

G. Z. Garber

Foundations of Excel VBA Programming and Numerical Methods. —

Moscow: PRINTKOM, 2013. — 528 p.

ISBN 978-5-91146-894-1

© G. Z. Garber, 2013 ISBN 978-5-91146-894-1

Intended for university students studying computer science,

applied mathematics and information technology, as well as for post-

graduate students, scientific workers and other readers wishing to

refine their skill in solving problems by using tabular processor

Microsoft Office Excel 2007 – 2013.

Elements of an environment for developing programs (macros)

and base constructs of programming languages Visual Basic and VBA

are considered. Modern and classical numerical methods and their

program realization are also considered. As examples, Excel macros

are developed for solving mathematical, physical, engineering and

economic problems. A compact disk containing program modules and

other text information is enclosed. No preliminary programming expe-

rience is required for grasping the material.

This book is based on the author’s two previous books approved

by the Scientific and methodical council in computer science at the

Ministry of Education and Science of the Russian Federation as

a manual on discipline “Computer science” for university students.

About the author

Gennadiy Z. Garber graduated from the faculty of applied mathematics at the

Moscow Institute of Electronic Machinery in 1972. Professor in Computer

Science, Doctor of Science in Microelectronics, principal scientific worker of

Pulsar R&D Manufacturing Company, Moscow, participant of the International

Conference on “Computer as a Tool”, IEEE EUROCON 2005 and 2007.

Area of interests: mathematical modeling of semiconductor devices and inte-

grated circuits for radio-, micro- and nanoelectronics; development of teaching

techniques in applied mathematics and programming for Excel.

About the prototype books published in Russian

Sample programs and descriptions of their usage allow to learn programming

from scratch.

Using concrete examples with a minimum portion of theoretical introduction,

the author has managed to show the first (and, I must say, main) steps of the

object-oriented programming technology in VBA.

The author’s approach is very successful, in which a theoretical material on

each numerical method is accompanied by a description of the program realiza-

tion, by a scenario of the computing experiments for applied problems and by an

analysis of the calculation results.

The student can obtain not only mathematical knowledge from the manual,

but also acquire practical skills, which are very important in a training course on

numerical methods.

From the reviews of the expert of the Scientific and

methodical council in computer science at the

Ministry of Education and Science of the Russian

Federation on author’s books [1, 2]

Many things are incomprehensible to us

not because our comprehension is weak,

but because those things are not within

the frames of our comprehension.

Kozma Prutkov, 1854

4

Contents

Introduction . 8

Chapter 1. Programming in Visual Basic 12

 1.1. Elements of Visual Basic Environment. 13

 1.2. Main commands of the program debugger. 19

 1.3. Variables. Data types . 23

 1.4. Two main functions for conversion of data types 27

 1.5. Constants . 29

 1.6. Obtaining information . 32

 1.7. Assignment operator . 36

 1.8. Arithmetic expression. . 38

 1.9. Mathematical functions. Functions of date and time 45

 1.10. Logical expression . 48

 1.11. GoTo operator. . 52

 1.12. Decision-making constructs. . 53

 1.13. Cycles. . 58

 1.14. Manifestation of the error of real numbers’ computer representation 65

 1.15. Arrays. . 68

 1.16. User-defined procedures . 77

 1.17. Built-in procedures. Usage of standard windows. 85

 1.18. Records . 90

 1.19. Work with strings. . 94

 1.20. Work with text files. . 101

 1.21. Matrix terminology. Formulation of demonstration tasks 109

 1.22. Program for transposing a matrix relative to its auxiliary diagonal . 111

 1.23. User-defined forms . 116

1.24. Digression. Developing programs with the form in Microsoft

Visual Studio. 129

Chapter 2. Programming in VBA . 133

2.1. Loading the form from the Excel window. Running the program

executable file. . 134

Contents

5

 2.2. Layout of the control elements on the Excel worksheet 136

 2.3. User-defined functions of Excel 139

 2.4. Two methods for developing Excel macros 144

 2.5. Excel Macro Recorder . 145

 2.6. VBA code generated by Excel Macro Recorder and its editing . . . 148

 2.7. Objects and events . 151

 2.8. Object Application . 154

 2.9. Objects Workbook, Workbooks and ActiveWorkbook. 161

 2.10. Objects Worksheet, Worksheets and ActiveSheet 167

 2.11. Objects Range, Selection and ActiveCell. 171

 2.12. Study of objects. . 177

 2.13. Using the Excel table as the user interface of programs 180

 2.14. Two more Excel macros. Personal Macro Workbook 182

 2.15. One more user-defined function of Excel. 188

 2.16. Digression. Change of Excel options 193

Chapter 3. Finite Difference Method for Solving Differential Equations. . . 195

 3.1. Finite difference analogs of derivatives for a uniform grid. 196

3.2. Finite difference scheme for the linear differential equation.

The decomposition method . 199

 3.3. Sufficient stability conditions for the decomposition method 204

 3.4. Simplification of the second-order linear differential equation. . . . 208

 3.5. Program realization of the decomposition method 210

 3.6. Examples of using the decomposition method 212

 3.7. Examples of the computing error. Instability and loss of accuracy. . 217

3.8. Solving the system of linear algebraic equations by using Excel

functions 223

3.9. Solving the system of linear algebraic equations by the Gaussian

elimination method . 225

3.10. Two subroutines for solving the system of linear algebraic

equations . 228

 3.11. Reduction of the computing error. 235

3.12. Solving the nonlinear differential equation by the quasilinearization

method. . 238

 3.13. Solving the Shockley-Poisson equation. 241

 3.14. Finite difference analogs of derivatives for a nonuniform grid. . . . 249

 3.15. The decomposition method for a nonuniform grid 252

 3.16. Solving the Shockley-Poisson equation on a nonuniform grid. . . . 255

 3.17. Use of solution symmetry. . 261

Contents

6

 3.18. The cyclic decomposition method 267

 3.19. Program realization of the cyclic decomposition method 271

 3.20. Solving the oscillation equation. 273

Chapter 4. Cubic Spline . 281

 4.1. Definition of cubic spline. Spline moments 282

 4.2. Spline interpolation . 288

4.3. Use of cubic spline for processing transistor electrical

characteristics . 292

 4.4. Spline integration . 298

 4.5. Iterative methods for solving the nonlinear algebraic equation. . . . 303

 4.6. Noniterative method for solving the nonlinear algebraic equation. . 314

 4.7. Calculating the charge storage capacity 321

 4.8. Subroutine for automatic creation of graphs 327

4.9. Cubic spline usage for solving the second-order linear differential

equation . 329

4.10. Program realization of the cubic spline method for solving

the linear differential equation . 334

 4.11. Solving the linear differential equation by the cubic spline method . 337

4.12. Modeling of heating of a geophysical cable. Locally

one-dimensional scheme . 340

Chapter 5. Quadratic and Linear Splines 352

 5.1. Definition of quadratic spline. Spline slopes 353

5.2. Method for solving the initial value problem for the system

of differential equations. . 356

 5.3. Program for solving the initial value problem 359

5.4. Solving the system of nonlinear algebraic equations by the Newton

method. . 362

5.5. Newton and Newton-like methods for solving the single nonlinear

algebraic equation . 365

 5.6. Modeling of the piano mechanism linking a key with hammer. . . 372

 5.7. Definition of linear spline. . 383

 5.8. The least-squares method. . 386

5.9. Program to determine the dependence of the wheat productivity

on the land quality. . 390

5.10. The forward and backward Fourier transforms of a periodic

function . 395

5.11. Subroutines for the forward and backward discrete Fourier

transforms. . 400

Contents

7

 5.12. Solving the sound insulation problem 406

Chapter 6. Numerical Methods for Nonlinear Programming 415

6.1. Minimizing linear and nonlinear functions of several variables

by the Solver add-in. . 417

 6.2. Method for minimizing a nonlinear function of one variable. 428

 6.3. The coordinate-descent method. 432

 6.4. Examples of using the minimization methods 437

 6.5. The Powell minimization method. 446

 6.6. Determining the equilibrium state of a four-spring system. 456

 6.7. Minimization with nonlinear constraints 462

 6.8. Minimization of the multimodal function. 475

 6.9. Minimization of the tabular function 483

 6.10. Solving the nonlinear differential equation by the shooting method . 490

 6.11. Modeling of the hammer motion in the piano mechanism 493

 6.12. Nonlinear programming and the least-squares method. 501

Instead of Conclusions. . 510

Appendix 1. Data Types of Visual Basic and VBA 513

Appendix 2. Greek and Russian Alphabets Denoted by Latin Letters. . . . 515

Appendix 3. The Main Mathematical Functions 517

Appendix 4. Material for Tasks . 518

Appendix 5. Analytical Method for Solving the Cubic Algebraic Equation . 520

Appendix 6. Realization of the Tangent Method by Using the Excel

 Circular Reference. . 521

References List . 523

Subject Index . 525

8

Introduction

Because of many advantages (above all, availability), tabular processor

Excel, which is a part of Microsoft Office, is used in various areas of human

activity: in economics and finances, electrical engineering and electronics,

medicine, building construction, etc. This book is about Excel usage in applied

mathematics.

While writing this book, the author pursued the following goals:

 to teach the reader to program in the modern programming language,

Visual Basic (VB), and its extension, Visual Basic for Applications (VBA);

 on the basis of these programming languages, to give the reader full

enough representation about numerical methods aimed at obtaining a solution of

a task in the form of numbers (instead of formulas that are a result of using

analytical methods);

 to show that Excel with programs (macros), written by the reader in VBA,

is convenient for solving applied tasks by numerical methods.

The book is intended for the reader familiar with Excel, Windows Explorer,

Windows Clipboard and text editor Notepad for Windows. Besides, the reader

should be conversant with higher mathematics and general physics. No prelimi-

nary programming experience is necessary.

Learning this book is possible only by using a computer equipped with tabu-

lar processor Excel.

According to the author’s opinion, there is no difference between terms

“program” and “macro” when these terms concern the programming for Excel.

Therefore, words “program” and “macro” are synonyms in this book.

The book contains six chapters, six appendices, a list of references and a sub-

ject index.

In the first two chapters, we consider elements of Visual Basic Environment

and main facilities of programming languages VB and VBA. The standard win-

dow of operating system Windows, text file, user-defined form and Excel table

are considered as the program user interface — the facility of dialogue between

the user and program. We consider the creation of Excel user-defined functions.

Besides, we demonstrate how to work with the program debugger, reference

systems, Excel Macro Recorder and Personal Macro Workbook.

Introduction

9

In the third chapter, we consider the finite difference method for solving the

second-order linear differential equation with two kinds of conditions on the

solution, namely, the boundary and periodicity conditions. This is followed by

a review of two versions of the decomposition method for solving systems of

linear algebraic equations of special form called finite difference schemes. The

simplest scheme is also solved by the Gaussian elimination method. The ques-

tion of stability of the decomposition and Gaussian methods is investigated in

respect of not increasing the computing error during solving the scheme. Using

the Shockley-Poisson equation as an example, we consider the quasilinearization

method for solving the nonlinear differential equation with boundary conditions.

To demonstrate the possibilities of the finite difference method, we develop sub-

routines and programs for solving mathematical and applied problems. We use

the Excel scatter diagrams for visualization of calculation results.

Chapter 4 is devoted to the use of the third-degree (cubic) spline:

 for interpolation, differentiation and integration of tabular (grid) func-

tions;

 for solving the nonlinear algebraic and linear differential equations.

Besides, we consider:

 two classical methods for solving the nonlinear algebraic equations,

namely, the bisection and secant methods;

 the locally one-dimensional scheme for solving the heat equation with

two spatial coordinates.

We solve a series of applied problems to demonstrate the possibilities of the

cubic spline construction. In addition to the macros and user-defined procedures

(subroutines and function) realizing the numerical methods, a subroutine for

automatic creation of graphs is developed.

In Chapter 5, we review the use of the second-degree (quadratic) spline for

solving the initial value problem (of Cauchy) for the system of differential equa-

tions. The first-degree (linear) spline is used in the least-squares method intended

for determining parameters of a function. Besides, we review the following

methods:

 the Newton method for solving the system of nonlinear algebraic equa-

tions;

 the tangent, secant and Steffensen methods (called Newton-like methods)

for solving a single nonlinear algebraic equation;

 methods for the forward and backward discrete Fourier transforms of

a periodic function.

Based on this theoretical material, we develop procedures and programs for

solving applied problems.

Chapter 6 is mainly devoted to nonlinear programming, more precisely, to

the question of finding the minimum of a nonlinear function of one or several

Introduction

10

variables without calculating the function derivative or partial derivatives. This

chapter begins with the use of the Solver add-in for Excel to minimize concrete

linear and nonlinear functions of several variables. Further, we develop subrou-

tines for finding the local minimum of a nonlinear function of general form,

which are based on the coordinate-descent and Powell methods.

We review the following applications of the developed minimization subrou-

tines:

 for optimizing the dimensions of a one-liter tin can;

 for determining the equilibrium state of a four-spring mechanical system;

 for minimizing a nonlinear function with nonlinear constraints and a tabu-

lar function of two variables;

 for determining the local minima of a multimodal function of two varia-

bles (with several local minima);

 in the shooting method intended for solving the nonlinear differential

equation with boundary conditions;

 in the least-squares method.

Appendix 1 presents the data types of Visual Basic and VBA.

Appendix 2 contains the Greek alphabet with English names of the letters and

the Russian alphabet denoted by Latin letters. The inclusion of this appendix is

justified by the possible lack of Greek and Russian letters on the computer key-

board. English names of Greek letters are used in texts of program modules and

source data for programs. Russian letters in Latin are mainly used in the refer-

ences list.

Appendix 3 contains the main mathematical functions of Visual Basic. In ad-

dition, this appendix contains operators allowing the use of mathematical func-

tions not included in the programming language.

Appendix 4 contains data for tasks intended to consolidate the book material

and check up its understanding.

Appendix 5 presents an analytical method for solving the cubic algebraic

equation. We use this method in Chapter 4.

Appendix 6 demonstrates the use of circular reference in Excel for solving

the nonlinear algebraic equation by the tangent method.

The subject index contains the main terms and designations with numbers

of pages, on which their sense is uncovered. It will allow using the book as

a reference manual.

The present book is based on author’s books [1, 2] approved by the Scientific

and methodical council in computer science at the Ministry of Education and

Science of the Russian Federation as a manual on discipline “Computer science”

for university students.

In the book, we often speak about mathematical (computer, numerical)

modeling. The essence of mathematical modeling lies in the replacement of

Introduction

11

an object, in particular of a process, by an appropriate mathematical model and

in its further study by using a computer. Operation with the model, instead of the

object, allows to obtain operatively detailed information, showing internal con-

nections of the object and its qualitative and quantitative characteristics. The

mathematical modeling is so popular that, when speaking about it, adjective

“mathematical” may be omitted, as in this book.

In writing the book, we used a personal computer equipped with 32-bit

version of the Windows 7 operating system and Microsoft Office Professional

Plus 2013 Preview. For obtaining information, shown in Fig. 1.8, 2.23 and 3.6,

the reference system of Excel 2010 was used. The system disk name is C and the

computer user name is usr in the book.

We will need the Developer tab in Excel Ribbon (a part of the Excel win-

dow), among tabs Home, Insert, Page Layout, etc. If such a tab does not exist,

we fulfill the following:

1) click on the File button in the top left corner of the Excel window

(in Excel 2007, click on the Office button);

2) click on the Options button;

3) in the Excel Options window opened, click on button Customize Ribbon;

4) in area Customize the Ribbon:

 set Main Tabs by using the drop-down list;

 then turn on option Developer;

5) click on the OK button.

This operational sequence can be written as the following formula: File >

Options > Customize Ribbon > Main Tabs > turn on Developer > OK. We will

frequently use such formulas.

When opening an Excel workbook containing a macro, the Security Warning

panel can appear. To allow the macro to work, we must click on the Enable

Content button of this panel.

When executing a macro, cycling is possible. To interrupt it, we must press

the Esc key on the computer keyboard.

The enclosed compact disk (CD) contains text files with program modules

and with source data for programs. The texts on the CD correspond to the num-

bered listings in the book. A method of work with these files is described on

pp. 26 and 245.

The program texts on the CD may be used as templates when developing

programs for solving other tasks with the same mathematical formulation as the

tasks considered in the book.

For contact with the author, the following internet resources can be used:

gzgarber@gmail.com, http://gzgarber.narod.ru/.

12

Chapter 1.

Programming in Visual Basic

We review elements of Visual Basic Environment, a part of Microsoft Office,

and constructs of the Visual Basic programming language. The standard window

of operating system Windows, text file and form are used as the user interface

of programs.

In addition, we demonstrate how to work with the program debugger and

reference systems.

1.1. Elements of Visual Basic Environment

13

1.1. Elements of Visual Basic Environment

For writing and debugging programs, we will use Visual Basic Environment,

which is a part of Microsoft Office.

Program debugging involves detection and correction of errors that, as a rule,

are present in a program text just written.

To go to Visual Basic Environment, we must fulfill the following two opera-

tions:

1) in the Excel window (with the active workbook by name Book1), activate

the Developer tab by clicking on it;

2) click on the Visual Basic button in area Code.

As a result, the Visual Basic Environment window is displayed (Fig. 1.1).

In this window, we can perform various actions: entering and editing the pro-

gram text, as well as debugging and executing the program. Further, we will use

a shorter name for this window and call it “the VB window”.

The program is also called an application or project. It will be in the Excel

workbook (by name Book1).

Let us consider the elements of the VB window.

1. Menu bar. There are standard menus, like in many windows of the

operating system: File, Edit, View, Tools and Help. The Insert menu is used

for organizing a place for program storage (in the workbook). Menus Debug

and Run are respectively used for debugging and running the program.

2. Context menu. It serves for convenience of work in the area (of the VB

window), in which the mouse pointer is located.

For using the context menu:

1) place the mouse pointer in the necessary area of the screen and make the

right click;

2) click (by the left mouse button) on the required command of the displayed

menu.

3. Toolbars: Standard, Edit, Debug and others. Only the standard toolbar is

displayed by default. To add or remove any toolbar, we have to fulfill View >

Toolbars and to click on the required command of the displayed menu. The

check (tick) mark against the command testifies to the presence of the corre-

sponding toolbar on the display screen.

Chapter 1. Programming in Visual Basic

14

Fig. 1.1. The Visual Basic Environment window including the standard

toolbar, the project explorer window and the properties window

Let us consider the toolbars.

1. Toolbar Standard is displayed by default. It allows us to perform a wide

spectrum of actions.

This toolbar is usually located under the menu bar, however, we can move it

to other areas of the VB window by using the mouse.

2. Toolbar Edit is intended for work with the program text. It realizes possi-

bilities of an elementary text editor:

 copying and moving a text fragment to Windows Clipboard;

 inserting the text fragment from Windows Clipboard;

 search and replacement of words and phrases, etc.

3. Toolbar Debug is intended for debugging the program. Many provisions

are made for debugging:

 observation of the current values of the program variables;

 step-by-step program execution, in which one operator (statement, in-

struction) or its part is performed on each step, etc.

1.1. Elements of Visual Basic Environment

15

As a rule, we will review programs without a user-defined form as the

program user interface. Development of such program begins with inserting

a module into the active Excel workbook. For inserting a module, let us fulfill

the following sequence of operations.

1. In the Excel window, Developer > Visual Basic in area Code. As a result,

the VB window appears, including the project explorer window and the proper-

ties window (Fig. 1.1).

If the project explorer window is not displayed, we have to click on Project

Explorer in the View menu. We will need the properties window only in

Section 1.23.

2. Select line VBAProject (Book1) by clicking on it in the project explorer

window.

3. Insert > Module.

As a result, a line corresponding to the inserted module, Module1, appears in

the project explorer window. Besides, an empty window opens; it is the code

window corresponding to Module1 (Fig. 1.2). In this window, we will create the

program text by using the computer keyboard.

Fig. 1.2. The VB window, including the code window,

after inserting Module1 into the Excel workbook

Chapter 1. Programming in Visual Basic

16

For opening the code window corresponding to the module inserted earlier,

we have to click twice on the name of this module in the project explorer

window.

To delete a module:

1) make the right click on the module name (for example Module1) in the

project explorer window;

2) in the context menu opened, click on the Remove command;

3) click on the No button in the open window with a question about export-

ing the module before removing it.

Before the computer will execute a program, we (as the program developer)

must form its text in the code window. The first and last lines (operators) of the

program are standard:

Sub name()

End Sub

On p. 79, we will consider the origin of word Sub. Word name means the

program name appointed by us.

The name must satisfy the following conditions:

 the first character should be a letter;

 the name must include only letters, figures and the underscore character;

 the name must include less than 256 characters.

As we see, the name cannot include the space character. To use name

consisting of several words, we have:

 to begin each word with a capital (uppercase) letter;

 to use the underscore character instead of the space character.

Examples of the program name follow:

MyProgram13

my_program

MyProgram_13

Between the first and last lines of the program, we have to place other lines

(operators) of this program. For that, it is possible to use Windows Clipboard and

habitual commands of editing (as in Notepad). After typing a new line, we have

to press the Enter key on the keyboard.

Let us start with a simple program based on the Pythagoras theorem,

22 bac , (1.1)

for calculating length c of the hypotenuse of a right-angled triangle with legs

a = 3 and b = 4.

1.1. Elements of Visual Basic Environment

17

In the code window, we type the following program text (Fig. 1.3):

Sub Pythagoras()

 a = 3

 b = 4

 c = Sqr(a ^ 2 + b ^ 2)

End Sub

In this text, Pythagoras is the program name, a, b and c are names of varia-

bles, Sub is a keyword, End Sub is a keyword combination. The program and

variable names are appointed by us.

Fig. 1.3. The VB window with the Pythagoras program in the code window

In a programming language, words used only in the language constructs are

called keywords. We cannot use keywords as names of programs and variables

in programs. By default, Visual Basic Environment is tuned in such manner that

all keywords are highlighted in blue color (at formation of the program text in

the code window), comments are highlighted in green, syntactic errors — in red.

It is visible that the power operation (^) is written as in Excel, Sqr is the

square root function (in Excel, the square root function is SQRT).

Chapter 1. Programming in Visual Basic

18

For convenience, if we need to place an operator on several lines, for carry-

ing over, we have to type the space character with the subsequent underscore

character. At the finish of typing these characters, we have to press the Enter key

on the keyboard.

If we need to place several operators on one line, we have to type a colon

between these operators.

An apostrophe means that information following it (up to the line end) is

a comment, i.e., a character set, which does not influence the program execution.

Thus, our program can be written as follows:

Sub Pythagoras()

 a = 3: b = 4

 c = _

 Sqr(a ^ 2 + b ^ 2) 'according to Pythagoras

End Sub

If a comment occupies several lines, each line must be preceded by an apos-

trophe. For example, program

Sub Pythagoras()

 a = 3: b = 4

 c = Sqr(a ^ 2 + b ^ 2) 'according to Pythagoras:

 'pythagorean pants are

 'equal in all directions

End Sub

is equivalent to the previous program.

To save the program, we fulfill the following:

1) in the Excel window, File > Save As > Browse;

2) in the Save As window opened, choose a folder intended for saving the

Excel workbook, for example, My Documents;

3) by means of drop-down list Save as type, set the following file type: Excel

Macro-Enabled Workbook;

4) click on the Save button.

As a result, the Pythagoras program is saved as a part of the Excel work-

book by name Book1 with extension .xlsm.

For returning to the Pythagoras program:

1) open the Book1 workbook;

2) if the Security Warning panel appears, click on button Enable Content;

3) go to Visual Basic Environment;

4) click twice on Module1 in the project explorer window.

We will execute the Pythagoras program in the next section.

1.2. Main commands of the program debugger

19

1.2. Main commands of the program debugger

After typing the program text, the detection and correction of errors in the

program follows. At this stage, we can use the debugger.

Let us consider the main commands of the debugger; we can see them in the

Debug menu of the VB window.

1. Step Into — the execution of one program operator or its part. The click

on Step Into is equivalent to pressing the F8 key on the keyboard. This command

is used for the step-by-step program execution.

2. Run To Cursor — the execution of the program up to the blinking cursor.

The click on Run To Cursor is equivalent to pressing Ctrl + F8.

For setting the blinking cursor in the proper place of the program, we have to

click on this place.

If we speak about key presses, the plus sign means the synchronism of these

presses, i.e., “pressing Ctrl + F8” means “simultaneous pressing the Ctrl and F8

keys”.

3. Toggle Breakpoint — the installation or liquidation of the breakpoint at

the place, where the blinking cursor is located. The breakpoint marks the pro-

gram line, where the program execution stops. This command can also be per-

formed by pressing the F9 key.

For the installation or liquidation of the breakpoint, we can click on the left

border of the code window against the proper line.

4. Clear All Breakpoints — the liquidation of all breakpoints. This com-

mand can also be performed by pressing Ctrl + Shift + F9.

5. Add Watch — the current visualization of the value of a variable. We will

review the command usage in Section 1.15.

In addition to commands Step Into and Run To Cursor, two more commands

for the program execution, Step Over and Step Out, are in the Debug menu. We

will review them in Section 1.16.

Let us consider commands Run and Reset located in the Run menu of the VB

window.

1. Run — the start of the program execution (or shorter, of the program) and

transition from one breakpoint to another. If the breakpoints are absent, the pro-

gram is executed completely. This command is represented by arrow ► on the

toolbars of the VB window, in particular, on the standard toolbar.

Chapter 1. Programming in Visual Basic

20

The program can be started from the Excel window; we will consider this

possibility later (p. 113).

2. Reset — the discontinuation of the program execution. This command is

represented by square ■ on the toolbars.

During the program execution stops (in particular, at the breakpoints), yellow

color highlights the operator, which is not executed yet. If we place the mouse

pointer on a variable, its value is displayed.

For obtaining the hypotenuse length by means of the Pythagoras program

from the previous section, we fulfill the following:

1) click on the left border of the code window against the last line of the

program for marking this line by the breakpoint (Fig. 1.4a);

2) click on arrow ► for executing the Pythagoras program up to the

breakpoint;

3) if window Macros appears, successively click on the Pythagoras line and

the Run button in this window;

4) in the code window, whose state is depicted in Fig. 1.4b, place the mouse

pointer on the c variable in the program text; c = 5 appears (Fig. 1.5);

5) click on arrow ► for terminating the program execution.

After starting the program execution, a window containing message Can’t

execute code in break mode may appear, indicating that we forgot to terminate

(or to discontinue) the previous program execution. For correcting this error, we

fulfill the following:

1) click on the OK button in the message window;

2) click on arrow ► (or on square ■) for termination (or discontinuation) of

the program execution;

3) restart the program.

The program execution means consecutive execution of its operators: at first,

the computer sets the values of variables a and b, and then calculates the value

of c. To be convinced, we have to liquidate the breakpoint (by clicking on it) and

to execute the Pythagoras program step-by-step by the F8 key, watching the

change in variables a, b and c.

Let us assume that an error was committed: when typing operator

c = Sqr(a ^ 2 + b ^ 2)

we pressed the minus key on the keyboard instead of the plus key. In this case,

the program execution stops, and a window appears with the following message:

Run-time error ‘5’: Invalid procedure call or argument.

To understand our error, we click on button Debug in the message window.

As a result, the place, where the stop occurred, is highlighted in yellow color.

Looking at the values of a and b, we can understand the reason of the stop — the

negative value of the argument of the square root function.

1.2. Main commands of the program debugger

21

a

b

Fig. 1.4. The Pythagoras program with the breakpoint

(a) before and (b) after starting the program execution

Fig. 1.5. The visualization of the value of c during the execution stop

Chapter 1. Programming in Visual Basic

22

For fuller information on the possible reasons of the stop, we fulfill the fol-

lowing:

1) remaining in Visual Basic Environment, start the Excel help system by

pressing the F1 key;

2) type Error 5 in the text box of the Excel Help window;

3) click on the Search button;

4) click on the following line of the open list: Invalid procedure call or

argument (Error 5).

After correcting our error (that is, after changing minus to plus), we have to

restart the program.

During the execution, our program (as a set of zeros and units) is located in

the main memory of the computer. This program is being executed by the pro-

cessor that performs different operations including, among others, arithmetic

operations.

Now we will pass to the Visual Basic programming language.

1.3. Variables. Data types

23

1.3. Variables. Data types

Variables in programming have about the same meaning as variables in

algebra. We recommend declaring a variable before its usage.

The declaration operator has the following syntax:

Dim variable [As type]

In this language construct:

 Dim (from “dimension”) is the keyword testifying the appearance of

a new variable;

 variable is the variable name;

 As is the keyword;

 type is the data type (Appendix 1) of the declared variable.

Here and below, the square brackets indicate an optional part of the syntax,

i.e., the part that may be absent. Such usage of the brackets is acceptable because

the square and curly brackets are not used in constructs of Visual Basic.

In other words, the declaration operator has the following two versions:

Dim variable As type

Dim variable

Initially, we will consider the first version.

When (during the program execution) the computer meets the Dim operator,

it allots a memory cell for the variable by name variable. The cell size (in

bytes) is defined by type — the data type of the variable; type is keyword

Boolean, Byte, Integer, Long, Currency or so on (Appendix 1).

According to the second column of the table in Appendix 1, the memory cell

sizes, corresponding to different variables, can strongly differ.

To understand how much information is contained in one byte, let us notice

that three bytes are usually enough for storing information on one pixel (the

color point on the display screen) — one byte each for intensities of the red,

green and blue colors.

One Dim operator allows declaring several variables if we list them through

a comma. The example operators follow:

Chapter 1. Programming in Visual Basic

24

Dim my_variable As Double

Dim i As Byte, j As Integer, k As Integer

The restrictions on names of variables are the same as on names of programs

(p. 16), at that, the upper or lower case of letters does not matter. For example,

if the Alpha variable is declared and we try to declare the alpha variable,

Alpha will be automatically replaced by alpha.

Alpha is the English name of a Greek letter. If the keyboard does not support

the Greek language, we recommend to use English names of Greek letters

according to Appendix 2 when naming variables and programs.

For reducing programming errors, we recommend to tune Visual Basic Envi-

ronment so that it demands the declaration of variables. For this purpose, we

fulfill the following:

1) open menu Tools in the VB window;

2) click on Options;

3) activate the Editor tab;

4) turn on option Require Variable Declaration;

5) click on the OK button.

As a result, the code window corresponding to a new module will contain the

following first line:

Option Explicit

We can also put this line into the code window (or remove it) manually, as

a usual program line.

In the presence of line Option Explicit, the computer diagnoses the use

of an undeclared variable in the program text: during the program execution, the

computer displays message Variable not defined.

Data types Byte, Integer, Long, Currency, Single and Double

(Appendix 1) are called numerical data types.

According to the third column of the table in Appendix 1:

 in a memory cell, corresponding to a variable of the Byte data type, non-

negative integers (up to 255) can only be stored;

 in a cell, corresponding to a variable of the Integer or Long data type,

integers can be stored;

 in a cell, corresponding to a variable of the Currency, Single or

Double data type, decimal numbers can be stored.

Let us pass to the second version of the Dim operator (p. 23).

If we do not specify the data type when declaring a variable (for example, by

operator Dim W), the variable (by name W) automatically receives the Variant

data type. It means that any information can be stored in a memory cell, corre-

1.3. Variables. Data types

25

sponding to this variable; i.e., the Variant data type is similar to the general

format of Excel.

Let us consider operator

Dim i, j As Integer

This operator is equivalent to the following:

Dim i As Variant, j As Integer

If we need the Integer data type for both variables, i and j, we should

declare them as follows:

Dim i As Integer, j As Integer

or

Dim i As Integer

Dim j As Integer

Later we will consider ways of declaring variables without the use of the Dim

keyword (p. 81).

As an example of using the declaration operator, let us consider the following

program for calculating the number of days in the 20th century and defining the

current date and time:

Listing 1.1

Sub Century_20()

 Dim D1 As Date, D2 As Date, D3 As Date

 Dim N As Long

 D1 = #1 Jan 1900# 'beginning date of century

 D2 = #31 Dec 1999# 'ending date of century

 N = D2 - D1 + 1 'number of days in century

 D1 = Time 'current time

 D2 = Date 'current date

 D3 = Now 'date and time

End Sub

In the second and third lines of this program, Date and Long are the data

types (Appendix 1); #1 Jan 1900# and #31 Dec 1999# mean dates on Janu-

ary 1, 1900 and December 31, 1999. The subtraction of the first date from the

second date determines the number of days between these dates.

Chapter 1. Programming in Visual Basic

26

Word Time means determination of the current time by means of the VB

function by name Time. In other words:

 Time is the call of the Time function of VB;

 the value of this function is the current time of the day or, that is the

same, the Time function returns the current time of the day into the program

(“into the program” may be omitted).

In operator

D2 = Date

word Date means the call of the Date function returning the current date into

the program.

We see that Date is a name of the VB function and a name of the data type.

Thanks to various contexts, it does not lead to confusion.

Word Now means the call of the Now function returning the current date and

time together.

Regarding the VB functions, we will talk in more details later, in particular,

in Sections 1.4 and 1.9.

To be convinced of the operational capability of the Century_20 program,

we fulfill the following operations:

1) insert a module into the active Excel workbook (p. 15);

2) enter the Century_20 program text into the code window of the new

module;

3) make the step-by-step execution of this program by means of the F8 key,

watching the values of variables D1, D2, D3 and N.

It should be emphasized that, before the first press of key F8, we must place

the blinking cursor inside the program text, not in line Option Explicit.

Text Listing 1.1 of the Century_20 program can be entered into the code

window by means of the keyboard. We can also copy it from the enclosed CD.

For copying:

1) open file Listing_1_01.txt with the Notepad editor, for example, by dou-

ble click on the pictogram of this file in Windows Explorer;

2) in the Notepad window opened, highlight the program text and copy it

into Windows Clipboard, for example, by pressing Ctrl + C;

3) by the click, locate the blinking cursor in the code window of Visual

Basic Environment;

4) paste the program text from Windows Clipboard into the code window,

for example, by pressing Ctrl + V;

5) close the Notepad window with file Listing_1_01.txt.

1.4. Two main functions for conversion of data types

27

1.4. Two main functions for conversion of data types

A string is a quoted sequence of characters. The example strings follow:

"Hello, World!"

"13.333"

"37 RUR"

"$ 37"

" "

The last string contains only the space character.

Let us supplement the string definition by the empty string, "", which does

not contain any characters.

Strings " " and "" are used in program Listing 1.7. In Section 1.19, we will

expand the string definition even more.

Converting string to number is often necessary. For this purpose, the Val

function is used. It converts the numerical beginning of string to number. If the

Val function cannot perform this, it returns zero into the program. The argument

of the Val function is a string; this function returns a number.

For the backward conversion (that is, number to string), the Str function is

used. The argument of this function is a number, variable of numerical data type

(p. 24) or arithmetic expression (Section 1.8). The Str function returns a string.

Let us make the step-by-step execution of the program below.

Listing 1.2

Sub StrVal()

 Dim strA As String

 Dim curB As Currency

 strA = "45.77"

 curB = Val(strA) 'result: curB = 45.77

 strA = Str(curB) 'result: strA = " 45.77"

 curB = Val("4.7 = X") 'result: curB = 4.7

 curB = Val("4,7 = X") 'result: curB = 4

 curB = Val("X = 4.7") 'result: curB = 0

 curB = Val("") 'result: curB = 0

End Sub

Chapter 1. Programming in Visual Basic

28

The first comment corresponds to the case when operator

strA = Str(curB)

is highlighted in yellow color during the step-by-step program execution. This

comment means the following: if the mouse pointer is located on curB, infor-

mation curB = 45.77 appears.

Information curB = 45.77 is the result of executing operator

curB = Val(strA)

which is in the same line with the comment.

The second comment corresponds to the case when operator

curB = Val("4.7 = X")

is highlighted in yellow color during the step-by-step execution. This comment

means the following: if the mouse pointer is located on strA, information

strA = “ 45.77” appears. And so on.

All comments, which begin with word “result” or “Returns” (p. 33), have

similar sense.

Let us remind that, during the stops of the program execution, yellow color

highlights the operator, which is not executed yet.

In addition to the Val and Str functions, there are other functions for con-

version of data types. We will review them in Section 1.8.

1.5. Constants

29

1.5. Constants

Constants are similar to variables. However, unlike a variable, the content of

the memory cell, corresponding to a constant, cannot be changed during the pro-

gram execution. There are two versions of constants in Visual Basic, named

built-in and user-defined constants.

The user-defined constant can be declared by means of operator

Const invariable [As type] = value

In this operator:

 Const is the keyword testifying the appearance of a new constant;

 invariable is the constant name;

 As is the keyword, as in the Dim operator (p. 23);

 type is the data type (Appendix 1) of the declared constant;

 value is a value of the declared constant.

The restrictions on names of constants are the same as on names of variables

and programs (p. 16).

Examples of the constant declaration follow:

Const e As Double = 2.718281828

 'base of natural logarithm

Const e = 2.718281828

Const phi = 1.618033989 'gold relation

Const Flag As Boolean = False

Const Message = "End of Work"

Const Millennium As Date = #1 Jan 2000#

Const beta As Currency = 2 ^ 0.5

In the fourth example operator, Boolean is the so-called logical data type

(Appendix 1).

When executing the last operator, the rounded square root of 2 (that is,

1.4142) is assigned to constant beta. This example shows that value in the

Const operator can be an elementary arithmetic or logical expression (Sec-

Chapter 1. Programming in Visual Basic

30

tions 1.8 and 1.10). In this case, the content of the memory cell, corresponding to

the constant, is determined by the expression value rounded according to the

type data type.

One Const operator allows declaring several constants if we list them

through a comma. The example operator follows:

Const Min = 0, Max = 1000, tau As Double = 6.283185307

As an example of using constants, let us consider the following program for

conversion of an angle from degrees to radians:

Sub deg2rad()

 Dim angleD As Double

 Dim angleR As Double

 Const pi As Double = 3.141592654 'pi = tau / 2

 angleD = 270 'angle equals 270 degrees

 angleR = angleD * pi / 180

 'result: angle in radians

End Sub

As we see, operator

Const pi As Double = 3.141592654

declares the pi constant before its usage in operator

angleR = angleD * pi / 180

The rad2deg program below, which converts an angle from radians to

degrees, is similar to the above program.

Sub rad2deg()

 Dim angleD As Double

 Dim angleR As Double

 Const pi180 As Double = 3.141592654 / 180

 angleR = 4.5 'angle equals 4.5 radians

 angleD = angleR / pi180

 'result: angle in degrees

End Sub

On p. 82, we will consider the declaration of a constant by means of keyword

combination Public Const.

1.5. Constants

31

The built-in constant does not need any declaration. Names of the built-in

constants of Visual Basic begin with prefix vb, for example, vbFriday (this con-

stant equals 6).

For names (in particular, names of constants), the developers of Windows

accepted the following agreement: names of similar data begin with the same

short prefix. In particular, the built-in constants of Visual Basic have prefix vb,

the built-in constants of Excel have prefix xl.

In addition to vbFriday, we will come across the following built-in constants:

vbYesNo, vbYes, vbTab, vbCrLf, vbCr, vbLf, xlR1C1, xlCalculationAutomatic,

xlCalculationManual, xlDialogOpen, xlDialogSaveAs, xlCenter, etc.

Chapter 1. Programming in Visual Basic

32

1.6. Obtaining information

For obtaining information on a built-in constant, we must press the F2 key

when the VB window is active. As a result, the object browser window appears

(Fig. 1.6). In the top box of this window, we should set <All Libraries>

by means of the drop-down list. In the text box below, we should type what is

interesting for us, for example, vbFriday. Then we click on the binoculars picto-

gram. The answer is in the Search Results area (Fig. 1.7).

For closing the object browser window, we have to click on the little cross at

the right end of the menu bar.

Fig. 1.6. The VB window with the object browser

window instead of the code window

1.6. Obtaining information

33

Fig. 1.7. Information on the built-in vbFriday constant

The Excel help system, started by pressing the F1 key, is useful too (p. 22).

For accelerating the process of finding the necessary information, the blinking

cursor must be preliminarily located on the word of interest.

By means of the Excel help system, we will study the Val function. For this

purpose, let us fulfill the following.

1. Enter the StrVal program (p. 27) into the code window.

2. Locate the blinking cursor on the Val word by clicking on it.

3. Press the F1 key. As a result, the Excel Help window, containing the full

information on the Val function, is displayed (Fig. 1.8).

4. After studying the last information, copy fragment

Dim MyValue

MyValue = Val("2457") ' Returns 2457.

MyValue = Val(" 2 45 7") ' Returns 2457.

MyValue = Val("24 and 57") ' Returns 24.

from the bottom part of the Excel Help window into the StrVal program as

follows:

Chapter 1. Programming in Visual Basic

34

1) highlight this fragment by the mouse, as in Notepad;

2) copy it into Windows Clipboard by pressing Ctrl + C;

3) locate the blinking cursor in the code window, against the last line of the

StrVal program;

4) paste the fragment from Windows Clipboard into the program text by

pressing Ctrl + V.

Fig. 1.8. The Excel Help window with information on the Val function

1.6. Obtaining information

35

As a result, the StrVal program takes the following form:

Sub StrVal()

 Dim strA As String

 Dim curB As Currency

 strA = "45.77"

 curB = Val(strA) 'result: curB = 45.77

 strA = Str(curB) 'result: strA = " 45.77"

 curB = Val("4.7 = X") 'result: curB = 4.7

 curB = Val("4,7 = X") 'result: curB = 4

 curB = Val("X = 4.7") 'result: curB = 0

 curB = Val("") 'result: curB = 0

Dim MyValue

MyValue = Val("2457") ' Returns 2457.

MyValue = Val(" 2 45 7") ' Returns 2457.

MyValue = Val("24 and 57") ' Returns 24.

End Sub

We advise the reader to execute this program step-by-step (by means of the

F8 key), watching the value of the MyValue variable.

Chapter 1. Programming in Visual Basic

36

1.7. Assignment operator

The assignment operator has the following syntax:

variable = expression

Here, variable is the variable name, expression is an arithmetic or logical

expression (Sections 1.8 and 1.10) or string, which can be considered as an

expression (Section 1.19). A separately taken number, constant, variable or func-

tion is also an arithmetic expression. In the assignment operator, = is the

so-called assignment sign.

The assignment operator works as follows:

1) the value of expression is calculated;

2) the resulting value is assigned to variable, i.e., is written into the cor-

responding memory cell.

If the data type of the variable in the left-hand side of the assignment operator

does not coincide with the type of the expression value in the right-hand side, the

value type is generally converted (transformed) during the execution of the

assignment operator.

Let us make the step-by-step execution of the following program for convert-

ing strings "78.8", "78,8" and "78;8" to numbers of the Currency data

type.

Sub Conversion()

 Dim curA As Currency

 Dim curB As Currency

 Dim curC As Currency

 curA = "78.8" 'result: curA = 78.8

 curB = "78,8" 'result: curB = 78.8

 curC = "78;8" 'result is absent

End Sub

Because of executing the first and second assignment operators, strings

"78.8" and "78,8" are successfully converted to number 78.8.

When executing assignment operator

1.7. Assignment operator

37

curC = "78;8"

the stop occurs with the following information: Run-time error ‘13’: Type mis-

match. It speaks about the following:

 the types of variable on the left and of value on the right of the assign-

ment sign (=) are different;

 the computer cannot convert string "78;8" to a number.

We will continue considering the data type conversion in the next section of

the book.

Unlike other programming languages, for example C++, multiple assign-

ments, for example x = y = z = 1.3, are inadmissible in VB. We have to use

several assignment operators with the same right-hand side, i.e., language con-

struct

x = 1.3

y = 1.3

z = 1.3

or

x = 1.3: y = 1.3: z = 1.3

is correct.

