 

 

The calculated coordinates of the grid nodes and values of the solution are 

located in columns x and u (Fig. 3.3). For obtaining the )(xu  graph, located on 

the Excel worksheet, we must fulfill the following operations: 

1) select the values of x and u, i.e., the B6:C21 range; 

2) activate the Insert tab; 

3) perform the Insert Scatter command in area Charts; 

4) perform command Scatter with Smooth Lines. 
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Fig. 3.3. The calculated dependence, )(xu , and its graph 

 

By substitution (3.27), 

6
exp)(5.0exp)(

3

0

2 x
xUdyyxUu

x

,                (3.41) 

we can bring boundary value problem (3.39), (3.40) to form (3.30), (3.33), 

(3.36), i.e., 

0])13(25.0[ 4

2

2

Uxcx

dx

Ud
,                           (3.42) 

1)0(U ,   0)(bU .                                    (3.43) 

As we see, derivative dxdU /  is absent in equation (3.42), i.e., the 1st item 

of the conditions on p. 207 is satisfied. The 2nd and 3rd items are also satisfied 

because: 

 the coefficient in front of U is less or equal to zero when x ≥ 0; 

 0
1k

P  according to (3.16) and (3.11). 

Thus, the decomposition method is unconditionally stable for solving boundary 

value problem (3.42), (3.43). 

The following program is used as the previous one. 
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Listing 3.3 
 

Sub main() 

    Dim X() As Double 

    Dim G() As Double 

    Dim E() As Double 

    Dim F() As Double 

    Dim U() As Double 

    Dim c As Double, b As Double, l As Integer 

    Dim h As Double, i As Integer 

    c = Selection.Cells(1, 2) 

    b = Selection.Cells(2, 2) 

    l = Selection.Cells(3, 2) 

    h = b / l 

    ReDim X(5 To 5 + l) 

    ReDim G(5 To 5 + l) 

    ReDim E(5 To 5 + l) 

    ReDim F(5 To 5 + l) 

    ReDim U(5 To 5 + l) 

    For i = 5 To 5 + l 

        X(i) = (i - 5) * h 

1:      G(i) = 0 

2:      E(i) = -0.25 * X(i) ^ 4 - (3 * c + 1) * X(i) 

3:      F(i) = 0 

    Next i 

4:  Call fb(5, 5 + l, h, 1, 0, G, E, F, U) 

    For i = 5 To 5 + l 

        Selection.Cells(i, 1) = X(i) 

5:      Selection.Cells(i, 2) = U(i) * _ 

            Exp(-X(i) ^ 3 / 6) 

    Next i 

End Sub 

 

This program solves boundary value problem (3.42), (3.43) and then calcu-

lates the )(xu  dependence by means of formula (3.41). It differs from program 

Listing 3.2 in operators 1, 2 and 5. The result of using program Listing 3.3, the 

)(xu  function in tabular form, is close to the previous result depicted in Fig. 3.3. 

Boundary value problem (3.42), (3.43) will be also used in Section 4.11 to 

demonstrate the cubic spline method for solving the second-order linear differen-

tial equation. 
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3.7. Examples of the computing error.  

Instability and loss of accuracy 

 

 

 

 
The decomposition method usage can lead to an appreciable computing error. 

We will consider this question on an example of equation 

c
dx

du
c

dx

ud

2

2

                                          (3.44) 

on segment 0 ≤ x  ≤ b with boundary conditions 

0)0(u ,   bbu )( .                                     (3.45) 

It is obvious that the solution of this boundary value problem looks like 

xxu )(  for any value of the c constant. 

Equation (3.44) can be written in form (3.6), where 
 

cxfxg )()( , 

0)(xe . 

To solve problem (3.44), (3.45) by the decomposition method, we change 

operators 1 — 4 of program Listing 3.2 to get the following program: 
 

Listing 3.4 
 

Sub main() 

    Dim X() As Double 

    Dim G() As Double 

    Dim E() As Double 

    Dim F() As Double 

    Dim U() As Double 

    Dim c As Double, b As Double, l As Integer 

    Dim h As Double, i As Integer 

    c = Selection.Cells(1, 2) 

    b = Selection.Cells(2, 2) 

    l = Selection.Cells(3, 2) 

    h = b / l 

    ReDim X(5 To 5 + l) 

    ReDim G(5 To 5 + l) 

    ReDim E(5 To 5 + l) 
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    ReDim F(5 To 5 + l) 

    ReDim U(5 To 5 + l) 

    For i = 5 To 5 + l 

        X(i) = (i - 5) * h 

1:      G(i) = c 

2:      E(i) = 0 

3:      F(i) = c 

    Next i 

4:  Call fb(5, 5 + l, h, 0, b, G, E, F, U) 

    For i = 5 To 5 + l 

        Selection.Cells(i, 1) = X(i) 

5:      Selection.Cells(i, 2) = U(i) 

    Next i 

End Sub 

 

This program is used as the programs of the previous section. In Fig. 3.4, we 

see the execution results for three values of c, equal to 10, 10
17

 and 10
18

. 

For problem (3.44), (3.45), it is easy to make sure that conditions (3.22) and 

(3.23) are satisfied for any positive values of c and h. 
 

For h = b / l = 0.1, we can state the following about 

cchhg
ii

05.015.015.01 , 

condition (3.24) and the stability with respect to the computing error: 

 for c = 10, the value of 
i
 is positive, i.e., condition (3.24) is satisfied, 

therefore, the decomposition method is stable; 

 for c = 10
17

 and 10
18

, the value of 
i
 is negative, i.e., condition (3.24)  

is not satisfied, therefore, the decomposition method can be either stable or  

unstable. 

The sign change of 
i
 occurs at c = 20. 

According to Fig. 3.4a and 3.4b, an appreciable deviation of the calculated 

)(xu  dependence from the exact )(xu  dependence, xxu )( , appears at value 

c = 10
17

, which exceeds value c = 20 by several orders of magnitude. It follows 

from the fact that sufficient stability conditions (3.22) — (3.24) are not neces-

sary, i.e., the process of solving the finite difference scheme for boundary value 

problem (3.6) — (3.8) by the decomposition method may remain stable with 

respect to the computing error if not all conditions from (3.22) — (3.24) are  

satisfied. 

According to Fig. 3.4c, the computing error of the solution can exceed 100 % 

for large values of c. 

Let us use substitution (3.27) for solving problem (3.44), (3.45). 
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a 
 

 
 

b 
 

 
 

c 
 

Fig. 3.4. Graphic results of solving problem (3.44), (3.45) by program Listing 3.4 

for b = 1.5, l = 15 and the following values of c: 10 (a), 10
17

 (b), 10
18

 (c) 
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Substitution 

x

a

dyygxUu )(5.0exp)(  

)5.0exp()(5.0exp)(

0

cxxUcdyxU

x

                   (3.46) 

into (3.44), (3.45) gives the following equation and boundary conditions: 

)5.0exp(25.0 2

2

2

cxcUc

dx

Ud
,                             (3.47) 

0)0(U ,   )5.0exp()( cbbbU .                           (3.48) 

For boundary value problem (3.47), (3.48), it is easy to make sure that all the 

conditions, formulated on p. 207, are satisfied when x ≥ 0, i.e., the decomposition 

method is unconditionally stable. 

The following program is used as the previous one. 
 

Listing 3.5 
 

Sub main() 

    Dim X() As Double 

    Dim G() As Double 

    Dim E() As Double 

    Dim F() As Double 

    Dim U() As Double 

    Dim c As Double, b As Double, l As Integer 

    Dim h As Double, i As Integer 

    c = Selection.Cells(1, 2) 

    b = Selection.Cells(2, 2) 

    l = Selection.Cells(3, 2) 

    h = b / l 

    ReDim X(5 To 5 + l) 

    ReDim G(5 To 5 + l) 

    ReDim E(5 To 5 + l) 

    ReDim F(5 To 5 + l) 

    ReDim U(5 To 5 + l) 

    For i = 5 To 5 + l 

        X(i) = (i - 5) * h 

1:      G(i) = 0 

2:      E(i) = -0.25 * c ^ 2 

3:      F(i) = c * Exp(0.5 * c * X(i)) 
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    Next i 

4:  Call fb(5, 5 + l, h, 0, b * Exp(0.5 * c * b), _ 

    G, E, F, U) 

    For i = 5 To 5 + l 

        Selection.Cells(i, 1) = X(i) 

5:      Selection.Cells(i, 2) = U(i) * _ 

            Exp(-0.5 * c * X(i)) 

    Next i 

End Sub 

 

Program Listing 3.5 solves boundary value problem (3.47), (3.48) and then 

calculates the )(xu  dependence by means of formula (3.46). This program dif-

fers from Listing 3.4 in operators 1 — 5. 

Fig. 3.5 shows the results of using program Listing 3.5 at c = 10 and 20.  

Unlike program Listing 3.4, program Listing 3.5 was not used at c = 10
17

 and 

10
18

 because of exceeding 709.782712893 by the argument of the exponential 

function in operator 3. In other words, according to Fig. 3.6, the stop of the exe-

cution of program Listing 3.5 would occur at c = 10
17

 and 10
18

 with the follow-

ing information: Run-time error ‘6’: Overflow. 

 

 
 

Fig. 3.5. Graphic results of using program Listing 3.5:  

the continuous line — c = 10, l = 15;  

the dashed line — c = 10, l = 30;  

the dash-dotted line — c = 20, l = 15 

 

According to the continuous and dashed lines in Fig. 3.5, we must reduce the 

number of steps on segment ],0[ b  for improving the accuracy. According to the 

dash-dotted line, the accuracy may be lost even when the computing process is 

stable with respect to the computing error. We will speak about measures against 

loss of accuracy also in section “Instead of Conclusions”. 
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Fig. 3.6. The Excel Help window with the Exp function description 

 

It is natural to ask about the existence of a method for solving the finite dif-

ference scheme for boundary value problem (3.6) — (3.8), which is more stable 

with respect to the computing error than the decomposition method used by us. 

Before answering this question, we will consider several methods for solving the 

system of linear algebraic equations of general form. 
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3.8. Solving the system of linear algebraic  

equations by using Excel functions 

 

 

 

 
We should solve the system of linear algebraic equations 

 

nnnnnn

nn

nn

fxaxaxa

fxaxaxa

fxaxaxa

...

.........

,...

,...

2211

22222121

11212111

                  (3.49) 

 

with coefficient (system) matrix 
 

nnnn

n

n

aaa

aaa

aaa

...

....

...

...

21

22221

11211

A                                   (3.50) 

 

of general form: any element 
ij

a  can be either zero or nonzero. 

According to the definitions of matrix multiplication and equality, given in 

Section 1.21, system (3.49) can be written as matrix equation 

fAx ,                                                (3.51) 

where f is the vector of the right-hand sides, x is the vector of the unknown vari-

ables: 
 

n
f

f

f

...
2

1

f ,   

n
x

x

x

...
2

1

x . 

 

System (3.49) or, which is the same, matrix equation (3.51) can be solved by 

means of Excel, without programming in VBA. Let us consider two methods of 

the solution. 

1. The solution of equation (3.51) can be written as x = A
-1

f, where A
-1

 is the 

inverse A matrix (Section 1.21). 
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The A
-1

 matrix can be calculated by means of the built-in MINVERSE  

function. The subsequent multiplication of the A
-1

 matrix and the f vector can be 

performed by means of the built-in MMULT function. Functions MINVERSE 

and MMULT return an array, as well as built-in function TRANSPOSE and  

user-defined function TRANSPOSEA developed by us (Section 2.3). 

The drawback of this method for solving matrix equation (3.51) is its ineffi-

ciency (with respect to the execution time) for large values of n because the  

matrix inversion is essentially the solution of the following n matrix equations: 

1fxAT , 2fxAT , ..., nfxAT , 

where TA  is the transposed A  matrix, 
 

0

...

0

1

1f , 

0

...

1

0

2f , ..., 

1

...

0

0

nf . 

Indeed, if 

1

1

2

1

1

1

...

n
x

x

x

x , 

2

2

2

2

1

2

...

n
x

x

x

x , ..., 

n

n

n

n

n

x

x

x

...
2

1

x  

 

are the solutions of the above n matrix equations and 
 

n

n

nn

n

n

xxx

xxx

xxx

...

....

...

...

21

22

2

2

1

11

2

1

1

B ,                                   (3.52) 

 

it is easy to make sure that BA = E, where E is the unit matrix, that is, B = A
-1

. 

2. Matrix equation (3.51) can be solved by Cramer’s rule [3], which is  

reduced to computation of n + 1 determinants of n-th order, D, D
1
, D

2
, ...., D

n
. 

These determinants are calculated by using the MDETERM function. For large 

values of n, this method is even less efficient than the previous one. 

Many numerical methods need the solution of system (3.49) or matrix equa-

tion (3.51). For this purpose, let us develop two subroutines: the first subroutine 

realizes the classical Gaussian elimination method; the second one realizes  

a modernization of this method. 
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3.9. Solving the system of linear algebraic equations  

by the Gaussian elimination method 

 

 

 

 
In a summary, the classical Gaussian elimination method can be described as 

follows. 

Using the first equation of the system of n equations (3.49), the 
1

x  unknown 

is eliminated from the remaining 1n  equations. Further, by means of the 2nd 

equation of the resulting system (of n equations), 
2

x  is eliminated from the next 

2n  equations. By using the 3rd equation of the new system (of n equations), 

3
x  is eliminated from the next 3n  equations. And so on, until we get the 

equation determining the 
n

x  unknown. In the last turn, the remaining 1n  un-

knowns are calculated in the reverse sequence: 
1n

x , 
2n

x , ..., 
1

x . To do this, 

the already calculated unknowns are substituted into the equations, starting with 

the penultimate equation. 

In more details, the Gaussian elimination method includes two stages, which 

are called the forward and backward courses. The forward course consists in the 

transformation of matrix equation (3.51) to equation 
 

gBx                                                  (3.53) 

with matrix 

1...00

....

...10

...1

2

112

n

n

b

bb

B                                     (3.54) 

called an upper triangular matrix because nonzero elements are on the main  

diagonal and above it. The backward course is the solution of matrix equation 

(3.53) relative to the x vector of the unknowns. 

Let us consider the forward course of the Gaussian elimination method. 

We assume that the 
11

a  coefficient is nonzero. In this case, when dividing 

both sides of the 1st equation of system (3.49) by this coefficient, we obtain 

equation 
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112121
... gxbxbx

nn
,                      (3.55) 

where 

11

1

1 a

a
b

j

j
, 

11

1

1 a

f
g , j = 2, ..., n. The last equation is the result of the first 

step of the forward course. 

Let us multiply both sides of (3.55) by 
21

a  and subtract the resulting equa-

tion from the 2nd equation of system (3.49). We obtain an equation without 
1

x . 

Let us multiply both sides of (3.55) by 
31

a  and subtract the resulting equation 

from the 3rd equation of system (3.49). We obtain one more equation without 

1
x , and so on. 

Let us multiply both sides of (3.55) by 
1n

a  and subtract the resulting equation 

from the n-th equation of system (3.49). 

The result is the following system of linear algebraic equations without 
1

x : 

,...

.......

,...

]2[]2[

2

]2[

2

]2[

2

]2[

22

]2[

22

nnnnn

nn

fxaxa

fxaxa

                         (3.56) 

where 
jiijij

baaa
11

]2[ , 
11

]2[ gaff
iii

, i = 2, ..., n, j = 2, ..., n. The index in 

square brackets is the number of the current step of the forward course. 

Let us assume that the ]2[

22
a  coefficient is nonzero. Dividing both sides of the 

1st equation of system (3.56) by this coefficient, we obtain equation 

223232
... gxbxbx

nn
,                      (3.57) 

where 
]2[

22

]2[

2

2

a

a
b

j

j
, 

]2[

22

]2[

2

2

a

f
g , j = 3, ..., n. The last equation is the result of the 

second step of the forward course. 

To eliminate 
2

x , we fulfill the same operations with equation (3.57) and sys-

tem (3.56) that we previously fulfilled with equation (3.55) and system (3.49). 

Equation 

nn
gx ,                                             (3.58) 

where ][][ / n

nn

n

nn
afg , is the result of the n-th step of the forward course. 
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Equations (3.55), (3.57) and (3.58) give the following system of linear alge-

braic equations: 

.

.....

,...

,...

222

112121

nn

nn

nn

gx

gxbx

gxbxbx

                    (3.59) 

This system is the result of the forward course of the Gaussian elimination 

method. We can write (3.59) in the form of matrix equation (3.53) with upper 

triangular matrix (3.54). 

The backward course consists in the determination of the unknown variables 

by solving system (3.59). The following expressions are used: 

1) according to the ultimate equation, 

nn
gx ; 

2) according to the penultimate equation, 

nnnnn
xbgx

,111
; 

3) according to the (n – 2)th equation, 

nnnnnnnn
xbxbgx

,211,222
, 

and so on. 

An analysis of the forward course of the Gaussian elimination method shows 

that it requires )( 3nO  arithmetic operations, n . Similarly, the backward 

course requires )( 2nO  arithmetic operations. Thus, the solution of the system of 

linear algebraic equations (3.49) by the Gaussian elimination method requires 

)( 3nO  arithmetic operations. 
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3.10. Two subroutines for solving the system  

of linear algebraic equations 

 

 

 

 
Into Module3 of the BookNM workbook, we put the following declaration of 

the gaus subroutine, realizing the classical Gaussian elimination method. 
 

Listing 3.6 
 

Sub gaus(ByVal n, ByRef A() As Double, _ 

    ByRef F() As Double, ByRef X() As Double) 

    Dim i As Integer, j As Integer, k As Integer 

    Dim AA() As Double: ReDim AA(1 To n, 1 To n) 

    Dim FF() As Double: ReDim FF(1 To n) 

    Dim B() As Double: ReDim B(1 To n, 1 To n) 

    Dim G() As Double: ReDim G(1 To n) 

'Forward course: 

    For i = 1 To n 

        For j = 1 To n 

            AA(i, j) = A(i, j) 

        Next j 

        FF(i) = F(i) 

    Next i 

    For k = 1 To n - 1 

        For j = k + 1 To n 

            B(k, j) = AA(k, j) / AA(k, k) 

        Next j 

        G(k) = FF(k) / AA(k, k) 

        'end of step No. k 

        'beginning of step No. k + 1 

        For i = k + 1 To n 

            For j = k + 1 To n 

                AA(i, j) = AA(i, j) - AA(i, k) * _ 

                B(k, j) 

            Next j 

            FF(i) = FF(i) - AA(i, k) * G(k) 

        Next i 
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    Next k 

    G(n) = FF(n) / AA(n, n) 

'Backward course: 

    X(n) = G(n) 

    For k = n - 1 To 1 Step -1 

        X(k) = G(k) 

        For j = k + 1 To n 

            X(k) = X(k) - B(k, j) * X(j) 

        Next j 

    Next k 

End Sub 

 

The gaus subroutine parameters have the following sense: 

 n is the number of the unknowns; 

 A is an array corresponding to matrix (3.50) of matrix equation (3.51); 

 F, X are arrays corresponding to the f and x vectors in (3.51). 

Below, we will consider the program realization of the Gaussian elimination 

method with choice of leading coefficient. 

The leading coefficient is the coefficient, by which the division is performed. 

Thus, at the first step of the classical Gaussian elimination method’s forward 

course, 
11

a  is the leading coefficient; at the second step, ]2[

22
a  is the leading coef-

ficient, and so on. Sometimes, the division is incorrect because the leading coef-

ficient may be very small (in absolute value) or equal to zero. Therefore, the fol-

lowing three modernizations of the Gaussian elimination method are used in 

practice. 

1. At each step of the forward course, permuting the equations is performed 

to get the maximum (in absolute value) element of the first column of the system 

matrix as the leading coefficient. Thus, at the first step, matrix (3.50) of system 

(3.49) is processed; at the second step, matrix 
 

]2[]2[

2

]2[

2

]2[

22

...

...

...

nnn

n

aa

aa

 

 

of system (3.56) is processed, and so on. In this case, we say that the leading 

coefficient is chosen in the column. 

2. Renumbering the unknowns is performed to get the maximum element of 

the first row of the system matrix as the leading coefficient. In this case, we say 

that the leading coefficient is chosen in the row. 
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3. Permuting the equations and renumbering the unknowns are performed  

to get the maximum element of the system matrix as the leading coefficient. That 

is, the whole matrix is considered when choosing the leading coefficient. 

Into Module4 of the BookNM workbook, we enter the following declaration 

of the gauss subroutine, which realizes the Gaussian elimination method with 

choice of leading coefficient in the matrix. 
 

Listing 3.7 
 

Sub gauss(ByVal n, ByRef A() As Double, _ 

    ByRef F() As Double, ByRef X() As Double, _ 

    Optional c = 0, Optional d = 0) 

    Dim i As Integer, j As Integer, k As Integer 

    Dim i_max As Integer, j_max As Integer 

    Dim m As Integer 

    Dim w As Double 

    Dim AA() As Double: ReDim AA(1 To n, 1 To n) 

    Dim FF() As Double: ReDim FF(1 To n) 

    Dim O() As Integer: ReDim O(1 To n) 

    Dim XX() As Double: ReDim XX(1 To n) 

    Dim B() As Double: ReDim B(1 To n, 1 To n) 

    Dim G() As Double: ReDim G(1 To n) 

1:  For j = 1 To n 

2:      O(j) = j 

3:  Next j 

'Forward course: 

4:  w = 0 

5:  For i = 1 To n 

6:      For j = 1 To n 

7:          AA(i, j) = A(c + i, d + j) 

8:          If Abs(AA(i, j)) > w Then 

9:              w = Abs(AA(i, j)) 

10:             i_max = i 

11:             j_max = j 

12:         End If 

13:     Next j 

14:     FF(i) = F(c + i) 

15: Next i 

16: For j = 1 To n 

17:     w = AA(i_max, j) 

18:     AA(i_max, j) = AA(1, j) 
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19:     AA(1, j) = w 

20: Next j 

21: w = FF(i_max) 

22: FF(i_max) = FF(1) 

23: FF(1) = w 

24: For i = 1 To n 

25:     w = AA(i, j_max) 

26:     AA(i, j_max) = AA(i, 1) 

27:     AA(i, 1) = w 

28: Next i 

29: m = O(j_max) 

30: O(j_max) = O(1) 

31: O(1) = m 

    For k = 1 To n - 1 

        For j = k + 1 To n 

            B(k, j) = AA(k, j) / AA(k, k) 

        Next j 

        G(k) = FF(k) / AA(k, k) 

        'end of step No. k 

        'beginning of step No. k + 1 

        w = 0 

        For i = k + 1 To n 

            For j = k + 1 To n 

                AA(i, j) = AA(i, j) - AA(i, k) * _ 

                B(k, j) 

                If Abs(AA(i, j)) > w Then 

                    w = Abs(AA(i, j)) 

                    i_max = i 

                    j_max = j 

                End If 

            Next j 

            FF(i) = FF(i) - AA(i, k) * G(k) 

        Next i 

        For j = k + 1 To n 

            w = AA(i_max, j) 

            AA(i_max, j) = AA(k + 1, j) 

            AA(k + 1, j) = w 

        Next j 

        w = FF(i_max) 

        FF(i_max) = FF(k + 1) 

        FF(k + 1) = w 

        For i = k + 1 To n 
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            w = AA(i, j_max) 

            AA(i, j_max) = AA(i, k + 1) 

            AA(i, k + 1) = w 

        Next i 

        m = O(j_max) 

        O(j_max) = O(k + 1) 

        O(k + 1) = m 

        For i = 1 To k     'permuting columns of 

                           'calculated part of array B 

            w = B(i, j_max) 

            B(i, j_max) = B(i, k + 1) 

            B(i, k + 1) = w 

        Next i 

    Next k 

    G(n) = FF(n) / AA(n, n) 

'Backward course: 

    XX(n) = G(n) 

    For k = n - 1 To 1 Step -1 

        XX(k) = G(k) 

        For j = k + 1 To n 

            XX(k) = XX(k) - B(k, j) * XX(j) 

        Next j 

    Next k 

32: For j = 1 To n 

33:     X(d + O(j)) = XX(j) 

34: Next j 

End Sub 

 

Among parameters of the gauss subroutine, we see optional parameters  

c and d. They are necessary to have the possibility of solving the following  

system of linear algebraic equations with non-traditional (shifted) numbering of 

the system’s elements (matrix rows and columns, right-hand sides and unknown 

variables): 
 

,...

........

,...

,...

,22,11,

2,222,211,2

1,122,111,1

ncndndncddncddnc

cndndcddcddc

cndndcddcddc

fxaxaxa

fxaxaxa

fxaxaxa

 

where c and d are given integers. Such numbering is used in code Listing 6.15 

(see operator 8 corresponding to n = c = d = 2). 
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The presence of optional parameters is one of distinctions of the gauss sub-

routine from the previous gaus. 

Let us briefly consider the gauss subroutine. 

Listing 3.7 includes the O array of original serial numbers of the unknown 

variables. This array is necessary for recovery of the unknowns’ numbering, 

which changes during the solution of system (3.49). The j-th element of the O 

array is the original number ( but not shifted by d ) of the j-th unknown variable. 

Operators 1 — 3 prepare array O for the subsequent transformation. 

Operators 4 — 15: 

1) determine elements of the AA array corresponding to matrix (3.50) of the 

system of linear algebraic equations (operator 7); 

2) find the maximum (in absolute value) element of the AA array; its serial 

numbers in the vertical and horizontal directions are respectively assigned to 

variables i_max and j_max (operators 8 — 12); 

3) determine elements of the FF array corresponding to the f vector of the 

right-hand sides of the system of linear algebraic equations (operator 14). 

Operators 16 — 20 interchange the 1st and i_max-th rows of the AA array, 

and operators 21 — 23 interchange the 1st and i_max-th elements of the FF 

array. It is equivalent to permuting the equations of system (3.49). 

Operators 24 — 28 interchange the 1st and j_max-th columns of the AA  

array, and operators 29 — 31 interchange the 1st and j_max-th elements of the 

O array. It is equivalent to changing the numbering of the unknowns. 

Thus, because of executing operators 16 — 31, the maximum element of the 

AA array appears in the top left corner of AA. Further, the divisions by this ele-

ment are performed (at the beginning of the k cycle at k = 1). The first step of 

the forward course terminates on it. 

In the subsequent steps of the forward course: 

1) the elements of arrays AA and FF are calculated; 

2) during calculation of the AA array values, the maximum element of the 

AA array is determined; its serial numbers in the vertical and horizontal direc-

tions are determined too; 

3) arrays AA, FF and O are transformed; 

4) the columns of the already calculated part of the B array, corresponding to 

the B matrix of system (3.59), are permuted because of the unknowns’ renum-

bering; 

5) the divisions by the maximum element of the AA array are performed (at 

the beginning of the k cycle at the next value of k). 

After the considered operators of the forward course, obvious operators of the 

backward course follow. 
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The forward and backward courses’ results, contained in the XX array, are the 

calculated values of the unknowns. Operators 32 — 34 determine variables 

1d
x , 

2d
x , ..., 

nd
x  by recovering the original numbering. 

The gauss subroutine usage does not guarantee the solution of the system of 

linear algebraic equations (3.49) because in general it may not exist if the D  

determinant of matrix (3.50) is equal to 0: the division by D is performed in 

Cramer’s rule (p. 202). 

The gaus and gauss subroutines allow us to invert the A matrix. For that, 

we must use formula (3.52), where B = A
-1

. 
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3.11. Reduction of the computing error 

 

 

 

 

 
Let us return to solving boundary value problem (3.6) — (3.8). 

The computing error can be reduced if we use the Gaussian elimination 

method with choice of leading coefficient in the matrix for solving finite differ-

ence scheme (3.9), (3.11), (3.12). To verify this, let us put the following program 

into Module1 of the BookNM workbook instead of the program located there. 
 

Listing 3.8 
 

Sub main() 

    Dim X() As Double 

    Dim G() As Double 

    Dim E() As Double 

    Dim F() As Double 

    Dim U() As Double 

    Dim c As Double, b As Double, l As Integer 

    Dim h As Double, i As Integer 

    Dim n As Integer, j As Integer, w As Double 

    Dim AA() As Double 

    Dim FF() As Double 

    Dim XX() As Double 

    c = Selection.Cells(1, 2) 

    b = Selection.Cells(2, 2) 

    l = Selection.Cells(3, 2) 

    h = b / l 

    n = l + 1 

    ReDim X(5 To 5 + l) 

    ReDim G(5 To 5 + l) 

    ReDim E(5 To 5 + l) 

    ReDim F(5 To 5 + l) 

    ReDim U(5 To 5 + l) 

    ReDim AA(1 To n, 1 To n) 

    ReDim FF(1 To n) 

    ReDim XX(1 To n) 

    For i = 5 To 5 + l 
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        X(i) = (i - 5) * h 

1:      G(i) = c 

2:      E(i) = 0 

3:      F(i) = c 

    Next i 

    For i = 1 To n 

        For j = 1 To n 

            AA(i, j) = 0 

        Next j 

    Next i 

    AA(1, 1) = 1: AA(1, 2) = 0: FF(1) = 0 

    For i = 2 To n - 1 

        w = 0.5 * G(i + 4) * h 

        AA(i, i - 1) = 1 - w 

        AA(i, i) = E(i + 4) * h ^ 2 - 2 

        AA(i, i + 1) = 1 + w 

        FF(i) = F(i + 4) * h ^ 2 

    Next i 

    AA(n, n - 1) = 0: AA(n, n) = 1: FF(n) = b 

4:  Call gauss(n, AA, FF, XX) 

    For i = 5 To 5 + l 

        Selection.Cells(i, 1) = X(i) 

        Selection.Cells(i, 2) = XX(i - 4) 

    Next i 

End Sub 

 

This program solves the finite difference scheme corresponding to boundary 

value problem (3.44), (3.45). It is used as program Listing 3.4: the source data 

are the values in the table (Fig. 3.2a), at that, we must select this Excel table  

before the program execution (Fig. 3.2b). 

Operator 4 in the above program is the gauss subroutine call, i.e., finite dif-

ference scheme (3.9), (3.11), (3.12) is solved by the modernized Gaussian elimi-

nation method, with choice of leading coefficient in the matrix. In this case, the 

computing error is not observed even for c = 10
308

 (according to Appendix 1, this 

is almost the maximum value for the Double data type), i.e., the calculation 

result looks like Fig. 3.4a. 

When using the classical Gaussian elimination method (that is, when replac-

ing gauss by gaus in operator 4), the computing error is identical to that  

obtained when using the decomposition method. It is not surprising, because  

the decomposition method, actually, is an efficient version of the classical 

Gaussian elimination method for the system of linear algebraic equations with 

the tridiagonal matrix. 
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In practice, the Gaussian elimination method is not used for the solution  

of finite difference scheme (3.9), (3.11), (3.12) because of its inefficiency  

(with respect to the execution time) for large values of 1krn . 

When c → ∞ in problem (3.44), (3.45), the computing error of the solution 

can be reduced in another way, without usage of the modernized Gaussian elimi-

nation method. 

This alternative method for solving problem (3.44), (3.45) at large values of  

c includes the following two stages: 
 

1) changing formulation of the boundary value problem by excluding the  

second derivative, )(xu , and one of the boundary conditions, 0)0(u  or 

bbu )( ; 

2) solving the resulting boundary value problem for the first-order linear  

differential equation, 

1
dx

du
. 

 

Thus, we should exercise caution in formulation of the problem and in choice 

of the solution method. 
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3.12. Solving the nonlinear differential equation  

by the quasilinearization method 

 

 

 

 
On segment ],[ ba , we will consider the following differential equation: 

dx

du
uxF

dx

ud
,,

2

2

,                                     (3.60) 

 

where ),,( zyxF  is a continuous nonlinear function of variables x, y and z, 

whose first partial derivatives ),,( zyx
y

F
 and ),,( zyx

z

F
 exist and continu-

ous, and the second partial derivatives with respect to y and z exist. Because of 

the function nonlinearity, this equation is called a nonlinear differential equation. 

As in the case of linear differential equation (3.6), the solution of nonlinear 

differential equation (3.60) must satisfy the left and right boundary conditions, 

(3.7) and (3.8). 

In Section 6.10, we will solve the formulated boundary value problem by  

the shooting method. Solving this problem by the quasilinearization method  

considered below is the following iterative process: the boundary value problem 

for a linear differential equation is being solved when calculating the ( 1j )th 

solution approximation over the known j-th approximation. 

An initial approximation of the solution (corresponding to the zero value  

of j ) must be given, and must satisfy boundary conditions (3.7) and (3.8). 

Thus, the solution of the nonlinear problem is reduced to solving a series  

of linear problems. Let us obtain the linear differential equation of the 

quasilinearization method. 

Using Taylor’s formula [3] for functions of two variables, we have 
 

),,( zzyyxF  

F
z

z
y

yzyxF
z

z
y

yzyxF

2

!2

1
),,(

!1

1
),,(  

)(),,(),,(),,( 2Ozyx
z

F
zzyx

y

F
yzyxF ,          (3.61) 
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where y  and z  are increments of the second and third arguments of function 

),,( zyxF , 0  is the maximum of quantities || y  and || z . 

The solution of equation (3.60) can be written in the following form: 
 

)()()( xvxuxu
j

, 

where )(xu
j

 is the known j-th approximation of solution )(xu , )(xv  is a small 

quantity. By substituting this expression into equation (3.60), we obtain 

dx

dv

dx

du
vuxF

dx

vd

dx

ud
j

j

j
,,

2

2

2

2

. 

 

Using expression (3.61) without the summand of second order of smallness, 

we lead the last equation to the following form: 

dx

dv

dx

du
ux

z

F
v

dx

du
ux

y

F

dx

du
uxF

dx

vd

dx

ud
j

j

j

j

j

j

j
,,,,,,

2

2

2

2

 

 

or 

)()()(
2

2

xfvxe
dx

dv
xg

dx

vd
,                              (3.62) 

where 

dx

du
ux

z

F
xg

j

j
,,)( ,                                 (3.63) 

dx

du
ux

y

F
xe

j

j
,,)( ,                                 (3.64) 

2

2

,,)(

dx

ud

dx

du
uxFxf

jj

j
.                             (3.65) 

Let )(
0

xu  be the initial approximation of the solution of nonlinear differen-

tial equation (3.60), satisfying boundary conditions (3.7) and (3.8): 

Aau )(
0

,   Bbu )(
0

.                                   (3.66) 

In the quasilinearization method, the ( 1j )th approximation of the )(xu  solu-

tion ( j = 0, 1, 2, ...) is calculated over the known j-th approximation as follows: 
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1) the values of functions )(xg , )(xe  and )(xf  at the internal nodes of the 

main grid on segment a ≤ x ≤ b (Fig. 3.1) are calculated according to formulas 

(3.63) — (3.65); 

2) second-order linear differential equation (3.62) with zero boundary condi-

tions 0)()( bvav  is solved by the decomposition method; function )(xv  is 

the result; 

3) the ( 1j )th approximation of the )(xu  solution is calculated according 

to formula 

)()()(
1

xvxuxu
jj

. 

The iterative process can be terminated under various conditions; we will use 

the following: 

)(max xf

bxa

,                                       (3.67) 

where φ is a given positive constant, )(xf  is function (3.65) tending to zero at 

all points of segment ],[ ba  when j → ∞. 
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3.13. Solving the Shockley-Poisson equation 

 

 

 

 

 
The quasilinearization method considered above will be used for simulation 

of a silicon photosensitive target. Such targets numbering between one and three 

are located behind the objective of a camera or movie camera. The incident light 

is converted to electrical signals with help of these targets. 

The photosensitive target consists of cells of identical structure, and there are 

millions of them, as many as the number of pixels defining the maximum resolu-

tion of the camera, or several times more. 

According to article [6], as a mathematical model of the cell, we can use the 

following nonlinear differential equation: 

)(
)(

exp
0

2

2

xN
Tk

xqu
Nq

dx

ud

A
b

,                    (3.68) 

 

where )(xu  is the electric potential in volts, ε = 103.545·10
-12

 C / (V·m) is the 

dielectric permittivity of silicon, q = 1.6·10
-19

 C is the absolute value of the elec-

tron charge, 
b

k  = 1.38·10
-23

 J / C is the Boltzmann constant, T = 300 K is the  

absolute room temperature, )(xN
A

 is the difference between the acceptor and 

donor concentrations, )(aN
A

 = )(bN
A

 = 
0

N  is a positive value, a ≤ x ≤ b. 

To start, let us set the following coordinates of the boundaries of segment 

],[ ba : a = – 0.5·10
-6

 m, b = 0.5·10
-6

 m. The boundary conditions are as follows: 

0)()( buau . 

We can encounter this (or similar) equation in the physics of semiconductor 

devices. It is the Poisson equation whose right-hand side (the electric charge 

density) is a nonlinear function of electric potential )(xu . Because W. Shockley 

obtained the form of the right-hand side in [7], equation (3.68) is called the 

Shockley-Poisson equation. 

As we know, two types of carriers of electric current exist in a semiconduc-

tor: negatively charged electrons and positively charged holes. The electron has 

charge – q, the hole has charge +q. Impurities of a semiconductor, which supply 

electrons, are called donors; impurities, which supply holes, are called acceptors. 
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When the donor molecule loses an electron, it becomes positively charged; the 

acceptor molecule losing a hole becomes negatively charged. 

We can write equation (3.68) in form (3.60), where 

Tk

yq
NxN

q
zyxF

b

A
exp)(),,(

0
. 

Because of absence of the z variable in the right-hand side of this expression, 

0)(xg  in differential equation (3.62) according to (3.63). Expressions (3.64) 

and (3.65) take the following form: 

Tk

xqu
N

Tk

q
xe

b

j

b

)(
exp)(

0

2

, 

2

2

0

)(
exp)()(

dx

ud

Tk

xqu
NxN

q
xf

j

b

j

A
. 

 

According to the previous section, the solution of the boundary value prob-

lem for equation (3.68) is reduced to the repeated solution of linear differential 

equation (3.62) with the above dependences, )(xg , )(xe  and )(xf , and with 

boundary conditions 0)()( bvav . 

It was shown at the end of Section 3.3 that the process of solving such linear 

problem by the decomposition method is unconditionally stable. 

Let us consider table Listing 3.9 with the following source data for program 

Listing 3.10: 

 coordinates a and b of the boundaries; 

 the value of φ in condition (3.67) for finishing the iterative process; 

 the values of dependences )(xN
A

 and )(
0

xu  at the nodes of the uniform 

grid on segment a ≤ x ≤ b (the number of grid nodes is equal to the number of 

values of 
A

N  or 
0

u  in the table, that is, 11). 

According to the table, the )(xN
A

 dependence is symmetric to the origin of 

coordinates, x = 0. At the ends of segment ],[ ba , the semiconductor contains 

acceptors whose concentration is equal to 7·10
20

 m
-3

 = )(aN
A

 = )(bN
A

 = 
0

N . 

At the midpoint (x = 0), the semiconductor contains donors whose concentration 

is equal to 3·10
22

 m
-3

 = )0(
A

N . 

The initial approximation of the solution is calculated by means of Excel  

according to formula 
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1

105.0

cos)(
6

0

x
xu . 

This )(
0

xu  dependence satisfies boundary conditions (3.66) at A = B = 0. 
 

Listing 3.9 
 

a -5.00E-07 

b 5.00E-07 

phi 1.00E-01 

NA u0 

7.00E+20 0.00E+00 

7.00E+20 1.91E-01 

7.00E+20 6.91E-01 

7.00E+20 1.31E+00 

-3.00E+22 1.81E+00 

-3.00E+22 2.00E+00 

-3.00E+22 1.81E+00 

7.00E+20 1.31E+00 

7.00E+20 6.91E-01 

7.00E+20 1.91E-01 

7.00E+20 0.00E+00 

 

The program below is intended for solving the boundary value problem for 

the Shockley-Poisson equation by the quasilinearization method. 
 

Listing 3.10 
 

Sub main() 

    Dim NA() As Double 

    Dim U() As Double 

    Dim X() As Double 

    Dim U2() As Double 

    Dim V() As Double 

    Dim G() As Double 

    Dim E() As Double 

    Dim F() As Double 

    Dim m As Integer 

    Dim a As Double, b As Double 

    Dim phi As Double 

    Dim h As Double 

    Dim i As Integer, j As Integer 
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    Dim w1 As Double, w2 As Double 

    Dim w3 As Double, max As Double 

    Dim sb As String, se As String, sn As String 

    Const q = 1.6E-19 

    Const epsilon = 103.545E-12 

    Const kb = 1.38E-23 

    Const T = 300 

    m = Selection.Rows.Count         'quantity of rows 

    a = Selection.Cells(1, 2) 

    b = Selection.Cells(2, 2) 

    phi = Selection.Cells(3, 2) 

    h = (b - a) / (m - 5) 

    ReDim NA(5 To m) 

    ReDim U(5 To m) 

    ReDim X(5 To m) 

    ReDim U2(5 To m) 

    ReDim V(5 To m) 

    ReDim G(5 To m) 

    ReDim E(5 To m) 

    ReDim F(5 To m) 

    Selection.Cells(4, 3) = "x" 

    w1 = q / epsilon: w2 = q / (kb * T) 

    For i = 5 To m 

        NA(i) = Selection.Cells(i, 1) 

        U(i) = Selection.Cells(i, 2) 

        X(i) = (i - 5) * h + a 

        Selection.Cells(i, 3) = X(i) 

        G(i) = 0 

    Next i 

    For j = 1 To 1000 

        max = 0 

        For i = 6 To m - 1 

            w3 = NA(5) * Exp(-w2 * U(i)) 

            E(i) = -w1 * w2 * w3 

            U2(i) = (U(i + 1) - 2 * U(i) + _ 

            U(i - 1)) / h ^ 2       'second derivative 

            F(i) = w1 * (NA(i) - w3) - U2(i) 

            If Abs(F(i)) > max Then max = Abs(F(i)) 

        Next i 

        Call fb(5, m, h, 0, 0, G, E, F, V) 

        For i = 5 To m 

            U(i) = U(i) + V(i) 
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        Next i 

        If max < phi Then Exit For 

    Next j 

    Selection.Cells(4, 4) = "u" 

    For i = 5 To m 

        Selection.Cells(i, 4) = U(i) 

    Next i 

1:  sb = Selection.Cells(5, 3).Address 

2:  se = Selection.Cells(m, 4).Address 

3:  sn = ActiveSheet.Name 

4:  Range(sb & ":" & se).Select 

5:  Selection.NumberFormat = "0.0E+00" 

6:  Charts.Add 

7:  ActiveChart.ChartType = xlXYScatterSmoothNoMarkers 

8:  ActiveChart.SetSourceData Source:= _ 

        Sheets(sn).Range(sb & ":" & se), PlotBy:= _ 

        xlColumns 

9:  ActiveChart.Location Where:= xlLocationAsObject, _ 

        Name:=sn 

10: ActiveChart.Axes(xlValue).MajorGridlines.Select 

11: Selection.Delete 

12: ActiveChart.Legend.Select 

13: Selection.Delete 

End Sub 

 

We enter this program into Module1 of the BookNM workbook. 

Data of Listing 3.9 are contained in text file Listing_3_09.txt, which is on the 

enclosed CD. To copy this data into range B2:C16 on the Sheet2 worksheet of 

the BookNM workbook, we fulfill the following operations, which are close to 

operations described on p. 26: 

1) open the Listing_3_09.txt file with Notepad, for example, by double click 

on the pictogram of this file in Windows Explorer; 

2) in the Notepad window opened, highlight the table text and copy it into 

Windows Clipboard, for example, by pressing Ctrl + C; 

3) on the Sheet2 worksheet of the BookNM workbook, select the B2 cell by 

clicking on it; 

4) paste the Windows Clipboard contents into the B2:C16 range, for exam-

ple, by pressing Ctrl + V; 

5) close the Notepad window with the Listing_3_09.txt file. 

Using the standard features of Excel, the resulting table can be decorated as 

in Fig. 3.7. 
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Before the program execution, we must select the Excel table depicted in 

Fig. 3.7. The execution results are as follows: 

 the coordinate and solution values located in the x and u columns, respec-

tively (Fig. 3.8); 

 the )(xu  graph on the Excel worksheet. 

Operators 1 — 13, intended for constructing the )(xu  graph, were pro-

grammed by means of Excel Macro Recorder (Sections 2.4 and 2.5). Let us con-

sider the appointment of these operators. 

 

 
 

Fig. 3.7. The Excel table with the source data 

 

Operator 1 assigns the address of the first cell of the x column (that is, string 

"D6") to the sb variable; operator 2 assigns the address of the last cell of the u 

column (that is, string "E16") to the se variable; operator 3 assigns the name of 

the active Excel worksheet to the sn variable. Operator 4 selects the x and u 

columns (that is, range D6:E16); operator 5 assigns the necessary numerical 

format to the selected cells. Operators 6 — 9 construct the graph; they corre-

spond to the 2nd, 3rd and 4th operations on p. 214. Operators 10 and 11 delete 

the gridlines from the graph area; operators 12 and 13 delete the legend. 
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Fig. 3.8. The program execution results 

 

The calculated spatial distribution of the electric potential, )(xu , is not realis-

tic. The fact is that the derivative, 

dx

du
xu )( , 

 

must equal zero at the ends of segment ],[ ba  according to the physics of semi-

conductor devices, i.e., 0)()( buau  must be, but we do not see it in 

Fig. 3.8. 

To obtain realistic distribution )(xu , we add areas with length of 9.5·10
-6

 m 

and 
A

N  = 
0

N  = 7·10
20

 m
-3

 to segment ],[ ba  on the left- and right-hand sides. 

We leave the grid step, h, unchanged, at that, the number of steps increases  

20-fold. 

The left and right boundaries of new segment ],[ ba  have the following  

coordinates: a = -10
-5

 m, b = 10
-5

 m. The initial approximation of the solution  

of equation (3.68), satisfying boundary conditions (3.66) at 0BA , is calcu-

lated according to formula 

1

10

cos)(
5

0

x
xu                                  (3.69) 

 

by means of Excel. 

The )(xu  graph, constructed by program Listing 3.10, is given in Fig. 3.9. 

We see that 0)()( buau , in other words, function )(xu  is flat at the ends of 

segment ],[ ba . 



Chapter 3. Finite Difference Method for Solving Differential Equations 

248 

 
 

Fig. 3.9. The realistic spatial distribution of the electric potential: the horizontal 

coordinate, x, is in meters; the vertical coordinate, u, is in volts 
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3.14. Finite difference analogs of derivatives  

for a nonuniform grid 
 

 

 

 
The execution time for solving the boundary value problem can be reduced 

by replacing the uniform grid on ],[ ba  with a nonuniform grid whose step, 

iii
hxx

1
, depends on i. At the transition to a nonuniform grid, expressions 

(3.4) and (3.5) for the first and second derivatives of the )(xu  function at node 

i
x  become more complicated. 

To obtain new expressions for the derivatives, we introduce axis z parallel to 

the x axis (Fig. 3.10). If the origin of coordinates (z = 0) is at the 
i

x  node of the 

grid, the 
1i

x  node has coordinate 
i

hz , and the 
1i

x  node has coordinate 

1i
hz . 

 

 
 

Fig. 3.10. The parabola passing through points  

(
1i

x , 1i
u ), (

i
x , i

u ) and (
1i

x , 1i
u ) 
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Let us consider the following second-degree polynomial: 

i
uzzzP 2)( ,                                    (3.70) 

where 
i

u  is the )(xu  function value at the 
i

x  node; 
i

uP )0( . 

Coefficients α and β are determined by equations 
1

)(
ii

uhP  and 

11
)(

ii
uhP , which can be written as follows: 

iiii
uuhh

1

2 , 

iiii
uuhh

11

2

1
. 

 

Solving this system of linear algebraic equations by Cramer’s rule [3], we obtain 

D

D
1

,   
D

D
2

,                                       (3.71) 

where 

)(
11 iiii

hhhhD , 

1111
)()(

iiiiii
huuhuuD ,                          (3.72) 

2

11

2

12
)()(

iiiiii
huuhuuD . 

 

Differentiating polynomial (3.70) twice, we obtain 

zz
dz

dP
2)( ,                                       (3.73) 

2)(
2

2

z

dz

Pd
. 

 

From here, expressions for the derivatives at z = 0 follow: 

)(

)()(
)0(

11

2

11

2

12

iiii

iiiiii

hhhh

huuhuu

D

D

dz

dP
,          (3.74) 

)(

)()(
222)0(

11

1111

2

2

iiii

iiiiii

hhhh

huuhuu

D

D

dz

Pd
.      (3.75) 

 

We have the finite difference analogs of the first and second derivatives of 

the )(xu  function at the 
i

x  node. 

Using expression (3.1), we can show the following: 
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or 

)(
)(

)()(
)( 2

11

2

11

2

1

max
iiii

iiiiii

i
hO

hhhh

huuhuu
x

dx

du
,            (3.76) 

)(
)(

)()(
2)(

11

111

2

2

max
iiii

iiiiii

i
hO

hhhh

huuhuu
x

dx

ud
,         (3.77) 

 

where }{max
1

i

rik

max
hh  is the maximum step of the grid, 0

max
h . 

The resulting expressions, (3.76) and (3.77), are similar to expressions (3.4) 

and (3.5). Naturally, (3.76) and (3.77) become (3.4) and (3.5), respectively, for 

the constant step ( hhh
ii 1

). 

Expressions (3.5) and (3.77) include summands )( 2hO  and )(
max

hO , respec-

tively. That is, at the transition from a uniform grid to a nonuniform grid, the 

error of the finite difference analog of the second derivative changes from the 

2nd order of smallness to the 1st order. It means deterioration of the finite differ-

ence approximation accuracy of the second derivative at the transition from  

a uniform grid to a nonuniform grid. 
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3.15. The decomposition method  

for a nonuniform grid 
 

 

 

 
Substituting expressions (3.74) and (3.75) into linear differential equation 

(3.6) instead of )(xu  and )(xu , respectively, we obtain linear algebraic equa-

tion (3.9), 

iiiiiii
uuu

11
, 

where 

1

11
)2(

ii

iii

i hh

hgh
, 

2)(
11 iiiiiii

hhghhe , 

1

)2(

ii

iii

i hh

hgh
,                                        (3.78) 

1iiii
hhf . 