Chapter 1. Programming in Visual Basic

38

1.8. Arithmetic expression

In Visual Basic, an integer is represented by a sequence of figures with the

minus sign or without any sign. Examples of integers are

–18 32 0

If a number has the fractional part, it separates from the integral part by

a point. In this case, we may omit the integral part if it equals zero. Examples

of decimal numbers follow:

0.5 –5.68 –.12 .035 3.

In the last example, 3 with a point means a number with zero fractional part, i.e.,

an integer, in fact.

We reviewed the main form of decimal numbers.

Decimal numbers may also be represented in exponential form. For example,

-1.6E-19 is the electron charge, -1.6·10
-19

 C (its absolute value is figured in

Section 3.13). Instead of E, letter D may be used in the exponential representa-

tion, i.e., the electron charge, -1.6·10
-19

 C, may be written as -1.6D-19

One of the main constructs of any programming language is an arithmetic

expression similar to the algebraic expression in mathematics. However, we can-

not omit the multiplication sign in the arithmetic expression. Table 1 below con-

tains equivalent algebraic and arithmetic expressions.

Table 1. Examples of expressions

Algebraic expression Arithmetic expression of VB

yx 125 5 * x + 12 * y

y

x
 x / y

xy y ^ x

x x

19.55·10
-6

 19.55E-6 or 19.55D-6

1.8. Arithmetic expression

39

The arithmetic expression contains the invariables (numbers and constants),

variables and/or functions related by arithmetic operations. As we already men-

tioned in the previous section, an individual number, constant, variable or func-

tion is also an arithmetic expression.

The expressions in Table 1 do not include functions. We will review arithme-

tic expressions with functions in the next section.

Arithmetic operations are denoted as follows: + (addition), - (subtraction or

sign change operation), * (multiplication), / (division), ^ (power operation),

\ (integer division, i.e., division of integers neglecting the integer remainder),

Mod (modulus operation, i.e., determining the integer remainder after division of

integers).

According to the assignment operator syntax, the arithmetic expression is on

the right of sign =. For example, assignment operator

z = 5 * x + 12 * y

includes arithmetic expression

5 * x + 12 * y

Let us consider the following program:

Sub Arithmetic1()

 Dim m As Integer

 Dim n As Integer

 Dim x As Double

 m = 5

 n = 2

 x = m / n 'result: x = 2.5

 x = m \ n 'result: x = 2

 x = m Mod n 'result: x = 1

End Sub

To verify the correctness of this program, we advise the reader to make the

step-by-step execution (by means of the F8 key), watching the change in the

value of x.

If the arithmetic expression contains several operations, the order of their per-

formance is defined by the following rules of priorities of arithmetic operations:

1) first of all, the power operation (^) is performed;

2) next, the multiplication and division (*, /) are performed in that sequence

as they are in the expression;

Chapter 1. Programming in Visual Basic

40

3) the integer division (\);

4) the modulus operation (Mod);

5) the sign change operation (–);

6) finally, the addition and subtraction (+, –) are performed in that sequence

as they are in the expression.

As we see, the power operation (^) has the highest priority in VB.

The rules of priorities of arithmetic operations in VB differ from the rules of

priorities in Excel regarding the power operation, multiplication, division, the

sign change operation (so-called negation), addition and subtraction: the nega-

tion (–) is performed first, i.e., has the highest priority in Excel.

To be convinced, we put

=-1^2

into the Excel formula box and click on the tick button of the Excel formula bar

(or press the Enter key). As a result, value 1 appears in the active cell on the

worksheet. After the execution of VB operators

Dim i As Integer

i = -1 ^ 2

the i variable is equal to -1.

In both VB and Excel, parentheses are used for changing the sequence of the

operations: the values of the parenthesized arithmetic expressions are calculated

at first.

We will not see the square and curly brackets in the arithmetic expressions of

Table 2 below because, as it was already told, such brackets are not used in the

VB constructs.

When calculating the expression value, results of performance of intermedi-

ate arithmetic operations remain in the processor or are written into cells of the

cache memory (from where they are read when required).

The cache memory has a short time of reference (that is, of writing and read-

ing information); this time is much shorter than the time of reference for the

main memory. The cache memory is intended for temporary storage of interme-

diate results and contents of memory cells often used. The program fragment,

which is being executed, may also be stored in the cache memory.

Let us consider the following assignment operator with the arithmetic expres-

sion in the right-hand side:

z = 5 * x + 12 * y

The processor is performing this operator approximately thus:

1.8. Arithmetic expression

41

1) multiplies 5 by the content of cell x;

2) writes the result into a cache memory cell, for example, cache1;

3) multiplies 12 by the content of cell y;

4) adds the result to the value of cache1;

5) writes the result into cell z.

Table 2. Examples of expressions

Algebraic

expression

Arithmetic expression of VB

7{3[a+b(c+d)]+8}+2 7 * (3 * (a + b * (c + d)) + 8) + 2

-a
b

-a ^ b

or
–(a ^ b)

a
-b

 a ^ (-b)

a
b-c

a ^ (b - c)

10
-4.7

 10 ^ (-4.7)

10
4.7

10 ^ 4.7

A·B A * B

A(-B)

A * (-B)

-A * B

or
-(A * B)

cba a ^ (b ^ c)

cba)(

a ^ b ^ c

or
(a ^ b) ^ c

dc

ba

(a * b) / (c * d)

or
a * b / (c * d)

a ·10
4

a * 1E4

a * 10E3

or
a * 10000

In mathematics and programming, participants of operations are called

operands, both in the case of arithmetic operations and in the case of logical

operations (Section 1.10). For example, arithmetic expression 5 * x includes

the following two operands: integer 5 and variable x.

Chapter 1. Programming in Visual Basic

42

For a better understanding of the rules of priorities of arithmetic operations,

let us consider the following program:

Sub Arithmetic2()

 Dim m As Integer

 Dim n As Integer

 Dim x As Single

 Dim y As Single

 x = 3

 m = 2

 n = -1

 y = (-3) ^ m 'result: y = 9

 y = -(3 ^ m) 'result: y = -9

 y = -3 ^ m 'result: y = -9

 y = 10 + (x + 7) ^ (m + n) 'result: y = 20

 y = 10 + x + 7 ^ m + n 'result: y = 61

End Sub

We advise the reader to make the step-by-step execution of this program,

watching the value of the y variable and explaining the value origin.

In addition, we advise the reader to verify that

(m \ n) * n + m Mod n

equals m for arbitrary integers m and n (naturally, n ≠ 0). For that, the reader has

to write a program, which is similar to Arithmetic1, and to execute the new

program step-by-step.

Arithmetic expressions may contain variables and invariables of different

types. If the type of the value of arithmetic expression in the right-hand side of

the assignment operator (on the right of sign =) does not coincide with the data

type of the variable in the left-hand side of the assignment operator (on the left of

sign =), the type of the value is converted during the assignment.

Let us consider the situation when the value of arithmetic expression on the

right of sign = has a fractional part and the variable on the left of sign = is of the

Integer or Long data type. During the assignment, the value is transformed

according to the following rules for rounding off:

 if the fractional part of the value is equal to 0.5, this value is rounded up

to the even number from two nearest integers;

 otherwise, the value is rounded up to the nearest integer.

Because operations \ and Mod are applicable only to integers, the execution

of these operations over numbers with a fractional part begins with the rounding

1.8. Arithmetic expression

43

off the operands to integers according to the formulated rules. The results of

operations \ and Mod are integers.

An operation with one operand is called a unary operation. Among the arith-

metic operations, only the sign change operation (–) is unary. An operation with

two operands (^, *, /, \, Mod, +, – as subtraction) is called a binary operation.

VB includes special functions for converting data types. Two of these func-

tions (Str and Val) were reviewed in Section 1.4; the remaining functions are

listed in Table 3 below.

Table 3. Functions for converting data types

Function name

Resulting data type

CBool Boolean

CByte Byte

CCur Currency

CDate Date

CDbl Double

CInt Integer

CLng Long

CSng Single

CStr String

CVar Variant

Requirements to the argument of these functions and examples of their usage

are given in the Excel help system. For accelerating the process of finding the

necessary information, we must press the F1 key when the VB window is active.

Let us make the step-by-step execution of the program below.

Sub Functions()

 Dim intN As Integer

 Dim strN As String

 Dim curN As Currency

 intN = -15

 strN = Str(intN) 'result: strN = "-15"

 strN = CStr(intN) 'result: strN = "-15"

 intN = 15 '8th operator

 strN = Str(intN) '9th operator

 'result: strN = " 15"

 strN = CStr(intN) '10th operator

 'result: strN = "15"

 curN = 25.5 '11th operator

Chapter 1. Programming in Visual Basic

44

 intN = 1 + CInt(curN) '12th operator

 'result: intN = 27

 intN = CInt(1 + curN) '13th operator

 'result: intN = 26

 intN = CInt("78.8") '14th operator

 'result: intN = 79

 intN = CInt("78,8") '15th operator

 'result: intN = 79

End Sub

Note the following:

 if the argument of the Str and CStr functions is a non-negative number,

these functions return different strings (see the 9th and 10th operators);

 the CInt function rounds the argument value according to the rules for

rounding off (see the 12th and 13th operators);

 a string may be the CInt function argument (see the 14th and 15th

operators).

1.9. Mathematical functions. Functions of date and time

45

1.9. Mathematical functions.

Functions of date and time

Let us start with an analysis of the mathematical functions given in the table

of Appendix 3.

We already used the square root function, Sqr(x), in our first program —

Pythagoras on p. 17.

The argument of trigonometric functions (cosine, sine and tangent) is an

angle in radians, not in degrees.

Function Atn(x) is an inverse trigonometric function, xarctan . The

arctangent returns (into the program) the angle in radians from -π/2 to π/2 whose

tangent is equal to the value of x. Such angle is called the principal angle of

xtan .

The sign function, Sgn(x), returns -1, 0, 1 at x < 0, x = 0, x > 0, respec-

tively.

The Log(x) function is the natural logarithm of x, xln . According to

the logarithm properties [3], the following expressions are valid for the decimal

logarithm: xlg = 10ln/ln x = 302585093.2/ln x .

In Appendix 3, in addition to the main mathematical functions of Visual

Basic, the VB operators are given for counting the values of trigonometric func-

tion xcot , of inverse trigonometric functions xarcsin , xarccos and xarccot

and of decimal logarithm xlg .

In addition to the mathematical functions of Appendix 3, let us consider func-

tion Round(x[, n]) intended for rounding off numbers with a fractional part.

As we know, the square brackets separate an optional part of the construct.

In other words, this function of VB has the following two versions:

 the Round(x, n) function returns the value of x, rounded up to n deci-

mal places;

 the Round(x) function returns the integer obtained by rounding off the

value of x according to the rules formulated on p. 42; this function is identical to

the Round(x, 0) and CInt(x) functions.

Arguments of the mathematical functions are arithmetic expressions.

Assignment operator

Chapter 1. Programming in Visual Basic

46

c = Sqr(a ^ 2 + b ^ 2)

in the Pythagoras program (p. 17) is an example of this.

The mathematical functions are used in arithmetic expressions, and the func-

tions have a priority as compared to the arithmetic operations when calculating

the expression value. For example, during the execution of operator

e = b / c * Cos(a) ^ 3 – d

the processor first calculates the cosine value, and then:

1) cubes this value;

2) writes the result into the cache1 cell of the cache memory;

3) successively performs the division, multiplication and subtraction for cal-

culating the value of arithmetic expression

b / c * cache1 – d

4) writes the result into the memory cell corresponding to variable e.

To learn the use of the mathematical functions, let us do the following:

1) put operator block

Dim V As Single, W As Single

V = intN + Round(Sqr(2 * intN), 2)

W = Round(V) ^ 2

into the code window containing the Functions program (p. 43), above the

last line;

2) mark the last line of the program by the breakpoint;

3) click on arrow ► for the program execution up to the breakpoint;

4) make sure that the calculated values of V and W are equal to 33.21 and

1089, respectively;

5) explain these results;

6) click on arrow ► for terminating the program execution.

In addition to the considered functions with one and two arguments, there is

the Rnd function (from “random”) without arguments. This function is intended

for generation of random numbers used for modeling random phenomena. The

simplest random phenomenon can be described as follows: there is a 50 %

chance that the “head” or “tail” will be the result of a coin flip.

The idea of modeling random phenomena is known for a long time. Follow-

ing the advent of the electronic computers, this idea was developed in the 1950s

under the name of the Monte Carlo method.

1.9. Mathematical functions. Functions of date and time

47

The Monte Carlo method is used for modeling financial risks, semiconductor

devices and evolution of stars. It is only a part of the problems demanding

generation of random numbers.

The use of the Rnd function is described in the Excel help system, which

must be started by pressing the F1 key when the VB window is active. The

RandomNumbers program in Section 1.15 and code Listing 6.11 in Section 6.8

are examples of the Rnd function’s usage.

Functions of date and time, Time, Date and Now, are without arguments

too. These functions return the following values of the Date data type: current

time, date and date together with time, respectively. They appeared in program

Century_20 (p. 25). We will encounter these functions of date and time more

than once.

Chapter 1. Programming in Visual Basic

48

1.10. Logical expression

In addition to arithmetic expressions, logical expressions are also important

in Visual Basic.

The logical expression uses the following well known comparison signs: <

(less than), > (greater than), = (equal to), <= (less than or equal to, ≤ in mathe-

matics), >= (greater than or equal to, ≥ in mathematics), <> (unequal to, ≠ in

mathematics).

The logical expression accepts one of the two Boolean (logical) values, True

(logical unit) or False (logical zero). Separately taken True or False is also

a logical expression.

Examples of the logical expression follow:

5 >= 3

5 < 3

False

The first logical expression accepts True; the second and third logical expres-

sions accept False.

Let us consider the following program:

Sub Logic1()

 Dim x As Integer

 Dim y As Integer

 Dim blnA As Boolean

 x = 5: y = 2

 blnA = x > y 'result: blnA = True

 blnA = x = y 'result: blnA = False

End Sub

In this program, we see four assignment operators and two logical expres-

sions (x > y and x = y). According to the assignment operator syntax, the logical

expressions are on the right of the assignment sign. The values of the logical

expressions for x = 5 and y = 2 are given in the corresponding comments.

In complicated logical expressions, logical operations are used. We will con-

sider three of them: Not, And, Or.

1.10. Logical expression

49

Operation Not is the so-called logical negation. It is defined as follows:

 if A equals True, then Not A equals False;

 if A equals False, then Not A equals True.

Operation Not has one operand (A), i.e., it is a unary operation.

Definitions of logical operations And and Or are given by the following two

tables.

Definition of the And operation

A B A And B

True True True

True False False

False True False

False False False

Definition of the Or operation

A B A Or B

True True True

True False True

False True True

False False False

According to these tables, the And and Or operations have two operands

(A and B), i.e., they are binary operations.

Logical expression A And B is equal to True only in that case when both

operands are equal to True. In all other cases, expression A And B is equal to

False. The And operation is called conjunction or logical multiplication.

Expression A Or B is equal to False only in that case when both operands

are equal to False. In all other cases, expression A Or B is equal to True. The

Or operation is called disjunction or logical addition.

In the presence of several logical operations in a logical expression, the order

of their performance is defined by the following rules of priorities:

1) first of all, operation Not (logical negation) is performed;

2) further, And (logical multiplication);

3) in last turn, Or (logical addition) is performed.

For change of sequence of the operations’ performance, parentheses are used,

as in arithmetic expressions. Parentheses may be also used for readability of

logical expressions.

Chapter 1. Programming in Visual Basic

50

For a better understanding of the logical operations, let us consider the

following program:

Sub Logic2()

 Dim x As Double

 Dim y As Double

 Dim z As Double

 Dim blnA As Boolean

 x = 1

 y = 2.87

 z = 3.12

 blnA = (x > y) And (y < z) 'result: blnA = False

 blnA = x < y And y < z 'result: blnA = True

 blnA = x > y Or y > z 'result: blnA = False

 blnA = Not (x < y Or Not y < z)

 'result: blnA = False

 blnA = Not x > y And x > y 'result: blnA = False

 blnA = Not (x > y And x > y) 'result: blnA = True

End Sub

In operator

blnA = (x > y) And (y < z)

parentheses are used for readability of logical expressions x > y and y < z.

These parentheses may be omitted.

We advise the reader to verify the correctness of the Logic2 program by

means of the step-by-step execution.

Note that double logical expressions, for example 0 < x <= 1, are inadmissi-

ble in VB. Instead of 0 < x <= 1, we have to write

0 < x And x <= 1

or

x > 0 And x <= 1

For grasping the material of this and the previous sections, we advise the

reader to write a program allowing to define the values of y, for which

CInt(y), Fix(y), Int(y), Round(y) are equal to each other if y accepts

the following values:

1.10. Logical expression

51

 -1.8, -1.25, 1.27, 1.68;

)(af ,)5.05.0(baf ,)(bf ,)(5.0)(5.0 bfaf .

Here, functions Fix(y) and Int(y) of VB are described in Appendix 3, func-

tions CInt(y) and Round(y) are from Sections 1.8 and 1.9, function)(xf is

from Appendix 4, a and b are the boundaries of the)(xf function’s domain.

In addition, we advise the reader to replace condition “CInt(y), Fix(y),

Int(y), Round(y) are equal to each other” of the previous task by one of the

following conditions:

1) Fix(y) = CInt(y) And Fix(y) <> Int(y)

2) Int(y) = CInt(y) And Int(y) <> Fix(y)

3) Fix(y) = Int(y) Or Fix(y) <> CInt(y)

4) Fix(y) = CInt(y) Or Fix(y) <> Int(y)

5) Int(y) = CInt(y) Or Int(y) <> Fix(y)

6) Fix(y) = Int(y) Or Fix(y) = CInt(y)

7) Int(y) = CInt(y) Or Int(y) = Fix(y)

8) CInt(y) = Fix(y) Or CInt(y) = Int(y)

9) Fix(y) = Int(y) And Fix(y) <> CInt(y)

Chapter 1. Programming in Visual Basic

52

1.11. GoTo operator

Operators of the previous programs are executed by turn. Such programs are

called linear programs.

The GoTo operator is used to change the order of execution of the program

operators. It has the following syntax:

GoTo lbl

In this syntax, the so-called label, lbl, may be one of the following:

 a non-negative integer without a sign (0, 1, 2, 3, …);

 a sequence of letters, figures and underscores beginning with a letter, for

example, start_53a.

We have to place the lbl label in front of the operator, to which the jump

must be performed (or, that is the same, to which the control must be trans-

ferred). We have to type a colon behind the label.

After executing the operator with lbl in front, the next operator will be exe-

cuted if the labeled operator is not GoTo.

Examples of GoTo usage are given on p. 54: we see two labels in the IT2

program, 2 and LastLine.

If the label is a non-negative integer, this label may be called an operator’s

(line’s) number. For example, operator

If X > 9 And X < 12 Then GoTo LastLine

in the IT2 program with label 2 in front may be named as operator 2 (line 2).

The GoTo operator is often called the unconditional jump operator. In the

next section, we will consider GoTo as a part of the so-called conditional jump

operator.

1.12. Decision-making constructs

53

1.12. Decision-making constructs

This is a typical situation when, in a certain place of a program, it is neces-

sary to execute those or other operators depending on some conditions. The

choice of the operators is performed by means of one of two decision-making

constructs, If…Then or Select Case.

The first decision-making construct, If…Then, is called the conditional

operator. Below are several versions of this operator.

The simplest conditional operator follows:

If condition Then statement1

where condition is a logical expression.

The computer calculates the value of condition. If True (False) is the

result, we will say that the condition is true (false).

If the condition is true, operator statement1 is executed; if the condition

is false, operator statement1 is not executed.

Further, the next operator (following the If…Then construct) is executed,

regardless of whether or not statement1 was executed (if statement1 is

not the GoTo operator).

Let us consider the following example program:

Sub IT1()

 Dim X As Byte

 X = 12 'initial value of X

 If (X > 9 And X < 12) Then X = X + 1

 X = X + 2

 X = X * 2 'final value of X

End Sub

For understanding this program, we advise the reader to do the following:

1) install the breakpoint against the End Sub line;

2) click on arrow ► for the program execution up to the breakpoint;

3) make sure that the calculated value of X is equal to 28 during the stop of

the program execution;

Chapter 1. Programming in Visual Basic

54

4) explain this result;

5) click on arrow ► for terminating the program execution.

A special case of the reviewed If…Then construct is the conditional jump

operator with the following syntax:

If condition Then GoTo lbl

According to this construct including GoTo, if the condition is true, the jump is

performed to the operator labeled by lbl.

The program below is an example of using the conditional jump operator.

Sub IT2()

 Dim X As Integer

 X = 12

2: If X > 9 And X < 12 Then GoTo LastLine

 X = X - 2

 GoTo 2

LastLine:

End Sub

We advise the reader to make the step-by-step execution of this program and

to explain why the value of X changes so, instead of differently.

The quantity of operators, which must be executed when the condition is true,

may be greater than one. In this case, the following construct is used:

If condition Then

 statements

End If

where statements is an operator block. This conditional operator is per-

formed as follows.

If the condition is true, block statements (below the Then keyword) is

executed. If the condition is false, block statements is not executed.

Further, the jump is performed to the operator following the If…Then con-

struct, regardless of whether or not block statements was executed (if this

block does not include the GoTo operator).

Let us consider the following If…Then construct:

If condition Then statement1 Else statement2

If the condition is true, operator statement1 (behind keyword Then) is

executed. If the condition is false, operator statement2 (behind keyword

1.12. Decision-making constructs

55

Else) is executed. Further, the jump is performed to the operator following the

If…Then construct, without dependence of what operator was executed earlier,

statement1 or statement2 (if these operators are not GoTo).

The program below is an example of using the last construct.

Sub IT3()

 Dim X As Byte

 X = 12 'initial value of X

 If (X > 9 And X < 12) Then X = X + 3 _

 Else X = X + 2

 X = X * 2 'final value of X

End Sub

We will assume that operator blocks statements1, statements2, ...,

statementsN, statements do not include GoTo (for brevity).

Let us consider the following construct, which is similar to the previous

If…Then construct, but contains blocks instead of operators:

If condition Then

 statements1

Else

 statements2

End If

If the condition is true, block statements1 (which is below keyword

Then) is executed. If the condition is false, block statements2 (which is

below keyword Else) is executed. Further, the jump is performed to the opera-

tor following the End If keyword combination, without dependence of what

block was executed earlier, statements1 or statements2.

Let block statementsN be executed after checking not one but several

conditions. In this case, we use the following If…Then construct:

If condition1 Then

 statements1

ElseIf condition2 Then

 statements2

 ∙ ∙ ∙ ∙

ElseIf conditionN Then

 statementsN

[Else

 statements]

End If

Chapter 1. Programming in Visual Basic

56

If the first condition is true (that is, logical expression condition1 accepts

True), then block statements1 is executed. If this condition is false, the

second condition (which is behind keyword ElseIf) is checked. If this condi-

tion is true (condition2 = True), then block statements2 is executed,

and so on. If conditionN = True, then block statementsN is executed.

If none of the N conditions is true, then block statements (located below the

Else keyword) is executed.

Further, the jump is performed to the operator following the End If key-

word combination, without dependence of what block was executed earlier,

statements1, statements2, ..., statementsN or statements.

An example of using the last construct is in codes Listings 5.7 and 5.8 of

Section 5.11.

We reviewed several versions of the conditional operator. In addition, let us

consider function

IIf(condition, expression1, expression2)

Arguments of this function have the following sense:

 condition is a logical expression;

 expression1, expression2 are arithmetic or logical expressions

(Sections 1.8 and 1.10) or strings, which can be considered as expressions

(Section 1.19).

Depending on the value of condition (True or False), the IIf func-

tion returns into the program the value of expression1 or expression2,

respectively.

The program below is an example of the function usage.

Sub IT4()

 Dim intA As Integer, strA As String

 intA = 6

 strA = IIf(intA Mod 2 = 0, "Even", "Odd")

End Sub

The second decision-making construct, Select Case, is called the case

operator. The syntax of this construct is as follows:

Select Case expression

 Case value1

 statements1

 Case value2

1.12. Decision-making constructs

57

 statements2

 ∙ ∙ ∙ ∙

 Case valueN

 statementsN

 [Case Else

 statements]

End Select

where expression is an arithmetic or logical expression or string, value1,

value2, ..., valueN are given numbers, Boolean values or strings. The case

operator is performed as follows.

If expression accepts the value of value1, block statements1 is

executed. If expression accepts the value of value2, block statements2

is executed, and so on. If expression is not equal to any of the N values

(value1, value2, ..., valueN), then block statements (located below the

Case Else keyword combination) is executed.

Further, the jump is performed to the operator following the case operator,

without dependence of what block was executed earlier, statements1,

statements2, ..., statementsN or statements.

When the same block must be executed at several values of expression,

we have to enumerate these values (through a comma) behind the Case key-

word.

As an example, let us consider the following program:

Sub Choice()

 Dim x As Integer

 x = 1

 Select Case 2 * x + 1

 Case 1

 x = x + 1

 Case 2, 3, 4

 x = 10

 Case Else

 x = 20

 End Select

 x = x Mod 3

End Sub

We advise the reader to execute this program step-by-step and to explain

why the value of x changes so, instead of differently.

Chapter 1. Programming in Visual Basic

58

1.13. Cycles

To execute repeatedly an operator block, we can use one of three cycle opera-

tors, For…Next, While…Wend and Do…Loop.

The For…Next cycle is used when the number of the block’s executions is

known in advance, i.e., before the first execution of this block. This construct has

the following syntax:

For counter = beginning To ending [Step growth]

 statements

Next [counter]

where counter is a variable of numerical data type (p. 24), beginning and

ending are the boundaries of the counter change, growth is the step of this

change; beginning, ending and growth are the cycle parameters.

Let us consider the For…Next cycle at a positive value of growth.

At first, the value of beginning is assigned to the counter variable.

Further, condition counter > ending is checked. If the result is True, the

cycle is completed, at that, block statements is not executed even once.

If the result of checking condition counter > ending is equal to False,

then block statements is executed for the first time. After that, the jump

occurs to the cycle beginning. Further, the counter variable’s value increases

by growth, and condition counter > ending is checked again. If the result

is equal to False, then block statements is executed for the second time,

and so on.

The cycle is completed when the check of condition counter > ending

gives True. In this case, the operator following the cycle is executed.

As an example of the cycle usage, let us consider the following program for

calculating the factorial of number 6:

Sub Factorial1()

 Dim I As Byte

 Dim F As Long

 F = 1

1.13. Cycles

59

 For I = 1 To 6 Step 1

 F = F * I

 Next I

End Sub

According to handbook [3], factorial of natural number n (n! is the designa-

tion) is the product of the positive integers from 1 to n: nn ...21! (1!1).

We advise the reader to do the following:

1) execute the Factorial1 program step-by-step, watching the F varia-

ble’s value;

2) replace 6 (parameter ending) by 13 in the cycle operator;

3) run the resulting Factorial1 program for calculating 13!;

4) explain the reason of the stop with information Run-time error ‘6’: Over-

flow, using the description of the Long data type in Appendix 1.

At a negative value of the growth parameter, the For…Next cycle works

as at a positive value, but:

 condition counter < ending is being checked;

 the counter variable cannot be of the Byte data type.

The following 2nd version of the program for calculating 6! is an example of

using a negative value of the growth parameter.

Sub Factorial2()

 Dim I As Integer

 Dim F As Long

 F = 1

 For I = 6 To 1 Step -1

 F = F * I

 Next I

End Sub

If the Step keyword is omitted, the step of the counter change is equal to

unity by default.

Arithmetic expressions may be used as the cycle parameters (beginning,

ending and growth). It is important that all variables in these arithmetic

expressions had numerical values before the For…Next cycle work.

As an example of such usage of arithmetic expressions, let us consider the

following 3rd version of the program for calculating 6!:

Sub Factorial3()

 Const e As Double = 2.718281828

 Dim J As Byte

Chapter 1. Programming in Visual Basic

60

 Dim N As Byte

 Dim F As Long

 N = Round(e)

 F = 1

 For J = 1 To N ^ 2 - 3

 F = F * J

 Next J

End Sub

In this program, arithmetic expression N ^ 2 - 3 is used as parameter ending.

The N variable is equal to 3, and N ^ 2 - 3 is equal to 6.

The absence of the Step keyword says that the step of the J variable change

is equal to 1, and J changes from 1 to 6.

Frequently it is required to leave the cycle before completion of its execution.

In this case, the For…Next cycle has the following syntax:

For counter = beginning To ending [Step growth]

 [statements1]

 If condition Then Exit For

 [statements2]

Next [counter]

The Exit For operator is used for immediate exit from the cycle. It is a part

of the simplest conditional operator. The last cycle works as follows.

For each value of the counter variable, after executing the statements1

block, the computer calculates the value of logical expression condition.

If this value is False, the cycle continues to work. Otherwise, the jump is per-

formed to the operator following the cycle construct (without executing block

statements2).

As an example of using the Exit For operator, let us consider the following

4th version of the program for calculating 6!:

Sub Factorial4()

 Dim I As Byte

 Dim F As Long

 F = 1

 For I = 1 To 13

 F = F * I

 If I = 6 Then Exit For

 Next I

End Sub

1.13. Cycles

61

The While…Wend cycle is used when the number of the block’s executions

is not known in advance. The syntax of this cycle follows:

While condition

 statements

Wend

The While…Wend cycle work begins with calculating the value of logical

expression condition. If condition = False, the cycle is completed, i.e.,

the jump is performed to the operator following the Wend keyword.

If condition = True, block statements is executed. After that, the value

of logical expression condition is calculated again, and so on.

The 5th version of the program for calculating 6! follows:

Sub Factorial5()

 Dim I As Byte

 Dim F As Long

 F = 1

 I = 1

 While I <= 6

 F = F * I

 I = I + 1

 Wend

End Sub

The Do…Loop cycle, as well as the While…Wend cycle, is used when the

number of the block’s executions is not known in advance. Four versions of this

construct exist.

The first version is the Do While…Loop cycle with the following syntax:

Do While condition

 statements

Loop

The Do While…Loop cycle work begins with calculating the value of logi-

cal expression condition. If condition = False, the cycle is completed,

i.e., the jump is performed to the operator following the Loop keyword. If

condition = True, block statements is executed. After that, the value of

logical expression condition is calculated again, and so on.

The Do While…Loop cycle is equivalent to the While…Wend cycle

reviewed above.

Chapter 1. Programming in Visual Basic

62

The 6th version of the program for calculating 6! follows:

Sub Factorial6()

 Dim I As Byte

 Dim F As Long

 F = 1

 I = 1

 Do While I <= 6

 F = F * I

 I = I + 1

 Loop

End Sub

One more example of using the Do While…Loop cycle is the following

program for the movement along the x axis:

Sub Steps1()

 Dim x As Single

 Dim h As Single

 h = 0.5 'step equals 0.5

 x = 44 'initial value of x equals 44

 Do While x < 55 'final value of x equals 55

 x = x + h 'value of x increases by h

 Loop

End Sub

We advise the reader to make the step-by-step execution of the Steps1

program, watching the x variable change.

The Do Until…Loop cycle, which is the second version of the Do…Loop

construct, has the following syntax:

Do Until condition

 statements

Loop

The Do Until…Loop cycle work begins with calculating the value of logi-

cal expression condition. If condition = True, the cycle is completed,

i.e., the jump is performed to the operator following the Loop keyword.

If condition = False, block statements is executed. After that, the value

of logical expression condition is calculated again, and so on.

1.13. Cycles

63

The program with the Do Until…Loop cycle for the movement along the x

axis has the following form:

Sub Steps2()

 Dim x As Single

 Dim h As Single

 h = 0.5 'step equals 0.5

 x = 44 'initial value of x equals 44

 Do Until x >= 55 'final value of x equals 55

 x = x + h 'value of x increases by h

 Loop

End Sub

There is a situation when, during the work of the Do While…Loop and

Do Until…Loop cycles, block statements is not executed even once

because the condition of completing the cycle is checked before the block execu-

tion. Sometimes it is inconvenient.

The Do…Loop While cycle, which is the third version of the Do…Loop

construct, has the following syntax:

Do

 statements

Loop While condition

The Do…Loop While cycle work begins with executing operator block

statements. After that, the value of logical expression condition is

calculated. If condition = False, the cycle is completed. Otherwise, block

statements is executed again, and so on.

The program with the Do…Loop While cycle for the movement along the x

axis has the following form:

Sub Steps3()

 Dim x As Single

 Dim h As Single

 h = 0.5 'step equals 0.5

 x = 44 'initial value of x equals 44

 Do

 x = x + h 'value of x increases by h

 Loop While x < 55 'final value of x equals 55

End Sub

Chapter 1. Programming in Visual Basic

64

The Do…Loop Until cycle, which is the fourth version of the Do…Loop

construct, has the following syntax:

Do

 statements

Loop Until condition

The Do…Loop Until cycle work begins with executing operator block

statements. After that, the value of logical expression condition is

calculated. If condition = True, the cycle is completed. Otherwise, block

statements is executed again, and so on.

The program with the Do…Loop Until cycle for the movement along the x

axis has the following form:

Sub Steps4()

 Dim x As Single

 Dim h As Single

 h = 0.5 'step equals 0.5

 x = 44 'initial value of x equals 44

 Do

 x = x + h 'value of x increases by h

 Loop Until x >= 55 'final value of x equals 55

End Sub

During the work of the Do…Loop While and Do…Loop Until cycles,

block statements is executed at least once because the condition of complet-

ing the cycle is checked after the block execution.

All four versions of the Do…Loop cycle can contain the Exit Do operator

intended for immediate exit from the cycle. In the usage, this operator is similar

to the Exit For operator of the For…Next cycle.

For the While…Wend cycle, there is no operator similar to the Exit For

and Exit Do operators.

1.14. Manifestation of the error of real numbers’ computer representation

65

1.14. Manifestation of the error of real

numbers’ computer representation

In the last program of the previous section, we will reduce the value of h to

one-fifth. We can expect that the number of repeated executions of operator

x = x + h will increase fivefold as a result and the final value of x will remain

equal to 55. However, it is not so: the final value of x is equal to 55.09983.

In order to verify this assertion, we do the following:

1) enter program

Sub Steps5()

 Dim x As Single

 Dim h As Single

 h = 0.1 'this operator distinguishes

 'Steps5 from Steps4

 x = 44

 Do

 x = x + h

 Loop Until x >= 55

End Sub

into the code window;

2) install the breakpoint against the End Sub line;

3) click on arrow ► for the program execution up to the breakpoint;

4) place the mouse pointer on the x variable in the program text; as a result,

x = 55.09983 appears (Fig. 1.9);

5) click on arrow ► for terminating the program execution.

We see “the phenomenon” of changing the final value of x after reducing the

value of h because “almost all” real numbers in the computer are represented

with an error.

In our case, the value of variable h of the Single data type is slightly less

than 0.1. Therefore, there is the “superfluous” execution of the x = x + h

operator during the cycle. This explains the difference between the observed

value of 55.09983 and the expected value of 55.

Chapter 1. Programming in Visual Basic

66

Fig. 1.9. The code window with the Steps5

program and with the final value of x

Let us replace Single by Currency in the declaration of the h variable.

The new version of the program follows:

Sub Steps6()

 Dim x As Single

 Dim h As Currency 'this operator distinguishes

 'Steps6 from Steps5

 h = 0.1

 x = 44

 Do

 x = x + h

 Loop Until x >= 55

End Sub

The final value of x, calculated by means of the Steps6 program, is equal

to 55 (Fig. 1.10). This is because the value of variable h of the Currency data

type is exactly equal to 0.1, therefore, there is not the superfluous execution of

the x = x + h operator during the cycle.

According to what has been said above, when working with real numbers, we

have to consider possible inaccuracy of their computer representation because

the error can lead to unexpected results.

1.14. Manifestation of the error of real numbers’ computer representation

67

Fig. 1.10. The code window with the Steps6

program and with the final value of x

Chapter 1. Programming in Visual Basic

68

1.15. Arrays

An array is a sequence or table (two-dimensional, three-dimensional, and so

on) with variables of the same data type, which are called elements of the array.

Every reference to an element includes the array name and one index (the ele-

ment number in the sequence) or several indices (coordinates of the element in

the table). If there are two indices, they determine the coordinates of the element

in the two-dimensional table, i.e., the numbers of row and column whose inter-

section is the element.

Before usage, the array must be declared. Besides, we have to specify the

lower and upper boundaries of each index’s change.

There are two kinds of arrays — static and dynamic. For each of them,

we will use the following scheme: we will consider the one-dimensional array

(with one index) followed by the multidimensional array (with several indices)

together with the one-dimensional array.

The static array is used when the quantity of its elements is known in

advance. In the declaration of a static one-dimensional array, for the index, we

have to specify the lower and upper boundaries defining the quantity of ele-

ments, and these boundaries cannot be changed during the program execution.

Static arrays are declared as variables, i.e., by means of keywords Dim and

As. The boundaries are integers in parentheses. The To keyword must be

between the lower and upper boundaries. Examples of the declaration follow:

Dim arrB(1 To 10) As Currency

Dim A(-10 To 10) As String

If a single integer is given in the parentheses, it is the upper boundary. In this

case, the lower boundary is equal to zero by default. For example, operator

Dim arrA(9) As Byte

is equivalent to operator

Dim arrA(0 To 9) As Byte

1.15. Arrays

69

If the lower boundary of indices must be equal to unity by default, we have

to type

Option Base 1

above the first line of the program. In this case, operator

Dim arrA(9) As Byte

is equivalent to operator

Dim arrA(1 To 9) As Byte

Further, we will consider that line Option Base 1 is absent.

The values of the boundaries should be between the limits for the Long data

type (Appendix 1), i.e., from -2147483648 to 2147483647.

Let us consider the following program:

Sub StaticArrays()

 Dim B1(1 To 6) As Byte, S1 As Byte

 Dim B2(1 To 6) As Currency, S2 As Currency

 Dim B3(1 To 6) As Byte, S3 As Byte

 Dim I As Byte

'Determination of first five elements of arrays:

 For I = 1 To 5 'first cycle

 B1(I) = I 'first power of I

 B2(I) = I ^ .333 'cubic root of I

 B3(I) = I ^ 3 'I cubed

 Next

'Determination of sixth elements of arrays:

 S1 = 0

 S2 = 0

 S3 = 0

 For I = 1 To 5 'second cycle

 S1 = S1 + B1(I)

 S2 = S2 + B2(I)

 S3 = S3 + B3(I)

 Next

 B1(6) = S1

 B2(6) = S2

 B3(6) = S3

End Sub

Chapter 1. Programming in Visual Basic

70

In this program:

 the first cycle is used for determination of the first five elements of arrays

B1, B2 and B3; upon completing the cycle, these elements of the arrays contain

the numerical values, which are equal to the 1st, 1st / 3rd and 3rd powers of I:

B1(1) = 1, B1(2) = 2, …, B1(5) = 5; B2(1) = 1, B2(2) = 1.2596, …,

B2(5) = 1.7091; B3(1) = 1, B3(2) = 8, …, B3(5) = 125;

 the second cycle is used for summation of the earlier determined elements

of the arrays; upon completing the cycle, the sums of the first five elements of

arrays B1, B2 and B3 are respectively equal to S1 = 15, S2 = 6.9971 and

S3 = 225;

 the remaining operators of the program assign the calculated values of the

sums to the sixth elements of the arrays: B1(6) = 15, B2(6) = 6.9971 and

B3(6) = 225.

It was noted above that one-dimensional and multidimensional arrays exist.

We reviewed one-dimensional arrays, which are similar to rows and columns on

the Excel worksheet and to vectors in mathematics.

For declaration of multidimensional arrays (with several indices), we use

a construct similar to operator Dim for one-dimensional arrays. The difference

consists in that several boundaries are given through a comma.

For example, operators

Dim A(4, 6) As Byte

Dim B(1 To 5, -7 To -1) As Byte

declare two-dimensional arrays A and B, which contain identical quantities of

elements. This quantity is equal to 5 × 7 = 35.

A two-dimensional array is similar to a range of cells on the Excel worksheet

and to a matrix in mathematics. A three-dimensional array is similar to a range of

cells on several worksheets of the same Excel workbook. A four-dimensional

array is similar to a range of cells on several worksheets of several open work-

books.

Open Excel workbooks are represented by buttons on the taskbar of Win-

dows Desktop.

The reference to an element of a multidimensional array includes the array

name and the indices listed through a comma. Examples of the reference are

figured in the following assignment operators:

A(i, j + 1) = 17

D(K) = A(i, 0)

As we see, the reference may be on the left and/or right of the assignment sign.

1.15. Arrays

71

Operator

Dim C(1 To 5, -5 To -1, 4) As Byte

declares a three-dimensional array containing 5 × 5 × 5 = 125 elements.

The number of indices is called the dimension of an array. The dimension of

the above C array is equal to 3. The largest dimension equals 60.

An array occupies S × Q + 4 × D + 20 bytes of the main memory, where:

 S is the memory size (in bytes) occupied by one element;

 Q is the quantity of the elements;

 D is the dimension.

It concerns both static and dynamic arrays. The last array is reviewed below.

The dynamic array is used when the quantity of its elements is not known in

advance and must be defined during the program execution. When finishing

work with the dynamic array, it is possible to free the memory cells occupied by

this array. It is important for problems demanding large size of the main

memory.

The declaration of the dynamic array has the following two parts.

1. The array is declared by means of the Dim operator without boundaries of

indices. A pair of parentheses must follow the array name.

2. The boundaries of indices are specified by means of the ReDim operator

in a proper place of the program, at that, we can use not only integers as bounda-

ries, but also arithmetic expressions. It is important that all variables in these

expressions have numerical values before the ReDim operator execution.

The following program is an example of using the dynamic array.

Sub DynamicArray()

 Dim A() As Byte 'declaration of array

 Dim M As Integer, N As Integer

 M = 3

 ReDim A(-5 To M ^ 2) 'specification of boundaries

 For N = -5 To M ^ 2

 A(N) = N + 30

 Next

 ReDim A(5) 'specification of boundaries

 N = 0

 Do

 A(N) = N ^ 3

 N = N + 1

 Loop Until N ^ 2 > 10

End Sub

Chapter 1. Programming in Visual Basic

72

After typing this program in the code window, let us do the following.

1. By clicking, set the blinking cursor on variable A, more precisely, in front

of or behind A. Fulfill operations Debug > Add Watch. The Add Watch window,

containing the variable name in text box Expression, appears.

2. Click on OK. The Watches window, intended for the current visualization,

appears with a line corresponding to the A array.

3. Set the blinking cursor in any place of the program text.

4. Execute the program step-by-step (Fig. 1.11), watching the A array values

by means of the Watches window.

Fig. 1.11. The step-by-step execution of the DynamicArray program

For visualization of the A array values in the Watches window, we must click

on the plus sign in front of A in this window. As a result, plus turns to minus and

the A array values appear below.

We can edit the contents of the Watches window.

Let us admit that we want to watch the value of variable n instead of the A

array values. For this purpose, during the step-by-step program execution

(between presses of the F8 key), we must:

1.15. Arrays

73

1) click on the minus sign in front of A; as a result, the plus sign appears but

the A array values disappear;

2) highlight A by clicking on it (in the Watches window);

3) type n instead of A highlighted;

4) press the Enter key;

5) continue the step-by-step program execution, watching the value of n.

To remove the line, corresponding to the A array, from the Watches window,

we must:

1) highlight this line by clicking on the glasses pictogram;

2) press the Delete key.

To add a line, we must fulfill Debug > Add Watch, and so on.

To close the Watches window, we must click on the little cross in the top

right corner of this window. To open the Watches window, we must fulfill

View > Watch Window.

The ReDim operator can be used for changing the array’s dimension, as in

the following program:

Sub Dimension()

 Dim arrA() As Byte

 ReDim arrA(1, 1) 'two-dimensional array

 arrA(0, 0) = 13: arrA(0, 1) = 14

 arrA(1, 0) = 15: arrA(1, 1) = 16

 ReDim arrA(1 To 3, 3, 3) 'three-dimensional array

 arrA(1, 0, 0) = 17

End Sub

Note that, at repeated execution of the ReDim operator, the array values will

be lost because the ReDim operator nulls all elements of the array.

To keep the array values, we have to insert the Preserve keyword between

ReDim and the array name. As an example, see operators 0, 1 and 2 in the fol-

lowing program:

Sub Conservation1()

 Dim J As Integer

0: Dim arrA() As Integer 'declaration of array

1: ReDim arrA(-5 To 1) 'specification of boundaries

 For J = -5 To 1

 arrA(J) = J ^ 2

 Next J

2: ReDim Preserve arrA(-5 To 4)

 'specification of boundaries

Chapter 1. Programming in Visual Basic

74

 For J = 2 To 4

 arrA(J) = J ^ 3

 Next J

End Sub

Labels 0, 1 and 2 may be omitted.

We advise the reader to execute the Conservation1 program step-by-

step, watching the arrA array values by means of the Watches window.

In the Conservation1 program, the Preserve keyword is used to

change the upper boundary of the one-dimensional array’s index without nulling

the array values. When changing the lower boundary, we cannot use this key-

word.

In the case of a multidimensional array, the Preserve keyword can be used

only when changing the upper boundary of the last index. As an example of such

usage of the Preserve keyword, see operators 0, 1 and 2 in the following pro-

gram:

Sub Conservation2()

 Dim I As Integer, J As Integer

0: Dim arrA() As Integer 'declaration of array

1: ReDim arrA(2, -5 To 1)

 'specification of boundaries

 For I = 0 To 2

 For J = -5 To 1

 arrA(I, J) = (I + 1) * J ^ 2

 Next J

 Next I

2: ReDim Preserve arrA(2,-5 To 4)

 'specification of boundaries

 For I = 0 To 2

 For J = 2 To 4

 arrA(I, J) = (I + 1) * J ^ 3

 Next J

 Next I

End Sub

We advise the reader to make the step-by-step execution of the last program,

watching the arrA array values by means of the Watches window.

The values of the lower and upper boundaries of any index can be returned to

the program. For this purpose, functions LBound and UBound are respectively

used. We can look the description of these functions in the Excel help system

started by pressing the F1 key when the VB window is active.

1.15. Arrays

75

If arrA is a one-dimensional array, the LBound and UBound functions are

used as in the operator block below:

Dim lower As Long, upper As Long

lower = LBound(arrA) 'lower boundary of index

upper = UBound(arrA) 'upper boundary of index

Function UBound is necessary, for example, when the value of the upper

boundary is unknown and, at the same time, we have to increase this value by

certain number.

As it was already told, advantage of the dynamic array over the static is that

we can free the memory cells, earlier occupied by the dynamic array. Operator

Erase is used for this, as in the following example program:

Sub Memory()

 Dim A() As Byte

 Dim B() As Byte

 ReDim A(8) 'memory for A: 9 + 4 + 20 = 33 bytes

 Erase A 'memory for A: 0 bytes

 ReDim B(2, 3)

 'memory for B: 12 + 8 + 20 = 40 bytes

End Sub

After inputting the Memory program into the code window, let us make the

following:

1) generate the lines corresponding to arrays A and B in the Watches win-

dow, fulfilling Debug > Add Watch twice;

2) click on any place of the program text to set the blinking cursor there;

3) execute the program step-by-step, watching the memory distribution by

means of the Watches window.

For solving a series of mathematical problems, arrays of random numbers are

required. They can be generated by means of the Rnd function (p. 46).

Let us consider the following program:

Sub RandomNumbers()

 Dim N As Long

 Dim I As Long

 Dim S() As Single

 N = 20

 ReDim S(1 To N)

Chapter 1. Programming in Visual Basic

76

 Randomize 'it must be before calls of Rnd

 For I = 1 To N

 S(I) = Rnd

 Next I

End Sub

This program calculates 20 random real numbers from 0 to 1 and writes them

into dynamic array S. The Rnd function is being called in cycle For…Next.

Function Rnd is the built-in generator of random real numbers uniformly

distributed on segment]1,0[: a number, being returned by the Rnd function,

appears in any place of segment]1,0[with equal probability.

Before a series of the Rnd function calls, the Randomize operator must be

executed for preparing the random-number generator for work.

We advise the reader to execute the RandomNumbers program step-by-

step, watching the S array by means of the Watches window.

Operator Randomize and function Rnd are used in code Listing 6.11

intended for minimization of the multimodal function (Section 6.8).

1.16. User-defined procedures

77

1.16. User-defined procedures

A user-defined procedure allows executing an operator block in different

places of our program.

According to this VB construct:

1) we have to write the block, intended for multiple executions, only once;

2) a name with formal parameters or without them must be written in the

header of the block.

This expanded block is called a procedure declaration.

Generally, the user-defined procedure has:

 input parameters, which are considered given;

 output parameters, which are determined while executing the block.

After forming the procedure declaration, we locate the calls of this procedure

with the actual parameters in those places of the program, which should be occu-

pied by the block being the procedure prototype.

The procedures are divided into functions and subroutines (subprograms).

The function, returning a value, is intended for usage in arithmetic and logical

expressions and in strings. The subroutine usage in expressions and strings is

impossible. This is the main difference between the function and subroutine.

The declaration of the user-defined function has the following syntax:

Function name([formal_parameters]) [As type]

 statements

End Function

where name is the function name, type is the data type (Appendix 1) of

name, i.e., of the function value, formal_parameters are the parameter

(argument) names listed through a comma, statements is the operator block.

The parameter names can be accompanied by keywords.

Block statements must include at least one assignment operator whose

left-hand side (on the left of sign =) is the function name.

The function call looks like

name([actual_parameters])

Chapter 1. Programming in Visual Basic

78

where actual_parameters are variables, arrays, expressions (arithmetic,

logical) and/or strings listed through a comma.

As a result of calling the name function, the function value, corresponding to

actual_parameters, is returned into the program.

Records and arrays of records may be among formal and actual parameters.

We will review the record construct in Section 1.18.

Let us consider the following code:

Sub Program1()

 Dim L As Long

 Dim W As Double

 L = Fact(12)

 W = 4.2 + Fact(10) / 2

End Sub

Function Fact(N) As Long 'N < 13

 Dim I As Byte

 Dim J As Long

 J = 1

 For I = 1 To N

 J = J * I

 Next I

 Fact = J

End Function

The first group of operators is program Program1; the second group is the

declaration of function Fact. They are in one or different modules of the same

Excel workbook, i.e., we can type the program and the function declaration in

one or different code windows.

The Fact function calculates N!, i.e., factorial of natural number N, which is

the formal parameter.

We see two calls of the Fact function in the program, with 12 and 10 as the

actual parameter.

1. The Fact function call is located in the right-hand side of assignment

operator

L = Fact(12)

As a result of the operator execution, the Fact function value (that is, the value

returned by the Fact function into the program when N is equal to 12) is

assigned to the L variable.

1.16. User-defined procedures

79

2. The Fact function call is figured in arithmetic expression

4.2 + Fact(10) / 2

The value of this arithmetic expression is assigned to the W variable.

The declaration of the user-defined subroutine has the following syntax:

Sub name([formal_parameters])

 statements

End Sub

where name is the subroutine name, formal_parameters are the parameter

names listed through a comma, as in the above declaration of the user-defined

function, statements is the operator block.

Keyword Sub occurs from word “subroutine”. It is in the beginning and end

not only of the subroutine declaration (or simply of the subroutine), but also of

the program because “main subroutine” is synonym of “program”.

There are two equivalent operators of calling the subroutine:

Call name([actual_parameters])

name [actual_parameters]

where actual_parameters is the list of actual parameters, as in the above

call of the user-defined function. In the presence of the Call keyword, the

actual parameters are in parentheses; in the absence of Call, the parentheses are

not used.

The example program and subroutine follow:

Sub Program2()

 Dim aa As Single, bb As Single

 Dim cc1 As Single, cc2 As Single, cc3 As Single

 aa = 3

 bb = 4

 Call Hypotenuse(aa, bb, cc1)

 '1st call of subroutine

 Call Hypotenuse(3, 4, cc2)

 '2nd call of subroutine

 Hypotenuse aa, bb, cc3

 '3rd call of subroutine

End Sub

Chapter 1. Programming in Visual Basic

80

Sub Hypotenuse(ByVal A, ByVal B, ByRef C)

 C = Sqr(A ^ 2 + B ^ 2)

End Sub

The first group of operators is program Program2, the second group is the

declaration of subroutine Hypotenuse for calculating the length of the hypote-

nuse of a right-angled triangle. They are located in one or different modules.

We see three operators of calling the Hypotenuse subroutine in program

Program2, and two of them contain the Call keyword.

Formal parameters A and B (in the subroutine declaration) are the input pa-

rameters, lengths of the legs. The ByVal keyword in front of A and B in the first

line of the subroutine declaration (i.e., in the header of the operator block) means

that these parameters must be passed by value (when calling Hypotenuse). In

this case, the values of parameters A and B (3 and 4, respectively) are transferred

to the Hypotenuse subroutine at all three calls.

Formal parameter C is the output parameter, i.e., the hypotenuse length. The

ByRef keyword in front of C means that this parameter must be passed by

reference (when calling Hypotenuse). In this case, the address of the memory

cell, corresponding to variable cc1 (at the first call), cc2 (at the second call)

or cc3 (at the third call), is transferred to the Hypotenuse subroutine.

Keyword ByRef may be omitted.

In the code under consideration, the parameters of the Hypotenuse subroutine

are simple variables (not arrays). If the parameters are arrays, both input and

output parameters must be passed by reference.

Let us consider the following code located in one module:

Dim N1 As Integer

Sub Program3()

 Dim xx(50) As Double

 Dim yy(50) As Double

 Dim i As Integer

 N1 = 3

 For i = N1 To 30

 xx(i) = 0.1 * i

 Next i

 Call XSINX(30, xx, yy) 'call of subroutine

End Sub

Sub XSINX(ByVal N2, ByRef X() As Double, _

 ByRef F() As Double)

1.16. User-defined procedures

81

 Dim j As Integer

 For j = N1 To N2

 F(j) = X(j) * Sin(X(j))

 Next j

End Sub

In addition to usage of arrays as the subroutine parameters, we see something

new in the last code: the N1 variable is declared above the first line of the pro-

gram. This is done for making N1 visible (in respect of the usage possibility) in

both the program and subroutine. Let us return to the variable declaration.

So far, we have been speaking about how to declare variables, but have not

mentioned where to declare. We can declare them in two places:

 inside the program or user-defined procedure;

 in the general declarations area occupying the top part of the code

window.

The place of the variable declaration defines the area of the variable usage.

For example, if a variable is declared in the user-defined procedure (as variable j

in the last code), only this procedure “sees” this variable. Other procedures

(if they exist) and the program cannot use this variable’s value and change it.

Such variable is called a local variable. We can also say that the variable is

visible at the procedure level.

For letting a variable’s value be accessible to all user-defined procedures of

the given module, we have to declare this variable in the general declarations

area (as variable N1 in the last code). In this case, the program and all user-

defined procedures, declared in the given module, can use this variable’s value

and change it.

Such variable is called a module variable. The Dim keyword in front of N1

may be replaced by the Private keyword:

Private N1 As Integer

All that was said about variables also concerns the user-defined constants, but

the constant’s value, naturally, cannot be changed.

If the declaration of the XSINX subroutine is located in the separate module,

the first line of the last code should be as follows:

Public N1 As Integer

Such variable is called a public variable. The declaration of public variable N1

can be in each of two modules or only in one, the first (with text of Program3)

or second (with text of XSINX).

Chapter 1. Programming in Visual Basic

82

At the similar declaration of a constant, instead of a variable, the correspond-

ing line of the general declarations area should begin with keyword combination

Public Const.

The debugger command, being fulfilled by pressing the F8 key, is called Step

Into: during the step-by-step program execution by means of the F8 key, the

entrance into the user-defined procedure takes place. If we do not need the step-

by-step execution inside the user-defined procedure, we use the following two

commands of the Debug menu.

1. Step Over — the step-by-step program execution without entrance into

the user-defined procedure. This command can also be performed by pressing

Shift + F8.

2. Step Out — exit from the user-defined procedure. It is used when the pro-

cedure remainder should be executed in the automatic mode. This command can

also be performed by pressing Ctrl + Shift + F8.

We advise the reader to execute programs Program1, Program2 and

Program3 by pressing F8, Ctrl + F8, Shift + F8 and Ctrl + Shift + F8. Before

the execution, the blinking cursor must be located inside the program text (not in

the procedure declaration and not in the general declarations area).

One or several last parameters of the list of parameters of the user-defined

procedure (function or subroutine) can be optional, i.e., they can be absent in the

procedure call.

If the parameter is not obligatory, the Optional keyword must be in front

of this parameter’s name in the first line of the procedure declaration. The

optional parameter must have the Variant data type (Appendix 1).

Let us consider the following example code:

Sub Program4()

 Dim bytA As Byte, bytB As Byte

 Dim intC As Integer

 bytA = 5

 bytB = 10

 intC = Apt(bytA, bytB)

 'result: bytB = 6, intC = 625

 bytB = 10

 intC = Apt(bytA) 'result: bytB = 10, intC = 625

End Sub

Function Apt(ByVal a, Optional b As Variant)

 If Not IsMissing(b) Then b = a + 1

 Apt = a ^ 4

End Function

1.16. User-defined procedures

83

In this example, the b parameter of the Apt function is optional; keyword

Optional in front of this parameter tells about it. Keyword combination

As Variant behind b may be omitted.

Other features of the Apt function declaration:

 Not is the logical negation;

 IsMissing is the following function.

The value of IsMissing(b) is equal to True or False as follows:

 True in the absence of the optional parameter in the Apt function call;

 False in the presence of the optional parameter.

We advise the reader to execute the Program4 program step-by-step,

watching the values of variables bytB and intC.

We can specify a value of the optional parameter in the absence of this

parameter in the call of the user-defined procedure.

The example program and procedure follow:

Sub Program5()

 Dim bytA As Byte, bytB As Byte, bytC As Byte

 bytA = 5: bytB = 2

 Call Ept(bytA, bytC, 5 * bytB) 'result: bytC = 15

 Call Ept(bytA, bytC) 'result: bytC = 8

End Sub

Sub Ept(ByVal a, c, Optional b = 3)

 c = a + b

End Sub

In this code:

 the b parameter of the Ept subroutine is optional;

 if the call of Ept contains only two actual parameters, b = 3 is used when

executing operator c = a + b.

We advise the reader to make the step-by-step execution of the Program5

program, watching the value of bytC.

Operators

Exit Sub

Exit Function

are intended for immediate terminating the procedure execution. The first opera-

tor should be in the subroutine declaration, the second — in the function declara-

tion. At their execution, the jump is being performed to the same point, as upon

the normal terminating the procedure execution.

Chapter 1. Programming in Visual Basic

84

The programs in this section use only one user-defined procedure; for exam-

ple, program Program1 uses only the Fact function. However, several user-

defined procedures may be used by one program.

According to the computer terminology, as a program, we can consider the

program itself (the main subroutine) together with the declarations of the user-

defined procedures (used by the program) and/or together with the general decla-

rations area. For example, program Program3 together with operator

Dim N1 As Integer

can also be called program Program3. The following can also be called pro-

gram Program3: the program itself, the XSINX subroutine declaration and the

general declarations area. Sometimes term “program” is used in the extended

sense, which is equivalent to “code”.

1.17. Built-in procedures. Usage of standard windows

85

1.17. Built-in procedures. Usage of standard windows

Visual Basic includes a considerable quantity of the built-in procedures,

which differ from the user-defined procedures in the following: developers of the

Visual Basic features programmed their declarations. These declarations are hid-

den from us as the program developer.

The built-in procedures, as well as the user-defined procedures, are divided

into functions and subroutines.

We have already encountered the built-in functions of VB. They are:

 functions reviewed in Section 1.9;

 IIf in Section 1.12;

 IsMissing in Section 1.16, etc.

Below is considered built-in function InputBox intended for input of in-

formation (into the program) by means of the standard windows of operating

system Windows.

An example of the built-in subroutine is the MsgBox procedure intended for

output of information (from the program) into the standard windows.

We will use InputBox and MsgBox in the program from Section 1.1, in-

tended for calculating the hypotenuse length, with which we began studying VB.

1. Let us enter the following program into the code window:

Listing 1.3

Sub Pythagoras1()

 Dim a As Single

 Dim b As Single

 Dim c As Single

 Dim s As String

1: s = InputBox(_

 "Enter length of the first leg and click OK")

2: a = Val(s)

3: s = InputBox(_

 "Enter length of the second leg and click OK")

4: b = Val(s)

5: c = Sqr(a ^ 2 + b ^ 2) 'according to Pythagoras

6: s = Str(c)

Chapter 1. Programming in Visual Basic

86

7: MsgBox s

End Sub

2. Let us run the Pythagoras1 program. The window appears (Fig. 1.12),

offering to input the length of the first leg of a right-angled triangle. Let us put,

for example, 400 (without inverted commas) into the text box of this window by

means of the keyboard and click on the OK button.

Fig. 1.12. The first window (on the Excel worksheet)

for inputting the source data

3. The window appears (Fig. 1.13), offering to input the length of the second

leg. Let us put, for example, 300 and click on OK.

Fig. 1.13. The second window for inputting the source data

4. The window appears (Fig. 1.14), containing the hypotenuse length calcu-

lated. Let us click on the OK button to close this window and terminate the pro-

gram execution.

1.17. Built-in procedures. Usage of standard windows

87

Fig. 1.14. The window with the result

In the above program, operator 1 includes the InputBox function call,

which is used for entering information from the keyboard. This function returns

the string, which was entered into the text box of the window in Fig. 1.12, i.e.,

"400". This string is assigned to the s variable of the String data type.

Operator 2 converts the s string’s value to number 400 and assigns this

number to the a variable of the Single data type.

Operator 3 assigns string "300", which was entered into the text box of the

window in Fig. 1.13, to the s variable. Operator 4 converts the s string’s value

to number 300 and assigns this number to the b variable.

Operator 5 calculates the hypotenuse length according to the Pythagoras the-

orem. The calculated value of 500 is assigned to variable c. Operator 6 converts

500 to string; as a result, the s string’s value becomes "500".

Operator 7, which is the call of the built-in MsgBox subroutine, opens the

window with value 500 calculated (Fig. 1.14). As in the case of the user-defined

subroutine, operator 7 may be written in the following form:

Call MsgBox(s)

The calls of built-in procedures InputBox and MsgBox have only one

parameter (of the String data type), which is obligatory. However, these pro-

cedures also have optional parameters, whose appointment may be looked in the

Excel help system started by pressing the F1 key when the VB window is active.

Before pressing this key, we recommend to locate the blinking cursor on the

required word (InputBox or MsgBox) in the code window containing program

Pythagoras1.

In the Excel help system, the MsgBox procedure is termed as a function,

instead of a subroutine, because the call of MsgBox may be a part of arithmetic

Chapter 1. Programming in Visual Basic

88

expressions. In this case, MsgBox returns (into the program) the integer value

depending on the button, on which the user clicked. In the example below, we

will consider using the MsgBox procedure as a function.

For calculating the area of a right-angled triangle by the Pythagoras1

program, we replace operator 7 by three operators labeled by 7, 8 and 9. The

following program is the result:

Sub Pythagoras2()

 Dim a As Single

 Dim b As Single

 Dim c As Single

 Dim s As String

1: s = InputBox(_

 "Enter length of the first leg and click OK")

2: a = Val(s)

3: s = InputBox(_

 "Enter length of the second leg and click OK")

4: b = Val(s)

5: c = Sqr(a ^ 2 + b ^ 2) 'according to Pythagoras

6: s = Str(c)

7: Dim Ret As Integer

8: Ret = MsgBox(s, vbYesNo, _

 "Do you want to calculate area?")

9: If Ret = vbYes Then MsgBox Str(a * b / 2)

End Sub

In operator 8, procedure MsgBox is a function. In this case, the procedure

parameters are in parentheses.

When executing the Pythagoras2 program, the window with the hypote-

nuse length calculated has other content (Fig. 1.15). After clicking on the Yes

button, the window with the triangle area calculated is displayed (Fig. 1.16).

By clicking on the OK button, we terminate the program execution.

Operators 7 — 9 of the last program may be replaced by operator

If MsgBox(s, vbYesNo, _

 "Do you want to calculate area?") = vbYes _

 Then MsgBox Str(a * b / 2)

This also gives the results shown in Fig. 1.15 and 1.16.

1.17. Built-in procedures. Usage of standard windows

89

Fig. 1.15. The first resulting window

Fig. 1.16. The second resulting window

Chapter 1. Programming in Visual Basic

90

1.18. Records

A record or user-defined data type is a collection of variables, possibly of dif-

ferent data types, grouped together under a single name for convenient handling.

Each variable of the record is called a field.

Before usage of a record, we must create it by means of the Type operator

with the following syntax:

Type struct

 field1 As type1

 field2 As type2

 ∙ ∙ ∙ ∙ ∙

 fieldN As typeN

End Type

where struct is a name of the record, field1, field2, …, fieldN are the

field names, type1, type2, …, typeN are data types (Appendix 1) for the

corresponding fields.

The record creation operator must be placed in the general declarations area

of the program, which uses this record.

For example, we have to work up results of a university session, where the

following three subjects were evaluated: physics, mathematics and informatics.

In this case, the following fields are necessary:

1) name of the student;

2) number of the test book;

3) mark in physics;

4) mark in mathematics;

5) mark in informatics.

Let the name of the record be Session, and let the field names be Name,

Number, Physics, Math and Inform. In this case, the record creation opera-

tor has the following form:

Type Session

 Name As String

 Number As Long

1.18. Records

91

 Physics As Byte

 Math As Byte

 Inform As Byte

End Type

To get access to the created record (by name struct), we have to declare

one or several variables in the program by means of the Dim operator, in the

same way as we declared variables in Section 1.3.

The declaration operator has the following syntax:

Dim variable As struct

where variable is the variable name, struct is the variable’s data type.

For example, operator

Dim Sess As Session, BestSess As Session

declares variables (records) Sess and BestSess of the Session data type.

For the reference to the record field, we use the variable and field names

separated by a point.

For example, assignment operator

Sess.Name = "Maksim Zakharkin"

contains the reference in the left-hand side. As a result of the operator execution,

string

"Maksim Zakharkin"

is assigned to the Name field of the Sess variable (of type Session).

For filling the fields, it is convenient to use the With operator, which has the

following syntax:

With variable

 .field1 = expression1

 .field2 = expression2

 ∙ ∙ ∙ ∙ ∙ ∙ ∙

 .fieldN = expressionN

End With

In this operator, expression1, expression2, ..., expressionN are

arithmetic or logical expressions (Sections 1.8 and 1.10) or strings, which can

be considered as expressions (Section 1.19).

Chapter 1. Programming in Visual Basic

92

For example:

With Sess

 .Name = "Maksim Zakharkin"

 .Number = 02237

 .Physics = 4

 .Math = 5

 .Inform = 5

End With

The assignment operator can be applied both to fields and to entire records,

as in the following examples:

BestSess.Number = Sess.Number

BestSess = Sess

Arrays of records may be used. For example, it is natural to store the marks

obtained by students of group E13 in array SessE13. If this array of records is

static, it is declared as follows:

Dim SessE13(1 To 15) As Session

For example, let us consider the following code for calculating distance

between Tushino and Ostankino on the Moscow map.

Listing 1.4

Type Point

 Name As String

 x As Single

 y As Single

End Type

Sub TushinoOstankino()

 Dim P() As Point

 ReDim P(0 To 1)

 With P(0)

 .Name = "Tushino"

 .x = 17.6

 .y = 29.7

 End With

1.18. Records

93

 With P(1)

 .Name = "Ostankino"

 .x = 44.1

 .y = 37.5

 End With

 MsgBox Str(Distance(P())) 'output of 27.62408

End Sub

Function Distance(positions() As Point) As Single

 Distance = _

 Sqr((positions(0).x - positions(1).x) ^ 2 + _

 (positions(0).y - positions(1).y) ^ 2)

End Function

Code Listing 1.4 includes the operator creating the Point record, program

TushinoOstankino and the Distance function. This code has the follow-

ing peculiarities:

 P is the dynamic array of records of the Point data type;

 the Distance function argument is the array of records of type Point.

To understand the work of program TushinoOstankino, we advise the

reader to execute it step-by-step, watching the P array in window Watches.

Before the first press of the F8 key, the blinking cursor should be located in the

TushinoOstankino program, not in the operator creating the Point record

and not in the Distance function.

Chapter 1. Programming in Visual Basic

94

1.19. Work with strings

The string is not only a pair of quotation marks "" and a sequence of charac-

ters enclosed in quotes (p. 27), but also a variable of the String data type,

declared by means of the String keyword. For example, in operator block

Dim A As String

Dim B As String * 15

A = "Informatics"

B = "Informatics"

we see the following strings: A, B, "Informatics".

The string as a variable may have inconstant or constant length (Appendix 1).

 The variable-length string occupies a part of the main memory, which can

change during the program execution. In the above example, A is a string of

variable length. According to Appendix 1, after performing assignment operator

A = "Informatics"

the A string occupies 21 bytes of the main memory.

 The fixed-length string occupies a fixed part of the main memory. At the

end of the string declaration (behind an asterisk), we must specify the size of the

main memory (in bytes) for this string. In the above example, B is a string of

fixed length, which occupies 15 bytes of the main memory.

The quantity of characters of the value, assigned to the fixed-length string,

may differ from the quantity specified in the declaration, i.e., may be less or

greater than 15. In the first case, instead of missing characters, spaces will be

automatically added to the end of the string. In the second case, superfluous

characters will be automatically removed.

For association of two or more strings, we must use one of signs & (amper-

sand) and + (plus). The resulting string, as a quoted sequence of characters, does

not depend on the sign.

The program below is an example of using signs & and + as the string con-

nector.

1.19. Work with strings

95

Sub Strings1()

 Dim strA As String, strB As String, strC As String

 strA = "String ": strB = "variable"

 strC = strA & strB

 'result: strC = "String variable"

 strC = "String " + strB

 'result: strC = "String variable"

End Sub

Owing to the presence of the connector, strings

strA & strB

"String " + strB

are called compound strings. They can be considered as expressions similar to

arithmetic and logical expressions.

Term “substring” is used below. It is a string, not containing the space and

tabulation characters. Substrings are put together into a string by means of the

space character or vbTab — the built-in constant corresponding to the tabulation

character. The space character and vbTab (or the tabulation character) are called

the substring connectors.

Let us complete the last program by operators

strA = "String variable"

 'result: strA = "String variable"

strB = "String" & " " & "variable"

 'result: strB = "String variable"

strC = "String" & vbTab & "variable"

 'result: strC = "String|variable"

According to the comments, the resulting first and second strings are the

same quoted set of characters. This string differs from the resulting third string

by only the character between substrings "String" and "variable". It is:

 the space character in the first and second strings;

 the tabulation character in the third string.

If we place the mouse pointer on strC in the program text (after execution

of the last operator), information String□variable or String variable appears.

It should be emphasized that the connection result is a string, not a substring.

When working with strings, three functions of removing spaces are used:

 Trim deletes the beginning and ending spaces of the string that is the

function argument;

 LTrim deletes the beginning spaces of the string (on the left);

 RTrim deletes the ending spaces of the string (on the right).

Chapter 1. Programming in Visual Basic

96

The following program is an example of using these functions.

Sub Strings2()

 Dim strA As String, strB As String

 strA = " String variable "

 strB = Trim(strA)

 'result: strB = "String variable"

 strB = LTrim(strA)

 'result: strB = "String variable "

 strB = RTrim(strA)

 'result: strB = " String variable"

End Sub

As already mentioned in Sections 1.4 and 1.8, for converting number to

string, the CStr or Str function is used; for the inverse conversion, the Val

function is used.

Function Space returns a string of spaces into the program; the quantity of

spaces is determined by the function argument.

The following program uses functions CStr, Val and Space.

Sub Strings3()

 Dim strA As String, curB As Currency

 Dim strC As String

 strA = "X = "

 curB = 45.77

 strC = strA & CStr(curB)

 'result: strC = "X = 45.77"

 curB = Val("45.77 = X") 'result: curB = 45.77

 curB = Val(strC) 'result: curB = 0

 strC = "String" & Space(3) & "variable"

 'result: strC = "String variable"

End Sub

It is possible to transform a string so that all letters in it become uppercase or

lowercase. For this purpose, functions UCase and LCase are used, respectively,

as in the following example program:

Sub Strings4()

 Dim strA As String, strB As String

 strA = "Pavel Ivanov"

 strB = UCase(strA) 'result: strB = "PAVEL IVANOV"

 strB = LCase(strA) 'result: strB = "pavel ivanov"

End Sub

1.19. Work with strings

97

To replace any part of a string by certain characters, the Replace function

is used. The example program follows:

Sub Strings5()

 Dim strA As String

 Dim strB As String

 strA = "Pavel Ivanov"

 strB = Replace(strA, "Ivanov", "Gusev")

 'result: strB = "Pavel Gusev"

End Sub

To determine the quantity of characters in a string (without considering

inverted commas), function Len (from “length”) is used, at that, its argument

is the string. Here is the example program:

Sub Strings6()

 Dim strA As String

 Dim intA As Integer

 strA = "String variable"

 intA = Len(strA) 'result: intA = 15

End Sub

Functions Replace and Len have additional possibilities, which can be

studied by means of the Excel help system started by pressing the F1 key when

the VB window is active.

Quite often, we have to extract a part from a string. For this purpose, func-

tions Left, Right and Mid (from “middle”) are used.

The calls of functions Left and Right are as follows:

Left(string, quantity)

Right(string, quantity)

These functions return the string containing the specified quantity of charac-

ters of the beginning and end of string, respectively.

The call of function Mid follows:

Mid(string, number[, quantity])

This function returns the string containing quantity characters of string,

starting from the character whose number equals number. If quantity is

omitted, the Mid function returns all characters up to the end of string.

Chapter 1. Programming in Visual Basic

98

Functions Left, Right and Mid are used in the following program:

Sub Strings7()

 Dim strA As String

 Dim strB As String

 strA = "My string variable"

 strB = Left("My string variable", 9)

 'result: strB = "My string"

 strB = Right(strA, 8) 'result: strB = "variable"

 strB = Mid(strA, 4, 6) 'result: strB = "string"

 strB = Mid(strA, 11) 'result: strB = "variable"

End Sub

Let us consider an example of using the compound string in the call of the

MsgBox procedure.

1. In Listing 1.4, we replace operator MsgBox Str(Distance(P()))

on p. 93 by the following operator block:

Dim L As Single

Dim S As String

Dim M As Single

L = Distance(P())

S = InputBox("Enter scale and click OK")

 'input of scale, Fig. 1.17

M = Val(S)

L = M * L

MsgBox "Distance from " & P(0).Name & " to " & _

 P(1).Name & vbCrLf & "equals" & Str(L) & " km"

 'output of distance, Fig. 1.18

2. Let us click on arrow ► to start the program execution.

3. We put 0.4 into the text box of the displayed window (Fig. 1.17) and click

on the OK button.

4. Let us click on the OK button in the emerging window (Fig. 1.18) to

terminate the program execution.

In the above operator block, the calls of InputBox and MsgBox appeared.

As already mentioned, the built-in InputBox function is used to input infor-

mation from the keyboard; this function returns (into the program) the string,

which was put into the text box. The build-in MsgBox procedure is used to

depict information on the display screen. The parameter of this procedure is

a compound string, which includes built-in constant vbCrLf.

1.19. Work with strings

99

Fig. 1.17. The window for inputting the scale

Fig. 1.18. The window with the calculation result

Because of using the vbCrLf constant, we see two lines in the resulting

window (Fig. 1.18). The vbCrLf constant can be replaced by association

vbCr & vbLf of built-in constants “return” vbCr (from “Carriage return”) and

“new line” vbLf (from “Linefeed”).

The TimeValue function is useful, which converts time from the String

data type to the Date data type. As an example of using this function, let us

consider the following program:

Sub TV()

 Dim dTime1 As Date

 Dim dTime2 As Date

 Dim dTime3 As Date

 dTime1 = #2:30:45# + TimeValue("00:15:00")

 '1st assignment operator

 'result: dTime1 = 2:45:45

Chapter 1. Programming in Visual Basic

100

 dTime2 = Now + TimeValue("00:25:00")

 '2nd assignment operator

 dTime3 = Time + TimeValue("00:00:10")

 '3rd assignment operator

End Sub

Because of executing the 2nd assignment operator, the dTime2 variable has

a value, which is equal to the current date and time plus 25 minutes. Because of

executing the 3rd assignment operator, dTime3 is equal to the current time plus

10 seconds.

In Listing 2.10 on p. 170, we will use the Format function intended for

converting a value to a string of the given form. To see the full information on

this function, we must press the F1 key when the blinking cursor is located on

Format in the code window.

1.20. Work with text files

101

1.20. Work with text files

A file is an area on a hard disk, compact disk, USB flash drive (UFD) or any

other medium that:

 contains single-type information;

 has a name.

When working with files, we will use operations for reading information

from a file and writing information into a file.

Several types of files exist; we will consider text files. The contents of such

file are lines of characters with a combination of characters “return” and “new

line” at the end of each line.

For viewing text files, we will use the Notepad editor. At its window, we will

not see characters “return” and “new line”.

To start working with a text file, operator Open is used for opening this file.

This operator has the following syntax:

Open name For purpose As number

In this construct, name is the file full name, i.e., the file name together with its

path (in the file system of Windows) and extension, number is the file number,

purpose is keyword Input, Output or Append (from “appending”).

The last three keywords have the following sense:

 Input means that the file must be opened for reading information from

this file;

 Output — the file must be opened for writing information into it;

 Append — the file must be opened for adding information into it.

As the file number, we recommend to use the number variable of the

Integer data type whose value is the result of executing the following assign-

ment operator:

number = FreeFile

where FreeFile is the built-in function that returns (into the program) the free

file number.

Chapter 1. Programming in Visual Basic

102

The last assignment operator must be placed above the Open operator, more

precisely, it must be executed before the Open operator.

After finishing the work with the file, it must be closed by the Close opera-

tor as follows:

Close number

For addition of new lines into the file, operator Print is used, which has the

following syntax:

Print #number, line1

where line1 is a string (the digit may be different).

Let the file with specified number be opened by means of the Output

keyword. When performing the Print operator, string line1 (with a combina-

tion of characters “return” and “new line” at the end, not in inverted commas) is

written into the file beginning. When repeated performing the Print operator,

string line2 is added into the file, and so on.

Let the file with specified number be opened by means of the Append

keyword. When performing the Print operator, line1 is added into the file.

Below, we will consider two ways of extracting information from the file

with specified number, which is opened by means of the Input keyword.

1. Extracting information by using operator Line Input with the follow-

ing syntax:

Line Input #number, variable

This operator reads the next line from the file, at that, this line (without “return”

and “new line” at the end) is assigned to variable of the String data type.

2. Extracting information by means of built-in function

Input(quantity, number)

This function returns (into the program) the string, which contains the subse-

quent characters from the file. The quantity of these characters is specified by

quantity.

In programs Creation and Addition, given below, we will use the re-

viewed operators and built-in functions intended for work with text files. Using

these programs as examples, we will also consider other useful operators and

functions.

1.20. Work with text files

103

The first program follows:

Listing 1.5

Sub Creation()

 Dim FName1 As String

 Dim FName2 As String

 Dim FNum1 As Integer

 Dim FNum2 As Integer

 Dim n1 As Long

 Dim n2 As Long

 Dim strA As String 'auxiliary string

1: MkDir("c:\Users\usr\texts")

 'creating folder texts

2: FName1 = _

 "c:\Users\usr\texts\a.txt"

 'full name of 1st file

3: FName2 = _

 "c:\Users\usr\texts\b.txt"

 'full name of 2nd file

'Creating file a.txt:

 FNum1 = FreeFile

 Open FName1 For Output As FNum1

 'opening file a.txt

 strA = "Text file is created,"

 Print #FNum1, strA

 Print #FNum1, _

 "it contains several strings."

'Determining quantity of characters in file a.txt:

 n1 = LOF(FNum1)

 Close FNum1 'closing file a.txt

 MsgBox "In file a.txt" & Str(n1) & " characters"

'Copying information from file a.txt to file b.txt:

 FNum1 = FreeFile

 Open FName1 For Input As FNum1

 'opening file a.txt

 FNum2 = FreeFile

 Open FName2 For Output As FNum2

 'opening file b.txt

 Do Until EOF(FNum1) 'cycle of reading-writing

 Line Input #FNum1, strA

 Print #FNum2, strA

 Loop

Chapter 1. Programming in Visual Basic

104

 Close FNum1 'closing file a.txt

'Adding new string into file b.txt:

 strA = "New string is added."

 Print #FNum2, strA

'Determining quantity of characters in file b.txt:

 n2 = LOF(FNum2)

 Close FNum2 'closing file b.txt

 FNum2 = FreeFile

 Open FName2 For Input As FNum2

 'opening file b.txt

 strA = Input(1, FNum2) 'reading character

 Close FNum2 'closing file b.txt

 MsgBox "In file b.txt" & Str(n2) & _

 " characters, " & _

 "and first character is " & _

 strA

End Sub

In operators 1, 2 and 3, usr is the computer user name. Before the program

execution, the reader should type his concrete user name instead of usr in these

operators.

During the program execution, operator

MkDir("c:\Users\usr\texts")

creates folder texts inside folder usr; MkDir is the abbreviation of “make

directory”.

The built-in LOF function returns into the program the quantity of characters

in the file, at that, characters “return” and “new line”, which are at the end of

each line, are taken into consideration. The argument of this function is the file

number; LOF is the abbreviation of “length of file”.

The argument of the built-in EOF function is the file number too. This func-

tion, figuring in the condition of the Do Until…Loop cycle termination, returns

(into the program) True at achievement of the file end. The function name is the

abbreviation of “end of file”.

The MsgBox procedure is intended for depicting the string, which is its

parameter, on the display screen. Two calls of MsgBox are in the Creation

program, therefore, two windows, represented in Fig. 1.19 and 1.20, appear

during the program execution.

After termination of the program execution, files a.txt and b.txt have

the following contents.

1.20. Work with text files

105

Fig. 1.19

Fig. 1.20

File a.txt:

Text file is created,

it contains several strings.

File b.txt:

Text file is created,

it contains several strings.

New string is added.

We advise the reader to look through the contents of files a.txt and

b.txt by using the Notepad editor to be convinced of the correctness of the

program work.

Before restarting the Creation program, the MkDir operator of creating

the texts folder must be omitted, for example, by means of an apostrophe.

Chapter 1. Programming in Visual Basic

106

The liquidation of files a.txt and b.txt and folder texts may be

required at the end of the program execution. For this purpose, the following

operators are used:

Kill(FName1)

Kill(FName2)

RmDir("c:\Users\usr\texts")

where RmDir is the abbreviation of “remove directory”. We must insert these

operators above operator End Sub.

At the end of this section, we will consider how to tune Windows Explorer

for displaying not only the file names, but also the extension of these names, for

example, extension .txt for the above text files.

The following second program adds a line into file b.txt and runs the

Notepad editor.

Listing 1.6

Sub Addition()

 Dim FNum As Integer, n As Long

 Dim RetVal As Integer 'for function Shell

 FNum = FreeFile

'Opening file b.txt and adding new string:

 Open "c:\Users\usr\texts\b.txt" _

 For Append As FNum

 Print #FNum, "Second new string is added."

'Determining quantity of characters in file b.txt:

 n = LOF(FNum)

 Close FNum 'closing file b.txt

 MsgBox "In file b.txt" & Str(n) & " characters"

'Starting editor Notepad:

0: RetVal = Shell("c:\Windows\notepad.exe",1)

End Sub

The Shell function (operator 0) is intended for running any executable file

whose name has extension .exe. The first argument of the Shell function is the

full name of the executable file (here, the full name must be without spaces). The

second argument, which may be omitted, defines the style of the window being

a result of calling the Shell function.

To see the full information on the Shell function, we must press the F1 key

when the blinking cursor is located on Shell in the code window.

1.20. Work with text files

107

We will run the Addition program after the execution of the Creation

program (without the operators liquidating the files and folder).

The window, shown in Fig. 1.21, appears during the Addition program

execution. After clicking on OK in this window, operator 0 is executed, which

starts the Notepad editor (Fig. 1.22), and then operator End Sub is executed, i.e.,

the Addition program is terminated.

Fig. 1.21

Fig. 1.22. The Notepad window

After terminating the Addition program, the Notepad window remains

open. By means of this window, we can view the contents of a text file (in par-

ticular, b.txt) and, if necessary, create a new file or edit an existing file.

After the Addition program execution, file b.txt has the following con-

tents:

Chapter 1. Programming in Visual Basic

108

Text file is created,

it contains several strings.

New string is added.

Second new string is added.

If a file is opened for adding information (by using keyword Append), this

file may not exist. In this case, the file is created. If a file is opened for reading

information (by using keyword Input), this file, naturally, should exist.

To see file names with extension in Windows Explorer, we must fulfill the

following:

1) in Windows Explorer, open the folder, which contains files of interest;

2) on the menu bar of Windows Explorer, fulfill Organize > Folder and

search options;

3) in open window Folder Options, activate tab View;

4) in list Advanced settings, turn off option Hide extensions for known file

types;

5) successively click on buttons Apply and OK.

To expand the chosen operation mode of Windows Explorer to all folders, we

must click on button Apply to Folders before clicking on the Apply button. In

open window Folder Views, we must click on the Yes button.

We advise the reader to write a program for creating a text file including

1n lines of the following form:

ii
fx)f(,

where
i

x ,
i

f are the values of argument and function, ni0 ;
0

xa <
1

x <

2
x < ... <

2n
x <

1n
x < bx

n
. Function)(xf and corresponding values of

a and b from Appendix 4 must be used.

The constructs of Visual Basic considered above can be used for solving

sufficiently complicated tasks, two of which will be formulated in the next

section.

1.21. Matrix terminology. Formulation of demonstration tasks

109

1.21. Matrix terminology. Formulation

of demonstration tasks

In the previous sections, we were solving the task of calculating the hypote-

nuse length. However, this task is very simple, and it is impossible to show all

possibilities of Visual Basic on it. Therefore, we will also solve two tasks of

transposing a numerical matrix, relative to the main and auxiliary diagonals. Let

us formalize the concept of matrix transposition.

Let A be a matrix containing m rows and n columns, B be a matrix containing

n rows and m columns:

mnmjmm

inijii

nj

nj

aaaa

aaaa

aaaa

aaaa

......

......

......

......

......

......

21

21

222221

111211

A ,

nmninn

jmjijj

mi

mi

bbbb

bbbb

bbbb

bbbb

......

......

......

......

......

......

21

21

222221

111211

B .

If elements of matrix B “are calculated” according to formula

ijji
ab (1.2)

at 1 ≤ i ≤ m, 1 ≤ j ≤ n, mathematicians say that matrix B is obtained by transpos-

ing matrix A relative to the main diagonal (or simply, by transposing matrix A).

The main (left-to-right) diagonal of the matrix is an imaginary straight line

from the top left corner of the matrix to the bottom right corner.

If formula (1.2) is replaced by formula

jnimji
ab

1,1
, (1.3)

then matrix B is obtained by transposing A relative to the auxiliary diagonal.