 

Equation (3.9) for i = k + 1, k + 2, ..., r – 2, r – 1 and boundary conditions 

(3.11) and (3.12) still form the system of linear algebraic equations with the 

tridiagonal matrix, which can be solved by the decomposition method as follows: 
 

1) at first, the forward sweep is performed, i.e., unknown 
1k

P , 
1k

Q , 

2k
P , 

2k
Q , ..., 

r
P , 

r
Q  are calculated according to formulas (3.16), (3.17) and 

(3.14), (3.15); 
 

2) then the backward sweep is performed, i.e., unknown 
r

u , 
1r

u , ..., 
k

u  

are calculated according to formulas (3.18) and (3.13). 
 

Let us put the following declaration of the subroutine, realizing the decompo-

sition method for differential equation (3.6) with boundary conditions (3.11) and 

(3.12) for a nonuniform grid, into Module5 of the BookNM workbook. 
 

Listing 3.11 
 

Sub foba(ByVal k, ByVal r, ByRef X() As Double, _ 

    ByRef G() As Double, ByRef E() As Double, _ 
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    ByRef F() As Double, _ 

    ByVal GAMMAK, ByVal DELTAK, _ 

    ByVal ALPHAR, ByVal DELTAR, _ 

    ByRef U() As Double) 

    Const BETAK = -2, BETAR = -2 

    Dim alpha As Double, beta As Double 

    Dim gamma As Double, delta As Double 

    Dim i As Integer, w As Double 

    Dim H() As Double: ReDim H(k + 1 To r) 

    Dim P() As Double: ReDim P(k + 1 To r) 

    Dim Q() As Double: ReDim Q(k + 1 To r) 

    For i = k + 1 To r 

        H(i) = X(i) - X(i - 1) 

    Next i 

'Forward sweep: 

    P(k + 1) = -GAMMAK / BETAK 

    Q(k + 1) = DELTAK / BETAK 

    For i = k + 1 To r - 1 

        w = H(i) + H(i + 1) 

        alpha = H(i + 1) * (2 - G(i) * H(i + 1)) / w 

        beta = E(i) * H(i) * H(i + 1) - _ 

        G(i) * (H(i) - H(i + 1)) - 2 

        gamma = H(i) * (2 + G(i) * H(i)) / w 

        delta = F(i) * H(i) * H(i + 1) 

        w = alpha * P(i) + beta 

        P(i + 1) = -gamma / w 

        Q(i + 1) = (delta - alpha * Q(i)) / w 

    Next i 

'Backward sweep: 

    U(r) = (DELTAR - ALPHAR * Q(r)) / _ 

    (ALPHAR * P(r) + BETAR) 

    For i = r To k + 1 Step -1 

        U(i - 1) = P(i) * U(i) + Q(i) 

    Next i 

End Sub 

 

The foba subroutine parameters have the following sense: 

 k, r are numbers of the left and right boundary nodes of the grid; 

 X is an array of grid nodes; 

 G, E are arrays of values of the coefficients of equation (3.6) at the grid 

nodes; 
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 F is an array of values of the right-hand side of equation (3.6); 

 GAMMAK, DELTAK are values of parameters 
k

 and 
k

 in left boundary 

condition (3.11), where 2
k

; 

 ALPHAR, DELTAR are values of parameters 
r

 and 
r
 in right boundary 

condition (3.12), where 2
r

; 

 U is an array intended for the solution values. 

Here and below, we consider only the main grid on segment ],[ ba  with node 

coordinates 
k

x , 
1k

x , 
2k

x , ..., 
2r

x , 
1r

x , 
r

x  (Fig. 3.1). 
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3.16. Solving the Shockley-Poisson  

equation on a nonuniform grid 

 

 

 

 
Let us consider the following source data table. 

Listing 3.12 
maxtime 1  

maxiter 1000  

phi 1.00E-01  

NA u0 x 

7.00E+20 0.00E+00 -1.0E-05 

7.00E+20 4.89E-02 -9.0E-06 

7.00E+20 1.91E-01 -8.0E-06 

7.00E+20 4.12E-01 -7.0E-06 

7.00E+20 6.91E-01 -6.0E-06 

7.00E+20 1.00E+00 -5.0E-06 

7.00E+20 1.31E+00 -4.0E-06 

7.00E+20 1.59E+00 -3.0E-06 

7.00E+20 1.81E+00 -2.0E-06 

7.00E+20 1.95E+00 -1.0E-06 

7.00E+20 1.98E+00 -6.0E-07 

7.00E+20 1.99E+00 -4.0E-07 

7.00E+20 2.00E+00 -3.0E-07 

7.00E+20 2.00E+00 -2.0E-07 

-3.00E+22 2.00E+00 -1.0E-07 

-3.00E+22 2.00E+00 0.0E+00 

-3.00E+22 2.00E+00 1.0E-07 

7.00E+20 2.00E+00 2.0E-07 

7.00E+20 2.00E+00 3.0E-07 

7.00E+20 1.99E+00 4.0E-07 

7.00E+20 1.98E+00 6.0E-07 

7.00E+20 1.95E+00 1.0E-06 

7.00E+20 1.81E+00 2.0E-06 

7.00E+20 1.59E+00 3.0E-06 

7.00E+20 1.31E+00 4.0E-06 

7.00E+20 1.00E+00 5.0E-06 

7.00E+20 6.91E-01 6.0E-06 

7.00E+20 4.12E-01 7.0E-06 

7.00E+20 1.91E-01 8.0E-06 

7.00E+20 4.89E-02 9.0E-06 

7.00E+20 0.00E+00 1.0E-05 
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Table Listing 3.12 contains: 

 maxtime, the limiting execution time in seconds; 

 maxiter, the limiting number of the quasilinearization method iterations; it 

must be less than the maximum value of the Integer data type, that is, 32767 

(Appendix 1); 

 the value of φ in condition (3.67) for finishing the iterative process of the 

quasilinearization method; 

 the values of spatial coordinate x; 

 the values of dependence )(xN
A

; 

 the values of dependence )(
0

xu , which are calculated according to for-

mula (3.69) by using Excel. 

If maxtime is greater than 59 or less than 0, then the execution time is not 

limited. 

The program below is intended for solving the boundary value problem  

for the Shockley-Poisson equation on the nonuniform grid defined by the right 

column of table Listing 3.12. 
 

Listing 3.13 
 

Sub main() 

    Dim NA() As Double 

    Dim U() As Double 

    Dim X() As Double 

    Dim H() As Double 

    Dim U2() As Double 

    Dim V() As Double 

    Dim G() As Double 

    Dim E() As Double 

    Dim F() As Double 

    Dim m As Integer 

    Dim maxtime As Integer 

    Dim maxiter As Integer 

    Dim phi As Double 

    Dim i As Integer 

    Dim j As Integer 

    Dim w1 As Double 

    Dim w2 As Double 

    Dim w3 As Double 

    Dim max As Double 

    Dim sb As String 

    Dim se As String 
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    Dim sn As String 

    Dim tm As Date 

    Const q = 1.6E-19 

    Const epsilon = 103.545E-12 

    Const kb = 1.38E-23 

    Const T = 300 

    m = Selection.Rows.Count         'quantity of rows 

    maxtime = Selection.Cells(1, 2) 

    maxiter = Selection.Cells(2, 2) 

    phi = Selection.Cells(3, 2) 

    ReDim NA(5 To m) 

    ReDim U(5 To m) 

    ReDim X(5 To m) 

    ReDim H(6 To m) 

    ReDim U2(5 To m) 

    ReDim V(5 To m) 

    ReDim G(5 To m) 

    ReDim E(5 To m) 

    ReDim F(5 To m) 

    w1 = q / epsilon 

    w2 = q / (kb * T) 

    For i = 5 To m 

        NA(i) = Selection.Cells(i, 1) 

        U(i) = Selection.Cells(i, 2) 

        X(i) = Selection.Cells(i, 3) 

        G(i) = 0 

    Next i 

    For i = 6 To m 

        H(i) = X(i) - X(i - 1) 

    Next i 

    If maxtime >= 0 And maxtime < 60 Then 

        tm = Now + TimeValue("00:00:" & CStr(maxtime)) 

    End If 

    For j = 1 To maxiter 

        max = 0 

        For i = 6 To m - 1 

            w3 = NA(5) * Exp(-w2 * U(i)) 

            E(i) = -w1 * w2 * w3 

            U2(i) = 2 * ((U(i + 1) - U(i)) * H(i) + _ 

            (U(i - 1) - U(i)) * H(i + 1)) / _ 

            (H(i) * H(i + 1) * (H(i) + H(i + 1))) 

            F(i) = w1 * (NA(i) - w3) - U2(i) 



Chapter 3. Finite Difference Method for Solving Differential Equations 

258 

            If Abs(F(i)) > max Then max = Abs(F(i)) 

        Next i 

0:      Call foba(5, m, X, G, E, F, 0, 0, 0, 0, V) 

        For i = 5 To m 

            U(i) = U(i) + V(i) 

        Next i 

        If max < phi Then Exit For 

        If maxtime >= 0 And maxtime < 60 And _ 

        Now > tm Then Exit For 

    Next j 

    Selection.Cells(4, 4) = "u" 

    For i = 5 To m 

        Selection.Cells(i, 4) = U(i) 

    Next i 

1:  sb = Selection.Cells(5, 3).Address 

2:  se = Selection.Cells(m, 4).Address 

3:  sn = ActiveSheet.Name 

4:  Range(sb & ":" & se).Select 

5:  Selection.NumberFormat = "0.0E+00" 

6:  Charts.Add 

7:  ActiveChart.ChartType = xlXYScatterSmoothNoMarkers 

8:  ActiveChart.SetSourceData Source:= _ 

        Sheets(sn).Range(sb & ":" & se), PlotBy:= _ 

        xlColumns 

9:  ActiveChart.Location Where:= xlLocationAsObject, _ 

        Name:=sn 

10: ActiveChart.Axes(xlValue).MajorGridlines.Select 

11: Selection.Delete 

12: ActiveChart.Legend.Select 

13: Selection.Delete 

End Sub 

 

The source data for this program are the values of table Listing 3.12 

(Fig. 3.11). Before the program execution, we have to select this Excel table 

(range B2:D36, Fig. 3.12). 

The execution results are the u solution values, which are located near the 

corresponding values of the x coordinate, and the )(xu  graph on the Excel work-

sheet (Fig. 3.13). 

The )(xu  graph is constructed automatically when executing operators 1 — 

13. The same operators are present in program Listing 3.10. 
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Fig. 3.11. The Excel table with the source data 

 

 
 

Fig. 3.12. The worksheet before the program execution 



Chapter 3. Finite Difference Method for Solving Differential Equations 

260 

 
 

Fig. 3.13. The results of the program execution: the horizontal coordinate  

of the graph, x, is in meters, the vertical coordinate, u, is in volts 
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3.17. Use of solution symmetry 

 

 

 

 

 
According to table Listing 3.12, the )(xN

A
 dependence is symmetric to the 

origin of coordinates: )( xN
A

 = )(xN
A

. Therefore, under symmetric boundary 

conditions, in particular )10( 5u  = )10( 5u  = 0, the solution of the Shockley-

Poisson equation is also symmetric: )( xu  = )(xu . We can use the symmetry 

for further reducing the execution time. 

By setting 0b , we reduce the length of segment ],[ ba  to half. The right 

boundary condition becomes 0)(bu . We leave the left boundary and condi-

tion unchanged: 510a , 0)(au . 

Let us correct the foba subroutine to use it for solving differential equation 

(3.6) with left boundary condition (3.11) at given )(bu . 

We consider that i = r – 1 in Fig. 3.10. Thus, the right node (
r

hz ) coin-

cides with the right boundary of segment ],[ ba , that is, with point b. 

Let us return to expression (3.73) for the first derivative of second-degree 

polynomial (3.70). If 
r

hz , then 

rr
hh

dz

dP
2)( . 

 

Using expressions (3.71) and (3.72) at i = r – 1, we have 

)(

)2()2(
)(

11

1

2

11

2

1

2

12

2

rrrr

rrrrrrrrrrr

r hhhh

uhhhuhhhhuh
h

dz

dP
. 

 

Equating the last expression and )(bu , we obtain equation 

)(
)(

)2()2(

11

1

2

11

2

1

2

12

2

bu
hhhh

uhhhuhhhhuh

rrrr

rrrrrrrrrrr
 

or 
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rrr
uuu

12
,                               (3.79) 

where 

2

r
h , 

2

1

2

1
2

rrrr
hhhh , 

rrr
hhh

1

2

1
2 ,                                     (3.80) 

)()(
11

buhhhh
rrrr

. 
 

According to formula (3.13) for the backward sweep, we have 

rrrr
QuPu

1
, 

111112
)(

rrrrrrrrr
QQuPPQuPu . 

 

Substituting these expressions into equation (3.79), we have 
 

rrrrrrrrr
uQuPQQuPP ][])([

11
. 

 

The solution of this equation follows: 
 

rrr

rrrr

r PPP

QQQP
u

1

11
)(

,                       (3.81) 

 

where , ,  and  are defined by formulas (3.80). 

Let us put the following declaration of the subroutine, which realizes the  

decomposition method for differential equation (3.6) with )(bu  given, into 

Module6 of the BookNM workbook. 
 

Listing 3.14 
 

Sub forbac(ByVal k, ByVal r, ByRef X() As Double, _ 

    ByRef G() As Double, ByRef E() As Double, _ 

    ByRef F() As Double, _ 

    ByVal GAMMAK, ByVal DELTAK, _ 

    ByVal U1B, ByRef U() As Double) 

    Const BETAK = -2 

    Dim alpha As Double, beta As Double 

    Dim gamma As Double, delta As Double 

    Dim i As Integer, w As Double 

    Dim H() As Double: ReDim H(k + 1 To r) 

    Dim P() As Double: ReDim P(k + 1 To r) 

    Dim Q() As Double: ReDim Q(k + 1 To r) 

    For i = k + 1 To r 
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        H(i) = X(i) - X(i - 1) 

    Next i 

'Forward sweep: 

    P(k + 1) = -GAMMAK / BETAK 

    Q(k + 1) = DELTAK / BETAK 

    For i = k + 1 To r - 1 

        w = H(i) + H(i + 1) 

        alpha = H(i + 1) * (2 - G(i) * H(i + 1)) / w 

        beta = E(i) * H(i) * H(i + 1) - _ 

        G(i) * (H(i) - H(i + 1)) - 2 

        gamma = H(i) * (2 + G(i) * H(i)) / w 

        delta = F(i) * H(i) * H(i + 1) 

        w = alpha * P(i) + beta 

        P(i + 1) = -gamma / w 

        Q(i + 1) = (delta - alpha * Q(i)) / w 

    Next i 

'Backward sweep: 

    alpha = H(r) ^ 2 

    beta = -H(r - 1) ^ 2 - 2 * H(r - 1) * H(r) - _ 

    H(r) ^ 2 

    gamma = H(r - 1) ^ 2 + 2 * H(r - 1) * H(r) 

    delta = H(r - 1) * H(r) * (H(r - 1) + H(r)) * U1B 

    U(r) = (delta - alpha * (P(r - 1) * Q(r) + _ 

    Q(r - 1)) - beta * Q(r)) / _ 

    (alpha * P(r - 1) * P(r) + beta * P(r) + gamma) 

    For i = r To k + 1 Step -1 

        U(i - 1) = P(i) * U(i) + Q(i) 

    Next i 

End Sub 

 

Formula (3.81) is used to start the backward sweep in the forbac subroutine. 

The subroutine parameters have the following sense: 

 k, r are numbers of the left and right boundary nodes of the grid; 

 X is an array of grid nodes; 

 G, E are arrays of values of the coefficients of equation (3.6) at the grid 

nodes; 

 F is an array of values of the right-hand side of equation (3.6); 

 GAMMAK, DELTAK are values of parameters 
k

 and 
k

 in left boundary 

condition (3.11), where 2
k

; 

 U1B is a value of )(bu ; 
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 U is an array intended for the solution values. 

The program, which solves the boundary value problem for the Shockley-

Poisson equation by means of subroutine forbac, differs from Listing 3.13 of 

the previous section only in the following operators: 
 

0:  Call forbac(5, m, X, G, E, F, 0, 0, 0, V) 

5:  Selection.NumberFormat = "0.000E+00" 
 

The source data for this program are the values located in table Listing 3.15 

(Fig. 3.14). We must select this Excel table (range B2:D21) before the program 

execution. 
 

Listing 3.15 
 

maxtime 1  

maxiter 1000  

phi 1.00E-01  

NA u0 x 

7.00E+20 0.00E+00 -1.00E-05 

7.00E+20 4.89E-02 -9.00E-06 

7.00E+20 1.91E-01 -8.00E-06 

7.00E+20 4.12E-01 -7.00E-06 

7.00E+20 6.91E-01 -6.00E-06 

7.00E+20 1.00E+00 -5.00E-06 

7.00E+20 1.31E+00 -4.00E-06 

7.00E+20 1.59E+00 -3.00E-06 

7.00E+20 1.81E+00 -2.00E-06 

7.00E+20 1.95E+00 -1.00E-06 

7.00E+20 1.98E+00 -6.00E-07 

7.00E+20 1.99E+00 -4.00E-07 

7.00E+20 2.00E+00 -3.00E-07 

7.00E+20 2.00E+00 -2.00E-07 

-3.00E+22 2.00E+00 -1.00E-07 

-3.00E+22 2.00E+00 0.00E+00 

 

The results of the program execution are the u solution values and the )(xu  

graph for negative values of x (Fig. 3.15). 

According to the )(xu  graph, semiconductor layer -6 μm ≤ x ≤ 6 μm, whose 

plane is perpendicular to the x axis, is the potential well for signal electrons: this 

layer collects electrons knocked out by photons (light particles) from semicon-

ductor molecules. The light falls on the layer plane. 

In Section 4.7, the mathematical modeling of the silicon photosensitive target 

will be continued, and we will use the resulting )(xu  dependence depicted in 

Fig. 3.15. 
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Fig. 3.14. The Excel table with the source data 

 

 
 

Fig. 3.15. The results of the program execution: the horizontal coordinate  

of the graph, x, is in meters, the vertical coordinate, u, is in volts 
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We advise the reader to develop the forbacs subroutine (similar to 

forbac), which realizes the decomposition method for differential equation 

(3.6) on segment ],[ ba  with )(au  given. The forbacs subroutine must have 

the following parameters: 

 k, r are numbers of the left and right boundary nodes of the grid on seg-

ment ],[ ba ; 

 X is an array of grid nodes; 

 G, E are arrays of values of the coefficients of equation (3.6) at the grid 

nodes; 

 F is an array of values of the right-hand side of equation (3.6); 

 U1A is a value of )(au ; 

 ALPHAR, DELTAR are values of parameters 
r

 and 
r
 in right boundary 

condition (3.12), where 2
r

; 

 U is an array intended for the solution values. 

We advise to put the forbacs subroutine declaration into Module6 of the 

BookNM workbook below the forbac subroutine declaration developed above. 

In addition, we advise the reader to use the forbacs subroutine to create  

a picture similar to Fig. 3.15, but for 0x . 
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3.18. The cyclic decomposition method 

 

 

 

 

 
Let us consider linear differential equation (3.6) on the whole x axis, 

x , assuming that the coefficients and right-hand side of the equation 

are periodic functions with period abΠ : 

)()( xgΠxg ,   )()( xeΠxe ,   )()( xfΠxf . 

In this case, the equation solution is also periodic: 

)()( xuΠxu  for x . 

We supplement the grid on segment a ≤ x ≤ b (Fig. 3.1) by nodes outside this 

segment in such manner that Πxx
ikri

 for i . 

Let us replace boundary conditions (3.11) and (3.12) by the following perio-

dicity condition for the solution: 
ikri

uu , i . As a result, we 

have the system of linear algebraic equations 

kkkkkrk
uuu

11
,                             (3.82) 

iiiiiii
uuu

11
,                               (3.83) 

i = k + 1, k + 2, ..., r – 2, 

111121 rkrrrrr
uuu .                    (3.84) 

The coefficients and right-hand sides are determined as follows: 

 the values of 
i
, 

i
, 

i
, 

i
 are calculated according to formulas (3.78) 

at k + 1  i  r – 1; 

 the values of 
k

, 
k

, 
k

, 
k

 are calculated according to formulas 

1

11
)2(

kr

kkk

k hh

hgh
, 

2)(
11 krkkrkk

hhghhe , 

1

)2(

kr

rkr

k hh

hgh
,                                       (3.85) 

1krkk
hhf . 
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The formulated system of r – k equations (3.82) — (3.84) with the r – k un-

knowns (
k

u , 
1k

u , 
2k

u , ..., 
2r

u , 
1r

u ) is the finite difference scheme for 

linear differential equation (3.6) with the solution periodicity condition. We can 

write this scheme as the following matrix equation: 
 

111

222

222

111

0...000

...0000

........

000...0

000...0

00...00

rrr

rrr

kkk

kkk

kkk

 

 

.
......

1

2

2

1

1

2

2

1

r

r

k

k

k

r

r

k

k

k

u

u

u

u

u

 

 

The matrix of this equation has the so-called cyclic tridiagonal form. 

The system of equations (3.82) — (3.84), i.e., the above matrix equation,  

is usually solved by the cyclic decomposition method. Let us consider this  

algorithm. 
 

Let )(xy , )(xz  and )(xu  be grid functions defined on grid 
k

x  < 
1k

x  < 

2k
x  < ... < 

2r
x  < 

1r
x  < 

r
x  (Fig. 3.1), and: 

 

 variables 
i

y  satisfy the following system of linear algebraic equations 

(3.9) with zero boundary conditions: 

iiiiiii
yyy

11
,                                (3.86) 

i = k + 1, k + 2, ..., r – 2, r – 1, 

0
rk

yy ;                                            (3.87) 

 variables 
i

z  satisfy the following system of equations (3.9) with zero 

right-hand side and unit boundary conditions: 

0
11 iiiiii

zzz ,                                (3.88) 
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i = k + 1, k + 2, ..., r – 2, r – 1, 

1
rk

zz ;                                             (3.89) 

 variables 
i

u  are the following linear combination of 
i

y  and 
i

z : 

ikii
zuyu ,                                           (3.90) 

i = k, k + 1, k + 2, ..., r – 2, r – 1, r. 
 

By substituting expression (3.90) into equations (3.83) and (3.84), we can 

easily verify that grid function (3.90), )(xu , satisfies these equations at an arbi-

trary value of 
k

u . Let us find the value of 
k

u , at which grid function )(xu  satis-

fies equation (3.82). For this purpose, we will consider the sweep formulas for 

solution of systems (3.86), (3.87) and (3.88), (3.89). 

Let formulas (3.18) and (3.13) of the backward sweep look like 

0
r

y ,   1
r

z ,                                          (3.91) 

iiii
QyPy

1
,   

iiii
SzPz

1
,                         (3.92) 

 

where i = r, r – 1, ..., k + 1. In this case, formulas (3.16), (3.17) and (3.14), (3.15) 

of the forward sweep become 

0
1k

P ,   0
1k

Q ,   1
1k

S ,                          (3.93) 

iii

i

i P
P

1
,   

iii

iii

i P

Q
Q

1
,   

iii

ii

i P

S
S

1
,    (3.94) 

where i = k + 1, k + 2, ..., r – 1. 

By substituting expression (3.90) at i = r – 1 and i = k + 1, 

111 rkrr
zuyu , 

111 kkkk
zuyu , 

 

into equation (3.82), we obtain 

kkkkkkkrkrk
zuyuzuy )()(

1111
 

or 

11

11

kkrkk

kkrkk

k zz

yy
u .                               (3.95) 

At this value of 
k

u , the linear combination of grid functions )(xy  and )(xz , 

defined by formula (3.90), satisfies not only equations (3.83) and (3.84), but also 

equation (3.82). 

According to the cyclic decomposition method, the system of linear algebraic 

equations (3.82) — (3.84) is solved as follows: 
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1) the forward sweep is performed according to formulas (3.93) and (3.94),  

i = k + 1, k + 2, ..., r – 1; 

2) the backward sweep is performed according to formulas (3.91) and (3.92),  

i = r, r – 1, ..., k + 2; 

3) the value of 
k

u  is calculated according to formulas (3.85) and (3.95); 

4) the values of 
i

u  (k + 1  i  r – 1) are calculated according to (3.90). 
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3.19. Program realization of the cyclic  

decomposition method 
 

 

 

 
Let us consider a subroutine for solving linear differential equation (3.6)  

under the following periodicity condition: )()( xuΠxu , where abΠ  is 

the period, x . The coefficients and right-hand side of equation (3.6) 

are periodic functions: )()( xgΠxg , )()( xeΠxe , )()( xfΠxf . 

For program realization of the cyclic decomposition method, we put the  

following subroutine declaration into Module7 of the BookNM workbook. 
 

Listing 3.16 
 

Sub forwback(ByVal k, ByVal r, ByRef X() As Double, _ 

    ByRef G() As Double, ByRef E() As Double, _ 

    ByRef F() As Double, ByRef U() As Double) 

    Dim alpha As Double, beta As Double 

    Dim gamma As Double, delta As Double 

    Dim i As Integer, w As Double 

    Dim H() As Double: ReDim H(k + 1 To r) 

    Dim P() As Double: ReDim P(k + 1 To r) 

    Dim Q() As Double: ReDim Q(k + 1 To r) 

    Dim S() As Double: ReDim S(k + 1 To r) 

    Dim Y() As Double: ReDim Y(k + 1 To r) 

    Dim Z() As Double: ReDim Z(k + 1 To r) 

    For i = k + 1 To r 

        H(i) = X(i) - X(i - 1) 

    Next i 

'Forward sweep: 

    P(k + 1) = 0 

    Q(k + 1) = 0 

    S(k + 1) = 1 

    For i = k + 1 To r - 1 

        w = H(i) + H(i + 1) 

        alpha = H(i + 1) * (2 - G(i) * H(i + 1)) / w 

        beta = E(i) * H(i) * H(i + 1) - _ 

        G(i) * (H(i) - H(i + 1)) - 2 
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        gamma = H(i) * (2 + G(i) * H(i)) / w 

        delta = F(i) * H(i) * H(i + 1) 

        w = alpha * P(i) + beta 

        P(i + 1) = -gamma / w 

        Q(i + 1) = (delta - alpha * Q(i)) / w 

        S(i + 1) = -alpha * S(i) / w 

    Next i 

'Backward sweep: 

    Y(r) = 0 

    Z(r) = 1 

    For i = r To k + 2 Step -1 

        Y(i - 1) = P(i) * Y(i) + Q(i) 

        Z(i - 1) = P(i) * Z(i) + S(i) 

    Next i 

'Calculation of solution: 

    w = H(r) + H(k + 1) 

    alpha = H(k + 1) * (2 - G(k) * H(k + 1)) / w 

    beta = E(k) * H(r) * H(k + 1) - _ 

    G(k) * (H(r) - H(k + 1)) - 2 

    gamma = H(r) * (2 + G(k) * H(r)) / w 

    delta = F(k) * H(r) * H(k + 1) 

    U(k) = (delta - alpha * Y(r - 1) - _ 

    gamma * Y(k + 1)) / (beta + alpha * Z(r - 1) + _ 

    gamma * Z(k + 1))             'calculation of U(k) 

    For i = k + 1 To r - 1 

        U(i) = Y(i) + U(k) * Z(i) 'calculation of U(i) 

    Next i 

    U(r) = U(k) 

End Sub 

 

The forwback subroutine parameters have the following sense: 

 k, r are numbers of the left and right boundary nodes of the grid on  

segment ],[ ba ; 

 X is an array of grid nodes; 

 G, E are arrays of values of the coefficients of equation (3.6) at the grid 

nodes; 

 F is an array of values of the right-hand side of equation (3.6); 

 U is an array intended for the solution values. 

Elements U(k) and U(r) are equal in the resulting U array. 
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3.20. Solving the oscillation equation 

 

 

 

 

 
We will use the cyclic decomposition method for mathematical modeling  

of the oscillating motion of a bar. For this, we will be guided by the theory of the 

fifth chapter in book [8]. 

Let a bar with mass M be attached to the free end of a spring (Fig. 3.16). The 

bar’s position is defined by horizontal coordinate u; the origin of coordinates 

(u = 0) corresponds to the equilibrium state, in which the spring is not strained. 
 

 
 

Fig. 3.16. A bar sliding along a horizontal surface 
 

If the bar is deviated to the left or right from the equilibrium state, the spring 

resilience force (directed opposite to the displacement) acts on the bar. The force 

value is defined by formula 

KuF
r

. 

Positive coefficient K is called the elastic constant of the spring. As is  

customary in physics, we consider that the direction of the force vector coincides 

with the u axis for positive values of 
r

F  (that is, the force is directed from left  

to right) and the force vector is directed opposite to the u axis for negative values 

of 
r

F  (that is, the force is directed from right to left). 

Let us deviate the bar from the equilibrium state and then release it. The bar 

starts to make an oscillatory motion, which is described by the following equa-

tion of Newton’s second law: 

Ku

dt

ud
M

2

2

, 



Chapter 3. Finite Difference Method for Solving Differential Equations 

274 

where 22 / dtud  is the bar acceleration. 

If the initial deviation of the bar (from the equilibrium state) is positive and 

equal to A , the solution of the last equation looks like 
 

)cos()(
0
tAtu , 

where A  is the oscillation amplitude, MK /
0

 is the cyclic frequency of 

the oscillatory motion. The cosine argument, t
0

, is in radians. 

Cyclic frequency 
0

 (in radians per second) is related with oscillation fre-

quency 
0

f  (in hertzs) and period 
0

T  (in seconds) as follows: 

000
/22 Tf . 

 

In the presence of friction between the bar and horizontal surface, we observe 

the oscillation damping. If the bar velocity is small, the friction force is propor-

tional to the bar mass, M, and to the first power of the bar velocity, dtdu / . The 

friction force is directed opposite to the velocity vector. 

Taking into account the friction, we write the equation of Newton’s second 

law as follows: 

dt

du
LMuK

dt

ud
M

2

2

, 

 

where L ≥ 0 is the so-called coefficient of the oscillation damping. 

In order to exclude the oscillation damping, we introduce force )(tF  with 

period T . The equation of Newton’s second law becomes 

)(
2

2

tF
dt

du
LMKu

dt

ud
M .                            (3.96) 

 

It is obvious that after a while the oscillation of the bar becomes periodic 

with period T . 

Let us consider that time t changes from a negative value, 
0

t , to infinity.  

Let 
1
t  be a negative value exceeding 

0
t , such that: 

 
0

t  ≤ t < 
1
t  is an area of establishing the oscillation, in which the )(tu   

solution is an aperiodic function; 

 t ≥ 
1
t  is an area of the established oscillation, in which the )(tu  solution 

is a periodic function with period T . 
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Because the periodic oscillation of the bar is interesting for us, we consider 

equation (3.96) on segment ],0[ T  with the solution periodicity condition. 

Equation (3.96) can be written in form (3.6), 

)(
2

2

tfue
dt

du
g

dt

ud
,                                  (3.97) 

where Lg , MKe /2

0
, MtFtf /)()( . 

Let us consider the following source data table. 
 

Listing 3.17 
 

M 0.001 

K 800 

L 100 

F t 

0.00E+00 0.00E+00 

0.00E+00 2.00E-03 

0.00E+00 4.00E-03 

0.00E+00 6.00E-03 

0.00E+00 8.00E-03 

0.00E+00 1.00E-02 

0.00E+00 1.20E-02 

0.00E+00 1.40E-02 

0.00E+00 1.60E-02 

0.00E+00 1.80E-02 

0.00E+00 2.00E-02 

0.00E+00 2.20E-02 

0.00E+00 2.40E-02 

0.00E+00 2.60E-02 

5.00E+00 2.80E-02 

1.00E+01 3.00E-02 

5.00E+00 3.20E-02 

0.00E+00 3.40E-02 

0.00E+00 3.60E-02 

0.00E+00 3.80E-02 

0.00E+00 4.00E-02 

0.00E+00 4.20E-02 

0.00E+00 4.40E-02 

0.00E+00 4.60E-02 

0.00E+00 4.80E-02 

0.00E+00 5.00E-02 
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In this table: 

 M is the bar mass in kilograms; 

 K is the elastic constant of the spring, in N / m; 

 L is the coefficient of the oscillation damping, in 1 / s; 

 t are the values of time for one period, in seconds; 

 F are the )(tF  function values in newtons. 

According to table Listing 3.17: 

1) every 0.05 seconds, a positive force acts on the bar, for example, it gets  

a kick from left to right; 

2) the maximum value of the force equals 10 N; 

3) the duration of the force action equals 0.008 s. 

The program for solving equation (3.97) under the periodicity condition is 

given below. 
 

Listing 3.18 
 

Sub main() 

    Dim T() As Double 

    Dim G() As Double 

    Dim E() As Double 

    Dim F() As Double 

    Dim U() As Double 

    Dim m As Integer 

    Dim MM As Double 

    Dim KK As Double 

    Dim LL As Double 

    Dim i As Integer 

    Dim sb As String, se As String 

    Dim sn As String 

    m = Selection.Rows.Count         'quantity of rows 

    MM = Selection.Cells(1, 2) 

    KK = Selection.Cells(2, 2) 

    LL = Selection.Cells(3, 2) 

    ReDim T(5 To m) 

    ReDim G(5 To m) 

    ReDim E(5 To m) 

    ReDim F(5 To m) 

    ReDim U(5 To m) 

    For i = 5 To m 

        T(i) = Selection.Cells(i, 2) 

        G(i) = LL 

        E(i) = KK / MM 
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        F(i) = Selection.Cells(i, 1) / MM 

    Next i 

0:  Call forwback(5, m, T, G, E, F, U) 

    Selection.Cells(4, 3) = "u" 

    For i = 5 To m 

        Selection.Cells(i, 3) = U(i) 

    Next i 

1:  sb = Selection.Cells(5, 2).Address 

2:  se = Selection.Cells(m, 3).Address 

3:  Range(sb & ":" & se).Select 

4:  sn = ActiveSheet.Name 

5:  Selection.NumberFormat = "0.00E+00" 

6:  Charts.Add 

7:  ActiveChart.ChartType = xlXYScatterSmoothNoMarkers 

8:  ActiveChart.SetSourceData Source:= _ 

        Sheets(sn).Range(sb & ":" & se), PlotBy:= _ 

        xlColumns 

9:  ActiveChart.Location Where:= xlLocationAsObject, _ 

        Name:=sn 

10: ActiveChart.Axes(xlValue).MajorGridlines.Select 

11: Selection.Delete 

12: ActiveChart.Legend.Select 

13: Selection.Delete 

14: With ActiveChart 

15:     .Axes(xlCategory, xlPrimary).HasTitle = True 

16:     .Axes(xlCategory, _ 

        xlPrimary).AxisTitle.Characters.Text = "t, s" 

17:     .Axes(xlValue, xlPrimary).HasTitle = True 

18:     .Axes(xlValue, _ 

        xlPrimary).AxisTitle.Characters.Text = "u, m" 

19: End With 

20: ActiveChart.Axes(xlCategory).AxisTitle.Select 

21: Selection.AutoScaleFont = True 

22: With Selection.Font 

23:     .FontStyle = "regular" 

24:     .Size = 12 

25: End With 

26: ActiveChart.Axes(xlValue).AxisTitle.Select 

27: Selection.AutoScaleFont = True 

28: With Selection.Font 

29:     .FontStyle = "regular" 

30:     .Size = 12 
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31: End With 

32: ActiveChart.ChartArea.Select 

End Sub 

 

In this program, operator 0 is the call of the forwback subroutine, realizing 

the cyclic decomposition method. 

The source data for the program are the values located in table Listing 3.17 

(Fig. 3.17). We must select this Excel table (range B2:C31) before the program 

execution. The execution results are the solution values, located in the u column 

(near the t column, Fig. 3.18), and the )(tu  graph on the Excel worksheet. 

The )(tu  graph is created automatically: 

 operators 1 — 13 of program Listing 3.18 construct the graph and delete 

the gridlines and legend; 

 operators 14 — 32 superscribe the axes. 
 

 
 

Fig. 3.17. The Excel table with the source data 
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Fig. 3.18. The program execution results,  

including the graph of periodic dependence  

)(tu with frequency 1 / T = 20 Hz 

 

The reviewed operators (from 1 to 32) were programmed by means of Excel 

Macro Recorder. In Section 4.8, we will consider the graph creation subroutine 

based on these operators. 

In Section 5.12, we will use periodic dependence )(tu  depicted above in 

Fig. 3.18. 

We advise the reader to develop a program, similar to Listing 3.18, for calcu-

lating a periodic time dependence of the current, )(ti , in the electrical circuit 

shown in Fig. 3.19. The electromotive force (in volts) of the generator is the fol-

lowing periodic function of time: )()( tfΠκtv , where t is time in seconds, 

bta , abΠ  is the period,  is an integer. Function )(tf  and the  

values of a and b are given in Appendix 4. 

The process of solving the suggested task must include the following two 

stages: 
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1) on segment ],[ ba , periodic dependence of the capacitor charge, )(tq , is 

calculated by solving equation 

)(
1

2

2

tvq
Cdt

dq
R

dt

qd
L ; 

 

2) the current is calculated by differentiation of the capacitor charge: 

dt

dq
ti )( . 

 

Dependences )(tv  and )(ti  will be figured in the task on p. 414. 

 

 
 

Fig. 3.19. The electrical circuit with the following parameters: electric  

resistance R = 100 Ω, inductance L = 0.2 H, capacitance C = 3·10
-4

 F 
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Chapter 4. 

Cubic Spline 

 

 

 
Let us begin with the origin of term “spline”. 

Long ago, engineers needed to draw smooth curves through given points. To 

do so, they used long elastic wooden strips. Such a strip, called a spline, was 

fixed (nailed up to a drawing board) at the given points. As a result, the strip was 

bent to provide the smooth curve. 

In mathematics, the function describing the bending of an elastic strip is 

called a third-degree (cubic) spline [9]. In this chapter, this mathematical  

construction is used for interpolation, differentiation and integration of the grid  

(tabular) function and also for solving the nonlinear algebraic and linear differen-

tial equations. Besides, we consider two classical methods for solving the non-

linear algebraic equation, namely, the bisection and secant methods. 

For demonstration of the spline possibilities, we solve applied problems  

concerning the field-effect transistor, silicon photosensitive target and geophysi-

cal cable. The locally one-dimensional scheme [4] is considered for solving the 

heat equation of the last applied problem with two spatial coordinates. 

In addition to user-defined procedures, realizing the numerical methods,  

a subroutine for automatic creation of graphs is developed. 
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4.1. Definition of cubic spline. Spline moments 

 

 

 

 

 
Let an increasing sequence of points on segment ],[ ba  be given as follows: 

k
xa  < 

1k
x  < 

2k
x  < ... < 

2r
x  < 

1r
x  < bx

r
. In other words, as in 

the previous chapter of the book, segment ],[ ba  is covered with a grid whose 

nodes have coordinates 
k

x , 
1k

x , 
2k

x , ..., 
2r

x , 
1r

x , 
r

x . Segments 

],[
1 ii

xx  are called elementary segments, k + 1 ≤ i ≤ r. 

Let )(xf  be a grid function, and 
k

f , 
1k

f , 
2k

f , ..., 
2r

f , 
1r

f , 
r

f   

are given values of )(xf  at points 
k

x , 
1k

x , 
2k

x , ..., 
2r

x , 
1r

x , 
r

x ,  

respectively. 

A cubic spline (or third-degree spline, Fig. 4.1) is function )(xS , which  

satisfies the following conditions: 

1) on each elementary segment 
1i

x  ≤ x  ≤ 
i

x  (k + 1 ≤ i ≤ r), the spline co-

incides with a third-degree polynomial (generally, the polynomials are different 

on different elementary segments); 

2) at the grid nodes, the spline has the corresponding grid function values: 

ii
fxS )( ; 

3) the spline has a continuous first derivative, i.e., the spline is smooth; 

4) the spline has a continuous second derivative; 

5) on the boundaries of segment ],[ ba , the spline satisfies additional condi-

tions (we will consider these boundary conditions below, closer to the end of the 

section). 

According to above item (2), the )(xS  graph passes through points (
k

x , k
f ), 

(
1k

x , 1k
f ), (

2k
x , 2k

f ), . . . , (
2r

x , 2r
f ), (

1r
x , 1r

f ), (
r

x , r
f ). 

According to items (3) and (4), the jumps of the first and second derivatives of 

)(xS  are absent at the interior grid nodes, i.e., at 
1k

x , 
2k

x , ..., 
2r

x , 
1r

x . 

The values of the second derivative, )(xS , at the grid nodes are called  

moments of the cubic spline: 
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ii
Mx

dx

Sd
)(

2

2

, 

where 
i

M  is the spline moment, k ≤ i ≤ r. 

 

 
 

Fig. 4.1. The cubic spline graph 

 

Let the spline moments, 
i

M  (k ≤ i ≤ r), be given (later we will know how to 

calculate them). In this case, items (1) and (4) of the spline definition give  

the following expression for the second derivative on elementary segment 

],[
1 ii

xx : 

i

i

i
i

i

i h

xx
M

h

xx
MxS

1

1
)( ,                          (4.1) 

where 
1iii

xxh  is the elementary segment’s length or the grid step, k + 1 ≤  

i ≤ r. 

Below, we will obtain expressions for the spline and its first derivative. 

Let us integrate expression (4.1): 

1

2

1

2

1 2

)(

2

)(
)( C

h

xx
M

h

xx
MxS

i

i

i
i

i

i
,                  (4.2) 

where 
1

C  is the integration constant. 

Integrating expression (4.2), we have 
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21

3

1

3

1 6

)(

6

)(
)( CxC

h

xx
M

h

xx
MxS

i

i

i
i

i

i
,               (4.3) 

where 
2

C  is the integration constant. 

Integration constants 
1

C  and 
2

C  will be determined by means of item (2)  

of the spline definition, according to which 
ii

fxS )(  and 
11

)(
ii

fxS  or 

i

ii

iii h

xx
MfCCx

6

)(
3

1

21
, 

i

ii

iii h

xx
MfCCx

6

)(
3

1

11211
. 

The solution of this system of two linear algebraic equations (with unknown 

1
C  and 

2
C ) has the following form: 

i

ii

i

ii h
MM

h

ff
C

6

11

1
, 

i

i

ii

i

i

i

i

i

i

i

i
x

h
Mx

h
M

h

x
f

h

x
fC

66 111

1

2
. 

By substituting the last two expressions for 
1

C  and 
2

C  into (4.3) and (4.2), 

we obtain the following expressions for the spline and its derivative on segment 

],[
1 ii

xx : 

i

iii

i
i

i

i
i

i

i h

xxhM
f

h

xx
M

h

xx
MxS

66

)(

6

)(
)(

2

1

1

3

1

3

1
 

i

iii

i h

xxhM
f

1

2

6
,                                   (4.4) 

i

ii

i

i

i

i

i

i h

ff

h

xx
M

h

xx
MxS

1

2

1

2

1 2

)(

2

)(
)(  

i

ii
h

MM

6

1
.                                           (4.5) 
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Expressions (4.1), (4.4) and (4.5) include moments 
1i

M  and 
i

M . 

Below, we will obtain the system of linear algebraic equations with the 

tridiagonal coefficient matrix, which allows us to calculate moments 
k

M , 

1k
M , 

2k
M , ..., 

2r
M , 

1r
M , 

r
M . 

The expression for the spline derivative at point 
i

x  on the left, 

i

ii

i

ii

i

ii

ii
h

MM

h

ff

h

xx
MxS

62

)(
)0(

11

2

1
,         (4.6) 

follows from (4.5). 

Expression (4.5) for elementary segment 
i

x  ≤ x  ≤ 
1i

x  looks like 

1

1

1

2

1
1

2

1

2

)(

2

)(
)(

i

ii

i

i

i
i

i

i h

ff

h

xx
M

h

xx
MxS  

1

1

6
i

ii
h

MM
.                                        (4.7) 

The expression for the spline derivative at point 
i

x  on the right, 

1

1

1

1

1

2

1

62

)(
)0(

i

ii

i

ii

i

ii

ii
h

MM

h

ff

h

xx
MxS ,     (4.8) 

follows from (4.7). 

According to item (3) of the spline definition, the left and right derivatives 

are equal: 

)0()0(
ii

xSxS . 
 

By means of expressions (4.6) and (4.8), the last equality can be written as  

follows: 

i

ii

i

ii

i

i

i

ii

i

i

h

ff

h

ff
M

h
M

hh
M

h
1

1

1

1

11

1 636
, 

where i = k + 1, k + 2, …, r – 2, r – 1 are the numbers of the interior grid nodes, or 
 

iiiiii
MMM

11
2 ,                                (4.9) 

 

where 

1ii

i

i hh

h
, 
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i

ii

i

i hh

h
1

1

1
,                                    (4.10) 

1

1

1

1

6

ii

i

ii

i

ii

i hh

h

ff

h

ff

. 

As the boundary conditions in item (5) of the spline definition, we will use 

the following linear equations connecting the moments at the ends of segment 

],[ ba : 

kkkk
MM

1
2 ,                                     (4.11) 

rrrr
MM 2

1
,                                      (4.12) 

where 
k

, 
k

, 
r
, 

r
 are given parameters, k and r are numbers of the left and 

right grid nodes; ax
k

 and bx
r

. 

If a given value of the function derivative on the left boundary, )(aff
k

, is 

the condition in item (5), then (4.8) at i = k leads to the following expressions for 

the parameters of equation (4.11): 

1
k

,   
k

k

kk

k
k

f
h

ff

h
1

1

1

6
.                      (4.13) 

If a given value of the function derivative on the right boundary, )(bff
r

, 

is the condition in item (5), then (4.6) at i = r leads to the following expressions 

for the parameters of equation (4.12): 

1
r

,   

r

rr

r
r

r h

ff
f

h

1
6

.                         (4.14) 

A given value of the second derivative on the left boundary (
kk

fM ) leads 

to the following expressions for the parameters of equation (4.11): 

0
k

,   
kk

f2 .                                       (4.15) 

A given value of the second derivative on the right boundary (
rr

fM ) 

leads to the following expressions for the parameters of equation (4.12): 

0
r

,   
rr

f2 .                                       (4.16) 

The constancy of the second derivative at the left end of segment ],[ ba  

(
1kk

MM ) leads to 
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2
k

,   0
k

                                         (4.17) 

in equation (4.11). 

The constancy of the second derivative at the right end of segment ],[ ba  

(
1rr

MM ) leads to 

2
r

,   0
r

                                         (4.18) 

in equation (4.12). 

Expressions (4.13) — (4.18), as well as equations (4.11) and (4.12), may be 

called spline boundary conditions. 

Moments 
k

M , 
1k

M , 
2k

M , ..., 
2r

M , 
1r

M , 
r

M  are determined by 

solving the system of linear algebraic equations (4.9), (4.11) and (4.12). In this 

case, the decomposition method (Section 3.2) can be used because forms (3.9), 

(3.11) and (3.12) are available for equations (4.9), (4.11) and (4.12). 

After calculating the moments, the values of the cubic spline and its first and 

second derivatives at any point x of segment ],[ ba  can be calculated according 

to formulas (4.4), (4.5) and (4.1), respectively. 

The error of interpolating the )(xf  function (and its derivatives) by the 

)(xS  spline (and by its derivatives) is determined by the following expression: 

)()()( 4)()( n

max

nn hOxSxf ,                              (4.19) 

where }{max
1

i

rik

max
hh  is the maximum grid step ( 0

max
h ), n = 0, 1, 2, 

3 is the derivative order, )()()0( xfxf , )()()0( xSxS . We considered the 

sense of the O notation used here in Section 3.1. 
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4.2. Spline interpolation 

 

 

 

 

 
Into Module8 of the BookNM workbook, we enter the following declaration 

of the subroutine, which realizes the decomposition method for solving the sys-

tem of linear algebraic equations (4.9), (4.11) and (4.12), i.e., for calculating the 

spline moments. 
 

Listing 4.1 
 

Sub mos(ByVal k, ByVal r, ByRef X() As Double, _ 

    ByRef F() As Double, _ 

    ByVal GAMMAK, ByVal DELTAK, _ 

    ByVal ALPHAR, ByVal DELTAR, _ 

    ByRef M() As Double) 

    Dim alpha As Double 

    Dim gamma As Double, delta As Double 

    Dim i As Integer, w As Double 

    Dim H() As Double: ReDim H(k + 1 To r) 

    Dim P() As Double: ReDim P(k + 1 To r) 

    Dim Q() As Double: ReDim Q(k + 1 To r) 

    For i = k + 1 To r 

        H(i) = X(i) - X(i - 1) 

    Next i 

'Forward sweep: 

    P(k + 1) = -GAMMAK / 2 

    Q(k + 1) = DELTAK / 2 

    For i = k + 1 To r - 1 

        w = H(i) + H(i + 1) 

        alpha = H(i) / w 

        gamma = 1 - alpha 

        delta = 6 * ((F(i + 1) - F(i)) / H(i + 1) - _ 

        (F(i) - F(i - 1)) / H(i)) / w 

        w = alpha * P(i) + 2 

        P(i + 1) = -gamma / w 

        Q(i + 1) = (delta - alpha * Q(i)) / w 

    Next i 
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'Backward sweep: 

    M(r) = (DELTAR - ALPHAR * Q(r)) / _ 

    (ALPHAR * P(r) + 2) 

    For i = r To k + 1 Step -1 

        M(i - 1) = P(i) * M(i) + Q(i) 

    Next i 

End Sub 

 

The subroutine name (mos) occurs from “moments of spline”. The parame-

ters have the following sense: 

 k, r are numbers of the left and right boundary nodes of the grid on seg-

ment ],[ ba ; 

 X is an array of grid nodes; 

 F is an array of the )(xf  function values at the grid nodes; 

 GAMMAK, DELTAK correspond to 
k

 and 
k

 in left boundary condition 

(4.11); 

 ALPHAR, DELTAR correspond to 
r

 and 
r
 in right boundary condition 

(4.12); 

 M is an array intended for the spline moments. 

The mos subroutine is based on the foba subroutine (Section 3.15). 

In practice, not only the spline with boundary conditions (4.11) and (4.12) is 

used, but also the periodic spline defined as follows. 

Let )(xf  be a periodic grid function with period abΠ : 

)()(
ikri

xfxf , 

where abxx
ikri

, i . 

The periodic third-degree spline is function )(xS  defined on the whole axis, 

x , for which: 
 

1) the first four conditions of the cubic spline definition (p. 282) are satisfied 

on segment ],[ ba ; 

2) )()(
ikri

xSxS  and )()(
ikri

xSxS  for i . 
 