The auxiliary (right-to-left) diagonal of the matrix is an imaginary straight

line from the top right corner to the bottom left corner.

To solve the task of transposing matrix A, we must generate matrix B accord-

ing to formula (1.2) or (1.3). Note that A
T
 is the usual designation of the A ma-

trix transposed relative to the main diagonal, i.e., according to (1.2).

Chapter 1. Programming in Visual Basic

110

Let us notice the following obvious fact: when transposing the matrix relative

to the main diagonal, its rows and columns interchange their positions.

If m = n, matrix A is called a square matrix. In this case, elements
ii

a are

located on the main diagonal, elements
imi

a
1,

 are located on the auxiliary

diagonal, 1 ≤ i ≤ m.

When transposing square matrix A relative to the main (auxiliary) diagonal,

the mirror reflection of A relatively the main (auxiliary) diagonal takes place.

Further, we will use the following terms and definitions.

The A matrix, containing m rows and n columns, is named as “the A matrix

of size m × n” or “the A matrix m × n”. The matrix, containing one column or one

row, is called a vector.

The product of the A matrix m × n and the C matrix n × s is the AC matrix

m × s, which is a result of the scalar multiplication of the rows of A and the

columns of C, namely:

nsnn

s

s

mnmm

n

n

ccc

ccc

ccc

aaa

aaa

aaa

...

....

...

...

...

....

...

...

21

22221

11211

21

22221

11211

AC

nsmnsmnmnmnmnm

nsnsnnnn

nsnsnnnn

cacacacacaca

cacacacacaca

cacacacacaca

............

............

............

............

1121211111

2121221221121121

1111211211111111

.

More precisely, the elements of R = AC are defined by the following formula:

n

j

jqijiq
car

1

)(,

1 ≤ i ≤ m, 1 ≤ q ≤ s.

The A matrix m × n and the D matrix m × n are called equal if the correspond-

ing elements of these matrices are equal:
ijij

da , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Square matrix E is called the unit matrix if the main diagonal of E contains

only units, and all remaining elements of E are equal to zero.

The inverse A matrix is the A
-1

 matrix of size n × m, which satisfies the fol-

lowing condition: A
-1

A = E, where E is the unit matrix of size n × n.

1.22. Program for transposing a matrix relative to its auxiliary diagonal

111

1.22. Program for transposing a matrix

relative to its auxiliary diagonal

The program for solving one of the two tasks formulated in the previous sec-

tion is given below. This program uses file a.txt with the source data (values

of m and n and matrix A) and creates file b.txt with the result (the B matrix).

Listing 1.7

Sub TRANSPA()

Dim FNameA As String, FNameB As String

Dim FNum As Integer

Dim strC As String, strD As String, strE As String

Dim m As Integer, n As Integer

Dim i As Integer, j As Integer

Dim k As Integer, l As Integer

Dim A() As Double, B() As Double

1: FNameA = _

 "c:\Users\usr\texts\a.txt"

2: FNameB = _

 "c:\Users\usr\texts\b.txt"

3: FNum = FreeFile

'Opening file a.txt:

4: Open FNameA For Input As FNum

'Reading values of m and n from file a.txt:

5: Line Input #FNum, strC

6: strC = Mid(strC, 3)

7: m = Val(strC)

8: Line Input #FNum, strC

9: strC = Mid(strC, 3)

10: n = Val(strC)

'Setting size of matrices:

11: ReDim A(1 To m, 1 To n)

12: ReDim B(1 To n, 1 To m)

'Reading matrix A from file a.txt:

13: For i = 1 To m

14: Line Input #FNum, strC

Chapter 1. Programming in Visual Basic

112

15: j = 0

16: strD = ""

 'string "" is not equal to string " "

17: l = Len(strC)

18: For k = 1 To l

19: strE = Mid(strC, k, 1)

20: If strE <> " " Then strD = strD & strE

21: If strE = " " Or k = l Then

22: j = j + 1

23: A(i, j) = Val(strD)

24: strD = ""

25: End If

26: Next k

27: Next i

'Closing file a.txt:

28: Close FNum

29: FNum = FreeFile

'Opening file b.txt:

30: Open FNameB For Output As FNum

'Forming matrix B, its writing into file b.txt:

31: For j = 1 To n

32: strC = ""

33: For i = 1 To m

34: B(j, i) = A(m + 1 - i, n + 1 - j)

35: strC = strC & Str(B(j, i)) & " "

36: Next i

37: Print #FNum, strC

38: Next j

'Closing file b.txt:

39: Close FNum

End Sub

In operators 1 and 2, usr is the user name.

Program TRANSPA is intended for transposing a numerical matrix relative to

its auxiliary diagonal. In operators 16, 24 and 32, we see string "", not contain-

ing any character. Operators 20, 21 and 35 include string " ", which contains

only the space character.

Operator 34 corresponds to formula (1.3), which defines the operation of

transposing a matrix relative to its auxiliary diagonal.

File

c:\Users\usr\texts\a.txt

1.22. Program for transposing a matrix relative to its auxiliary diagonal

113

contains the source data, i.e., values of m and n and matrix A. This file may be

created by means of the Notepad editor whose window is represented in

Fig. 1.23.

Fig. 1.23. The source data: elements of the matrix’s

rows separate from each other by one space

For starting the execution, we can use one of the following two ways:

 clicking on arrow ► in the VB window;

 fulfilling the following operations in the Excel window: Developer (or

View) > Macros > line TRANSPA > Run.

It is possible to appoint a combination of keys starting the program execu-

tion. For that, being in the Excel window, we fulfill operations Developer

(or View) > Macros > line TRANSPA > Options. In open window Macro

Options, we fulfill the following:

 appoint the startup key combination, for example, Ctrl + t;

 click on the OK button;

 close the window by clicking on the little cross in the top right corner.

After that, the simultaneous press of the Ctrl and t keys runs the TRANSPA

program.

The result of the TRANSPA program execution is matrix B, which is in file

c:\Users\usr\texts\b.txt

The Notepad window with matrix B is represented in Fig. 1.24.

Let us consider ways of transition from the VB window to the Excel window

and back.

The transition from the VB window to the Excel window is possible in one of

the following four ways:

Chapter 1. Programming in Visual Basic

114

 clicking on the Excel button at the left end of the standard toolbar in the

VB window;

 simultaneous pressing the Alt and F11 keys;

 rolling the VB window down by means of the underscore button in the

top right corner;

 clicking on the Excel button on the taskbar of Windows Desktop.

Fig. 1.24. The calculation result

For returning to the VB window from the Excel window, we should fulfill

Developer (or View) > Macros > line TRANSPA > Edit. As a result, the VB win-

dow with the TRANSPA program text in the code window appears. Further, we

can correct the program, for example, change names of files with the source data

and for the calculation result.

If we click on button Step Into (instead of button Edit), the VB window will

also be opened. Further, the step-by-step execution of the TRANSPA program

(by means of the F8 key) is possible.

Other ways of transition from the Excel window to the VB window follow:

 pressing Alt + F11;

 rolling the Excel window down by means of the underscore button;

 clicking on the VBA button on the taskbar of Windows Desktop.

The TRANSPA program text almost coincides with the text of the program,

which will be reviewed in the next section. Therefore, the TRANSPA program

will still be required.

For further usage of the TRANSPA program, we have to save it on the com-

puter’s hard disk by fulfilling the following operations similar to the operations

described on p. 18:

1) in the Excel window, File > Save As > Browse;

2) in the Save As window, choose a folder intended for saving the Excel

workbook, for example, c:\Users\usr;

1.22. Program for transposing a matrix relative to its auxiliary diagonal

115

3) enter BookTRANSPA into text box File name;

4) set file type Excel Macro-Enabled Workbook by means of drop-down list

Save as type;

5) click on the Save button.

The TRANSPA program is saved as a part of the BookTRANSPA.xlsm

workbook of Excel.

As we see, the user interface of the TRANSPA program is a pair of text files.

Chapter 1. Programming in Visual Basic

116

1.23. User-defined forms

As the program user interface, the form is sometimes convenient. For creat-

ing this rectangle with text boxes, buttons and other control elements, Form

Designer exists in Visual Basic Environment.

Let us create the form for the program intended for calculating the length of

the hypotenuse of a right-angled triangle.

The following control elements are suitable for the form:

 place for displaying the calculation result;

 text box for inputting (into the program) the length of the first leg;

 text box for inputting the length of the second leg;

 button for starting the calculation.

Let Book1 be the name of the active Excel workbook. Developing the pro-

gram (project) with the form begins with the following sequence of operations

for inserting the form into the active Excel workbook (instead of inserting the

module).

1. In the Excel window, fulfill Developer > Visual Basic in area Code.

As a result, the VB window (Fig. 1.1) containing the project explorer window

and the properties window appears.

In the absence of the properties window, we can open it by fulfilling View >

Properties Window.

2. In the project explorer window, highlight line VBAProject (Book1) by

clicking on it.

3. Fulfill Insert > UserForm.

As a result, the following features appear (Fig. 1.25):

 blank form UserForm1, a rectangle with points;

 line UserForm1 in the project explorer window;

 the Toolbox window, containing the control elements.

If the last window is not displayed, for displaying it, we must click on the

form and then fulfill View > Toolbox.

The properties window “is tied” to the form because this element is selected

by the frame with 8 markers (five black and three white, Fig. 1.25).

To change the width of the UserForm1 form, we have to drag the form’s right

border by using the mouse, having seized the white marker in the center of this

1.23. User-defined forms

117

border. Thus, the value of the Width property (in the properties window) also

changes.

Fig. 1.25. The VB window after inserting

UserForm1 into the Excel workbook

Expression “to seize a point” means the following: to place the mouse pointer

on this point, and then to press the left button on the mouse.

The value of property Width (that is, the form width) can also be set in the

properties window.

Similarly, we can change the height of the UserForm1 form (property

Height).

After clicking on property Caption (in the properties window), we will

change it to the following: My first form.

The Toolbox window (Fig. 1.25) contains pictograms of the control elements,

which can be simply used in the project. We will use the following four ele-

ments: Label, TextBox, CommandButton and CheckBox. To see the element

name, we have to place the mouse pointer on this element in Toolbox.

To insert an element into the form and to edit this element, we fulfill the

following operations.

Chapter 1. Programming in Visual Basic

118

1. Select the form by clicking on it.

2. Click on the required element of the Toolbox window.

3. Move the mouse pointer into the form. At that, the pointer becomes

a crosshair.

4. Place the crosshair into the required part of the form and press the left

button on the mouse. After that, release the button.

Or in another way, without releasing the left button, drag the mouse pointer,

for example, downwards and to the right. After that, release the button.

5. Move the element (if needed), having seized its center.

6. Move the element’s borders (if needed), by turn having seized the white

markers.

7. Set the element’s properties by means of the properties window, which is

tied to this element (selected by the frame with 8 white markers).

Upon termination of the element editing, we must remove its selection by

clicking on area outside the element limits. To return to the element editing, we

must select this element by clicking on its image in the form. For removing the

selected element from the form, we must press the Delete key.

In the form, we should create the message place, where the calculation result

will be displayed during the program execution. For this purpose, we will use

element Label.

To insert element Label into the form and to change several properties of this

element, we fulfill the following.

1. Click on the Label element, which is in the Toolbox window.

2. Move the mouse pointer into the form. At that, the pointer becomes

a crosshair.

3. Place the crosshair into the top left part of the form and press the left but-

ton on the mouse. Without releasing the button, drag the mouse pointer down-

wards and to the right. After that, release the button.

The message place with default name Label1 (that is, the Label1 element) is

the result (Fig 1.26).

4. Use the Font property for setting the font fashion and size. When clicking

on this property, a button appears in the properties window. The dots on this but-

ton mean that a window exists for setting the Font property.

5. Click on the dots image button. At that, the Font window appears for set-

ting the message parameters.

6. Click on line Cambria Math (Fig. 1.27) for setting this font. In the Sample

area, the font fashion is pictured.

7. Set the font size at 10.

8. Click on the OK button.

1.23. User-defined forms

119

Fig 1.26. The VB window after inserting

element Label1 into form UserForm1

Fig. 1.27. The window for setting font

Chapter 1. Programming in Visual Basic

120

9. Set the following values of other properties of the message place.

TextAlign: 2 (horizontal center alignment, taken from the drop-down list)

Caption: Enter source data and click button "Account"

Name: LabelMessage (we change the element name)

10. By means of the mouse, change the height and width of the message place

and the height and width of the form to get the message image as in Fig. 1.28.

Fig. 1.28. The form after the program start

Similarly, we can insert the text box into the form. For that, the TextBox

element is used.

We will insert two text boxes (Fig. 1.28), with names TextBoxA and

TextBoxB. On the left of the text boxes, we will create inscriptions a and b by

using the Label element.

To insert the button into the form, we fulfill the following.

1. Click on the CommandButton element, which is in the Toolbox window.

2. Depict the button in the form.

3. Set the following properties of this button.

Caption: Account

Name: ComButCalc

4. Remove the button selection by clicking on area outside its limits.

The development of the form by means of Form Designer is completed. Now

we have to develop the program.

Let us click twice on the Account button, which is in the UserForm1 form.

At that, there appears the code window (corresponding to the form) with the

blank of the program, being started by clicking on the Account button.

1.23. User-defined forms

121

The following first and last lines of the program are generated automatically:

Private Sub ComButCalc_Click()

End Sub

We already encountered the Private keyword on p. 81. Here, it means the

following: if ComButCalc_Click is used as a subroutine, its call should be in

the same code window, in which the subroutine declaration is located. However,

we are not going to use ComButCalc_Click as a subroutine. Therefore, the

Private keyword may be deleted.

The ComButCalc_Click program for calculating the hypotenuse length

follows:

Private Sub ComButCalc_Click()

 Dim a As Single, b As Single, c As Single

 Dim s As String

1: s = TextBoxA.Text

2: a = Val(s)

3: s = TextBoxB.Text

4: b = Val(s)

5: c = Sqr(a ^ 2 + b ^ 2) 'according to Pythagoras

6: s = Str(c)

7: LabelMessage.Caption = "c =" & s

End Sub

This program is similar to the Pythagoras1 program (p. 85).

Unlike program Pythagoras1, the ComButCalc_Click program con-

tains the following three constructs similar to the record: TextBoxA,

TextBoxB and LabelMessage.

In operator 1, “field” Text of “record” TextBoxA (of “type” TextBox),

more precisely, property Text of element TextBoxA is a variable of the

String data type whose value coincides with the string being entered into the a

text box of the form during the program usage. In operator 3, property Text of

element TextBoxB coincides with the string being entered into the b text box.

The values of a and b are the results of executing operators 1 — 4.

Operator 5 calculates length c of the hypotenuse; operator 6 converts this

value to string s.

Operator 7 assigns the string (which includes the s string) to property

LabelMessage.Caption (that is, to property Caption of element

LabelMessage). The value of this property is put into the form.

Chapter 1. Programming in Visual Basic

122

We can start the developed program by clicking on arrow ► of the VB win-

dow. The form (Fig. 1.28), loaded into the Excel window, is the result of this

click. Fig. 1.29 shows the form’s state upon finishing the calculation, i.e., after

putting the lengths of the triangle’s legs into text boxes a and b and clicking on

the Account button.

Fig. 1.29. The form upon finishing the calculation

Further, the calculation may be repeated for other source data, i.e., other

lengths of the triangle’s legs. Upon termination of the series of calculations, we

have to close the form by clicking on the little cross in the top right corner

(Fig. 1.29).

We can simplify the ComButCalc_Click program as follows:

Private Sub ComButCalc_Click()

 Dim a As Single, b As Single, c As Single

1: a = TextBoxA.Value

2: b = TextBoxB.Value

3: c = Sqr(a ^ 2 + b ^ 2) 'according to Pythagoras

4: LabelMessage.Caption = "c =" & Str(c)

End Sub

In this program, we used property Value of element TextBox. At that, when

performing operator 1, the information, which is in the corresponding text box of

the form, is interpreted according to the data type of the variable on the left of

sign =, that is, as a number. The same can be said about operator 2.

1.23. User-defined forms

123

In the previous section, we developed the TRANSPA program, Listing 1.7, for

transposing a number matrix relative to its auxiliary diagonal. This program is

inconvenient to use because names of files are a part of the program text (see

operators 1 and 2). To eliminate this drawback, we will add the form, already

designed, to the TRANSPA program. In this case, the form elements have the

following sense (from top to down, Fig. 1.28):

 place for displaying messages;

 text box for inputting the full name of the source data file;

 text box for inputting the full name of the result file;

 button for starting the calculation.

The basis of the new ComButCalc_Click program is the TRANSPA pro-

gram text, which is in the BookTRANSPA workbook. To gain access to this text,

we fulfill the following (p. 18):

1) open the BookTRANSPA workbook with Excel, for example, by means

of the context menu;

2) go to Visual Basic Environment in the standard way;

3) open the code window with the TRANSPA program text by clicking twice

on the corresponding module name in the project explorer window.

The TRANSPA program text is also contained in file Listing_1_07.txt of the

enclosed CD.

By using the TRANSPA program text, Listing 1.7, we will transform the

ComButCalc_Click program developed above to the following view by

means of Windows Clipboard.

Private Sub ComButCalc_Click()

Dim FNameA As String, FNameB As String

Dim FNum As Integer

Dim strC As String, strD As String, strE As String

Dim m As Integer, n As Integer

Dim i As Integer, j As Integer

Dim k As Integer, l As Integer

Dim A() As Double, B() As Double

1: FNameA = TextBoxA.Text

2: FNameB = TextBoxB.Text

3: FNum = FreeFile

'Opening file a.txt:

4: Open FNameA For Input As FNum

'Reading values of m and n from file a.txt:

5: Line Input #FNum, strC

6: strC = Mid(strC, 3)

7: m = Val(strC)

Chapter 1. Programming in Visual Basic

124

8: Line Input #FNum, strC

9: strC = Mid(strC, 3)

10: n = Val(strC)

'Setting size of matrices:

11: ReDim A(1 To m, 1 To n)

12: ReDim B(1 To n, 1 To m)

'Reading matrix A from file a.txt:

13: For i = 1 To m

14: Line Input #FNum, strC

15: j = 0

16: strD = ""

 'string "" is not equal to string " "

17: l = Len(strC)

18: For k = 1 To l

19: strE = Mid(strC, k, 1)

20: If strE <> " " Then strD = strD & strE

21: If strE = " " Or k = l Then

22: j = j + 1

23: A(i, j) = Val(strD)

24: strD = ""

25: End If

26: Next k

27: Next i

'Closing file a.txt:

28: Close FNum

29: FNum = FreeFile

'Opening file b.txt:

30: Open FNameB For Output As FNum

'Forming matrix B and its writing into file b.txt:

31: For j = 1 To n

32: strC = ""

33: For i = 1 To m

34: B(j, i) = A(m + 1 - i, n + 1 - j)

35: strC = strC & Str(B(j, i)) & " "

36: Next i

37: Print #FNum, strC

38: Next j

'Closing file b.txt:

39: Close FNum

40: LabelMessage.Caption = _

 "Account is terminated. Input..." 'message

End Sub

1.23. User-defined forms

125

Property Text of element TextBoxA is a variable whose value coincides

with the full name of the text file, containing values of m and n and matrix A;

this full name is entered into the a text box of the UserForm1 form during the

program usage. Property Text of element TextBoxB is a variable whose value

coincides with the full name of the text file for matrix B; this full name is entered

into the b text box. When executing the program, operators 1 and 2 specify the

files’ full names. Operators 4 and 30 open the corresponding files.

When executing operator 40, string

"Account is terminated. Input..."

is assigned to property LabelMessage.Caption, i.e., this string is put into

the message place of the form.

We can start the developed program by clicking on arrow ► of the VB win-

dow. As a result, the form (Fig. 1.28) is loaded. Fig. 1.30 shows the form’s state

upon finishing the calculation, i.e., after inputting

c:\Users\usr\texts\a.txt

c:\Users\usr\texts\b.txt

into text boxes a and b, respectively, and clicking on button Account (usr is the

user name in these two full names).

Further, the calculation may be repeated for other names of the files and for

other contents of the source data file. Upon termination of the series of calcula-

tions, we have to close the form, depicted in Fig. 1.30, by clicking on the little

cross in the top right corner.

The source data file, which contains values of m and n and matrix A, can be

created and/or edited by using the Notepad editor. We can view the calculation

result by means of the same editor. Fig. 1.23 and 1.24 show the Notepad window

with the source data and calculation result.

We can use element TextBox not only for input of information but also for

output. In this case, property Text of the corresponding TextBox element (for

example, property TextBox3.Text) must be in the left-hand side of the assign-

ment operator.

We advise the reader to modify the form and the text of the last program so

that "Account is terminated. Input..." is being put into the text box of the form.

We learned how to use the following three elements of the Toolbox window:

Label, TextBox and CommandButton. Let us also consider element CheckBox,

which is used in the following cases:

 an option should either be turned on or turned off;

 one of two alternatives must be chosen.

Chapter 1. Programming in Visual Basic

126

Fig. 1.30. The form upon termination of the matrix transposition

In the form, the CheckBox element looks like a little square field. At the click

on this field, the check (tick) mark appears in it; at the repeated click, the check

mark disappears.

Property Value of element CheckBox has value True or False as follows:

 True when the check mark is present in the field;

 False when the check mark is absent.

Let us expand the form, depicted in Fig. 1.28, by the CheckBox element

placed on the left of the button and return to the program, which calculates the

hypotenuse length.

The new version of the ComButCalc_Click program (p. 121) follows:

Private Sub ComButCalc_Click()

 Dim a As Single, b As Single, c As Single

 Dim s As String, out As String

 a = TextBoxA.Value

 b = TextBoxB.Value

 c = Sqr(a ^ 2 + b ^ 2) 'according to Pythagoras

 out = "c =" & Str(c)

 If CheckBox1.Value Then
 s = Str(a * b / 2)

 out = out & vbCrLf & "s =" & s

 End If

 LabelMessage.Caption = out

End Sub

1.23. User-defined forms

127

In this program, CheckBox1 is the CheckBox element’s name. In the

presence of the check mark, the triangle area is calculated in addition to the

hypotenuse length.

Fig. 1.31 and 1.32 show the initial and final states of the form. To get the re-

sult, depicted in Fig. 1.32, we must fulfill the following operations:

1) put 3 and 4 into text boxes a and b of the form in Fig. 1.31;

2) set the check mark by clicking on element s;

3) click on the Account button.

Let us save the Excel workbook on the hard disk of the computer under name

BookForm, having done File > Save As > Browse, and so on (p. 114). At that, the

project (with the form), which is a part of the workbook, is saved too.

For returning to the project, the double click on line UserForm1 in the project

explorer window is required. We can delete the form, as well as the module, by

means of the context menu. For that:

1) right click on the form name in the project explorer window;

2) in the open context menu, fulfill the Remove command;

3) click on the No button in the open window with a question about export-

ing the form before removing it.

We advise the reader to use the form with the CheckBox element for the

matrix transposition and to modify the program on p. 123 so that:

 in the presence of the check mark, the matrix transposition relative to the

main diagonal would be performed according to formula (1.2) on p. 109;

 in the absence of the check mark, the matrix transposition relative to the

auxiliary diagonal would be performed according to formula (1.3).

Fig. 1.31. The form after the program start

Chapter 1. Programming in Visual Basic

128

Fig. 1.32. The form upon finishing the calculation

1.24. Digression. Developing programs with the form in Microsoft Visual Studio

129

1.24. Digression. Developing programs with

the form in Microsoft Visual Studio

The programs, which were reviewed above and will be reviewed below, have

the following drawback: we must equip our computer with tabular processor

Excel for calculations by means of these programs. If we want to execute a pro-

gram without using Excel, this program should be developed in Visual Basic

Environment, which is not a part of Microsoft Office. Let us consider singulari-

ties of developing the program (project) with the form in Visual Basic Environ-

ment, which is a part of package Microsoft Visual Studio 2010.

Microsoft Visual Studio 2010 is installed on the computer in the standard

way. To start Visual Studio, we fulfill the following operations on Windows

Desktop: Start > All Programs > Microsoft Visual Studio 2010 > Microsoft

Visual Studio 2010. The Start Page window is the result.

For setting the necessary operation mode of Visual Studio, we must fulfill the

following operations:

1) click on the New Project hyperlink;

2) in the left area of the open New Project window, click on the plus sign

against Other Languages;

3) in the open list, click on the plus sign against Visual Basic;

4) in the open list, click on line Windows;

5) in the list of the central area of the New Project window, click on line

Windows Forms Application.

The necessary operation mode of Visual Studio is the result. The following

information in the right area of the New Project window speaks about it:

A project for creating an application with a Windows user interface.

Further, the project name and the folder, intended for the project, must be

given by means of text boxes Name and Location. By default, the project and

folder have the same name, WindowsApplication1 (the digit in the name may be

different).

After clicking on the OK button, the window of Visual Basic Environment

is displayed. Blank form Form1 is a part of this window. Fig. 1.33 shows the

window after fulfilling View > Toolbox. To open the properties window, we must

fulfill the following operations: View > Other Windows > Properties Window.

The properties window (Fig. 1.34) appears in place of the Toolbox window.

Chapter 1. Programming in Visual Basic

130

Fig. 1.33. The window of Visual Basic Environment (a part

of Microsoft Visual Studio 2010) with the Toolbox window

The development of forms and corresponding programs is similar to the

development described in the previous section.

The text of the programs, developed in Microsoft Visual Studio 2010, is

close to the text of the programs, developed in Excel. For example, program

ComButCalc_Click for calculating the hypotenuse length (p. 121) becomes

as follows:

Public Class Form1

 Private Sub ComButCalc_Click(ByVal sender _

 As System.Object, ByVal e As System.EventArgs) _

 Handles ComButCalc.Click

 Dim a As Single, b As Single, c As Single

 Dim s As String

 s = TextBoxA.Text

1.24. Digression. Developing programs with the form in Microsoft Visual Studio

131

 a = Val(s)

 s = TextBoxB.Text

 b = Val(s)

 c = Math.Sqrt(a ^ 2 + b ^ 2)

 'according to Pythagoras

 s = Str(c)

 LabelMessage.Text = "c=" & s

 End Sub

End Class

The beginning and end of the program were generated automatically when

we clicked twice on the button inserted into the form.

Fig. 1.34. The properties window as a part

of Visual Basic Environment

The project contains several files and folders. By default, it is located in the

folder with the following full name:

c:\Users\usr\WindowsApplication1

where usr is the user name.

Chapter 1. Programming in Visual Basic

132

To save the current state of the project, we must fulfill File > Save. For

returning to the project, we can use one of the following two ways:

 the double click on the WindowsApplication1.vbproj file in the project

folder;

 the click on the WindowsApplication1 hyperlink in area Recent Projects

of the Start Page window of Visual Studio.

When we execute the program during its development, the debug version of

the program executable file is created automatically. The full name of this file

follows:

c:\Users\usr\WindowsApplication1\bin\Debug\ _

 WindowsApplication1.exe

Upon termination of the program development, we must create the release

(working) version of the executable file. For that, we fulfill the following opera-

tions:

1) Build > Configuration Manager;

2) in the Configuration Manager window opened, enter Release into the

Active solution configuration box by means of the drop-down list;

3) click on the Close button;

4) Build > WindowsApplication1.

The release version of the executable file is the result. Its full name follows:

c:\Users\usr\WindowsApplication1\bin\Release\ _

 WindowsApplication1.exe

The release version of the executable file is more efficient (in respect of the exe-

cution rate) in comparison with the debug version.

For loading the form, we must click twice on the program executable file in

Windows Explorer. Further, we can use the form for the calculation.

If we want to transfer the program with the form to another user, it is enough

to transfer the program executable file.

Let us return to programming in tabular processor Excel.

133

Chapter 2.

Programming in VBA

We review the main objects of the VBA programming language, which is the

Visual Basic extension in the sense that VBA includes the VB constructs. The

Excel table is considered as the user interface of macros.

Besides, we also consider creating Excel user-defined functions and working

with Excel Macro Recorder, Personal Macro Workbook and the reference sys-

tems.

Chapter 2. Programming in VBA

134

2.1. Loading the form from the Excel window.

Running the program executable file

The user-defined forms, developed in Section 1.23, were loading from the

VB window, for example, by clicking on arrow ► of the standard toolbar. How-

ever, it is desirable to load the form from the Excel window.

Below, we will consider the form-loading program.

Let us open the BookForm workbook of Excel (p. 127), go to the VB window

and fulfill Insert > Module.

We enter the following simple program into the code window of the inserted

module:

Sub LoadingForm()

 UserForm1.Show

End Sub

Here, UserForm1 is the form name.

Now the form, pictured in Fig. 1.31, can be loaded from the Excel window as

follows: Developer (or View) > Macros > line LoadingForm > Run. By fulfilling

Developer (or View) > Macros > line LoadingForm > Options > …, we can

appoint a combination of keys for loading the form.

The loaded form may be used for transposing a numerical matrix or calculat-

ing the length of the hypotenuse of a right-angled triangle and its area.

If we want the blinking cursor to be, for example, in text box b of the loaded

form, it is necessary to insert operator

UserForm1.TextBoxB.SetFocus

above operator UserForm1.Show. The LoadingForm program becomes as

follows (Fig. 2.1):

Sub LoadingForm()

 UserForm1.TextBoxB.SetFocus

 UserForm1.Show

End Sub

2.1. Loading the form from the Excel window. Running the program executable file

135

Fig. 2.1. The VB window with lines UserForm1

and Module1 in the project explorer window

Let us save the Excel workbook with the LoadingForm program under the

old name of BookForm.

The following program (in the code window) allows opening the Notepad

window in Excel:

Sub StartEXE()

 Dim RetVal As Integer 'for function Shell

 RetVal = Shell("c:\Windows\notepad.exe",1)

End Sub

In this program, we see the call of the Shell function, as in the Addition

program on p. 106.

To open the Notepad window, we must run the StartEXE program by ful-

filling Developer (or View) > Macros > line StartEXE > Run. Besides, we can

appoint a combination of keys for opening the Notepad window.

By using the StartEXE macro, we can run any executable file, in particular,

created in Visual Basic Environment, which is a part of Microsoft Visual Studio

(Section 1.24). For that, c:\Windows\notepad.exe must be replaced by

the full name (without spaces) of this executable file.

Chapter 2. Programming in VBA

136

2.2. Layout of the control elements

on the Excel worksheet

The control elements of Section 1.23 can be placed on the Excel worksheet.

For example, to create the form-loading button, we must fulfill the following.

1. In the Excel window with open workbook BookForm, fulfill Developer >

Insert in area Controls. The window with control elements appears (Fig. 2.2).

Fig. 2.2. The Excel window with control elements below the Insert button

2. Click on the Button element in the Form Controls area of the last win-

dow, and then click on any cell of the Excel worksheet. The Assign Macro win-

dow opens (Fig. 2.3).

3. Click on the New button. The VB window opens (Fig. 2.4), and button

Button1 selected by 6 markers appears on the worksheet (Fig. 2.5).

4. Insert operator UserForm1.Show into the program blank in the code

window depicted in Fig. 2.4. The following program is the result:

Sub Button1_Click()

 UserForm1.Show

End Sub

5. Click on area outside Button1 to remove the button selection.

2.2. Layout of the control elements on the Excel worksheet

137

Fig. 2.3

Fig. 2.4. The VB window with Module1 and Module2 in the project window

Chapter 2. Programming in VBA

138

Fig. 2.5. The created button on the worksheet

Now, for loading the form pictured in Fig. 1.31, all we have to do is click on

button Button1.

To change the inscription on the button:

1) select the button as follows:

 right click on it;

 then perform the Cancel command in the context menu opened;

2) edit the inscription as usual text;

3) click on area outside the button to remove its selection.

To remove the selected button, we must press the Delete key.

The Excel worksheet with the control elements plays the role of the form. For

beauty of this “form”, it is possible to remove gridlines from the Excel work-

sheet. For that, in the Excel window, we must fulfill View > turn off Gridlines in

area Show.

If we want to use the button for opening the Notepad window, program

Button1_Click must be changed as follows:

Sub Button1_Click()

 Dim RetVal As Integer 'for function Shell

 RetVal = Shell("c:\Windows\notepad.exe",1)

End Sub

In this program, we can replace c:\Windows\notepad.exe by the full

name of any other executable file (p. 135). In this case, the above program is

suitable for running this executable file from the Excel window.

2.3. User-defined functions of Excel

139

2.3. User-defined functions of Excel

Our study of Visual Basic began with the Pythagoras program (p. 17)

intended for calculating the hypotenuse length. Let us consider the following

function for solving this simple task:

Function Hypotenuse(a, b)

 Hypotenuse = Sqr(a ^ 2 + b ^ 2)

End Function

This function declaration should be entered into the code window after insert-

ing a module, for example Module1, into the active Excel workbook. As a result,

the Hypotenuse function appears in the User Defined category of the Excel

functions library. To verify this, we must fulfill the following two operations:

1) click on the fx button of the Excel formula bar;

2) in the Insert Function window opened (the first window of Function

Wizard), enter User Defined into box Or select a category by means of the drop-

down list.

We see line Hypotenuse in list Select a function (Fig. 2.6), i.e., the considered

function is available in category User Defined of the Excel functions library.

Let us interrupt the operation of Function Wizard by clicking on the Cancel

button in the Insert Function window.

The created function is used, for example, as follows:

1) into two cells on the Excel worksheet, enter the lengths of the triangle’s

legs, for example, 30.02 and 40 into A2 and B2, respectively;

2) select a cell for the hypotenuse length, for example, C2;

3) in the Excel formula box after =, put the Hypotenuse function whose

arguments are the addresses of the cells with the lengths of the triangle’s legs

(we must type a semicolon between the arguments instead of a comma accepted

in Visual Basic);

4) calculate in one of the following two ways:

 by clicking on the tick button of the Excel formula bar;

 by pressing the Enter key.

As a result, the hypotenuse length appears in the selected cell (Fig. 2.7).

Chapter 2. Programming in VBA

140

Fig. 2.6. The first window of Function Wizard

Fig. 2.7. The use of the Hypotenuse function

While using Function Wizard, we have to click on OK in the Function Argu-

ments window (the second window of Function Wizard) for calculation.

2.3. User-defined functions of Excel

141

The second window of Function Wizard is intended for inputting arguments

of a function, in particular, of a user-defined function. This window appears as

a result of clicking on OK in the first window of Function Wizard (Fig. 2.6). We

will use the second window of Function Wizard in Section 2.15 (Fig. 2.32).

User-defined functions are used in Excel formulas, just like built-in func-

tions.

The Hypotenuse function can be considered as the user-defined function

of Visual Basic (p. 77). Therefore, we can use the Hypotenuse function in

a program as follows:

Sub Pythagoras()

 Dim a As Single

 Dim b As Single

 Dim c As Single

 a = 3

 b = 4

 c = Hypotenuse(a, b)

End Sub

This text must be put into a new module, for example, by name Module2.

By executing the last program step-by-step, we can verify its operational

capability.

In Excel, when transposing a matrix (cell range) relative to the main diagonal

(Section 1.21), its rows and columns interchange their positions. For such trans-

position, Excel has the built-in TRANSPOSE function, which is available in

category Lookup & Reference of the functions library. It is an example of the

function returning an array of numbers, instead of one number (the SQRT func-

tion returns a number, see p. 17).

The TRANSPOSE function is used as follows:

1) enter a matrix (containing, for example, 3 rows and 4 columns) into Excel

cells;

2) select the cell range (containing 4 rows and 3 columns) for the transposi-

tion result;

3) into the Excel formula box after =, enter the TRANSPOSE function

whose argument is the source range (containing 3 rows and 4 columns);

4) calculate in one of the following two ways:

 by clicking on the tick button of the Excel formula bar when keys Ctrl

and Shift are simultaneously pressed;

 by pressing the Enter key when keys Ctrl and Shift are simultaneously

pressed (that is, by pressing Ctrl + Shift + Enter).

The transposition result appears in the selected cell range.

Chapter 2. Programming in VBA

142

Function Wizard simplifies the use of the TRANSPOSE function. For trans-

posing the matrix, we have to click on OK in the Function Arguments window

when keys Ctrl and Shift are simultaneously pressed.

It is interesting to create a user-defined function for transposing a matrix (cell

range) relative to its auxiliary diagonal according to formula (1.3) on p. 109.

This function’s declaration follows:

Listing 2.1

Function TRANSPOSEA(massive As Variant) As Variant

 Dim m As Integer, n As Integer

 Dim i As Integer, j As Integer

 Dim R() As Variant 'resulting matrix

 m = massive.Rows.Count 'quantity of rows

 n = massive.Columns.Count 'quantity of columns

 ReDim R(1 To n, 1 To m) 'specification of size

 For j = 1 To n

 For i = 1 To m

 R(j, i) = massive(m + 1 - i, n + 1 - j)

 Next i

 Next j

 TRANSPOSEA = R

End Function

Formal parameter massive may be considered as a record (Section 1.18).

More precisely, massive is a variable of the Range type, but we will talk about

it later.

Upon putting Listing 2.1 into the code window, the TRANSPOSEA function

appears in category User Defined of the Excel functions library.

TRANSPOSEA is used as the TRANSPOSE function:

1) enter a matrix (intended for transposing relative to its auxiliary diagonal)

into Excel cells, for example, A1:D3;

2) select the cell range for the transposition result, for example, A5:C8;

3) into the Excel formula box, enter

=TRANSPOSEA(A1:D3)

4) calculate in one of the following two ways:

 by clicking on the tick button of the Excel formula bar when keys Ctrl

and Shift are simultaneously pressed;

 by pressing Ctrl + Shift + Enter.

The result of transposing the matrix relative to its auxiliary diagonal appears

in the selected A5:C8 range (Fig. 2.8).

2.3. User-defined functions of Excel

143

Fig. 2.8. The result of the TRANSPOSEA function usage

While using Function Wizard for the matrix transposition, we have to click

on OK in the Function Arguments window when keys Ctrl and Shift are simulta-

neously pressed.

It is interesting to compare the TRANSPOSEA function with the program of

Section 1.22. By the number of operators, the function is four times shorter than

the program. Besides, the function can be used when creating Excel macros by

means of Excel Macro Recorder (Section 2.5).

Note that the name of the formal parameter of the TRANSPOSEA function

can differ from massive, for example, name diapason may be used.

When operating with the matrices containing a large number of columns, it is

convenient to use the R1C1 reference style, in which the Excel columns are

numbered by natural numbers instead of letters.

For setting the R1C1 reference style, we must fulfill the following operations:

1) click on the File button in Excel;

2) Options > Formulas;

3) turn on option R1C1 reference style in area Working with formulas of the

Excel Options window;

4) click on the OK button.

Chapter 2. Programming in VBA

144

2.4. Two methods for developing Excel macros

An Excel macro is a set of operators, which can be executed automatically.

The macro is written in a programming language called Visual Basic for Appli-

cations or VBA.

The VBA programming language includes the reviewed constructs of Visual

Basic.

The following two methods are used for creating macros:

1) programming in Visual Basic Environment;

2) creating by means of Excel Macro Recorder.

We used the first method in the previous sections, in particular, for develop-

ing two macros for loading the UserForm1 form (Sections 2.1 and 2.2).

The second method is simpler but less universal in comparison with the first

method; it is normally considered when learning Excel. We will consider the

second method because Excel Macro Recorder is an excellent helper in the first

method for creating macros: if we do not know how to write down any action

(or set of actions) in VBA, we have to create a macro for performing this action

(or set of actions) by using Excel Macro Recorder and then study the VBA code

generated automatically.

This is how we will develop:

 the operator blocks for automatic creation of graphs in Listings 3.10, 3.13

and 3.18;

 operator 12 in Listing 6.15 for the horizontal center alignment of the

Excel cell content.

Excel Macro Recorder also facilitates the use of the first method for creating

macros. The fact is that the program in VBA can be created not from scratch, but

by starting from a prototype, which was created by means of Excel Macro

Recorder.

It is precisely in this way that we will develop the graph subroutine for

automatic creation of graphs (Section 4.8).

Creating macros by editing the prototype leads to a considerable “thought

saving”.

2.5. Excel Macro Recorder

145

2.5. Excel Macro Recorder

Excel Macro Recorder operation is similar to recording by means of a video-

disk recorder. Excel Macro Recorder:

 records the operations being fulfilled by the user in the Excel window;

 then transforms these operations into a set of VBA operators, that is, into

a program.

By means of Excel Macro Recorder, we will create a macro for performing

the following operational sequence:

1) removal of gridlines from the Excel worksheet;

2) setting the R1C1 reference style;

3) assignment of the Currency format to all cells on the worksheet;

4) selection of the R14C5 cell, that is, E14.

For creation of the macro, we fulfill the following operations.

1. Developer > Record Macro (in area Code) or View > arrow Macros

(in area Macros) > Record Macro.

2. Enter a name of the macro and other information into text boxes of the

Record Macro window opened:

Macro name: MR

Shortcut key: Ctrl+m (it will be used for starting the macro execution)

Store macro in: This Workbook (taken from the drop-down list)

Description: Result of using Excel Macro Recorder

3. In the window with the filled text boxes (Fig. 2.9), click on button OK.

At that, the Record Macro button changes its status to Stop Recording. Macro

record is started.

4. Remove gridlines from the active Excel worksheet, for example, by name

Sheet1: View > turn off Gridlines in area Show.

5. Set the R1C1 reference style as follows:

1) click on the File button;

2) Options > Formulas;

3) turn on the R1C1 reference style option in area Working with formulas of

the Excel Options window;

4) click on the OK button.

6. Assign the Currency format to all cells on the active worksheet as

follows:

Chapter 2. Programming in VBA

146

1) select all cells on the worksheet by clicking on the intersection of the top

line (with numbers of columns) and the left column (with numbers of rows);

2) activate the Home tab;

3) in area Number, set the Currency format by using the drop-down list.

7. Select the R14C5 cell by clicking on it.

8. Developer > Stop Recording (in area Code) or View > arrow Macros

(in area Macros) > Stop Recording.

Fig. 2.9. The Record Macro window before clicking on the OK button

The record is finished; macro MR is the result.

Before verifying the operational capability of the created macro, we return to

the A1 reference style. For that:

1) click on the File button;

2) Options > Formulas;

3) turn off the R1C1 reference style option in area Working with formulas of

the Excel Options window;

4) click on button OK.

Before starting the macro, let us create a worksheet, for example Sheet2, for

which operations written in the macro must be performed. For creating Sheet2,

we use the New Sheet command, depicted by the round plus icon in the bottom

part of the Excel window (see in Fig. 2.5).

2.5. Excel Macro Recorder

147

For starting the MR macro from the Excel window, one of the following two

ways is used:

 simultaneous pressing keys Ctrl and m;

 Developer (or View) > Macros > line MR > Run.

When executing the macro, the computer repeats actions enumerated in items

4 — 7.

After restoring the A1 reference style, let us save the Excel workbook with

the MR macro (which is the result of using Excel Macro Recorder) under the

name of BookMacrorecorder. During the save, we have to set the following file

type: Excel Macro-Enabled Workbook.

For removing the MR macro, we must fulfill the following operations:

Developer (or View) > Macros > line MR > Delete > Yes. However, we will not

delete the macro because it will be required in the next sections.

Chapter 2. Programming in VBA

148

2.6. VBA code generated by Excel Macro Recorder

and its editing

In the previous section, we created the VBA macro corresponding to the

sequence of Excel operations performed with Excel Macro Recorder turned on.

For displaying the macro text, we must fulfill the following in the Excel win-

dow with workbook BookMacrorecorder: Developer (or View) > Macros > line

MR > Edit. At that, the VB window appears with the code window containing

the required text.