We will use the periodic third-degree spline in Section 5.11, at that, we will 

not calculate the moments of this spline. If the reader needs a subroutine for cal-

culating the moments of the periodic spline, its development is not a difficult 

task: the forwback subroutine (Section 3.19), realizing the cyclic decomposi-

tion method, should be the basis for the new subroutine. 
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Let us consider a subroutine of spline interpolation intended for calculating 

values of the cubic spline (periodic or with the boundary conditions) and its first 

and second derivatives at given point χ of segment ],[ ba . This subroutine is 

named si from “spline interpolation”. 

Into Module9 of the BookNM workbook, we enter the following declaration 

of the si subroutine: 
 

Listing 4.2 
 

Sub si(ByVal k, ByVal r, ByRef X() As Double, _ 

    ByRef F() As Double, ByRef M() As Double, _ 

    ByVal chi, ByRef s, _ 

    Optional s1 As Variant, Optional s2 As Variant) 

    Dim i As Integer 

    Dim h As Double, hh As Double 

    Dim h1 As Double, h1h1 As Double 

    Dim h2 As Double, h2h2 As Double 

'Searching elementary segment containing chi: 

    For i = k + 1 To r 

        If X(i) > chi Then Exit For 

    Next i 

    If i > r Then i = r 

'Calculating value of cubic spline at point chi: 

    h = X(i) - X(i - 1): hh = h * h 

    h1 = chi - X(i - 1): h1h1 = h1 * h1 

    h2 = X(i) - chi: h2h2 = h2 * h2 

    s = (M(i - 1) * h2h2 * h2 + M(i) * h1h1 * h1) / _ 

    (6 * h) + _ 

    ((F(i - 1) - M(i - 1) * hh / 6) * h2 + _ 

    (F(i) - M(i) * hh / 6) * h1) / h 

'Calculating spline's first derivative at point chi: 

    If Not IsMissing(s1) Then 

        s1 = (-M(i - 1) * h2h2 + M(i) * h1h1) / _ 

        (2 * h) + _ 

        (F(i) - F(i - 1)) / h - _ 

        (M(i) - M(i - 1)) / 6 * h 

    End If 

'Calculating spline's second derivative at point chi: 

    If Not IsMissing(s2) Then 

        s2 = (M(i - 1) * h2 + M(i) * h1) / h 

    End If 

End Sub 



4.2. Spline interpolation 

291 

This subroutine has 9 parameters, and the last two parameters, s1 and s2, 

are optional. The parameters have the following sense: 

 k, r are numbers of the left and right boundary nodes of the grid on  

segment ],[ ba ; 

 X is an array of grid nodes; 

 F is an array of the )(xf  function values at the grid nodes; 

 M is an array of the spline moments, for example, determined by the mos 

subroutine execution; 

 chi is given point χ  on ],[ ba ; 

 s is a variable (memory cell) intended for the spline’s value at the χ point; 

 s1, s2 are variables respectively intended for the spline’s first and  

second derivatives at the χ point. 

In the si subroutine, cycle For…Next is used to find elementary segment 

],[
1 ii

xx  containing the χ point. After finding this segment, the spline’s value 

is calculated according to formula (4.4), and, if needed, the spline’s first and  

second derivatives are calculated according to (4.5) and (4.1), respectively. 
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4.3. Use of cubic spline for processing  

transistor electrical characteristics 

 

 

 

 
Transistors are the base elements of modern radio electronics. Two types of 

transistors exist — bipolar and field-effect transistors. Both those and other such 

elements are three-electrode devices based on semiconductors. 

Let us consider a concrete example of using the cubic spline construction for 

processing electrical characteristics of a field-effect transistor, and such, in which 

the main carriers of electric current are electrons rather than holes. 

The field-effect transistor electrodes are called source, drain and gate. With-

out delving into the device physics, we note the following regarding the elec-

trodes: 

 the source injects electrons into the semiconductor, the drain collects  

these electrons, the gate regulates the electron flow; 

 by varying the electric potential difference between the gate and the 

source, 
gs

U , we change the drain current, 
d

I . 

The major electrical characteristics of the field-effect transistor are the output 

current-voltage characteristics (OCVC) representing dependences of the drain 

current, 
d

I , on the potential difference between the drain and the source, 
ds

U , 

for various values of 
gs

U . Fig. 4.2 shows the OCVC calculated by means of 

mathematical model [10] for electron-hole plasma in the transistor. The simula-

tion based on this model is quite time-consuming: the calculation of the 
d

I  value 

(for given 
gs

U  and 
ds

U ) can take hours on a personal computer. 

In the bottom right corner of this book’s cover, we see the two-dimensional 

distribution of electron concentration in the transistor for 
gs

U  = -3 V and 
ds

U  = 

14 V. This picture, as well as the OCVC, is from article [10]. 

Listing 4.3 with tabular representation of the OCVC is given below. In this 

table, as well as in Fig. 4.2, the values of potential differences are in volts, the 

current is in milliamperes. We see that 18 cells of the table are empty. It is  

because the 
d

I  value was not calculated for some values of 
gs

U  and 
ds

U  due  

to economic reasons. 
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Fig. 4.2. The output current-voltage characteristics  

of the modern transistor with 1 mm gate width 
 

Listing 4.3 
 

The original table of the transistor characteristics 
 

U
ds

             U
gs

 0 -1 -2 -3 

0 0 0 0 0 

0.2 94.5065 39.3361 0 0 

0.4 179.9835  0 0 

0.5 206.7334 45.3559 0 0 

1 207.3824 49.0988 0 0 

2 211.1779 55.4772 0 0 

4 214.8481 66.276 0 0 

6 217.707 76.2717 0 0 

7.65 224.2229  0 0 

8   0 0 

8.35  89.793 0 0 

9   0.809 0 

10 242.0198 102.0164 5.1056 0 

10.8   10.369 0 

11    0 

11.65    1.0724 

12 266.5736 123.9969 22.674  

13   37.3677 8.6525 

14 298.5628 157.1723 58.0258 42.0182 
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To build electrical circuits based on the above transistor, we must know the 

parameters of its equivalent circuit. To determine these parameters by method 

[11], the empty cells of the OCVC table should be filled beforehand. The pro-

gram given below allows doing it by means of the spline interpolation. 
 

Listing 4.4 
 

Sub main() 

    Dim X() As Double 

    Dim F() As Double 

    Dim MOM() As Double 

    Dim m As Integer, n As Integer 

    Dim g As Integer, d As Integer 

    Dim k As Integer, r As Integer 

    Dim s As Double 

    m = Selection.Rows.Count      'quantity of rows 

    n = Selection.Columns.Count   'quantity of columns 

    ReDim X(2 To n) 

    ReDim F(2 To n) 

    ReDim MOM(2 To n) 

    For g = 2 To m                'setting row number 

'Formation of arrays X and F for row No. g: 

        For r = 2 To n 

            X(r) = Selection.Cells(1, r) 

            F(r) = Selection.Cells(g, r) 

            If F(r) <> 0 Then Exit For 

        Next r 

        k = r 

        For d = k + 1 To n 

            If Selection.Cells(g, d) <> 0 Then 

                r = r + 1 

                X(r) = Selection.Cells(1, d) 

                F(r) = Selection.Cells(g, d) 

            End If 

        Next d 

'Calculating array MOM of moments for row No. g: 

        Call mos(2, r, X, F, 0, 0, 0, 0, MOM) 

'Filling all cells of row No. g: 

        For d = 2 To n 

            Call si(2, r, X, F, MOM, _ 

            Selection.Cells(1, d), s) 

            Selection.Cells(g, d) = s 

        Next d 
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    Next g 

End Sub 

 

We enter this program into Module1 of the BookNM workbook. The source 

data are the values given in table Listing 4.3. The program uses this table in the 

transposed form (Fig. 4.3). 

 

 
 

Fig. 4.3. The transposed table of the transistor characteristics:  

the number format without decimals is set for range C3:U6 

 

For transposing a matrix, Excel includes the TRANSPOSE function (p. 141), 

which interprets the contents of empty cells as zero. 

After using the TRANSPOSE function, we fulfill the following operations: 

1) select the table shown in Fig. 4.3, which is the transposition result; 

2) copy this table into Windows Clipboard, for example, by clicking on the 

Copy button in the Clipboard area of the Home tab; 

3) click on the Paste arrow; 

4) in the Paste Values area of the open window, click on the left icon. 

The table, depicted in Fig. 4.3, visually does not change. We must select this 

table of the transistor characteristics (range B2:U6) before running program  

Listing 4.4. 

When executing the program, the g cycle parameter accepts the values of  

2, 3, 4 and 5. Respectively, the cells of the 2nd, 3rd, 4th and 5th rows of the  

selected table are being filled. 

Let us consider arrays X and F at a fixed value of g. Before calling the mos 

subroutine, arrays X and F contain the following values. 

The F array begins with zero, i.e., F(2) = 0. The next elements of the F  

array are the values of the g-th row (of the selected table), but not all: the zeros, 

which are between the nonzero values, are eliminated. It is these zeros that filled 

the empty cells of table Listing 4.3 upon its transposition by the TRANSPOSE 

function. 
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The X array contains the values of the 1st row (of the selected table), which 

are located above the g-th row’s values included in the F array. 

For example: 

 for fixed g = 2, array F contains the values of F(2) = 0, F(3) = 95, 

F(4) = 180, F(5) = 207, F(6) = 207, F(7) = 211, F(8) = 215, 

F(9) = 218, F(10) = 224, F(11) = 242, F(12) = 267, F(13) = 299, 

and array X contains the values of X(2) = 0, X(3) = 0.2, X(4) = 0.4, 

X(5) = 0.5, X(6) = 1, X(7) = 2, X(8) = 4, X(9) = 6, X(10) = 7.65, 

X(11) = 10, X(12) = 12, X(13) = 14 (k = 2, r = 13); 

 for fixed g = 4, array F contains the values of F(2) = 0, F(3) = 0, 

F(4) = 0, F(5) = 0, F(6) = 0, F(7) = 0, F(8) = 0, F(9) = 0, F(10) = 0, 

F(11) = 0, F(12) = 0, F(13) = 1, F(14) = 5, F(15) = 10, F(16) = 23, 

F(17) = 37, F(18) = 58, and array X contains the values of X(2) = 0, 

X(3) = 0.2, X(4) = 0.4, X(5) = 0.5, X(6) = 1, X(7) = 2, X(8) = 4, 

X(9) = 6, X(10) = 7.65, X(11) = 8, X(12) = 8.35, X(13) = 9, 

X(14) = 10, X(15) = 10.8, X(16) = 12, X(17) = 13, X(18) = 14  

(k = 2, r = 18). 

For every value of g (2, 3, 4 and 5), the MOM array of the spline moments, 

corresponding to arrays X and F, is calculated by means of the mos subroutine. 

In the call of this subroutine, boundary conditions (4.15) and (4.16) are used, 

where 0
)(2 gr

ff . The values, being calculated when executing the si sub-

routine, fill the cells of the g-th row of the table. Thus, zero or nonzero values 

fill the cells with zeros of Fig. 4.3. Fig. 4.4 shows the program execution result. 

 

 
 

Fig. 4.4. The transposed table of the transistor characteristics after the execution 

 

After transposing the last table (Fig. 4.4) by means of the TRANSPOSE 

function, we have table Listing 4.5, which is similar to Listing 4.3, but without 

empty cells. Table Listing 4.5 can be used for calculating parameters of the tran-

sistor equivalent circuit by method [11]. 
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Listing 4.5 
 

The completed table of the transistor characteristics 
 

U
ds

             U
gs

 0 -1 -2 -3 

0 0 0 0 0 

0.2 94.5065 39.3361 0 0 

0.4 179.9835 47.336 0 0 

0.5 206.7334 45.3559 0 0 

1 207.3824 49.0988 0 0 

2 211.1779 55.4772 0 0 

4 214.8481 66.276 0 0 

6 217.707 76.2717 0 0 

7.65 224.2229 85.364 0 0 

8 226.068 87.537 0 0 

8.35 228.206 89.793 0 0 

9 232.931 94.227 0.809 0 

10 242.0198 102.0164 5.1056 0 

10.8 250.805 109.515 10.369 0 

11 253.214 111.626 12.04 0 

11.65 261.644 119.291 18.554 1.0724 

12 266.5736 123.9969 22.674 1.102 

13 282 139.645 37.3677 8.6525 

14 298.5628 157.1723 58.0258 42.0182 
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4.4. Spline integration 

 

 

 

 

 
According to the rules of integration and basic integrals [3], the integral of 

polynomial (4.4) over segment ],[
1 ii

xx  equals 

311

1

242
)(

i

ii

i

ii
i

x

i
x

h
MM

h
ff

dxxS . 

 

Therefore, the integral of the spline over segment ],[ ba  equals 

r

ki
i

ii
r

ki
i

ii
b

a

h
MM

h
ff

dxxS

1

31

1

1

242
)( .         (4.20) 

 

Formulas (4.19) and (4.20) give the following estimation of the spline inte-

gration error: 

)()()( 4

max

b

a

b

a

hOdxxSdxxf , 

where 0
max

h  is the maximum grid step. 

Let us enter the following declaration of function ios (from “integral of 

spline”) into Module10 of the BookNM workbook. 
 

Listing 4.6 
 

Function ios(ByVal k, ByVal r, ByRef X() As Double, _ 

    ByRef F() As Double, ByRef M() As Double) 

    Dim i As Integer 

    Dim h As Double 

    ios = 0 

    For i = k + 1 To r 

        h = X(i) - X(i - 1) 

        ios = ios + (F(i - 1) + F(i)) / 2 * h - _ 

            (M(i - 1) + M(i)) / 24 * h ^ 3 

    Next i 

End Function 
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The ios function returns (into the program) the value of the integral of 

spline S(x) over segment ],[ ba . Parameters k, r, X, F and M have the same 

sense as the corresponding parameters of the si subroutine (p. 291). We will use 

the ios function for solving the following task. 

Table Listing 4.7 below is taken from Task 3.1 in book [8]. It contains the 

mass of a vertically falling plastic foam ball (with radius equal to one inch) and 

the results of measurement of its coordinate at different instants of time. 
 

Listing 4.7 
 

Experimental dependence of coordinate  

of a falling ball versus time 
 

Ball mass M in kilograms 0.000254 

Time t in seconds Coordinate y in meters 

-0.132 0 

0 0.075 

0.1 0.26 

0.2 0.525 

0.3 0.87 

0.4 1.27 

0.5 1.73 

0.6 2.23 

0.7 2.77 

0.8 3.35 

 

Because of the air resistance, the ball movement differs from the movement 

of a material point with the same mass, M = 0.000254 kg. To estimate this dif-

ference, we have to calculate the ball velocity at moment t = 0.8 s and compare it 

with the corresponding velocity of the material point. 

For solving this task, we use the laws of mechanics as follows: 

 according to the work-energy theorem, the change in kinetic energy of the 

ball is equal to the work done by the forces acting on the ball, i.e., by the gravita-

tional and air resistance forces; 

 according to Newton’s second law, the resultant of the forces, acting on 

the ball, is equal to the product of its mass, M, and acceleration, 
2

2

dt

yd
, which is  

a function of the y coordinate. 

Thus, the change in kinetic energy of the ball (which will be calculated by a 

program) is equal to 
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b

a

dyyyMW )(
2

,                                        (4.21) 

where a = 0, b = 3.35, 

2

2

2
)(

dt

yd
yy .                                            (4.22) 

 

Let us consider the following program for calculating the change in kinetic 

energy of the ball. 
 

Listing 4.8 
 

Sub main() 

    Dim T() As Double 

    Dim Y() As Double 

    Dim Y2() As Double 

    Dim MOM() As Double 

    Dim m As Integer 

    Dim i As Integer 

    Dim W As Double 

    m = Selection.Rows.Count         'quantity of rows 

    ReDim T(3 To m) 

    ReDim Y(3 To m) 

    ReDim Y2(3 To m) 

    ReDim MOM(3 To m) 

'Inputting dependence of coordinate Y versus time T: 

    For i = 3 To m 

        T(i) = Selection.Cells(i, 1) 

        Y(i) = Selection.Cells(i, 2) 

    Next i 

'Calculating spline moments, i.e., acceleration Y2: 

1:  Call mos(3, m, T, Y, -2, 0, -2, 0, Y2) 

'Calculating and outputting change in kinetic energy: 

2:  Call mos(3, m, Y, Y2, -2, 0, -2, 0, MOM) 

3:  W = Selection.Cells(1, 2) * ios(3, m, Y, Y2, MOM) 

4:  MsgBox "W =" & Str(Round(W, 6)) & " J" 

End Sub 
 

The source data for this program are the values given in table Listing 4.7 

(Fig. 4.5). We have to select this Excel table before running the program. 

The program contains two calls of the mos subroutine, operators 1 and 2.  

In these calls, we use boundary conditions (4.17) and (4.18) for the constancy of 

the spline moments at the left and right ends of segment ],[ ba : 
43

MM  and 



4.4. Spline integration 

301 

1mm
MM  (m = 12). Operator 1 calculates the )(

2
yy  function values accord-

ing to formula (4.22). Operator 2 calculates array MOM of the spline moments, 

which are used for integrating the )(
2

yy  function over ],[ ba . Operator 3, con-

taining the call of the ios function, calculates the change in kinetic energy of 

the ball according to formula (4.21). When executing operator 4, the calculated 

value is rounded up to six decimal places and displayed in the standard window 

(Fig. 4.6). To finish the program execution, we must click on the OK button in 

this window. 
 

 
 

Fig. 4.5. The Excel table containing the experimental data 
 

 
 

Fig. 4.6. The execution result 
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According to the program execution result (Fig. 4.6), the change in kinetic 

energy of the ball is equal to 

J004542.0W . 

Because the material point’s acceleration is equal to the free fall acceleration,  

g = 0.981 m / s
2
, the change in its kinetic energy on segment ],[ ba  is equal to the 

following value: 

J008347.0)( abMg . 

Because of the zero value of the ball velocity at moment t = -0.132 s, the 

ball’s kinetic energy at t = 0.8 s is equal to W: 

J004542.0
2

2M V
W . 

This gives the following value of the ball velocity at moment t = 0.8 s: 

s/m5.980
2

M

W
V . 

The corresponding value for the material point is 

s/m8.107
)(2

M

abMg
V . 

Thus, the air resistance plays an important role in the fall of the plastic foam ball. 

To consolidate the material of this and the previous sections, we advise the 

reader to write a program for calculating the average value of function )(xf  on 

segment ],[ ba . Formula 

b

a

average
dxxf

ab
f )(

1
 

and the cubic spline on uniform grid 
0

xa  < 
1

x  < 
2

x  < ... < 
2n

x  < 
1n

x  < 

bx
n

 must be used. The )(xf  function is from Appendix 4; segment ],[ ba  is 

this function’s domain. 
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4.5. Iterative methods for solving  

the nonlinear algebraic equation 

 

 

 

 
Let nonlinear function )(xf  and segment ],[ vu  be given with the following 

properties: 

 function )(xf  is continuous and monotonous on ],[ vu ; 

 the function values on the left and right boundaries of segment ],[ vu  

have different signs. 

We will consider nonlinear algebraic equation 
 

0)(xf .                                               (4.23) 

It is obvious that this equation has one and only one solution on ],[ vu . We have 

to find this solution. 

A segment containing a unique solution of equation (4.23), for example 

],[ vu , is called the uncertainty segment. 

Equation (4.23) can be solved by using the Solver add-in for Excel. Such  

usage of Solver will be considered on an example of 
 

5.1cos)( xxxf .                                    (4.24) 

For this function, segment [0.5, 2.5] is the uncertainty segment (this is easily 

verified). 

We enter an initial approximation of the solution, for example 2, into cell G1. 

Into cell F1, we enter formula 

 
=G1-COS(G1)-1.5 

 

corresponding to mathematical formula (4.24). Fig. 4.7 shows the worksheet 

after clicking on the tick button of the Excel formula bar. 

Let us fulfill the following operations: 

1) Data > Solver in area Analysis; 

2) in the Solver Parameters window opened, enter $F$1 into text box Set 

Objective; 

3) turn on option Value Of, and put zero into the corresponding text box; 

4) enter $G$1 into text box By Changing Variable Cells; 

5) enter GRG Nonlinear into box Select a Solving Method by means of the 

drop-down list (Fig. 4.8); 
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6) click on the Solve button; 

7) in the Solver Results window opened (Fig. 4.9), click on OK to finish 

solving equation (4.23), (4.24). 

 

 
 

Fig. 4.7. The Excel worksheet before start of solving equation (4.23), (4.24) 

 

 
 

Fig. 4.8. The Solver Parameters window before start of solving the equation 
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Fig. 4.9 

 

The following solution results are given in Fig. 4.10: 

 cell G1 contains the result of solving equation (4.23), (4.24): x  = 

1.535395; 

 cell F1 contains 1.44E-07. 

The last value, f (1.535395) = 1.44·10
-7

, is the so-called residual right-hand 

side of equation (4.23), (4.24). It characterizes the accuracy of solving this  

equation. 

 

 
 

Fig. 4.10. The Excel worksheet upon termination of solving the equation 
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If the accuracy of the solution is unsatisfactory, we must: 

1) open the Options window by clicking on the Options button in the Solver 

Parameters window depicted in Fig. 4.8; 

2) change settings in the Options window; 

3) click on the OK button for returning to the Solver Parameters window. 

The limitation of the Solver add-in is obvious: it “must know” how to calcu-

late the value of )(xf  at an arbitrary value of x. Therefore, we cannot use this 

procedure if )(xf  is a tabular (grid) function. 

Below, we will develop a program for solving equation (4.23), in which 

)(xf  is a tabular function. Let us consider the bisection method, which will be 

used in this program. 

Let 
u

f  and 
v

f  be the values of )(xf  on the corresponding boundaries of 

segment ],[ vu , and these values have different signs. The bisection method  

includes the following steps. 

1. The midpoint of segment ],[ vu  and the function value in this midpoint 

are calculated according to formulas 

2/)( vuw                                             (4.25) 

and )(wff
w

. 

2. If the signs of 
w

f  and 
u

f  are the same, the left boundary of ],[ vu  is 

shifted to the right: assignments wu  and 
wu

ff  are performed. Further, the 

4th item is fulfilled. 

3. If the signs of 
w

f  and 
v

f  are the same, the right boundary of ],[ vu  is 

shifted to the left: assignments wv  and 
wv

ff  are performed. 

4. The previous three items are repeated (that is, the iteration is repeated) 

until condition 

uv                                                 (4.26) 

is satisfied, where  is a given positive constant. 

5. When condition (4.26) is satisfied, the iterative process of solving equa-

tion (4.23) terminates. The w value is considered as the solution of this equation. 

If the residual right-hand side of equation (4.23), )(wff
w

, is not small 

enough, we have to reduce the value of  in condition (4.26). 

If the uncertainty segment is not known, it can be found by means of the step-

by-step movement along the x axis in the direction of decrease or increase of the 

)(xf  function as long as 
u

f  and 
v

f  have identical signs, i.e., until satisfaction 

of condition 0
vu

ff . In Section 1.13, we already talked about the movement 
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along the x axis when considering various cycles. In Section 6.2, the step-by-step 

movement will be used to find the segment that contains the minimum point of  

a nonlinear function of one variable. 

The limitation of the bisection method is the same as for the Solver add-in: 

the program realization of the method “must know” how to calculate the )(xf  

value at an arbitrary value of x. Therefore, the program realization of the bisec-

tion method for tabular function )(xf  will use the spline interpolation to deter-

mine the function value at any x value, i.e., for the function continuation. 

We will solve the following task by the bisection method. 

Time moments t (further, x) and corresponding values of coordinate y of the 

vertically falling plastic foam ball are given in table Listing 4.7 from the previ-

ous section. We are interested in the T moment of time when the ball has a given 

coordinate, for example Y = 1 m. 

The desired value of T is the solution of equation (4.23), where 
 

Yxyxf )()( .                                         (4.27) 

Because )(xy  is a grid function (defined by table Listing 4.7), )(xf  determined 

by (4.27) is a grid function too. 

According to table Listing 4.7: 

 at 3.0u  and 4.0v , segment ],[ vu  is the uncertainty segment; 

 13.01)3.0(yf
u

, 27.01)4.0(yf
v

. 

To solve equation (4.23), (4.27) by the bisection method, we will use the  

cubic spline to determine the function value for any x value (for example,  

35.0x ), i.e., for making the )(xf  function continuous. 

The following code is intended for determining moment T when the ball has 

a given Y coordinate. 
 

Listing 4.9 
 

Dim ns As Long                       'counter of calls 

Dim m As Integer 

Dim X() As Double 

Dim F() As Double 

Dim MOM() As Double 

 

Sub main() 

    Dim s As String, Y As Double 

    Dim i As Integer 

    Dim u As Double, fu As Double 

    Dim v As Double, fv As Double 

    Dim w As Double, fw As Double 
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    Dim epsilon As Double 

1:  s = InputBox("Enter value of Y and click OK") 

2:  Y = Val(s) 

    m = Selection.Rows.Count         'quantity of rows 

    ReDim X(3 To m) 

    ReDim F(3 To m) 

    ReDim MOM(3 To m) 

    For i = 3 To m 

        X(i) = Selection.Cells(i, 1) 

        F(i) = Selection.Cells(i, 2) - Y 

        If F(i) = 0 Then 

3:          MsgBox "T =" & Str(Round(X(i), 6)) 

            End 

        End If 

    Next i 

    If F(3) * F(m) > 0 Then 

        MsgBox "On boundaries of segment [" & _ 

        Cstr(X(3)) & ", " & Cstr(X(m)) & "], " & _ 

        vbCrLf & "function f(x) has identical signs" 

        End 

    End If 

'Calculating spline moments: 

    Call mos(3, m, X, F, -2, 0, -2, 0, MOM) 

'Searching uncertainty segment: 

    For i = 4 To m 

4:      If F(i - 1) * F(i) < 0 Then Exit For 

    Next i 

5:  epsilon = (X(i) - X(i - 1)) * 1E-6 

'Solving equation: 

    u = X(i - 1): fu = F(i - 1) 

    v = X(i): fv = F(i) 

    ns = 0 

6:  Call segment(u, fu, v, fv, w, fw, u, fu, v, fv) 

7:  If v - u >= epsilon GoTo 6 

8:  MsgBox "T =" & Str(Round(w, 6)) & vbCrLf & _ 

        CStr(ns) & " iterations" 

End Sub 

 

Sub segment(ByVal u As Double, ByVal fu As Double, _ 

    ByVal v As Double, ByVal fv As Double, _ 

    ByRef w As Double, ByRef fw As Double, _ 

    ByRef uu As Double, ByRef fuu As Double, _ 
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    ByRef vv As Double, ByRef fvv As Double) 

    ns = ns + 1 

    If Sgn(fu) = 0 Then 

        uu = u: fuu = fu 

        vv = u: fvv = fu 

        Exit Sub 

    End If 

    If Sgn(fv) = 0 Then 

        uu = v: fuu = fv 

        vv = v: fvv = fv 

        Exit Sub 

    End If 

9:  w = (u + v) / 2                  'bisection method 

    Call si(3, m, X, F, MOM, w, fw) 

    If Sgn(fw) = Sgn(fu) Then 

        uu = w: fuu = fw 

        Exit Sub 

    End If 

    If Sgn(fw) = Sgn(fv) Then 

        vv = w: fvv = fw 

    End If 

End Sub 

 

The source data are given in table Listing 4.7 (Fig. 4.5). We must select this 

Excel table before the code execution. A value of Y must be entered into the text 

box of the standard window (see operators 1 and 2 and Fig. 4.11). Uncertainty 

segment ],[
1 ii

xx  is determined by means of operator 4. 

 

 
 

Fig. 4.11. The window with the coordinate of the falling plastic foam ball 
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Further, equation (4.23), (4.27) is solved by the bisection method (see opera-

tors 6 and 7). In condition (4.26) for finishing the iterative process, the value of 

 is equal to a millionth part of the initial uncertainty segment’s length (see  

operator 5). 

In the iterative process, the segment subroutine is used for reducing the  

uncertainty segment length (see operator 6). This subroutine is declared below 

the main program. 

When executing operator 8, the solution of equation (4.23), (4.27) is rounded 

up to six decimal places and displayed in the standard window (Fig. 4.12):  

T = 0.334042. The number of iterations is also displayed in this window; it 

equals 20. We have to click on the OK button for finishing the execution of code 

Listing 4.9. 

 

 
 

Fig. 4.12. The window for the bisection method with the  

calculated moment of time and the number of iterations 

 

Let us use the secant method (instead of the bisection method) in the itera-

tive process of solving equation (4.23), (4.27). For that, formula (4.25) must be 

replaced with the following: 

uv

v

ff

fuv
vw

)(
.                                        (4.28) 

For obtaining the last formula, let us consider the geometric interpretation of 

the secant method depicted in Fig. 4.13. According to this figure, we can deter-

mine a new position ( wx ) of the uncertainty segment boundary (left or right) 

as follows: 

1) run the secant line through points (u, u
f ) and (v, v

f ); 

2) denote the coordinate of the crosspoint of this line with the x axis by w. 
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According to Fig. 4.13, the slope of the secant line, passing through points 

(u, u
f ) and (v, v

f ), is equal to 

wv

f

uw

f
vu . 

 

This ratio leads to formula (4.28). 

 

 
 

Fig. 4.13. The geometric interpretation of the secant method 

 

For replacing the iterative method in code Listing 4.9, we have to replace  

operator 9 with the following: 

 
9:  w = v -(v – u) * fv / (fv – fu)     'secant method 

 

Fig. 4.14 shows the result of executing the new version of code Listing 4.9 for  

Y = 1. As we see, the number of iterations is reduced to 12 (from 20). 

Let us consider the question of the convergence of the above iterative  

processes defined by formulas (4.25) and (4.28). Starting with the bisection 

method, we use the following designations: 

 xwj 1 ; 

 j  is xu  or xv  to get the same sign of j  as the sign of 1j  

defined above. 

Here, j is the iteration number, x  is the exact solution of the equation, that 

is, 0)(xf . 
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Fig. 4.14. The window for the secant method with the  

calculated moment of time and the number of iterations 

 

The x  location near any boundary of the initial uncertainty segment is the 

worst situation for the convergence. In this case, 
 

jj C1 ,                                            (4.29) 
 

where C is a constant close to 0.5 on the left. At an arbitrary location of x , 

double inequality 0 ≤ C < 0.5 is true for the bisection method. 

Formula (4.29) allows us to estimate the rate of the convergence of the itera-

tive process. According to this formula, quantity 1j  is proportional to the first 

power of quantity j , that is, the bisection method’s iterative process converges 

linearly. 

Similar consideration of the secant method also gives formula (4.29) for  

estimating the rate of the convergence of the corresponding iterative process, but 

with inequality 0 ≤ C < 1. 

In Section 5.5, we will consider another version of the secant method whose 

iterative process has quadratic convergence according to formula (5.26) or, in the 

simplest form, 
 

11 jjj C ,                                          (4.30) 
 

where C is a constant, 1j , j , 1j  are small quantities, j is the iteration 

number. 

We advise the reader to write a program for solving equation 0)(xf  on 

segment ],[ ba  by the bisection and secant methods. In this equation, )(xf  is  

a function from Appendix 4; segment ],[ ba  is this function’s domain. The user-
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defined form with the CheckBox element (for choosing the method) must be the 

user interface of the program. Segment ],[ ba  must be the initial uncertainty 

segment. 

In the next section, we will develop a noniterative method for solving the 

nonlinear algebraic equation with grid function )(xf . In Section 5.5, we will 

return to iterative methods for solving the nonlinear algebraic equation. 
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4.6. Noniterative method for solving  

the nonlinear algebraic equation 

 

 

 

 
In the previous section, we considered two iterative methods for solving 

equation (4.23), (4.27), at that, we used the spline interpolation of grid function 

(4.27) in the program realization of these methods. However, equation (4.23), 

(4.27) can be solved by means of the cubic spline construction without any itera-

tions. 

The fact is that, having calculated the moments of the spline, which corre-

sponds to grid function )(xf  on segment [-0.132, 0.8], we obtain the representa-

tion of )(xf  in the form of third-degree polynomial )(xS  on the uncertainty 

segment, for example ],[ vu  = [0.3, 0.4]. To obtain the value of T, it is enough to 

solve cubic equation 0)(xS , which can be written in canonical form 

023 dcxbxax .                                    (4.31) 
 

According to handbook [3], equation (4.23), (4.27) is solved in the following 

three stages if 0a . 

1. By substituting 

a

b
zx

3
,                                              (4.32) 

 

equation (4.31) is transformed to 
 

0233 qzpz ,                                       (4.33) 

where   
2

2

3

3
3

a

bac
p ,   

a

d

a

bc

a

b
q

23

3

327

2
2 . 

 

2. The real roots of equation (4.33) are calculated, one or three (two of 

which may coincide), and then the corresponding roots of equation (4.31) are 

calculated. 

For solving equation (4.33), we use the method represented in the table of 

Appendix 5. For subsequent calculations of the real roots of equation (4.31), we 

use formula (4.32). 

3. The unique solution of equation (4.23), (4.27) is determined. 
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The declaration of the table subroutine, intended for calculating the real 

roots of equation (4.31), follows: 
 

Listing 4.10 
 

Sub table(ByVal a, ByVal b, ByVal c, ByVal d, _ 

    ByRef x() As Double) 

    Dim b3a As Double, p As Double, q As Double 

    Dim r As Double, gamma As Double, phi As Double 

    Const beta = 1 / 3, pi = 3.141592654 

    x(1) = 1E+308 

    x(2) = 1E+308 

    x(3) = 1E+308 

    If 27 * a ^ 3 = 0 Then Exit Sub         'if a = 0 

    b3a = b / (3 * a) 

    p = (3 * a * c - b ^ 2) / (3 * a ^ 2) / 3 

    q = (2 * b ^ 3 / (27 * a ^ 3) - b * c / _ 

        (3 * a ^ 2) + d / a) / 2 

    r = Sgn(q) * Sqr(Abs(p)) 

    If r ^ 3 = 0 Then                       'if p = 0 

        x(1) = -Sgn(q) * Abs(2 * q) ^ beta - b3a 

        Exit Sub 

    End If 

    If q = 0 Then                           'if q = 0 

        x(1) = - b3a 

        If p < 0 Then 

            x(2) = Sqr(-3 * p) - b3a 

            x(3) = -Sqr(-3 * p) - b3a 

        End If 

        Exit Sub 

    End If 

    gamma = q / r ^ 3                       'gamma > 0 

    If p < 0 Then 

        If gamma <= 1 Then 

            phi = Atn(Sqr(1 - gamma ^ 2) / gamma) 

            x(1) = -2 * r * Cos(phi / 3) - b3a 

            x(2) = 2 * r * Cos((pi - phi) / 3) - b3a 

            x(3) = 2 * r * Cos((pi + phi) / 3) - b3a 

        Else 

            phi = Log(gamma + Sqr(gamma ^ 2 - 1)) 

            x(1) = -2 * r * _ 

            (Exp(phi / 3) + Exp(-phi / 3)) / 2 - b3a 

        End If 



Chapter 4. Cubic Spline 

316 

    Else 

        phi = Log(gamma + Sqr(gamma ^ 2 + 1)) 

        x(1) = -2 * r * _ 

        (Exp(phi / 3) - Exp(-phi / 3)) / 2 - b3a 

    End If 

End Sub 

 

The subroutine name (table) is due to the fact that the subroutine algorithm 

is based on the table in Appendix 5. Let us enter declaration Listing 4.10 into 

Module11 of the BookNM workbook. 

The table subroutine parameters have the following sense: 

 a, b, c, d are coefficients a, b and c and constant term d of cubic equation 

(4.31); 

 x is an array for real solutions (one or three; free elements of the x array 

are assumed to be equal to 10
308

). 

The following program is intended for determining the T moment when the 

falling plastic foam ball (from the two previous sections) has a given Y coordi-

nate. 
 

Listing 4.11 
 

Sub main() 

    Dim s As String, Y As Double 

    Dim m As Integer 

    Dim X() As Double 

    Dim F() As Double 

    Dim MOM() As Double 

    Dim i As Integer, h As Double 

    Dim a1 As Double, a2 As Double 

    Dim b1 As Double, b2 As Double 

    Dim a As Double, b As Double 

    Dim c As Double, d As Double 

    Dim T As Double 

    Dim xxx(1 To 3) As Double, k As Integer 

1:  s = InputBox("Enter value of Y and click OK") 

2:  Y = Val(s) 

    m = Selection.Rows.Count         'quantity of rows 

    ReDim X(3 To m) 

    ReDim F(3 To m) 

    ReDim MOM(3 To m) 

    For i = 3 To m 

        X(i) = Selection.Cells(i, 1) 

        F(i) = Selection.Cells(i, 2) - Y 
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        If F(i) = 0 Then 

3:          MsgBox "T =" & Str(Round(X(i), 6)) 

            End 

        End If 

    Next i 

    If F(3) * F(m) > 0 Then 

        MsgBox "On boundaries of segment [" & _ 

        CStr(X(3)) & ", " & CStr(X(m)) & "], " & _ 

        vbCrLf & "function f(x) has identical signs" 

        End 

    End If 

'Calculating spline moments: 

    Call mos(3, m, X, F, -2, 0, -2, 0, MOM) 

'Searching uncertainty segment: 

    For i = 4 To m 

4:      If F(i - 1) * F(i) < 0 Then Exit For 

    Next i 

'Forming cubic equation: 

    h = X(i) - X(i - 1) 

    a1 = MOM(i - 1) / (6 * h) 

    a2 = MOM(i) / (6 * h) 

    b1 = (F(i - 1) - MOM(i - 1) * h ^ 2 / 6) / h 

    b2 = (F(i) - MOM(i) * h ^ 2 / 6) / h 

5:  a = a2 - a1 

6:  b = 3 * a1 * X(i) - 3 * a2 * X(i - 1) 

7:  c = 3 * a2 * X(i - 1) ^ 2 - 3 * a1 * X(i) ^ 2 + _ 

    b2 - b1 

8:  d = a1 * X(i) ^ 3 - a2 * X(i - 1) ^ 3 + _ 

    b1 * X(i) - b2 * X(i - 1) 

'Solving linear equation: 

    If 27 * a ^ 3 = 0 And 2 * b = 0 Then 

9:      T = -d / c 

10:     MsgBox "T =" & Str(Round(T, 6)) & _ 

        vbCrLf & "- root of linear equation" 

        End 

    End If 

'Solving quadratic equation: 

    If 27 * a ^ 3 = 0 Then 

11:     T = (-c + Sqr(c ^ 2 - 4 * b * d)) / (2 * b) 

        If X(i - 1) <= T And T <= X(i) Then 

12:         MsgBox "T =" & Str(Round(T, 6)) & _ 

            vbCrLf & "- root of quadratic equation" 
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            End 

        End If 

13:     T = (-c - Sqr(c ^ 2 - 4 * b * d)) / (2 * b) 

        If X(i - 1) <= T And T <= X(i) Then 

14:         MsgBox "T =" & Str(Round(T, 6)) & _ 

            vbCrLf & "- root of quadratic equation" 

            End 

        End If 

    End If 

'Solving cubic or linear equation: 

15: Call table(a, b, c, d, xxx) 

    If xxx(2) = 1E+308 Then 

16:     MsgBox "T =" & Str(Round(xxx(1), 6)) & _ 

        vbCrLf & "- root of cubic equation" 

        End 

    End If 

    If X(i - 1) <= xxx(1) And xxx(1) <= X(i) _ 

    And X(i - 1) <= xxx(2) And xxx(2) <= X(i) _ 

    And X(i - 1) <= xxx(3) And xxx(3) <= X(i) Then 

17:     T = (F(i) * X(i - 1) - F(i - 1) * X(i)) / _ 

        (F(i) - F(i - 1)) 

18:     MsgBox "T =" & Str(Round(T, 6)) & _ 

        vbCrLf & "- root of linear equation" 

        End 

    End If 

    For k = 1 To 3 

        If X(i - 1) <= xxx(k) And xxx(k) <= X(i) Then 

19:         MsgBox "T =" & Str(Round(xxx(k), 6)) & _ 

            vbCrLf & "- root of cubic equation" 

            End 

        End If 

    Next k 

End Sub 

 

The source data are given in table Listing 4.7 (Fig. 4.5). We must select this 

Excel table before the program execution. The value of Y must be entered into 

the text box of the standard window (see operators 1 and 2 and Fig. 4.11).  

Uncertainty segment ],[
1 ii

xx  is determined by means of operator 4. 

Operators 5 — 8 calculate the coefficients and constant term of cubic equa-

tion (4.31) according to the following formulas: 

12
aaa , 



4.6. Noniterative method for solving the nonlinear algebraic equation 

319 

121
33

ii
xaxab , 

12

2

1

2

12
33 bbxaxac

ii
, 

121

3

12

3

1 iiii
xbxbxaxad , 

where 

i

i

h

M
a

6

1

1
,   

i

i

h

M
a

62
, 

i

ii

i h

hM
fb

1

6

2

1

11
,   

i

ii

i h

hM
fb

1

6

2

2
. 

For obtaining these formulas, we must transform expression (4.4) to the follow-

ing form: 

dcxbxaxxS 23)( . 

After determining a, b, c and d, the approximate solution of equation (4.23), 

(4.27) is calculated by solving one of three algebraic equations — a linear, quad-

ratic or cubic equation. 

1. The linear equation is solved if the resulting values of coefficients a and b 

are equal to zero. Operator 9 calculates a root of equation 0dcx  according 

to formula cdx / . 

2. The quadratic equation is solved at the zero value of a ( 0b ). Two roots 

of equation 02 dcxbx  are calculated by operators 11 and 13 according 

to the well known formula [3], 

)2/(42 bbdccx . 

The solution of equation (4.23), (4.27) is the root ( x  or x ) belonging to  

uncertainty segment ],[
1 ii

xx . 

3. The cubic equation is solved when 0a . One or three real roots of equa-

tion 023 dcxbxax  are the result of calling the table subroutine  

(operator 15). 

In the ordinary situation, uncertainty segment ],[
1 ii

xx  contains only one 

out of one or three real roots of equation 023 dcxbxax , and this root is 

the solution of equation (4.23), (4.27). However, an extraordinary situation is 

possible when the number of real roots of equation 023 dcxbxax  is 
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equal to three, and all these roots belong to uncertainty segment ],[
1 ii

xx . In 

this case, operator 17 calculates the solution of equation (4.23), (4.27) according 

to the following formula: 

1

11

ii

iiii

ff

xfxf
x . 

This formula is obtained by solving equation 0)(xL , in which 

1

1

1

1
)(

ii

i

i

ii

i

i xx

xx
f

xx

xx
fxL                          (4.34) 

 

is the linear function that equals 
1i

f  and 
i

f  on the corresponding boundaries of 

segment ],[
1 ii

xx . 

As a result of executing operator 3, 10, 12, 14, 16, 18 or 19, the solution 

of equation (4.23), (4.27) is rounded up to six decimal places and displayed in 

the standard window (Fig. 4.15). After clicking on the OK button, the program 

execution is terminated. 

 

 
 

Fig. 4.15. The window for the noniterative method  

with the calculated moment of time and  

the type of the solved algebraic equation 

 

We advise the reader to write a program, similar to Listing 4.11, for solving 

equation 0)(xf  on segment ],[ ba  by the noniterative method. In this equa-

tion, )(xf  is a function from Appendix 4; segment ],[ ba  is this function’s  

domain. Uniform grid 
0

xa  < 
1

x  < 
2

x  < ... < 
2n

x  < 
1n

x  < bx
n

 must 

be used. 
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4.7. Calculating the charge storage capacity 

 

 

 

 

 
Having studied the cubic spline construction, we will continue the modeling 

of the silicon photosensitive target (Section 3.13). 

It was mentioned on p. 264 that semiconductor layer -6 μm ≤ x ≤ 6 μm,  

perpendicular to the x axis, is the potential well for signal electrons generated by 

light falling on the layer plane. In this regard, an important electrical parameter  

is the charge storage capacity of the target cell. 

The charge storage capacity, 
max

Q , is the signal electrons’ maximum charge 

(in absolute value), which can be localized in the considered layer of unit area 

(meter × meter). 

The value of 
max

Q  is calculated in the following five stages: 

1) the moments of cubic spline )(xS , determined by the tabulated electric 

charge density, 
 

)(
)(

exp)(
0

xN
Tk

xqu
Nqxf

A
b

, 

 

are calculated, where )(xu  is the solution of Shockley-Poisson equation (3.68), 

a ≤ x ≤ 0; 

2) the coordinate, ex , at which spline )(xS  changes its sign from nega-

tive (at ex ) to positive (at ex ), is calculated; 

3) the second derivative, 
2

w , of spline )(xS  at point ex  is calculated 

(
2

w  is used in the next item when integrating the cubic spline over segment  

e ≤ x ≤ 0); 

4) the positive charge, 
1

Q , localized in the semiconductor layer, a ≤ x ≤ 0,  

is calculated by integrating )(xS  over segment e ≤ x ≤ 0: 

dxxSQ

e

0

1
)( ;                                           (4.35) 
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5) the calculated value of 
1

Q  is multiplied by 2 because the right-hand side 

of the semiconductor layer (x > 0) exists in addition to the reviewed left-hand 

side of the layer (x < 0): 

1
2QQ

max
.                                             (4.36) 

 

Let us consider the program for calculating the charge storage capacity, 

max
Q . 

The source data table below is a part of the table represented in Fig. 3.15. 
 

Listing 4.12 
 

NA u0 x u 

7.00E+20 0.00E+00 -1.00E-05 0.000E+00 

7.00E+20 4.89E-02 -9.00E-06 1.320E-06 

7.00E+20 1.91E-01 -8.00E-06 5.782E-05 

7.00E+20 4.12E-01 -7.00E-06 2.529E-03 

7.00E+20 6.91E-01 -6.00E-06 1.057E-01 

7.00E+20 1.00E+00 -5.00E-06 1.272E+00 

7.00E+20 1.31E+00 -4.00E-06 3.521E+00 

7.00E+20 1.59E+00 -3.00E-06 6.851E+00 

7.00E+20 1.81E+00 -2.00E-06 1.126E+01 

7.00E+20 1.95E+00 -1.00E-06 1.676E+01 

7.00E+20 1.98E+00 -6.00E-07 1.926E+01 

7.00E+20 1.99E+00 -4.00E-07 2.057E+01 

7.00E+20 2.00E+00 -3.00E-07 2.124E+01 

7.00E+20 2.00E+00 -2.00E-07 2.193E+01 

-3.00E+22 2.00E+00 -1.00E-07 2.262E+01 

-3.00E+22 2.00E+00 0.00E+00 2.286E+01 

 

The program follows: 
 

Listing 4.13 
 

Sub main() 

    Dim m As Integer 

    Dim X() As Double 

    Dim NA() As Double 

    Dim U() As Double 

    Dim F() As Double 

    Dim MOM() As Double 

    Const q = 1.6E-19 

    Const kb = 1.38E-23 
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    Const T = 300 

    Dim w As Double, w1 As Double, w2 As Double 

    Dim i As Integer, h As Double 

    Dim a1 As Double, a2 As Double 

    Dim b1 As Double, b2 As Double 

    Dim a As Double, b As Double 

    Dim c As Double, d As Double 

    Dim e As Double 

    Dim xxx(1 To 3) As Double, k As Integer 

    m = Selection.Rows.Count         'quantity of rows 

    ReDim X(2 To m) 

    ReDim NA(2 To m) 

    ReDim U(2 To m) 

    ReDim F(2 To m) 

    ReDim MOM(2 To m) 

    w = q / (kb * T) 

    For i = 2 To m 

        NA(i) = Selection.Cells(i, 1) 

        X(i) = Selection.Cells(i, 3) 

        U(i) = Selection.Cells(i, 4) 

    Next i 

    For i = 2 To m 

        F(i) = q * (NA(2) * Exp(-w * U(i)) - NA(i)) 

    Next i 

'Calculating spline moments: 

    w = 6 * (F(3) - F(2)) / (X(3) - X(2)) ^ 2 

    w1 = 6 * (F(m - 1) - F(m)) / (X(m) - X(m - 1)) ^ 2 

0:  Call mos(2, m, X, F, 1, w, 1, w1, MOM) 

'Searching uncertainty segment: 

    For i = 3 To m 

4:      If F(i - 1) * F(i) < 0 Then Exit For 

    Next i 

'Forming cubic equation: 

    h = X(i) - X(i - 1) 

    a1 = MOM(i - 1) / (6 * h) 

    a2 = MOM(i) / (6 * h) 

    b1 = (F(i - 1) - MOM(i - 1) * h ^ 2 / 6) / h 

    b2 = (F(i) - MOM(i) * h ^ 2 / 6) / h 

5:  a = a2 - a1 

6:  b = 3 * a1 * X(i) - 3 * a2 * X(i - 1) 

7:  c = 3 * a2 * X(i - 1) ^ 2 - 3 * a1 * X(i) ^ 2 + _ 

    b2 - b1 
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8:  d = a1 * X(i) ^ 3 - a2 * X(i - 1) ^ 3 + _ 

    b1 * X(i) - b2 * X(i - 1) 

'Solving linear equation: 

    If 27 * a ^ 3 = 0 And 2 * b = 0 Then 

9:      e = -d / c 

        GoTo 21 

    End If 

'Solving quadratic equation: 

    If 27 * a ^ 3 = 0 Then 

11:     e = (-c + Sqr(c ^ 2 - 4 * b * d)) / (2 * b) 

        If X(i - 1) <= e And e <= X(i) Then GoTo 21 

13:     e = (-c - Sqr(c ^ 2 - 4 * b * d)) / (2 * b) 

        If X(i - 1) <= e And e <= X(i) Then GoTo 21 

    End If 

'Solving cubic or linear equation: 

15: Call table(a, b, c, d, xxx) 

    If xxx(2) = 1E+308 Then 

16:     e = xxx(1) 

        GoTo 21 

    End If 

    If X(i - 1) <= xxx(1) And xxx(1) <= X(i) _ 

    And X(i - 1) <= xxx(2) And xxx(2) <= X(i) _ 

    And X(i - 1) <= xxx(3) And xxx(3) <= X(i) Then 

17:     e = (F(i) * X(i - 1) - F(i - 1) * X(i)) / _ 

        (F(i) - F(i - 1)) 

        GoTo 21 

    End If 

    For k = 1 To 3 

        If X(i - 1) <= xxx(k) And xxx(k) <= X(i) Then 

19:         e = xxx(k) 

            GoTo 21 

        End If 

    Next k 

'Calculating charge storage capacity: 

21: Call si(2, m, X, F, MOM, e, w, w1, w2) 

    X(i - 1) = e 

    F(i - 1) = 0 

    MOM(i - 1) = w2 

22: w1 = ios(i - 1, m, X, F, MOM)    'calculating Q1 

23: w = Round(2 * w1, 4)             'calculating Qmax 

24: MsgBox "Qmax = " & CStr(w) & " C/m^2" 

End Sub 
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The source data are the values given in table Listing 4.12 (Fig. 4.16). We 

must select this table before running the program. 