The macro code follows:

Listing 2.2

Sub MR()

'

' MR Macro

' Result of using Excel Macro Recorder

'

' Keyboard Shortcut: Ctrl+m

'

 ActiveWindow.DisplayGridlines = False

 Application.ReferenceStyle = xlR1C1

 Cells.Select

 Selection.NumberFormat = "#,##0.00$"

 Range("E14").Select

End Sub

There is the possibility of editing this code created by using Excel Macro

Recorder.

Let us assume that we want to set content of cell R14C5 (that is, E14) by

means of the standard window. For that, we type the following operator above

the last line of Listing 2.2:

ActiveCell.Formula = _

InputBox("Enter price in dollars" _

& vbCrLf & "into the active cell")

2.6. VBA code generated by Excel Macro Recorder and its editing

149

Fig. 2.10 shows the expanded text of the MR macro.

Let us create the Sheet3 worksheet and start the MR macro with the additional

operator when Sheet3 is active. At that, the window represented in Fig. 2.11

appears.

Fig. 2.10. The VB window with the macro text

after typing the additional operator

Fig. 2.11. The standard window for inputting

information into the selected cell

Chapter 2. Programming in VBA

150

We put a value, for example 12, into text box Enter price in dollars into the

active cell. After clicking on the OK button, the text box content appears in cell

R14C5 (Fig. 2.12). The dollar sign in front of 12.00 is because of the Currency

format of the cell.

Fig. 2.12. The result of the MR macro execution

Let us restore the A1 reference style.

Further, we will consider constructs of VBA, which are absent in Visual

Basic.

2.7. Objects and events

151

2.7. Objects and events

All modern programming languages (in particular, Visual Basic and VBA)

are object- and event-oriented.

The object orientation is based on partitioning the subject area (for which we

are developing a program) and clustering the parts.

 The program’s part, which corresponds to the cluster, is named object.

 The object’s characteristics are named properties.

 Actions performed over the object are named methods.

Examples of the subject area are problems of modeling financial risks, semi-

conductor devices and evolution of stars (p. 47), as well as Visual Basic and

VBA themselves.

Examples of the object are the Visual Basic objects, which were considered

in Section 1.23: UserForm, Label, TextBox, CommandButton and CheckBox.

The event orientation is based on the following concepts:

 “event” — the object’s qualitative change, which follows from work of

the user or computer;

 “handler for event” — the command set, executed by the computer when

the event occurs.

An example of the event is the click on the Account button in the user-

defined form, for example, depicted in Fig. 1.28. Because of handling this event,

the ComButCalc_Click program execution is started.

The VBA programming language is intended for creating programs in the

Microsoft Office applications, such as word processor Word, tabular processor

Excel, technical editor Visio, database management system Access, etc. VBA

differs from Visual Basic in the presence of specific objects of Microsoft Office

and of its applications.

We will be interested in the so-called Excel objects intended for Excel VBA

Programming. Examples of such objects are Workbook, Worksheet, Range and

ActiveCell.

Operators intended for work with an object make the following:

 setting object properties;

 returning object properties into the program;

 applying object methods.

Chapter 2. Programming in VBA

152

The syntax of setting object properties follows:

object.property = expression

where expression is an arithmetic or logical expression or string. The com-

puter executes this operator as the normal assignment operator:

1) calculates the value of expression;

2) assigns this value to property object.property.

The syntax of returning object properties follows:

object.property

Property object.property may be a part of operators, in particular, it

may be in the right-hand side of the assignment operator, i.e., the property is

similar to built-in functions of Visual Basic. Often, object.property itself

is an object.

Note that not all object properties can be returned and set. There are proper-

ties, which can be only returned or set. To study possibilities of this or that object

property, we must use the reference systems, which are started by pressing the

F1 and F2 keys when the VB window is active (Sections 1.6 and 2.12).

The operator of applying object methods has the following form:

object.method

The operator of applying the Add method is the exception. It creates a new

object, subobject, and adds it to object. The syntax of this operator

follows:

[Set variable =]object.Add

In this syntax, Set is the keyword, variable is a variable of the same data

type as subobject.

Applying the Add method is similar to calling the MsgBox procedure of

Visual Basic, which is both a subroutine and function.

An object hierarchy exists. The highest in the hierarchy of the application is

the Application object, i.e., all other objects “are included” in it. The Application

object reminds the Russian nested doll, but (unlike the nested doll) several

objects may be included in each object.

The full object name is a sequence of the object names separated by a point,

at that, this sequence begins with Application. For example,

Application.Workbooks("Archive").Worksheets("Cod"). _

 Range("A1")

2.7. Objects and events

153

in VBA for Excel is the full name of the Range("A1") object or the reference

to the A1 cell on the Cod worksheet of the Archive workbook.

The use of the full object name is not necessary. Often, we can use the

incomplete name, i.e., without names of the objects activated at present. For

example, if the Archive workbook is active, then the full name of the

Range("A1") object may be shortened as follows:

Worksheets("Cod").Range("A1")

As before, this is the reference to the A1 cell on the Cod worksheet of the

Archive workbook.

In the above VBA notations, strings are in the parentheses. These strings may

be compound.

An example of using compound strings is the following operator:

Range("G" & CStr(CInt(Now - #1 Jan 2000#))).Select

Because of its execution, the following cell is selected on the active Excel work-

sheet: the intersection of the G column and the row whose number is equal to the

number of days from the century beginning.

We advise the reader to do the following:

1) type the last operator above line End Sub of program Century_20

(p. 25);

2) execute the obtained program;

3) pay attention to the position of the Excel cell activated.

We see that the object construct is similar to the record (Section 1.18). There-

fore, as the first approximation, the object can be considered as the built-in

record whose creation operator (the Type operator) is hidden from the program

developer.

In addition to properties and methods, some objects of VBA are also charac-

terized by events. However, it does not relate to the main Excel objects, which

will be considered below.

Chapter 2. Programming in VBA

154

2.8. Object Application

It was mentioned above that the Application object occupies the top level in

the object hierarchy of Excel. This means that the Application object controls the

settings of the application, i.e., such settings as are in window Excel Options

(to open this window, we must fulfill File > Options). Operator

Application.ReferenceStyle = xlR1C1

in the MR macro text, which was created by means of Excel Macro Recorder (see

Listing 2.2 on p. 148), speaks about this role of the Application object.

However, the Application object not only changes parameters of Excel. If we

want to use Excel functions when programming in VBA, the Application object

is also necessary for us.

Let us use built-in functions AVERAGE and SUM of Excel for processing

range A1:A4 on the Sheet1 worksheet.

1. Insert a module into the active Excel workbook. Enter program

Listing 2.3

Sub BuiltinFunctions()

 Dim W As Single

1: W = Application. _

 Average(Worksheets("Sheet1").Range("A1:A4"))

 MsgBox "Average = " & CStr(W)

2: W = Application. _

 Sum(Worksheets("Sheet1").Range("A1:A4"))

 MsgBox "Sum = " & CStr(W)

End Sub

into the code window.

2. Go to worksheet Sheet1 of the active workbook.

3. Enter number 100 into cell A1, 200 into A2, 300 into A3 and 400 into A4.

4. Run the BuiltinFunctions macro. The window with the average of

the entered numbers appears (Fig. 2.13).

2.8. Object Application

155

5. To continue the program execution, click on the OK button. The window

containing the sum of the entered numbers appears (Fig. 2.14).

6. To terminate the program execution, click on the OK button.

Fig. 2.13. The window with the first processing result

Fig. 2.14. The window with the second processing result

The built-in Excel functions are properties of the Application object. When

executing operators 1 and 2, properties Average and Sum return with parameter

Worksheets("Sheet1").Range("A1:A4").

In addition to Excel functions, the Application object has other properties.

From the long list of the properties, we will consider the following.

 ActiveWorkbook — the active workbook.

 ActiveSheet — the active worksheet of the active workbook (in our opin-

ion, ActiveWorksheet would be a more suitable name of this property).

 ActiveCell — the active cell on the active worksheet of the active work-

book.

As an example of returning the ActiveCell property, let us consider the fol-

lowing program, which sets the italic font for the active cell and puts text Report

for May into this cell.

Chapter 2. Programming in VBA

156

Sub ItalicFont()

 With Application.ActiveCell

 .Font.Italic = True

 .Value = "Report for May"

 End With

End Sub

The With operator was defined on p. 91.

Properties ActiveWorkbook, ActiveSheet and ActiveCell are objects. We will

consider them in greater detail in the next three sections.

 Calculation — the calculation mode (see area Calculation options of the

Excel Options window after fulfilling File > Options > Formulas).

The main values of this property are:

1) xlCalculationAutomatic — the automatic calculation: recalcula-

tion according to formulas is performed automatically when Excel cells’ contents

change; it is the default operation mode of Excel;

2) xlCalculationManual — the manual calculation, for example,

when pressing the F9 key.

As an example of setting the Calculation property, let us consider the follow-

ing operator intended for setting the automatic calculation mode:

Application.Calculation = xlCalculationAutomatic

 Dialogs — the collection of the Excel dialog boxes.

In VBA, word “collection” means a group of single-type objects.

By means of the Dialogs property, it is possible to display the Excel dialog

boxes. For example, the execution of operator

Application.Dialogs(xlDialogOpen).Show

leads to displaying window Open familiar to us; xlDialogOpen is the

parameter of the Dialogs property.

In the last operator, Application.Dialogs(xlDialogOpen) is the

object (of the Balloon type), Show is the object’s method.

We already encountered the Show method in Sections 2.1 and 2.2. It is

operator

UserForm1.Show

figuring in the programs of loading the user-defined form.

Let us use the Show method for saving an Excel workbook.

2.8. Object Application

157

1. Above the last line of the BuiltinFunctions macro (p. 154), insert

the following operator of displaying the document saving window:

Application.Dialogs(xlDialogSaveAs).Show

The macro has the following expanded text:

Sub BuiltinFunctions()

 Dim W As Single

1: W = Application. _

 Average(Worksheets("Sheet1").Range("A1:A4"))

 MsgBox "Average = " & CStr(W)

2: W = Application. _

 Sum(Worksheets("Sheet1").Range("A1:A4"))

 MsgBox "Sum = " & CStr(W)

 Application.Dialogs(xlDialogSaveAs).Show

End Sub

2. Go to the Excel window.

3. Enter arbitrary numbers, for example 100, 200, 300 and 400, into range

A1:A4 on the Sheet1 worksheet.

4. Run the above macro (the windows, depicted in Fig. 2.13 and 2.14, will

appear during the execution).

5. In the displayed Save As window, enter file name BookApplication.

6. Set file type Excel Macro-Enabled Workbook by means of drop-down list

Save as type;

7. Click on the Save button.

8. Make sure that the obtained BookApplication workbook contains macro

BuiltinFunctions and the file name has extension .xlsm.

On p. 108, we considered the order of tuning Windows Explorer to see file

names with extension.

In the above ItalicFont macro, operator With was used for setting ob-

ject properties. However, we can use this operator for applying object methods.

For example, operator

Application.Dialogs(xlDialogSaveAs).Show

can be replaced by construct

With Application.Dialogs(xlDialogSaveAs)

 .Show

End With

Chapter 2. Programming in VBA

158

The With operator may include both properties and methods. As an exam-

ple, let us consider the following new version of the BuiltinFunctions

macro:

Sub BuiltinFunctions()

 Dim W As Single

1: W = Application. _

 Average(Worksheets("Sheet1").Range("A1:A4"))

 MsgBox "Average = " & CStr(W)

2: W = Application. _

 Sum(Worksheets("Sheet1").Range("A1:A4"))

 MsgBox "Sum = " & CStr(W)

 With Application

 .ActiveCell.Value = "Report for May"

 'property Value

 .Dialogs(xlDialogSaveAs).Show 'method Show

 End With

End Sub

During the execution, text Report for May appears in the active cell.

From the list of methods of the Application object, we will consider the fol-

lowing: Quit, Calculate, OnTime.

 Quit — quit Excel.

The operator of applying the Quit method follows:

Application.Quit

 Calculate — the forced calculation.

As examples of using the Calculate method, let us consider the following

operators:

Application.Calculate

Worksheets("Report7").Calculate

Worksheets("Report7").Range("A1:C10").Calculate

If mode “manual calculation” is set in Excel, then:

 the execution of the first operator leads to the calculation according to the

formulas in all open Excel workbooks (which are represented by buttons on the

taskbar of Windows Desktop); this execution is equivalent to pressing key F9;

 the execution of the second operator leads to the calculation on the

Report7 worksheet of the active workbook;

2.8. Object Application

159

 the execution of the third operator leads to the calculation in the A1:C10

range on the Report7 worksheet of the active workbook.

As we know, the execution of operator

Application.Calculation = xlCalculationManual

tunes Excel for the manual calculation.

To tune Excel for the manual calculation, we can also fulfill the following

operational sequence in the Excel window: File > Options > Formulas > turn on

Manual > OK.

 OnTime — the start of the macro at the given moment of time; the time

and the macro name are the method parameters.

As an example of applying the OnTime method, let us consider the following

macro, which writes the current time into cell A1 (on the active worksheet) after

starting the macro.

Listing 2.4

Sub MyMacro()

1: Range("A1") = Time

2: Application.OnTime Now + TimeValue("00:00:01"), _

 "MyMacro"

End Sub

In the MyMacro macro, operator 1 writes the current time into the A1 cell.

Operator 2 starts MyMacro one second after the current moment; therefore,

operator 1 is executed every second, i.e., the A1 cell content is updated every

second.

For the initial start of MyMacro, we must fulfill Developer (or View) >

Macros > line MyMacro > Run.

Let us depict the time starting from the moment of opening the Excel work-

book (containing the corresponding macro). For this purpose, we use name

Auto_Open instead of MyMacro. The new version of the last program follows:

Sub Auto_Open()

1: Range("A1") = Time

2: Application.OnTime Now + TimeValue("00:00:01"), _

 "Auto_Open"

End Sub

We save the workbook, containing this macro, as a macro-enabled workbook,

for example, by name BookOnTime. After that, we close the BookOnTime

workbook.

Chapter 2. Programming in VBA

160

Further, let us fulfill the following:

1) open the BookOnTime workbook;

2) to allow the macro to work, click on the Enable Content button of the

Security Warning panel.

At that, the Auto_Open macro is started automatically. So is happened

thanks to the macro name (Excel so is arranged).

After the auto start, the Auto_Open macro is working as MyMacro:

 every second, Auto_Open starts;

 therefore, every second, operator 1 writes the current time into cell A1 on

the active worksheet.

For consolidating the material of this section, we advise the reader to under-

stand the work of the following code, which contains the Auto_Open macro

with two operators of applying the OnTime method.

Listing 2.5

Sub Auto_Open()

 Application.OnTime TimeValue("12:30:00"), "MyMa1"

 Application.OnTime TimeValue("12:31:00"), "MyMa2"

End Sub

Sub MyMa1()

 Range("G1") = 13.333

End Sub

Sub MyMa2()

 Range("G2") = Time

 Application.OnTime Now + TimeValue("00:00:01"), _

 "MyMa2"

End Sub

These three macros should be put into one module or different modules of the

same Excel workbook.

2.9. Objects Workbook, Workbooks and ActiveWorkbook

161

2.9. Objects Workbook, Workbooks

and ActiveWorkbook

Object Workbook follows right after object Application in the object hierar-

chy. It is easy to understand the following properties of the Workbook object.

 Name — the workbook name with its extension.

The possible extensions of the name follow:

 .xlsm if the workbook contains macros;

 .xlsx if macros are absent in the workbook, etc.

The file name together with its extension frequently is also called the file name.

As a rule, it does not lead to any confusion.

 Path — the path to the workbook in the file system of Windows.

 FullName — the workbook name with its path and extension, i.e., the

workbook full name.

Let us consider the following three methods of the Workbook object:

 Close — closing the workbook;

 Save, SaveAs — saving the workbook.

The SaveAs method differs from the Save method in that SaveAs has a list of

optional parameters, which includes FileName, FileFormat and Password.

Examples of using the properties and methods of the Workbook object are

given below, when considering objects of the Workbook data type. Here, “data

type” has the same sense as in expression “variables (records) of the Session data

type” on p. 91.

Objects of the Workbook type (“data” is omitted for brevity) have the proper-

ties and methods of the Workbook object.

The Workbooks object is an object containing all open Excel workbooks.

This object is also named as the Workbooks collection.

In VBA,

Workbooks("Personnel_department")

is the Workbook type object corresponding to the open workbook by name

Personnel_department.

Let us consider the main methods of the Workbooks object.

 Activate — activation of the specified workbook (from a number of the

open Excel workbooks) when its first worksheet becomes active.

Chapter 2. Programming in VBA

162

As an example of applying the Activate method, let us consider the following

operator of activating the above Personnel_department workbook:

Workbooks("Personnel_department").Activate

 Add — the creation of a new workbook, which becomes active at once.

Applying the Add method is accompanied by return (into the program) of

the created workbook, which is the Workbook type object. As an example, see

operator 2 in the NewBook macro (p. 164).

Note that all collections have the Add method. Its application adds (to the

collection) a new object of the corresponding type. In particular, a new object of

the Workbook type is added to the Workbooks collection.

All collections, in particular Workbooks, have useful property by name

Count that allows determining the quantity of objects in the collection.

An example of returning the Count property is in the following program:

Listing 2.6

Sub NumberofBooks()

 MsgBox Str(Workbooks.Count)

End Sub

The window, containing the number of open workbooks and the OK button,

is displayed when executing the NumberofBooks macro. To terminate the

execution, we must click on OK.

It was mentioned in the previous section that ActiveWorkbook is a property

of the Application object, corresponding to the active workbook. As the Work-

book type object, the ActiveWorkbook property has the properties and methods

of the Workbook object.

To obtain examples of returning properties Name and FullName of the

Workbook object and of applying the Save method, let us fulfill the following:

1) in the Excel window with the BookMacrorecorder workbook (p. 147),

click on the Enable Content button of the Security Warning panel to allow the

MR macro to work;

2) Developer (or View) > Macros > line MR > Edit;

3) put operator block

1: Dim S As String

2: S = ActiveWorkbook.Name

3: MsgBox S

4: MsgBox ActiveWorkbook.FullName

5: ActiveWorkbook.Save

2.9. Objects Workbook, Workbooks and ActiveWorkbook

163

above the last line of the MR macro (Fig. 2.15);

4) start the MR macro execution, for example, by clicking on arrow ► in the

VB window.

Fig. 2.15. The VB window with the macro text

after inserting the additional operator block

Because of executing operator 2, the S string has a value that is equal to the

name of the active workbook. Operator 3 displays this string (Fig. 2.16).

Let us click on the OK button (in the window depicted in Fig. 2.16) to con-

tinue executing the MR macro. Operator 4 displays the active workbook’s full

name (Fig. 2.17). After clicking on the OK button, operator 5 saves the active

workbook.

To obtain an example of returning the Path property of the Workbook object,

we will execute the MR macro with the following form of the operator intended

for displaying the full name:

4: MsgBox ActiveWorkbook.Path & "\" & _

 ActiveWorkbook.Name

Chapter 2. Programming in VBA

164

The window, depicted in Fig. 2.17, appears during the execution, as in the case

of the previous version of operator 4.

Fig. 2.16. The window with the active workbook’s name

Fig. 2.17. The window with the full name of the active workbook

In the following example, a workbook is created, a numerical value is entered

into it, this workbook is saved and closed, and the Excel window is closed too.

1. Insert a module into a blank workbook, for example Book1, and put the

following text into the code window (Fig. 2.18):

Listing 2.7

Sub NewBook()

1: Dim wbNewWorkbook As Workbook

2: Set wbNewWorkbook = Workbooks.Add

3: wbNewWorkbook.Worksheets("Sheet1").Range("A1"). _

 Value = 100

4: wbNewWorkbook.SaveAs _

 "c:\Users\usr\Hour0.xlsx"

5: wbNewWorkbook.Close

2.9. Objects Workbook, Workbooks and ActiveWorkbook

165

6: MsgBox "Workbook is closed"

7: Application.Quit

End Sub

2. Start the NewBook macro execution.

3. When the window with message Workbook is closed appears (Fig. 2.19),

click on the OK button in it. At that, the NewBook macro closes the Excel win-

dow. When closing the Excel window, we may disagree with the offer to save

Book1.

4. Open the Hour0 workbook in folder

c:\Users\usr

Number 100 is in cell A1 on worksheet Sheet1.

Fig. 2.18. The VB window with the NewBook macro text

The NewBook macro begins with the declaration of the wbNewWorkbook

variable (operator 1). Because of executing operator 2, a workbook is created

and assigned to the wbNewWorkbook variable. Operator 3 puts number 100

into the A1 cell on the Sheet1 worksheet of this workbook.

When creating a workbook, tabular processor Excel gives it a default name,

for example, Book2. Because the workbook name is known inexactly, the

wbNewWorkbook variable is used instead of Workbooks("Book2") in the

macro. Operator 4 saves this workbook under the following full name:

c:\Users\usr\Hour0.xlsx.

Chapter 2. Programming in VBA

166

Operator 5 closes the Hour0 workbook, and operator 6 displays the message

about it (Fig. 2.19). Operator 7 performs exit from Excel.

In operator 1, we may replace the Workbook type by the Object data type

(Appendix 1) similar to the Variant data type familiar to us.

Fig. 2.19. The window with the OK button for

terminating the NewBook macro execution

2.10. Objects Worksheet, Worksheets and ActiveSheet

167

2.10. Objects Worksheet, Worksheets

and ActiveSheet

The Worksheet object follows Workbook in the object hierarchy. Let us con-

sider the following properties of object Worksheet:

 Name — the worksheet name;

 Cells — one of the following:

 the collection of all cells on the worksheet;

 the single cell if we specify (by two integers in parentheses, through a

comma) the numbers of row and column whose intersection defines this cell.

The Cells property will be also considered in the next section, as applied to

the Range object.

We will consider the following two methods of the Worksheet object:

 Activate — activating the worksheet;

 Delete — deleting the worksheet.

Examples of using the properties and methods of the Worksheet object are

given below, when considering objects of the Worksheet type. The last objects

have the properties and methods of the Worksheet object.

The Worksheets object is an object containing all worksheets of the Excel

workbook. This object is also named as the Worksheets collection.

Its number or name can identify each worksheet of the Worksheets object.

For example, Worksheets(1) designates the 1st worksheet of the workbook, and

Worksheets(“Sheet1”) is the worksheet by name Sheet1. Worksheets(1) and

Worksheets(“Sheet1”) are objects of the Worksheet type.

As examples of applying the Activate and Delete methods of the Worksheet

object, let us consider the following operators:

Worksheets(3).Activate

Worksheets("Sheet2").Delete

The first operator activates the 3rd worksheet of the active workbook, and the

second operator deletes worksheet by name Sheet2 of the active workbook.

When working with object Worksheets, the application of the Add method

adds to the collection a new worksheet that becomes active at once. This applica-

tion is accompanied by return (into the program) of the created worksheet, which

Chapter 2. Programming in VBA

168

is the Worksheet type object. As an example, see operator 2 in the NewSheet

macro on p. 170.

The Worksheets collection (as well as other collections) has the Count

property that allows determining the number of objects in the collection.

An example of returning property Count is in the following macro:

Listing 2.8

Sub NumberofSheets()

 MsgBox Str(Worksheets.Count)

End Sub

The window, containing the number of worksheets in the active Excel work-

book and the OK button, is displayed when executing the NumberofSheets

macro (Fig. 2.20). For terminating the execution, we have to click on OK.

Fig. 2.20

As we already mentioned in Section 2.8, ActiveSheet is a property of the

Application object, corresponding to the active worksheet of the active work-

book. As the Worksheet type object, the ActiveSheet property has the properties

and methods of the Worksheet object.

2.10. Objects Worksheet, Worksheets and ActiveSheet

169

An example of setting the Name property of the Worksheet object is the fol-

lowing operator:

ActiveSheet.Name = "July"

This operator assigns the month name to the active worksheet.

As an example of returning the Cells property of the Worksheet object, let us

consider the following program:

Listing 2.9

Sub Color()

 Dim i As Integer

 Dim j As Integer

 For i = 1 To 4

 For j = 1 To 5

0: With ActiveSheet.Cells(i, j)

 If .Value < 0 Then

 .Font.Color = QBColor(10)

 .Font.Italic = True

 End If

 End With

 Next j

 Next i

End Sub

This program:

1) examines the values in cells A1:E4 on the active worksheet;

2) sets the green italic font when the value is negative.

Note that the object name can be excluded from VBA notation

ActiveSheet.Cells(i, j)

In this case, line 0 becomes as follows:

With Cells(i, j)

Besides, note that operator Cells.Select in macro Listing 2.2 on p. 148

(programmed by means of Excel Macro Recorder) is equivalent to operator

ActiveSheet.Cells.Select.

As an example of applying the Add method of the Worksheets object, let us

consider the program for inserting a new worksheet into the active Excel work-

book. For that, we fulfill the following:

Chapter 2. Programming in VBA

170

1) put text

Listing 2.10

Sub NewSheet()

1: Dim wsNewWorksheet As Worksheet

2: Set wsNewWorksheet = Worksheets.Add

3: wsNewWorksheet.Name = Format(Date, "d mmmm yyyy")

End Sub

into the code window;

2) execute the NewSheet macro.

The name of the inserted worksheet is the current date. This worksheet is

active; it is placed in front of the former active worksheet.

The NewSheet macro (which is similar to NewBook on p. 164) begins with

the declaration of variable wsNewWorksheet (operator 1). The created work-

sheet is assigned to this variable (operator 2). Operator 3 sets the worksheet

name by means of the wsNewWorksheet.Name property.

Operator 3 includes the call of the Format function intended for converting

a value (in particular, of the Date data type) to a string of the given form. The

first argument is the Date function returning the current date. The second argu-

ment is the string, which gives the following format of the date: the day of

month, the name of month, the year completely.

Note that the Set keyword is used not only in the operator of applying the

Add method: any assignment operator, where objects are present, begins with the

Set keyword. For example, the NewSheet program will also work if we

replace Worksheets.Add by object Worksheets(1) in operator 2. The

new version of the program follows:

Sub NewSheet1()

1: Dim wsNewWorksheet As Worksheet

2: Set wsNewWorksheet = Worksheets(1)

3: wsNewWorksheet.Name = Format(Date, "d mmmm yyyy")

End Sub

As the execution result, the current date becomes the 1st worksheet’s name.

2.11. Objects Range, Selection and ActiveCell

171

2.11. Objects Range, Selection and ActiveCell

Object Range follows the Worksheet object in the object hierarchy. It allows

working with the following elements of Excel:

 range of cells;

 range of columns;

 range of rows;

 single cell.

Let us consider some properties of the Range object.

 Formula — the Excel formula with operands (cell addresses) in the A1

reference style.

For example, operators

Range("C2:F8").Formula = "=A4+COS(A10)"

Range("D:E").Formula = "=A4+COS(A10)"

Range("2:2").Formula = "=A4+COS(A10)"

Range("B3").Formula = "=A4+COS(A10)"

set the Formula property. These operators are respectively used to put formula

=A4+COS(A10)

into the following parts of the active worksheet:

 range C2:F8;

 columns D and E;

 the 2nd row;

 the B3 cell.

 FormulaR1C1 — the Excel formula with operands (cell addresses) in the

R1C1 reference style.

For example, operator

Worksheets("Sheet1").Range("G1:H4").FormulaR1C1 = _

 "=SQRT(R5C8)^3+7.3"

sets the FormulaR1C1 property. This operator is used for entering formula

Chapter 2. Programming in VBA

172

=SQRT(H5)^3+7.3

into the G1:H4 range on the Sheet1 worksheet (the R1C1 reference style option

may be turned on or off, see p. 143).

 Address — the cell address.

 Offset — the range shifted relative to the selected (active) range accord-

ing to two integers in parentheses.

In the Offset property, the first parameter (in parentheses) is the vertical shift,

and the second parameter is the horizontal shift. A comma is placed between

these parameters.

 Value — one of the following:

 the array of the range values;

 the cell value, if the Range object corresponds to the single cell.

 Columns — the collection of the range columns.

 Rows — the collection of the range rows.

 Cells — the collection of the range cells.

Note that we considered the Cells property regarding the Worksheet object in

the previous section.

Below, we will list some methods of the Range object.

 Clear — the removal of the range contents.

For example, the following application of the Clear method clears cells

A1:F7 on the Sheet1 worksheet:

Worksheets("Sheet1").Range("A1:F7").Clear

 Select — the selection (activation) of the range.

Objects of the Range type have properties and methods of the Range object.

When working with the Range type objects, it is convenient to use the

For Each…Next cycle, which is similar to cycle For…Next (p. 58). The syntax

of this operator may be studied by means of the Excel help system started by

pressing the F1 key when the VB window is active.

In the following program example, operator For Each…Next is used for

squaring the values of range A1:A6 on Sheet1 of the active workbook:

Listing 2.11

Sub Square()

 Dim x As Range

 For Each x In Worksheets("Sheet1").Range("A1:A6")

 x.Value = x.Value ^ 2

 Next

End Sub

2.11. Objects Range, Selection and ActiveCell

173

The Selection object allows working with the active (selected) cells. As the

Range type object, the Selection object has properties Columns, Rows and Cells.

Thus, properties

Selection.Columns

Selection.Rows

Selection.Cells

are the collections of columns, rows and cells of the selected range, respectively.

The following example program inserts the multiplication table into the

selected range on the active worksheet:

Listing 2.12

Sub MultiplicationTable()

 Dim m As Integer, n As Integer

 Dim i As Integer, j As Integer

1: m = Selection.Rows.Count 'quantity of rows

2: n = Selection.Columns.Count 'quantity of columns

3: For i = 1 To m

4: For j = 1 To n

5: Selection.Cells(i, j).Value = i * j

6: Next j

7: Next i

End Sub

Operators 1 and 2 contain the Count property whose return allows defining

the quantity of objects in the Selection.Rows and Selection.Columns

collections. Because of executing these operators, the quantities of rows and

columns in the selected range are assigned to the m and n variables, respectively.

Operator 5 may have the following form:

Selection.Cells(i, j) = i * j

Here, .Value is present implicitly.

We advise the reader to do the following:

1) enter program MultiplicationTable into the code window;

2) go to the Excel window and select the range for the multiplication table;

3) run program MultiplicationTable;

4) looking the execution result, verify the program correctness.

The Selection object can be used for recovering the selection. For example, in

the graph subroutine (Section 4.8):

 in the beginning, operator

Chapter 2. Programming in VBA

174

Set wbOldSelection = Selection

assigns the selected range to the wbOldSelection variable of the Range

type;

 in the end, operator

wbOldSelection.Select

selects the wbOldSelection range.

It was mentioned in Section 2.8 that ActiveCell is a property of the Applica-

tion object, corresponding to the active cell on the active worksheet of the active

workbook. As the Range type object, the ActiveCell property has the properties

and methods of the Range object.

The PropofRange program, given below, contains examples of using the

properties and methods of the Range object.

1. Put 100 into cell B1, 200 into B2 and 300 into B3 on the Sheet1 work-

sheet.

2. Put formula

=SUM(B1:B3)

into cell B4 on Sheet1, and click on the tick button of the Excel formula bar.

3. Go to Visual Basic Environment and insert a module into the active

workbook.

4. Enter the following text into the code window:

Listing 2.13

Sub PropofRange()

1: Worksheets("Sheet1").Range("A1").Select

2: ActiveCell.Offset(2, 3).Select

3: MsgBox "Current cell — " & ActiveCell.Address

4: MsgBox "Value in cell B4 = " & _

 Range("B4").Value

5: MsgBox "Formula in cell B4: " & _

 Range("B4").Formula

End Sub

5. Run the PropofRange program execution after activating the Sheet1

worksheet. The window with message Current cell - D3 and the OK button

appears (Fig. 2.21a).

2.11. Objects Range, Selection and ActiveCell

175

6. Click on the OK button. The window with message Value in cell B4 =

600 and the OK button appears (Fig. 2.21b).

7. Click on the OK button. The window with message Formula in cell B4:

=SUM(B1:B3) and the OK button appears (Fig. 2.21c).

8. Click on the OK button for terminating the execution.

Operator 1 of the PropofRange program selects cell A1 on the Sheet1

worksheet. Operator 2 selects the D3 cell, shifted 2 vertically and 3 horizontally

relative to the A1 cell (property Offset and method Select of the Range object are

figured in this operator). Further, three windows with the message and OK but-

ton are sequentially displayed (Fig. 2.21).

Fig. 2.21a. The Excel worksheet with the first window

Fig. 2.21b. The second window

Chapter 2. Programming in VBA

176

Fig. 2.21c. The third window

2.12. Study of objects

177

2.12. Study of objects

We can obtain information on any object by means of the reference systems

started by pressing keys F1 and F2. For that, we press the F2 key when the VB

window is active. As a result, the object browser window appears.

If the Range object is interesting for us, we highlight Range in list Classes

by click. At that, list Members of 'Range', containing properties and methods of

object Range, appears in the object browser window (Fig. 2.22).

Fig. 2.22. The VB window containing the object browser window

Chapter 2. Programming in VBA

178

For obtaining information on the Select method of the Range object, we high-

light line Select in list Members of 'Range' and press the F1 key. As a result,

the Excel Help window, containing the necessary information, is displayed

(Fig. 2.23).

Fig. 2.23. The Excel Help window with the description

of the Range.Select method

2.12. Study of objects

179

We advise the reader to obtain information on the Add method of object

Worksheets in a similar way.

In addition, we advise the reader to obtain information on the ActiveCell

object by means of the binoculars pictogram in the object browser window, such

as we obtained information on vbFriday on p. 32.

Chapter 2. Programming in VBA

180

2.13. Using the Excel table as the user

interface of programs

We considered the main Excel objects. Now we can use the Excel table as the

user interface of programs.

Initially, we will create a macro for calculating the length of the leg of

a right-angled triangle with given lengths of the hypotenuse and the other leg.

In this macro, we will realize formula

22 acb

following from formula (1.1) on p. 16.

Let length a of the leg be in the A4 cell, length c of the hypotenuse be in C4.

Let B5 be intended for resulting length b. The macro has the following text:

Listing 2.14

Sub Leg()

 Dim a As Single, b As Single, c As Single

 a = Range("A4").Value

 c = Range("C4").Value

 If c < a Then

 Range("B5").Value = "Error"

 End 'immediate termination of macro

 End If

 b = Sqr(c ^ 2 - a ^ 2) 'according to Pythagoras

 Range("B5").Value = b

End Sub

We advise the reader to do the following:

1) enter the Leg macro text into the code window of a new module;

2) go to the Excel window;

3) enter 4.3 and 5.1 into cells A4 and C4, respectively;

4) run the Leg macro;

5) make sure that number 2.742261 appears in the B5 cell on the active

worksheet.

As we know, length c of the hypotenuse must be greater than or equal to

length a of the leg. If the C4 cell value is less than the A4 cell value, logical

2.13. Using the Excel table as the user interface of programs

181

expression c < a accepts True when executing the Leg macro. In this case,

message Error appears in cell B5 and the End operator terminates the macro

execution. We encounter the End operator for the first time.

It is easy to understand the work of the following macro intended for trans-

posing a numerical matrix relative to its auxiliary diagonal according to formula

(1.3) on p. 109:

Listing 2.15

Sub TRANSPA()

 Dim m As Integer, n As Integer

 Dim i As Integer, j As Integer

 m = Selection.Rows.Count 'quantity of rows

 n = Selection.Columns.Count 'quantity of columns

 For j = 1 To n

 For i = 1 To m

 Selection.Cells(j + m + 1, i) = _

 Selection.Cells(m + 1 - i, n + 1 - j)

 Next i

 Next j

End Sub

This macro is used as follows:

1) on the Excel worksheet, select the matrix intended for the transposition;

2) run the TRANSPA macro.

The result of the macro execution appears below the original matrix

(Fig. 2.24).

Fig. 2.24. The Excel worksheet with the initial matrix and

the result of its transposing relative to the auxiliary diagonal

Chapter 2. Programming in VBA

182

2.14. Two more Excel macros.

Personal Macro Workbook

Let us create a macro fulfilling the following operations:

1) at the 1st run, the macro writes the value of cell A3 on worksheet Sheet1

into cell B2 on worksheet Sheet2;

2) at the 2nd run, the macro writes the value of the same cell, Sheet1!A3,

into cell Sheet2!B4;

3) at the 3rd run, the macro writes the value of cell Sheet1!A3 into cell

Sheet2!B6, and so on.

Into cell Sheet1!A3, the values are entered manually before the next run of

the macro.

Let us use Sheet1!A4 as an auxiliary cell. We have to write zero into this cell

before a series of the macro runs.

Into the code window of a new module, we enter the following text of the

macro:

Listing 2.16

Sub Macr1()

 Dim i As Integer, M As Range

 Set M = Range("Sheet2!B1:Sheet2!B200")

 i = Range("Sheet1!A4").Value + 2

 M(i) = Range("Sheet1!A3").Value

 Range("Sheet1!A4").Value = i

End Sub

In the above Macr1 macro:

 i is an auxiliary variable;

 M is the array corresponding to range B1:B200 on worksheet Sheet2;

 Range("Sheet1!A4").Value, Range("Sheet1!A3").Value

are the values in cells A4 and A3 on worksheet Sheet1.

At the 1st run of the Macr1 macro:

1) number 2 is assigned to variable i;

2) the value of cell A3 on worksheet Sheet1, for example 100, is assigned to

variable M(2), i.e., to cell B2 on worksheet Sheet2;

3) the value of i (number 2) is written into cell A4 on worksheet Sheet1.

2.14. Two more Excel macros. Personal Macro Workbook

183

At the 2nd run of the Macr1 macro:

1) number 4 is assigned to variable i;

2) the value of cell A3 on worksheet Sheet1, for example 200, is assigned to

variable M(4), i.e., to cell B4 on worksheet Sheet2;

3) the value of i (number 4) is written into cell A4 on worksheet Sheet1.

And so on. We see that the Macr1 macro fulfills the necessary operations

(Fig. 2.25).

a

b

Fig. 2.25. Worksheets Sheet1 (a) and Sheet2 (b) after

the fourth run of the Macr1 macro: numbers 100, 200, 300

and 400 are put into cell Sheet1!A3 before the macro runs

Chapter 2. Programming in VBA

184

The developed macro, Macr1, has two drawbacks:

 we can use this macro only in the Excel workbook, where it was created;

 the number of the macro runs (in one series) should not exceed 100

because the M array, containing the fixed quantity of elements, is used in this

macro.

For liquidation of the first drawback, we will create Personal Macro Work-

book. For that, let us fulfill the following operations.

1. Open a blank workbook.

2. Open window Record Macro by fulfilling Developer > Record Macro

(in area Code) or View > arrow Macros (in area Macros) > Record Macro.

3. Enter Personal Macro Workbook into box Store macro in by using the

drop-down list (Fig. 2.26) and click on OK.

Fig. 2.26. The Record Macro window before clicking on the OK button

4. Developer > Stop Recording (in area Code) or View > arrow Macros

(in area Macros) > Stop Recording.

5. Open the VB window.

6. Click on line VBAProject (PERSONAL.XLSB) in the project explorer

window, and fulfill File > Save PERSONAL.XLSB.

7. Close the Excel window by clicking on the little cross in the top right

corner. If the window with a question about saving changes in Personal Macro

Workbook is displayed (when closing the Excel window), click on the Yes

button.

2.14. Two more Excel macros. Personal Macro Workbook

185

Because of these operations, the PERSONAL.XLSB file is created. This file

is Personal Macro Workbook of the computer user by name usr.

Personal Macro Workbook opens automatically when starting Excel. Macros

and user-defined functions, placed in Personal Macro Workbook, can be used

in Excel workbooks that are in folder c:\Users\usr (and in folders enclosed

in it).

The automatic opening of Personal Macro Workbook does not lead to

appearance of any button on the taskbar of Windows Desktop.

Let us fulfill the following operations:

1) open a blank workbook;

2) go to the VB window;

3) click on the VBAProject (PERSONAL.XLSB) line in the project explorer

window;

4) Insert > Module (it means the module insertion into Personal Macro

Workbook);

5) put macro

Listing 2.17

Sub Macr2()

 Dim i As Integer

 i = Range("Sheet1!A4").Value + 2

 Range("Sheet2!B" & CStr(i)) = _

 Range("Sheet1!A3").Value

 Range("Sheet1!A4").Value = i

End Sub

into the code window.

In Fig. 2.27, Module1 in the project explorer window is the result of opera-

tion of Excel Macro Recorder that was used for creating Personal Macro Work-

book. This module may be removed or used in further work with Personal Macro

Workbook, for example, for storage of the Func9 function (Section 2.15). The

Macr2 macro is placed in the Module2 module.

To save changes made in Personal Macro Workbook, we must fulfill the fol-

lowing in the VB window: File > Save PERSONAL.XLSB. At that, the Macr2

macro, which is a part of file PERSONAL.XLSB, is saved on the hard disk of

the computer.

Macro Macr2, used as macro Macr1, has the following advantages:

 macro Macr2 can be used in all Excel workbooks that are in folder

c:\Users\usr;

 the number of the macro runs is not limited because the M array is absent

in the macro code.

Chapter 2. Programming in VBA

186

Fig. 2.27. The VB window with the Macr2 macro

in the code window of the Module2 module

It is possible to transfer Personal Macro Workbook to other user. For this

purpose, the PERSONAL.XLSB file should be copied into the appropriate folder

of this user. Let us consider the location of Personal Macro Workbook on the

hard disk of the computer.

The workbooks, which are in the XLSTART folder, are opening automatical-

ly when starting Excel. The full name of this folder follows:

c:\Users\usr\AppData\Roaming\Microsoft\Excel\XLSTART

where usr is the user name. File PERSONAL.XLSB is located in this folder.

If we want to transfer our Personal Macro Workbook to the user whose name

is usr2, we must copy the PERSONAL.XLSB file into folder

c:\Users\usr2\AppData\Roaming\Microsoft\Excel\XLSTART

of his computer.

Note that folder AppData (from “Application Data”) may be hidden in

Windows Explorer. To make a folder or file visible, we must fulfill the following

operations:

1) open the folder containing the hidden folder or file of interest;

2) Organize > Folder and search options;

2.14. Two more Excel macros. Personal Macro Workbook

187

3) in open window Folder Options, activate tab View;

4) in list Advanced settings, turn on option Show hidden files, folders, and

drives;

5) successively click on buttons Apply and OK.

To expand the chosen operation mode of Windows Explorer to all folders, we

must click on button Apply to Folders before clicking on the Apply button. In

open window Folder Views, we must click on the Yes button.

Chapter 2. Programming in VBA

188

2.15. One more user-defined function of Excel

There are value h and two-dimensional numerical array (matrix) A, whose

elements are in cells of the Excel table. We will consider a user-defined function,

which returns the number of the A array values exceeding h.

Let us create an Excel workbook and then open the VB window. Further, let

us insert a module into Personal Macro Workbook, already created, and then put

the following text of the user-defined function into the code window of the

inserted module.

Listing 2.18

Function Func9(massive As Variant, h As Variant) _

 As Integer

1: Dim k As Integer, i As Integer, j As Integer

2: k = 0

3: If TypeName(massive) = "Range" Then

4: For i = 1 To massive.Rows.Count

5: For j = 1 To massive.Columns.Count

6: If massive(i, j) > h Then

7: k = k + 1

8: End If

9: Next j

10: Next i

11: Func9 = k

12: Else

13: MsgBox "Func9: Argument is not range"

14: End If

End Function

The current state of the project is depicted in Fig. 2.28.

The built-in TypeName function (in line 3) returns its argument’s data

type as a string. This function is used for verifying the type of input parameter

massive. In the correct call of the Func9 function, the massive variable has

the Range type.