 

 
 

Fig. 4.16. The Excel table with the source data 

 

The program contains the call of the mos subroutine (operator 0) intended 

for calculating the spline moments. In this call, conditions (4.13) and (4.14) are 

used, corresponding to the zero value of the derivative on the left and right 

boundaries of segment ]0,[a : 0)(
2

aff , 0)0(ff
m

 (m = 17). 

The value of e is the result of solving equation 0)(xS  by the noniterative 

method given in the previous section. Regarding the part that solves this equa-

tion, program Listing 4.13 is similar to program Listing 4.11. The solution of the 

cubic equation is equal to e = -1.967·10
-7

 (we observed this value by using the 

program debugger of Visual Basic Environment). 

Operator 21 calculates the 
2

w  value of the second derivative of the )(xS  

spline at point ex  by calling the si subroutine intended for the spline inter-

polation. Further, the 
2

w  value is used (as the moment) when integrating )(xS  

over segment ]0,[e . 
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Operator 22 calculates charge 
1

Q  according to formula (4.35) by calling the 

ios function intended for integrating the cubic spline. Operator 23 calculates 

the charge storage capacity, 
max

Q , according to formula (4.36) and rounds the 

result up to four decimal places. When executing operator 24, the rounded 

charge storage capacity is displayed in the standard window (Fig. 4.17). 

 

 
 

Fig. 4.17. The window with the program execution result 

 

The calculated value of 
max

Q  is of interest for designing both the photosensi-

tive target and elements of extraction of signal electrons stored in the target’s 

cells: the considered device belongs to the class of charge transfer devices. 
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4.8. Subroutine for automatic creation of graphs 

 

 

 

 

 
Further, we will use the graph creation subroutine whose declaration given 

below must be put into Module12 of the BookNM workbook. 
 

Listing 4.14 
 

Sub graph(ByVal sb, ByVal se, ByVal sx, ByVal sy) 

    Dim wbOldSelection As Range 

    Set wbOldSelection = Selection 

    Range(sb & ":" & se).Select 

    Dim sn As String 

    sn = ActiveSheet.Name 

    Selection.NumberFormat = "0.00E+00" 

    Charts.Add 

    ActiveChart.ChartType = xlXYScatterSmoothNoMarkers 

    ActiveChart.SetSourceData Source:= _ 

        Sheets(sn).Range(sb & ":" & se), PlotBy:= _ 

        xlColumns 

    ActiveChart.Location Where:=xlLocationAsObject, _ 

        Name:=sn 

    ActiveChart.Axes(xlValue).MajorGridlines.Select 

    Selection.Delete 

    ActiveChart.Legend.Select 

    Selection.Delete 

    With ActiveChart 

        .Axes(xlCategory, xlPrimary).HasTitle = True 

        .Axes(xlCategory, _ 

        xlPrimary).AxisTitle.Characters.Text = sx 

        .Axes(xlValue, xlPrimary).HasTitle = True 

        .Axes(xlValue, _ 

        xlPrimary).AxisTitle.Characters.Text = sy 

    End With 

    ActiveChart.Axes(xlCategory).AxisTitle.Select 

    Selection.AutoScaleFont = True 

    With Selection.Font 
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        .FontStyle = "regular" 

        .Size = 12 

    End With 

    ActiveChart.Axes(xlValue).AxisTitle.Select 

    Selection.AutoScaleFont = True 

    With Selection.Font 

        .FontStyle = "regular" 

        .Size = 12 

    End With 

    wbOldSelection.Select 

End Sub 

 

The parameters of the graph subroutine are the following four strings: 

 sb, se — the strings, which define the Excel range containing the argu-

ment and function values: sb is the address of the top left cell of the range; se is 

the address of the bottom right cell; 

 sx, sy — the names of the horizontal and vertical axes, respectively. 

In the parameter names: 

 letter “s” corresponds to word “string”; 

 “b” corresponds to word “beginning”; 

 “e” corresponds to word “end”; 

 “x” means the horizontal axis; 

 “y” means the vertical axis. 

The basis of the graph subroutine are operators 1 — 32 of program  

Listing 3.18. However, we see something new in the above subroutine, namely, 

the selection recovery (pp. 173 and 174): 

 in the subroutine beginning, operator 
 

Set wbOldSelection = Selection 

 

assigns the selected range to the wbOldSelection variable of the Range 

type; 

 in the subroutine end, operator 
 

wbOldSelection.Select 

 

selects the wbOldSelection range. 

Because of these two operators, the source data table is selected in Fig. 6.37: 

the graph subroutine execution (see operator 13 in Listing 6.15) does not 

change the selection. This picture can be considered as an example of the subrou-

tine work. 
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4.9. Cubic spline usage for solving the second- 

order linear differential equation 

 

 

 

 
In Chapter 3, for solving the boundary value problem for the second-order 

linear differential equation, we considered a method based on the solution ap-

proximation by the second-degree polynomial (Section 3.14). Below, for solving 

the same problem, we will consider a method based on the solution approxima-

tion by the cubic spline. 

As shown in Section 3.4, equation (3.6) can be written in form (3.30), 

)()(
2

2

xFUxE

dx

Ud
,                                    (4.37) 

 

where )(xE  and )(xF  are given functions, )(xU  is an unknown function. Con-

ditions (3.7) and (3.8) on the boundaries of segment ],[ ba  take form (3.33) and 

(3.36), 

312
)()( AaUAaUA ,                                   (4.38) 

312
)()( BbUBbUB ,                                   (4.39) 

where 
1

A , 
2

A , 
3

A , 
1

B , 
2

B , 
3

B  are given parameters. 

We will develop a cubic spline method for solving the formulated boundary 

value problem, (4.37) — (4.39), on the following grid familiar to us: 
k

xa  < 

1k
x  < 

2k
x  < ... < 

2r
x  < 

1r
x  < bx

r
. 

Let 
k

U , 
1k

U , 
2k

U , ..., 
2r

U , 
1r

U , 
r

U  be the solution values at points 

k
x , 

1k
x , 

2k
x , ..., 

2r
x , 

1r
x , 

r
x , respectively. The )(xS  cubic spline  

is considered whose graph passes through points (
k

x , k
U ), (

1k
x , 1k

U ), 

(
2k

x , 2k
U ), . . . , ( 2r

x , 2r
U ), (

1r
x , 1r

U ), (
r

x , r
U ). 

Because the spline moments are the values of )(xS  at the grid nodes, equa-

tion (4.37) gives the following expression for the moment at the i-th node: 

iiii
UEFM ,                                          (4.40) 
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where 
i

F  and 
i

E  are the values of functions )(xE  and )(xF  at the i-th node,  

k ≤ i ≤ r. 

After replacing 
i

f  with 
i

U  in expression (4.10) for 
i
, we have 

1

1

1

1

6

ii

i

ii

i

ii

i hh

h

UU

h

UU

.                            (4.41) 

By substituting expressions (4.40) and (4.41) into (4.9), we obtain the follow-

ing equality: 

i
iiiiii

ii
iii

ii
U

hhhhhh
EU

hhh
E

)(

6

)(

6
2

)(

6

111
1

1
1

 

111
11

1
2

)(

6
iiiiii

iii
ii

FFFU
hhh

E . 

Substituting expressions (4.10) for 
i
 and 

i
, we get 

1
1

1
1

)(

6
i

iii
i

ii

i U
hhh

E
hh

h
 

i
iiiiii

i
U

hhhhhh
E

)(

6

)(

6
2

111

 

1
11

1
1

1

)(

6
i

iii
i

ii

i U
hhh

E
hh

h
 

1
1

1

1
1

2
i

ii

i

ii
ii

i F
hh

h
FF

hh

h
. 

Let us multiply both sides of the last equality by 3/
1ii

hh . The following 

linear algebraic equation is the result: 

iiiiiii
UUU

11
,                               (4.42) 

where 
1i

U , 
i

U , 
1i

U  are the unknowns, i = k + 1, k + 2, ..., r – 2, r – 1, 

)(3

)6(

1

2

11

ii

iii

i hh

hEh
, 
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2
3

2
1iiii

hhE , 

)(3

)6(

1

2

11

ii

iii

i hh

hEh
,                                   (4.43) 

)(33

2

)(3
1

2

11

1
1

1

2

1

ii

iii

iii
ii

iii

i hh

hhF
hhF

hh

hhF
. 

We write the boundary conditions in the following form similar to (3.11) and 

(3.12): 

kkkk
UU

1
2 ,                                      (4.44) 

rrrr
UU 2

1
,                                      (4.45) 

where 
k

, 
k

, 
r

, 
r
 are given parameters. 

To obtain formulas for calculating the values of 
k

 and 
k

, we set i = k, 

11 kkk
hxx , 

11 kk
Uf , 

kk
Uf  in expression (4.8): 

1

1

1

11

62
)0(

k

kk

k

kkk

kk
h

MM

h

UUh
MxS . 

Let us multiply both sides of the last equality by 
1

A  and substitute expressions 

kkkk
UEFM , 

1111 kkkk
UEFM , 

 

corresponding to (4.40) at i = k and i = k + 1. The following equality is the result: 

1

1

1

1

11 2
)()0(

k

kkk

kkkk h

UU
A

h
UEFAxSA  

1

111

1 6 k

kkkkkk
h

UEFUEF
A .                   (4.46) 

Because )(aUU
k

 and )()0( aUxS
k

, expression 

kk
UAAxSA

231
)0(                                   (4.47) 

 

follows from (4.38). 

Equating the right-hand sides of (4.46) and (4.47), we have 
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1

1

1

1

123 2
)(

k

kkk

kkkk h

UU
A

h
UEFAUAA  

1

111

1 6 k

kkkkkk
h

UEFUEF
A . 

This equation can be written in form (4.44), where 

211
2

1

1
2

11

3)3(

)6(

AhAhE

AhE

kkk

kk

k
,                            (4.48) 

211
2

1

13111

3)3(

]6)2[(

AhAhE

hAAhFF

kkk

kkkk

k
.                      (4.49) 

To obtain formulas for calculating the values of 
r
 and 

r
 in (4.45), we set 

i = r, 
rrr

hxx
1

, 
rr

Uf , 
11 rr

Uf  in (4.6): 

r

rr

r

rrr

rr
h

MM

h

UUh
MxS

62
)0(

11
. 

Let us multiply both sides of the last equality by 
1

B  and substitute expressions 

rrrr
UEFM , 

1111 rrrr
UEFM , 

 

corresponding to (4.40) at i = r and i = r – 1. The following equality is the result: 

r

rrr

rrrr h

UU
B

h
UEFBxSB 1

111 2
)()0(  

r

rrrrrr
h

UEFUEF
B

6

111

1
.                      (4.50) 

Because )(bUU
r

 and )()0( bUxS
r

, expression 

rr
UBBxSB

231
)0(                                    (4.51) 

 

follows from (4.39). 

Equating the right-hand sides of (4.50) and (4.51), we have 

r

rrr

rrrr h

UU
B

h
UEFBUBB 1

1123 2
)(  
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r

rrrrrr
h

UEFUEF
B

6

111

1
.                      (4.52) 

This equation can be written in form (4.45), where 

21

2

1

2

1

3)3(

)6(

BhBhE

BhE

rrr

rr

r
,                               (4.53) 

21

2

311

3)3(

]6)2[(

BhBhE

hBBhFF

rrr

rrrr

r
.                          (4.54) 

The system of linear algebraic equations (4.42), (4.44) and (4.45) is called the 

cubic spline scheme for boundary value problem (4.37) — (4.39). 

The values of unknown 
k

U , 
1k

U , 
2k

U , ..., 
2r

U , 
1r

U , 
r

U  are deter-

mined by solving the formulated cubic spline scheme. In this case, the decompo-

sition method (Section 3.2) can be used because forms (3.9), (3.11) and (3.12) 

are respectively available for equations (4.42), (4.44) and (4.45). Formulas 

(4.48), (4.49) and 2
k

 are used in formulas (3.16) and (3.17) to start the 

forward sweep. Formulas (4.53), (4.54) and 2
r

 are used in formula (3.18) 

to start the backward sweep. 
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4.10. Program realization of the cubic spline method 

for solving the linear differential equation 

 

 

 

 
Let us develop a subroutine for solving differential equation (4.37) under 

conditions (4.38) and (4.39) on the left and right boundaries of segment ],[ ba . 

The values of parameters 
k

 and 
k

 in equation (4.44), corresponding to the 

left boundary condition, are calculated according to formulas (4.48) and (4.49). 

These values and 2
k

 are used in formulas (3.16) and (3.17) for starting the 

forward sweep of the decomposition method. Further, the calculation is per-

formed according to recurrence formulas (3.14) and (3.15). 

The values of parameters 
r

 and 
r
 in equation (4.45), corresponding to the 

right boundary condition, are calculated according to formulas (4.53) and (4.54). 

These values and 2
r

 are used in formula (3.18) for starting the backward 

sweep. Further, the calculation is performed according to recurrence formula 

(3.13). 

The fobas subroutine for solving the boundary value problem for differen-

tial equation (4.37) has the following form: 
 

Listing 4.15 
 

Sub fobas(ByVal k, ByVal r, ByRef X() As Double, _ 

    ByRef E() As Double, ByRef F() As Double, _ 

    ByVal A1, ByVal A2, ByVal A3, _ 

    ByVal B1, ByVal B2, ByVal B3, _ 

    ByRef U() As Double) 

    Dim alpha As Double, beta As Double 

    Dim gamma As Double, delta As Double 

    Dim i As Integer, w As Double 

    Const c As Double = 2 / 3 

    Dim h() As Double: ReDim h(k + 1 To r) 

    Dim P() As Double: ReDim P(k + 1 To r) 

    Dim Q() As Double: ReDim Q(k + 1 To r) 

    For i = k + 1 To r 

        h(i) = X(i) - X(i - 1) 

    Next i 
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'Forward sweep: 

    w = (E(k) * h(k + 1) ^ 2 - 3) * A1 + _ 

    3 * h(k + 1) * A2 

    gamma = (E(k + 1) * h(k + 1) ^ 2 + 6) * A1 / w 

    delta = ((2 * F(k) + F(k + 1)) * _ 

    h(k + 1) * A1 + 6 * A3) * h(k + 1) / w 

    P(k + 1) = -gamma / 2 

    Q(k + 1) = delta / 2 

    For i = k + 1 To r - 1 

        w = 3 * (h(i) + h(i + 1)) 

        alpha = h(i + 1) * _ 

        (E(i - 1) * h(i) ^ 2 + 6) / w 

        beta = c * E(i) * h(i) * h(i + 1) - 2 

        gamma = h(i) * _ 

        (E(i + 1) * h(i + 1) ^ 2 + 6) / w 

        delta = F(i - 1) * h(i) ^ 2 * h(i + 1) / w + _ 

        c * F(i) * h(i) * h(i + 1) + _ 

        F(i + 1) * h(i + 1) ^ 2 * h(i) / w 

        w = alpha * P(i) + beta 

        P(i + 1) = -gamma / w 

        Q(i + 1) = (delta - alpha * Q(i)) / w 

    Next i 

'Backward sweep: 

    w = (E(r) * h(r) ^ 2 - 3) * B1 - 3 * h(r) * B2 

    alpha = (E(r - 1) * h(r) ^ 2 + 6) * B1 / w 

    delta = ((2 * F(r) + F(r - 1)) * _ 

    h(r) * B1 - 6 * B3) * h(r) / w 

    U(r) = (delta - alpha * Q(r)) / _ 

    (alpha * P(r) + 2) 

    For i = r To k + 1 Step -1 

        U(i - 1) = P(i) * U(i) + Q(i) 

    Next i 

End Sub 

 

We enter the above declaration into Module13 of the BookNM workbook. 

The set of parameters of fobas is close to the set of parameters of the foba 

subroutine in Section 3.15: 

 k, r are numbers of the left and right boundary nodes of the grid; 

 X is an array of grid nodes; 

 E is an array of values of the coefficient of equation (4.37) at the grid 

nodes; 
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 F is an array of values of the right-hand side of equation (4.37); 

 A1, A2, A3 are values of the corresponding parameters in left boundary 

condition (4.38); 

 B1, B2, B3 are values of the corresponding parameters in right boundary 

condition (4.39); 

 U is an array intended for the solution values. 

The developed fobas subroutine will be used in the remaining sections of 

this chapter for solving two concrete boundary value problems. 
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4.11. Solving the linear differential equation  

by the cubic spline method 

 

 

 

 
To demonstrate the use of the cubic spline method described above, we will 

solve equation (3.42) with boundary conditions (3.43). This boundary value 

problem, concerning temperature characteristics of the radial flow between paral-

lel round disks, can be written in form (4.37) — (4.39), where 

xcxxE )13(25.0)( 4 , 

0)(xF , 

0
311

BBA , 

1
232

BAA . 

As in Section 3.6, we consider that c = 10 and a ≤ x ≤ b, where a = 0, b = 1.5. 

The program below is intended for solving the formulated problem by using 

the fobas subroutine from the previous section. 
 

Listing 4.16 
 

Sub main() 

    Dim X() As Double 

    Dim E() As Double 

    Dim F() As Double 

    Dim U() As Double 

    Dim c As Double, b As Double, l As Integer 

    Dim h As Double, i As Integer 

    Dim sb As String, se As String 

    c = Selection.Cells(1, 2) 

    b = Selection.Cells(2, 2) 

    l = Selection.Cells(3, 2) 

    h = b / l 

    ReDim X(5 To 5 + l) 

    ReDim E(5 To 5 + l) 

    ReDim F(5 To 5 + l) 

    ReDim U(5 To 5 + l) 

    For i = 5 To 5 + l 

        X(i) = (i - 5) * h 
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        E(i) = -0.25 * X(i) ^ 4 - (3 * c + 1) * X(i) 

        F(i) = 0 

    Next i 

0:  Call fobas(5, 5 + l, X, E, F, 0, 1, 1, 0, 1, 0, U) 

    Selection.Cells(4, 3) = "x" 

    Selection.Cells(4, 4) = "U" 

    For i = 5 To 5 + l 

        Selection.Cells(i, 3) = X(i) 

        Selection.Cells(i, 4) = U(i) 

    Next i 

    sb = Selection.Cells(5, 3).Address 

    se = Selection.Cells(5 + l, 4).Address 

1:  Call graph(sb, se, "x", "U") 

    For i = 5 To 5 + l 

        Selection.Cells(i, 1) = X(i) 

2:      U(i) = U(i) * Exp(-X(i) ^ 3 / 6) 

        Selection.Cells(i, 2) = U(i) 

    Next i 

    sb = Selection.Cells(5, 1).Address 

    se = Selection.Cells(5 + l, 2).Address 

3:  Call graph(sb, se, "x", "u") 

    Range("P33").Select 

End Sub 

 

This main program is used similarly to programs Listing 3.2 and Listing 3.3 

of Section 3.6: 

 the initial data are the values located in the table (Fig. 3.2a); 

 we must select this Excel table before the program execution (Fig. 3.2b). 

Let us consider several operators of program Listing 4.16. 

Operator 0 is the call of the fobas subroutine for solving boundary value 

problem (3.42), (3.43) by the cubic spline method. The calculated values of the 

solution, )(xU , are put into the U column (Fig. 4.18). The )(xU  graph on the 

Excel worksheet is created automatically when executing the graph subroutine 

from Section 4.8; operator 1 is the subroutine call. 

Operator 2 calculates solution )(xu  of boundary value problem (3.39), 

(3.40) by using formula (3.41). The calculated values of )(xu  are put into the u 

column (Fig. 4.18). The )(xu  graph on the Excel worksheet is the result of the 

second call of the graph subroutine (operator 3). This )(xu  dependence is 

close to )(xu  depicted in Fig. 3.3. 
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Fig. 4.18. The solutions of problems (3.42), (3.43) and (3.39), (3.40)  

and the corresponding graphs (after their displacement by the mouse) 

 

Note that one of the fobas parameters is the X array of grid nodes, i.e., this 

subroutine is usable for both uniform and nonuniform grids. In this section, we 

used a uniform grid; in the next section, a nonuniform grid will be used. 
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4.12. Modeling of heating of a geophysical cable.  

Locally one-dimensional scheme 

 

 

 

 
Cables for geophysical works are intended for repeated descent of instru-

ments (fastened to the end of the cable) into a borehole and for electrical connec-

tion of these instruments with terrestrial equipment. By measuring the cable 

length, the depth of the strata bedding can be determined. Single- and multi-

strand cables are used in practice. 

Let us consider the cross section of an armored single-strand cable for geo-

physical works (Fig. 4.19). 

 
 

Fig. 4.19. Cross section of an armored single-strand cable: 0 is  

the cross section center, a, r
1
, r

2
, b are special points of the x radius 

 

According to website http://www.proelectro.ru/lib/kabel/128.html, the cable 

for temperatures up to 180 °C has the following design. The central conductor 
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consists of seven copper wires, each of diameter 0.35 mm. This conductor is 

covered with a 1.35 mm polymer layer for electrical insulation. A cotton layer 

(which is an electrical insulator too) and double-layer armor (two zinced steel 

wires) cover the polymer. 

We will consider that the conductor is a copper wire of radius 0.5 mm 

(0 ≤ x ≤ a in Fig. 4.20) and the insulator has the following three layers: 

 the 1.35 mm homogeneous polymer adjoins the central wire (a ≤ x ≤ 
1
r ); 

 the 0.35 mm homogeneous cotton adjoins the armor (
2

r  ≤ x ≤ b); 

 the 0.3 mm non-homogeneous material is placed between these two layers 

(
1
r  < x < 

2
r ). 

 

 
 

Fig. 4.20. The circular ring, a ≤ x ≤ b, corresponding  

to an axially-symmetric insulator 
 

We should calculate the overheating of the conductor and insulator (in rela-

tion to the armor) caused by constant electric current 
0

I  in the conductor. At 

high electric current, this overheating added to the armor (borehole) temperature 

damages the cable. The problem will be solved under the assumption that physi-

cal parameters of the conductor and insulator are temperature-independent. 

The temperature distribution in the insulator, )(xu  at a ≤ x ≤ b, is described 

by the following heat equation in cylindrical coordinates: 

x

u
xx

xxt

u
cd )(

1
,                                (4.55) 
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where t is time, x is the radial coordinate, )(x  is the thermal conductivity of the 

insulator, )(xc  is the specific heat capacity, )(xd  is the density of the insulator. 

Because constI
0

, the temperature distribution does not depend on time, 

0/ tu , and equation (4.55) becomes 

0)(
dx

du
xx

xd

d
.                                      (4.56) 

The boundary conditions are as follows: 

)()( aTa
dx

du
,                                          (4.57) 

)()( bTbu ,                                             (4.58) 

where a, b are the inner and outer radii of the ring corresponding to the compli-

cated insulator (Fig. 4.20), )(aT  is the derivative of temperature with respect  

to x on the inner boundary of the ring, )(bT  is the temperature on the outer 

boundary. 

To use the fobas subroutine from Section 4.10, we will transform boundary 

value problem (4.56) — (4.58). For that, we use the following designation: 
 

)()( xxx .                                           (4.59) 

Equation (4.56) takes form 

0)(
dx

du
x

xd

d
. 

By differentiating the left-hand side of the last equation as the product of two 

functions, )(x  and dxdu / , we can write this equation as follows: 

0
2

2

dx

du

dx

d

dx

ud
. 

 

Dividing both sides by )(x , we have the following equation: 

0)(
2

2

dx

du
xg

dx

ud
,                                       (4.60) 

where 

dx

ddxd
xg

ln/
)( .                                   (4.61) 

Excluding the first derivative from equation (4.60) by substitution (3.27), 

)(

)(
)()(

x

a
xUxu ,                                       (4.62) 
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we write equation (4.60) in form (4.37), 

)()(
2

2

xFUxE

dx

Ud
, 

where 

)(5.0)(25.0 2 xgxgE , 
 

0F  
 

according to (3.31) and (3.32). Using formula (4.61), we have 

2

22
ln

5.0
ln

25.0
dx

d

dx

d
E .                           (4.63) 

Boundary conditions (4.57) and (4.58) take forms (4.38) and (4.39), 

312
)()( AaUAaUA , 

312
)()( BbUBbUB , 

where 

1
1

A , 

)(
ln

5.0
2

a
dx

d
A , 

)(
3

aTA ,                                             (4.64) 

0
1

B , 

1
2

B , 

)(

)(
)(

3 a

b
bTB  

 

according to (3.34), (3.35), (3.37) and (3.38). 

We need a formula that relates the electric current, 
0

I , with the derivative of 

temperature (with respect to x) on the inner boundary of the ring, )(aT . 

To relate 
0

I  with )(aT , let us look at a piece of wire of length h. Geometri-

cally, this piece of wire is a right circular cylinder [3] of height h with the base 

whose radius is equal to a. 

According to the heat equation in integral form, the power of electric current 

is equal to the heat flow through the lateral surface of the cylinder: 

MaTaRI )()(2

0
,                                     (4.65) 
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where R is the electric resistance of the piece of wire, M is the lateral area of the 

cylinder. Because 

h

a

R
2

,   haM 2 , 

where  is the resistivity of copper, equality (4.65) gives 

)(2

)(
32

2

0

aa

I
aT .                                     (4.66) 

 

Let us develop a program for calculation of overheating of the conductor and 

insulator (in relation to the armor) caused by the 
0

I  current. This program will 

use the source data table given below. 
 

Listing 4.17 
 

a 5.00E-04 

I0 25 

rho 1.78E-08 

r1 1.85E-03 

l1 10 

lambda1 0.25 

r2 2.15E-03 

l2 5 

b 2.50E-03 

l3 5 

lambda3 0.05 

 

In Listing 4.17, we see: 

 a — the radius of the copper wire or the inner radius of the homogeneous 

polymer (Fig. 4.20), in meters; 

 
0

I  — the electric current in the copper wire, in amperes; 

  — the resistivity of copper, in Ω·m; 

 
1
r  — the outer radius of the homogeneous polymer, in meters; 

 
1

l  — the number of steps on segment a ≤ x ≤ 
1
r ; 

 
1

 — the thermal conductivity of the homogeneous polymer, W / (m·K); 

 
2

r  — the outer radius of the non-homogeneous material, in meters; 

 
2

l  — the number of steps on segment 
1
r  ≤ x ≤ 

2
r ; 



4.12. Modeling of heating of a geophysical cable. Locally one-dimensional scheme 

345 

 b  — the outer radius of the homogeneous cotton, in meters; 

 
3

l  — the number of steps on segment 
2

r  ≤ x ≤ b; 

 
3
 — the thermal conductivity of the homogeneous cotton, W / (m·K). 

The )(xu  dependence should be the main result of the program execution. 

The program follows: 
 

Listing 4.18 
 

Sub main() 

    Dim x() As Double 

    Dim lambda() As Double 

    Dim mu() As Double 

    Dim ln_mu() As Double 

    Dim ln_mu1() As Double 

    Dim ln_mu2() As Double 

    Dim E() As Double 

    Dim F() As Double 

    Dim U() As Double 

    Dim a As Double, I0 As Double, rho As Double 

    Dim r1 As Double, l1 As Integer, lambda1 As Double 

    Dim r2 As Double, l2 As Integer 

    Dim b As Double, l3 As Integer, lambda3 As Double 

    Dim h1 As Double, h2 As Double, h3 As Double 

    Dim l As Integer, i As Integer 

    Dim T1a As Double, Tb As Double 

    Dim A1 As Double, A2 As Double, A3 As Double 

    Dim B1 As Double, B2 As Double, B3 As Double 

    Const pi As Double = 3.141592654 

    Dim w As Double 

    Dim sb As String, se As String 

    a = Selection.Cells(1, 2) 

    I0 = Selection.Cells(2, 2) 

    rho = Selection.Cells(3, 2) 

    r1 = Selection.Cells(4, 2) 

    l1 = Selection.Cells(5, 2) 

    lambda1 = Selection.Cells(6, 2) 

    r2 = Selection.Cells(7, 2) 

    l2 = Selection.Cells(8, 2) 

    b = Selection.Cells(9, 2) 

    l3 = Selection.Cells(10, 2) 

    lambda3 = Selection.Cells(11, 2) 
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    h1 = (r1 - a) / l1 

    h2 = (r2 - r1) / l2 

    h3 = (b - r2) / l3 

    l = l1 + l2 + l3 

    ReDim x(13 To 13 + l) 

    ReDim lambda(13 To 13 + l) 

    ReDim mu(13 To 13 + l) 

    ReDim ln_mu(13 To 13 + l) 

    ReDim ln_mu1(13 To 13 + l) 

    ReDim ln_mu2(13 To 13 + l) 

    ReDim E(13 To 13 + l) 

    ReDim F(13 To 13 + l) 

    ReDim U(13 To 13 + l) 

'Definition of arrays x and lambda: 

    x(13) = a 

    lambda(13) = lambda1 

    For i = 14 To 13 + l1 

        x(i) = x(i - 1) + h1 

        lambda(i) = lambda1 

    Next i 

    For i = 14 + l1 To 13 + l1 + l2 

        x(i) = x(i - 1) + h2 

        lambda(i) = 0.5 * (lambda1 - lambda3) * _ 

        Cos(pi * (x(i) - r1) / (r2 - r1)) + _ 

        0.5 * (lambda1 + lambda3) 

    Next i 

    For i = 14 + l1 + l2 To 13 + l 

        x(i) = x(i - 1) + h3 

        lambda(i) = lambda3 

    Next i 

    Selection.Cells(12, 1) = "x" 

    Selection.Cells(12, 2) = "lambda" 

    For i = 13 To 13 + l 

        Selection.Cells(i, 1) = x(i) 

        Selection.Cells(i, 2) = lambda(i) 

    Next i 

    sb = Selection.Cells(13, 1).Address 

    se = Selection.Cells(13 + l, 2).Address 

1:  Call graph(sb, se, "x", "lambda") 

'Definition of arrays mu, ln_mu, ln_mu1 and ln_mu2: 

    For i = 13 To 13 + l 

        mu(i) = lambda(i) * x(i) 
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        ln_mu(i) = Log(mu(i)) 

    Next i 

2:  Call mos(13, 13 + l, x, ln_mu, _ 

    0, -2 / a ^ 2, 0, -2 / b ^ 2, ln_mu2) 

    For i = 13 To 13 + l 

3:      Call si(13, 13 + l, x, ln_mu, ln_mu2, _ 

        x(i), w, ln_mu1(i)) 

    Next i 

'Definition and solution of boundary value problem: 

    For i = 13 To 13 + l 

        E(i) = -0.25 * ln_mu1(i) ^ 2 - 0.5 * ln_mu2(i) 

        F(i) = 0 

    Next i 

    T1a = -I0 ^ 2 * rho / _ 

        (2 * pi ^ 2 * a ^ 3 * lambda1) 

    Tb = 0 

    A1 = 1 

    A2 = -0.5 * ln_mu1(13) 

    A3 = T1a 

    B1 = 0 

    B2 = 1 

    B3 = Tb * Sqr(mu(13 + l) / mu(13)) 

4:  Call fobas(13, 13 + l, x, E, F, A1, A2, A3, _ 

    B1, B2, B3, U) 

    Selection.Cells(12, 3) = "x" 

    Selection.Cells(12, 4) = "u" 

    For i = 13 To 13 + l 

        Selection.Cells(i, 3) = x(i) 

5:      U(i) = U(i) * Sqr(mu(13) / mu(i)) 

        Selection.Cells(i, 4) = U(i) 

    Next i 

    sb = Selection.Cells(13, 3).Address 

    se = Selection.Cells(13 + l, 4).Address 

6:  Call graph(sb, se, "x", "u") 

    Range("O36").Select 

End Sub 

 

The source data for this program are the values located in the Excel table  

depicted in Fig. 4.21. We must select this table before the program execution. 

Let us consider the main stages of the program execution. 

After inputting the source data, the )(x  function is defined in domain 

],[ ba  as follows: 
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bxr

rxr
rr

rx

rxa

x

23

21

31

12

131

11

if

if
2

cos
2

if

)(  

 

Operator 1 displays the )(x  graph on the Excel worksheet (Fig. 4.22). 

 

 
 

Fig. 4.21. The source data table 

 

Further, function )(x  is determined according to formula (4.59), and 

)(ln x , 
dx

d ln
, 

2

2 ln

dx

d
 are determined too. Function 

2

2 ln

dx

d
 is the result of 

calling the mos subroutine (operator 2) with parameters defined by formulas 

(4.15) and (4.16), in which 

22

2 1
)(

ln

a
a

dx

d
f
k

,   
22

2 1
)(

ln

b
b

dx

d
f
r

. 

Function 
dx

d ln
 is the result of calling the si subroutine (operator 3). 
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Fig. 4.22. The program execution results: )(x  is the thermal  

conductivity change; )(xu  is the overheating change 

 

Thus, we defined boundary value problem (4.37) — (4.39) by using formulas 

(4.63), (4.64) and (4.66), 0F . Operator 4 is the call of the fobas subroutine 

for solving this problem by the cubic spline method. Function )(xU  is the result. 

Operator 5 calculates solution )(xu  of boundary value problem (4.56) — 

(4.58) by using formula (4.62). The )(xu  graph, also located on the Excel work-

sheet (Fig. 4.22), is the result of the second call of the graph subroutine (opera-

tor 6). The )(xu  dependence shows the wire and insulator overheating. 

According to Fig. 4.22, the wire overheating is equal to 
ba

TTT  = 

21.8 K for 
0

I  = 25 A. The insulator around the wire has the same overheating. 

For 
0

I  = 50 A, the program execution gives )50(T  = 87.3 K. 

It was mentioned above that the considered geophysical cable was designed 

for temperatures up to 180 °C. Therefore, for given current 
0

I , the cable can be 
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used in boreholes whose temperature does not exceed )(180
0

IT  degrees 

Celsius, where )(
0

IT  is the result of the program execution for 
0

I . 

We could use the finite difference method (Chapter 3) in the above program 

concerning the geophysical cable. However, the cubic spline method is more 

accurate because we use the nonuniform grid. Let us focus on this. 

As it was stated at the end of Section 3.14, at the transition from a uniform 

grid to a nonuniform grid, the error of the finite difference analog of the second  

derivative changes from the 2nd order of smallness to the 1st order. According to 

formula (4.19), the second derivative of the difference between the function and 

the corresponding cubic spline has the 2nd order of smallness for both uniform 

and nonuniform grids. Thus, the cubic spline method is more accurate than the 

finite difference method in the case of a nonuniform grid. 

Let us return to (4.55). This form of the heat equation is caused by the axial 

symmetry of the problem under consideration (Fig. 4.20). In the absence of this 

symmetry (Fig. 4.23), the heat equation has the following form: 
 

2211
x

u

xx

u

xt

u
cd ,                        (4.67) 

where 
1

x  and 
2

x  are the Cartesian coordinates, ),(
21

xx  is the thermal con-

ductivity of the insulator, ),(
21

xxc  is the specific heat capacity, ),(
21

xxd  is 

the density. We must solve the initial value problem for (4.67), i.e., calculate the 

temperature distribution, ),,(
21

xxtu , at t > 0 when ),,0(
21

xxu  is given. 

For solving this problem, we introduce a uniform grid on the t axis, that is, 

we consider moments kt , where  is the time step, k = 1, 2, 3, ... Besides, 

we cover the equation’s domain (Fig. 4.23) by a two-dimensional spatial grid. 

According to the locally one-dimensional scheme (LOS) [4], to calculate the 

values of ),,(
21

xxtu  over the values of ),,(
21

xxtu , we must successively 

solve the boundary value problems for the following differential equations: 
 

1

,21

1

,21,21
),(~),,(),(~

dx

xxud

xd

dxxtuxxu
cd

jjj
,       (4.68) 

2

2,1

2

2,12,1
),,(),(~),,(

dx

xxtdu

xd

dxxuxxtu
cd

iii
,         (4.69) 

where ),(~
21

xxu  is an auxiliary function of two variables, 
i

x
,1

 and 
j

x
,2

 are the 

coordinates of the gridlines (Fig. 4.23), indices i and j are the gridline numbers. 
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Fig. 4.23. Cross section of an axially-asymmetric insulator;  

ring bxxa 2

2

2

1
 is the equation’s domain 

 

More precisely, the calculation of the temperature distribution at the t mo-

ment, ),,(
21

xxtu , over the known distribution at the previous t  moment, 

),,(
21

xxtu , includes the following two stages: 

1) calculation of two-dimensional distribution ),(~
21

xxu  by solving the 

boundary value problems for differential equation (4.68) at fixed values of j  

(
1

x  is the independent variable); 

2) calculation of two-dimensional distribution ),,(
21

xxtu  by solving the 

boundary value problems for differential equation (4.69) at fixed values of i  

(
2

x  is the independent variable). 

To solve the boundary value problems for equations (4.68) and (4.69) of the 

LOS, the following two methods are used: the finite difference method in [4] and 

the cubic spline method in [6]. In other words, the locally one-dimensional finite 

difference scheme and the locally one-dimensional cubic spline scheme are  

respectively developed in [4] and [6]. 

The LOS can be used for solving various problems with n ≥ 2 spatial coordi-

nates: the problem solved in [6] has little resemblance to the above one. 

In addition to the cubic spline, more simple quadratic and linear splines are 

used for the solution of applied problems. Below, we will consider these splines. 



 

352 

 

Chapter 5. 

Quadratic and Linear Splines 

 

 

 
In addition to the third-degree (cubic) spline of the previous chapter, we con-

sider the simpler second-degree (quadratic) and first-degree (linear) splines. The 

quadratic spline is used for solving the initial value problem (of Cauchy) for the 

system of differential equations. The linear spline is used in the least-squares 

method. 

While solving the initial value problem, the system of nonlinear algebraic 

equations should be solved. Therefore, we also consider the Newton method. For 

solving a single nonlinear algebraic equation, in addition to the Newton (tangent) 

method, we consider two Newton-like methods, namely, the secant and 

Steffensen methods (the consideration of the secant method was started in  

Section 4.5). 

For demonstration of the splines possibilities, programs are developed for the 

following purposes: 

 to simulate the piano mechanism linking a key with hammer; 

 to determine the dependence of production results versus factors (the so-

called production function) by the least-squares method; 

 to solve the sound insulation problem. 

The last problem also demonstrates possibilities of user-defined subroutines 

for the forward and backward discrete Fourier transforms of a periodic tabular 

function. These subroutines (Section 5.11) are based on the corresponding 

Algol 60 procedures developed by A. L. Zakharov, scientific worker of Pulsar 

R&D Manufacturing Company, Moscow, in the end of the 1970s. 
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5.1. Definition of quadratic spline. Spline slopes 

 

 

 

 

 
As in Section 4.1, let us consider segment ],[ ba  covered with grid 

k
xa  < 

1k
x  < 

2k
x  < ... < 

2r
x  < 

1r
x  < bx

r
. Values 

k
f , 

1k
f , 

2k
f , ..., 

2r
f , 

1r
f , 

r
f  of grid function )(xf  are given. 

A quadratic spline (or second-degree spline, Fig. 5.1) is function )(xP , 

which satisfies the following conditions: 

1) on each elementary segment 
1i

x  ≤ x  ≤ 
i

x  (k + 1 ≤ i ≤ r), the spline  

coincides with a second-degree polynomial (generally, the polynomials are  

different on different elementary segments); 

2) at the grid nodes, the spline has the grid function values: 
ii

fxP )( ; 

3) the spline has a continuous derivative, i.e., the spline is smooth; 

4) on the left boundary of segment ],[ ba , the spline satisfies an additional 

condition (the boundary condition may be formulated on the right boundary). 

 

 
 

Fig. 5.1. The quadratic spline graph 
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According to item (2), the )(xP  graph passes through points (
k

x , k
f ), 

(
1k

x , 1k
f ), (

2k
x , 2k

f ), . . . , (
2r

x , 2r
f ), (

1r
x , 1r

f ), (
r

x , r
f ). 

According to item (3), the jumps of derivative )(xP  are absent at the interior 

grid nodes, i.e., at points 
1k

x , 
2k

x , ..., 
2r

x , 
1r

x . 

The values of )(xP  at the grid nodes are called slopes of the quadratic 

spline: 
ii

QxP )(  (k ≤ i ≤ r). 

Let the spline slopes, 
i

Q  (k ≤ i ≤ r), be given. In this case, items (1) and (3) 

of the quadratic spline definition lead to the following expression for the deriva-

tive on elementary segment ],[
1 ii

xx : 

i

i

i

i

i

i h

xx
Q

h

xx
QxP

1

1
)( ,                            (5.1) 

where 
1iii

xxh  is the elementary segment’s length or the grid step, k + 1 ≤  

i ≤ r. 

By integrating (5.1), we obtain the following expression: 

C
h

xx
Q

h

xx
QxP

i

i

i

i

i

i 2

)(

2

)(
)(

2

1

2

1
,                   (5.2) 

where C  is the integration constant. 

Assuming that slope 
1i

Q  is known, we will determine integration constant 

C  and slope 
i

Q . The resulting expression for C  will be substituted into expres-

sion (5.2) for )(xP . 

According to item (2) of the quadratic spline definition, we have the follow-

ing equalities: 

11
)(

ii
fxP , 

ii
fxP )( . 

Using expression (5.2), we get the system of two linear algebraic equations with 

unknown C  and 
i

Q : 

211

i

ii

h
QfC ,                                        (5.3) 

i

i

i
fC

h
Q

2
.                                             (5.4) 
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Substituting expression (5.3) into equation (5.4), we have 

1

1
2

i

i

ii

i
Q

h

ff
Q .                                    (5.5) 

By substituting expression (5.3) into (5.2), we obtain the following expres-

sion for the spline on segment ],[
1 ii

xx : 

1

2

1

2

1 2

)(

2

)(

2
)(

i

i

i

i

i

ii

i
f

h

xx
Q

h

xxh
QxP .            (5.6) 

According to item (4) of the quadratic spline definition, we define the slope 

on the left boundary of segment ],[ ba  as follows: 

)(afQ
k

, 

where )(af  is a given value of the function derivative on the left boundary. 

Using recurrence formula (5.5) successively at i = k + 1, k + 2, ..., r, we can 

calculate all slopes of the quadratic spline. Further, we can: 

 interpolate grid function )(xf  by means of formula (5.6); 

 calculate the )(xf  value at arbitrary point x of segment ],[ ba  by using 

formula (5.1). 

The error of interpolating the )(xf  function (and its derivatives) by the 

)(xP  spline (and by its derivatives) is determined by the following expression: 

)()()( 3)()( n

max

nn hOxPxf , 

where }{max
1

i

rik

max
hh  is the maximum grid step ( 0

max
h ), n = 0, 1, 2 

is the derivative order, )()()0( xfxf , )()()0( xPxP . The sense of the used 

O notation is explained in Section 3.1. 

The above mathematical construction of quadratic spline will be used for 

solving the initial value problem for the system of differential equations. 
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5.2. Method for solving the initial value problem  

for the system of differential equations 

 

 

 

 
Let the system of two differential equations 

),,( vuxE
dx

du
,                                           (5.7) 

),,( vuxF
dx

dv
                                            (5.8) 

 

be given on segment ],[ ba . Generally, E and F are nonlinear functions of three 

variables. 

Let the values of unknown functions )(xu  and )(xv  be given on the left 

boundary: 

Aau )( , 

Qav )( , 

where A and Q are parameters. 

The conditions on the left boundary are called the initial conditions. 

For solving this initial value (Cauchy) problem on segment ],[ ba , the grid is 

constructed (Fig. 5.1) and the )(xu  and )(xv  functions are considered as quad-

ratic splines. In this case, according to equations (5.7) and (5.8), the values of 

functions E and F at the grid nodes are the slopes of these splines. 

With regard to splines )(xu  and )(xv , expression (5.5) for the slope takes 

the following forms: 

),,(2),,(
111

1

iii
i

ii

iii
vuxE

h

uu
vuxE , 

),,(2),,(
111

1

iii
i

ii

iii
vuxF

h

vv
vuxF  

or 

),,(
2 iii

i

i
vuxE

h
u ,                                    (5.9) 
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),,(
2 iii

i

i
vuxF

h
v ,                                  (5.10) 

where 

),,(
2 1111 iii

i

i
vuxE

h
u , 

),,(
2 1111 iii

i

i
vuxF

h
v . 

Equations (5.9) and (5.10) form the system of algebraic equations with  

respect to 
i

u  and 
i

v  (at known 
1i

u  and 
1i

v ). 

If Aauu
k

)(  and Qavv
k

)(  are given, unknown functions )(xu  and 

)(xv  can be calculated at all grid nodes on segment ],[ ba  by solving the system 

of algebraic equations (5.9) and (5.10) successively at i = k + 1, k + 2, ..., r. 

As an example, we will solve the system of differential equations 

v
dx

du
,                                                (5.11) 

u

v

dx

dv

2

2

                                            (5.12) 

 

on segment ]1,0[ . The initial conditions look like 
 

Au )0( , 
 

Qv )0( . 
 

This initial value problem was solved in the fifth chapter of book [5] while  

modeling a catalytic converter. 

The catalytic converter is a device intended for lowering toxicity of waste 

gases in the car exhaust system. 

Let us write system (5.11), (5.12) in form (5.7), (5.8), where 
 

vE , 

u

v
F

2

2

. 

 

We see that E  is a linear function of variable v, F  is a nonlinear function of 

variables u and v. 

Algebraic equations (5.9) and (5.10) take the following form: 
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i

i

i
v

h
u

2
,                                           (5.13) 

i

ii

i u

vh
v

22

2

,                                       (5.14) 

where 

11 2 i

i

i
v

h
u , 

1

2

1

1 22
i

ii

i u

vh
v . 

 

Let us solve the system of algebraic equations (5.13) and (5.14) for unknown 

i
u  and 

i
v . 

Equation (5.13) can be written as 

i

i

i
v

h
u

2
.                                           (5.15) 

Multiplying both sides of equation (5.14) by 
i

u2  and substituting expression 

(5.15) for 
i

u , we obtain 

2
2

)2(

i

i h
v .                                        (5.16) 

Formulas (5.16) and (5.15) allow us to calculate the values of 
i

v  and 
i

u  suc-

cessively at i = k + 1, k + 2, ..., r. 
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5.3. Program for solving the initial value problem 

 

 

 

 

 
Let us develop a program for solving the initial value problem for the system 

of differential equations (5.11) and (5.12). Number l = r – k of steps on segment 

]1,0[  and the values of A and Q are given in the table below. 
 

l 10 

A 0.25 

Q -0.1 
 

As a result of the program execution, dependences )(xu  and )(xv  should appear 

under the original table. 

The program has the following form: 
 

Listing 5.1 
 

Sub main() 

    Dim l As Integer 

    Dim u As Double, v As Double 

    Dim h As Double, h2 As Double 

    Dim i As Integer 

    Dim alpha As Double, beta As Double 

    l = Selection.Cells(1, 2) 

    u = Selection.Cells(2, 2)              'value of A 

    v = Selection.Cells(3, 2)              'value of Q 

    h = 1 / l: h2 = h / 2 

    Selection.Cells(4, 1) = "x" 

    Selection.Cells(4, 2) = "u" 

    Selection.Cells(4, 3) = "v" 

    Selection.Cells(5, 1) = 0 

    Selection.Cells(5, 2) = u 

    Selection.Cells(5, 3) = v 

    For i = 6 To 5 + l          'movement along axis x 

        Selection.Cells(i, 1) = (i - 5) * h 

        alpha = u + h2 * v 

        beta = v - h2 * v ^ 2 / (2 - u) 

        v = (2 - alpha) * beta / (2 - alpha + _ 
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        h2 * beta) 

        u = alpha + h2 * v 

        Selection.Cells(i, 2) = u 

        Selection.Cells(i, 3) = v 

    Next i 

End Sub 

 

The program uses the values of the above table (Fig. 5.2). We must select this 

Excel table before the program execution. The coordinates of the grid nodes and 

the corresponding values of the )(xu  and )(xv  dependences are placed in col-

umns x, u, v (Fig. 5.3). 

 

 
 

Fig. 5.2. The Excel table with the source data 

 

 
 

Fig. 5.3. The program execution results 
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We advise the reader to write a program (similar to Listing 5.1) for solving 

the Bernoulli differential equation [3], 

2)( uxf
dx

du
, 

on segment ],[ ba  under initial condition 1)(au . In this equation, )(xf  is  

a function from Appendix 4; segment ],[ ba  is this function’s domain. 
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5.4. Solving the system of nonlinear algebraic  

equations by the Newton method 
 

 

 

 
In Section 5.6, we will need to solve the system of nonlinear algebraic equa-

tions 

1211
)...,,,(

n
xxxf , 

2212
)...,,,(

n
xxxf ,                                    (5.17) 

. . . . . . 

nnn
xxxf )...,,,(

21
, 

 

where functions 
1
f , 

2
f , ..., 

n
f  are twice differentiable with respect to argu-

ments 
1

x , 
2

x , ..., 
n

x , right-hand sides 
1
, 

2
, ..., 

n
 are given constants (we 

can consider them equal to zero). The solution process is iterative. 

To understand the iteration content, we write solution x)...,,,(
21 n

xxx  

of system (5.17) in form 

111
zxx j , 

222
zxx j , ..., 

n

j

nn
zxx , 

where jj

n

jj xxx x)...,,,(
21

 is the j-th approximation of the x  solution, 
1

z , 

2
z , ..., 

n
z  are small quantities. 