2.15. One more user-defined function of Excel

189

Fig. 2.28. The VB window with text of the Func9 function in the code window

In line 4, the quantity of rows in the massive range is the result of return-

ing property massive.Rows.Count. In line 5, the quantity of columns is the

result of returning property massive.Columns.Count.

In line 6, massive(i, j) is the reference to the corresponding cell of the

massive range.

The Func9 function is used as follows.

1. Enter values of matrix A, for example, into range D5:E8 on worksheet

Sheet4.

2. Assign a name, for example Test9, to the D5:E8 range. For this purpose:

1) select this range, and fulfill Formulas > Define Name in area Defined

Names;

2) in the open New Name window, type Test9 in text box Name;

3) enter Sheet4 into box Scope by means of the drop-down list (Fig. 2.29);

4) click on the OK button.

3. Enter formula

=PERSONAL.XLSB!Func9(Test9;2)

into any cell on worksheet Sheet4, for example, E11.

Chapter 2. Programming in VBA

190

In the above formula, an exclamation mark means that the Func9 function is

a part of file PERSONAL.XLSB.

4. Click on the tick button of the Excel formula bar.

Fig. 2.29. The New Name window with automatically filled box Refers to

The resulting number of values in the D5:E8 cells exceeding 2 appears in the

E11 cell (Fig. 2.30).

Below is the second way of using the Func9 function, without assigning

a name to the range with the A array.

Let us use Function Wizard as follows:

1) select a cell for the result, for example, Sheet4!E11;

2) click on the fx button of the Excel formula bar to start Function Wizard;

3) in the User Defined category of the open Insert Function window, high-

light the line corresponding to the Func9 function (Fig. 2.31), and click on the

OK button;

4) in the open Function Arguments window (Fig. 2.32), enter:

 the source range (for example, D5:E8 on the Sheet4 worksheet) into the

first text box;

 the h value, for example 2, into the second text box;

5) click on the OK button.

We see the former result: five values exceed h = 2 (Fig. 2.30).

Note that cell E11 and range D5:E8 may be on one or different worksheets of

the same Excel workbook.

2.15. One more user-defined function of Excel

191

Fig. 2.30. The source data and calculation result in the Excel window

Fig. 2.31. The first window of Function Wizard

Chapter 2. Programming in VBA

192

Fig. 2.32. The second window of Function Wizard

We advise the reader to calculate the values of function)(xf from Appen-

dix 4 and also of functions)()(xfxxg and)()(2 xfxxh at not less than 10

points of segment],[ba , including a and b, in the following ways:

 creating a macro by means of Excel Macro Recorder;

 programming an Excel user-defined function in VBA;

 programming a macro in VBA.

Use the Excel tools to create the graphs of functions)(xf ,)(xg and)(xh .

2.16. Digression. Change of Excel options

193

2.16. Digression. Change of Excel options

In the next four chapters of the book, languages VB and VBA will be used

for programming numerical methods. Besides, we will consider the Excel proce-

dures, which are a part of the add-ins, for solving some of our tasks.

For installing the necessary Excel add-ins, let us fulfill the following opera-

tions:

1) File > Options > Add-Ins;

2) enter Excel Add-ins into the Manage box by means of the drop-down list,

and click on the Go button;

3) in the open Add-Ins window, turn on options Analysis ToolPak and Solver

Add-in, and click on the OK button.

As a result, the Data Analysis and Solver commands appears in Excel Rib-

bon — on the Data tab, in the Analysis area.

We will need to tune Excel so that formulas are displayed in cells, instead of

results of calculations according to these formulas. For this purpose, we must

fulfill the following operations:

1) File > Options > Advanced;

2) turn on option Show formulas in cells instead of their calculated results

located below box Display options for this worksheet;

3) click on the OK button.

In this way, we change the contents of the cells with formulas on the work-

sheet specified in box Display options for this worksheet. The contents of the

cells without formulas do not change.

Upon turning off option Show formulas in cells instead of their calculated

results, the worksheet returns to the customary form, with values in the cells.

We will also need a workbook with the module for programs, realizing

numerical methods. To obtain it, let us fulfill the following:

1) open a blank workbook, and insert the Module1 module into it;

2) put text

Sub main()

End Sub

Chapter 2. Programming in VBA

194

into the code window of this module;

3) in the VB window, fulfill File > Save;

4) in the open Save As window, choose the c:\Users\usr folder familiar to us

(usr is the user name);

5) enter the workbook name, BookNM, into text box File name (NM is the

abbreviation of “numerical methods”);

6) set file type Excel Macro-Enabled Workbook by using the drop-down list;

7) click on the Save button;

8) close the VB and Excel windows.

We will enter texts of programs by name main into the Module1 module.

Upon termination of work with the BookNM workbook, we will always save it.

195

Chapter 3.

Finite Difference Method

for Solving Differential Equations

Two kinds of conditions on the solution of the second-order linear differen-

tial equation are reviewed, namely, the boundary and periodicity conditions.

Replacing the derivatives by their finite difference analogs, we obtain the

so-called finite difference schemes — systems of linear algebraic equations

of special form.

We review several versions of the decomposition method [4] for solving

the finite difference schemes. The simplest scheme is also solved by the Gaussi-

an elimination method. The question of stability of these two methods is investi-

gated in respect of not increasing the computing error during solving this

scheme.

The finite difference method for solving the linear differential equation is

used for solving the nonlinear differential equation by the quasilinearization

method. For demonstration of the finite difference method’s possibilities,

we develop subroutines and programs for solving mathematical and applied

problems. We use the Excel scatter diagrams for visualization of calculation

results.

Chapter 3. Finite Difference Method for Solving Differential Equations

196

3.1. Finite difference analogs

of derivatives for a uniform grid

Let us introduce an increasing sequence of points,

k
x <

1k
x <

2k
x < ... <

2r
x <

1r
x <

r
x ,

on segment a ≤ x ≤ b, at that, ax
k

, bx
r

. In other words, segment],[ba is

covered with a grid whose nodes have coordinates
k

x ,
1k

x ,
2k

x , ...,
2r

x ,

1r
x ,

r
x .

For simplicity, we will consider that the grid is uniform, i.e., the grid step,

hxx
ii 1

, does not depend on i, k + 1 ≤ i ≤ r (later, we will consider

a nonuniform grid).

In addition to this grid (Fig. 3.1), called the main grid, we will use the so-

called auxiliary grid with the following nodes:

2/)(
1][kkk

xxx , 2/)(
21]1[kkk

xxx , ..., 2/)(
1]1[iii

xxx ,

2/)(
1][iii

xxx , ..., 2/)(
12]2[rrr

xxx , 2/)(
1]1[rrr

xxx .

As we see, numbers (indices) of the auxiliary grid nodes are in square brackets.

Fig. 3.1. Grids on segment],[ba : main — indices without brackets;

auxiliary — indices in square brackets

Let
k

u ,
][k

u ,
1k

u ,
]1[k

u ,
2k

u , ...,
1i

u ,
]1[i

u ,
i

u ,
][i

u ,
1i

u , ...,

2r
u ,

]2[r
u ,

1r
u ,

]1[r
u ,

r
u be the)(xu function values at the corre-

sponding nodes of the main and auxiliary grids.

A function, set on a grid, is called a grid function or a function in tabular

form (tabular function). An example of such function is)(xu considered above.

3.1. Finite difference analogs of derivatives for a uniform grid

197

We will come across grids and grid functions more than once.

Let us assume that function)(xu is continuous in segment],[ba , has con-

tinuous derivatives of 1m orders, and the m-th derivative exists, in other

words, function)(xu is differentiable m times. At that, in a neighborhood of any

interior point x of],[ba , we can use Taylor’s formula [3] in the following form:

...)(
!3

)(
!2

)(
!1

)()(
3

33

2

22

x
dx

ud
x

dx

ud
x

dx

du
xuxu

)()(
)!1(1

11
m

m

mm

Ox
dx

ud

m
. (3.1)

The O notation,)(mO , has the following sense (for natural m).

If ε is a small quantity, as in (3.1),)(mO means the quantity whose absolute

value is less or equal to || mC , where C is a positive constant, i.e., C is inde-

pendent of ε. In this case,)(mO is called the quantity of m-th order of small-

ness or the quantity of m -th order.

If Ε is a large positive quantity,)(mΕO means the positive quantity whose

value tends to
mCΕ when Ε , C is a positive constant.

If the grid step, h, is a small quantity, we have the following chain of equali-

ties according to formula (3.1):

2

1
)]()([

2

1
)(

iii
xuxux

dx

du

2

)(
2

)2/(
)(

2

2

)(
2

)2/(
)(

2 2

22

2

22

h

x
dx

udh
xu

h
xu

h

x
dx

udh
xu

h
xu

iiiiii

)()(2]1[][2 hO
h

uu
hO

ii
. (3.2)

Similarly, we can obtain two more expressions for the first derivative of the

)(xu function:

Chapter 3. Finite Difference Method for Solving Differential Equations

198

)()(21

][
hO

h

uu
x

dx

du ii

i
, (3.3)

)(
2

)(211
hO

h

uu
x

dx

du ii

i
. (3.4)

Using formulas (3.2) and (3.3), we can also obtain an expression for the

second derivative of)(xu as follows:

)(
)()(

)(2]1[][

2

2

hO
h

xuxu
x

dx

ud ii

i

)(
2

)(2

2

112

11

hO

h

uuu
hO

h

h

uu

h

uu

iii

iiii

. (3.5)

After neglecting summands)(2hO in (3.2), (3.4) and (3.5), we have finite

difference analogs of the first two derivatives of the)(xu function at point
i

x .

3.2. Finite difference scheme for the linear differential equation. The decomposition method

199

3.2. Finite difference scheme for the linear

differential equation. The decomposition method

Let us consider the following second-order linear differential equation of

general form on segment],[ba :

)()()(
2

2

xfuxe
dx

du
xg

dx

ud
, (3.6)

where)(xg ,)(xe and)(xf are given functions,)(xu is an unknown function.

For uniqueness of the solution of this equation, we use the following left and

right boundary conditions:

AauAauA)()(
10

, (3.7)

BbuBbuB)()(
10

, (3.8)

where A and B are given parameters, 1
00

BA , 0
11

BA to begin with.

Let us consider a method for solving this boundary value problem, based on

replacing the derivatives by their finite difference analogs,

h

uu
x

dx

du ii

i 2
)(

11
,

2

11

2

2 2
)(

h

uuu
x

dx

ud
iii

i
.

These expressions follow from (3.4) and (3.5) if we neglect the summands of

second order of smallness,)(2hO .

Let
i

x be an internal node of the main grid (Fig. 3.1), i.e., node
i

x does not

coincide with points a and b. Equation (3.6) at this node looks like

)()()()()()(
2

2

iiiiii
xfxuxex

dx

du
xgx

dx

ud
.

Multiplying both sides of this equality by 2h and substituting the finite differ-

ence analogs of the derivatives, we get the following linear algebraic equation:

iiiiiii
uuu

11
, (3.9)

where
1i

u ,
i

u ,
1i

u are unknown variables, i = k + 1, k + 2, ..., r – 2, r – 1,

Chapter 3. Finite Difference Method for Solving Differential Equations

200

hg
ii

5.01 ,

22he
ii

,

hg
ii

5.01 , (3.10)

2hf
ii

.

In the last four expressions,
i

g ,
i

e and
i

f are the values of the coefficients

and right-hand side of equation (3.6) at node
i

x :)(
ii

xgg ,)(
ii

xee ,

)(
ii

xff , i = k + 1, k + 2, ..., r – 2, r – 1.

Boundary conditions (3.7) and (3.8) can be written as follows:

kkkkk
uu

1
, (3.11)

rrrrr
uu

1
, (3.12)

where 2
rk

, 0
rk

, A
k

2 , B
r

2 .

The system of linear algebraic equations (3.9), (3.11) and (3.12) is called the

finite difference scheme for boundary value problem (3.6) — (3.8). More pre-

cisely, this system is called the one-dimensional finite difference scheme because

it corresponds to the problem with one spatial coordinate.

Using the definitions of matrix multiplication and equality (Section 1.21), we

can write scheme (3.9), (3.11), (3.12) as the following matrix equation:

rr

rrr

rrr

kkk

kkk

kk

00...0000

0...0000

0...0000

.........

0000...0

0000...0

0000...00

111

222

222

111

.......

1

2

2

1

1

2

2

1

r

r

r

k

k

k

r

r

r

k

k

k

u

u

u

u

u

u

3.2. Finite difference scheme for the linear differential equation. The decomposition method

201

The coefficient (system) matrix, which is a part of this matrix equation, has

the so-called tridiagonal form: nonzero elements are only on the main diagonal,

the first “diagonal” below this and the first “diagonal” above the main diagonal.

Finite difference scheme (3.9), (3.11), (3.12) is usually solved by the decom-

position method [4] whose main advantage is its efficiency in comparison with

other methods for solving this system of linear algebraic equations:

 for calculating the values of the 1krn unknowns (
k

u ,
1k

u ,

2k
u , ...,

2r
u ,

1r
u ,

r
u) by the decomposition method,)(nO arithmetic

operations must be performed (p. 203);

 the solution of the system of equations (3.9), (3.11) and (3.12) by the

Gaussian elimination method (Sections 3.9 and 3.10) requires)(3nO arithmetic

operations (p. 227).

The decomposition method includes two stages, which are called the forward

and backward sweeps. To obtain formulas for the sweeps, let us connect the

unknowns,
1i

u and
i

u , through formula

iiii
QuPu

1
, (3.13)

where
i

P ,
i

Q are the auxiliary unknowns, i = r, r – 1, ..., k + 1.

After substituting the last expression into equation (3.9), we obtain

iii

iii

i

iii

i

i P

Q
u

P
u

1

or

111 iiii
QuPu ,

where
1i

P and
1i

Q are determined by the following recurrence formulas:

iii

i

i P
P

1
, (3.14)

iii

iii

i P

Q
Q

1
. (3.15)

According to the last two formulas, if the values of
1k

P ,
1k

Q are known,

the use of these formulas at i = k + 1, k + 2, ..., r – 1 gives the values of
2k

P ,

2k
Q ,

3k
P ,

3k
Q , ...,

r
P ,

r
Q .

The values of
1k

P ,
1k

Q are determined by formulas

Chapter 3. Finite Difference Method for Solving Differential Equations

202

k

k

k
P

1
, (3.16)

k

k

k
Q

1
, (3.17)

which follow from left boundary condition (3.11).

The recurrence calculation of unknown
i

P ,
i

Q using formulas (3.16), (3.17)

and (3.14), (3.15) is called the forward sweep.

Knowing the values of
r

u ,
i

P ,
i

Q (k + 1 ≤ i ≤ r), we can calculate unknown

1r
u ,

2r
u , ...,

k
u using recurrence formula (3.13).

For determining the value of
r

u , let us consider the following system of two

linear algebraic equations with unknown
1r

u and
r

u :

rrrrr
uu

1
,

rrrr
QuPu

1
.

The first equation is right boundary condition (3.12); the second equation is

(3.13) at i = r. Let us solve this system for
1r

u and
r

u by means of Cramer’s

rule [3].

The determinant of the system looks like

r

rr

P
D

1
.

The following determinants are obtained from D by replacing the first and

second columns by the column of the right-hand sides:

rr

rr

PQ
D

1
,

r

rr

Q
D

12
.

According to Cramer’s rule, we have

rrr

rrrr

r P

QP

D

D
u 1

1
,

rrr

rrr

r P

Q

D

D
u 2 . (3.18)

The recurrence calculation of unknown
i

u using formulas (3.18) and (3.13)

is called the backward sweep.

3.2. Finite difference scheme for the linear differential equation. The decomposition method

203

The use of the forward and backward sweeps gives the values of unknown

k
u ,

1k
u ,

2k
u , ...,

2r
u ,

1r
u ,

r
u , i.e., the solution of finite difference

scheme (3.9), (3.11), (3.12) for linear differential equation (3.6) with boundary

conditions (3.7) and (3.8). The calculated values of
k

u ,
1k

u ,
2k

u , ...,
2r

u ,

1r
u ,

r
u approximate the exact solution of problem (3.6) — (3.8) at the nodes

of the main grid on segment],[ba .

A simple analysis of formulas (3.14) and (3.15) of the forward sweep shows

that it requires)(nO arithmetic operations, n . A similar analysis of formu-

la (3.13) shows that the backward sweep also requires)(nO arithmetic opera-

tions. Thus, the solution of finite difference scheme (3.9), (3.11), (3.12) by the

decomposition method requires)(nO arithmetic operations.

Chapter 3. Finite Difference Method for Solving Differential Equations

204

3.3. Sufficient stability conditions

for the decomposition method

A repeatable algorithm (computing process) is called stable if the error aris-

ing at any step (for example, the rounding-off error) does not increase during the

computing process.

The decomposition method includes the forward and backward sweeps. Each

of these sweeps can be unstable. Let us investigate this question.

It is easiest to write the sufficient condition of the backward sweep stability,

i.e., the stability of the calculation process corresponding to recurrence formula

(3.13). This condition has the following form:

1
i

P (3.19)

for all values of i from k + 1 to r. If this condition is satisfied, then:

1) small error
i
 (which is a part of the calculated value of

i
u) goes into the

value of
1i

u without increase;
iii

P
1

 is the come error of
i
-th order;

2) because the additional error (
1i
 generated when calculating the value

of
1i

u) may be positive or negative with probability 0.5, the total error

(
1i
 =

1i
+

1i
) is of

i
-th order.

Similarly, the sufficient condition of stability of the calculation according to

recurrence formula (3.15) of the forward sweep is

1

iii

i

P
 (3.20)

for all values of i from k + 1 to r – 1. If this condition is satisfied, then:

1) small error
i
 (which is a part of the calculated value of

i
Q) goes into

the value of
1i

Q without increase;

i
iii

i

i P1

is the come error of
i
-th order;

3.3. Sufficient stability conditions for the decomposition method

205

2) because the additional error (
1i
 generated when calculating the value

of
1i

Q) may be positive or negative with probability 0.5, the total error

(
1i
 =

1i
+

1i
) is of

i
-th order.

Let us show that the simultaneous satisfaction of inequalities (3.19) and

(3.20) is the sufficient condition of stability of the calculation according to recur-

rence formula (3.14) of the forward sweep.

Let
i
 be a small error in the calculated value of

i
P . Using formula (3.14)

and expansion ...1)1/(1 32 xxxx from table “Important Series

Expansions” [3], we have the following chain of equalities:

)/(1

1

)(11
iiiiiiii

i

iiii

i

ii PPP
P

)(1 2

1 ii

iii

i

i
O

P
P)(2

11 ii
iii

i

ii
O

P
PP .

By comparing the beginning and end of this chain, we obtain

i
iii

i

ii P
P

11
. (3.21)

If inequality (3.19), which looks like 1
1i

P , and inequality (3.20) are

satisfied, then

1
1

iii

i

i P
P .

According to (3.21) and the last inequality, we can state the following:

1) small error
i
 (which is a part of the calculated value of

i
P) goes into the

value of
1i

P without increase; the come error,
1i

, is defined by formula

(3.21), i.e.,
1i

 is of
i
-th order;

2) because the additional error (
1i
 generated when calculating the value

of
1i

P) may be positive or negative with probability 0.5, the total error

(
1i
 =

1i
+

1i
) is of

i
-th order.

That is, the algorithm of the calculation according to formula (3.14) is stable.

Chapter 3. Finite Difference Method for Solving Differential Equations

206

Thus, the simultaneous satisfaction of inequalities (3.19) and (3.20) for all

values of i is enough for stability of the forward and backward sweeps, i.e., of

the decomposition method in general.

By means of conditions (3.19) and (3.20), we will obtain other stability con-

ditions of the decomposition method, which are more convenient to use.

Let us assume that

10
1k

P (3.22)

and inequalities

ii
,

iii
, (3.23)

0
i

 (3.24)

are simultaneously satisfied for all values of i. Then inequalities (3.19) and

(3.20) are satisfied for all values of i, i.e., the decomposition method is stable.

To prove the last assertion, we transform formula (3.14) as follows:

ii

i

iiiiii

i

iii

i

i PP
P

)1()(1
,

where)1()(
iiiiii

P .

Similarly, we obtain the following expression for a part of formula (3.15):

ii

i

iii

i

P
.

If 10
i

P , inequality 01
i

P is satisfied. Then (3.23) and (3.24) result

in 0
i

 and

10
1i

P , (3.25)

10

iii

i

P
. (3.26)

According to (3.22), inequalities (3.25) and (3.26) are satisfied for i = k + 1,

k + 2, ..., r – 1. As the consequence of this, inequalities (3.19) and (3.20) are satis-

fied for all values of i, i.e., the decomposition method is stable.

We proved that conditions (3.22) — (3.24), as well as conditions (3.19) and

(3.20), are the sufficient stability conditions for the decomposition method.

Because coefficients
i
,

i
 and

i
 are defined by expressions (3.10), the

consequence of the obtained stability conditions is the unconditional stability of

the decomposition method for solving boundary value problem (3.6) — (3.8), for

which the following conditions are satisfied:

3.3. Sufficient stability conditions for the decomposition method

207

1) 0)(xg for all values of x from a to b, i.e., equation (3.6) looks like

)()(
2

2

xfuxe

dx

ud
;

2) 0)(xe for all values of x;

3) left boundary condition (3.7) is such that 10
1k

P .

The unconditional stability means the stability for arbitrary step h of the grid.

Chapter 3. Finite Difference Method for Solving Differential Equations

208

3.4. Simplification of the second-order

linear differential equation

Thanks to the unconditional stability of solving the last boundary value prob-

lem (formulated at the end of the previous section), the substitution into equation

(3.6), which excludes the first derivative of)(xu , is of interest. We will show

that such substitution looks like

x

a

dyygxUxu)(5.0exp)()(. (3.27)

The exponential function (Appendix 3) is figured in this expression.

Let us differentiate function (3.27) twice. Using the basic rules of differentia-

tion [3], we obtain

x

a

dyyggU
dx

dU

dx

du
)(5.0exp5.0 , (3.28)

x

a

dyygUgg
dx

dU
g

dx

Ud

dx

ud
)(5.0exp)5.025.0(

2

2

2

2

2

. (3.29)

By substituting expressions (3.27) — (3.29) into equation (3.6), we obtain the

following equation without the first derivative of unknown function)(xU :

)()(
2

2

xFUxE

dx

Ud
, (3.30)

where

)(5.0)(25.0)(2 xgxgxeE , (3.31)

x

a

dyygxfF)(5.0exp)(. (3.32)

Let expressions (3.27) and (3.28), in which ax , be substituted into condi-

tion (3.7). We obtain the following left boundary condition for)(xU :

3.4. Simplification of the second-order linear differential equation

209

312
)()(AaUAaUA , (3.33)

where

)(5.0
102

agAAA , (3.34)

AA
3

. (3.35)

After substituting expressions (3.27) and (3.28), in which bx , into condi-

tion (3.8), we have the following right boundary condition:

312
)()(BbUBbUB , (3.36)

where

)(5.0
102

bgBBB , (3.37)

b

a

dyygBB)(5.0exp
3

. (3.38)

We will use substitution (3.27) not only in this chapter, but in the next chap-

ter too.

Chapter 3. Finite Difference Method for Solving Differential Equations

210

3.5. Program realization of the decomposition method

For solving equation (3.6) with boundary conditions (3.7) and (3.8) by the

decomposition method, we insert module Module2 into the BookNM workbook

(p. 194) and put the following subroutine declaration into this module:

Listing 3.1

Sub fb(ByVal k, ByVal r, ByVal h, ByVal A, ByVal B, _

 ByRef G() As Double, ByRef E() As Double, _

 ByRef F() As Double, ByRef U() As Double)

 Const BETAK = -2, GAMMAK = 0

 Dim DELTAK As Double

 Const ALPHAR = 0, BETAR = -2

 Dim DELTAR As Double

 Dim alpha As Double, beta As Double

 Dim gamma As Double, delta As Double

 Dim i As Integer, w As Double

 Dim P() As Double: ReDim P(k + 1 To r)

 Dim Q() As Double: ReDim Q(k + 1 To r)

 DELTAK = -2 * A

 DELTAR = -2 * B

'Forward sweep:

 P(k + 1) = -GAMMAK / BETAK

 Q(k + 1) = DELTAK / BETAK

 For i = k + 1 To r - 1

 w = 0.5 * G(i) * h

 alpha = 1 - w

 beta = E(i) * h ^ 2 - 2

 gamma = 1 + w

 delta = F(i) * h ^ 2

 w = alpha * P(i) + beta

 P(i + 1) = -gamma / w

 Q(i + 1) = (delta - alpha * Q(i)) / w

 Next i

'Backward sweep:

3.5. Program realization of the decomposition method

211

 U(r) = (DELTAR - ALPHAR * Q(r)) / _

 (ALPHAR * P(r) + BETAR)

 For i = r To k + 1 Step -1

 U(i - 1) = P(i) * U(i) + Q(i)

 Next i

End Sub

The subroutine name (fb) occurs from “forward-backward”: in the decom-

position method, we use the sweep from left to right (in the direction of the x

axis) and then from right to left (in the opposite direction).

If necessary, it is easy to obtain formulas of the “backward-forward” decom-

position method, in which the sweep from right to left is used, and then from left

to right.

The fb subroutine parameters have the following sense:

 k, r are numbers of the left and right boundary nodes of the main grid on

segment],[ba (Fig. 3.1);

 h is a grid step,)/()(krabh ;

 A, B are values of the solution of equation (3.6) on the left and right

boundaries of segment],[ba according to boundary conditions (3.7) and (3.8);

 G, E are arrays of values of the coefficients of equation (3.6) at the nodes

of the main grid;

 F is an array of values of the right-hand side of equation (3.6);

 U is an array intended for the solution values.

Chapter 3. Finite Difference Method for Solving Differential Equations

212

3.6. Examples of using the decomposition method

As an example of using the decomposition method, we will solve equation

032

2

2

uxc
dx

du
x

dx

ud
 (3.39)

on segment 0 ≤ x ≤ b with boundary conditions

1)0(u , 0)(bu (3.40)

for c = 10 and b = 1.5.

According to Task 3 of the second chapter in book [5], equation (3.39) was

obtained while studying temperature characteristics of a radial flow between

parallel round disks. The radial flow is a horizontal movement of liquid, gas or

plasma from the general center or to the center.

Equation (3.39) can be written in form (3.6), where

2)(xxg , xcxe 3)(, 0)(xf .

It is easy to verify that conditions (3.23) and (3.24) are satisfied for all values

of x from 0 to b if 2/2 bh = 0.889 (that is, if r – k ≥ 2). Besides, according

to (3.16) and (3.11), 0
1k

P , i.e., condition (3.22) is satisfied too. Thus, the

sufficient stability conditions for the decomposition method are satisfied if

r – k ≥ 2.

For solving problem (3.39), (3.40), let us consider a program with the follow-

ing source data table.

c 10

b 1.5

l 15

x u

The first three rows of this table contain the values of parameters c and b and

the number of steps, l = r – k. The bottom row contains titles of the Excel

columns intended for the solution result, i.e., for the)(xu function in tabular

form.

3.6. Examples of using the decomposition method

213

Instead of text

Sub main()

End Sub

we enter the following program text into Module1 of the BookNM workbook:

Listing 3.2

Sub main()

 Dim X() As Double

 Dim G() As Double

 Dim E() As Double

 Dim F() As Double

 Dim U() As Double

 Dim c As Double, b As Double, l As Integer

 Dim h As Double, i As Integer

 c = Selection.Cells(1, 2)

 b = Selection.Cells(2, 2)

 l = Selection.Cells(3, 2)

 h = b / l

 ReDim X(5 To 5 + l)

 ReDim G(5 To 5 + l)

 ReDim E(5 To 5 + l)

 ReDim F(5 To 5 + l)

 ReDim U(5 To 5 + l)

 For i = 5 To 5 + l

 X(i) = (i - 5) * h

1: G(i) = X(i) ^ 2

2: E(i) = -3 * c * X(i)

3: F(i) = 0

 Next i

4: Call fb(5, 5 + l, h, 1, 0, G, E, F, U)

 For i = 5 To 5 + l

 Selection.Cells(i, 1) = X(i)

5: Selection.Cells(i, 2) = U(i)

 Next i

End Sub

It was mentioned above that the source data for this program are the values

located in the Excel table (Fig. 3.2a). We must select this table before the pro-

gram execution (Fig. 3.2b).

Chapter 3. Finite Difference Method for Solving Differential Equations

214

a

b

Fig. 3.2. The Excel worksheet (a) before and

(b) after selection of the source data table

The calculated coordinates of the grid nodes and values of the solution are

located in columns x and u (Fig. 3.3). For obtaining the)(xu graph, located on

the Excel worksheet, we must fulfill the following operations:

1) select the values of x and u, i.e., the B6:C21 range;

2) activate the Insert tab;

3) perform the Insert Scatter command in area Charts;

4) perform command Scatter with Smooth Lines.

3.6. Examples of using the decomposition method

215

Fig. 3.3. The calculated dependence,)(xu , and its graph

By substitution (3.27),

6
exp)(5.0exp)(

3

0

2 x
xUdyyxUu

x

, (3.41)

we can bring boundary value problem (3.39), (3.40) to form (3.30), (3.33),

(3.36), i.e.,

0])13(25.0[4

2

2

Uxcx

dx

Ud
, (3.42)

1)0(U , 0)(bU . (3.43)

As we see, derivative dxdU / is absent in equation (3.42), i.e., the 1st item

of the conditions on p. 207 is satisfied. The 2nd and 3rd items are also satisfied

because:

 the coefficient in front of U is less or equal to zero when x ≥ 0;

 0
1k

P according to (3.16) and (3.11).

Thus, the decomposition method is unconditionally stable for solving boundary

value problem (3.42), (3.43).

The following program is used as the previous one.

Chapter 3. Finite Difference Method for Solving Differential Equations

216

Listing 3.3

Sub main()

 Dim X() As Double

 Dim G() As Double

 Dim E() As Double

 Dim F() As Double

 Dim U() As Double

 Dim c As Double, b As Double, l As Integer

 Dim h As Double, i As Integer

 c = Selection.Cells(1, 2)

 b = Selection.Cells(2, 2)

 l = Selection.Cells(3, 2)

 h = b / l

 ReDim X(5 To 5 + l)

 ReDim G(5 To 5 + l)

 ReDim E(5 To 5 + l)

 ReDim F(5 To 5 + l)

 ReDim U(5 To 5 + l)

 For i = 5 To 5 + l

 X(i) = (i - 5) * h

1: G(i) = 0

2: E(i) = -0.25 * X(i) ^ 4 - (3 * c + 1) * X(i)

3: F(i) = 0

 Next i

4: Call fb(5, 5 + l, h, 1, 0, G, E, F, U)

 For i = 5 To 5 + l

 Selection.Cells(i, 1) = X(i)

5: Selection.Cells(i, 2) = U(i) * _

 Exp(-X(i) ^ 3 / 6)

 Next i

End Sub

This program solves boundary value problem (3.42), (3.43) and then calcu-

lates the)(xu dependence by means of formula (3.41). It differs from program

Listing 3.2 in operators 1, 2 and 5. The result of using program Listing 3.3, the

)(xu function in tabular form, is close to the previous result depicted in Fig. 3.3.

Boundary value problem (3.42), (3.43) will be also used in Section 4.11 to

demonstrate the cubic spline method for solving the second-order linear differen-

tial equation.

3.7. Examples of the computing error. Instability and loss of accuracy

217

3.7. Examples of the computing error.

Instability and loss of accuracy

The decomposition method usage can lead to an appreciable computing error.

We will consider this question on an example of equation

c
dx

du
c

dx

ud

2

2

 (3.44)

on segment 0 ≤ x ≤ b with boundary conditions

0)0(u , bbu)(. (3.45)

It is obvious that the solution of this boundary value problem looks like

xxu)(for any value of the c constant.

Equation (3.44) can be written in form (3.6), where

cxfxg)()(,

0)(xe .

To solve problem (3.44), (3.45) by the decomposition method, we change

operators 1 — 4 of program Listing 3.2 to get the following program:

Listing 3.4

Sub main()

 Dim X() As Double

 Dim G() As Double

 Dim E() As Double

 Dim F() As Double

 Dim U() As Double

 Dim c As Double, b As Double, l As Integer

 Dim h As Double, i As Integer

 c = Selection.Cells(1, 2)

 b = Selection.Cells(2, 2)

 l = Selection.Cells(3, 2)

 h = b / l

 ReDim X(5 To 5 + l)

 ReDim G(5 To 5 + l)

 ReDim E(5 To 5 + l)

Chapter 3. Finite Difference Method for Solving Differential Equations

218

 ReDim F(5 To 5 + l)

 ReDim U(5 To 5 + l)

 For i = 5 To 5 + l

 X(i) = (i - 5) * h

1: G(i) = c

2: E(i) = 0

3: F(i) = c

 Next i

4: Call fb(5, 5 + l, h, 0, b, G, E, F, U)

 For i = 5 To 5 + l

 Selection.Cells(i, 1) = X(i)

5: Selection.Cells(i, 2) = U(i)

 Next i

End Sub

This program is used as the programs of the previous section. In Fig. 3.4, we

see the execution results for three values of c, equal to 10, 10
17

 and 10
18

.

For problem (3.44), (3.45), it is easy to make sure that conditions (3.22) and

(3.23) are satisfied for any positive values of c and h.

For h = b / l = 0.1, we can state the following about

cchhg
ii

05.015.015.01 ,

condition (3.24) and the stability with respect to the computing error:

 for c = 10, the value of
i
 is positive, i.e., condition (3.24) is satisfied,

therefore, the decomposition method is stable;

 for c = 10
17

 and 10
18

, the value of
i
 is negative, i.e., condition (3.24)

is not satisfied, therefore, the decomposition method can be either stable or

unstable.

The sign change of
i
 occurs at c = 20.

According to Fig. 3.4a and 3.4b, an appreciable deviation of the calculated

)(xu dependence from the exact)(xu dependence, xxu)(, appears at value

c = 10
17

, which exceeds value c = 20 by several orders of magnitude. It follows

from the fact that sufficient stability conditions (3.22) — (3.24) are not neces-

sary, i.e., the process of solving the finite difference scheme for boundary value

problem (3.6) — (3.8) by the decomposition method may remain stable with

respect to the computing error if not all conditions from (3.22) — (3.24) are

satisfied.

According to Fig. 3.4c, the computing error of the solution can exceed 100 %

for large values of c.

Let us use substitution (3.27) for solving problem (3.44), (3.45).

3.7. Examples of the computing error. Instability and loss of accuracy

219

a

b

c

Fig. 3.4. Graphic results of solving problem (3.44), (3.45) by program Listing 3.4

for b = 1.5, l = 15 and the following values of c: 10 (a), 10
17

 (b), 10
18

 (c)

Chapter 3. Finite Difference Method for Solving Differential Equations

220

Substitution

x

a

dyygxUu)(5.0exp)(

)5.0exp()(5.0exp)(

0

cxxUcdyxU

x

 (3.46)

into (3.44), (3.45) gives the following equation and boundary conditions:

)5.0exp(25.0 2

2

2

cxcUc

dx

Ud
, (3.47)

0)0(U ,)5.0exp()(cbbbU . (3.48)

For boundary value problem (3.47), (3.48), it is easy to make sure that all the

conditions, formulated on p. 207, are satisfied when x ≥ 0, i.e., the decomposition

method is unconditionally stable.

The following program is used as the previous one.

Listing 3.5

Sub main()

 Dim X() As Double

 Dim G() As Double

 Dim E() As Double

 Dim F() As Double

 Dim U() As Double

 Dim c As Double, b As Double, l As Integer

 Dim h As Double, i As Integer

 c = Selection.Cells(1, 2)

 b = Selection.Cells(2, 2)

 l = Selection.Cells(3, 2)

 h = b / l

 ReDim X(5 To 5 + l)

 ReDim G(5 To 5 + l)

 ReDim E(5 To 5 + l)

 ReDim F(5 To 5 + l)

 ReDim U(5 To 5 + l)

 For i = 5 To 5 + l

 X(i) = (i - 5) * h

1: G(i) = 0

2: E(i) = -0.25 * c ^ 2

3: F(i) = c * Exp(0.5 * c * X(i))

3.7. Examples of the computing error. Instability and loss of accuracy

221

 Next i

4: Call fb(5, 5 + l, h, 0, b * Exp(0.5 * c * b), _

 G, E, F, U)

 For i = 5 To 5 + l

 Selection.Cells(i, 1) = X(i)

5: Selection.Cells(i, 2) = U(i) * _

 Exp(-0.5 * c * X(i))

 Next i

End Sub

Program Listing 3.5 solves boundary value problem (3.47), (3.48) and then

calculates the)(xu dependence by means of formula (3.46). This program dif-

fers from Listing 3.4 in operators 1 — 5.

Fig. 3.5 shows the results of using program Listing 3.5 at c = 10 and 20.

Unlike program Listing 3.4, program Listing 3.5 was not used at c = 10
17

 and

10
18

 because of exceeding 709.782712893 by the argument of the exponential

function in operator 3. In other words, according to Fig. 3.6, the stop of the exe-

cution of program Listing 3.5 would occur at c = 10
17

 and 10
18

 with the follow-

ing information: Run-time error ‘6’: Overflow.

Fig. 3.5. Graphic results of using program Listing 3.5:

the continuous line — c = 10, l = 15;

the dashed line — c = 10, l = 30;

the dash-dotted line — c = 20, l = 15

According to the continuous and dashed lines in Fig. 3.5, we must reduce the

number of steps on segment],0[b for improving the accuracy. According to the

dash-dotted line, the accuracy may be lost even when the computing process is

stable with respect to the computing error. We will speak about measures against

loss of accuracy also in section “Instead of Conclusions”.

Chapter 3. Finite Difference Method for Solving Differential Equations

222

Fig. 3.6. The Excel Help window with the Exp function description

It is natural to ask about the existence of a method for solving the finite dif-

ference scheme for boundary value problem (3.6) — (3.8), which is more stable

with respect to the computing error than the decomposition method used by us.

Before answering this question, we will consider several methods for solving the

system of linear algebraic equations of general form.

3.8. Solving the system of linear algebraic equations by using Excel functions

223

3.8. Solving the system of linear algebraic

equations by using Excel functions

We should solve the system of linear algebraic equations

nnnnnn

nn

nn

fxaxaxa

fxaxaxa

fxaxaxa

...

.........

,...

,...

2211

22222121

11212111

 (3.49)

with coefficient (system) matrix

nnnn

n

n

aaa

aaa

aaa

...

....

...

...

21

22221

11211

A (3.50)

of general form: any element
ij

a can be either zero or nonzero.

According to the definitions of matrix multiplication and equality, given in

Section 1.21, system (3.49) can be written as matrix equation

fAx , (3.51)

where f is the vector of the right-hand sides, x is the vector of the unknown vari-

ables:

n
f

f

f

...
2

1

f ,

n
x

x

x

...
2

1

x .

System (3.49) or, which is the same, matrix equation (3.51) can be solved by

means of Excel, without programming in VBA. Let us consider two methods of

the solution.

1. The solution of equation (3.51) can be written as x = A
-1

f, where A
-1

 is the

inverse A matrix (Section 1.21).

Chapter 3. Finite Difference Method for Solving Differential Equations

224

The A
-1

 matrix can be calculated by means of the built-in MINVERSE

function. The subsequent multiplication of the A
-1

 matrix and the f vector can be

performed by means of the built-in MMULT function. Functions MINVERSE

and MMULT return an array, as well as built-in function TRANSPOSE and

user-defined function TRANSPOSEA developed by us (Section 2.3).

The drawback of this method for solving matrix equation (3.51) is its ineffi-

ciency (with respect to the execution time) for large values of n because the

matrix inversion is essentially the solution of the following n matrix equations:

1fxAT , 2fxAT , ..., nfxAT ,

where TA is the transposed A matrix,

0

...

0

1

1f ,

0

...

1

0

2f , ...,

1

...

0

0

nf .

Indeed, if

1

1

2

1

1

1

...

n
x

x

x

x ,

2

2

2

2

1

2

...

n
x

x

x

x , ...,

n

n

n

n

n

x

x

x

...
2

1

x

are the solutions of the above n matrix equations and

n

n

nn

n

n

xxx

xxx

xxx

...

....

...

...

21

22

2

2

1

11

2

1

1

B , (3.52)

it is easy to make sure that BA = E, where E is the unit matrix, that is, B = A
-1

.

2. Matrix equation (3.51) can be solved by Cramer’s rule [3], which is

reduced to computation of n + 1 determinants of n-th order, D, D
1
, D

2
,, D

n
.

These determinants are calculated by using the MDETERM function. For large

values of n, this method is even less efficient than the previous one.

Many numerical methods need the solution of system (3.49) or matrix equa-

tion (3.51). For this purpose, let us develop two subroutines: the first subroutine

realizes the classical Gaussian elimination method; the second one realizes

a modernization of this method.

3.9. Solving the system of linear algebraic equations by the Gaussian elimination method

225

3.9. Solving the system of linear algebraic equations

by the Gaussian elimination method

In a summary, the classical Gaussian elimination method can be described as

follows.

Using the first equation of the system of n equations (3.49), the
1

x unknown

is eliminated from the remaining 1n equations. Further, by means of the 2nd

equation of the resulting system (of n equations),
2

x is eliminated from the next

2n equations. By using the 3rd equation of the new system (of n equations),

3
x is eliminated from the next 3n equations. And so on, until we get the

equation determining the
n

x unknown. In the last turn, the remaining 1n un-

knowns are calculated in the reverse sequence:
1n

x ,
2n

x , ...,
1

x . To do this,

the already calculated unknowns are substituted into the equations, starting with

the penultimate equation.

In more details, the Gaussian elimination method includes two stages, which

are called the forward and backward courses. The forward course consists in the

transformation of matrix equation (3.51) to equation

gBx (3.53)

with matrix

1...00

....

...10

...1

2

112

n

n

b

bb

B (3.54)

called an upper triangular matrix because nonzero elements are on the main

diagonal and above it. The backward course is the solution of matrix equation

(3.53) relative to the x vector of the unknowns.

Let us consider the forward course of the Gaussian elimination method.

We assume that the
11

a coefficient is nonzero. In this case, when dividing

both sides of the 1st equation of system (3.49) by this coefficient, we obtain

equation

Chapter 3. Finite Difference Method for Solving Differential Equations

226

112121
... gxbxbx

nn
, (3.55)

where

11

1

1 a

a
b

j

j
,

11

1

1 a

f
g , j = 2, ..., n. The last equation is the result of the first

step of the forward course.

Let us multiply both sides of (3.55) by
21

a and subtract the resulting equa-

tion from the 2nd equation of system (3.49). We obtain an equation without
1

x .

Let us multiply both sides of (3.55) by
31

a and subtract the resulting equation

from the 3rd equation of system (3.49). We obtain one more equation without

1
x , and so on.

Let us multiply both sides of (3.55) by
1n

a and subtract the resulting equation

from the n-th equation of system (3.49).

The result is the following system of linear algebraic equations without
1

x :

,...

.......

,...

]2[]2[

2

]2[

2

]2[

2

]2[

22

]2[

22

nnnnn

nn

fxaxa

fxaxa

 (3.56)

where
jiijij

baaa
11

]2[,
11

]2[gaff
iii

, i = 2, ..., n, j = 2, ..., n. The index in

square brackets is the number of the current step of the forward course.

Let us assume that the]2[

22
a coefficient is nonzero. Dividing both sides of the

1st equation of system (3.56) by this coefficient, we obtain equation

223232
... gxbxbx

nn
, (3.57)

where
]2[

22

]2[

2

2

a

a
b

j

j
,

]2[

22

]2[

2

2

a

f
g , j = 3, ..., n. The last equation is the result of the

second step of the forward course.