By substituting expressions for 
1

x , 
2

x , ..., 
n

x  into (5.17), we obtain the fol-

lowing system of nonlinear algebraic equations with respect to 
1

z , 
2

z , ..., 
n

z : 

122111
)...,,,(

n

j

n

jj zxzxzxf , 

222112
)...,,,(

n

j

n

jj zxzxzxf , 

. .  . . . . . . . . 

nn

j

n

jj

n
zxzxzxf )...,,,(

2211
. 
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Using Taylor’s formula [3] for functions of n variables in a neighborhood of 

point jx , we have 

)...,,,()...,,,(
212211

j

n

jj

in

j

n

jj

i
xxxfzxzxzxf  

)()...,,,(...
!1

1 2

21
2

2
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1 max

j
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jj

i
n

n
zOxxxf

x
z

x
z

x
z , 

 

1 ≤ i ≤ n. At that, the last algebraic equations with respect to 
1

z , 
2

z , ..., 
n

z  

take the following linear form: 
 

)()()(...)()( 2
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1

2

1

2
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1
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n
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f
z xxxx , 

where 
max

z  is the maximum of small quantities ||
1

z , ||
2

z , ..., ||
n

z , 
 

}|{|max
1

i

ni

max
zz . 

 

In the Newton method, the ( 1j )th approximation of the solution ( j = 0, 1,  

2, ...) is calculated over the known j-th approximation as follows: 

1) matrix 
 

)(...)()(

....

)(...)()(

)(...)()(

...

....

...
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2
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    (5.18) 

 

of the partial derivatives of functions 
1
f , 

2
f , ..., 

n
f  is calculated; 
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2) vector 
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                                    (5.19) 

is calculated; 

3) the system of linear algebraic equations 
 

nnnnnn

nn

nn

bzazaza

bzazaza
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...

.........
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,...

2211

22222121

11212111

                 (5.20) 

 

is solved, for example, by the Gaussian elimination method considered in  

Sections 3.9 and 3.10; 

4) the ( 1j )th approximation of the solution is calculated according to for-

mulas 

11

1

1
zxx jj , 

22

1

2
zxx jj ,                                          (5.21) 

. . . . . 

n

j

n

j

n
zxx 1 . 

 

Various conditions can be applied for finishing the iterative process; we will 

use the following: 

max
z ,                                                (5.22) 

 

where  is a given positive constant, 

}|{|max
1

i

ni

max
zz . 

Matrix (5.18) of the partial derivatives of functions 
1
f , 

2
f , ..., 

n
f  is called 

the Jacobian matrix of these functions. 
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5.5. Newton and Newton-like methods for solving  

the single nonlinear algebraic equation 
 

 

 

 
It is obvious that the Newton iterative process of the previous section can be 

used for solving not only the system of nonlinear algebraic equations, but also 

for solving one equation, which can be considered as a system containing one 

equation with respect to 
1

x : 

111
)(xf . 

 

In this case, the Newton method has a simple geometric interpretation. 

The geometric interpretation will be considered on an example of equation 

(4.23), 

0)(xf , 
 

satisfying the following conditions in the )(xf  function’s domain: 

 the )(xf  function is continuous and monotonous; 

 the derivative, )(xf , is continuous, i.e., the )(xf  function is smooth; 

 )(xf  is different from 0; 

 the equation solution, x , exists. 

In addition, we suppose that the solution’s initial approximation ( 0x , which must 

be given) is located in the )(xf  function’s domain. 

The Newton iterative process, defined by items (1) — (4) of the previous sec-

tion, can be written as follows: 

)(

)(1

j

j
jj

xf

xf
xx ,                                       (5.23) 

where jx , 1jx  are the j-th and ( 1j )th approximations of the equation solu-

tion, j = 0, 1, 2, ... Initial approximation 0x  is given. 

Fig. 5.4 gives the geometric interpretation of the process of solving equation 

0)(xf . According to this figure, the ( 1j )th approximation of the x  solu-

tion can be determined as follows: 

1) restore the perpendicular to the x axis from point jx ; 
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2) run the tangent line through the point of intersection of the perpendicular 

with the )(xf  graph; 

3) consider the coordinate of the point of intersection of the tangent line with 

the x axis as the ( 1j )th approximation of the equation solution, 1jx . 

 

 
 

Fig. 5.4. The geometric interpretation of the Newton method 

 

This algorithm follows from formula (5.23) and the following property of the 

tangent line passing through the point with coordinates jx  and )( jxf : the slope 

of this tangent line is equal to 

1

)(
)(

jj

j
j

xx

xf
xf . 

 

Due to the above geometric interpretation of the Newton method, it is also 

called the tangent method. 

In Section 4.5, equation (4.23), (4.24) of form 05.1cos xx  was solved 

by using the Solver add-in for Excel. Below is a code for solving this equation 

by the tangent method. 
 

Listing 5.2 
 

Sub main() 

    Dim j_lim As Integer 

    Dim zeta As Double 

    Dim x As Double 
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    Dim f As Double 

    Dim a As Double 

    Dim j As Integer 

    Dim z As Double 

1:  j_lim = Range("I1").Value 

2:  zeta = Range("H1").Value 

3:  x = Range("G1").Value 

    For j = 1 To j_lim              'Newton iterations 

4:      Call f_function(x, f) 

5:      Call fx_jacobian(x, a) 

6:      z = -f / a 

7:      x = x + z 

8:      If Abs(z) < zeta Then Exit For 

    Next j 

9:  Range("G2").Value = x 

10: Range("F2").Value = f 

11: Range("E2").Value = a 

12: Range("I2").Value = j 

End Sub 

 

Sub f_function(ByVal x As Double, _ 

    ByRef f As Double) 

    f = x - Cos(x) - 1.5 

End Sub 

 

Sub fx_jacobian(ByVal x As Double, _ 

    ByRef fx As Double) 

    fx = 1 + Sin(x) 

End Sub 

 

In this code: 

1) j_lim is the limiting number of iterations; its value is taken from cell I1 

of the active worksheet (operator 1); 

2) zeta is constant  in condition (5.22) of finishing the Newton iterative 

process; its value is taken from cell H1 (operator 2); 

3) x is the current approximation of the equation solution; the initial value of 

x (the initial approximation of the solution) is taken from cell G1 (operator 3). 

After inputting the values of j_lim, zeta and x, the j cycle of the Newton 

iterations is performed. In this cycle: 

1) operator 4 calculates value f of the function according to formula 

5.1cos)( xxxf  by calling the f_function subroutine; 
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2) operator 5 calculates the derivative’s value, a, according to formula 

xxf sin1)(  by calling the fx_jacobian subroutine; 

3) operators 6 and 7 calculate the next approximation of the equation solu-

tion according to formula (5.23); 

4) operator 8 checks condition (5.22), || z , for finishing the Newton  

iterations. 

When finishing the iterative process (after leaving the j cycle), the calculated 

values of x, f and a are respectively put into cells G2, F2 and E2 (operators 9, 

10 and 11). Operator 12 puts the number of the Newton iterations into cell I2. 

Fig. 5.5 shows the Excel worksheet upon termination of the code execution. 

Cell G2 contains the following value of the solution of equation (4.23), (4.24): 

x  = 1.535394. It practically coincides with the x  value calculated by means of 

Excel in Section 4.5. 

 

 
 

Fig. 5.5. The worksheet upon termination of solving the equation 

 

Let us consider the question of the convergence of the Newton iterative pro-

cess defined by formula (5.23). For that, we use the following designation (simi-

lar to the designations on p. 311): jj xx , where x  is the exact solution 

of the equation, i.e., 0)(xf . Let j  be a small quantity. 

Substituting expressions jj xx  and 11 jj xx  into formula 

(5.23), we have 

)(

)(1

j

j
jj

xf

xf
. 

Let us use expressions similar to (3.1) for )( jxf  and )( jxf  and 

take into account 0)(xf . At that, we have the following chain of equalities: 

])[()()(

])[()()(5.0)()(

2

32
1

jj

jjj
jj

Oxfxf

Oxfxfxf
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j

Oxf

Oxf
. 

Neglecting )( jO  in the numerator and denominator, we have the following 

formula: 

21 )(
)(

)(
5.0 jj

xf

xf
.                                   (5.24) 

Because 0)(xf , the last formula shows that the Newton iterative process 

has quadratic convergence. 

The secant method (Section 4.5), defined by formula (4.28) in form 

)()(

)()(

1

1
1

jj

jjj
jj

xfxf

xfxx
xx ,                             (5.25) 

 

can be considered as a Newton-like method. The reason is that formula (5.25) 

takes form (5.23) of the Newton (tangent) method at 01jj xx  because 

)(
)()(

1

1
j

jj

jj

xf
xx

xfxf
. 

 

As we see, the secant method in form (5.25) needs two initial approximations 

of the equation solution, 0x  and 1x . 

Fig. 5.6 gives the geometric interpretation of the secant method. According to 

this figure, the ( 1j )th approximation of the x  solution over the ( 1j )th and  

j-th approximations can be calculated as follows: 

1) restore the perpendiculars to the x axis from points 1jx  and jx  of the  

x axis; 

2) run the secant line through points ),( 1

u

j fx  and ),(
v

j fx  of intersection 

of the perpendiculars with the )(xf  graph; 

3) consider the coordinate of the point of intersection of the secant line with 

the x axis as the ( 1j )th approximation of the equation solution, 1jx . 

Formula, intended for estimating the rate of the convergence of the secant 

method’s iterative process, is close to formula (5.24): 
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11

)(

)(
5.0 jjj

xf

xf
.                                  (5.26) 

 

The derivation of this formula is similar to the above derivation of (5.24). For-

mula (4.30) is the simplified form of (5.26). 

 

 
 

Fig. 5.6. The geometric interpretation of the secant method: 

)( 1j

u
xff ,   )( j

v
xff  

 

In Section 4.5, we considered another version of the secant method, which 

has slow (linear) convergence according to formula (4.29). However, 0)(xf  

is not the necessary condition for the convergence. 

The Steffensen method, defined by formula 

)()]([

)(2
1

jjj

j
jj

xfxfxf

xf
xx , 

 

can also be considered as a Newton-like method. The reason is that the last for-

mula takes form (5.23) of the Newton method because 

)()()()]([ jjjjj xfxfxfxfxf  

at 0)( jxf . 

Unlike the previous Newton-like method, the Steffensen method needs only 

one initial approximation of the equation solution, 0x . 
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Fig. 5.7 shows the possibility of cycling the Newton iterative process without 

convergence to solution x  if not all conditions, formulated at the beginning of 

this section, are satisfied (set j = 0 in Fig. 5.7). If the Newton method is used for 

solving the system of nonlinear algebraic equations (5.17), the cycling is also 

possible. 

 
 

Fig. 5.7. Cycling the iterative process of the Newton (tangent) method 

 

The Newton method, described in the previous section, may be considered as 

the tangent method generalization to the system of nonlinear algebraic equations 

(5.17). The secant and Steffensen methods also have the generalizations. 

In Appendix 6, the Excel circular reference is used for realization of the tan-

gent method for solving nonlinear equation 05.1cos xx . In a similar way, 

we can realize the bisection, secant and Steffensen methods in Excel without 

programming in VBA. 

We advise the reader to write a program for solving equation 0)(xf  on 

segment ],[ ba  by the Steffensen method. In this equation, )(xf  is a function 

from Appendix 4; segment ],[ ba  is this function’s domain. The user-defined 

form (as the user interface of the program) must include the CheckBox element 

for choice of the solution’s initial approximation: 

 ax0  in the absence of the check mark; 

 bx0  in the presence of the check mark. 

If point )( jj xfx  appears outside segment ],[ ba  during the solution, the  

secant method with )(5.01 bax j  must be used for continuation of solving 

equation 0)(xf . 
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5.6. Modeling of the piano mechanism  

linking a key with hammer 
 

 

 

 
In Section 5.2, we considered a method for solving the initial value problem 

for the system of two first-order differential equations, (5.7) and (5.8). However, 

the solution method does not change if the number of the system equations is 

greater than two, as in the initial value problem below. 

Article [12] considers a series of mathematical models of the piano mecha-

nism linking a key with hammer. We will use the model of medium complexity, 

in which the key and hammer motion is described by the following system of 

second-order differential equations: 

),(
312

2

1

2

uuE

dt

ud
,                                       (5.27) 

dt

du
uuE

dt

ud
3

314
2

3
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,, ,                                 (5.28) 

where 

1

31
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),(

m

uukf
uuE ,                               (5.29) 
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3

3

314

)(

,,
qup

uuk
dt

du
q

dt

du
uuE .                   (5.30) 

In this model, 
1

u  is the key’s displacement downward, 
3

u  is the hammer’s 

displacement forward, f is the force acting on the key, k  is the elastic constant  

of the spring, 
1

m  is the key’s mass, p and q are given constants, 
33

mqup  is 

the hammer’s mass depending on its displacement (more exactly, 
3

m  is the 

hammer’s effective mass). 

We have to develop a code for solving this system of differential equations 

on the time segment, 0 ≤ t ≤ b, with the following zero initial conditions: 
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0)0()0()0()0(
3

3

1

1 dt

du
u

dt

du
u . 

 

Let us introduce the key and hammer velocities, 
2

u  and 
4

u  respectively, as 

follows: 

2

1
u

dt

du
, 

4

3
u

dt

du
. 

 

The system of equations (5.27) and (5.28) takes the following form: 
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dt
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, 
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E , 
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uE ,                                                (5.32) 
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4
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E . 

The initial conditions become 

0)0()0()0()0(
4321

uuuu .                            (5.33) 

As in Section 5.2, we construct the grid on segment 0 ≤ t ≤ b for solving the 

formulated initial value problem and consider functions )(
1

tu , )(
2

tu , )(
3

tu , 

)(
4

tu  at the grid nodes. The grid step is assumed constant: lb / , where l is  

a given number of time steps. 
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Let it  be the coordinate of a node, which is not the initial time moment, 

i.e., 1 ≤ i ≤ l. To calculate the values of )(
1

tu , )(
2

tu , )(
3

tu , )(
4

tu  over known 

values of )(
1

tu , )(
2

tu , )(
3

tu , )(
4

tu , we must solve the following 

system of nonlinear algebraic equations: 
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After designations 
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we can write this system of nonlinear algebraic equations in form (5.17) at n = 4: 

143211
),,,( xxxxf , 

243212
),,,( xxxxf , 

343213
),,,( xxxxf ,                                     (5.35) 

443214
),,,( xxxxf , 

where )(
11

tux , )(
22

tux , )(
33

tux , )(
44

tux . 
 

According to expressions (5.32), we have 
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212111 2
)(

2
xxxExf , 

1

31

231222

)(

2
),(

2 m

xxkf
xxxExf , 

434333 2
)(

2
xxxExf ,                             (5.36) 

3

31

2

4

4431444

)(

2
),,(

2 qxp

xxkqx
xxxxExf . 

For solving the system of nonlinear algebraic equations (5.35) by the Newton 

method, we need expressions for the partial derivatives of functions 
1
f , 

2
f , 

3
f , 

4
f  with respect to arguments 

1
x , 

2
x , 

3
x , 

4
x , i.e., for the elements of Jacobian 

matrix (5.18). By using the basic rules of differentiation [3], we obtain 

1

1

1

x

f
,   

2
2

1

x

f
,   0

4

1

3

1

x

f

x

f
, 

11

2

2m

k

x

f
,   1

2

2

x

f
,   

13

2

2m

k

x

f
,   0

4

2

x

f
, 

0

2

3

1

3

x

f

x

f
,   1

3

3

x

f
,   

2
4

3

x

f
,                      (5.37) 

31

4

2 qxp

k

x

f
,   0

2

4

x

f
, 

2

3

31

2

43

3

4

)(

)]([)(

2
qxp

qxxkqxqxpk

x

f
,   

3

4

4

4
1

qxp

qx

x

f
. 

Let us develop a code for solving the system of differential equations (5.31) 

with initial conditions (5.33). In table Listing 5.3 with the source data for the 

required code: 

 l is the number of time steps; 

 τ is the time step in seconds; 

 f is the force acting on the key, in newtons; 

 m
1
 is the key’s mass in kilograms; 
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 p, q, k are constants in expressions (5.29) and (5.30); their dimensions are 

as follows: [p] = kg, [q] = kg / m, [k] = N / m; 

 ζ is a positive constant in condition (5.22) for finishing the Newton itera-

tive process. 
 

Listing 5.3 
 

l 30 

tau 1.00E-03 

f 10 

m1 0.074 

p 0.406 

q 18.3 

k 1.16E+04 

zeta 1.00E-09 
 

As results of the execution, we must have the values of time t and the corre-

sponding values of the key’s and hammer’s displacements and velocities, i.e., we 

must have 
1

u , 
2

1
u

dt

du
, 

3
u , 

4

3
u

dt

du
 as functions of time t. 

Below are the main program and the e_functions and fx_jacobian 

subroutines for solving the initial value problem. 
 

Listing 5.4 
 

Dim tau As Double 

Dim f As Double, m1 As Double 

Dim p As Double, q As Double 

Dim k As Double 

Dim tau2 As Double 

 

Sub main() 

    Dim l As Integer 

    Dim zeta As Double 

    Dim u(1 To 4) As Double 

    Dim x(1 To 4) As Double 

    Dim z(1 To 4) As Double 

    Dim e(1 To 4) As Double 

    Dim a(1 To 4, 1 To 4) As Double 

    Dim b(1 To 4) As Double 

    Dim alpha(1 To 4) As Double 

    Dim m As Integer, i As Integer, j As Integer 

    Dim max As Double 
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    Dim sb As String, se As String 

    l = Selection.Cells(1, 2) 

    tau = Selection.Cells(2, 2) 

    f = Selection.Cells(3, 2) 

    m1 = Selection.Cells(4, 2) 

    p = Selection.Cells(5, 2) 

    q = Selection.Cells(6, 2) 

    k = Selection.Cells(7, 2) 

    zeta = Selection.Cells(8, 2) 

    tau2 = tau / 2 

    For m = 1 To 4 

1:      u(m) = 0                      'values at t = 0 

    Next m 

    Selection.Cells(9, 1) = "t" 

    Selection.Cells(9, 2) = "u1" 

    Selection.Cells(9, 3) = "u2" 

    Selection.Cells(9, 4) = "u3" 

    Selection.Cells(9, 5) = "t" 

    Selection.Cells(9, 6) = "u4" 

    Selection.Cells(9, 7) = "j max" 

    Selection.Cells(10, 1) = 0 

    Selection.Cells(10, 2) = u(1) 

    Selection.Cells(10, 3) = u(2) 

    Selection.Cells(10, 4) = u(3) 

    Selection.Cells(10, 5) = 0 

    Selection.Cells(10, 6) = u(4) 

    For i = 11 To 10 + l     'movement along time axis 

2:      Call e_functions(u, e) 

        For m = 1 To 4 

3:          alpha(m) = u(m) + tau2 * e(m) 

4:          x(m) = u(m) + tau * e(m) 

        Next m 

        For j = 1 To 1000           'Newton iterations 

5:          Call fx_jacobian(x, a) 

6:          Call e_functions(x, e) 

            For m = 1 To 4 

7:              b(m) = alpha(m) - (x(m) - tau2 * e(m)) 

            Next m 

8:          Call gauss(4, a, b, z) 

            For m = 1 To 4 

9:              x(m) = x(m) + z(m) 

            Next m 
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            max = 0 

            For m = 1 To 4 

                If Abs(z(m)) > max Then _ 

                max = Abs(z(m)) 

            Next m 

10:         If max < zeta Then Exit For 

        Next j 

        For m = 1 To 4 

11:         u(m) = x(m) 

        Next m 

        Selection.Cells(i, 1) = (i - 10) * tau 

        Selection.Cells(i, 2) = u(1) 

        Selection.Cells(i, 3) = u(2) 

        Selection.Cells(i, 4) = u(3) 

        Selection.Cells(i, 5) = (i - 10) * tau 

        Selection.Cells(i, 6) = u(4) 

        Selection.Cells(i, 7) = j 

    Next i 

    sb = Selection.Cells(10, 1).Address 

    se = Selection.Cells(10 + l, 2).Address 

12: Call graph(sb, se, "t, s", "u1, m") 

    sb = Selection.Cells(10, 5).Address 

    se = Selection.Cells(10 + l, 6).Address 

13: Call graph(sb, se, "t, s", "u4, m/s") 

    Range("O36").Select 

End Sub 

 

Sub e_functions(ByRef x() As Double, _ 

    ByRef e() As Double) 

    e(1) = x(2) 

    e(2) = (f - k * (x(1) - x(3))) / m1 

    e(3) = x(4) 

    e(4) = (q * x(4) ^ 2 + k * (x(1) - x(3))) / _ 

    (p - q * x(3)) 

End Sub 

 

Sub fx_jacobian(ByRef x() As Double, _ 

    ByRef fx() As Double) 

    Dim m3 As Double 

    fx(1, 1) = 1 

    fx(1, 2) = -tau2 

    fx(1, 3) = 0: fx(1, 4) = 0 
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    fx(2, 1) = tau2 * k / m1 

    fx(2, 2) = 1 

    fx(2, 3) = -tau2 * k / m1 

    fx(2, 4) = 0 

    fx(3, 1) = 0: fx(3, 2) = 0 

    fx(3, 3) = 1 

    fx(3, 4) = -tau2 

    m3 = p - q * x(3) 

    fx(4, 1) = -tau2 * k / m3 

    fx(4, 2) = 0 

    fx(4, 3) = tau2 * (k * m3 - _ 

    (q * x(4) ^ 2 + k * (x(1) - x(3))) * q) / m3 ^ 2 

    fx(4, 4) = 1 - tau * q * x(4) / m3 

End Sub 

 

The u array contains values 
1

u , 
2

u , 
3

u , 
4

u  of the solution. Operator 1 sets 

the solution’s values at 0t  according to (5.33). The x array contains the solu-

tion approximations. 

By means of the i cycle, the movement along the time axis is performed with 

step τ. The u array, used in the call of the e_functions subroutine (opera-

tor 2), contains values 
1

u , 
2

u , 
3

u , 
4

u  of the solution at the t  moment  

of time. This subroutine calculates corresponding values 
1

E , 
2

E , 
3

E , 
4

E   

of the e array according to formulas (5.32). Operator 3 calculates values  

1
, 

2
, 

3
, 

4
 of the alpha array according to formulas (5.34). Operator 4 

calculates the x array of the initial approximation of the solution at the t moment 

according to formulas 

)]([)(
2111

tuEtux , 

)](),([)(
31222

tutuEtux , 

)]([)(
4333

tuEtux , 

)](),(),([)(
431444

tututuEtux . 
 

Further (inside the i cycle being under consideration), the j cycle of the 

Newton iterations is performed. In the j cycle: 

1) by calling the fx_jacobian subroutine (operator 5), the a array is cal-

culated according to formulas (5.18) and (5.37); 

2) after calling the e_functions subroutine (operator 6), the b array is 

calculated according to formulas (5.19) and (5.36) by means of operator 7; 
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3) by calling the gauss subroutine (operator 8), the system of linear alge-

braic equations (5.20), defined by arrays a and b, is solved; 

4) by means of operator 9, the next approximation of the solution at the t 

moment is calculated according to formulas (5.21); 

5) operator 10 checks if condition (5.22) is satisfied for termination of the 

Newton iterations. 

When terminating the iterative process (after leaving the j cycle), values 
1

u , 

2
u , 

3
u , 

4
u  of the solution at the t moment (which are in the x array) are  

assigned to the u array’s elements by means of operator 11. These values  

(together with the value of t and the number of the Newton iterations, 
max

j ) are 

put into cells of Excel. 

At the end of the main program (after leaving the i cycle), the graphs of 

calculated dependences )(
1

tu  and )(
4

tu  are constructed automatically by means 

of the graph subroutine. Operators 12 and 13 are the calls of this subroutine. 

The declarations of e_functions and fx_jacobian are located below 

the main program (see Listing 5.4). 

The e_functions subroutine calculates values 
1

E , 
2

E , 
3

E , 
4

E  according 

to formulas (5.32). The parameters of this subroutine have the following sense: 

 x is an array of values 
1

u , 
2

u , 
3

u , 
4

u ; 

 e is a one-dimensional array intended for the required values. 

The fx_jacobian subroutine calculates the Jacobian matrix of functions 

1
f , 

2
f , 

3
f , 

4
f  according to formulas (5.18) and (5.37). The parameters have 

the following sense: 

 x is an array of arguments 
1

x , 
2

x , 
3

x , 
4

x ; 

 fx is a two-dimensional array intended for the required values of the par-

tial derivatives. 

The source data for code Listing 5.4 are the values given in table Listing 5.3 

considered above. The corresponding Excel table, depicted in Fig. 5.8, must be 

selected before the code execution. 

Upon termination of the execution, the values of t, 
1

u , 
2

u , 
3

u , 
4

u  and 
max

j  

are located in the corresponding columns on the Excel worksheet (Fig. 5.9).  

Besides, the )(
1

tu  and )(
4

tu  graphs are located on this worksheet; Fig. 5.10 

shows them completely. 

The graphs, depicted in Fig. 5.10, are results of the mentioned calls of the 

graph subroutine. 
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Fig. 5.8. The Excel table with the source data 

 

 
 

Fig. 5.9. The code execution results 
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b 

 

Fig. 5.10. The automatically created graphs: a — )(
1

tu ; b — )(
4

tu  
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5.7. Definition of linear spline 

 

 

 

 

 
The simplest spline, linear, is defined as follows. 

Let values 
k

f , 
1k

f , 
2k

f , ..., 
2r

f , 
1r

f , 
r

f  of grid function )(xf  be 

given at the nodes of grid 
k

x  < 
1k

x  < 
2k

x  < ... < 
2r

x  < 
1r

x  < 
r

x .  

A linear spline (or first-degree spline, Fig. 5.11) is function )(xL , which satis-

fies the following conditions: 

1) on each elementary segment 
1i

x  ≤ x  ≤ 
i

x  (k + 1 ≤ i ≤ r), the spline  

coincides with a first-degree polynomial (generally, the polynomials are different 

on different elementary segments); 

2) at the grid nodes, the spline has the corresponding grid function values: 

ii
fxL )( . 

 

 
 

Fig. 5.11. The linear spline graph 

 

According to condition (2), the )(xL  graph passes through points (
k

x , k
f ), 

(
1k

x , 1k
f ), (

2k
x , 2k

f ), . . . , ( 2r
x , 2r

f ), (
1r

x , 1r
f ), (

r
x , r

f ). 
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The definition of linear spline leads to the following expression for the )(xL  

function on elementary segment ],[
1 ii

xx : 

i

i

i
i

i

i h

xx
f

h

xx
fxL

1

1
)( ,                           (5.38) 

where 
1iii

xxh  is the elementary segment’s length or the grid step, k + 1 ≤  

i ≤ r. Thus, the linear spline is the linearly interpolated tabular function. 

Formula (5.38) was already used in programs Listing 4.11 and Listing 4.13: 

see formula (4.34) on p. 320. 

The error of interpolating the )(xf  function (and its derivative) by the )(xL  

spline (and by its derivative) is determined by the following expression: 

)()()( 2)()( n

max

nn hOxLxf ,                              (5.39) 

where }{max
1

i

rik

max
hh  is the maximum grid step ( 0

max
h ), n = 0, 1 is 

the derivative order, )()()0( xfxf , )()()0( xLxL . 

It is obvious that the mathematical constructions of the linear and cubic 

splines are similar. However, the cubic interpolation is much more exact than the 

linear interpolation: the interpolation errors differ by two orders of 
max

h . To 

make sure, we have to compare expressions (4.19) and (5.39). 

The linear spline can be used for interpolation, differentiation and integration 

of the grid (tabular) function. For this purpose, we can use the si subroutine and 

the ios function, developed for the cubic spline construction, but all elements of 

the M array (containing the spline moments) must be zero in the calls of these 

user-defined procedures. 

When the moments are nullified, formula (4.20), realized in the ios func-

tion, takes the following form: 

r

ki
i

ii
b

a

b

a

h
ff

dxxLdxxf

1

1

2
)()( .                    (5.40) 

It is obvious that summand 
i

ii h
ff

2

1  is equal to the area of a trapezium with 

height 
1iii

xxh  and bases 
1i

f  and 
i

f . Therefore, integration formula 

(5.40) is widely known as the trapezoidal method. 

Formula (5.39) gives the following estimation of the error of numerical inte-

gration by the trapezoidal method: 
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)(
2

)()()( 2

1

1

max

r

ki
i

ii
b

a

b

a

b

a

hOh
ff

dxxfdxxLdxxf , 

where 0
max

h  is the maximum grid step. 

The linear spline can be used in the noniterative method for solving the non-

linear algebraic equation (instead of the cubic spline, Section 4.6). This leads to  

a simplification of the program, but also to a deterioration in accuracy of the 

equation solution. 

We advise the reader to write a program for calculating the values of func-

tion 

1

)(1)(

x

a

dyyfxu                                     (5.41) 

at the nodes of a uniform grid on segment ],[ ba . In this formula, )(xf  is  

a function from Appendix 4; segment ],[ ba  is the )(xf  function’s domain. The 

integration must be performed by the user-defined ios function, as the program 

realization of formula (5.40). 

Function (5.41) is the analytical solution of the Bernoulli differential equa-

tion [3], 

2)( uxf
dx

du
, 

on segment ],[ ba  under initial condition 1)(au . On p. 361, we spoke about 

the numerical solution of this initial value problem. 

We advise the reader to write a program, similar to Listing 4.11, for solving 

equation 0)(xf  on segment ],[ ba  by the noniterative method based on the 

linear spline. In this equation, )(xf  is a function from Appendix 4; segment 

],[ ba  is this function’s domain. Uniform grid 
0

xa  < 
1

x  < 
2

x  < ... < 
2n

x  < 

1n
x  < bx

n
 must be used. 

In the next section, the linear spline will be used in the least-squares method. 

Besides, this mathematical construction appears in the sound insulation problem. 
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5.8. The least-squares method 

 

 

 

 

 
The linear spline can be used in the least-squares method. We will consider 

this question on an example of the following table from Task 8.1 in book [13]. 
 

The source data 
 

The land plot  

number ( j 
) 

The land quality 

mark (
 
x

j 
) 

The wheat  

productivity (
 
u

j 
),  

centner per hectare 
 

1 30 23.5 

2 35 23.7 

3 35 24.0 

4 38 26.7 

5 29 24.3 

6 40 28.8 

7 45 33.5 

8 37 27.6 

9 35 23.0 

10 40 29.4 

11 50 30.5 

12 52 35.0 

 

The above table gives the values characterizing the land quality and wheat 

productivity for each of ν = 12 land plots. The least-squares method allows us to 

establish the functional dependence of the wheat productivity, u, on the land 

quality mark, x. 

Let )(xF  be an unknown functional dependence (of a given type) defined up 

to parameters 
1

c , 
2

c , ..., 
n

c . More precisely, this dependence looks like 

),...,,,(
21

xcccF
n

, where
1

c , 
2

c , ..., 
n

c  and x are the function parameters and 

argument, respectively. 

According to the least-squares method under consideration, )(xF  is the  

required functional dependence of productivity u on mark x if the parameters  

of )(xF  are equal to the coordinates of the minimum point of function 
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1

2

21
])([)...,,,(

j
jjn

uxFcccG                         (5.42) 

on 
1

c , 
2

c , ..., 
n

c . 

Let us assume that: 

1) )(xF  is linear spline )(xL  at a grid on the x axis; 

2) the n number of the grid nodes and their location are given: 
1

z  < ... <  

z  < ... < 
n

z  are the coordinates of the grid nodes on the x axis; 

3) parameters 
1

c , 
2

c , ..., 
n

c  of )(xF  are values 
1

L , ..., L , ..., 
n

L  of 

the )(xL  spline at grid nodes 
1

z , ..., z , ..., 
n

z , respectively. 

According to the least-squares method, we have to find the minimum point of 

function 

1

2

1
])([)...,,...,,(

j
jjn

uxLLLLG                      (5.43) 

on 
1

L , ..., L , ..., 
n

L . 

In Section 6.12, we will minimize this function iteratively (by subroutines 

mini and minim). Here, we will consider a noniterative method to find the 

required minimum point, which is based on the concept of fundamental spline. 

According to the necessary condition for an extreme value [3], the minimum 

points of function (5.43) belong to the set of points that are solutions of the sys-

tem of equations 

0
1

L

G
, 

. . . 
 

0
i

L

G
,                                                (5.44) 

. . . 
 

0
n

L

G
. 

Therefore, for finding the minimum point of function (5.43), we have to solve 

the last system and then to analyse the solution results. 

The solution of system (5.44) begins with the following concept of funda-

mental spline. 
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The fundamental spline, )(x , is a spline equaling to 1 at the z  node of 

grid 
1

z  < ... < z  < ... < 
n

z  and 0 at all other n – 1 nodes. Because 1 ≤ κ ≤ n, 

we have n fundamental splines )(
1

x , ..., )(x , ..., )(x
n

. 

If the fundamental splines are linear, then (according to the fundamental 

spline definition) an arbitrary linear spline can be written as follows: 

)(...)(...)()(
11

xLxLxLxL
nn

 

)(...)(...)(
11

xLxLxL
nnii

. 

Using the last expression and formula (5.43), we have the following chain of 

equalities: 

1

}/)(])({[5.0

j
ijjj

i

LxLuxL
L

G
 

1

]})()[({

j
jjji

uxLx  

1
11

]})(...)(...)()[({

j
jjnnjjji

uxLxLxLx  

...)]()([...)]()([

11
11

j
jji

j
jji

xxLxxL  

11

])([)]()([

j
jji

j
jnjin

uxxxL  

111

11
)(...)(...)(

j

njijn

j

jij

j

jij
LLL  

1

)(

j
jij

u ,                                            (5.45) 

where 

)(
jiij

x ,                                            (5.46) 

1 ≤ i ≤ n,   1 ≤ j ≤ ν, 

i.e., coefficients 
ij

 form the A matrix of size n × ν: 
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nnn
...

....

...

...

21

22221

11211

A .                                (5.47) 

 

Due to (5.45), equations (5.44) become linear algebraic equations 

,......

...........

,......

...........

,......

11

11

111111

nnnnnn

ininii

nn

rLqLqLq

rLqLqLq

rLqLqLq

           (5.48) 

where 

1

)(

j

jiji
q ,   

1

)(

j

jiji
ur .                       (5.49) 

The system of linear algebraic equations (5.48) can be written as matrix 

equation 

RQL ,                                                (5.50) 

where Q is the system matrix, R is the vector of the right-hand sides, L is the 

vector of the unknown variables: 
 

nnnn

inii

n

qqq

qqq

qqq

......

.....

......

.....

......

1

1

1111

Q ,   

n

i

r

r

r

...

...
1

R ,   

n
L

L

L

...

...
1

L .         (5.51) 

 

The system of linear algebraic equations (5.48) can be solved for unknown 

1
L , ..., L , ..., 

n
L  (the linear spline values at the grid nodes) by the Gaussian 

elimination method, i.e., by means of subroutine gaus or gauss. 
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5.9. Program to determine the dependence of  

the wheat productivity on the land quality 

 

 

 

 
Let us develop a program for computing values 

1
L , ..., L , ..., 

n
L  of the 

linear spline at the nodes of grid 
1

z  < ... < z  < ... < 
n

z  on the x axis, which is 

based on the theoretical material of the previous section. 

In the source data table given below: 

 n is the number of the grid nodes; 

 the Z column contains the x coordinates of the grid nodes; 

 the remaining two columns (Mark and Productivity) are the same as in  

table “The source data” of the previous section. 
 

Listing 5.5 
 

n 3  

Mark Productivity Z 

30 23.5 25 

35 23.7 45 

35 24.0 55 

38 26.7  

29 24.3  

40 28.8  

45 33.5  

37 27.6  

35 23.0  

40 29.4  

50 30.5  

52 35.0  

 

The program for solving this task follows: 
 

Listing 5.6 
 

Sub main() 

    Dim X() As Double 

    Dim U() As Double 

    Dim Z() As Double 
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    Dim lambda() As Double 

    Dim MOM() As Double 

    Dim A() As Double 

    Dim Q() As Double 

    Dim R() As Double 

    Dim L() As Double 

    Dim m As Integer 

    Dim n As Integer 

    Dim j As Integer 

    Dim i As Integer, k As Integer 

    m = Selection.Rows.Count         'quantity of rows 

    n = Selection.Cells(1, 2)        'number of nodes 

    ReDim X(3 To m) 

    ReDim U(3 To m) 

    ReDim Z(1 To n) 

    ReDim lambda(1 To n) 

    ReDim MOM(1 To n) 

    ReDim A(1 To n, 3 To m) 

    ReDim Q(1 To n, 1 To n) 

    ReDim R(1 To n) 

    ReDim L(1 To n) 

    For j = 3 To m 

        X(j) = Selection.Cells(j, 1) 

        U(j) = Selection.Cells(j, 2) 

    Next j 

'Preparations for spline interpolation: 

    For i = 1 To n 

        Z(i) = Selection.Cells(2 + i, 3) 

0:      MOM(i) = 0 

    Next i 

'Forming matrix A: 

    For i = 1 To n 

        For k = 1 To n            'forming i-th spline 

            If k = i Then 

                lambda(k) = 1 

            Else 

                lambda(k) = 0 

            End If 

        Next k 

        For j = 3 To m 

                    'calculating values of i-th spline 

1:          Call si(1, n, Z, lambda, MOM, X(j), _ 
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            A(i, j)) 

        Next j 

    Next i 

'Forming matrix Q and vector R: 

    For i = 1 To n 

        For k = 1 To n 

            Q(i, k) = 0 

            For j = 3 To m 

                Q(i, k) = Q(i, k) + A(i, j) * A(k, j) 

            Next j 

        Next k 

        R(i) = 0 

        For j = 3 To m 

            R(i) = R(i) + A(i, j) * U(j) 

        Next j 

    Next i 

'Solving system of linear algebraic equations: 

2:  Call gauss(n, Q, R, L) 

'Outputting results: 

    Selection.Cells(2, 4) = "L" 

    For i = 1 To n 

        Selection.Cells(2 + i, 4) = L(i) 

    Next i 

End Sub 

 

The A matrix (array A) is formed according to formulas (5.46) and (5.47) by 

means of the si subroutine used for the interpolation (operator 1). Because the 

fundamental splines, )(
1

x , ..., )(x
i

, ..., )(x
n

, are linear (not cubic), the 

MOM array of the moments is nulled by operator 0. 

Matrix Q and vector R are formed according to formulas (5.49) and (5.51). 

Matrix equation (5.50) is solved by calling the gauss subroutine (operator 2). 

We can use the simpler subroutine by replacing the subroutine name with gaus 

in operator 2. 

The remaining operators of the program put the L solution of matrix equation 

(5.50) into cells of Excel. 

The source data for program Listing 5.6 are given in table Listing 5.5 

(Fig. 5.12). Before the program execution, we must select this Excel table (range 

B2:D15). 

The execution results are the linear spline values at the grid nodes, which  

are in the L column located near the Z column (Fig. 5.13). Fig. 5.14 shows the 

experimental points and the calculated line. 



5.9. Program to determine the dependence of the wheat productivity on the land quality 

393 

 
 

Fig. 5.12. The Excel table with the source data 

 

 
 

Fig. 5.13. The program execution results 
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Fig. 5.14. Experimental points and the fractured line of functional  

dependence of the wheat productivity (in units of centner per hectare)  

on the land quality mark 

 

According to Fig. 5.14, we really determined the minimum point of function 

(5.43). 

The value of spline )(xL  at point x, located between nodes 
1i

z  and 
i

z   

(i = 2, 3, ..., n – 1, n), can be calculated by means of the Excel formula corre-

sponding to mathematical formula (5.38) of the following form: 

1

11
)()(

)(

ii

iiii

zz

LzxLxz
xL  

If 
1

zx , then 

12

2112
)()(

)(
zz

LzxLxz
xL . 

If 
n

zx , then 

1

11
)()(

)(

nn

nnnn

zz

LzxLxz
xL . 

Note that the cubic spline can be used instead of the linear spline in the least-

squares method. In this case, naturally, the fundamental splines are cubic. 

The functional dependence of the wheat productivity on the land quality 

mark, determined by the least-squares method, describes the dependence of pro-

duction results on factors. Such dependence is called the production function; it 

is the basis for many economic calculations. 
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5.10. The forward and backward Fourier  

transforms of a periodic function 

 

 

 

 
Let )(tf  be a real-valued periodic function of time t with given period T, 

which describes an oscillation with frequency T/1 . This function can be repre-

sented as the Fourier series [3]: 

1

0
)]sin()cos([

2
)(

k
kk

tkbtka
a

tf ,                  (5.52) 

where T/2  is the cyclic frequency, 
0

a , 
k

a , 
k

b  are the Fourier coeffi-

cients: 

T

k
dttktf

T
a

0

)cos()(
2

,                                  (5.53) 

k = 0, 1, 2, 3, ..., 

T

k
dttktf

T
b

0

)sin()(
2

,                                  (5.54) 

k = 1, 2, 3, ... 
 

Let us recall several terms related to periodic function 

)sin()(
kkk

tkAtf ,                                 (5.55) 

where k is a natural number. 

The oscillation, described by this formula, is called a harmonic oscillation 

with cyclic frequency k . Quantities 
k

A , 
k

tk , 
k

 are respectively the 

amplitude, phase and initial phase of the harmonic oscillation. 

Using this terminology, we can say that (5.52) — (5.54) is the decomposition 

of the oscillation, described by the )(tf  function, into harmonic oscillations: 

1

0

1

0 )sin(
2

)(
2

)(

k
kk

k
k

tkA
a

tf
a

tf .            (5.56) 

 

The Fourier coefficients, amplitude and initial phase are related by the following 

formulas: 
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kkk
Aa sin , 

kkk
Ab cos ,                                           (5.57) 

22
kkk

baA , 

where k = 1, 2, 3, ... 

The calculation of the coefficients of the function’s expansion into the Fouri-

er series is called the analysis or forward Fourier transform. The analysis is de-

fined by formulas (5.53) and (5.54). 

The calculation of the )(tf  function’s values, which correspond to the 

known coefficients, 
0

a , 
k

a  and 
k

b  (k = 1, 2, 3, ...), is called the synthesis or 

backward Fourier transform. The synthesis is defined by formula (5.52). 

Along with the Fourier transform theory, which considers the )(tf  function 

known at all points of period ],0[ T , there is a theory, which considers the )(tf  

function known only at the nodes of a uniform grid on ],0[ T . 

Let n be a given number of equal steps or elementary segments ],[
1 jj

tt ,  

j = 1, 2, …, n, on period ],0[ T  and )(tf  be a grid function given at points 

0
0

t , nTt /
1

, nTt /2
2

, ..., nTnt
n

/)1(
1

, Tt
n

. We respectively 

denote the )(tf  function’s values at these points as 
0

f , 
1
f , 

2
f , ..., 

1n
f , 

n
f , 

at that, 
0

f  = 
n

f  because of the )(tf  periodicity. The calculation of the Fourier 

coefficients of grid function )(tf  is called the forward discrete Fourier trans-

form. The calculation of values 
0

f , 
1
f , 

2
f , ..., 

1n
f , 

n
f , which correspond to 

the Fourier coefficients, is called the backward discrete Fourier transform. 

The Data Analysis add-in for Excel includes the Fourier Analysis procedure 

for performing the discrete Fourier transform. We will consider the use of this 

procedure on an example of function 

)2cos()sin(1)( tttf .                              (5.58) 

Into cells A1:A8 on an Excel worksheet, we put this function’s values at the 

first n = 8 points (ωt = 0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4) of the period with 9 

equidistant points (0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4, 2π), i.e., we enter num-

bers 2, 1.707107, 1, 1.707107, 2, 0.292893, -1, 0.292893 (Fig. 5.15). 

Let us fulfill the following operations: 

1) Data > Data Analysis > Fourier Analysis > OK; 

2) in the Fourier Analysis window opened, enter $A$1:$A$8 into text box 

Input Range; 

3) after activating text box Output Range, enter $B$1 into it (Fig. 5.16); 
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4) click on the OK button to get the procedure execution results (Fig. 5.17). 

 

 
 

Fig. 5.15. The Excel worksheet with the Fourier analysis source data 

 

 
 

Fig. 5.16. The Fourier Analysis window before the procedure execution 

 

 
 

Fig. 5.17. The Excel worksheet with the Fourier analysis results 
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If we locate the mouse pointer on an exclamation mark (near the B1 cell), the 

following information appears: The number in this cell is formatted as text or 

preceded by an apostrophe. We should not be afraid of this information. 

According to Fig. 5.17, the calculation results (in cells B1:B8) are the coeffi-

cients of the Fourier series in complex form: letter “i” (in cells B2, B4, B6 and 

B8) means the imaginary unit, 1i . 

The complex representation of the Fourier series [3] can be written as 

1

0
)(

k

tik

k

tik

k
ececctf , 

where 
00

ac , 
k

c  and 
k

c  are complex Fourier coefficients, k = 1, 2, 3, ... 

For using the procedure execution results, we have to know the following: 

1) the values of coefficients 
0

c  and 
k

c  in front of 
tik

e  (k = 1, 2, 3, 4), mul-

tiplied by n = 8, are respectively located in cells B1, B2, B3, B4, B5 (the first half 

of the set of complex Fourier coefficients); 

2) the values of coefficients 
k

c  in front of 
tik

e  (k = 1, 2, 3, 4), multi-

plied by 8, are respectively located in cells B8, B7, B6, B5 (the second half of 

the set of complex Fourier coefficients); 

3) 
k

c  = 
k

c  = 0 for k > 4. 

For verifying it, we will use the following expressions, which follow from the 

Euler relation for complex numbers [3]: 

22
)sin(

tiktiktiktik
ieie

i

ee
tk ,                (5.59) 

2
)cos(

tiktik
ee

tk .                                (5.60) 

 

Using (5.59) at k = 1 and (5.60) at k = 2, we write expression (5.58) in form 

titititi
e

i
eee

i
tf

22

1

2

1

2
1)(

22
.               (5.61) 

Multiplying values 
0

c  = 1, 
1

c  = 2/i , 
2

c  = 2/1 , 
3

c  = 0, 
4

c  = 
4

c  = 0, 

3
c  = 0, 

2
c  = 2/1 , 

1
c  = 2/i  by 8, we obtain the Fourier analysis results 

depicted in Fig. 5.17. Let us pay attention to the following: the value of both 
4

8c  

and 
4

8c  is in the B5 cell. 
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We see that the complex coefficients in front of functions 
tik

e  and 
tik

e  

in expression (5.61) are conjugate, i.e., differ from each other only in the sign in 

front of the imaginary unit. This is the property of the expansion of real-valued 

functions, as )(tf , in terms of 
tik

e . The expansion of complex-valued func-

tions in terms of 
tik

e  does not have such property. 

In the bottom left corner of the Fourier Analysis window (Fig. 5.16), we see 

a little square field (element CheckBox) called Inverse. When clicking on this 

field, the check mark appears in it, meaning the switching from the forward 

transform (analysis) to the backward transform (synthesis). 

Let the worksheet, depicted in Fig. 5.17, be active. To verify the correctness 

of working the Fourier Analysis procedure, we fulfill the following operations: 

1) Data > Data Analysis > Fourier Analysis > OK; 

2) in the Fourier Analysis window opened, enter $B$1:$B$8 into text box 

Input Range; 

3) after activating text box Output Range, enter $E$1 into it; 

4) by clicking on element Inverse, set the check mark in it; 

5) click on the OK button for starting the procedure execution. 

The execution results are depicted in Fig. 5.18. We see practical coincidence 

of columns A and E, and that is natural because the forward and backward Fou-

rier transforms are performed successively. 

If the mouse pointer is located on an exclamation mark (near the E1 cell), the 

same information appears as in the case of Fig. 5.17. 
 

 
 

Fig. 5.18. The Excel worksheet with results of the analysis and synthesis 
 

The main drawback of the Fourier Analysis procedure consists in the follow-

ing: the number of steps on the period is not arbitrary, it must be a power of 2, 

i.e., n must be equal to 2, 4, 8 (as in the above example), 16, 32, 64 or so on.  

It is because this procedure realizes the so-called fast Fourier transformation [3]. 
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5.11. Subroutines for the forward and backward  

discrete Fourier transforms 

 

 

 

 
In this section, we will develop subroutines for the forward and backward 

discrete Fourier transforms, free of the drawback formulated at the end of the 

previous section. These subroutines will be used in the next section. 

At first, let us obtain a discrete analog of formula (5.53) at k = 0, 1, 2, 3, ... 

We use designation 

)()cos()( tgtktf                                       (5.62) 

and consider periodic third-degree spline )(tS , which respectively assumes  

values 
0

g , 
1

g , 
2

g , ..., 
1n

g , 
n

g  at points 0, 
1

t , 
2

t , ..., 
1n

t , 
n

t  (
n

gg
0

).  

According to expression (4.20), the integral of )(tS  equals 

n

j

jj
n

j
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T

h
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h
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dttS
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31

1

1

0
242

)( ,            (5.63) 

where nTh /  is the grid step, 
0

M , 
1

M , 
2

M , ..., 
1n

M , 
n

M  are the spline 

moments, 
n

MM
0

. 

Let us consider equation (4.9) in form 

jjjjjj
MMM

11
2 ,                            (5.64) 

j = 1, 2, …, n, taking into account the periodicity of )(tg  and )(tS , i.e., the fol-

lowing equalities: 

11
gg

n
,   

11
MM

n
, 

where 
1n

g  and 
1n

M  are the values of the )(tg  and )(tS  functions, respec-

tively, at additional node hTt
n 1

. Because of the grid step constancy and 

expressions (4.10), we have 

2

1
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, 

)2(
3

11
2

jjjj
ggg

h
. 
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Equation (5.64) takes the following form: 
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MMM . 

Summing both sides of the last equation over j = 1, 2, …, n, we obtain 
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Expression (5.63) becomes simpler: 
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Taking into account expression (5.62), we obtain 
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This formula is the required discrete analog of formula (5.53) at k = 0, 1, 2, 3, ... 

Similarly, we can obtain the following discrete analog of formula (5.54): 

n
jkf

n
b

n

j

jk

2
sin

2

1

,                                (5.66) 

k = 1, 2, 3, ... 

According to (5.52), (5.65) and (5.66), the formulas of the backward and 

forward discrete Fourier transforms can be written in the following form for an 

odd value of n: 
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where j = 0, 1, 2, ..., n in (5.67), k = 1, 2, 3, ..., 2/)1(n  in (5.69) and (5.70). 

Similarly, we have the following for an even value of n. 

The backward discrete Fourier transform is performed according to formula 
 

2/
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2
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kkj n
jkd

n
jkddf ,        (5.71) 

j = 0, 1, 2, ..., n. 