To eliminate
2

x , we fulfill the same operations with equation (3.57) and sys-

tem (3.56) that we previously fulfilled with equation (3.55) and system (3.49).

Equation

nn
gx , (3.58)

where][][/ n

nn

n

nn
afg , is the result of the n-th step of the forward course.

3.9. Solving the system of linear algebraic equations by the Gaussian elimination method

227

Equations (3.55), (3.57) and (3.58) give the following system of linear alge-

braic equations:

.

.....

,...

,...

222

112121

nn

nn

nn

gx

gxbx

gxbxbx

 (3.59)

This system is the result of the forward course of the Gaussian elimination

method. We can write (3.59) in the form of matrix equation (3.53) with upper

triangular matrix (3.54).

The backward course consists in the determination of the unknown variables

by solving system (3.59). The following expressions are used:

1) according to the ultimate equation,

nn
gx ;

2) according to the penultimate equation,

nnnnn
xbgx

,111
;

3) according to the (n – 2)th equation,

nnnnnnnn
xbxbgx

,211,222
,

and so on.

An analysis of the forward course of the Gaussian elimination method shows

that it requires)(3nO arithmetic operations, n . Similarly, the backward

course requires)(2nO arithmetic operations. Thus, the solution of the system of

linear algebraic equations (3.49) by the Gaussian elimination method requires

)(3nO arithmetic operations.

Chapter 3. Finite Difference Method for Solving Differential Equations

228

3.10. Two subroutines for solving the system

of linear algebraic equations

Into Module3 of the BookNM workbook, we put the following declaration of

the gaus subroutine, realizing the classical Gaussian elimination method.

Listing 3.6

Sub gaus(ByVal n, ByRef A() As Double, _

 ByRef F() As Double, ByRef X() As Double)

 Dim i As Integer, j As Integer, k As Integer

 Dim AA() As Double: ReDim AA(1 To n, 1 To n)

 Dim FF() As Double: ReDim FF(1 To n)

 Dim B() As Double: ReDim B(1 To n, 1 To n)

 Dim G() As Double: ReDim G(1 To n)

'Forward course:

 For i = 1 To n

 For j = 1 To n

 AA(i, j) = A(i, j)

 Next j

 FF(i) = F(i)

 Next i

 For k = 1 To n - 1

 For j = k + 1 To n

 B(k, j) = AA(k, j) / AA(k, k)

 Next j

 G(k) = FF(k) / AA(k, k)

 'end of step No. k

 'beginning of step No. k + 1

 For i = k + 1 To n

 For j = k + 1 To n

 AA(i, j) = AA(i, j) - AA(i, k) * _

 B(k, j)

 Next j

 FF(i) = FF(i) - AA(i, k) * G(k)

 Next i

3.10. Two subroutines for solving the system of linear algebraic equations

229

 Next k

 G(n) = FF(n) / AA(n, n)

'Backward course:

 X(n) = G(n)

 For k = n - 1 To 1 Step -1

 X(k) = G(k)

 For j = k + 1 To n

 X(k) = X(k) - B(k, j) * X(j)

 Next j

 Next k

End Sub

The gaus subroutine parameters have the following sense:

 n is the number of the unknowns;

 A is an array corresponding to matrix (3.50) of matrix equation (3.51);

 F, X are arrays corresponding to the f and x vectors in (3.51).

Below, we will consider the program realization of the Gaussian elimination

method with choice of leading coefficient.

The leading coefficient is the coefficient, by which the division is performed.

Thus, at the first step of the classical Gaussian elimination method’s forward

course,
11

a is the leading coefficient; at the second step,]2[

22
a is the leading coef-

ficient, and so on. Sometimes, the division is incorrect because the leading coef-

ficient may be very small (in absolute value) or equal to zero. Therefore, the fol-

lowing three modernizations of the Gaussian elimination method are used in

practice.

1. At each step of the forward course, permuting the equations is performed

to get the maximum (in absolute value) element of the first column of the system

matrix as the leading coefficient. Thus, at the first step, matrix (3.50) of system

(3.49) is processed; at the second step, matrix

]2[]2[

2

]2[

2

]2[

22

...

...

...

nnn

n

aa

aa

of system (3.56) is processed, and so on. In this case, we say that the leading

coefficient is chosen in the column.

2. Renumbering the unknowns is performed to get the maximum element of

the first row of the system matrix as the leading coefficient. In this case, we say

that the leading coefficient is chosen in the row.

Chapter 3. Finite Difference Method for Solving Differential Equations

230

3. Permuting the equations and renumbering the unknowns are performed

to get the maximum element of the system matrix as the leading coefficient. That

is, the whole matrix is considered when choosing the leading coefficient.

Into Module4 of the BookNM workbook, we enter the following declaration

of the gauss subroutine, which realizes the Gaussian elimination method with

choice of leading coefficient in the matrix.

Listing 3.7

Sub gauss(ByVal n, ByRef A() As Double, _

 ByRef F() As Double, ByRef X() As Double, _

 Optional c = 0, Optional d = 0)

 Dim i As Integer, j As Integer, k As Integer

 Dim i_max As Integer, j_max As Integer

 Dim m As Integer

 Dim w As Double

 Dim AA() As Double: ReDim AA(1 To n, 1 To n)

 Dim FF() As Double: ReDim FF(1 To n)

 Dim O() As Integer: ReDim O(1 To n)

 Dim XX() As Double: ReDim XX(1 To n)

 Dim B() As Double: ReDim B(1 To n, 1 To n)

 Dim G() As Double: ReDim G(1 To n)

1: For j = 1 To n

2: O(j) = j

3: Next j

'Forward course:

4: w = 0

5: For i = 1 To n

6: For j = 1 To n

7: AA(i, j) = A(c + i, d + j)

8: If Abs(AA(i, j)) > w Then

9: w = Abs(AA(i, j))

10: i_max = i

11: j_max = j

12: End If

13: Next j

14: FF(i) = F(c + i)

15: Next i

16: For j = 1 To n

17: w = AA(i_max, j)

18: AA(i_max, j) = AA(1, j)

3.10. Two subroutines for solving the system of linear algebraic equations

231

19: AA(1, j) = w

20: Next j

21: w = FF(i_max)

22: FF(i_max) = FF(1)

23: FF(1) = w

24: For i = 1 To n

25: w = AA(i, j_max)

26: AA(i, j_max) = AA(i, 1)

27: AA(i, 1) = w

28: Next i

29: m = O(j_max)

30: O(j_max) = O(1)

31: O(1) = m

 For k = 1 To n - 1

 For j = k + 1 To n

 B(k, j) = AA(k, j) / AA(k, k)

 Next j

 G(k) = FF(k) / AA(k, k)

 'end of step No. k

 'beginning of step No. k + 1

 w = 0

 For i = k + 1 To n

 For j = k + 1 To n

 AA(i, j) = AA(i, j) - AA(i, k) * _

 B(k, j)

 If Abs(AA(i, j)) > w Then

 w = Abs(AA(i, j))

 i_max = i

 j_max = j

 End If

 Next j

 FF(i) = FF(i) - AA(i, k) * G(k)

 Next i

 For j = k + 1 To n

 w = AA(i_max, j)

 AA(i_max, j) = AA(k + 1, j)

 AA(k + 1, j) = w

 Next j

 w = FF(i_max)

 FF(i_max) = FF(k + 1)

 FF(k + 1) = w

 For i = k + 1 To n

Chapter 3. Finite Difference Method for Solving Differential Equations

232

 w = AA(i, j_max)

 AA(i, j_max) = AA(i, k + 1)

 AA(i, k + 1) = w

 Next i

 m = O(j_max)

 O(j_max) = O(k + 1)

 O(k + 1) = m

 For i = 1 To k 'permuting columns of

 'calculated part of array B

 w = B(i, j_max)

 B(i, j_max) = B(i, k + 1)

 B(i, k + 1) = w

 Next i

 Next k

 G(n) = FF(n) / AA(n, n)

'Backward course:

 XX(n) = G(n)

 For k = n - 1 To 1 Step -1

 XX(k) = G(k)

 For j = k + 1 To n

 XX(k) = XX(k) - B(k, j) * XX(j)

 Next j

 Next k

32: For j = 1 To n

33: X(d + O(j)) = XX(j)

34: Next j

End Sub

Among parameters of the gauss subroutine, we see optional parameters

c and d. They are necessary to have the possibility of solving the following

system of linear algebraic equations with non-traditional (shifted) numbering of

the system’s elements (matrix rows and columns, right-hand sides and unknown

variables):

,...

........

,...

,...

,22,11,

2,222,211,2

1,122,111,1

ncndndncddncddnc

cndndcddcddc

cndndcddcddc

fxaxaxa

fxaxaxa

fxaxaxa

where c and d are given integers. Such numbering is used in code Listing 6.15

(see operator 8 corresponding to n = c = d = 2).

3.10. Two subroutines for solving the system of linear algebraic equations

233

The presence of optional parameters is one of distinctions of the gauss sub-

routine from the previous gaus.

Let us briefly consider the gauss subroutine.

Listing 3.7 includes the O array of original serial numbers of the unknown

variables. This array is necessary for recovery of the unknowns’ numbering,

which changes during the solution of system (3.49). The j-th element of the O

array is the original number (but not shifted by d) of the j-th unknown variable.

Operators 1 — 3 prepare array O for the subsequent transformation.

Operators 4 — 15:

1) determine elements of the AA array corresponding to matrix (3.50) of the

system of linear algebraic equations (operator 7);

2) find the maximum (in absolute value) element of the AA array; its serial

numbers in the vertical and horizontal directions are respectively assigned to

variables i_max and j_max (operators 8 — 12);

3) determine elements of the FF array corresponding to the f vector of the

right-hand sides of the system of linear algebraic equations (operator 14).

Operators 16 — 20 interchange the 1st and i_max-th rows of the AA array,

and operators 21 — 23 interchange the 1st and i_max-th elements of the FF

array. It is equivalent to permuting the equations of system (3.49).

Operators 24 — 28 interchange the 1st and j_max-th columns of the AA

array, and operators 29 — 31 interchange the 1st and j_max-th elements of the

O array. It is equivalent to changing the numbering of the unknowns.

Thus, because of executing operators 16 — 31, the maximum element of the

AA array appears in the top left corner of AA. Further, the divisions by this ele-

ment are performed (at the beginning of the k cycle at k = 1). The first step of

the forward course terminates on it.

In the subsequent steps of the forward course:

1) the elements of arrays AA and FF are calculated;

2) during calculation of the AA array values, the maximum element of the

AA array is determined; its serial numbers in the vertical and horizontal direc-

tions are determined too;

3) arrays AA, FF and O are transformed;

4) the columns of the already calculated part of the B array, corresponding to

the B matrix of system (3.59), are permuted because of the unknowns’ renum-

bering;

5) the divisions by the maximum element of the AA array are performed (at

the beginning of the k cycle at the next value of k).

After the considered operators of the forward course, obvious operators of the

backward course follow.

Chapter 3. Finite Difference Method for Solving Differential Equations

234

The forward and backward courses’ results, contained in the XX array, are the

calculated values of the unknowns. Operators 32 — 34 determine variables

1d
x ,

2d
x , ...,

nd
x by recovering the original numbering.

The gauss subroutine usage does not guarantee the solution of the system of

linear algebraic equations (3.49) because in general it may not exist if the D

determinant of matrix (3.50) is equal to 0: the division by D is performed in

Cramer’s rule (p. 202).

The gaus and gauss subroutines allow us to invert the A matrix. For that,

we must use formula (3.52), where B = A
-1

.

3.11. Reduction of the computing error

235

3.11. Reduction of the computing error

Let us return to solving boundary value problem (3.6) — (3.8).

The computing error can be reduced if we use the Gaussian elimination

method with choice of leading coefficient in the matrix for solving finite differ-

ence scheme (3.9), (3.11), (3.12). To verify this, let us put the following program

into Module1 of the BookNM workbook instead of the program located there.

Listing 3.8

Sub main()

 Dim X() As Double

 Dim G() As Double

 Dim E() As Double

 Dim F() As Double

 Dim U() As Double

 Dim c As Double, b As Double, l As Integer

 Dim h As Double, i As Integer

 Dim n As Integer, j As Integer, w As Double

 Dim AA() As Double

 Dim FF() As Double

 Dim XX() As Double

 c = Selection.Cells(1, 2)

 b = Selection.Cells(2, 2)

 l = Selection.Cells(3, 2)

 h = b / l

 n = l + 1

 ReDim X(5 To 5 + l)

 ReDim G(5 To 5 + l)

 ReDim E(5 To 5 + l)

 ReDim F(5 To 5 + l)

 ReDim U(5 To 5 + l)

 ReDim AA(1 To n, 1 To n)

 ReDim FF(1 To n)

 ReDim XX(1 To n)

 For i = 5 To 5 + l

Chapter 3. Finite Difference Method for Solving Differential Equations

236

 X(i) = (i - 5) * h

1: G(i) = c

2: E(i) = 0

3: F(i) = c

 Next i

 For i = 1 To n

 For j = 1 To n

 AA(i, j) = 0

 Next j

 Next i

 AA(1, 1) = 1: AA(1, 2) = 0: FF(1) = 0

 For i = 2 To n - 1

 w = 0.5 * G(i + 4) * h

 AA(i, i - 1) = 1 - w

 AA(i, i) = E(i + 4) * h ^ 2 - 2

 AA(i, i + 1) = 1 + w

 FF(i) = F(i + 4) * h ^ 2

 Next i

 AA(n, n - 1) = 0: AA(n, n) = 1: FF(n) = b

4: Call gauss(n, AA, FF, XX)

 For i = 5 To 5 + l

 Selection.Cells(i, 1) = X(i)

 Selection.Cells(i, 2) = XX(i - 4)

 Next i

End Sub

This program solves the finite difference scheme corresponding to boundary

value problem (3.44), (3.45). It is used as program Listing 3.4: the source data

are the values in the table (Fig. 3.2a), at that, we must select this Excel table

before the program execution (Fig. 3.2b).

Operator 4 in the above program is the gauss subroutine call, i.e., finite dif-

ference scheme (3.9), (3.11), (3.12) is solved by the modernized Gaussian elimi-

nation method, with choice of leading coefficient in the matrix. In this case, the

computing error is not observed even for c = 10
308

 (according to Appendix 1, this

is almost the maximum value for the Double data type), i.e., the calculation

result looks like Fig. 3.4a.

When using the classical Gaussian elimination method (that is, when replac-

ing gauss by gaus in operator 4), the computing error is identical to that

obtained when using the decomposition method. It is not surprising, because

the decomposition method, actually, is an efficient version of the classical

Gaussian elimination method for the system of linear algebraic equations with

the tridiagonal matrix.

3.11. Reduction of the computing error

237

In practice, the Gaussian elimination method is not used for the solution

of finite difference scheme (3.9), (3.11), (3.12) because of its inefficiency

(with respect to the execution time) for large values of 1krn .

When c → ∞ in problem (3.44), (3.45), the computing error of the solution

can be reduced in another way, without usage of the modernized Gaussian elimi-

nation method.

This alternative method for solving problem (3.44), (3.45) at large values of

c includes the following two stages:

1) changing formulation of the boundary value problem by excluding the

second derivative,)(xu , and one of the boundary conditions, 0)0(u or

bbu)(;

2) solving the resulting boundary value problem for the first-order linear

differential equation,

1
dx

du
.

Thus, we should exercise caution in formulation of the problem and in choice

of the solution method.

Chapter 3. Finite Difference Method for Solving Differential Equations

238

3.12. Solving the nonlinear differential equation

by the quasilinearization method

On segment],[ba , we will consider the following differential equation:

dx

du
uxF

dx

ud
,,

2

2

, (3.60)

where),,(zyxF is a continuous nonlinear function of variables x, y and z,

whose first partial derivatives),,(zyx
y

F
 and),,(zyx

z

F
 exist and continu-

ous, and the second partial derivatives with respect to y and z exist. Because of

the function nonlinearity, this equation is called a nonlinear differential equation.

As in the case of linear differential equation (3.6), the solution of nonlinear

differential equation (3.60) must satisfy the left and right boundary conditions,

(3.7) and (3.8).

In Section 6.10, we will solve the formulated boundary value problem by

the shooting method. Solving this problem by the quasilinearization method

considered below is the following iterative process: the boundary value problem

for a linear differential equation is being solved when calculating the (1j)th

solution approximation over the known j-th approximation.

An initial approximation of the solution (corresponding to the zero value

of j) must be given, and must satisfy boundary conditions (3.7) and (3.8).

Thus, the solution of the nonlinear problem is reduced to solving a series

of linear problems. Let us obtain the linear differential equation of the

quasilinearization method.

Using Taylor’s formula [3] for functions of two variables, we have

),,(zzyyxF

F
z

z
y

yzyxF
z

z
y

yzyxF

2

!2

1
),,(

!1

1
),,(

)(),,(),,(),,(2Ozyx
z

F
zzyx

y

F
yzyxF , (3.61)

3.12. Solving the nonlinear differential equation by the quasilinearization method

239

where y and z are increments of the second and third arguments of function

),,(zyxF , 0 is the maximum of quantities || y and || z .

The solution of equation (3.60) can be written in the following form:

)()()(xvxuxu
j

,

where)(xu
j

 is the known j-th approximation of solution)(xu ,)(xv is a small

quantity. By substituting this expression into equation (3.60), we obtain

dx

dv

dx

du
vuxF

dx

vd

dx

ud
j

j

j
,,

2

2

2

2

.

Using expression (3.61) without the summand of second order of smallness,

we lead the last equation to the following form:

dx

dv

dx

du
ux

z

F
v

dx

du
ux

y

F

dx

du
uxF

dx

vd

dx

ud
j

j

j

j

j

j

j
,,,,,,

2

2

2

2

or

)()()(
2

2

xfvxe
dx

dv
xg

dx

vd
, (3.62)

where

dx

du
ux

z

F
xg

j

j
,,)(, (3.63)

dx

du
ux

y

F
xe

j

j
,,)(, (3.64)

2

2

,,)(

dx

ud

dx

du
uxFxf

jj

j
. (3.65)

Let)(
0

xu be the initial approximation of the solution of nonlinear differen-

tial equation (3.60), satisfying boundary conditions (3.7) and (3.8):

Aau)(
0

, Bbu)(
0

. (3.66)

In the quasilinearization method, the (1j)th approximation of the)(xu solu-

tion (j = 0, 1, 2, ...) is calculated over the known j-th approximation as follows:

Chapter 3. Finite Difference Method for Solving Differential Equations

240

1) the values of functions)(xg ,)(xe and)(xf at the internal nodes of the

main grid on segment a ≤ x ≤ b (Fig. 3.1) are calculated according to formulas

(3.63) — (3.65);

2) second-order linear differential equation (3.62) with zero boundary condi-

tions 0)()(bvav is solved by the decomposition method; function)(xv is

the result;

3) the (1j)th approximation of the)(xu solution is calculated according

to formula

)()()(
1

xvxuxu
jj

.

The iterative process can be terminated under various conditions; we will use

the following:

)(max xf

bxa

, (3.67)

where φ is a given positive constant,)(xf is function (3.65) tending to zero at

all points of segment],[ba when j → ∞.

3.13. Solving the Shockley-Poisson equation

241

3.13. Solving the Shockley-Poisson equation

The quasilinearization method considered above will be used for simulation

of a silicon photosensitive target. Such targets numbering between one and three

are located behind the objective of a camera or movie camera. The incident light

is converted to electrical signals with help of these targets.

The photosensitive target consists of cells of identical structure, and there are

millions of them, as many as the number of pixels defining the maximum resolu-

tion of the camera, or several times more.

According to article [6], as a mathematical model of the cell, we can use the

following nonlinear differential equation:

)(
)(

exp
0

2

2

xN
Tk

xqu
Nq

dx

ud

A
b

, (3.68)

where)(xu is the electric potential in volts, ε = 103.545·10
-12

 C / (V·m) is the

dielectric permittivity of silicon, q = 1.6·10
-19

 C is the absolute value of the elec-

tron charge,
b

k = 1.38·10
-23

 J / C is the Boltzmann constant, T = 300 K is the

absolute room temperature,)(xN
A

 is the difference between the acceptor and

donor concentrations,)(aN
A

 =)(bN
A

 =
0

N is a positive value, a ≤ x ≤ b.

To start, let us set the following coordinates of the boundaries of segment

],[ba : a = – 0.5·10
-6

 m, b = 0.5·10
-6

 m. The boundary conditions are as follows:

0)()(buau .

We can encounter this (or similar) equation in the physics of semiconductor

devices. It is the Poisson equation whose right-hand side (the electric charge

density) is a nonlinear function of electric potential)(xu . Because W. Shockley

obtained the form of the right-hand side in [7], equation (3.68) is called the

Shockley-Poisson equation.

As we know, two types of carriers of electric current exist in a semiconduc-

tor: negatively charged electrons and positively charged holes. The electron has

charge – q, the hole has charge +q. Impurities of a semiconductor, which supply

electrons, are called donors; impurities, which supply holes, are called acceptors.

Chapter 3. Finite Difference Method for Solving Differential Equations

242

When the donor molecule loses an electron, it becomes positively charged; the

acceptor molecule losing a hole becomes negatively charged.

We can write equation (3.68) in form (3.60), where

Tk

yq
NxN

q
zyxF

b

A
exp)(),,(

0
.

Because of absence of the z variable in the right-hand side of this expression,

0)(xg in differential equation (3.62) according to (3.63). Expressions (3.64)

and (3.65) take the following form:

Tk

xqu
N

Tk

q
xe

b

j

b

)(
exp)(

0

2

,

2

2

0

)(
exp)()(

dx

ud

Tk

xqu
NxN

q
xf

j

b

j

A
.

According to the previous section, the solution of the boundary value prob-

lem for equation (3.68) is reduced to the repeated solution of linear differential

equation (3.62) with the above dependences,)(xg ,)(xe and)(xf , and with

boundary conditions 0)()(bvav .

It was shown at the end of Section 3.3 that the process of solving such linear

problem by the decomposition method is unconditionally stable.

Let us consider table Listing 3.9 with the following source data for program

Listing 3.10:

 coordinates a and b of the boundaries;

 the value of φ in condition (3.67) for finishing the iterative process;

 the values of dependences)(xN
A

 and)(
0

xu at the nodes of the uniform

grid on segment a ≤ x ≤ b (the number of grid nodes is equal to the number of

values of
A

N or
0

u in the table, that is, 11).

According to the table, the)(xN
A

 dependence is symmetric to the origin of

coordinates, x = 0. At the ends of segment],[ba , the semiconductor contains

acceptors whose concentration is equal to 7·10
20

 m
-3

 =)(aN
A

 =)(bN
A

 =
0

N .

At the midpoint (x = 0), the semiconductor contains donors whose concentration

is equal to 3·10
22

 m
-3

 =)0(
A

N .

The initial approximation of the solution is calculated by means of Excel

according to formula

3.13. Solving the Shockley-Poisson equation

243

1

105.0

cos)(
6

0

x
xu .

This)(
0

xu dependence satisfies boundary conditions (3.66) at A = B = 0.

Listing 3.9

a -5.00E-07

b 5.00E-07

phi 1.00E-01

NA u0

7.00E+20 0.00E+00

7.00E+20 1.91E-01

7.00E+20 6.91E-01

7.00E+20 1.31E+00

-3.00E+22 1.81E+00

-3.00E+22 2.00E+00

-3.00E+22 1.81E+00

7.00E+20 1.31E+00

7.00E+20 6.91E-01

7.00E+20 1.91E-01

7.00E+20 0.00E+00

The program below is intended for solving the boundary value problem for

the Shockley-Poisson equation by the quasilinearization method.

Listing 3.10

Sub main()

 Dim NA() As Double

 Dim U() As Double

 Dim X() As Double

 Dim U2() As Double

 Dim V() As Double

 Dim G() As Double

 Dim E() As Double

 Dim F() As Double

 Dim m As Integer

 Dim a As Double, b As Double

 Dim phi As Double

 Dim h As Double

 Dim i As Integer, j As Integer

Chapter 3. Finite Difference Method for Solving Differential Equations

244

 Dim w1 As Double, w2 As Double

 Dim w3 As Double, max As Double

 Dim sb As String, se As String, sn As String

 Const q = 1.6E-19

 Const epsilon = 103.545E-12

 Const kb = 1.38E-23

 Const T = 300

 m = Selection.Rows.Count 'quantity of rows

 a = Selection.Cells(1, 2)

 b = Selection.Cells(2, 2)

 phi = Selection.Cells(3, 2)

 h = (b - a) / (m - 5)

 ReDim NA(5 To m)

 ReDim U(5 To m)

 ReDim X(5 To m)

 ReDim U2(5 To m)

 ReDim V(5 To m)

 ReDim G(5 To m)

 ReDim E(5 To m)

 ReDim F(5 To m)

 Selection.Cells(4, 3) = "x"

 w1 = q / epsilon: w2 = q / (kb * T)

 For i = 5 To m

 NA(i) = Selection.Cells(i, 1)

 U(i) = Selection.Cells(i, 2)

 X(i) = (i - 5) * h + a

 Selection.Cells(i, 3) = X(i)

 G(i) = 0

 Next i

 For j = 1 To 1000

 max = 0

 For i = 6 To m - 1

 w3 = NA(5) * Exp(-w2 * U(i))

 E(i) = -w1 * w2 * w3

 U2(i) = (U(i + 1) - 2 * U(i) + _

 U(i - 1)) / h ^ 2 'second derivative

 F(i) = w1 * (NA(i) - w3) - U2(i)

 If Abs(F(i)) > max Then max = Abs(F(i))

 Next i

 Call fb(5, m, h, 0, 0, G, E, F, V)

 For i = 5 To m

 U(i) = U(i) + V(i)

3.13. Solving the Shockley-Poisson equation

245

 Next i

 If max < phi Then Exit For

 Next j

 Selection.Cells(4, 4) = "u"

 For i = 5 To m

 Selection.Cells(i, 4) = U(i)

 Next i

1: sb = Selection.Cells(5, 3).Address

2: se = Selection.Cells(m, 4).Address

3: sn = ActiveSheet.Name

4: Range(sb & ":" & se).Select

5: Selection.NumberFormat = "0.0E+00"

6: Charts.Add

7: ActiveChart.ChartType = xlXYScatterSmoothNoMarkers

8: ActiveChart.SetSourceData Source:= _

 Sheets(sn).Range(sb & ":" & se), PlotBy:= _

 xlColumns

9: ActiveChart.Location Where:= xlLocationAsObject, _

 Name:=sn

10: ActiveChart.Axes(xlValue).MajorGridlines.Select

11: Selection.Delete

12: ActiveChart.Legend.Select

13: Selection.Delete

End Sub

We enter this program into Module1 of the BookNM workbook.

Data of Listing 3.9 are contained in text file Listing_3_09.txt, which is on the

enclosed CD. To copy this data into range B2:C16 on the Sheet2 worksheet of

the BookNM workbook, we fulfill the following operations, which are close to

operations described on p. 26:

1) open the Listing_3_09.txt file with Notepad, for example, by double click

on the pictogram of this file in Windows Explorer;

2) in the Notepad window opened, highlight the table text and copy it into

Windows Clipboard, for example, by pressing Ctrl + C;

3) on the Sheet2 worksheet of the BookNM workbook, select the B2 cell by

clicking on it;

4) paste the Windows Clipboard contents into the B2:C16 range, for exam-

ple, by pressing Ctrl + V;

5) close the Notepad window with the Listing_3_09.txt file.

Using the standard features of Excel, the resulting table can be decorated as

in Fig. 3.7.

Chapter 3. Finite Difference Method for Solving Differential Equations

246

Before the program execution, we must select the Excel table depicted in

Fig. 3.7. The execution results are as follows:

 the coordinate and solution values located in the x and u columns, respec-

tively (Fig. 3.8);

 the)(xu graph on the Excel worksheet.

Operators 1 — 13, intended for constructing the)(xu graph, were pro-

grammed by means of Excel Macro Recorder (Sections 2.4 and 2.5). Let us con-

sider the appointment of these operators.

Fig. 3.7. The Excel table with the source data

Operator 1 assigns the address of the first cell of the x column (that is, string

"D6") to the sb variable; operator 2 assigns the address of the last cell of the u

column (that is, string "E16") to the se variable; operator 3 assigns the name of

the active Excel worksheet to the sn variable. Operator 4 selects the x and u

columns (that is, range D6:E16); operator 5 assigns the necessary numerical

format to the selected cells. Operators 6 — 9 construct the graph; they corre-

spond to the 2nd, 3rd and 4th operations on p. 214. Operators 10 and 11 delete

the gridlines from the graph area; operators 12 and 13 delete the legend.

3.13. Solving the Shockley-Poisson equation

247

Fig. 3.8. The program execution results

The calculated spatial distribution of the electric potential,)(xu , is not realis-

tic. The fact is that the derivative,

dx

du
xu)(,

must equal zero at the ends of segment],[ba according to the physics of semi-

conductor devices, i.e., 0)()(buau must be, but we do not see it in

Fig. 3.8.

To obtain realistic distribution)(xu , we add areas with length of 9.5·10
-6

 m

and
A

N =
0

N = 7·10
20

 m
-3

 to segment],[ba on the left- and right-hand sides.

We leave the grid step, h, unchanged, at that, the number of steps increases

20-fold.

The left and right boundaries of new segment],[ba have the following

coordinates: a = -10
-5

 m, b = 10
-5

 m. The initial approximation of the solution

of equation (3.68), satisfying boundary conditions (3.66) at 0BA , is calcu-

lated according to formula

1

10

cos)(
5

0

x
xu (3.69)

by means of Excel.

The)(xu graph, constructed by program Listing 3.10, is given in Fig. 3.9.

We see that 0)()(buau , in other words, function)(xu is flat at the ends of

segment],[ba .

Chapter 3. Finite Difference Method for Solving Differential Equations

248

Fig. 3.9. The realistic spatial distribution of the electric potential: the horizontal

coordinate, x, is in meters; the vertical coordinate, u, is in volts

3.14. Finite difference analogs of derivatives for a nonuniform grid

249

3.14. Finite difference analogs of derivatives

for a nonuniform grid

The execution time for solving the boundary value problem can be reduced

by replacing the uniform grid on],[ba with a nonuniform grid whose step,

iii
hxx

1
, depends on i. At the transition to a nonuniform grid, expressions

(3.4) and (3.5) for the first and second derivatives of the)(xu function at node

i
x become more complicated.

To obtain new expressions for the derivatives, we introduce axis z parallel to

the x axis (Fig. 3.10). If the origin of coordinates (z = 0) is at the
i

x node of the

grid, the
1i

x node has coordinate
i

hz , and the
1i

x node has coordinate

1i
hz .

Fig. 3.10. The parabola passing through points

(
1i

x , 1i
u), (

i
x , i

u) and (
1i

x , 1i
u)

Chapter 3. Finite Difference Method for Solving Differential Equations

250

Let us consider the following second-degree polynomial:

i
uzzzP 2)(, (3.70)

where
i

u is the)(xu function value at the
i

x node;
i

uP)0(.

Coefficients α and β are determined by equations
1

)(
ii

uhP and

11
)(

ii
uhP , which can be written as follows:

iiii
uuhh

1

2 ,

iiii
uuhh

11

2

1
.

Solving this system of linear algebraic equations by Cramer’s rule [3], we obtain

D

D
1

,
D

D
2

, (3.71)

where

)(
11 iiii

hhhhD ,

1111
)()(

iiiiii
huuhuuD , (3.72)

2

11

2

12
)()(

iiiiii
huuhuuD .

Differentiating polynomial (3.70) twice, we obtain

zz
dz

dP
2)(, (3.73)

2)(
2

2

z

dz

Pd
.

From here, expressions for the derivatives at z = 0 follow:

)(

)()(
)0(

11

2

11

2

12

iiii

iiiiii

hhhh

huuhuu

D

D

dz

dP
, (3.74)

)(

)()(
222)0(

11

1111

2

2

iiii

iiiiii

hhhh

huuhuu

D

D

dz

Pd
. (3.75)

We have the finite difference analogs of the first and second derivatives of

the)(xu function at the
i

x node.

Using expression (3.1), we can show the following:

3.14. Finite difference analogs of derivatives for a nonuniform grid

251

...)(
6)(

)()(
)(

3

3

1

11

2

11

2

1

i

ii

iiii

iiiiii

i
x

dx

udhh

hhhh

huuhuu
x

dx

du
,

...)(
3)(

)()(
2)(

3

3

1

11

111

2

2

i

ii

iiii

iiiiii

i
x

dx

udhh

hhhh

huuhuu
x

dx

ud

or

)(
)(

)()(
)(2

11

2

11

2

1

max
iiii

iiiiii

i
hO

hhhh

huuhuu
x

dx

du
, (3.76)

)(
)(

)()(
2)(

11

111

2

2

max
iiii

iiiiii

i
hO

hhhh

huuhuu
x

dx

ud
, (3.77)

where }{max
1

i

rik

max
hh is the maximum step of the grid, 0

max
h .

The resulting expressions, (3.76) and (3.77), are similar to expressions (3.4)

and (3.5). Naturally, (3.76) and (3.77) become (3.4) and (3.5), respectively, for

the constant step (hhh
ii 1

).

Expressions (3.5) and (3.77) include summands)(2hO and)(
max

hO , respec-

tively. That is, at the transition from a uniform grid to a nonuniform grid, the

error of the finite difference analog of the second derivative changes from the

2nd order of smallness to the 1st order. It means deterioration of the finite differ-

ence approximation accuracy of the second derivative at the transition from

a uniform grid to a nonuniform grid.

Chapter 3. Finite Difference Method for Solving Differential Equations

252

3.15. The decomposition method

for a nonuniform grid

Substituting expressions (3.74) and (3.75) into linear differential equation

(3.6) instead of)(xu and)(xu , respectively, we obtain linear algebraic equa-

tion (3.9),

iiiiiii
uuu

11
,

where

1

11
)2(

ii

iii

i hh

hgh
,

2)(
11 iiiiiii

hhghhe ,

1

)2(

ii

iii

i hh

hgh
, (3.78)

1iiii
hhf .

Equation (3.9) for i = k + 1, k + 2, ..., r – 2, r – 1 and boundary conditions

(3.11) and (3.12) still form the system of linear algebraic equations with the

tridiagonal matrix, which can be solved by the decomposition method as follows:

1) at first, the forward sweep is performed, i.e., unknown
1k

P ,
1k

Q ,

2k
P ,

2k
Q , ...,

r
P ,

r
Q are calculated according to formulas (3.16), (3.17) and

(3.14), (3.15);

2) then the backward sweep is performed, i.e., unknown
r

u ,
1r

u , ...,
k

u

are calculated according to formulas (3.18) and (3.13).

Let us put the following declaration of the subroutine, realizing the decompo-

sition method for differential equation (3.6) with boundary conditions (3.11) and

(3.12) for a nonuniform grid, into Module5 of the BookNM workbook.

Listing 3.11

Sub foba(ByVal k, ByVal r, ByRef X() As Double, _

 ByRef G() As Double, ByRef E() As Double, _

3.15. The decomposition method for a nonuniform grid

253

 ByRef F() As Double, _

 ByVal GAMMAK, ByVal DELTAK, _

 ByVal ALPHAR, ByVal DELTAR, _

 ByRef U() As Double)

 Const BETAK = -2, BETAR = -2

 Dim alpha As Double, beta As Double

 Dim gamma As Double, delta As Double

 Dim i As Integer, w As Double

 Dim H() As Double: ReDim H(k + 1 To r)

 Dim P() As Double: ReDim P(k + 1 To r)

 Dim Q() As Double: ReDim Q(k + 1 To r)

 For i = k + 1 To r

 H(i) = X(i) - X(i - 1)

 Next i

'Forward sweep:

 P(k + 1) = -GAMMAK / BETAK

 Q(k + 1) = DELTAK / BETAK

 For i = k + 1 To r - 1

 w = H(i) + H(i + 1)

 alpha = H(i + 1) * (2 - G(i) * H(i + 1)) / w

 beta = E(i) * H(i) * H(i + 1) - _

 G(i) * (H(i) - H(i + 1)) - 2

 gamma = H(i) * (2 + G(i) * H(i)) / w

 delta = F(i) * H(i) * H(i + 1)

 w = alpha * P(i) + beta

 P(i + 1) = -gamma / w

 Q(i + 1) = (delta - alpha * Q(i)) / w

 Next i

'Backward sweep:

 U(r) = (DELTAR - ALPHAR * Q(r)) / _

 (ALPHAR * P(r) + BETAR)

 For i = r To k + 1 Step -1

 U(i - 1) = P(i) * U(i) + Q(i)

 Next i

End Sub

The foba subroutine parameters have the following sense:

 k, r are numbers of the left and right boundary nodes of the grid;

 X is an array of grid nodes;

 G, E are arrays of values of the coefficients of equation (3.6) at the grid

nodes;

Chapter 3. Finite Difference Method for Solving Differential Equations

254

 F is an array of values of the right-hand side of equation (3.6);

 GAMMAK, DELTAK are values of parameters
k

 and
k

 in left boundary

condition (3.11), where 2
k

;

 ALPHAR, DELTAR are values of parameters
r

 and
r
 in right boundary

condition (3.12), where 2
r

;

 U is an array intended for the solution values.

Here and below, we consider only the main grid on segment],[ba with node

coordinates
k

x ,
1k

x ,
2k

x , ...,
2r

x ,
1r

x ,
r

x (Fig. 3.1).

3.16. Solving the Shockley-Poisson equation on a nonuniform grid

255

3.16. Solving the Shockley-Poisson

equation on a nonuniform grid

Let us consider the following source data table.

Listing 3.12
maxtime 1

maxiter 1000

phi 1.00E-01

NA u0 x

7.00E+20 0.00E+00 -1.0E-05

7.00E+20 4.89E-02 -9.0E-06

7.00E+20 1.91E-01 -8.0E-06

7.00E+20 4.12E-01 -7.0E-06

7.00E+20 6.91E-01 -6.0E-06

7.00E+20 1.00E+00 -5.0E-06

7.00E+20 1.31E+00 -4.0E-06

7.00E+20 1.59E+00 -3.0E-06

7.00E+20 1.81E+00 -2.0E-06

7.00E+20 1.95E+00 -1.0E-06

7.00E+20 1.98E+00 -6.0E-07

7.00E+20 1.99E+00 -4.0E-07

7.00E+20 2.00E+00 -3.0E-07

7.00E+20 2.00E+00 -2.0E-07

-3.00E+22 2.00E+00 -1.0E-07

-3.00E+22 2.00E+00 0.0E+00

-3.00E+22 2.00E+00 1.0E-07

7.00E+20 2.00E+00 2.0E-07

7.00E+20 2.00E+00 3.0E-07

7.00E+20 1.99E+00 4.0E-07

7.00E+20 1.98E+00 6.0E-07

7.00E+20 1.95E+00 1.0E-06

7.00E+20 1.81E+00 2.0E-06

7.00E+20 1.59E+00 3.0E-06

7.00E+20 1.31E+00 4.0E-06

7.00E+20 1.00E+00 5.0E-06

7.00E+20 6.91E-01 6.0E-06

7.00E+20 4.12E-01 7.0E-06

7.00E+20 1.91E-01 8.0E-06

7.00E+20 4.89E-02 9.0E-06

7.00E+20 0.00E+00 1.0E-05

Chapter 3. Finite Difference Method for Solving Differential Equations

256

Table Listing 3.12 contains:

 maxtime, the limiting execution time in seconds;

 maxiter, the limiting number of the quasilinearization method iterations; it

must be less than the maximum value of the Integer data type, that is, 32767

(Appendix 1);

 the value of φ in condition (3.67) for finishing the iterative process of the

quasilinearization method;

 the values of spatial coordinate x;

 the values of dependence)(xN
A

;

 the values of dependence)(
0

xu , which are calculated according to for-

mula (3.69) by using Excel.

If maxtime is greater than 59 or less than 0, then the execution time is not

limited.

The program below is intended for solving the boundary value problem

for the Shockley-Poisson equation on the nonuniform grid defined by the right

column of table Listing 3.12.

Listing 3.13

Sub main()

 Dim NA() As Double

 Dim U() As Double

 Dim X() As Double

 Dim H() As Double

 Dim U2() As Double

 Dim V() As Double

 Dim G() As Double

 Dim E() As Double

 Dim F() As Double

 Dim m As Integer

 Dim maxtime As Integer

 Dim maxiter As Integer

 Dim phi As Double

 Dim i As Integer

 Dim j As Integer

 Dim w1 As Double

 Dim w2 As Double

 Dim w3 As Double

 Dim max As Double

 Dim sb As String

 Dim se As String

3.16. Solving the Shockley-Poisson equation on a nonuniform grid

257

 Dim sn As String

 Dim tm As Date

 Const q = 1.6E-19

 Const epsilon = 103.545E-12

 Const kb = 1.38E-23

 Const T = 300

 m = Selection.Rows.Count 'quantity of rows

 maxtime = Selection.Cells(1, 2)

 maxiter = Selection.Cells(2, 2)

 phi = Selection.Cells(3, 2)

 ReDim NA(5 To m)

 ReDim U(5 To m)

 ReDim X(5 To m)

 ReDim H(6 To m)

 ReDim U2(5 To m)

 ReDim V(5 To m)

 ReDim G(5 To m)

 ReDim E(5 To m)

 ReDim F(5 To m)

 w1 = q / epsilon

 w2 = q / (kb * T)

 For i = 5 To m

 NA(i) = Selection.Cells(i, 1)

 U(i) = Selection.Cells(i, 2)

 X(i) = Selection.Cells(i, 3)

 G(i) = 0

 Next i

 For i = 6 To m

 H(i) = X(i) - X(i - 1)

 Next i

 If maxtime >= 0 And maxtime < 60 Then

 tm = Now + TimeValue("00:00:" & CStr(maxtime))

 End If

 For j = 1 To maxiter

 max = 0

 For i = 6 To m - 1

 w3 = NA(5) * Exp(-w2 * U(i))

 E(i) = -w1 * w2 * w3

 U2(i) = 2 * ((U(i + 1) - U(i)) * H(i) + _

 (U(i - 1) - U(i)) * H(i + 1)) / _

 (H(i) * H(i + 1) * (H(i) + H(i + 1)))

 F(i) = w1 * (NA(i) - w3) - U2(i)

Chapter 3. Finite Difference Method for Solving Differential Equations

258

 If Abs(F(i)) > max Then max = Abs(F(i))

 Next i

0: Call foba(5, m, X, G, E, F, 0, 0, 0, 0, V)

 For i = 5 To m

 U(i) = U(i) + V(i)

 Next i

 If max < phi Then Exit For

 If maxtime >= 0 And maxtime < 60 And _

 Now > tm Then Exit For

 Next j

 Selection.Cells(4, 4) = "u"

 For i = 5 To m

 Selection.Cells(i, 4) = U(i)

 Next i

1: sb = Selection.Cells(5, 3).Address

2: se = Selection.Cells(m, 4).Address

3: sn = ActiveSheet.Name

4: Range(sb & ":" & se).Select

5: Selection.NumberFormat = "0.0E+00"

6: Charts.Add

7: ActiveChart.ChartType = xlXYScatterSmoothNoMarkers

8: ActiveChart.SetSourceData Source:= _

 Sheets(sn).Range(sb & ":" & se), PlotBy:= _

 xlColumns

9: ActiveChart.Location Where:= xlLocationAsObject, _

 Name:=sn

10: ActiveChart.Axes(xlValue).MajorGridlines.Select

11: Selection.Delete

12: ActiveChart.Legend.Select

13: Selection.Delete

End Sub

The source data for this program are the values of table Listing 3.12

(Fig. 3.11). Before the program execution, we have to select this Excel table

(range B2:D36, Fig. 3.12).