The forward discrete Fourier transform is performed according to formulas 

(5.68) — (5.70) at k = 1, 2, 3, ..., 2/)2(n  and 

0)sin(
1

1

1
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n
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Let us pay attention to the following: 

 the Fourier coefficients do not depend on the period size; 

 the number of Fourier coefficients is equal to n, i.e., to the number of 

equal steps on the period (when n is even, we do not take into account coefficient 

1n
d , which is equal to zero). 

Into Module14 of the BookNM workbook, we enter the following declaration 

of the subroutine for the forward discrete Fourier transform: 
 

Listing 5.7 
 

Sub fouf(ByVal n, ByRef F() As Double, _ 

    ByRef D() As Double, Optional m) 
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    Dim m2 As Integer, j As Integer, k2 As Integer 

    Dim a As Double, b As Double 

    Dim w As Double, z As Double 

    Dim c0 As Double, s0 As Double 

    Dim c1 As Double, s1 As Double 

    Dim c2 As Double, s2 As Double 

    Const pi As Double = 3.141592654 

    If IsMissing(m) Then 

        m2 = n 

    ElseIf m < 0 Or m > n Then 

        m2 = n 

    Else 

        m2 = m 

    End If 

    a = 0 

    For j = 1 To n 

        a = a + F(j) 

    Next j 

    D(0) = a / n 

    w = 2 * pi / n 

    c0 = Cos(w): s0 = Sin(w) 

    z = 2 / n 

    c1 = 1: s1 = 0 

    For k2 = 2 To m2 Step 2 

        w = c1 * c0 - s1 * s0 

        s1 = s1 * c0 + c1 * s0: s2 = s1 

        c1 = w: c2 = c1 

        a = 0: b = 0 

        For j = 1 To n 

            a = a + F(j) * c2 

            b = b + F(j) * s2 

            w = c2 * c1 - s2 * s1 

            s2 = s2 * c1 + c2 * s1: c2 = w 

        Next j 

        D(k2 - 1) = b * z 

        D(k2) = a * z 

        If k2 = n Then 

            D(k2 - 1) = 0 

            D(k2) = D(k2) / 2 

        End If 

    Next k2 

End Sub 
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The subroutine name (fouf) occurs from words “Fourier” and “forward”. 

The subroutine parameters have the following sense: 

 n is the number of equal steps on the period; 

 F is an array of the function values; 

 D is an array intended for the Fourier coefficients; 

 m is the doubled number of harmonic oscillations, which are of interest 

(this optional parameter is used for possible reducing the execution time). 

The basis of this subroutine are formulas (5.68) — (5.70), (5.72) and (5.73). 

According to formulas (5.69) and (5.70), the forward discrete Fourier transform 

requires the calculation of the sine and cosine values, repeated many times.  

These values can be calculated in one of two ways: 

 by the multiple calls of built-in functions Sin(x) and Cos(x); 

 by the single call of functions Sin(x) and Cos(x) for calculating the 

values of )/2sin( n  and )/2cos( n , and by subsequent usage of trigonometric 

formulas for calculating the values of )/2sin( nkj  and )/2cos( nkj  at k > 1 

and/or j > 1. 

To reduce the execution time, the second way is used, which is based on the 

following trigonometric formulas [3]: 

)sin()cos()cos()sin()sin( ,                    (5.74) 

)sin()sin()cos()cos()cos( ,                   (5.75) 

where α and β are angles. 

Into Module15 of the BookNM workbook, we enter the following declaration 

of the subroutine for the backward discrete Fourier transform: 
 

Listing 5.8 
 

Sub foub(ByVal n, ByRef F() As Double, _ 

    ByRef D() As Double, Optional m) 

    Dim m2 As Integer, j As Integer, k2 As Integer 

    Dim w As Double, z As Double 

    Dim c0 As Double, s0 As Double 

    Dim c1 As Double, s1 As Double 

    Dim c2 As Double, s2 As Double 

    Const pi As Double = 3.141592654 

    If IsMissing(m) Then 

        m2 = n 

    ElseIf m < 0 Or m > n Then 

        m2 = n 

    Else 

        m2 = m 

    End If 
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    w = 2 * pi / n 

    c0 = Cos(w): c1 = c0: c2 = c1 

    s0 = Sin(w): s1 = s0: s2 = s1 

    For j = 1 To n 

        z = D(0) 

        For k2 = 2 To m2 Step 2 

            z = z + D(k2 - 1) * s2 + D(k2) * c2 

            w = c2 * c1 - s2 * s1 

            s2 = s2 * c1 + c2 * s1: c2 = w 

        Next k2 

        F(j) = z: w = c1 * c0 - s1 * s0 

        s1 = s1 * c0 + c1 * s0: s2 = s1 

        c1 = w: c2 = c1 

    Next j 

    F(0) = F(n) 

End Sub 

 

The subroutine name (foub) occurs from words “Fourier” and “backward”. 

The parameters have the following sense: 

 n is the number of equal steps on the period; 

 F is an array intended for the function values; 

 D is an array of the Fourier coefficients; 

 m is the doubled number of harmonic oscillations, which are considered. 

Formulas (5.67), (5.71), (5.74) and (5.75) are used in the foub subroutine. 
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5.12. Solving the sound insulation problem 

 

 

 

 

 
The sound waves, emitted by a sound source (by a vibrating body), propagate 

in the medium (in a solid body, liquid or gas) in the form of longitudinal oscilla-

tions of the density of the medium. The ear of an adult person perceives sound 

oscillations with frequency T/1  from 17 — 20 Hz to about 20 kHz. 

To lower the sound level (i.e., the amplitude of the density oscillation), 

soundproof coverings are used. A technique of constructing such coverings with 

given acoustic parameters was developed at the Andreyev Acoustics Institute, 

Moscow. According to Fig. 5.19 (from page http://www.akin.ru/r_comm15.htm 

of the institute website), the covering is characterized by efficiency with respect 

to lowering the sound level. As we see, both the calculated and experimental 

dependences for the covering’s efficiency are linear splines whose argument is 

the logarithm of frequency 2// kTk of harmonic oscillation (5.55). 
 

 
 

Fig. 5.19. The calculated (dark) and experimental (light) dependences of  

the efficiency on the frequency: between the fractures, the efficiency is a linear 

function of the logarithm of frequency (the base of logarithm does not matter due 

to proportionality of logarithms with different bases [3]: xMx
ba

loglog ) 
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Let us return to modeling of the bar oscillation in Section 3.20. We will at-

tach weightless membrane Ms (whose area equals A) to the bar and consider that 

this membrane is the sound source, at that, dependence )(tu  in Fig. 3.18 is the 

Ms membrane deviation. Besides, we will place the mechanism in a box with the 

soundproof covering whose efficiency is defined by the calculated (dark) de-

pendence in Fig. 5.19. 

We have to answer the following question: by how many decibels is the 

sound (from the Ms membrane) attenuated, when it goes through the box’s 

soundproof covering? 

Outside the box, we place weightless membrane Mr (whose area equals A) of 

the sound receiver; )(tu
r

 is the periodic dependence, which characterizes the Mr 

membrane deviation (Fig. 5.20). We have to determine difference Δ (in decibels) 

between the intensities of the oscillations of membranes Ms and Mr. 

 

 
 

Fig. 5.20. The membranes separated by the soundproof covering 
 

We use the following definition of the intensity of the harmonic oscillation 

with frequency Tk / : 

)(lg10lg10 2

2

2

12

2

kkkk
ddAP , 

where lg is the decimal logarithm, 
k

A  is the oscillation amplitude, 
12k

d , 
k

d
2

 

are the Fourier coefficients of this oscillation, k = 1, 2, 3, ... 

The intensities of the harmonic oscillations of membranes Ms and Mr are 

given by formulas 
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12

s

k

s

k

s

k
ddP ,                            (5.76) 

])()[(lg10 2

2

2

12

r

k

r

k

r

k
ddP ,                            (5.77) 

where s

k
d

12
, s

k
d

2
 and r

k
d

12
, r

k
d

2
 are the Fourier coefficients of dependences 

)(tu  and )(tu
r

, respectively, k = 1, 2, 3, ... 
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The efficiency (in decibels) of the soundproof covering at frequency Tk /  is 

equal to 

r

k

s

kk
PP .                                           (5.78) 

The sound oscillation of the environment density can be written in form 

(5.56). Let us assume that phase 
k

tk  of harmonic oscillation (5.55) does 

not change when the sound goes through the soundproof covering, and amplitude 

A
k
 changes only (k = 1, 2, 3, ...). In this case, the sound attenuation is calculated 

as follows. 

1. By means of the fouf subroutine, the forward discrete Fourier transform 

of the )(tu  dependence, depicted in Fig. 3.18 (n = 25), is performed, that is,  

Fourier coefficients sd
0

, s

k
d

12
, s

k
d

2
 of this dependence are calculated, k = 1,  

2, ..., 12. 

2. The summary intensity of the oscillation of membrane Ms is calculated 

according to formula 

12

1

2

2

2

12
])()[(lg10

k

s

k

s

ks
ddP .                       (5.79) 

 

3. For every frequency Tk / , the values of 

20/

1212
10 ks

k

r

k
dd ,                                  (5.80) 

20/

22
10 ks

k

r

k
dd                                        (5.81) 

are calculated, where 
k

 is the efficiency of the soundproof covering at the con-

sidered frequency, k = 1, 2, ..., 12. Formulas (5.80) and (5.81) follow from the 

logarithm properties [3] and formulas (5.57), (5.76) — (5.78). 

4. The summary intensity of the oscillation of membrane Mr is calculated 

according to formula 

12

1

2

2

2

12
])()[(lg10

k

r

k

r

kr
ddP .                       (5.82) 

 

5. The required sound attenuation is calculated according to the following 

formula: 

rs
PP .                                             (5.83) 

To obtain dependence )(tu
r

 of the Mr membrane deviation, we have to per-

form the backward discrete Fourier transform by means of the foub subroutine 
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according to formula (5.67), which includes 0
0

rd  and the values of rd
1

, rd
2

, 

rd
3

, rd
4

, ..., rd
23

, rd
24

 calculated according to formulas (5.80) and (5.81). 

As the source data for a program, intended for solving our problem, we use 

table Listing 5.9, which includes: 

 the results of solving the oscillation equation (Fig. 3.18); 

 the dependence of the covering’s efficiency on the frequency. 

 

Listing 5.9 

 

M 0.001  N 8 

K 800  frequency 
 

efficiency 
 

L 100  17 5 

F t u 45 1 

0.00E+00 0.00E+00 6.62E-04 100 13.8 

0.00E+00 2.00E-03 -5.89E-03 126 10 

0.00E+00 4.00E-03 5.89E-03 158 8.8 

0.00E+00 6.00E-03 -1.60E-03 720 8.8 

0.00E+00 8.00E-03 -3.07E-03 1100 10 

0.00E+00 1.00E-02 4.66E-03 1600 10 

0.00E+00 1.20E-02 -2.57E-03   

0.00E+00 1.40E-02 -1.01E-03   

0.00E+00 1.60E-02 3.20E-03   

0.00E+00 1.80E-02 -2.67E-03   

0.00E+00 2.00E-02 2.91E-04   

0.00E+00 2.20E-02 1.87E-03   

0.00E+00 2.40E-02 -2.27E-03   

0.00E+00 2.60E-02 9.54E-04   

5.00E+00 2.80E-02 8.20E-04   

1.00E+01 3.00E-02 1.65E-02   

5.00E+00 3.20E-02 1.77E-02   

0.00E+00 3.40E-02 -1.46E-02   

0.00E+00 3.60E-02 1.48E-03   

0.00E+00 3.80E-02 1.03E-02   

0.00E+00 4.00E-02 -1.25E-02   

0.00E+00 4.20E-02 5.17E-03   

0.00E+00 4.40E-02 4.59E-03   

0.00E+00 4.60E-02 -9.23E-03   

0.00E+00 4.80E-02 6.32E-03   

0.00E+00 5.00E-02 6.62E-04   
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The subtable with the dependence of the covering’s efficiency on the fre-

quency includes: 

 N, the number of the frequency values; 

 the frequency values (in hertzs) in column frequency; 

 the efficiency values (in decibels) in column efficiency, according to the 

dark dependence in Fig. 5.19. 

The program follows: 
 

Listing 5.10 
 

Sub main() 

    Dim T() As Double 

    Dim U() As Double 

    Dim D() As Double 

    Dim m As Integer 

    Dim N As Integer 

    Dim j As Integer, k2 As Integer 

    Dim i As Integer 

    Dim sb As String, se As String 

    Dim fr As Double, eff As Double 

    Dim ln_frequ() As Double 

    Dim efficiency() As Double 

    Dim MOM() As Double 

    Dim Ps As Double, Pr As Double 

    Dim w As Double 

    m = Selection.Rows.Count         'quantity of rows 

    N = Selection.Cells(1, 5) 

    ReDim T(0 To m - 5) 

    ReDim U(0 To m - 5) 

    ReDim D(0 To m - 5) 

    ReDim ln_frequ(1 To N) 

    ReDim efficiency(1 To N) 

    ReDim MOM(1 To N) 

    For j = 0 To m - 5 

        T(j) = Selection.Cells(j + 5, 2) 

        U(j) = Selection.Cells(j + 5, 3) 

    Next j 

    sb = Selection.Cells(5, 2).Address 

    se = Selection.Cells(m, 3).Address 

0:  Call graph(sb, se, "t, s", "u, m") 

    For i = 1 To N 

        ln_frequ(i) = Log(Selection.Cells(i + 2, 4)) 

        efficiency(i) = Selection.Cells(i + 2, 5) 
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        MOM(i) = 0 

    Next i 

1:  Call fouf(m - 5, U, D) 

    D(0) = 0 

    fr = 1 / T(m - 5)     'value of main frequency 1/T 

'Calculating value of Ps: 

    w = 0 

    For k2 = 2 To m - 5 Step 2 

        w = w + D(k2 - 1) ^ 2 + D(k2) ^ 2 

    Next k2 

    Ps = 10 * Log(w) / 2.302585093 

'Calculating value of Pr: 

    w = 0 

    For k2 = 2 To m - 5 Step 2 

2:      Call si(1, N, ln_frequ, efficiency, MOM, _ 

        Log(k2 / 2 * fr), eff) 

        D(k2 - 1) = D(k2 - 1) * 10 ^ (-eff / 20) 

        D(k2) = D(k2) * 10 ^ (-eff / 20) 

        w = w + D(k2 - 1) ^ 2 + D(k2) ^ 2 

    Next k2 

    Pr = 10 * Log(w) / 2.302585093 

'Calculating sound attenuation: 

3:  w = Ps - Pr 

4:  MsgBox "delta =" & Str(Round(w, 3)) & " dB" 

'Synthesis of time dependence: 

5:  Call foub(m - 5, U, D) 

    sb = Selection.Cells(5, 6).Address 

    se = Selection.Cells(m, 7).Address 

    Selection.Cells(4, 6) = "t" 

    Selection.Cells(4, 7) = "ur" 

    For j = 0 To m - 5 

        Selection.Cells(j + 5, 6) = T(j) 

        Selection.Cells(j + 5, 7) = U(j) 

    Next j 

6:  Call graph(sb, se, "t, s", "ur, m") 

    Range("O33").Select 

End Sub 

 

Operator 0 of this program creates the )(tu  graph of the bar deviation, i.e., 

of the deviation of membrane Ms, which is the sound source. For that, the 

graph subroutine (Section 4.8) is used for the first time. 



Chapter 5. Quadratic and Linear Splines 

412 

Further, dependence )(tu  is expanded into the Fourier series by calling the 

fouf subroutine for the forward discrete Fourier transform (operator 1). By 

means of the first k2 cycle, the value of 
s

P  is calculated according to formula 

(5.79). 

By means of the second k2 cycle, the value 
r

P  is calculated according to 

formulas (5.80) — (5.82). In this case, the linear spline, determined by the de-

pendence of efficiency on frequency in tabular form, is used. The argument of the 

linear spline is ln_ frequ — the logarithm of frequency or the so-called logarith-

mic frequency (see operator 2 and the caption to Fig. 5.19). 

Operator 3 calculates the sound attenuation according to formula (5.83). The 

resulting value is rounded up to three decimal places and put into the standard 

window (operator 4). 

By calling the foub subroutine for the backward discrete Fourier transform, 

periodic time dependence )(tu
r

 of the deviation of membrane Mr 
, which is the 

sound receiver, is synthesized (operator 5). Operator 6 creates the )(tu
r

 graph. 

For that, the graph subroutine is used for the second time. 

The source data for program Listing 5.10 are the values given in complex  

table Listing 5.9 (Fig. 5.21). Before running the program, this Excel table (range 

B2:F31) must be selected. 

 

 
 

Fig. 5.21. The Excel table with the source data 

 

After starting the program execution: 

1) the )(tu  graph appears; 
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2) the window with the Δ value of the sound attenuation appears (Fig. 5.22); 

3) after clicking on OK, the )(tu
r

 dependence and its graph appear. 

Fig. 5.23 shows the Excel worksheet upon termination of the program execu-

tion. The automatically constructed graphs of dependences )(tu  and )(tu
r

 are 

on this worksheet; Fig. 5.24 shows them completely. 

 

 
 

Fig. 5.22. Window with the calculated sound attenuation 

 

 
 

Fig. 5.23. The calculated )(tu
r

 dependence and graphs 
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a 

 

 
 

b 

 

Fig. 5.24. The automatically created graphs: a — )(tu ; b — )(tu
r

 

 

We advise the reader to return to the task on p. 279 for calculating the Fouri-

er coefficients of dependences )(tv  and )(ti . 
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Chapter 6. 

Numerical Methods  

for Nonlinear Programming 

 

 
For solving a series of applied problems, in particular the ones involving  

optimization, we must find minimum point x  of linear or nonlinear non-

negative function )(xF  = )...,,,(
21 n

xxxF , where x = )...,,,(
21 n

xxx  is  

a point (vector) of the n-dimensional space, n ≥ 1. The )(xF  function being min-

imized is called an objective function. 

Minimizing a linear objective function with linear constraints is called linear 

programming. Minimizing a nonlinear objective function (with or without con-

straints) is called nonlinear programming. 

The minimization, which does not require knowledge of mathematical  

expressions for partial derivatives of the objective function with respect to its 

arguments, is called the search for the minimum point. The importance of search 

methods follows from the fact that expressions for the partial derivatives are  

often unavailable. 

In the first section of this chapter, tasks of linear and nonlinear programming 

are solved by means of the Solver add-in. In the fifth chapter of book [2], we 

demonstrated that Solver for Excel 2007 can give an incorrect result upon mini-

mizing nonlinear function 

2

1

22

1221
)1()(100),( xxxxxF                           (6.1) 

 

known as the Rosenbrock function. We did not observe this drawback in the later 

versions of Excel (2010 and 2013). However, the minimization method, realized 

in Solver for the later versions of Excel, is less efficient than the Powell method 

[14] considered in this chapter (p. 454). 

The x  point is called a local minimum of function )(xF  if a neighborhood 

of x  exists, where inequality )()( xx FF  is satisfied. Function )(xF  can be 

unimodal, with one local minimum, or multimodal, with several local minima. 

Two subroutines are developed that are intended to find a local minimum of 

the )(xF  function of one or several variables. In the case of several variables, 

these subroutines realize the coordinate-descent and Powell methods. 
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Possibilities of the developed minimization subroutines are demonstrated on 

the following mathematical and applied tasks: 

 optimizing the dimensions of a one-liter tin can; 

 determining the equilibrium state of a four-spring mechanical system; 

 minimizing a nonlinear function with nonlinear constraints and a tabular 

function of two variables; 

 determining the local minima of a multimodal function of two variables. 

Besides, the minimization subroutines are used: 

 in the shooting method for solving the nonlinear differential equation with 

boundary conditions; 

 in the least-squares method for determining the production function. 

It is obvious that the problem of maximizing positive function )(xG  is 

equivalent to the problem of minimizing function )(/1)( xx GF . Therefore, the 

minimization subroutines of this chapter can be used to find the maxima of func-

tion )(xG . 
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6.1. Minimizing linear and nonlinear functions  

of several variables by the Solver add-in 

 

 

 

 
We used the Solver add-in for solving the nonlinear algebraic equation (Sec-

tion 4.5). Let us consider two more examples of using this add-in — for solving 

problems of linear and nonlinear programming. 

Initially, we will solve the following transportation problem of linear pro-

gramming from article [15]. 

There are three points (A
1
, A

2
, A

3 
) for sending identical loads and four points 

( B
1
, B

2
, B

3
, B

4 
) for receiving them. Let 

ij
c  be the expenses for relocation of one 

load from A
i
 to B

j
 (i = 1, 2, 3,  j = 1, 2, 3, 4). We have to find the minimum of 

total expenses for the required relocations from points A
1
, A

2
, A

3
 to points B

1
, 

B
2
, B

3
, B

4
. 

More precisely, the source data for the problem include: 

 the matrix of expenses for transportation of one load looking like 

8612

1244

6543

34333231

24232221

14131211

cccc

cccc

cccc

C ; 

 the number of loads at points A
1
, A

2
, A

3
: 8

1
a , 5

2
a , 7

3
a ; 

 the requirement for loads at points B
1
, B

2
, B

3
, B

4
: 4

1
b , 4

2
b , 

2
3

b , 10
4

b  (note that 
3214321

aaabbbb ). 

We have to find: 

 the minimum of total expenses for the load relocations from points A
1
, 

A
2
, A

3
 to points B

1
, B

2
, B

3
, B

4
; 

 the corresponding number of loads relocated from point A
i
 to point B

j
  

(i = 1, 2, 3, j = 1, 2, 3, 4). 

For solving the formulated problem, let us put: 

 the C matrix into range A1:D3 on an Excel worksheet; 

 values 8
1

a , 5
2

a , 7
3

a  into cells E1:E3 of the same worksheet; 

 values 4
1

b , 4
2

b , 2
3

b , 10
4

b  into cells A4:D4 (Fig. 6.1). 
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Fig. 6.1. The Excel worksheet with the source data:  

the shaded range corresponds to the C matrix 
 

We will use matrix 

34333231

24232221

14131211

xxxx

xxxx

xxxx

X , 

where 
ij

x  is the number of loads relocated from A
i
 to B

j 
. 

Product 
ijij

xc  denotes the expenses for the load relocation from point A
i
  

to point B
j
 (i = 1, 2, 3, j = 1, 2, 3, 4). The total expenses for the relocations are 

equal to 

ji

ijij
xcF

,

,                                              (6.2) 

where the summation is over i = 1, 2, 3 and j = 1, 2, 3, 4. 

Formula (6.2) gives the linear function of 12 variables, 

),,,,,,,,,,,(
343332312423222114131211

xxxxxxxxxxxxFF , 

whose arguments are the X matrix elements. We have to minimize this function 

with linear constraints 

i

j

ij
ax

4

1

,                                               (6.3) 

i = 1, 2, 3, 

j

i

ij
bx

3

1

,                                               (6.4) 

j = 1, 2, 3, 4. 
 

Continuing to fill the Excel worksheet, we allot cells A5:D7 for the X matrix 

elements, which are unknown, and put arbitrary numbers into these cells (for 

example, units). Into cell F2, we enter formula 
 

=SUMPRODUCT(A1:D3;A5:D7) 
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corresponding to mathematical formula (6.2). Into cells E5, E6 and E7, we enter 

formulas 

 
=SUM(A5:D5) 

=SUM(A6:D6) 

=SUM(A7:D7) 

 

corresponding to the left-hand side of constraints (6.3). Into cells A8, B8, C8 and 

D8, we enter formulas 

 
=SUM(A5:A7) 

=SUM(B5:B7) 

=SUM(C5:C7) 

=SUM(D5:D7) 

 

corresponding to the left-hand side of constraints (6.4). 

Upon tuning Excel so that formulas are displayed in cells (p. 193), the work-

sheet takes the form depicted in Fig. 6.2. We return to the customary tuning of 

Excel when the calculated results are in cells. 

 

 
 

Fig. 6.2. The Excel worksheet with the formulas in the cells: the shaded  

top and bottom ranges correspond to the C and X matrices, respectively 

 

Let us fulfill the following operations: 

1) Data > Solver in area Analysis; 

2) in the Solver Parameters window, enter $F$2 into text box Set Objective; 

3) turn on option Min; 

4) enter $A$5:$D$7 into text box By Changing Variable Cells; 

5) by means of clicks on the Add button, successively enter conditions 

$E$5:$E$7=$E$1:$E$3 and $A$8:$D$8=$A$4:$D$4 into box Subject to the 

Constraints (in addition to the equal sign, we can use comparison signs “less 

than or equal to” and “greater than or equal to” in the constraints); 
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6) enter Simplex LP into box Select a Solving Method by means of the drop-

down list (Fig. 6.3); 

7) click on the Solve button; 

8) in the Solver Results window opened, click on OK. 

 

 
 

Fig. 6.3. The Solver Parameters window before minimizing  

linear function (6.2) with linear constraints (6.3) and (6.4) 

 

Results of minimizing function (6.2) with constraints (6.3) and (6.4) appear 

in cell F2 and range A5:D7 (Fig. 6.4). 

Value 58 in cell F2 gives the minimum of total expenses for the load reloca-

tions. The contents of range A5:D7 suggest the distribution of the load reloca-

tions for minimizing the total expenses. 

For example: 
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 value 1
11

x  (in cell A5) means that one load must be relocated from 

point A
1
 to point B

1
; 

 value 5
24

x  (in cell D6) means that five loads must be relocated from 

point A
2
 to point B

4
. 

 

 
 

Fig. 6.4. The worksheet upon termination of minimizing  

function (6.2) with constraints (6.3) and (6.4) 

 

According to the source data for the problem solved by us, equality 

4

1

3

1 j

j

i

i
ba  

is satisfied. If this equality is not satisfied, that is, 

4

1

3

1 j

j

i

i
ba , 

we should introduce virtual point B
5
 (for receiving the loads) and consider that 

4

1

3

1

5

j

j

i

i
bab , 

0
352515

ccc . 
 

Further, we use the above method for solving the problem of minimizing the 

total expenses for the load relocations from points A
1
, A

2
, A

3
 to points B

1
, B

2
, 

B
3
, B

4
, B

5
. The calculated values of 

15
x , 

25
x , 

35
x  are the numbers of loads  

remaining at points A
1
, A

2
, A

3
. 
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According to the fourth chapter of book [2], the considered operation mode 

of Solver for Excel 2007 can be used for solving the system of linear algebraic 

equations (3.49). Solver for the later versions of Excel does not have this ability. 

Below, we will minimize nonlinear function (6.1), the Rosenbrock function, 

by means of the Solver add-in. The graph of this rather popular test function is 

depicted in Fig. 6.5, which is taken from the following page of Wikipedia, the 

free encyclopedia: http://en.wikipedia.org/wiki/Rosenbrock_function. 
 

The following is obvious: 
 

 nonlinear function (6.1) is continuous and non-negative; 

 point x  of the function minimum has coordinates 1
21

xx , and 

0)1,1(F ; 

 point x  is in “ravine” (on the dark stripe in Fig. 6.5). 
 

Let us show that the Rosenbrock function does not have other minimum points. 
 

 
 

Fig. 6.5. Graphic of Rosenbrock function 2

1

22

1221
)1()(100),( xxxxxF  

 

The partial derivatives of function (6.1) are defined by the following algebra-

ic expressions: 
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22400400/
121

3
11

xxxxxF ,                          (6.5) 

)
2

122
(200/ xxxF .                                     (6.6) 

According to the necessary condition for an extreme value [3], the minimum 

points of function ),(
21

xxF  belong to the set of points ),(
21

xx  that are solu-

tions of the system of equations 

0/
1

xF , 

0/
2

xF  

or 

022400400
121

3

1
xxxx , 

02

12
xx . 

According to the second equation, 2

12
xx . Substituting this expression into the 

first equation, we have 1
1

x . Consequently, 12

12
xx . 

Thus, function (6.1) has the unique minimum point with coordinates 

1
21

xx , i.e., the function is unimodal, and high-quality minimization tools 

must find this point under any initial approximation. 

To minimize function (6.1) by means of the Solver add-in, we assume that: 

 the G1 and H1 cells contain the values of 
1

x  and 
2

x , respectively; 

 the F1 cell contains the value of ),(
21

xxF . 

Into cell F1, we enter formula 

 
=100*(H1-G1^2)^2+(1-G1)^2 

 

corresponding to mathematical formula (6.1). Into cells G1 and H1, we respec-

tively enter values - 5.5 and 0.5 defining the initial approximation of the mini-

mum point: 
1

x  = - 5.5 and 
2

x  = 0.5 (Fig. 6.6). 

 

 
 

Fig. 6.6. The worksheet before minimizing nonlinear function (6.1) 
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Let us fulfill the following operations: 

1) Data > Solver in area Analysis; 

2) in the Solver Parameters window opened, enter $F$1 into text box Set 

Objective; 

3) turn on option Min; 

4) enter $G$1:$H$1 into text box By Changing Variable Cells; 

5) enter GRG Nonlinear into box Select a Solving Method by means of the 

drop-down list (Fig. 6.7) 

6) click on the Solve button; 

7) click on the OK button in the Solver Results window. 

The result of minimizing the Rosenbrock function is given in Fig. 6.8. 

 

 
 

Fig. 6.7. The Solver Parameters window before minimizing function (6.1) 
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Fig. 6.8. The worksheet upon termination of minimizing function (6.1) 

 

The Excel formula, intended for calculating the values of objective function 

),(
21

xxF , may include Excel functions, in particular, user-defined functions. 

To demonstrate this, let us consider the following user-defined function corre-

sponding to mathematical function (6.1). 
 

Listing 6.1 
 

Function Rosenbrock(x1, x2) 

    Rosenbrock = 100 * (x2 - x1 ^ 2) ^ 2 + _ 

        (1 - x1) ^ 2 

End Function 

 

We put this declaration into Module16 of the BookNM workbook and formula 
 

=Rosenbrock(G1;H1) 

 

into cell F1. 

Excel user-defined functions, developed by means of VBA, may be very 

complicated. Therefore, the Solver add-in allows us to solve quite complex  

problems. 

During the minimization, we can see results of iterations. For demonstrating 

this possibility of the Solver add-in, we will solve the previous task again (see 

Fig. 6.9, which is similar to Fig. 6.6). 

 

 
 

Fig. 6.9. The worksheet before minimizing nonlinear function (6.1) 

 

To see results of iterations, we fulfill the following operations: 

1) click on the Options button in the Solver Parameters window depicted in 

Fig. 6.7; 
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2) in the Options window opened, turn on option Show Iteration Results 

(Fig. 6.10); 

3) click on the OK button; 

4) click on the Solve button in the Solver Parameters window (Fig. 6.7). 

 

 
 

Fig. 6.10. The Options window with option Show Iteration Results turned on 
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Fig. 6.11a shows the result of the first iteration. After the next 4 clicks on 

Continue in window Show Trial Solution, we see the result of the 5th iteration 

(Fig. 6.11b). After the next 16 clicks on Continue, the Solver Results window 

appears. We click on OK in the last window to terminate the execution. 

Fig. 6.12, which is similar to Fig. 6.8, shows the result. Thus, 21 iterations were 

performed. 

The Powell minimization method (Section 6.5) gives the same result after 5 

iterations (p. 454). 

 

 
 

a 

 

 
 

b 

 

Fig. 6.11. The worksheet after the 1st (a) and 5th (b) iterations 

 

 
 

Fig. 6.12. The worksheet upon termination of minimizing function (6.1) 
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6.2. Method for minimizing a nonlinear  

function of one variable 

 

 

 

 
The minimization of a nonlinear function of one variable, )(xf , is an itera-

tive process, which needs an initial approximation of the required minimum 

point. When developing the minimization method, we will assume that )(xf  

satisfies the following conditions (in the function’s domain including the unique 

minimum point, x , and its initial approximation, 0x ): 

 the )(xf  function is continuous and non-negative; 

 the derivative, )(xf , is continuous (that is, the function is smooth). 

In the algorithm below, the minimization of )(xf  includes the following 

three stages: 

1) finding the so-called uncertainty segment, which contains point x  within 

itself; 

2) reducing the uncertainty segment to one and a half times; 

3) reducing the uncertainty segment by means of the parabolic interpolation 

of )(xf . 

For finding the uncertainty segment, the movement along the x axis must be 

in the direction of decreasing )(xf , at that, each step is twice as large as the 

previous step (as in the second chapter of book [16]). 

When searching the uncertainty segment, only three points are stored, whose 

designations are a, b, c, at that, point a is the last, b is the penultimate point,  

c precedes b. The function values at these points are also stored: )(aff
a

, 

)(bff
b

, )(cff
c

. The movement is terminated when function )(xf   

becomes increasing, i.e., condition 
ba

ff  is satisfied (Fig. 6.13). Resulting 

],[ ca  is the uncertainty segment. 

Let d be the midpoint of segment ],[ ba : 2/)( bad . After calculating 

value )(dff
d

 (Fig. 6.14), the condition of the termination of searching the 

minimum point is checked and, if needed, the uncertainty segment is reduced 

according to the following algorithm. 
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Fig. 6.13. Termination of searching the uncertainty segment: ],[ ca  is  

the uncertainty segment; the movement from right to left took place 

 

 
 

Fig. 6.14. The result of calculating value )(dff
d

:  

segments ],[ da , ],[ bd  and ],[ cb  are equal in length 

 

1. If condition 
bdb

fff  is satisfied (  is a given positive constant), 

the minimization is terminated, and assignments dx , 
d

fxf )(  are per-

formed. Otherwise, the next item is fulfilled. 
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2. Of the four points (a, b, c, d ), three neighboring points are chosen, such 

that the function value at the midpoint is less than the function values at the  

endpoints. These three points are denoted by letters a, b, c; the corresponding 

function values are denoted by 
a

f , 
b

f , 
c

f , respectively. As a result, the uncer-

tainty segment, ],[ ca , is reduced to one and a half times (Fig. 6.15). 

3. The minimum point of the parabola, passing through points A = (a, a
f ), 

B = (b, b
f ), C = (c, c

f ), is calculated according to formula 

)()()(

)()()(
5.0

222222

bafacfcbf

bafacfcbf
d

cba

cba .                 (6.7) 

 

The derivation of this formula is given below. 

4. Value )(dff
d

 is calculated (Fig. 6.15). The jump to the first item is 

performed. 
 

 
 

Fig. 6.15. The results of reducing the uncertainty segment to 1.5 times and  

of the parabolic interpolation: ],[ ca  is the resulting uncertainty segment;  

b is the midpoint of ],[ ca ; d is the minimum point of the parabola 

 

Let us derive formula (6.7). 

According to the Lagrange interpolation formula [3], the equation of the  

quadratic parabola, passing through points A, B, C (Fig. 6.15), is as follows: 

cba
f

bcac

bxax
f

cbab

cxax
f

caba

cxbx
y

))((

))((

))((

))((

))((

))((
. 
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Using the basic rules of differentiation [3], we obtain 

cba
f

bcac

bxax
f

cbab

cxax
f

caba

cxbx

dx

dy

))((

)()(

))((

)()(

))((

)()(
. 

We bring the right-hand side of this expression down to common denominator: 

aa
fcbfcbx

cbcabadx

dy
)()(2[

))()((

1
22  

])()(2)()(2 2222

ccbb
fbafbaxfcafcax . 

The coordinate of the minimum point of the considered quadratic parabola is 

the solution of equation 0/ dxdy , that is, 

bbaa
fcafcaxfcbfcbx )()(2)()(2 2222  

0)()(2 22

cc
fbafbax  

or 

cba
fbaxfcaxfcbx )(2)(2)(2  

cba
fbafcafcb )()()( 222222 . 

This solution, denoted by d, has form (6.7). 
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6.3. The coordinate-descent method 

 

 

 

 

 
Let )...,,,(

210 n
xxxFx  be a continuous and non-negative function of n 

variables. Besides, we assume that this function has the unique minimum point 

and continuous partial derivatives 
1

/ xF , 
2

/ xF , …, 
n

xF / . Determining 

the minimum point of )...,,,(
21 n

xxxF  is an iterative process. 

In the coordinate-descent method, each iteration consists of successive mini-

mizations of the F function on arguments 
1

x , 
2

x , …, 
n

x : at first, the minimiza-

tion of the F function on 
1

x  is performed, then on 
2

x , ..., and on 
n

x . The itera-

tions are repeated until the condition of the termination of searching the mini-

mum point is satisfied. 

The declaration of the mini subroutine, realizing the coordinate-descent 

method, is given below. We enter it into Module17 of the BookNM workbook. 
 

Listing 6.2 
 

Sub mini(ByVal n, ByRef x() As Double, _ 

    ByRef ss() As Double, ByVal rho, Optional alpha) 

    Dim fa As Double, fb As Double, fc As Double 

    Dim fd As Double 

    Dim a As Double, b As Double, c As Double 

    Dim d As Double, e As Double 

    Dim s() As Double: ReDim s(n) 

    Dim y() As Double: ReDim y(n) 

    Dim z() As Double: ReDim z(n) 

    Dim sss() As Double: ReDim sss(n, n) 

    Dim i As Byte, j As Byte 

    d = 0 

    For j = 1 To n 

        For i = 1 To n 

            If i <> j Then d = ss(i, j) ^ 2 + d 

        Next i 

    Next j 
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    If d <> 0 Then 

        MsgBox "mini: Array ss is non-diagonal" 

        End            'immediate termination of macro 

    End If 

    For j = 1 To n 

        For i = 1 To n 

            sss(i, j) = ss(i, j) 

        Next i 

    Next j 

m1: For i = 0 To n 

        y(i) = x(i) 

        z(i) = x(i) 

    Next i 

    For j = 1 To n    'j - number of descent direction 

        For i = 1 To n 

            s(i) = ss(i, j) 

        Next i 

        d = 0 

        For i = 1 To n 

            d = s(i) ^ 2 + d 

        Next i 

        If d = 0 Then 

            For i = 1 To n 

                s(i) = sss(i, j) 

            Next i 

        Else 

            For i = 1 To n 

                sss(i, j) = s(i) 

            Next i 

        End If 

'Finding uncertainty segment: 

        fa = y(0): fb = y(0): fc = y(0) 

        a = 0: b = 0: c = 0 

        d = 1: e = 1 

s1:     For i = 1 To n 

            x(i) = y(i) + d * s(i) 

        Next i 

        Call func(n, x) 

        If Not IsMissing(alpha) Then 

            If x(0) < alpha Then GoTo m3 

        End If 

        fd = x(0) 
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        If fd < fa Then 

            fc = fb: fb = fa: fa = fd 

            c = b: b = a: a = d 

            d = 2 * d + e 

            GoTo s1 

        Else 

            If fa = fb Then 

                fb = fd 

                b = d 

                e = -2 * d 

                d = e 

                GoTo s1 

            End If 

        End If 

        fc = fb: fb = fa: fa = fd 

        c = b: b = a: a = d 

        d = (a + b) * 0.5 

        For i = 1 To n 

            x(i) = y(i) + d * s(i) 

        Next i 

        Call func(n, x) 

        If Not IsMissing(alpha) Then 

            If x(0) < alpha Then GoTo m3 

        End If 

        fd = x(0) 

'Reducing uncertainty segment: 

s2:     If Abs(fb - fd) < rho * fb Then GoTo s0 

        If (c - d) * (d - b) < 0 Then 

            If fd < fb Then 

                fc = fb: fb = fd 

                c = b: b = d 

            Else 

                fa = fd 

                a = d 

            End If 

        Else 

            If fd < fb Then 

                fa = fb: fb = fd 

                a = b: b = d 

            Else 

                fc = fd 

                c = d 
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            End If 

        End If 

        d = fa * (b - c) + fb * (c - a) + fc * (a - b) 

        If d = 0 Then GoTo s0 

        d = (fa * (b * b - c * c) + _ 

            fb * (c * c - a * a) + _ 

            fc * (a * a - b * b)) / (2 * d) 

        For i = 1 To n 

            x(i) = y(i) + d * s(i) 

        Next i 

        Call func(n, x) 

        If Not IsMissing(alpha) Then 

            If x(0) < alpha Then GoTo m3 

        End If 

        fd = x(0) 

        GoTo s2 

s0:     For i = 1 To n 

            ss(i, j) = x(i) - y(i) 

            y(i) = x(i) 

        Next i 

        y(0) = x(0) 

    Next j 

'Checking condition of minimization termination: 

m3: If Not IsMissing(alpha) Then 

        If test(n, x, z, rho, alpha) Then GoTo m1 

    Else 

        If test(n, x, z, rho) Then GoTo m1 

    End If 

End Sub 

 

The mini subroutine under consideration has five parameters, and parameter 

alpha is optional. 

The obligatory parameters have the following sense: 

 n is the number of variables; 

 x is an array with elements x(0), x(1), x(2), …, x(n), at that,  

memory cell x(0) contains the F function’s value corresponding to the values 

of 
1

x , 
2

x , …, 
n

x  being in memory cells x(1), x(2), …, x(n), respectively; 

 ss is a two-dimensional array n × n, corresponding to diagonal matrix S 

of initial steps: memory cell ss(1, 1) contains the initial step along the  

1
x  axis, cell ss(2, 2) contains the initial step along the 

2
x  axis, …, cell 
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ss(n, n) contains the initial step along the 
n

x  axis (the diagonal matrix is  

a square matrix that has nonzero elements only on its main diagonal); 

 rho is the relative change in F, terminating the minimization along an 

axis (see  in the first item of the algorithm in the previous section). 

The above declaration of the mini subroutine, Listing 6.2, contains three 

calls of the func subroutine intended for calculation of the F function’s value 

(the value of the x(0) element) corresponding to the current values of elements 

x(1), x(2), …, x(n). 

Optional parameter alpha of the mini subroutine is used when we know 

that the minimum value of non-negative function F is equal to zero: when condi-

tion F  is satisfied, operator GoTo m3 (following the func subroutine 

calls) is performed, and then the test function is called. 

In the test function declaration, conditions must be formulated for termi-

nating the minimization. The call of this function is performed when F  and 

also at the end of every iteration, that is, after minimizations of the F function on 

all arguments 
1

x , 
2

x , …, 
n

x . 

Function test returns True to the mini subroutine if none of the minimi-

zation termination conditions is satisfied. In this case, the next iteration is per-

formed (that is, the minimizations of the F function on arguments 
1

x , 
2

x , …, 

n
x  are repeated) and the call of function test is again performed. The mini 

subroutine execution is terminated when test returns False. 

To control the course of the )...,,,(
210 n

xxxFx  function minimization, 

the test function declaration must contain operators for putting the current 

values of elements x(0), x(1), x(2), …, x(n) into cells on the Excel work-

sheet. 

Note that from iteration to iteration in the course of the minimization: 

 not only one-dimensional array x is being changed, but two-dimensional 

array ss, corresponding to matrix S of initial steps for the next iteration, is also 

being changed; 

 when changing array ss, the S matrix remains diagonal in the considered 

coordinate-descent method. 
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6.4. Examples of using the minimization methods 

 

 

 

 

 
The mini subroutine from the previous section will be used for solving the 

following two tasks: the optimization of a tin can and the Rosenbrock function 

minimization. 

The optimization of a tin can. 
According to this task, we have to determine a variant of the cylindrical tin 

can of a given volume, which is the best in terms of the amount of tin required. 

The volume and total area of a right circular cylinder [3] are respectively  

defined by formulas 

hrV 2 , 

)(2 hrrA , 
 

where r is the base radius, h is the height. The first formula leads to 

2
r

V
h .                                                 (6.8) 

By means of this expression, we eliminate h from the second formula: 

r

V
rrA 22)( 2 .                                         (6.9) 

For given volume V of the tin can, the total area is defined by the last formu-

la. We have to find the minimum point of the )(rA  function for positive values 

of the r argument. 

Because the objective function, )(rA  defined by (6.9), has a simple form, the 

optimization task can be solved analytically. For that, according to [3], we must 

fulfill the following: 

1) find real roots of equation 

0
dr

dA
;                                                (6.10) 

 

2) choose those of the roots, which are positive and satisfy the following  

inequality: 
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0
2

2

dr

Ad
. 

 

Using formula (6.9) and the basic rules of differentiation [3], we obtain 

)2(
2 3

2
Vr

rdr

dA
. 

Thus, equation (6.10) becomes 

02 3 Vr . 

This equation has only one real root: 

3

2

V
r .                                              (6.11) 

The second derivative of the )(rA  function equals 

)(
4

3

32

2

Vr

rdr

Ad
. 

 

We see that the second derivative is positive for any positive value of r. There-

fore, formula (6.11) gives the desired optimal value of r. 

According to formula (6.11), for V = 1000 cm
3
 (that is, in the case of the one-

liter can), the optimal base radius is equal to r  = 5.41926 cm. Formulas (6.8) 

and (6.9) lead to the following optimal values of the height and total area of the 

tin can: h  = 10.83853 cm, A  = 553.5810 cm
2
. 

For optimizing the one-liter can by means of subroutine mini, we enter the 

following text of program main, subroutine func and function test into 

Module1 of the BookNM workbook. 
 

Listing 6.3 
 

Dim nf As Long               'counter of calls of func 

Dim nt As Long               'counter of calls of test 

 

Sub main() 

    Dim x() As Double 

    Dim ss() As Double 

    Dim n As Byte 

    n = 1                         'number of variables 

    ReDim x(n) 
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    ReDim ss(1 To n, 1 To n) 

    x(1) = Range("Sheet2!G1").Value 

    ss(1, 1) = Range("Sheet2!G2").Value 

    If ss(1, 1) ^ 2 = 0 Then 

        Range("Sheet2!A1").Value = _ 

            "Initial step must be increased" 

        End 

    End If 

    nf = 0 

    nt = 0 

0:  Call func(n, x)    'it must be before minimization 

1:  Call mini(n, x, ss, 1E-6) 

End Sub 

 

Sub func(ByVal n, ByRef x() As Double) 

    Const pi As Double = 3.141592654 

    nf = nf + 1 

    x(0) = 2 * pi * x(1) ^ 4 + 2 * 1000 / x(1) ^ 2 

End Sub 

 

Function test(ByVal n, ByRef x() As Double, _ 

    ByRef z() As Double, ByVal rho, Optional alpha) _ 

    As Boolean 

    nt = nt + 1 

    Range("Sheet2!A" & CStr(nt)) = x(0) 

    Range("Sheet2!B" & CStr(nt)) = x(1) 

    Range("Sheet2!C" & CStr(nt)) = nt 

    Range("Sheet2!D" & CStr(nt)) = nf 

2:  If Abs(z(0) - x(0)) < n * rho * z(0) Then 

        test = False 

    Else 

        test = True 

    End If 

    If Not IsMissing(alpha) Then 

        If x(0) < alpha Then test = False 

    End If 

3:  If n = 1 Or nt = 1048576 Then test = False 

End Function 

 

When executing the test function, the values of x(0) = )(
1

F , x(1) = 

1
, nt and nf are put into the nt-th row on the Sheet2 worksheet. 
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The sense of the last two variables follows: 

 nt is the current number of the iterations, i.e., of the test function calls; 

 nf is the current number of the calculated values of objective function 

)(
1

F , i.e., of the func function calls. 

In other words, the nt variable is the counter of the test function calls, the 

nf variable is the counter of the func function calls. The Excel row number 

may be considered as the iteration number (we will use this in Section 6.7). 

The mini subroutine execution is terminated when the relative change of  

the )(
1

F  function becomes less than ρ = 10
-6

: conditional operator 2 (where n 

is equal to unity) includes variables z(0) and x(0), i.e., the )(
1

F  function 

values at the iteration’s beginning and end, respectively. 

Due to operator 3, the mini subroutine execution also terminates when the 

number of arguments is equal to one or the Sheet2 worksheet does not contain 

empty rows. We will encounter operator 
 

If n = 1 Or nt = 1048576 Then test = False 
 

more than once in this chapter. 

According to (6.9), objective function )(
1

F  has the following form: 
 

2
1

4

1

2

11
22)()(

V
AF .                            (6.12) 

We made substitution 2

1
r  in order to have only non-negative values of the r 

radius in the course of the A area minimization. The tin can volume is given in 

the func subroutine; it is equal to V = 1000. 

The initial approximation of the minimum point, x(1) = 
1

, and initial step 

ss(1, 1) = 
11

s  are respectively taken from cells G1 and G2 on the Sheet2 

worksheet. The sign of 
11

s  determines the direction of the initial step, and ||
11

s  

determines its size. Before the mini subroutine call (operator 1), the initial  

value of objective function x(0) = )(
1

F  must be defined. For that, operator 0 

is used, which calculates the x(0) value corresponding to the x(1) value by 

means of the func subroutine. 

Fig. 6.16 shows the Sheet2 worksheet (a) before and (b) after the execution 

of code Listing 6.3. According to Fig. 6.16a, the initial value of the 
1

 variable 

equals 1, initial step 
11

s  equals 0.01. 
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According to Fig. 6.16b, only one iteration was performed for the minimiza-

tion of function (6.12) because it is a function of one variable (see operator 3); 

the iteration result is in cells A1 and B1. The final value of 
1

 (which is in the 

B1 cell) is equal to 2.328087. In this case, the radius of the tin can base,  

2

1
r  = 5.41999, is close to the optimal value, r  = 5.41926, calculated  

according to formula (6.11). During the search for the minimum point, 13 values 

of the objective function were calculated. The final value of the objective  

function (which is in the A1 cell) is equal to A = 553.5811. 

 

 
 

a 

 

 
 

b 

 

Fig. 6.16. The Sheet2 worksheet (a) before and (b) after minimization of )(
1

F  

 

We see conditional operator 2 in code Listing 6.3. It can be replaced with one 

of the following two assignment operators with logical expression in the right-

hand side: 

 
test = Not Abs(z(0) - x(0)) < n * rho * z(0) 

 

or 

 
test = Abs(z(0) - x(0)) >= n * rho * z(0) 
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The Rosenbrock function minimization. 

To find the minimum point of nonlinear function (6.1) by the coordinate-

descent method, we change the text of program main, subroutine func and 

function test as follows: 
 

Listing 6.4 
 

Dim nf As Long               'counter of calls of func 

Dim nt As Long               'counter of calls of test 

 

Sub main() 

    Dim x() As Double 

    Dim ss() As Double 

    Dim n As Byte 

    Dim i As Byte, j As Byte 

    Dim d As Double 

    n = 2                         'number of variables 

    ReDim x(n) 

    ReDim ss(1 To n, 1 To n) 

    For j = 1 To n 

        x(j) = Worksheets("Sheet2").Cells(1, 6 + j) 

        For i = 1 To n 

            ss(i, j) = Worksheets("Sheet2"). _ 

                Cells(1 + i, 6 + j) 

        Next i 

    Next j 

    For j = 1 To n 

        d = 0 

        For i = 1 To n 

            d = ss(i, j) ^ 2 + d 

        Next i 

        If d = 0 Then 

            Range("Sheet2!A1").Value = _ 

                "You must increase" & Str(j) & _ 

                "-th initial step" 

            End 

        End If 

    Next j 

    nf = 0 

    nt = 0 

    Call func(n, x)    'it must be before minimization 

1:  Call mini(n, x, ss, 1E-6, 1E-6) 

End Sub 
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Sub func(ByVal n, ByRef x() As Double) 

    nf = nf + 1 

    x(0) = 100 * (x(2) - x(1) ^ 2) ^ 2 + _ 

        (1 - x(1)) ^ 2 

End Sub 

 

Function test(ByVal n, ByRef x() As Double, _ 

    ByRef z() As Double, ByVal rho, Optional alpha) _ 

    As Boolean 

    Dim j As Byte 

    nt = nt + 1 

    For j = 0 To n 

        Worksheets("Sheet2").Cells(nt, j + 1) = x(j) 

    Next j 

    Worksheets("Sheet2").Cells(nt, n + 2) = nt 

    Worksheets("Sheet2").Cells(nt, n + 3) = nf 

2:  If Abs(z(0) - x(0)) < n * rho * z(0) Then 

        test = False 

    Else 

        test = True 

    End If 

    If Not IsMissing(alpha) Then 

3:      If x(0) < alpha Then test = False 

    End If 

    If n = 1 Or nt = 1048576 Then test = False 

End Function 

 

According to conditional operators 2 and 3, the test function returns 

False into the mini subroutine when at least one condition is satisfied of the 

following two: 

 the relative change of objective function ),(
21

xxF  on one iteration  

becomes less than 2ρ = 2·10
-6

 (the number of arguments is equal to 2); 

 the objective function value becomes less than α = 10
-6

. 

In this case, the search of the minimum point of the Rosenbrock function termi-

nates. 

When executing the test function, the values of x(0) = ),(
21

xxF , 

x(1) = 
1

x , x(2) = 
2

x  and the current values of nt and nf (that is, the num-

bers of calls of test and func, respectively) are put into cells on the Sheet2 

worksheet. 
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Fig. 6.17 shows worksheet Sheet2 (a) before and (b, c) after executing code 

Listing 6.4. 

Coordinates x(1) = 
1

x , x(2) = 
2

x  of the initial approximation of the  

minimum point and also initial steps ss(1, 1) = 
11

s , ss(2, 2) = 
22

s  are 

respectively taken from ranges G1:H1 and G2:H3 on worksheet Sheet2 

(Fig. 6.17a). Before calling the mini subroutine, the initial value of the  

objective function is calculated by calling the func subroutine. The result of  

the Rosenbrock function minimization is located in range A2066:C2066 

(Fig. 6.17c). 

 

 
 

a 

 

 
 

b 

 

 
 

c 

 

Fig. 6.17. The Sheet2 worksheet (a) before and  

(b, c) after the execution of code Listing 6.4 
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According to Fig. 6.17a, the initial values of the variables equal 0

1
x  = -5.5, 

0

2
x  = 0.5 (we used these initial values in Section 6.1 when minimizing the 

Rosenbrock function by the Solver add-in), initial steps 
11

s  and 
22

s  are equal to 

0.01, and 
12

s  = 
21

s  = 0. 

Fig. 6.17b and 6.17c show the results of the initial and final iterations.  

According to Fig. 6.17c, the result of the execution of code Listing 6.4 is  

1
x  = 

2
x  = 1, and during the execution: 

 2066 iterations were performed; 

 16781 values of objective function (6.1) were calculated. 
 

Further, we will consider the Powell minimization method. According to 

Fig. 6.18 (similar to Fig. 6.17c), the method usage reduces: 

 the number of iterations to 5; 

 the number of the calculated values of objective function (6.1) to 376. 
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6.5. The Powell minimization method 

 

 

 

 

 
Let )...,,,(

21 n
xxxx  be a point of the n-dimensional space, n ≥ 2. We 

have to find the unique minimum point of non-negative and continuous function 

)(xF , which has continuous partial derivatives 
1

/ xF , 
2

/ xF , …, 
n

xF / . 

As mentioned earlier, the minimization of the )(xF  function is an iterative 

process. According to the Powell method (based on a good theory [14]), each 

iteration consists of successive minimizations of the )(xF  function along direc-

tions 1S , 2S , ..., nS  (which are defined by the S  matrix), at that, a set of direc-

tions for the next iteration is formed. More precisely, one iteration includes the 

following seven stages. 

1. For i = 1, 2, …, n, vectors ix  are defined according to recurrence formula 

i

i

ii Sxx 1 , 

where 0x  is the initial approximation of the minimum point for the given itera-

tion, 
i

 is the minimum point of the following function of one variable: 

)()( 1 ii

i
Ff Sx . 

 

2. The maximum change in the )(xF  function, 

)}()({max 1

1

ii

ni

FF xx , 

 

is defined. Integer k is defined as the serial number of the direction along which 

this change has happened. 

3. Values )2( 0xxn

a
FF , )( n

b
FF x , )( 0xFF

c
 are defined. 

4. If 0
ca

FF  and 

2

)2(2

ca

bc

abc FF

FF
FFF , 
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then the 5th item is fulfilled. Otherwise, nx  is assigned to 0x , and the jump to 

the 7th item is performed without changing the set of minimization directions. 

5. Two vectors are defined according to formulas 

01 xxS nn , 

1nn Sxx , 

where  is the minimum point of the following function of one variable: 

)()( 1

1

nn

n
Ff Sx . 

 

6. The new set of the n minimization directions (matrix S ) for the next  

iteration is formed as follows: 

1S , ..., 1kS , 1kS , ..., nS , 1nS , 

where k is the integer defined in the 2nd item. Assignment xx0  is per-

formed. 

7. If none of the termination conditions of the )(xF  function minimization 

is satisfied, the following iteration is performed. 

The method of Section 6.2 is used for minimizing )(
1
f , )(

2
f , …, )(

n
f , 

)(
1n

f . 

The declaration of the minim subroutine, realizing the Powell method, is 

given below. We enter it into Module18 of the BookNM workbook. 
 

Listing 6.5 
 

Sub minim(ByVal n, ByRef x() As Double, _ 

    ByRef ss() As Double, ByVal rho, Optional alpha) 

    Dim fa As Double, fb As Double, fc As Double, _ 

    fd As Double 

    Dim a As Double, b As Double, c As Double, _ 

    d As Double, e As Double, dm As Double 

    Dim s() As Double: ReDim s(n) 

    Dim y() As Double: ReDim y(n) 

    Dim z() As Double: ReDim z(n) 

    Dim sss() As Double: ReDim sss(n, n) 

    Dim i As Byte, j As Byte, k As Byte, m As Byte 

    For j = 1 To n 

        For i = 1 To n 

            sss(i, j) = ss(i, j) 

        Next i 
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    Next j 

m1: For i = 0 To n 

        y(i) = x(i) 

        z(i) = x(i) 

    Next i 

    dm = 0 

    For j = 1 To n    'j - number of descent direction 

        For i = 1 To n 

            s(i) = ss(i, j) 

        Next i 

        d = 0 

        For i = 1 To n 

            d = s(i) ^ 2 + d 

        Next i 

        If d = 0 Then 

            For i = 1 To n 

                s(i) = sss(i, j) 

            Next i 

        Else 

            For i = 1 To n 

                sss(i, j) = s(i) 

            Next i 

        End If 

'Finding uncertainty segment: 

        fa = y(0): fb = y(0): fc = y(0) 

        a = 0: b = 0: c = 0 

        d = 1: e = 1 

s1:     For i = 1 To n 

            x(i) = y(i) + d * s(i) 

        Next i 

        Call func(n, x) 

        If Not IsMissing(alpha) Then 

            If x(0) < alpha Then GoTo m3 

        End If 

        fd = x(0) 

        If fd < fa Then 

            fc = fb: fb = fa: fa = fd 

            c = b: b = a: a = d 

            d = 2 * d + e 

            GoTo s1 

        Else 

            If fa = fb Then 
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                fb = fd 

                b = d 

                e = -2 * d 

                d = e 

                GoTo s1 

            End If 

        End If 

        fc = fb: fb = fa: fa = fd 

        c = b: b = a: a = d 

        d = (a + b) * 0.5 

        For i = 1 To n 

            x(i) = y(i) + d * s(i) 

        Next i 

        Call func(n, x) 

        If Not IsMissing(alpha) Then 

            If x(0) < alpha Then GoTo m3 

        End If 

        fd = x(0) 

'Reducing uncertainty segment: 

s2:     If Abs(fb - fd) < rho * fb Then GoTo s0 

        If (c - d) * (d - b) < 0 Then 

            If fd < fb Then 

                fc = fb: fb = fd 

                c = b: b = d 

            Else 

                fa = fd 

                a = d 

            End If 

        Else 

            If fd < fb Then 

                fa = fb: fb = fd 

                a = b: b = d 

            Else 

                fc = fd 

                c = d 

            End If 

        End If 

        d = fa * (b - c) + fb * (c - a) + fc * (a - b) 

        If d = 0 Then GoTo s0 

        d = (fa * (b * b - c * c) + _ 

            fb * (c * c - a * a) + _ 

            fc * (a * a - b * b)) / (2 * d) 
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        For i = 1 To n 

            x(i) = y(i) + d * s(i) 

        Next i 

        Call func(n, x) 

        If Not IsMissing(alpha) Then 

            If x(0) < alpha Then GoTo m3 

        End If 

        fd = x(0) 

        GoTo s2 

s0:     d = y(0) - x(0) 

        If d > dm Then 

            dm = d 

            m = j 

        End If 

        For i = 1 To n 

            ss(i, j) = x(i) - y(i) 

            y(i) = x(i) 

        Next i 

        y(0) = x(0) 

    Next j 

    If n = 1 Then GoTo m3 

'Last descent: 

    For i = 1 To n 

        x(i) = 2 * y(i) - z(i) 

    Next i 

    Call func(n, x) 

    If Not IsMissing(alpha) Then 

        If x(0) < alpha Then GoTo m3 

    End If 

    fa = x(0): fb = y(0): fc = z(0) 

    a = fa - fc 

    If a >= 0 Then GoTo m2 

    a = (fc - fb - dm) / a 

    If 2 * (fc - 2 * fb + fa) * a ^ 2 >= dm Then _ 

        GoTo m2 

    For j = m To n - 1 

        k = j + 1 

        For i = 1 To n 

            ss(i, j) = ss(i, k) 

        Next i 

    Next j 

    For i = 1 To n 



6.5. The Powell minimization method 

451 

        s(i) = y(i) - z(i) 

    Next i 

'Finding uncertainty segment: 

    fa = y(0): fb = y(0): fc = y(0) 

    a = 0: b = 0: c = 0 

    d = 1: e = 1 

h1: For i = 1 To n 

        x(i) = y(i) + d * s(i) 

    Next i 

    Call func(n, x) 

    If Not IsMissing(alpha) Then 

        If x(0) < alpha Then GoTo m3 

    End If 

    fd = x(0) 

    If fd < fa Then 

        fc = fb: fb = fa: fa = fd 

        c = b: b = a: a = d 

        d = 2 * d + e 

        GoTo h1 

    Else 

        If fa = fb Then 

            fb = fd 

            b = d 

            e = -2 * d 

            d = e 

            GoTo h1 

        End If 

    End If 

    fc = fb: fb = fa: fa = fd 

    c = b: b = a: a = d 

    d = (a + b) * 0.5 

    For i = 1 To n 

        x(i) = y(i) + d * s(i) 

    Next i 

    Call func(n, x) 

    If Not IsMissing(alpha) Then 

        If x(0) < alpha Then GoTo m3 

    End If 

    fd = x(0) 

'Reducing uncertainty segment: 

h2: If Abs(fb - fd) < rho * fb Then GoTo h0 

    If (c - d) * (d - b) < 0 Then 



Chapter 6. Numerical Methods for Nonlinear Programming 

452 

        If fd < fb Then 

            fc = fb: fb = fd 

            c = b: b = d 

        Else 

            fa = fd 

            a = d 

        End If 

    Else 

        If fd < fb Then 

            fa = fb: fb = fd 

            a = b: b = d 

        Else 

            fc = fd 

            c = d 

        End If 

    End If 

    d = fa * (b - c) + fb * (c - a) + fc * (a - b) 

    If d = 0 Then GoTo h0 

    d = (fa * (b * b - c * c) + _ 

        fb * (c * c - a * a) + _ 

        fc * (a * a - b * b)) / (2 * d) 

    For i = 1 To n 

        x(i) = y(i) + d * s(i) 

    Next i 

    Call func(n, x) 

    If Not IsMissing(alpha) Then 

        If x(0) < alpha Then GoTo m3 

    End If 

    fd = x(0) 

    GoTo h2 

h0: For i = 1 To n 

        ss(i, n) = x(i) - y(i) 

        y(i) = x(i) 

    Next i 

    y(0) = x(0) 

'Writing result of descents into array x: 

m2: For i = 0 To n 

        x(i) = y(i) 

    Next i 

'Checking condition of minimization termination: 

m3: If Not IsMissing(alpha) Then 

        If test(n, x, z, rho, alpha) Then GoTo m1 
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    Else 

        If test(n, x, z, rho) Then GoTo m1 

    End If 

End Sub 

 

The minim subroutine parameters have the same sense as the corresponding 

parameters of the mini subroutine (p. 435). However, two-dimensional array 

ss may be non-diagonal. 

In the minim subroutine, elements ss(1, j), ss(2, j), ..., ss(n, j) of 

the ss array, corresponding to the j-th column ( jS ) of the S  matrix, define the 

j-th descent direction and the initial step along this direction, which equals 

2
...

2
2

2
1 njjjj

ssss ,  j = 1, 2, ..., n. The descent directions, defined by the 

ss array (matrix S ), is generally changing from iteration to iteration during the 

)...,,,(
21 n

xxxF  function minimization. 

Let us test the new subroutine by means of the Rosenbrock function. For this 

purpose, we replace line 

 
1:  Call mini(n, x, ss, 1E-6, 1E-6) 

 

with line 

 
1:  Call minim(n, x, ss, 1E-6, 1E-6) 

 

in Listing 6.4. We leave subroutine func, function test and the initial data 

without change. 

The result of the Rosenbrock function minimization by the Powell method is 

located in cells A5:C5 (Fig. 6.18). 

 

 
 

Fig. 6.18. The Sheet2 worksheet upon termination of the code execution 
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We see that the obtained minimum point is the same as when using the  

Solver add-in and coordinate-descent method: 
1

x  = 
2

x  = 1. The minimization 

of function (6.1) requires: 

 5 iterations of the Powell method (Fig. 6.18); 

 21 iterations of Solver (p. 427); 

 2066 iterations of the coordinate-descent method (p. 445). 
 

Thus, the Powell method is more efficient than the Solver add-in and coordi-

nate-descent method for the Rosenbrock function. This is due to the following: 

1) minimum point )1,1(x  is located in the ravine (p. 422); 

2) in the Powell method, the initial descent directions, which are parallel to 

the 
1

x  and 
2

x  axes, are being converted to the descent directions, 1S  and 2S , 

oriented along the ravine bottom (Fig. 6.19). 
 

 
 

Fig. 6.19. The level curves of the Rosenbrock function in the neighborhood  

of the minimum point and vectors 1S  and 2S  for the 4th iteration 
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The iteration results, ),( 1

2

1

1
xx , ),( 2

2

2

1
xx , ),( 3

2

3

1
xx , ),( 4

2

4

1
xx , …, approach 

minimum point )1,1(x  along the ravine bottom. This assertion follows from 

Fig. 6.18 and 6.19. 
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6.6. Determining the equilibrium  

state of a four-spring system 

 

 

 

 
Below, we will determine the equilibrium state of the mechanical system  

depicted in Fig. 6.20. This system is formed by four weightless springs of the 

same length, λ = 2  meter (without a load), but with different elastic constants. 

The springs are located in the plane of the paper with axes 
1

x  and 
2

x . One ends 

of the springs are fastened together, the other ends are attached to tops A
1
, A

2
, 

A
3
, A

4
 of an imaginary square with the 2-meter side. 

 

 
 

Fig. 6.20. The four-spring system: the 
3

x  axis is directed “towards us”  

and passes through the springs junction point with zero coordinates 
 

The outside force, vector f directed along the 
3

x  axis (for example, the force 

of gravity), acts on body M attached to the springs junction. The value of this 

force, || ff , is given, and this value is negative if vector f and axis 
3

x  do 

not coincide in direction (according to the common practice in physics), i.e., the 

vector is directed “from us” (Fig. 6.20). The elastic constants of the springs equal 

1
K , 

2
K , 

3
K , 

4
K , respectively. 
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We have to find coordinates 
1

x , 
2

x , 
3

x  of the springs junction point in the 

equilibrium state, which is the result of a damped oscillation of the mechanical 

system. The damping occurs, for example, because of the air resistance: the  

resistance force is proportional to the velocity of body M and is directed opposite 

to the velocity vector. 

According to the principle of minimum potential energy of the elasticity the-

ory, the work of the elasticity forces and of the outside force for relocation of the 

M body from the origin of coordinates to the point with coordinates 
1

x , 
2

x , 
3

x  

(that is, the potential energy of body M) assumes its minimum value in the equi-

librium state. We will use this principle. 

Up to a constant, the potential energy of body M is equal to 

4

1

2

2

33

2

22

2

11321
)()()(

2
),,(

m
mmm

m
axaxax

K
xxxF  

Cxf
3

,                                              (6.13) 

where 
1m

a , 
2m

a  are the first two coordinates of point Am 
, which are equal to ±1, 

3m
a  = 0 is the third coordinate of point Am (m = 1, 2, 3, 4), C is a positive con-

stant introduced to ensure the positivity of function ),,(
321

xxxF . Difference 

2

33

2

22

2

11
)()()(

mmm
axaxax  is the change in the length of 

the m-th spring. 

For the minimization of function (6.13), initially, we use the coordinate-

descent method. The corresponding code is given below. 
 

Listing 6.6 
 

Dim nf As Long               'counter of calls of func 

Dim nt As Long               'counter of calls of test 

Dim K1 As Double, K2 As Double 

Dim K3 As Double, K4 As Double 

Dim f As Double, C As Double 

 

Sub main() 

    Dim x() As Double 

    Dim ss() As Double 

    Dim n As Byte, i As Byte, j As Byte 

    Dim d As Double 

    K1 = Range("Sheet2!G5").Value 

    K2 = Range("Sheet2!H5").Value 
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    K3 = Range("Sheet2!I5").Value 

    K4 = Range("Sheet2!J5").Value 

    f = Range("Sheet2!G6").Value 

    C = Range("Sheet2!H6").Value 

    n = 3                         'number of variables 

    ReDim x(n) 

    ReDim ss(1 To n, 1 To n) 

    For j = 1 To n 

1:      x(j) = Worksheets("Sheet2").Cells(1, 6 + j) 

        For i = 1 To n 

2:          ss(i, j) = Worksheets("Sheet2"). _ 

                Cells(1 + i, 6 + j) 

        Next i 

    Next j 

    For j = 1 To n 

        d = 0 

        For i = 1 To n 

            d = ss(i, j) ^ 2 + d 

        Next i 

        If d = 0 Then 

            Range("Sheet2!A1").Value = _ 

                "You must increase" & Str(j) & _ 

                "-th initial step" 

            End 

        End If 

    Next j 

    nf = 0 

    nt = 0 

    Call func(n, x)    'it must be before minimization 

3:  Call mini(n, x, ss, 1E-6) 

End Sub 

 

Sub func(ByVal n, ByRef x() As Double) 

    Const lambda As Double = 1.414213562 

    nf = nf + 1 

    x(0) = K1 / 2 * (Sqr((x(1) - 1) ^ 2 + _ 

        (x(2) - 1) ^ 2 + x(3) ^ 2) - lambda) ^ 2 + _ 

        K2 / 2 * (Sqr((x(1) + 1) ^ 2 + _ 

        (x(2) - 1) ^ 2 + x(3) ^ 2) - lambda) ^ 2 + _ 

        K3 / 2 * (Sqr((x(1) + 1) ^ 2 + _ 

        (x(2) + 1) ^ 2 + x(3) ^ 2) - lambda) ^ 2 + _ 

        K4 / 2 * (Sqr((x(1) - 1) ^ 2 + _ 
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        (x(2) + 1) ^ 2 + x(3) ^ 2) - lambda) ^ 2 - _ 

        f * x(3) + C 

End Sub 

 

Function test(ByVal n, ByRef x() As Double, _ 

    ByRef z() As Double, ByVal rho, Optional alpha) _ 

    As Boolean 

    Dim j As Byte 

    nt = nt + 1 

    For j = 0 To n 

        Worksheets("Sheet2").Cells(nt, j + 1) = x(j) 

    Next j 

    Worksheets("Sheet2").Cells(nt, n + 2) = nt 

    Worksheets("Sheet2").Cells(nt, n + 3) = nf 

    If Abs(z(0) - x(0)) < n * rho * z(0) Then 

        test = False 

    Else 

        test = True 

    End If 

    If Not IsMissing(alpha) Then 

        If x(0) < alpha Then test = False 

    End If 

    If n = 1 Or nt = 1048576 Then test = False 

End Function 

 

The test function returns False when the relative change of function 

(6.13) on one iteration becomes less than 3ρ = 3·10
-6

 (the number of arguments is 

equal to 3). In this case, the search of the minimum point terminates. 

When executing the test function, the values of x(0), x(1), x(2), 

x(3), nt and nf are put into cells on the Sheet2 worksheet. 

By means of operators 1 and 2, coordinates x(1), x(2), x(3) of the initial 

approximation of the minimum point and initial steps ss(1, 1), ss(2, 2), 

ss(3, 3) are respectively taken from ranges G1:I1 and G2:I4 on the Sheet2 

worksheet. Assignment operators 1 and 2 interpret the contents of the empty 

cells as zero. 

Elastic constants 
1

K , 
2

K , 
3

K , 
4

K  of the springs (in units of N / m) are  

respectively taken from cells G5, H5, I5, J5. The value of force f (in newtons) is 

taken from G6; constant C is taken from H6. 

According to Fig. 6.21a: 

 the initial values of variables 
1

x , 
2

x , 
3

x  are equal to zero; 
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 initial steps 
11

s , 
22

s , 
33

s  are equal to 0.01; 

 the elastic constants have the following values: 
1

K  = 100, 
2

K  = 200,  

3
K  = 300, 

4
K  = 400; 

 the force: f = - 800; 

 the constant: C = 10000. 

According to Fig. 6.21b: 

 the springs junction point has coordinates 
1

x  = - 0.01278, 
2

x  = - 0.33154, 

3
x  = -1.96816 in the equilibrium state (the coordinates are in meters); 

 the number of iterations equals 4; 

 88 values of objective function (6.13) were calculated during the minimi-

zation. 

 

 
 

a 

 

 
 

b 

 

Fig. 6.21. The Sheet2 worksheet (a) before and (b) after the code execution 
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The use of the Powell method for the minimization of function (6.13) is not 

difficult. For this purpose, we have to replace mini with minim in operator 3. 

Upon the change in the minimization method, only the number of the calcu-

lated values of objective function (6.13) changes markedly — from 88 to 95. 

The above minimization problem is the only one in this chapter whose solu-

tion by the Powell method is not more efficient than by the coordinate-descent 

method. 
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6.7. Minimization with nonlinear constraints 

 

 

 

 

 
Minimizing nonlinear function )...,,,(

210 n
xxxFx  with constraints is  

a frequently encountered problem. Often the following m inequalities play the 

role of these constraints: 

0)...,,,(
211 n

xxxC , 

0)...,,,(
212 n

xxxC ,                                     (6.14) 

. . . . . . 

0)...,,,(
21 nm

xxxC , 

where )...,,,(
21 ni

xxxC  is a given dependence, 1 ≤ i ≤ m. If this dependence is 

nonlinear, the corresponding inequality is called a nonlinear constraint. Later we 

will consider a constraint of the equality type. 

In the case of simple dependences )...,,,(
21 ni

xxxC , 1 ≤ i ≤ m, the formu-

lated minimization problem can be solved by replacing the variables. 

For n = 1, we already replaced the variable for solving the task of optimizing 

a tin can in Section 6.4. In order to have only non-negative values of radius r in 

the course of minimization of area A, we minimized a function with argument 

1
 related with r as 2

1
r , instead of minimizing the )(rA function. 

For n > 1, we will consider the variable replacement method on an example 

of Rosenbrock function (6.1) with constraints 1
1

x  and 7.0||
2

x , which can 

be written in form (6.14), 

01
1

x ,                                              (6.15) 

0||7.0
2

x .                                           (6.16) 

We introduce new variables 
1

 and 
2

 defined by equations 

2

11
1x ,                                             (6.17) 

22
sin7.0x .                                          (6.18) 
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It is visible that variables 
1

x  and 
2

x  satisfy the required inequalities, (6.15) and 

(6.16), for all values of 
1

 and 
2

 from  to . Substituting expressions 

(6.17) and (6.18) into formula (6.1), we get the following objective function: 

4

1

222

1221
])1(sin7.0[100),(G .                (6.19) 

After obtaining the minimum point of this function, ),(
21

χ , the required 

values, 
1

x  and 
2

x , must be calculated by means of formulas (6.17) and (6.18). 

The text of program main, subroutine func and function test, intended 

for minimizing function (6.1) with constraints (6.15) and (6.16), has the follow-

ing form: 
 

Listing 6.7 
 

Dim nf As Long               'counter of calls of func 

Dim nt As Long               'counter of calls of test 

 

Sub main() 

    Dim x() As Double 

    Dim ss() As Double 

    Dim n As Byte 

    Dim i As Byte, j As Byte 

    Dim d As Double 

    n = 2                         'number of variables 

    ReDim x(n) 

    ReDim ss(1 To n, 1 To n) 

    For j = 1 To n 

        x(j) = Worksheets("Sheet2").Cells(1, 6 + j) 

        For i = 1 To n 

            ss(i, j) = Worksheets("Sheet2"). _ 

            Cells(1 + i, 6 + j) 

        Next i 

    Next j 

    For j = 1 To n 

        d = 0 

        For i = 1 To n 

            d = ss(i, j) ^ 2 + d 

        Next i 

        If d = 0 Then 

            Range("Sheet2!A1").Value = _ 

                "You must increase" & Str(j) & _ 
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                "-th initial step" 

            End 

        End If 

    Next j 

    nf = 0 

    nt = 0 

    Call func(n, x)    'it must be before minimization 

1:  Call minim(n, x, ss, 1E-6, 1E-6) 

2:  Worksheets("Sheet2").Cells(nt + 1, 2) = _ 

        1 - x(1) ^ 2 

3:  Worksheets("Sheet2").Cells(nt + 1, 3) = _ 

        0.7 * Sin(x(2)) 

End Sub 

 

Sub func(ByVal n, ByRef x() As Double) 

    Dim x1 As Double, x2 As Double 

    nf = nf + 1 

    x1 = 1 - x(1) ^ 2 

    x2 = 0.7 * sin(x(2)) 

    x(0) = 100 * (x2 - x1 ^ 2) ^ 2 + x(1) ^ 4 

End Sub 

 

Function test(ByVal n, ByRef x() As Double, _ 

    ByRef z() As Double, ByVal rho, Optional alpha) _ 

    As Boolean 

    Dim j As Byte 

    nt = nt + 1 

    For j = 0 To n 

        Worksheets("Sheet2").Cells(nt, j + 1) = x(j) 

    Next j 

    Worksheets("Sheet2").Cells(nt, n + 2) = nt 

    Worksheets("Sheet2").Cells(nt, n + 3) = nf 

    If Abs(z(0) - x(0)) < n * rho * z(0) Then 

        test = False 

    Else 

        test = True 

    End If 

    If Not IsMissing(alpha) Then 

        If x(0) < alpha Then test = False 

    End If 

    If n = 1 Or nt = 1048576 Then test = False 

End Function 
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From code Listing 6.4 for solving the minimization problem without con-

straints, the above code differs in the following: 

 in operators of the func subroutine because it is now intended for calcu-

lating values of objective function ),(
21

G  according to formula (6.19)  

instead of (6.1); 

 in operator 1 because we use the Powell method in the new program; 

 in the presence of operators 2 and 3, which correspond to formulas (6.17) 

and (6.18), respectively. 

After obtaining the values of 
1

 and 
2

, operators 2 and 3 calculate the 

values of 
1

x  and 
2

x , i.e., the solution of the minimization problem for the 

Rosenbrock function with constraints (6.15) and (6.16). 

Fig. 6.22 shows the Sheet2 worksheet upon termination of the code execu-

tion. 
 

 
 

Fig. 6.22. The worksheet upon termination of the code execution 
 

According to Fig. 6.22: 

 the initial approximation of the minimum point, defined by the values of 

cells G1 and H1, has coordinates 0

1
 = -3 and 0

2
 = 5; 

 the initial steps, defined by the values of cells G2:H3, are directed along 

the 
1

 and 
2

 axes and are equal to 0.01; 
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 the coordinates of the minimum point of function ),(
21

G  are  

1
 = - 0.403 and 

2
 = 7.854; 

 the required values are 
1

x  = 0.837 and 
2

x  = 0.7; they are located in cells 

B14 and C14. 

When replacing minim with mini in operator 1 (that is, when using the  

coordinate-descent method) the number of iterations increases from 13 to 254, 

and the number of the calculated values of objective function ),(
21

G   

increases from 505 to 2372. 

The application of the variable replacement method, which was considered,  

is very limited. For minimizing nonlinear function )...,,,(
21 n

xxxF  with con-

straints (6.14), the penalty function method is more universal. According to this 

method, functions 

)](...)()([2)()(
21

xxxxx
m

k

k
DDDFG                 (6.20) 

of vector argument )...,,,(
21 n

xxxx , k ≥ 0, are being sequentially mini-

mized for k = 0, 1, 2, ... The value of k determines the “weight” of sum 

)(...)()(
21

xxx
m

DDD , i.e., its contribution to the )(x
k

G  function; m is 

the number of the constraints. 

We use formula 

}0),(min{)( xx p

ii
CD , 

 

where the p power is an odd natural number, for example 3, 1 ≤ i ≤ m. 

According to the last formula: 

 0)(x
i

D  when 0)(x
i

C , i.e., the i-th inequality of (6.14) is satisfied; 

 0)()( xx p

ii
CD  when 0)(x

i
C , i.e., the i-th inequality of (6.14) is 

unsatisfied. 

We can combine functions (6.20) into the following single function with  

additional argument 
1n

x : 

)](...)()([)(),(
2111

xxxxx
mnn

DDDxFxG .        (6.21) 
 

The original problem with constraints is reduced to a sequence of problems 

without constraints: we must find the minimum point of each of functions 

)1,()(
0

xx GG , )2,()(
1

xx GG , )4,()(
2

xx GG , ..., )2,()( k

k
GG xx , ... 
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It is obvious that the obtained sequence of minimum points 
0

x , 
1

x , 
2

x , ..., 

k
x , ... converges to required solution x  of the minimization problem for func-

tion )(xF  with constraints (6.14). 

For a fixed value of k, one of the considered methods for unconstrained  

minimization (the coordinate-descent or Powell method) minimizes function 

)2,()( k

k
GG xx , at that, minimum point 

1k
x  of )2,()( 1

1

k

k
GG xx  is 

used as the initial approximation of the 
k

x  minimum point of function 

)2,()( k

k
GG xx . 

We must specify initial approximation 0x  of minimum point 
0

x  of function 

)1,()(
0

xx GG . The 0x  point may be considered as the initial approximation 

of required x . 

Functions (6.20) are called the penalty functions. Let also: 

 function (6.21) of form 

)](...)()([)(),...,,,(
211121

xxxx
mnnn

DDDxFxxxxG  

be called the penalty function; 

 summand )](...)()([
211

xxx
mn

DDDx  be called the penalty. 

The penalty function method allows to solve the minimization problem for 

Rosenbrock function (6.1) with constraint 12

2

2

1
xx , which can be written in 

form (6.14), 

0),(
211

xxC ,                                          (6.22) 

where 

1),( 2

2

2

1211
xxxxC .                                 (6.23) 

To use the Powell method for minimizing function (6.1) with this constraint, 

we must enter the following code into Module1. 
 

Listing 6.8 
 

Const DBL_MAX = 1E+308 

Dim nf As Long               'counter of calls of func 

Dim nt As Long               'counter of calls of test 

Dim m As Byte 

Dim y0 As Double, z0 As Double 
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Sub main() 

    Dim x() As Double 

    Dim ss() As Double 

    Dim n As Byte, i As Byte, j As Byte 

    Dim d As Double 

    n = 2                       'number of variables 

    m = 1                       'number of constraints 

    ReDim x(-1 To n + m) 

    ReDim ss(1 To n, 1 To n) 

    For j = 1 To n 

        x(j) = Worksheets("Sheet2").Cells(1, 6 + j) 

        For i = 1 To n 

            ss(i, j) = Worksheets("Sheet2"). _ 

                Cells(1 + i, 6 + j) 

        Next i 

    Next j 

    For j = 1 To n 

        d = 0 

        For i = 1 To n 

            d = ss(i, j) ^ 2 + d 

        Next i 

        If d = 0 Then 

            Range("Sheet2!A1").Value = _ 

                "You must increase" & Str(j) & _ 

                "-th initial step" 

            End 

        End If 

    Next j 

    nf = 0 

    nt = 0 

    x(n + 1) = 1 

    Call func(n, x)    'it must be before minimization 

    z0 = x(0): y0 = DBL_MAX 

1:  Call minim(n, x, ss, 1E-3, 1E-6) 

End Sub 

 

Sub func(ByVal n, ByRef x() As Double) 

    Dim c As Double 

    nf = nf + 1 

    c = -x(1) ^ 2 - x(2) ^ 2 + 1 

2:  If c > = 0 Then 

        x(-1) = 0 
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    Else 

        x(-1) = x(3) * (-c ^ 3)        'penalty, p = 3 

    End If 

    x(0) = 100 * (x(2) - x(1) ^ 2) ^ 2 + _ 

        (1 - x(1)) ^ 2 + x(-1) 

End Sub 

 

Function test(ByVal n, ByRef x() As Double, _ 

    ByRef z() As Double, ByVal rho, Optional alpha) _ 

    As Boolean 

    Dim j As Integer 

    nt = nt + 1 

    For j = -1 To n + m 

        Worksheets("Sheet2").Cells(nt, j + 2) = x(j) 

    Next j 

    Worksheets("Sheet2").Cells(nt, n + m + 3) = nf 

    If Abs(z0 - x(0)) < n * rho * z0 Then 

        If Abs(y0 - x(0)) < n * rho * y0 Then 

            test = False 

        Else 

            x(n + 1) = x(n + 1) * 2 

            If x(n + 1) > DBL_MAX Then 

                test = False 

            Else 

                test = True 

            End If 

            y0 = x(0) 

            Call func(n, x) 

        End If 

    Else 

        test = True 

    End If 

    z0 = x(0) 

    If Not IsMissing(alpha) Then 

        If x(0) < alpha Then test = False 

    End If 

    If n = 1 Or nt = 1048576 Then test = False 

End Function 

 

The results of the code execution are depicted in Fig. 6.23. As we see, initial 

approximation 0x , defined by the values of cells G1 and H1, has coordinates  
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0

1
x  = -5.5 and 0

2
x  = 0.5. According to the contents of cells G2:H3, the initial 

steps are directed along the 
1

x  and 
2

x  axes and equal 0.01. 

 

 
 

Fig. 6.23. The Sheet2 worksheet upon termination of the code execution 

 

Columns A and B contain the values of penalty x(-1) = ),(
2113

xxDx  and 

penalty function x(0) = ),,(
321

xxxG , respectively. Columns C, D and E con-

tain the values of coordinates x(1) = 
1

x  and x(2) = 
2

x  and variable x(3) = 

kx 2
3

. Column F contains the current value of nf, i.e., the current number of 

the func subroutine calls. The coordinates of the obtained minimum point, x , 

are equal to 
1

x  = 0.787 and 
2

x  = 0.62. 
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When replacing minim with mini in operator 1 (that is, when using the  

coordinate-descent method), the number of iterations increases from 26 to 153, 

and the number of the calculated values of the objective function increases from 

385 to 1313. 

The penalty function method allows solving the minimization problem for the 

)...,,,(
21 n

xxxF  function when the equality type constraints are present among 

constraints (6.14); for example, 0)...,,,(
211 n

xxxC  may be the first con-

straint. In this case, we use )()(
11

xx qCD  in expressions (6.20) and (6.21), 

where power q is an even natural number, for example 2. 

As an example of using this form of the penalty function method, we will 

consider the minimization problem for Rosenbrock function (6.1) with constraint 

12

2

2

1
xx , which can be written as follows: 

0),(
211

xxC , 

where the left-hand side is defined by (6.23), i.e., 1),( 2

2

2

1211
xxxxC . 

To minimize function (6.1) with this constraint, we must change the func 

subroutine declaration in code Listing 6.8 as follows: 
 

Listing 6.9 
 

Sub func(ByVal n, ByRef x() As Double) 

    Dim c As Double 

    nf = nf + 1 

    c = -x(1) ^ 2 - x(2) ^ 2 + 1 

2:  If c = 0 Then x(-1) = 0 Else _ 

        x(-1) = x(3) * c ^ 2           'penalty, q = 2 

    x(0) = 100 * (x(2) - x(1) ^ 2) ^ 2 + _ 

        (1 - x(1)) ^ 2 + x(-1) 

End Sub 

 

The code execution results are depicted in Fig. 6.24. 

As we see, initial approximation 0x  of the minimum point has coordinates 

0

1
x  = -5.5 and 0

2
x  = 0.5, the initial steps are directed along the 

1
x  and 

2
x  axes 

and equal 0.01. The coordinates of the obtained minimum point, x , are equal to 

1
x  = 0.786 and 

2
x  = 0.618. When replacing the minim subroutine with mini, 
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the number of iterations increases from 18 to 67, the number of the calculated 

values of the penalty function increases from 347 to 686. 
 

 
 

Fig. 6.24. The Sheet2 worksheet after the code execution 
 

Besides the above methods, the barrier function method is used for the 

)(xF  function minimization with nonlinear constraints. It differs from the penal-

ty function method in the form of the second summand in formula (6.20): 

][ )(/1...)(/1)(/12)()(
21

xxxxx p

m

ppk

k
CCCFG ,        (6.24) 

where p is an even natural number. The ),(
1n

xG x  function has the following 

form: 

][ )(/1...)(/1)(/1)(),(
21

1

11
xxxxx p

m

pp

nn
CCCxFxG .  (6.25) 

Summand ][ )(/1...)(/1)(/1
21

1

1
xxx p

m

pp

n
CCCx  is called the barrier; func-

tions (6.24) and (6.25) are called the barrier functions. 

As we see, function (6.25) is close to (6.21) in form. Therefore, the new code 

for minimizing function (6.1) with constraint (6.22), (6.23) by the Powell method 

differs from Listing 6.8 only in the following operator: 
 

2:  x(-1) = 1 / x(3) * (1 / c ^ 2)     'barrier, p = 2 
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For constraints in the form of inequalities (6.14), initial approximation 0x  of 

the minimum point must satisfy these inequalities. For example, )0,0(0x  

may be when minimizing function (6.1) with constraint (6.22), (6.23) by the new 

version of code Listing 6.8. Therefore, the method being considered is often 

called the interior point method. 

Fig. 6.25 shows the results of using the new version of code Listing 6.8 (with 

minim in operator 1). 

 

 
 

a 

 

 
 

b 

 

Fig. 6.25. The initial (a) and final (b) iterations 

 

As we see in Fig. 6.25, initial approximation 0x  of the minimum point has 

zero coordinates, the initial steps are directed along the 
1

x  and 
2

x  axes and 

equal 0.01. The coordinates of the obtained minimum point, x , are equal to  

1
x  = 0.786 and 

2
x  = 0.616. When replacing minim with mini in operator 1, 

the number of iterations increases from 60 to 314, and the number of the calcu-

lated values of the barrier function increases from 703 to 2552. 

Let us solve one more minimization problem for Rosenbrock function (6.1), 

when constraint 12

2

2

1
xx  is imposed on the minimum point. This inequality 

can be written in form (6.22), where 1),( 2

2

2

1211
xxxxC . 
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For minimizing function (6.1) with this constraint by the penalty function and 

Powell methods, we use Listing 6.8 with minim in operator 1 and the following 

func subroutine: 
 

Listing 6.10 
 

Sub func(ByVal n, ByRef x() As Double) 

    Dim c As Double 

    nf = nf + 1 

    c = x(1) ^ 2 + x(2) ^ 2 - 1 

2:  If c >= 0 Then 

        x(-1) = 0 

    Else 

        x(-1) = x(3) * (-c ^ 3)        'penalty, p = 3 

    End If 

    x(0) = 100 * (x(2) - x(1) ^ 2) ^ 2 + _ 

        (1 - x(1)) ^ 2 + x(-1) 

End Sub 

 

Fig. 6.26 shows the results of using the last version of code Listing 6.8. 

 

 
 

Fig. 6.26. The Sheet2 worksheet upon termination of the code execution 

 

As we see in Fig. 6.26, initial approximation 0x  of the minimum point has 

coordinates 0

1
x  = -5.5 and 0

2
x  = 0.5, the initial steps are directed along the 

1
x  

and 
2

x  axes and equal 0.01. The coordinates of the obtained minimum point, 

x , are equal to 
1

x  = 1 and 
2

x  = 1. 

The barrier function method gives an incorrect result. 
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6.8. Minimization of the multimodal function 

 

 

 

 

 
The search methods (the coordinate-descent and Powell methods) considered 

above were developed for finding the minimum point of the so-called unimodal 

function, )...,,,(
210 n

xxxFx , that has a single local minimum. Application 

of these methods to the multimodal function, with several local minima, gives 

only one minimum point, which depends on the initial approximation of the  

minimum point and on the directions and values of initial steps. 

Let function )...,,,(
21 n

xxxF  be multimodal inside its domain, and all the 

minima are to be found. The solution of this problem may be required for subse-

quent definition of the global minimum or for solving the maximin problem, i.e., 

for definition of the function’s maximum value among the local minima. 

All local minima can be found if the initial approximation of the minimum 

point is defined by means of the random-number generator and, at that, the code 

execution is sufficiently long. 

For example, let us consider function 

])1()(100)[cos(cos),( 2

1

22

122

2

1

2

21
xxxxxxxF        (6.26) 

in the rectangle given by inequalities 

5.55.0
1

x , 

55.0
2

x . 

To find the local minima of function (6.26) inside its domain (the above rec-

tangle), we use the following text of program main, subroutine func and func-

tion test: 
 

Listing 6.11 
 

Dim nf As Long              'counter of calls of func 

Dim nt As Long              'counter of calls of test 

Dim np As Long              'counter of minimum points 

 

Sub main() 

    Dim x() As Double 

    Dim ss() As Double 
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    Dim n As Byte 

    Dim i As Byte, j As Byte 

    Dim d As Double 

    Dim sec As Long 

    Dim min As Byte, hour As Byte 

    Dim st As String 

    Dim stp As Date 

    Dim np_lim As Long 

    n = 2                         'number of variables 

    ReDim x(n) 

    ReDim ss(1 To n, 1 To n) 

1:  sec = Range("Sheet2!G4").Value 

2:  hour = sec \ 3600 

3:  min = (sec - hour * 3600) \ 60 

4:  sec = sec - hour * 3600 - min * 60 

5:  st = CStr(hour) & ":" & CStr(min) & ":" _ 

        & CStr(sec) 

6:  stp = Now + TimeValue(st) 

7:  np_lim = Range("Sheet2!H4").Value 

8:  Randomize           'it must be before calling Rnd 

9:  np = 0 

beg: 

10: np = np + 1 

11: x(1) = 0.5 + (5.5 - 0.5) * Rnd 

12: x(2) = 0.5 + (5 - 0.5) * Rnd 

    For j = 1 To n 

        For i = 1 To n 

            ss(i, j) = Worksheets("Sheet2"). _ 

                Cells(1 + i, 6 + j) 

        Next i 

    Next j 

    For j = 1 To n 

        d = 0 

        For i = 1 To n 

            d = ss(i, j) ^ 2 + d 

        Next i 

        If d = 0 Then 

            Range("Sheet2!A1").Value = _ 

                "You must increase" & Str(j) & _ 

                "-th initial step" 

            End 

        End If 
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    Next j 

    nf = 0 

    nt = 0 

    Call func(n, x)    'it must be before minimization 

    Call minim(n, x, ss, 1E-6, 1E-6)    'Powell method 

13: For j = 0 To n 

14:     Worksheets("Sheet2").Cells(np, j + 1) = x(j) 

15: Next j 

16: Worksheets("Sheet2").Cells(np, n + 2) = nt 

17: Worksheets("Sheet2").Cells(np, n + 3) = nf 

18: If Now < stp And np < np_lim And np < 1048576 _ 

        Then GoTo beg 

End Sub 

 

Sub func(ByVal n, ByRef x() As Double) 

    nf = nf + 1 

    x(0) = (Cos(x(1)) ^ 2 + Cos(x(2)) ^ 2) * _ 

        (100 * (x(2) - x(1) ^ 2) ^ 2 + (1 - x(1)) ^ 2) 

End Sub 

 

Function test(ByVal n, ByRef x() As Double, _ 

    ByRef z() As Double, ByVal rho, Optional alpha) _ 

    As Boolean 

    Dim j As Byte 

    nt = nt + 1 

    If Abs(z(0) - x(0)) < n * rho * z(0) Then 

        test = False 

    Else 

        test = True 

    End If 

    If Not IsMissing(alpha) Then 

        If x(0) < alpha Then test = False 

    End If 

End Function 

 

From code Listing 6.4, intended for minimizing the Rosenbrock function,  

the last code differs in operators of the func subroutine and presence of opera-

tors 1 — 18 in the main program. Let us consider the purpose of these addi-

tional operators. 

Operator 1 assigns the specified limiting execution time (in seconds), being 

in cell Sheet2!G4, to variable sec of the Long data type. Operators 2 — 5 

form the st string of format "hh:mm:ss", in which hh is one or two digits 
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defining the number of hours, mm is the number of minutes, ss is the number of 

seconds. Operator 6 determines the moment of the execution termination and 

assigns it to variable stp (from word “stop”) of the Date data type. 

Operator 7 assigns the limiting number of found minimum points to variable 

np_lim of the Long data type. This number is taken from cell Sheet2!H4. 

The Randomize operator (labeled by 8) prepares the built-in random-

number generator for work; operator 9 nullifies the np counter of the found  

minimum points. 

Operator 10, below label beg (from “beginning”), increases the np counter 

by 1. Operators 11 and 12 define the coordinates of initial approximation 0x  of 

the next minimum point by means of the Rnd function returning real numbers 

uniformly distributed on segment ]1,0[ . 

The 0x  point falls into any place of rectangle 5.55.0
1

x  and 

55.0
2

x  with equal probability. 

Below operator 12, we see familiar operators of the function minimization 

by the Powell method. Upon termination of the minim subroutine execution, 

operators 13 — 18 are performed. 

Operators 13 — 17 put the result of searching the local minimum into the 

empty row on the Sheet2 worksheet. The result includes: 

 x(0) — the value of function F ; 

 x(1), x(2) — the values of arguments 
1

x  and 
2

x ; 

 nt, nf — the numbers of the test and func calls required for finding 

the local minimum. 

Operator 18 performs the jump to label beg if the following three conditions 

are satisfied simultaneously: 

 the execution time is less than the limiting time; 

 the number of found minimum points is less than the limiting number; 

 empty rows still stay on the Excel worksheet. 

After the jump to label beg, the new 0x  point is defined randomly and the 

minimization is repeated. 
 

Fig. 6.27 shows the beginning of the Sheet2 worksheet after the code execu-

tion. The limiting execution time and the limiting number of found minimum 

points are equal to 1 second and 100, respectively. During the code execution, 

100 minimum points were calculated; coordinates of seven of them are given in 

table “The minimization results” below. The 93 remaining points practically  
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coincide with these seven points or are outside the domain defined by inequali-

ties 5.55.0
1

x  and 55.0
2

x . 

 

 
 

Fig. 6.27. The first 16 rows on the Sheet2 worksheet  

after the code execution 

 

The minimization results 
 

Minimum’s number ),(
210

xxFx  
1

x  
2

x  

1 0 1.57 1.57 

2 0 4.71 1.57 

3 0 4.71 4.71 

4 0 1.57 4.71 

5 0 1 1 

6 0.397 2.13 4.54 

7 0.732 1.88 3.55 

 

When creating table “The minimization results”, we applied the Excel filter 

to the worksheet of Fig. 6.27 as follows: 

1) set the number format with two decimal places for columns B and C; 

2) select columns A:E; 

3) Data > Filter in area Sort & Filter (Fig. 6.28); 
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4) in the first row of the B column, fulfill Number Filters > Custom Filter by 

means of the drop-down list; 

5) in the Custom AutoFilter window opened, set the following: ≥ 0.5 and ≤ 

5.5 (Fig. 6.29); 

6) click on the OK button; 

7) in the first row of the C column, fulfill Number Filters > Custom Filter; 

8) in the Custom AutoFilter window opened, set the following: ≥ 0.5 and ≤ 5 

(Fig. 6.30); 

9) click on the OK button. 

 

 
 

Fig. 6.28. The first 16 rows on the Sheet2 worksheet  

after starting the filter 

 

The first four minima in table “The minimization results” are located at the 

points, where the first multiplicand of objective function (6.26) is equal to zero: 
 

0coscos
2

2

1

2 xx  
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because 2/  = 1.57, 2/3  = 4.71, i.e., )57.1(cos  = )71.4(cos  = 0. 

The 5th minimum has coordinates 
1

x  = 
2

x  = 1, for which the second multi-

plicand of objective function (6.26) is equal to zero: 

0)1()(100 2

1

22

12
xxx . 

The 6th and 7th minima are not so obvious: objective function (6.26) has 

nonzero values at points (2.13; 4.54) and (1.88; 3.55). 

 

 
 

Fig. 6.29. Setting the constraints for 
1

x  during the filter usage 

 

 
 

Fig. 6.30. Setting the constraints for 
2

x  during the filter usage 
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Strictly speaking, the above method for minimizing the multimodal function 

does not guarantee finding all local minima inside the function’s domain. How-

ever, the probability of this is close to unity if the code execution is sufficiently 

long. 

Often, we do not believe in the adequacy of the obtained solution of a mini-

mization problem, even when we know that the objective function is unimodal. 

In this case, the use of this section’s method is a good idea. 

We advise the reader to write a program for finding the global minimum of 

function 

)()(),(
2

2

21

2

121
xfxfxxF  

inside rectangle 
111

bxa  and 
222

bxa , where )(
11

xf  and )(
22

xf  are 

functions from Appendix 4, segments ],[
11

ba  and ],[
22

ba  are the domains of 

functions )(
11

xf  and )(
22

xf , respectively. 

In addition, we advise the reader to use the random-number generator for  

defining both the initial approximation of the minimum point and the initial steps 

along the 
1

x  and 
2

x  axes. 

By the way, the last minimum in table “The minimization results” (with co-

ordinates 
1

x  = 1.88 and 
2

x  = 3.55) is the solution of the following maximin 

problem: to determine the maximum value of function (6.26) among the local 

minima inside rectangle 5.55.0
1

x  and 55.0
2

x . The global minimum 

is equal to zero; it is reached at the first five minimum points. 
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6.9. Minimization of the tabular function 

 

 

 

 

 
To demonstrate the possibilities of the numerical methods for nonlinear pro-

gramming, we used simple functions that can be differentiated analytically. For 

example, we easily derived expressions (6.5) and (6.6) for the partial derivatives 

of the Rosenbrock function. In this case, methods of the third chapter in book 

[16], using the first and second partial derivatives of the objective function, are 

effective for the minimization. 

In practice, it is often necessary to minimize a function in tabular form or  

a function whose values are calculated implicitly, for example, by solving any 

equation. In these cases, the analytical differentiation of the function being min-

imized is impossible, and the search methods take on special significance. 

We will consider the minimization of a positive tabular function of two vari-

ables. The values of arguments 
1

x  and 
2

x  and of function ),(
210

xxFx  are 

given in table Listing 6.12 and Fig. 6.31. 
 

Listing 6.12 
 

The positive tabular function of two variables 
 

x
1
           x

2
 0 0.2 0.4 0.6 0.8 

2 1.703125 1.529781 1.981909 3.548149 7.270101 

2.2 1.673125 1.282539 1.514134 2.903724 6.656206 

2.4 1.883125 1.23895 1.201694 2.35404 6.07493 

2.6 2.333125 1.399014 1.04459 1.899096 5.526274 

2.8 3.023125 1.762731 1.042822 1.538892 5.010238 

3 3.953125 2.330101 1.196389 1.273429 4.526821 

3.2 5.123125 3.101124 1.505292 1.102706 4.076024 

3.4 6.533125 4.075801 1.969531 1.026724 3.657846 

3.6 8.183125 5.25413 2.589105 1.045483 3.272287 

3.8 10.07313 6.636113 3.364015 1.158982 2.919348 

4 12.20313 8.221749 4.294261 1.367221 2.599029 
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Fig. 6.31. The Excel table with source data 

 

According to Fig. 6.31: 

 cells B3:B13 contain values 
i

x
,1

 of argument 
1

x  (0 ≤ i ≤ k, k = 10), i.e., 

grid nodes 
0,1

x , 
1,1

x , ..., 
k

x
,1

 on axis 
1

x ; 

 cells C2:G2 contain values 
j

x
,2

 of argument 
2

x  (0 ≤ j ≤ r, r = 4), i.e., 

grid nodes 
0,2

x , 
1,2

x , ..., 
r

x
,2

 on axis 
2

x ; 

 cells C3:G13 contain the ),(
21

xxF  function values. 

The code intended for minimizing the ),(
21

xxF  function follows: 
 

Listing 6.13 
 

Const DBL_MAX = 1E+308 

Dim x1() As Double         'grid nodes on axis x1 

Dim x2() As Double         'grid nodes on axis x2 

Dim k As Integer           'number of segments on x1 

Dim r As Integer           'number of segments on x2 

Dim ff() As Double         'values of function F 

Dim f1() As Double         'values of splines 

Dim f2() As Double         'values of function of x2 

Dim mm() As Double         'values of moments about x2 

Dim m1() As Double         'values of moments about x1 
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Dim m2() As Double         'values of moments about x2 

Dim nf As Long             'counter of calls of func 

Dim nt As Long             'counter of calls of test 

Dim no As Integer          'shift for output 

 

Sub main() 

    Dim x(2) As Double 

    Dim ss(1 To 2, 1 To 2) As Double 

    Dim i As Integer, j As Integer 

    Dim min As Double 

    k = Selection.Rows.Count - 2 

    r = Selection.Columns.Count - 2 

    ReDim x1(k) 

    ReDim x2(r) 

    ReDim ff(k, r) 

    ReDim f1(k) 

    ReDim f2(r) 

    ReDim mm(k, r) 

    ReDim m1(k) 

    ReDim m2(r) 

    For i = 0 To k 

        x1(i) = Selection.Cells(2 + i, 1) 

    Next i 

    For j = 0 To r 

        x2(j) = Selection.Cells(1, 2 + j) 

    Next j 

    For i = 0 To k 

        For j = 0 To r 

            ff(i, j) = Selection.Cells(2 + i, 2 + j) 

        Next j 

    Next i 

'Calculation of 2D array of moments about x2: 

    For i = 0 To k 

        For j = 0 To r 

            f2(j) = ff(i, j) 

        Next j 

0:      Call mos(0, r, x2, f2, 0, 0, 0, 0, m2) 

        For j = 0 To r 

            mm(i, j) = m2(j) 

        Next j 

    Next i 

'Specifying initial approximation of minimum point: 
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    min = DBL_MAX 

    For i = 0 To k 

        For j = 0 To r 

            If ff(i, j) < min Then 

                min = ff(i, j) 

                x(1) = x1(i) 

                x(2) = x2(j) 

            End If 

        Next j 

    Next i 

    no = i + 2 

'Specifying initial steps: 

    ss(1, 1) = 0.01: ss(1, 2) = 0 

    ss(2, 1) = 0: ss(2, 2) = 0.01 

'Searching minimum point: 

    nf = 0 

    nt = 0 

    Call func(2, x)    'it must be before minimization 

    Selection.Cells(no, 1) = x(0) 

    Selection.Cells(no, 2) = x(1) 

    Selection.Cells(no, 3) = x(2) 

    Call minim(2, x, ss, 1E-6)          'Powell method 

'Outputting minimum point: 

    Selection.Cells(no + 1, 1) = x(0) 

    Selection.Cells(no + 1, 2) = x(1) 

    Selection.Cells(no + 1, 3) = x(2) 

    Selection.Cells(no + 1, 4) = nt 

    Selection.Cells(no + 1, 5) = nf 

End Sub 

 

Sub func(ByVal n, ByRef x() As Double) 

    Dim i As Integer 

    Dim j As Integer 

    nf = nf + 1 

    For i = 0 To k 

        For j = 0 To r 

            f2(j) = ff(i, j) 

            m2(j) = mm(i, j) 

        Next j 

1:      Call si(0, r, x2, f2, m2, x(2), f1(i)) 

    Next i 

2:  Call mos(0, k, x1, f1, 0, 0, 0, 0, m1) 
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3:  Call si(0, k, x1, f1, m1, x(1), x(0)) 

End Sub 

 

Function test(ByVal n, ByRef x() As Double, _ 

    ByRef z() As Double, ByVal rho, Optional alpha) _ 

    As Boolean 

    Dim j As Byte 

    nt = nt + 1 

    If Abs(z(0) - x(0)) < n * rho * z(0) Then 

        test = False 

    Else 

        test = True 

    End If 

    If Not IsMissing(alpha) Then 

        If x(0) < alpha Then test = False 

    End If 

End Function 

 

We enter this code into Module1 of the BookNM workbook. The source data 

are in the Excel table (Fig. 6.31); this table (range B2:G13) should be selected 

before the code execution. 

Let us consider the three main stages of the code execution. 

First of all, the moments of cubic splines )(
20

xS , )(
21

xS , . . . , )(
2

xS
k

,  

defined by grid functions ),()(
20,120

xxFxf , ),()(
21,121

xxFxf , . . . , 

),()(
2,12

xxFxf
kk

, are calculated by means of operator 0: 

 )(
20

xf  and )(
20

xS  correspond to range C3:G3; 

 )(
21

xf  and )(
21

xS  correspond to range C4:G4; 

 )(
2

xf
k

 and )(
2

xS
k

 correspond to range C13:G13. 

These moments are stored in two-dimensional array mm. Later this array is used 

(by means of one-dimensional array m2) in the func subroutine for the spline 

interpolation (operator 1). 

Further, coordinates x(1) and x(2) of initial approximation 0x  of the x  

minimum point are specified as follows: 

 the minimum of range C3:G13 (Fig. 6.31) is found: min = 1.026724 

(cell F10); 

 the point, where function F equals min, is taken as the initial approxima-

tion: x(1) = 3.4, x(2) = 0.6. 
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In last turn, two-dimensional array ss of initial steps is specified and the 

search for the minimum point is performed by the Powell method. The following 

data are put into the Excel worksheet: 

 initial array x into cells B14:D14 (Fig. 6.32); 

 final array x and the final values of nt and nf into cells B15:F15. 
 

 
 

Fig. 6.32. The code execution results 
 

Let us use the following notations: 
1

 and 
2

 are the current values of vari-

ables x(1) and x(2), respectively. 

The value of objective function )(
2

,
10

F  is the result of the func 

subroutine execution. This value is calculated as follows: 

1) by means of the si subroutine (operator 1), grid function )(
1

xf  is  

determined according to the following formulas: 

)(
0,1

xf  = )(
20

S ,   )(
1,1

xf  = )(
21

S ,   . . . ,   )(
,1 k

xf  = )(
2k

S ; 

2) by means of the mos subroutine (operator 2), the moments of spline 

)(
1

xS , corresponding to )(
1

xf , are calculated; 

3) by means of the si subroutine (operator 3), the value of )(
1

S  is calcu-

lated, which is considered as the objective function’s value: 
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x(0) = 
0

 = )(
2

,
1

F = )(
1

S . 

According to Fig. 6.32, the found minimum point of the ),(
21

xxF  function, 

given by table Listing 6.12, has coordinates 
1

x  = 3.111 and 
2

x  = 0.525, and the 

minimum value of ),(
21

xxF  is equal to ),(
21

xxF  = 0.905. 

We advise the reader to develop a noniterative method and corresponding 

program for minimizing a positive tabular function of two variables (similar to 

the method and program of Section 4.6). Listing 6.12 must be used for testing the 

program. 

Besides splines )(
20

xS , )(
21

xS , . . . , )(
2

xS
k

 considered above, cubic 

splines )(
1

0 xS , )(
1

1 xS , . . . , )(
1

xS r  must be used. The last set of splines is 

defined by grid functions ),()(
0,211

0 xxFxf , ),()(
1,211

1 xxFxf , . . . , 

),()(
,211 r

r xxFxf : 

 )(
1

0 xf  and )(
1

0 xS  correspond to range C3:C13 in Fig. 6.31; 

 )(
1

1 xf  and )(
1

1 xS  correspond to range D3:D13; 

 )(
1

xf r  and )(
1

xS r  correspond to range G3:G13. 

In the next two chapters, we will minimize a function whose values are calcu-

lated implicitly, more precisely, by solving the initial value problems for the sys-

tem of differential equations. 
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6.10. Solving the nonlinear differential  

equation by the shooting method 

 

 

 

 
Minimization of an implicit function may be required to solve the following 

boundary value problem on segment ],[ ba : 

dx

du
uxF

dx

ud
,,

2

2

,                                     (6.27) 

Aau )( ,                                               (6.28) 

Bbu )( ,                                               (6.29) 

where A and B are given parameters, F is a nonlinear function of variables x, y 

and z. 

Problem (6.27) — (6.29) was solved by the quasilinearization method in Sec-

tion 3.12. Below, this problem will be solved by the shooting method. 

We introduce unknown function 

dx

du
xv )( . 

 

This expression can be written in the following equation form: 

),,( vuxE
dx

du
,                                          (6.30) 

 

where E is a function of simple form: vE . 

Equation (6.27) becomes 

),,( vuxF
dx

dv
.                                          (6.31) 

 

In Section 5.2, the method for solving the system of equations (6.30) and 

(6.31) was developed for initial conditions (6.28) and 

Qav )( .                                               (6.32) 

According to the shooting method, problem (6.27) — (6.29) can be solved by 

the repeated solution of system (6.30), (6.31) with initial conditions (6.28) and 

(6.32) for different values of Q until satisfaction of condition (6.29) at point b. 

Let us consider the shooting model, which is a good illustration of the shoot-

ing method (this explains the method name). 
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If we neglect the air resistance, then Newton’s second law gives the projectile 

trajectory, )(xu , described by equation (6.27), where 

22 /)1( VQgF . 

In this expression: 

 )(a
dx

du
Q  is the slope of the gun barrel located at point ),( Aa  with 

coordinates x = a and u = A; 

 V is the projectile velocity at the moment of leaving the barrel; 

 g is the free fall acceleration. 

Let us assume that the target is at point ),( Bb  with coordinates x = b and  

u = B. Solving the system of equations (6.30) and (6.31) with initial conditions 

(6.28) and (6.32) at various values of Q, we simulate the shooting when varying 

the slope of the gun barrel (Fig. 6.33). 
 

 
 

Fig. 6.33. Graphic image of the )(xu  solution of system (6.30), (6.31)  

with initial conditions (6.28) and (6.32) at two values of Q 
 

To obtain slope Q , at which the projectile hits the target at point (b, B), we 

have to solve algebraic equation 

BbQu ),( ,                                            (6.33) 

where ),( xQu  is the result of solving the system of differential equations (6.30) 

and (6.31) with initial conditions (6.28) and (6.32) at given Q. 
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The above algebraic equation can be solved by the bisection, secant or 

Steffensen method (Sections 4.5 and 5.5). We will solve it by minimizing the 

following function: 

2]),([)( BbQuQG .                                    (6.34) 
 

The method for solving algebraic equation (6.33) by minimizing function 

(6.34) is based on the following obvious assertion: the problem of solving the 

system of nonlinear algebraic equations (5.17) is equivalent to the problem of 

finding point x , at which non-negative function 

22

22

2

11
])([...])([])([)(

nn
fffF xxxx          (6.35) 

is equal to 0. Here, )...,,,(
21 n

xxxx  is a point of the n-dimensional space,  

n ≥ 1. 

Minimizing the )...,,,(
21 n

xxxF  function, defined by (6.35), is a popular 

method for solving the system of nonlinear algebraic equations (5.17). 
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6.11. Modeling of the hammer motion  

in the piano mechanism 

 

 

 

 
As an example of using the shooting method, we will solve the following task 

of modeling of the hammer motion in the piano mechanism when rupture of the 

spring occurs: 

 in addition to the initial time moment, a = 0, of rupture of the spring,  

another moment, b = 20 ms, is given; 

 we know that the hammer’s displacement forward is equal to A
3
 = 7 mm 

and B
3
 = 15 mm at moments a and b, respectively; 

 we have to determine values A
4
 and B

4
 of the hammer velocity at these 

moments. 

For solving this task, we use the simplified mathematical model of the piano 

mechanism: the elastic constant of the spring, k, equals zero in model (5.27) — 

(5.30). In this case, the hammer’s displacement is described by equation 

dt

du
uE

dt

ud
3

34
2

3

2

, ,                                    (6.36) 

where 

3

2

3

3

34
,

qup

dt

du
q

dt

du
uE . 

Second-order nonlinear differential equation (6.36) is considered on time 

segment 0 ≤ t ≤ b. We have to solve this equation with boundary conditions 

33
)0( Au ,                                              (6.37) 

33
)( Bbu .                                              (6.38) 

As in Section 5.6, let us introduce the hammer velocity, dtduu /
34

. We 

obtain the following system of first-order differential equations: 

)(
43

3 uE
dt

du
,                                           (6.39) 
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),(
434

4 uuE
dt

du
,                                       (6.40) 

where 

43
uE , 

3

2

4

4 qup

qu
E . 

According to the shooting method, boundary value problem (6.36) — (6.38) 

can be solved by the repeated solution of the system of differential equations 

(6.39) and (6.40) with initial conditions (6.37) and 

44
)0( Au .                                             (6.41) 

For obtaining desired value 
4

A  of the hammer velocity at the initial time 

moment, we have to minimize the following function similar to (6.34): 

2

3434
]),([)( BbAuAG ,                                 (6.42) 

where function ),(
43

tAu  is the result of solving the system of equations (6.39) 

and (6.40) with initial conditions (6.37) and (6.41) at given 
4

A . 

Function (6.42) will be minimized by the mini subroutine. We could use the 

minim subroutine because mini and minim work equally in the case of a one-

variable function (n = 1). 

In the source data table given below, values l, τ, p, q and ζ have the same 

sense as in table Listing 5.3 (p. 376). 
 

Listing 6.14 
 

l 20 

tau 1.00E-03 

A4 0 

p 0.406 

q 18.3 

zeta 1.00E-09 

A3 0.007 

B3 0.015 

 

The sense of the remaining values in table Listing 6.14 is as follows: 

 
4

A  is the initial approximation of the minimum point of function (6.42) 

in units of m / s; 
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3

A  is the given value of )0(
3

u  in meters; 

 
3

B  is the given value of )(
3

bu  in meters, lb . 

The code for solving the problem of minimizing function (6.42) has the fol-

lowing form: 
 

Listing 6.15 
 

Dim x(0 To 1) As Double      'array for minimization 

Dim nf As Long               'counter of calls of func 

Dim nt As Long               'counter of calls of test 

Dim l As Integer, tau As Double 

Dim A4 As Double 

Dim p As Double, q As Double 

Dim zeta As Double 

Dim A3 As Double, B3 As Double 

Dim tau2 As Double 

Dim uu() As Double 

Dim jj() As Integer 

 

Sub main() 

    Dim ss(1 To 1, 1 To 1) As Double 

    Dim i As Integer 

    Dim sb As String, se As String 

    l = Selection.Cells(1, 2) 

    tau = Selection.Cells(2, 2) 

    A4 = Selection.Cells(3, 2) 

    p = Selection.Cells(4, 2) 

    q = Selection.Cells(5, 2) 

    zeta = Selection.Cells(6, 2) 

    A3 = Selection.Cells(7, 2) 

    B3 = Selection.Cells(8, 2) 

    tau2 = tau / 2 

    ReDim uu(1 To 4, 0 To l) 

    ReDim jj(0 To l) 

    x(1) = A4             'initial approximation of A4 

    ss(1, 1) = 1E-6       'initial step along A4 axis 

    nf = 0: nt = 0 

    Call func(1, x)    'it must be before minimization 

    Call mini(1, x, ss, 1E-12, 1E-12) 

    MsgBox "A4 = " & CStr(Round(x(1), 3)) & " m/s" 

    MsgBox "B4 = " & CStr(Round(uu(4, l), 3)) & " m/s" 

    Selection.Cells(9, 1) = "t" 
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    Selection.Cells(9, 2) = "u3" 

    Selection.Cells(9, 3) = "u4" 

    Selection.Cells(9, 4) = "j max" 

    For i = 0 To l           'movement along time axis 

        Selection.Cells(10 + i, 1) = i * tau 

        Selection.Cells(10 + i, 2) = uu(3, i) 

        Selection.Cells(10 + i, 3) = uu(4, i) 

        Selection.Cells(10 + i, 4) = jj(i) 

12:     Selection.Cells(10 + i, 4). _ 

        HorizontalAlignment = xlCenter      'alignment 

    Next i 

    sb = Selection.Cells(10, 1).Address 

    se = Selection.Cells(10 + l, 2).Address 

13: Call graph(sb, se, "t, s", "u3, m") 

End Sub 

 

Sub e_functions(ByRef x() As Double, _ 

    ByRef e() As Double) 

    e(3) = x(4) 

    e(4) = q * x(4) ^ 2 / (p - q * x(3)) 

End Sub 

 

Sub fx_jacobian(ByRef x() As Double, _ 

    ByRef fx() As Double) 

    Dim m3 As Double 

    fx(3, 3) = 1: fx(3, 4) = -tau2 

    m3 = p - q * x(3) 

    fx(4, 3) = -tau2 * (q * x(4) / m3) ^ 2 

    fx(4, 4) = 1 - tau * q * x(4) / m3 

End Sub 

 

Sub func(ByVal n, ByRef x() As Double) 

    Dim m As Integer 

    Dim i As Integer, j As Integer 

    Dim u(3 To 4) As Double 

    Dim xx(3 To 4) As Double 

    Dim z(3 To 4) As Double 

    Dim e(3 To 4) As Double 

    Dim a(3 To 4, 3 To 4) As Double 

    Dim b(3 To 4) As Double 

    Dim alpha(3 To 4) As Double 

    Dim max As Double 
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    nf = nf + 1 

1:  u(3) = A3: u(4) = x(1)              'values at t=0 

    For m = 3 To 4 

        uu(m, 0) = u(m) 

    Next m 

    jj(0) = 0 

    For i = 1 To l           'movement along time axis 

2:      Call e_functions(u, e) 

        For m = 3 To 4 

3:          alpha(m) = u(m) + tau2 * e(m) 

4:          xx(m) = u(m) + tau * e(m) 

        Next m 

        For j = 1 To 1000           'Newton iterations 

5:          Call fx_jacobian(xx, a) 

6:          Call e_functions(xx, e) 

            For m = 3 To 4 

7:              b(m) = alpha(m) - _ 

                (xx(m) - tau2 * e(m)) 

            Next m 

8:          Call gauss(2, a, b, z, 2, 2) 

            For m = 3 To 4 

9:              xx(m) = xx(m) + z(m) 

            Next m 

            max = 0 

            For m = 3 To 4 

                If Abs(z(m)) > max Then _ 

                max = Abs(z(m)) 

            Next m 

10:         If max < zeta Then Exit For 

        Next j 

        For m = 3 To 4 

11:         u(m) = xx(m) 

            uu(m, i) = u(m) 

        Next m 

        jj(i) = j 

    Next i 

14: x(0) = (u(3) - B3) ^ 2 

End Sub 

 

Function test(ByVal n, ByRef x() As Double, _ 

    ByRef z() As Double, ByVal rho, Optional alpha) _ 

    As Boolean 
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    nt = nt + 1 

    If Abs(z(0) - x(0)) < n * rho * z(0) Then 

        test = False 

    Else 

        test = True 

    End If 

    If Not IsMissing(alpha) Then 

        If x(0) < alpha Then test = False 

    End If 

    If n = 1 Or nt = 1048576 Then test = False 

End Function 

 

This code for minimizing function (6.42), actually, is a combination of two 

codes — for optimizing a tin can (Section 6.4) and for simulation of the piano 

mechanism (Section 5.6). Operator 14 defines the objective function’s form. 

The source data for the code are specified in table Listing 6.14 (Fig. 6.34). 

We must select this table before the code execution. 

 

 
 

Fig. 6.34. The Excel table with the source data 

 

During the execution: 

1) the window with calculated velocity 
4

A  = 
4

A = 0.294 m / s appears 

(Fig. 6.35); 

2) after clicking on the OK button, the window with calculated velocity 

4
B  = 

4
B  = 0.623 m / s appears (Fig. 6.36); 
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3) after clicking on button OK, the following results, depicted in Fig. 6.37, 

appear: 

 the values of t, 
3

u  and 
4

u ; 

 the numbers of the Newton iterations, 
max

j ; 

 the graph of dependence )(
3

tu . 

The last graph is the result of the graph subroutine execution (operator 13). 

On p. 328, we used Fig. 6.37 to demonstrate the features of this subroutine  

intended for automatic creation of graphs. 

In section “Instead of Conclusions”, we will need the dependences of the cal-

culated values of 
4

A  and 
4

B  versus the number of steps on segment 0 ≤ t ≤ b. 

These dependences, depicted in Fig. 6.38, were obtained by executing code  

Listing 6.15 for l = 2, 3, 5, 10, 20, 30. The time step is equal to lb / , where 

b = 0.02. 

 

 
 

Fig. 6.35. Window with the calculated value  

of the hammer velocity at moment a = 0 

 

 
 

Fig. 6.36. Window with the calculated value  

of the hammer velocity at moment b = 20 ms 
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Fig. 6.37. The code execution results, which include the )(
3

tu  graph 

 

 

Fig. 6.38. Velocities 
4

A  (dashed curve) and 
4

B  (continuous curve)  

versus the number of time steps, i.e., dependences )(
4

lA  and )(
4

lB  
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6.12. Nonlinear programming  

and the least-squares method 

 

 

 

 
In Section 5.8, we considered the least-squares method to solve the task of 

determining the production function, more precisely, the functional dependence 

of the wheat productivity on the land quality. Let us return to this question. 

According to the least-squares method, to get required values 
1

L , ..., L , ..., 

n
L  of the linear spline at the grid nodes, 

1
z  < ... < z  < ... < 

n
z , we have to 

find the minimum point of non-negative function (5.43) of form 

1

2

1
])([)...,,...,,(

j
jjn

uxLLLLG . 

In Section 5.9, we minimized this function by solving the system of linear alge-

braic equations (5.48). In this section, we will use the Powell method for the 

minimization. 

Below is a code for finding required values 
1

L , ..., L , ..., 
n

L . 
 

Listing 6.16 
 

Dim nf As Long              'counter of calls of func 

Dim nt As Long              'counter of calls of test 

Dim m As Integer 

Dim XX() As Double 

Dim UU() As Double 

Dim ZZ() As Double 

 

Sub main() 

    Dim x() As Double 

    Dim ss() As Double 

    Dim n As Integer 

    Dim i As Integer 

    Dim j As Integer 

    Dim d As Double 

    m = Selection.Rows.Count         'quantity of rows 

    n = Selection.Cells(1, 2)        'number of nodes 
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    ReDim XX(3 To m) 

    ReDim UU(3 To m) 

    ReDim ZZ(1 To n) 

    ReDim x(n) 

    ReDim ss(1 To n, 1 To n) 

    For j = 3 To m 

        XX(j) = Selection.Cells(j, 1) 

        UU(j) = Selection.Cells(j, 2) 

    Next j 

    For i = 1 To n 

        ZZ(i) = Selection.Cells(2 + i, 3) 

    Next i 

    For j = 1 To n 

        x(j) = Cells(1, 6 + j) 

        For i = 1 To n 

            ss(i, j) = Cells(1 + i, 6 + j) 

        Next i 

    Next j 

    For j = 1 To n 

        d = 0 

        For i = 1 To n 

            d = ss(i, j) ^ 2 + d 

        Next i 

        If d = 0 Then 

            Cells(1, 1).Value = _ 

                "You must increase" & Str(j) & _ 

                "-th initial step" 

            End 

        End If 

    Next j 

    nf = 0 

    nt = 0 

    Call func(n, x)    'it must be before minimization 

0:  Call minim(n, x, ss, 1E-6)          'Powell method 

'Output of results: 

    For j = 0 To n 

        Selection.Cells(m + 2, j + 1) = x(j) 

    Next j 

    Selection.Cells(m + 2, n + 2) = nt 

    Selection.Cells(m + 2, n + 3) = nf 

    Selection.Cells(2, 4) = "L" 

    For i = 1 To n 
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        Selection.Cells(2 + i, 4) = x(i) 

    Next i 

End Sub 

 

Sub func(ByVal n, ByRef x() As Double) 

    Dim j As Integer, L As Double 

    nf = nf + 1 

    x(0) = 0 

    For j = 3 To m 

        If XX(j) <= ZZ(2) Then 

            L = ((ZZ(2) - XX(j)) * x(1) + _ 

            (XX(j) - ZZ(1)) * x(2)) / (ZZ(2) - ZZ(1)) 

        Else 

            L = ((ZZ(3) - XX(j)) * x(2) + _ 

            (XX(j) - ZZ(2)) * x(3)) / (ZZ(3) - ZZ(2)) 

        End If 

        x(0) = x(0) + (L – UU(j)) ^ 2 

    Next j 

End Sub 

 

Function test(ByVal n, ByRef x() As Double, _ 

    ByRef z() As Double, ByVal rho, Optional alpha) _ 

    As Boolean 

    Dim j As Byte 

    nt = nt + 1 

    If Abs(z(0) - x(0)) < n * rho * z(0) Then 

        test = False 

    Else 

        test = True 

    End If 

    If Not IsMissing(alpha) Then 

        If x(0) < alpha Then test = False 

    End If 

End Function 

 

This code has features of program Listing 5.6. 

In addition to table Listing 5.5 (with the source data for program Listing 5.6), 

the G1:I4 range contains the source data for code Listing 6.16 (Fig. 6.39): 

 range G1:I1 contains zero initial approximations of required coordinates 

x(1) = 
1

L , x(2) = 
2

L , x(3) = 
3

L  of the minimum point; 
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 range G2:I4 contains the S matrix of initial steps. 

Arrays XX, UU, ZZ are used in Listing 6.16 instead of arrays X, U, Z in  

Listing 5.6. Before the code execution, we must select the B2:D15 range. 

 

 
 

Fig. 6.39. The source data 

 

According to Fig. 6.40, four iterations were performed and 104 values of 

objective function (5.43) were calculated during the minimization by the Powell 

method (by means of the minim subroutine, see operator 0). The calculated 

values 
1

L , 
2

L , 
3

L  of the linear spline at grid nodes 
1

z  < 
2

z  < 
3

z  are respec-

tively placed in cells E4, E5 and E6 (and also in cells C17, D17 and E17). Natu-

rally, these values are the same as when using program Listing 5.6. 

When using the minim subroutine in the least-squares method, we can easily 

switch to another form of the required functional dependence, for example, to 

quadratic form 

2

321321
),,,( xCxCCxCCCF .                       (6.43) 

The values of constants 
1

C , 
2

C  and 
3

C  must be determined by minimizing the 

following non-negative function similar to (5.42): 

1

2

321321
]),,,([),,(

j
jj

uxCCCFCCCG ,              (6.44) 



6.12. Nonlinear programming and the least-squares method 

505 

where 
j

x  and 
j

u  are the values given in columns Mark and Productivity of the 

source data table depicted in Fig. 6.39, 1 ≤ j ≤ ν (ν = 12 is the number of land 

plots). 

 

 
 

Fig. 6.40. The execution results 

 

The following code is intended for finding the values of constants 
1

C , 
2

C  

and 
3

C  by means of the Powell minimization method. 
 

Listing 6.17 
 

Dim nf As Long               'counter of calls of func 

Dim nt As Long               'counter of calls of test 

Dim m As Integer 

Dim XX() As Double 

Dim UU() As Double 

 

Sub main() 

    Dim x() As Double 

    Dim ss() As Double 

    Dim n As Integer 

    Dim i As Integer 

    Dim j As Integer 
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    Dim d As Double 

    m = Selection.Rows.Count         'quantity of rows 

    n = Selection.Cells(1, 2)        'number of nodes 

    ReDim XX(3 To m) 

    ReDim UU(3 To m) 

    ReDim x(n) 

    ReDim ss(1 To n, 1 To n) 

    For j = 3 To m 

        XX(j) = Selection.Cells(j, 1) 

        UU(j) = Selection.Cells(j, 2) 

    Next j 

    For j = 1 To n 

        x(j) = Cells(1, 6 + j) 

        For i = 1 To n 

            ss(i, j) = Cells(1 + i, 6 + j) 

        Next i 

    Next j 

    For j = 1 To n 

        d = 0 

        For i = 1 To n 

            d = ss(i, j) ^ 2 + d 

        Next i 

        If d = 0 Then 

            Cells(1, 1).Value = _ 

                "You must increase" & Str(j) & _ 

                "-th initial step" 

            End 

        End If 

    Next j 

    nf = 0 

    nt = 0 

    Call func(n, x)    'it must be before minimization 

0:  Call minim(n, x, ss, 1E-6)          'Powell method 

'Output of results: 

    For j = 0 To n 

        Selection.Cells(m + 2, j + 1) = x(j) 

    Next j 

    Selection.Cells(m + 2, n + 2) = nt 

    Selection.Cells(m + 2, n + 3) = nf 

    Selection.Cells(2, 4) = "C" 

    For i = 1 To n 

        Selection.Cells(2 + i, 4) = x(i) 
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    Next i 

End Sub 

 

Sub func(ByVal n, ByRef x() As Double) 

    Dim j As Integer 

    Dim F As Double 

    nf = nf + 1 

    x(0) = 0 

    For j = 3 To m 

        F = x(1) + x(2) * XX(j) + x(3) * XX(j) ^ 2 

        x(0) = x(0) + (F - UU(j)) ^ 2 

    Next j 

End Sub 

 

Function test(ByVal n, ByRef x() As Double, _ 

    ByRef z() As Double, ByVal rho, Optional alpha) _ 

    As Boolean 

    Dim j As Byte 

    nt = nt + 1 

    If Abs(z(0) - x(0)) < n * rho * z(0) Then 

        test = False 

    Else 

        test = True 

    End If 

    If Not IsMissing(alpha) Then 

        If x(0) < alpha Then test = False 

    End If 

End Function 

 

This code slightly differs from Listing 6.16. 

For code Listing 6.17, the source data are almost the same as for code  

Listing 6.16: 

 column Z may be absent (Fig. 6.41); 

 range G1:I1 contains zero initial approximations of required coordinates 

x(1) = 
1

C , x(2) = 
2

C , x(3) = 
3

C  of the minimum point; 

 range G2:I4 contains the S matrix of initial steps. 

Before the code execution, we must select the B2:C15 range. 

According to Fig. 6.42, four iterations were performed and 92 values of  

objective function (6.44) were calculated during the minimization by the Powell 

method. The calculated values, *
1

C , *
2

C  and *
3

C , are respectively placed in cells 
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E4, E5 and E6 (and also in cells C17, D17 and E17). Fig. 6.43 shows the graph 

of quadratic dependence (6.43) with the calculated constants: 

2

321321
),,,( xCxCCxCCCF , 

where *
1

C  = 10.2961, *
2

C  = 0.37988 and *
3

C  = 0.00158. 

 

 
 

Fig. 6.41. The source data 

 

 
 

Fig. 6.42. The execution results 
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Fig. 6.43. The experimental points and the quadratic line of the functional  

dependence of the wheat productivity on the land quality mark 
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Instead of Conclusions 

 

 

 

 

 
For solving mathematical and applied tasks, an alternative to the numerical 

method is the analytical method aimed at obtaining a solution in the formula 

form. It is interesting to compare these two methods. 

The obvious advantage of numerical methods over analytical ones is their 

generality. However, numerical methods have a disadvantage consisting in the 

approximate nature of the numerical solution of a task. Therefore, for improving 

the accuracy, we have to run the program (realizing the numerical method)  

several times while changing the values of the numerical method parameters. 

The program execution must be repeated until the execution results become  

independent of the parameter values. It is these results that are reliable. 

As an illustration, let us return to the task of modeling of the hammer motion 

in the piano mechanism when the spring is ruptured (Section 6.11). 

In this task: 

 the numerical method parameter is l — the number of steps on the time 

segment considered, 0 ≤ t ≤ b = 20 ms; 

 the results of solving the task are 
4

A  and 
4

B  — the hammer velocities at 

the initial time moment and in 20 ms, respectively. 

It is obvious that the accuracy of the numerical solution of the formulated 

task improves with increasing l. 

We solved the task for different values of l and depicted dependences )(
4

lA  

and )(
4

lB  in Fig. 6.38. According to these dependences, the values of 
4

A  and 

4
B  do not depend on l beyond 10. Therefore, the values obtained at l = 20 (

4
A  = 

0.294 m / s and 
4

B  = 0.623 m / s) are authentic within the limits of the used 

mathematical model of the hammer motion when the spring is ruptured. 

The question of losing the numerical solution accuracy was also considered 

at the end of Section 3.7. 

Analytical and numerical methods are used successively for solving many 

problems. For example, the integral of a complex function may be a result of the 

analytical solution, and the numerical integration is required for obtaining the 

values of this integral: according to formula (5.41) on p. 385, the numerical inte-
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gration of function )(xf  must be done to complete the analytical solution of the 

initial value problem for the Bernoulli differential equation. 

One more example of successive usage of analytical and numerical methods 

is in Section 4.12, where: 

1) the first derivative was excluded from differential equation (4.60) by sub-

stitution (4.62); 

2) the resulting problem was solved numerically by the cubic spline method; 

3) the original problem for differential equation (4.60) was solved by using 

formula (4.62). 

Guided by the material of Section 2.14, we can create Personal Macro Work-

book with our program modules. However, we can go even further, namely, can 

modify our program modules for using them as the Excel add-ins. For this pur-

pose, package Microsoft Visual Studio can be used. Let us consider how to tune 

Microsoft Visual Studio 2010 for this. 

According to Section 1.24, the Start Page window opens when starting  

Microsoft Visual Studio 2010. Further, we must: 

1) click on the New Project hyperlink; 

2) in the left area of the New Project window opened, click on the plus sign 

against Other Languages; 

3) in the open list, click on the plus sign against Visual Basic; 

4) in the open list, click on the plus sign against Office, and further click on 

line 2010 (or 2007); 

5) in the list of the central area of the New Project window, click on line  

Excel 2010 Add-In. 

As a result, the necessary operation mode of Visual Studio is set. The follow-

ing information in the right area of the New Project window speaks about it:  

A project for creating a managed code add-in for Excel 2010. 

Further, we must specify the project name and the project folder location by 

using text boxes Name and Location. At clicking on the OK button, the window 

of Visual Basic Environment appears. This window includes the code window 

with automatically generated lines. 

Information on creating an add-in for Excel is available in the following  

internet resource: http://msdn.microsoft.com/en-us/library/. 

The idea of writing this book was spurred by book [17], the best seller of the 

end of the 1960s. The last book convinced the author that learning numerical 

methods is more effective if it follows learning programming and builds on the 

skills of programming. In this case, the learner has the possibility to grasp diffi-

cult material on numerical methods by developing the program modules that 

realize these methods. 

In conclusion, the author would like to share the experience of using Excel 

for solving scientific and engineering problems. 
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In Pulsar R&D Manufacturing Company, Moscow, tabular processor Excel, 

equipped with macros, is used as a preprocessor and postprocessor for compli-

cated programs written earlier in the Visual C++ programming language (a part 

of Microsoft Visual Studio) for mathematical modeling of microwave transistors 

[18]. In other words, the source data for the modeling are prepared in Excel and 

the results are processed in Excel, in particular, graphs are constructed. 

As we know, the Visual Basic programming language includes the Shell 

function (p. 106), which allows running, from Excel, the executable file of an 

arbitrary program, in particular, of a program written in Visual C++. By using 

the Shell function, the author created the system of mathematical modeling 

based on Excel. In this system, programs (written in Visual C++) and Excel  

exchange data by means of text files. 

When developing a program in Visual C++ (or in any other programming 

language), we should pay attention to the following: the text file with the tabula-

tion character, as the substring connector (p. 95), is not only the text file, but also 

the Excel workbook containing one worksheet. When we open such file with 

Excel, substrings appear in separate cells, and Excel interprets a substring, which 

contains digits and other features of a number, as the corresponding number. 

The author hopes that he has managed to achieve the goals formulated at  

the beginning of the book. It remains to wish the reader successful solution of 

interesting problems. 

 



 

513 

Appendix 1. 

Data Types of Visual Basic and VBA 

 

 

 

 

Data type Memory cell size 
Values of variable / constant  

or comment 

Boolean  

(logical) 

2 B 

 

True (logical unit),  

False (logical zero) 
 

Byte  

(short integer  

unsigned) 
 

1 B Integers from 0 to 255 

Integer  

(integer) 
 

2 B Integers from -32768 to 32767 

Long  

(long integer)  

4 B 

 

Integers from -2147483648  

to 2147483647 
 

Currency  

(scaled integer) 
8 B 

 

Numbers with four decimal places  

from -922337203685477.5808  

to 922337203685477.5807 
 

Single  

(single-precision) 
4 B 

 

Numbers with a fractional part  

from -3.402823·10
38

  

to -1.401298·10
-45

  

for negative values  

and from 1.401298·10
-45

  

to 3.402823·10
38

  

for positive values 
 

Double  

(double-precision) 
8 B 

 

Numbers with a fractional part  

from -1.79769313486231·10
308

  

to -4.94065645841247·10
-324 

  

for negative values  

and from 4.94065645841247·10
-324

  

to 1.79769313486232·10
308

  

for positive values 
 

Date  

(date-time) 
8 B 

 

Date from 1 January 100  

to 31 December 9999  

and time from 0:00:00 to 23:59:59 
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Data type Memory cell size 
Values of variable / constant  

or comment 

String 

 

10 B +  

1 B per character 

for string of  

variable length 
 

String length from 0 to 2
31

 characters 

 

1 B per character 

for string of  

fixed length 
 

String length from 1 to 2
16

 characters 

Variant 

 

16 B  

if the choice by 

context gives  

data type  

Boolean, Byte,  

Integer, Long,  

Currency,  

Single, Double  

or Date 
 

Values correspond to the Boolean, 

Byte, Integer, Long,  

Currency, Single, Double or 

Date data type 

 

22 B +  

1 B per character  

if the choice  

is not made 
 

Values correspond to String of 

variable length 

Object 4 B 
The memory cell stores the object  

reference 
 

User-defined 

 

Depends  

on the quantity  

of fields and  

their data types 
 

Created by the Type operator 
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Appendix 2. 

Greek and Russian Alphabets  

Denoted by Latin Letters 

 

 

 
The Greek alphabet with English names of the letters 

 

Lowercase  

(small) letter 

Uppercase  

(capital) letter 

English  

name 

α Α Alpha 

β Β Beta 

γ Γ Gamma 

δ Δ Delta 

ε Ε Epsilon 

ζ Ζ Zeta 

η Η Eta 

θ Θ Theta 

ι Ι Iota 

κ Κ Kappa 

λ Λ Lambda 

μ Μ Mu 

ν Ν Nu 

ξ Ξ Xi 

ο Ο Omicron 

π Π Pi 

ρ Ρ Rho 

σ Σ Sigma 

τ Τ Tau 

υ Υ Upsilon 

φ Φ Phi 

χ Χ Chi 

ψ Ψ Psi 

ω Ω Omega 
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The Russian alphabet denoted by Latin letters 
 

Russian Latin  Russian Latin 
а; А a; A  п p 

б; Б b; B  р r 

в v  с s 

г g  т t 

д d  у u 

е; Е ye, e; Ye, E  ф f 

ё; Ё yo; Yo  х kh, h 

ж zh  ц ts 

з z  ч tch, ch 

и i  ш sh 

й y  щ sch 

к k  ы y 

л l  э e 

м m  ю yu 

н n  я ya 

о o  ъ, ь apostrophe 
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Appendix 3. 

The Main Mathematical Functions 

 

 

 

 
The main mathematical functions of Visual Basic 

 

Call of  

the function 

Return value, mathematical designation  

and domain of the function 

Abs(x) Absolute value of x, || x  

Atn(x) Arctangent of x, xarctan  

Cos(x) Cosine of x, xcos  

Exp(x) Exponential function, xex exp  (Fig. 3.6) 

Fix(x) The result of truncating the fractional part of x 

Int(x) The greatest integer not exceeding x 

Log(x) Natural logarithm of x, xln , at x > 0 

Sgn(x) Sign function: -1, 0 or 1, depending on the sign of x 

Sin(x) Sine of x, xsin  

Sqr(x) Square root of x, x , at x ≥ 0 
 

Tan(x) Tangent of x, xtan , at )5.0( kx , k is an integer 

 

Examples of using the above functions 
 

The Visual Basic operators for calculating the values of trigonometric func-

tion xcot , of inverse trigonometric functions xarcsin , xarccos  and xarccot  

and of decimal logarithm xlg  are given below. 

 

cot_x = Cos(x) / Sin(x)                'if Sin(x) <> 0 
 

arcsin_x = Atn(x / Sqr(1 - x ^ 2))     'if Abs(x) < 1 

arccos_x = Atn(Sqr(1 - x ^ 2) / x) 

                                  'if x > 0 And x <= 1 

arccot_x = Atn(1 / x)                  'if x > 0 
 

lg_x = Log(x) / 2.302585093            'if x > 0 
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Appendix 4. 

Material for Tasks 

 

 

 

 
The table below, taken from [19], contains 31 functions )(xf  and their  

domains ],[ ba  with the following properties: 

 function )(xf  is continuous and monotonous on segment ],[ ba ; 

 the signs of )(xf  on the left and right boundaries of ],[ ba  are different. 

This table is used in tasks for the reader (the tasks begin with words “we  

advise the reader”). The )(af  values, given in the table, are intended to help the 

reader debug his programs. 

By using this table, a teacher can create 31 variants of tasks for exams. The 

variant number may be a student’s birthday. 

 

No. of 

variant 
Function f(x) a b f(a) 

1 xx 35.0/)sin38.3(  2 3 0.3905776 

2 xx 1)]6.3sin(3[  
 

0 0.85 0.3333333 

3 xx33.01cos  0 1 0.5403023 

4 xx24.01sin  0 1 0.841471 

5 2502.125.0 3 xx  2 3 -1.2502 

6 xxx ln1.0 2  1 2 0.1 

7 5ln43 xx  2 4 -1.772589 

8 2xx ee  0 1 -2 

9 5.23 xxx  0.4 1 -0.7307382 

10 3/15/)(tan3/)(tantan 53 xxx  0 0.8 -0.3333333 

11 xxx /1)/1sin(2)/2cos(  1 2 -1.099089 

12 xxx ln2)cos(ln)sin(ln  1 3 -1 

13 8.1ln xx  2 3 0.4931472 
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No. of 

variant 
Function f(x) a b f(a) 

14 xxarctan4.0  1 2 0.1853982 

15 3/1tanxx  0.2 1 -0.2927913 

16 2)1.055.0tan( xx  0.4 1 0.171389 

17 xx)/1sin(2  1.2 2 0.0598231 

18 xxx )1ln(sin1  0 1.5 1 

19 xx )2cos( 52.0  0.5 1 0.4029458 

20 xx 3)1ln(  2 3 0.024503 

21 xxex 10ln  3 4 -8.815851 

22 xx eex 143  1 3 -8.649598 

23 5ln6ln2 2 xx  1 3 -5 

24 xxx cossin2  0.4 1 -0.6095263 

25 1)2/exp(cos 2 xxx  1 2 -0.0662284 

26 xx tan1  0 0.9 1 

27 xxx 10)cos()sin( 22  0 1 1 

28 21 2xx ee  -1 0 -0.5665994 

29 xx 1cos1  0 0.9 0.4596977 

30 xxx )2/cot()2/tan(  1 2 -0.2841852 

31 xx cos  0.5 2.5 -0.3775826 
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Appendix 5. 

Analytical Method for Solving  

the Cubic Algebraic Equation 

 

 

 
Below, we will present Method 3 of handbook [3] for solving cubic equation 

0233 qzpz , where p and q are nonzero real numbers. 

Let us consider variable pr , the sign coinciding with the sign of q, 

i.e., 0/
3

rq . The auxiliary value, φ, and the roots, 
1

z , 
2

z  and 
3

z , are 

determined according to the following table. 
 

0p  

0p  032 pq  

or 10  

032 pq  

or 1  
 

21
arctan

arccos

 

 

1ln

Arcosh

2
 

 

1ln

Arsinh

2
 

3
cos2

1
rz  

3
ch2

1
rz  

3
sh2

1
rz  

3
cos2

2
rz  

3
sh3

3
ch

2
rirz  

3
ch3

3
sh

2
rirz  

3
cos2

3
rz  

3
sh3

3
ch

3
rirz  

3
ch3

3
sh

3
rirz  

 

As we see, the above formulas for calculating the roots depend on the signs 

of p and 32 pq  (i is the imaginary unit). The following mathematical functions 

are used: 

 ch, sh — the hyperbolic cosine and sine: 

2/(coshch )xx eexx ,   2/)(sinhsh xx eexx ; 

 Arcosh, Arsinh — the area-hyperbolic cosine and sine. 
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Appendix 6. 

Realization of the Tangent Method  

by Using the Excel Circular Reference 

 

 

 
To use the circular reference feature, let us tune Excel as follows: 

1) click on the File button; 

2) Options > Formulas; 

3) turn on option Automatic in area Calculation options of the Excel Options 

window; 

4) turn on option Enable iterative calculation; 

5) for example, set 100 for the limiting number of iterations in text box  

Maximum Iterations; 

6) for example, set 0.001 for the final relative error in text box Maximum 

Change; 

7) click on the OK button. 

If a formula, placed in an Excel cell, contains the reference to the same cell 

(maybe not directly but indirectly, through a series of other references), we say 

that the circular reference exists. The cyclic reference is used when we want to 

realize an iterative or recurrence process. 

Let us use the cyclic reference for solving nonlinear algebraic equation 

0)(xf , where 5.1cos)( xxxf , by the tangent method (Section 5.5). 

For that, we fulfill the following operations on an Excel worksheet. 

1. Into cell G2, intended for variable x, enter an initial approximation of the 

solution, for example 2. 

2. Into cell F2, enter formula 

 
=G2-COS(G2)-1.5 

 

corresponding to mathematical formula 5.1cos)( xxxf . When clicking 

on the tick button of the Excel formula bar, value 0.916147 appears in cell F2. 

3. Into cell E2, enter formula 

 
=1+SIN(G2) 

 

corresponding to mathematical formula xxf sin1)( . When clicking on the 

tick button, value 1.909297 appears in the E2 cell. 
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4. Into cell G2, intended for variable x, enter formula 

 
=G2-F2/E2 

 

corresponding to mathematical formula 

)(

)(1

j

j
jj

xf

xf
xx  

of the tangent method. When we click on the tick button, values 1.999373, 0 and 

1.535394 appear in cells E2, F2 and G2, respectively. 

The multiple circular reference to cell G2 gives the last three values. Thus, 

G2 contains the result of solving equation 05.1cos xx , which is equal to 

x  = 1.535394. 

In a similar way, the cyclic reference can be used for solving equation 

0)(xf  by other iterative methods of Sections 4.5 and 5.5. 
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