The execution results are the u solution values, which are located near the

corresponding values of the x coordinate, and the)(xu graph on the Excel work-

sheet (Fig. 3.13).

The)(xu graph is constructed automatically when executing operators 1 —

13. The same operators are present in program Listing 3.10.

3.16. Solving the Shockley-Poisson equation on a nonuniform grid

259

Fig. 3.11. The Excel table with the source data

Fig. 3.12. The worksheet before the program execution

Chapter 3. Finite Difference Method for Solving Differential Equations

260

Fig. 3.13. The results of the program execution: the horizontal coordinate

of the graph, x, is in meters, the vertical coordinate, u, is in volts

3.17. Use of solution symmetry

261

3.17. Use of solution symmetry

According to table Listing 3.12, the)(xN

A
 dependence is symmetric to the

origin of coordinates:)(xN
A

 =)(xN
A

. Therefore, under symmetric boundary

conditions, in particular)10(5u =)10(5u = 0, the solution of the Shockley-

Poisson equation is also symmetric:)(xu =)(xu . We can use the symmetry

for further reducing the execution time.

By setting 0b , we reduce the length of segment],[ba to half. The right

boundary condition becomes 0)(bu . We leave the left boundary and condi-

tion unchanged: 510a , 0)(au .

Let us correct the foba subroutine to use it for solving differential equation

(3.6) with left boundary condition (3.11) at given)(bu .

We consider that i = r – 1 in Fig. 3.10. Thus, the right node (
r

hz) coin-

cides with the right boundary of segment],[ba , that is, with point b.

Let us return to expression (3.73) for the first derivative of second-degree

polynomial (3.70). If
r

hz , then

rr
hh

dz

dP
2)(.

Using expressions (3.71) and (3.72) at i = r – 1, we have

)(

)2()2(
)(

11

1

2

11

2

1

2

12

2

rrrr

rrrrrrrrrrr

r hhhh

uhhhuhhhhuh
h

dz

dP
.

Equating the last expression and)(bu , we obtain equation

)(
)(

)2()2(

11

1

2

11

2

1

2

12

2

bu
hhhh

uhhhuhhhhuh

rrrr

rrrrrrrrrrr

or

Chapter 3. Finite Difference Method for Solving Differential Equations

262

rrr
uuu

12
, (3.79)

where

2

r
h ,

2

1

2

1
2

rrrr
hhhh ,

rrr
hhh

1

2

1
2 , (3.80)

)()(
11

buhhhh
rrrr

.

According to formula (3.13) for the backward sweep, we have

rrrr
QuPu

1
,

111112
)(

rrrrrrrrr
QQuPPQuPu .

Substituting these expressions into equation (3.79), we have

rrrrrrrrr
uQuPQQuPP][])([

11
.

The solution of this equation follows:

rrr

rrrr

r PPP

QQQP
u

1

11
)(

, (3.81)

where , , and are defined by formulas (3.80).

Let us put the following declaration of the subroutine, which realizes the

decomposition method for differential equation (3.6) with)(bu given, into

Module6 of the BookNM workbook.

Listing 3.14

Sub forbac(ByVal k, ByVal r, ByRef X() As Double, _

 ByRef G() As Double, ByRef E() As Double, _

 ByRef F() As Double, _

 ByVal GAMMAK, ByVal DELTAK, _

 ByVal U1B, ByRef U() As Double)

 Const BETAK = -2

 Dim alpha As Double, beta As Double

 Dim gamma As Double, delta As Double

 Dim i As Integer, w As Double

 Dim H() As Double: ReDim H(k + 1 To r)

 Dim P() As Double: ReDim P(k + 1 To r)

 Dim Q() As Double: ReDim Q(k + 1 To r)

 For i = k + 1 To r

3.17. Use of solution symmetry

263

 H(i) = X(i) - X(i - 1)

 Next i

'Forward sweep:

 P(k + 1) = -GAMMAK / BETAK

 Q(k + 1) = DELTAK / BETAK

 For i = k + 1 To r - 1

 w = H(i) + H(i + 1)

 alpha = H(i + 1) * (2 - G(i) * H(i + 1)) / w

 beta = E(i) * H(i) * H(i + 1) - _

 G(i) * (H(i) - H(i + 1)) - 2

 gamma = H(i) * (2 + G(i) * H(i)) / w

 delta = F(i) * H(i) * H(i + 1)

 w = alpha * P(i) + beta

 P(i + 1) = -gamma / w

 Q(i + 1) = (delta - alpha * Q(i)) / w

 Next i

'Backward sweep:

 alpha = H(r) ^ 2

 beta = -H(r - 1) ^ 2 - 2 * H(r - 1) * H(r) - _

 H(r) ^ 2

 gamma = H(r - 1) ^ 2 + 2 * H(r - 1) * H(r)

 delta = H(r - 1) * H(r) * (H(r - 1) + H(r)) * U1B

 U(r) = (delta - alpha * (P(r - 1) * Q(r) + _

 Q(r - 1)) - beta * Q(r)) / _

 (alpha * P(r - 1) * P(r) + beta * P(r) + gamma)

 For i = r To k + 1 Step -1

 U(i - 1) = P(i) * U(i) + Q(i)

 Next i

End Sub

Formula (3.81) is used to start the backward sweep in the forbac subroutine.

The subroutine parameters have the following sense:

 k, r are numbers of the left and right boundary nodes of the grid;

 X is an array of grid nodes;

 G, E are arrays of values of the coefficients of equation (3.6) at the grid

nodes;

 F is an array of values of the right-hand side of equation (3.6);

 GAMMAK, DELTAK are values of parameters
k

 and
k

 in left boundary

condition (3.11), where 2
k

;

 U1B is a value of)(bu ;

Chapter 3. Finite Difference Method for Solving Differential Equations

264

 U is an array intended for the solution values.

The program, which solves the boundary value problem for the Shockley-

Poisson equation by means of subroutine forbac, differs from Listing 3.13 of

the previous section only in the following operators:

0: Call forbac(5, m, X, G, E, F, 0, 0, 0, V)

5: Selection.NumberFormat = "0.000E+00"

The source data for this program are the values located in table Listing 3.15

(Fig. 3.14). We must select this Excel table (range B2:D21) before the program

execution.

Listing 3.15

maxtime 1

maxiter 1000

phi 1.00E-01

NA u0 x

7.00E+20 0.00E+00 -1.00E-05

7.00E+20 4.89E-02 -9.00E-06

7.00E+20 1.91E-01 -8.00E-06

7.00E+20 4.12E-01 -7.00E-06

7.00E+20 6.91E-01 -6.00E-06

7.00E+20 1.00E+00 -5.00E-06

7.00E+20 1.31E+00 -4.00E-06

7.00E+20 1.59E+00 -3.00E-06

7.00E+20 1.81E+00 -2.00E-06

7.00E+20 1.95E+00 -1.00E-06

7.00E+20 1.98E+00 -6.00E-07

7.00E+20 1.99E+00 -4.00E-07

7.00E+20 2.00E+00 -3.00E-07

7.00E+20 2.00E+00 -2.00E-07

-3.00E+22 2.00E+00 -1.00E-07

-3.00E+22 2.00E+00 0.00E+00

The results of the program execution are the u solution values and the)(xu

graph for negative values of x (Fig. 3.15).

According to the)(xu graph, semiconductor layer -6 μm ≤ x ≤ 6 μm, whose

plane is perpendicular to the x axis, is the potential well for signal electrons: this

layer collects electrons knocked out by photons (light particles) from semicon-

ductor molecules. The light falls on the layer plane.

In Section 4.7, the mathematical modeling of the silicon photosensitive target

will be continued, and we will use the resulting)(xu dependence depicted in

Fig. 3.15.

3.17. Use of solution symmetry

265

Fig. 3.14. The Excel table with the source data

Fig. 3.15. The results of the program execution: the horizontal coordinate

of the graph, x, is in meters, the vertical coordinate, u, is in volts

Chapter 3. Finite Difference Method for Solving Differential Equations

266

We advise the reader to develop the forbacs subroutine (similar to

forbac), which realizes the decomposition method for differential equation

(3.6) on segment],[ba with)(au given. The forbacs subroutine must have

the following parameters:

 k, r are numbers of the left and right boundary nodes of the grid on seg-

ment],[ba ;

 X is an array of grid nodes;

 G, E are arrays of values of the coefficients of equation (3.6) at the grid

nodes;

 F is an array of values of the right-hand side of equation (3.6);

 U1A is a value of)(au ;

 ALPHAR, DELTAR are values of parameters
r

 and
r
 in right boundary

condition (3.12), where 2
r

;

 U is an array intended for the solution values.

We advise to put the forbacs subroutine declaration into Module6 of the

BookNM workbook below the forbac subroutine declaration developed above.

In addition, we advise the reader to use the forbacs subroutine to create

a picture similar to Fig. 3.15, but for 0x .

3.18. The cyclic decomposition method

267

3.18. The cyclic decomposition method

Let us consider linear differential equation (3.6) on the whole x axis,

x , assuming that the coefficients and right-hand side of the equation

are periodic functions with period abΠ :

)()(xgΠxg ,)()(xeΠxe ,)()(xfΠxf .

In this case, the equation solution is also periodic:

)()(xuΠxu for x .

We supplement the grid on segment a ≤ x ≤ b (Fig. 3.1) by nodes outside this

segment in such manner that Πxx
ikri

 for i .

Let us replace boundary conditions (3.11) and (3.12) by the following perio-

dicity condition for the solution:
ikri

uu , i . As a result, we

have the system of linear algebraic equations

kkkkkrk
uuu

11
, (3.82)

iiiiiii
uuu

11
, (3.83)

i = k + 1, k + 2, ..., r – 2,

111121 rkrrrrr
uuu . (3.84)

The coefficients and right-hand sides are determined as follows:

 the values of
i
,

i
,

i
,

i
 are calculated according to formulas (3.78)

at k + 1 i r – 1;

 the values of
k

,
k

,
k

,
k

 are calculated according to formulas

1

11
)2(

kr

kkk

k hh

hgh
,

2)(
11 krkkrkk

hhghhe ,

1

)2(

kr

rkr

k hh

hgh
, (3.85)

1krkk
hhf .

Chapter 3. Finite Difference Method for Solving Differential Equations

268

The formulated system of r – k equations (3.82) — (3.84) with the r – k un-

knowns (
k

u ,
1k

u ,
2k

u , ...,
2r

u ,
1r

u) is the finite difference scheme for

linear differential equation (3.6) with the solution periodicity condition. We can

write this scheme as the following matrix equation:

111

222

222

111

0...000

...0000

........

000...0

000...0

00...00

rrr

rrr

kkk

kkk

kkk

.
......

1

2

2

1

1

2

2

1

r

r

k

k

k

r

r

k

k

k

u

u

u

u

u

The matrix of this equation has the so-called cyclic tridiagonal form.

The system of equations (3.82) — (3.84), i.e., the above matrix equation,

is usually solved by the cyclic decomposition method. Let us consider this

algorithm.

Let)(xy ,)(xz and)(xu be grid functions defined on grid
k

x <
1k

x <

2k
x < ... <

2r
x <

1r
x <

r
x (Fig. 3.1), and:

 variables
i

y satisfy the following system of linear algebraic equations

(3.9) with zero boundary conditions:

iiiiiii
yyy

11
, (3.86)

i = k + 1, k + 2, ..., r – 2, r – 1,

0
rk

yy ; (3.87)

 variables
i

z satisfy the following system of equations (3.9) with zero

right-hand side and unit boundary conditions:

0
11 iiiiii

zzz , (3.88)

3.18. The cyclic decomposition method

269

i = k + 1, k + 2, ..., r – 2, r – 1,

1
rk

zz ; (3.89)

 variables
i

u are the following linear combination of
i

y and
i

z :

ikii
zuyu , (3.90)

i = k, k + 1, k + 2, ..., r – 2, r – 1, r.

By substituting expression (3.90) into equations (3.83) and (3.84), we can

easily verify that grid function (3.90),)(xu , satisfies these equations at an arbi-

trary value of
k

u . Let us find the value of
k

u , at which grid function)(xu satis-

fies equation (3.82). For this purpose, we will consider the sweep formulas for

solution of systems (3.86), (3.87) and (3.88), (3.89).

Let formulas (3.18) and (3.13) of the backward sweep look like

0
r

y , 1
r

z , (3.91)

iiii
QyPy

1
,

iiii
SzPz

1
, (3.92)

where i = r, r – 1, ..., k + 1. In this case, formulas (3.16), (3.17) and (3.14), (3.15)

of the forward sweep become

0
1k

P , 0
1k

Q , 1
1k

S , (3.93)

iii

i

i P
P

1
,

iii

iii

i P

Q
Q

1
,

iii

ii

i P

S
S

1
, (3.94)

where i = k + 1, k + 2, ..., r – 1.

By substituting expression (3.90) at i = r – 1 and i = k + 1,

111 rkrr
zuyu ,

111 kkkk
zuyu ,

into equation (3.82), we obtain

kkkkkkkrkrk
zuyuzuy)()(

1111

or

11

11

kkrkk

kkrkk

k zz

yy
u . (3.95)

At this value of
k

u , the linear combination of grid functions)(xy and)(xz ,

defined by formula (3.90), satisfies not only equations (3.83) and (3.84), but also

equation (3.82).

According to the cyclic decomposition method, the system of linear algebraic

equations (3.82) — (3.84) is solved as follows:

Chapter 3. Finite Difference Method for Solving Differential Equations

270

1) the forward sweep is performed according to formulas (3.93) and (3.94),

i = k + 1, k + 2, ..., r – 1;

2) the backward sweep is performed according to formulas (3.91) and (3.92),

i = r, r – 1, ..., k + 2;

3) the value of
k

u is calculated according to formulas (3.85) and (3.95);

4) the values of
i

u (k + 1 i r – 1) are calculated according to (3.90).

3.19. Program realization of the cyclic decomposition method

271

3.19. Program realization of the cyclic

decomposition method

Let us consider a subroutine for solving linear differential equation (3.6)

under the following periodicity condition:)()(xuΠxu , where abΠ is

the period, x . The coefficients and right-hand side of equation (3.6)

are periodic functions:)()(xgΠxg ,)()(xeΠxe ,)()(xfΠxf .

For program realization of the cyclic decomposition method, we put the

following subroutine declaration into Module7 of the BookNM workbook.

Listing 3.16

Sub forwback(ByVal k, ByVal r, ByRef X() As Double, _

 ByRef G() As Double, ByRef E() As Double, _

 ByRef F() As Double, ByRef U() As Double)

 Dim alpha As Double, beta As Double

 Dim gamma As Double, delta As Double

 Dim i As Integer, w As Double

 Dim H() As Double: ReDim H(k + 1 To r)

 Dim P() As Double: ReDim P(k + 1 To r)

 Dim Q() As Double: ReDim Q(k + 1 To r)

 Dim S() As Double: ReDim S(k + 1 To r)

 Dim Y() As Double: ReDim Y(k + 1 To r)

 Dim Z() As Double: ReDim Z(k + 1 To r)

 For i = k + 1 To r

 H(i) = X(i) - X(i - 1)

 Next i

'Forward sweep:

 P(k + 1) = 0

 Q(k + 1) = 0

 S(k + 1) = 1

 For i = k + 1 To r - 1

 w = H(i) + H(i + 1)

 alpha = H(i + 1) * (2 - G(i) * H(i + 1)) / w

 beta = E(i) * H(i) * H(i + 1) - _

 G(i) * (H(i) - H(i + 1)) - 2

Chapter 3. Finite Difference Method for Solving Differential Equations

272

 gamma = H(i) * (2 + G(i) * H(i)) / w

 delta = F(i) * H(i) * H(i + 1)

 w = alpha * P(i) + beta

 P(i + 1) = -gamma / w

 Q(i + 1) = (delta - alpha * Q(i)) / w

 S(i + 1) = -alpha * S(i) / w

 Next i

'Backward sweep:

 Y(r) = 0

 Z(r) = 1

 For i = r To k + 2 Step -1

 Y(i - 1) = P(i) * Y(i) + Q(i)

 Z(i - 1) = P(i) * Z(i) + S(i)

 Next i

'Calculation of solution:

 w = H(r) + H(k + 1)

 alpha = H(k + 1) * (2 - G(k) * H(k + 1)) / w

 beta = E(k) * H(r) * H(k + 1) - _

 G(k) * (H(r) - H(k + 1)) - 2

 gamma = H(r) * (2 + G(k) * H(r)) / w

 delta = F(k) * H(r) * H(k + 1)

 U(k) = (delta - alpha * Y(r - 1) - _

 gamma * Y(k + 1)) / (beta + alpha * Z(r - 1) + _

 gamma * Z(k + 1)) 'calculation of U(k)

 For i = k + 1 To r - 1

 U(i) = Y(i) + U(k) * Z(i) 'calculation of U(i)

 Next i

 U(r) = U(k)

End Sub

The forwback subroutine parameters have the following sense:

 k, r are numbers of the left and right boundary nodes of the grid on

segment],[ba ;

 X is an array of grid nodes;

 G, E are arrays of values of the coefficients of equation (3.6) at the grid

nodes;

 F is an array of values of the right-hand side of equation (3.6);

 U is an array intended for the solution values.

Elements U(k) and U(r) are equal in the resulting U array.

3.20. Solving the oscillation equation

273

3.20. Solving the oscillation equation

We will use the cyclic decomposition method for mathematical modeling

of the oscillating motion of a bar. For this, we will be guided by the theory of the

fifth chapter in book [8].

Let a bar with mass M be attached to the free end of a spring (Fig. 3.16). The

bar’s position is defined by horizontal coordinate u; the origin of coordinates

(u = 0) corresponds to the equilibrium state, in which the spring is not strained.

Fig. 3.16. A bar sliding along a horizontal surface

If the bar is deviated to the left or right from the equilibrium state, the spring

resilience force (directed opposite to the displacement) acts on the bar. The force

value is defined by formula

KuF
r

.

Positive coefficient K is called the elastic constant of the spring. As is

customary in physics, we consider that the direction of the force vector coincides

with the u axis for positive values of
r

F (that is, the force is directed from left

to right) and the force vector is directed opposite to the u axis for negative values

of
r

F (that is, the force is directed from right to left).

Let us deviate the bar from the equilibrium state and then release it. The bar

starts to make an oscillatory motion, which is described by the following equa-

tion of Newton’s second law:

Ku

dt

ud
M

2

2

,

Chapter 3. Finite Difference Method for Solving Differential Equations

274

where 22 / dtud is the bar acceleration.

If the initial deviation of the bar (from the equilibrium state) is positive and

equal to A , the solution of the last equation looks like

)cos()(
0
tAtu ,

where A is the oscillation amplitude, MK /
0

 is the cyclic frequency of

the oscillatory motion. The cosine argument, t
0

, is in radians.

Cyclic frequency
0

 (in radians per second) is related with oscillation fre-

quency
0

f (in hertzs) and period
0

T (in seconds) as follows:

000
/22 Tf .

In the presence of friction between the bar and horizontal surface, we observe

the oscillation damping. If the bar velocity is small, the friction force is propor-

tional to the bar mass, M, and to the first power of the bar velocity, dtdu / . The

friction force is directed opposite to the velocity vector.

Taking into account the friction, we write the equation of Newton’s second

law as follows:

dt

du
LMuK

dt

ud
M

2

2

,

where L ≥ 0 is the so-called coefficient of the oscillation damping.

In order to exclude the oscillation damping, we introduce force)(tF with

period T . The equation of Newton’s second law becomes

)(
2

2

tF
dt

du
LMKu

dt

ud
M . (3.96)

It is obvious that after a while the oscillation of the bar becomes periodic

with period T .

Let us consider that time t changes from a negative value,
0

t , to infinity.

Let
1
t be a negative value exceeding

0
t , such that:

0

t ≤ t <
1
t is an area of establishing the oscillation, in which the)(tu

solution is an aperiodic function;

 t ≥
1
t is an area of the established oscillation, in which the)(tu solution

is a periodic function with period T .

3.20. Solving the oscillation equation

275

Because the periodic oscillation of the bar is interesting for us, we consider

equation (3.96) on segment],0[T with the solution periodicity condition.

Equation (3.96) can be written in form (3.6),

)(
2

2

tfue
dt

du
g

dt

ud
, (3.97)

where Lg , MKe /2

0
, MtFtf /)()(.

Let us consider the following source data table.

Listing 3.17

M 0.001

K 800

L 100

F t

0.00E+00 0.00E+00

0.00E+00 2.00E-03

0.00E+00 4.00E-03

0.00E+00 6.00E-03

0.00E+00 8.00E-03

0.00E+00 1.00E-02

0.00E+00 1.20E-02

0.00E+00 1.40E-02

0.00E+00 1.60E-02

0.00E+00 1.80E-02

0.00E+00 2.00E-02

0.00E+00 2.20E-02

0.00E+00 2.40E-02

0.00E+00 2.60E-02

5.00E+00 2.80E-02

1.00E+01 3.00E-02

5.00E+00 3.20E-02

0.00E+00 3.40E-02

0.00E+00 3.60E-02

0.00E+00 3.80E-02

0.00E+00 4.00E-02

0.00E+00 4.20E-02

0.00E+00 4.40E-02

0.00E+00 4.60E-02

0.00E+00 4.80E-02

0.00E+00 5.00E-02

Chapter 3. Finite Difference Method for Solving Differential Equations

276

In this table:

 M is the bar mass in kilograms;

 K is the elastic constant of the spring, in N / m;

 L is the coefficient of the oscillation damping, in 1 / s;

 t are the values of time for one period, in seconds;

 F are the)(tF function values in newtons.

According to table Listing 3.17:

1) every 0.05 seconds, a positive force acts on the bar, for example, it gets

a kick from left to right;

2) the maximum value of the force equals 10 N;

3) the duration of the force action equals 0.008 s.

The program for solving equation (3.97) under the periodicity condition is

given below.

Listing 3.18

Sub main()

 Dim T() As Double

 Dim G() As Double

 Dim E() As Double

 Dim F() As Double

 Dim U() As Double

 Dim m As Integer

 Dim MM As Double

 Dim KK As Double

 Dim LL As Double

 Dim i As Integer

 Dim sb As String, se As String

 Dim sn As String

 m = Selection.Rows.Count 'quantity of rows

 MM = Selection.Cells(1, 2)

 KK = Selection.Cells(2, 2)

 LL = Selection.Cells(3, 2)

 ReDim T(5 To m)

 ReDim G(5 To m)

 ReDim E(5 To m)

 ReDim F(5 To m)

 ReDim U(5 To m)

 For i = 5 To m

 T(i) = Selection.Cells(i, 2)

 G(i) = LL

 E(i) = KK / MM

3.20. Solving the oscillation equation

277

 F(i) = Selection.Cells(i, 1) / MM

 Next i

0: Call forwback(5, m, T, G, E, F, U)

 Selection.Cells(4, 3) = "u"

 For i = 5 To m

 Selection.Cells(i, 3) = U(i)

 Next i

1: sb = Selection.Cells(5, 2).Address

2: se = Selection.Cells(m, 3).Address

3: Range(sb & ":" & se).Select

4: sn = ActiveSheet.Name

5: Selection.NumberFormat = "0.00E+00"

6: Charts.Add

7: ActiveChart.ChartType = xlXYScatterSmoothNoMarkers

8: ActiveChart.SetSourceData Source:= _

 Sheets(sn).Range(sb & ":" & se), PlotBy:= _

 xlColumns

9: ActiveChart.Location Where:= xlLocationAsObject, _

 Name:=sn

10: ActiveChart.Axes(xlValue).MajorGridlines.Select

11: Selection.Delete

12: ActiveChart.Legend.Select

13: Selection.Delete

14: With ActiveChart

15: .Axes(xlCategory, xlPrimary).HasTitle = True

16: .Axes(xlCategory, _

 xlPrimary).AxisTitle.Characters.Text = "t, s"

17: .Axes(xlValue, xlPrimary).HasTitle = True

18: .Axes(xlValue, _

 xlPrimary).AxisTitle.Characters.Text = "u, m"

19: End With

20: ActiveChart.Axes(xlCategory).AxisTitle.Select

21: Selection.AutoScaleFont = True

22: With Selection.Font

23: .FontStyle = "regular"

24: .Size = 12

25: End With

26: ActiveChart.Axes(xlValue).AxisTitle.Select

27: Selection.AutoScaleFont = True

28: With Selection.Font

29: .FontStyle = "regular"

30: .Size = 12

Chapter 3. Finite Difference Method for Solving Differential Equations

278

31: End With

32: ActiveChart.ChartArea.Select

End Sub

In this program, operator 0 is the call of the forwback subroutine, realizing

the cyclic decomposition method.

The source data for the program are the values located in table Listing 3.17

(Fig. 3.17). We must select this Excel table (range B2:C31) before the program

execution. The execution results are the solution values, located in the u column

(near the t column, Fig. 3.18), and the)(tu graph on the Excel worksheet.

The)(tu graph is created automatically:

 operators 1 — 13 of program Listing 3.18 construct the graph and delete

the gridlines and legend;

 operators 14 — 32 superscribe the axes.

Fig. 3.17. The Excel table with the source data

3.20. Solving the oscillation equation

279

Fig. 3.18. The program execution results,

including the graph of periodic dependence

)(tu with frequency 1 / T = 20 Hz

The reviewed operators (from 1 to 32) were programmed by means of Excel

Macro Recorder. In Section 4.8, we will consider the graph creation subroutine

based on these operators.

In Section 5.12, we will use periodic dependence)(tu depicted above in

Fig. 3.18.

We advise the reader to develop a program, similar to Listing 3.18, for calcu-

lating a periodic time dependence of the current,)(ti , in the electrical circuit

shown in Fig. 3.19. The electromotive force (in volts) of the generator is the fol-

lowing periodic function of time:)()(tfΠκtv , where t is time in seconds,

bta , abΠ is the period, is an integer. Function)(tf and the

values of a and b are given in Appendix 4.

The process of solving the suggested task must include the following two

stages:

Chapter 3. Finite Difference Method for Solving Differential Equations

280

1) on segment],[ba , periodic dependence of the capacitor charge,)(tq , is

calculated by solving equation

)(
1

2

2

tvq
Cdt

dq
R

dt

qd
L ;

2) the current is calculated by differentiation of the capacitor charge:

dt

dq
ti)(.

Dependences)(tv and)(ti will be figured in the task on p. 414.

Fig. 3.19. The electrical circuit with the following parameters: electric

resistance R = 100 Ω, inductance L = 0.2 H, capacitance C = 3·10
-4

 F

281

Chapter 4.

Cubic Spline

Let us begin with the origin of term “spline”.

Long ago, engineers needed to draw smooth curves through given points. To

do so, they used long elastic wooden strips. Such a strip, called a spline, was

fixed (nailed up to a drawing board) at the given points. As a result, the strip was

bent to provide the smooth curve.

In mathematics, the function describing the bending of an elastic strip is

called a third-degree (cubic) spline [9]. In this chapter, this mathematical

construction is used for interpolation, differentiation and integration of the grid

(tabular) function and also for solving the nonlinear algebraic and linear differen-

tial equations. Besides, we consider two classical methods for solving the non-

linear algebraic equation, namely, the bisection and secant methods.

For demonstration of the spline possibilities, we solve applied problems

concerning the field-effect transistor, silicon photosensitive target and geophysi-

cal cable. The locally one-dimensional scheme [4] is considered for solving the

heat equation of the last applied problem with two spatial coordinates.

In addition to user-defined procedures, realizing the numerical methods,

a subroutine for automatic creation of graphs is developed.

Chapter 4. Cubic Spline

282

4.1. Definition of cubic spline. Spline moments

Let an increasing sequence of points on segment],[ba be given as follows:

k
xa <

1k
x <

2k
x < ... <

2r
x <

1r
x < bx

r
. In other words, as in

the previous chapter of the book, segment],[ba is covered with a grid whose

nodes have coordinates
k

x ,
1k

x ,
2k

x , ...,
2r

x ,
1r

x ,
r

x . Segments

],[
1 ii

xx are called elementary segments, k + 1 ≤ i ≤ r.

Let)(xf be a grid function, and
k

f ,
1k

f ,
2k

f , ...,
2r

f ,
1r

f ,
r

f

are given values of)(xf at points
k

x ,
1k

x ,
2k

x , ...,
2r

x ,
1r

x ,
r

x ,

respectively.

A cubic spline (or third-degree spline, Fig. 4.1) is function)(xS , which

satisfies the following conditions:

1) on each elementary segment
1i

x ≤ x ≤
i

x (k + 1 ≤ i ≤ r), the spline co-

incides with a third-degree polynomial (generally, the polynomials are different

on different elementary segments);

2) at the grid nodes, the spline has the corresponding grid function values:

ii
fxS)(;

3) the spline has a continuous first derivative, i.e., the spline is smooth;

4) the spline has a continuous second derivative;

5) on the boundaries of segment],[ba , the spline satisfies additional condi-

tions (we will consider these boundary conditions below, closer to the end of the

section).

According to above item (2), the)(xS graph passes through points (
k

x , k
f),

(
1k

x , 1k
f), (

2k
x , 2k

f), . . . , (
2r

x , 2r
f), (

1r
x , 1r

f), (
r

x , r
f).

According to items (3) and (4), the jumps of the first and second derivatives of

)(xS are absent at the interior grid nodes, i.e., at
1k

x ,
2k

x , ...,
2r

x ,
1r

x .

The values of the second derivative,)(xS , at the grid nodes are called

moments of the cubic spline:

4.1. Definition of cubic spline. Spline moments

283

ii
Mx

dx

Sd
)(

2

2

,

where
i

M is the spline moment, k ≤ i ≤ r.

Fig. 4.1. The cubic spline graph

Let the spline moments,
i

M (k ≤ i ≤ r), be given (later we will know how to

calculate them). In this case, items (1) and (4) of the spline definition give

the following expression for the second derivative on elementary segment

],[
1 ii

xx :

i

i

i
i

i

i h

xx
M

h

xx
MxS

1

1
)(, (4.1)

where
1iii

xxh is the elementary segment’s length or the grid step, k + 1 ≤

i ≤ r.

Below, we will obtain expressions for the spline and its first derivative.

Let us integrate expression (4.1):

1

2

1

2

1 2

)(

2

)(
)(C

h

xx
M

h

xx
MxS

i

i

i
i

i

i
, (4.2)

where
1

C is the integration constant.

Integrating expression (4.2), we have

Chapter 4. Cubic Spline

284

21

3

1

3

1 6

)(

6

)(
)(CxC

h

xx
M

h

xx
MxS

i

i

i
i

i

i
, (4.3)

where
2

C is the integration constant.

Integration constants
1

C and
2

C will be determined by means of item (2)

of the spline definition, according to which
ii

fxS)(and
11

)(
ii

fxS or

i

ii

iii h

xx
MfCCx

6

)(
3

1

21
,

i

ii

iii h

xx
MfCCx

6

)(
3

1

11211
.

The solution of this system of two linear algebraic equations (with unknown

1
C and

2
C) has the following form:

i

ii

i

ii h
MM

h

ff
C

6

11

1
,

i

i

ii

i

i

i

i

i

i

i

i
x

h
Mx

h
M

h

x
f

h

x
fC

66 111

1

2
.

By substituting the last two expressions for
1

C and
2

C into (4.3) and (4.2),

we obtain the following expressions for the spline and its derivative on segment

],[
1 ii

xx :

i

iii

i
i

i

i
i

i

i h

xxhM
f

h

xx
M

h

xx
MxS

66

)(

6

)(
)(

2

1

1

3

1

3

1

i

iii

i h

xxhM
f

1

2

6
, (4.4)

i

ii

i

i

i

i

i

i h

ff

h

xx
M

h

xx
MxS

1

2

1

2

1 2

)(

2

)(
)(

i

ii
h

MM

6

1
. (4.5)

4.1. Definition of cubic spline. Spline moments

285

Expressions (4.1), (4.4) and (4.5) include moments
1i

M and
i

M .

Below, we will obtain the system of linear algebraic equations with the

tridiagonal coefficient matrix, which allows us to calculate moments
k

M ,

1k
M ,

2k
M , ...,

2r
M ,

1r
M ,

r
M .

The expression for the spline derivative at point
i

x on the left,

i

ii

i

ii

i

ii

ii
h

MM

h

ff

h

xx
MxS

62

)(
)0(

11

2

1
, (4.6)

follows from (4.5).

Expression (4.5) for elementary segment
i

x ≤ x ≤
1i

x looks like

1

1

1

2

1
1

2

1

2

)(

2

)(
)(

i

ii

i

i

i
i

i

i h

ff

h

xx
M

h

xx
MxS

1

1

6
i

ii
h

MM
. (4.7)

The expression for the spline derivative at point
i

x on the right,

1

1

1

1

1

2

1

62

)(
)0(

i

ii

i

ii

i

ii

ii
h

MM

h

ff

h

xx
MxS , (4.8)

follows from (4.7).

According to item (3) of the spline definition, the left and right derivatives

are equal:

)0()0(
ii

xSxS .

By means of expressions (4.6) and (4.8), the last equality can be written as

follows:

i

ii

i

ii

i

i

i

ii

i

i

h

ff

h

ff
M

h
M

hh
M

h
1

1

1

1

11

1 636
,

where i = k + 1, k + 2, …, r – 2, r – 1 are the numbers of the interior grid nodes, or

iiiiii
MMM

11
2 , (4.9)

where

1ii

i

i hh

h
,

Chapter 4. Cubic Spline

286

i

ii

i

i hh

h
1

1

1
, (4.10)

1

1

1

1

6

ii

i

ii

i

ii

i hh

h

ff

h

ff

.

As the boundary conditions in item (5) of the spline definition, we will use

the following linear equations connecting the moments at the ends of segment

],[ba :

kkkk
MM

1
2 , (4.11)

rrrr
MM 2

1
, (4.12)

where
k

,
k

,
r
,

r
 are given parameters, k and r are numbers of the left and

right grid nodes; ax
k

 and bx
r

.

If a given value of the function derivative on the left boundary,)(aff
k

, is

the condition in item (5), then (4.8) at i = k leads to the following expressions for

the parameters of equation (4.11):

1
k

,
k

k

kk

k
k

f
h

ff

h
1

1

1

6
. (4.13)

If a given value of the function derivative on the right boundary,)(bff
r

,

is the condition in item (5), then (4.6) at i = r leads to the following expressions

for the parameters of equation (4.12):

1
r

,

r

rr

r
r

r h

ff
f

h

1
6

. (4.14)

A given value of the second derivative on the left boundary (
kk

fM) leads

to the following expressions for the parameters of equation (4.11):

0
k

,
kk

f2 . (4.15)

A given value of the second derivative on the right boundary (
rr

fM)

leads to the following expressions for the parameters of equation (4.12):

0
r

,
rr

f2 . (4.16)

The constancy of the second derivative at the left end of segment],[ba

(
1kk

MM) leads to

4.1. Definition of cubic spline. Spline moments

287

2
k

, 0
k

 (4.17)

in equation (4.11).

The constancy of the second derivative at the right end of segment],[ba

(
1rr

MM) leads to

2
r

, 0
r

 (4.18)

in equation (4.12).

Expressions (4.13) — (4.18), as well as equations (4.11) and (4.12), may be

called spline boundary conditions.

Moments
k

M ,
1k

M ,
2k

M , ...,
2r

M ,
1r

M ,
r

M are determined by

solving the system of linear algebraic equations (4.9), (4.11) and (4.12). In this

case, the decomposition method (Section 3.2) can be used because forms (3.9),

(3.11) and (3.12) are available for equations (4.9), (4.11) and (4.12).

After calculating the moments, the values of the cubic spline and its first and

second derivatives at any point x of segment],[ba can be calculated according

to formulas (4.4), (4.5) and (4.1), respectively.

The error of interpolating the)(xf function (and its derivatives) by the

)(xS spline (and by its derivatives) is determined by the following expression:

)()()(4)()(n

max

nn hOxSxf , (4.19)

where }{max
1

i

rik

max
hh is the maximum grid step (0

max
h), n = 0, 1, 2,

3 is the derivative order,)()()0(xfxf ,)()()0(xSxS . We considered the

sense of the O notation used here in Section 3.1.

Chapter 4. Cubic Spline

288

4.2. Spline interpolation

Into Module8 of the BookNM workbook, we enter the following declaration

of the subroutine, which realizes the decomposition method for solving the sys-

tem of linear algebraic equations (4.9), (4.11) and (4.12), i.e., for calculating the

spline moments.

Listing 4.1

Sub mos(ByVal k, ByVal r, ByRef X() As Double, _

 ByRef F() As Double, _

 ByVal GAMMAK, ByVal DELTAK, _

 ByVal ALPHAR, ByVal DELTAR, _

 ByRef M() As Double)

 Dim alpha As Double

 Dim gamma As Double, delta As Double

 Dim i As Integer, w As Double

 Dim H() As Double: ReDim H(k + 1 To r)

 Dim P() As Double: ReDim P(k + 1 To r)

 Dim Q() As Double: ReDim Q(k + 1 To r)

 For i = k + 1 To r

 H(i) = X(i) - X(i - 1)

 Next i

'Forward sweep:

 P(k + 1) = -GAMMAK / 2

 Q(k + 1) = DELTAK / 2

 For i = k + 1 To r - 1

 w = H(i) + H(i + 1)

 alpha = H(i) / w

 gamma = 1 - alpha

 delta = 6 * ((F(i + 1) - F(i)) / H(i + 1) - _

 (F(i) - F(i - 1)) / H(i)) / w

 w = alpha * P(i) + 2

 P(i + 1) = -gamma / w

 Q(i + 1) = (delta - alpha * Q(i)) / w

 Next i

4.2. Spline interpolation

289

'Backward sweep:

 M(r) = (DELTAR - ALPHAR * Q(r)) / _

 (ALPHAR * P(r) + 2)

 For i = r To k + 1 Step -1

 M(i - 1) = P(i) * M(i) + Q(i)

 Next i

End Sub

The subroutine name (mos) occurs from “moments of spline”. The parame-

ters have the following sense:

 k, r are numbers of the left and right boundary nodes of the grid on seg-

ment],[ba ;

 X is an array of grid nodes;

 F is an array of the)(xf function values at the grid nodes;

 GAMMAK, DELTAK correspond to
k

 and
k

 in left boundary condition

(4.11);

 ALPHAR, DELTAR correspond to
r

 and
r
 in right boundary condition

(4.12);

 M is an array intended for the spline moments.

The mos subroutine is based on the foba subroutine (Section 3.15).

In practice, not only the spline with boundary conditions (4.11) and (4.12) is

used, but also the periodic spline defined as follows.

Let)(xf be a periodic grid function with period abΠ :

)()(
ikri

xfxf ,

where abxx
ikri

, i .

The periodic third-degree spline is function)(xS defined on the whole axis,

x , for which:

1) the first four conditions of the cubic spline definition (p. 282) are satisfied

on segment],[ba ;

2))()(
ikri

xSxS and)()(
ikri

xSxS for i .

We will use the periodic third-degree spline in Section 5.11, at that, we will

not calculate the moments of this spline. If the reader needs a subroutine for cal-

culating the moments of the periodic spline, its development is not a difficult

task: the forwback subroutine (Section 3.19), realizing the cyclic decomposi-

tion method, should be the basis for the new subroutine.

Chapter 4. Cubic Spline

290

Let us consider a subroutine of spline interpolation intended for calculating

values of the cubic spline (periodic or with the boundary conditions) and its first

and second derivatives at given point χ of segment],[ba . This subroutine is

named si from “spline interpolation”.

Into Module9 of the BookNM workbook, we enter the following declaration

of the si subroutine:

Listing 4.2

Sub si(ByVal k, ByVal r, ByRef X() As Double, _

 ByRef F() As Double, ByRef M() As Double, _

 ByVal chi, ByRef s, _

 Optional s1 As Variant, Optional s2 As Variant)

 Dim i As Integer

 Dim h As Double, hh As Double

 Dim h1 As Double, h1h1 As Double

 Dim h2 As Double, h2h2 As Double

'Searching elementary segment containing chi:

 For i = k + 1 To r

 If X(i) > chi Then Exit For

 Next i

 If i > r Then i = r

'Calculating value of cubic spline at point chi:

 h = X(i) - X(i - 1): hh = h * h

 h1 = chi - X(i - 1): h1h1 = h1 * h1

 h2 = X(i) - chi: h2h2 = h2 * h2

 s = (M(i - 1) * h2h2 * h2 + M(i) * h1h1 * h1) / _

 (6 * h) + _

 ((F(i - 1) - M(i - 1) * hh / 6) * h2 + _

 (F(i) - M(i) * hh / 6) * h1) / h

'Calculating spline's first derivative at point chi:

 If Not IsMissing(s1) Then

 s1 = (-M(i - 1) * h2h2 + M(i) * h1h1) / _

 (2 * h) + _

 (F(i) - F(i - 1)) / h - _

 (M(i) - M(i - 1)) / 6 * h

 End If

'Calculating spline's second derivative at point chi:

 If Not IsMissing(s2) Then

 s2 = (M(i - 1) * h2 + M(i) * h1) / h

 End If

End Sub

4.2. Spline interpolation

291

This subroutine has 9 parameters, and the last two parameters, s1 and s2,

are optional. The parameters have the following sense:

 k, r are numbers of the left and right boundary nodes of the grid on

segment],[ba ;

 X is an array of grid nodes;

 F is an array of the)(xf function values at the grid nodes;

 M is an array of the spline moments, for example, determined by the mos

subroutine execution;

 chi is given point χ on],[ba ;

 s is a variable (memory cell) intended for the spline’s value at the χ point;

 s1, s2 are variables respectively intended for the spline’s first and

second derivatives at the χ point.

In the si subroutine, cycle For…Next is used to find elementary segment

],[
1 ii

xx containing the χ point. After finding this segment, the spline’s value

is calculated according to formula (4.4), and, if needed, the spline’s first and

second derivatives are calculated according to (4.5) and (4.1), respectively.

Chapter 4. Cubic Spline

292

4.3. Use of cubic spline for processing

transistor electrical characteristics

Transistors are the base elements of modern radio electronics. Two types of

transistors exist — bipolar and field-effect transistors. Both those and other such

elements are three-electrode devices based on semiconductors.

Let us consider a concrete example of using the cubic spline construction for

processing electrical characteristics of a field-effect transistor, and such, in which

the main carriers of electric current are electrons rather than holes.

The field-effect transistor electrodes are called source, drain and gate. With-

out delving into the device physics, we note the following regarding the elec-

trodes:

 the source injects electrons into the semiconductor, the drain collects

these electrons, the gate regulates the electron flow;

 by varying the electric potential difference between the gate and the

source,
gs

U , we change the drain current,
d

I .

The major electrical characteristics of the field-effect transistor are the output

current-voltage characteristics (OCVC) representing dependences of the drain

current,
d

I , on the potential difference between the drain and the source,
ds

U ,

for various values of
gs

U . Fig. 4.2 shows the OCVC calculated by means of

mathematical model [10] for electron-hole plasma in the transistor. The simula-

tion based on this model is quite time-consuming: the calculation of the
d

I value

(for given
gs

U and
ds

U) can take hours on a personal computer.

In the bottom right corner of this book’s cover, we see the two-dimensional

distribution of electron concentration in the transistor for
gs

U = -3 V and
ds

U =

14 V. This picture, as well as the OCVC, is from article [10].

Listing 4.3 with tabular representation of the OCVC is given below. In this

table, as well as in Fig. 4.2, the values of potential differences are in volts, the

current is in milliamperes. We see that 18 cells of the table are empty. It is

because the
d

I value was not calculated for some values of
gs

U and
ds

U due

to economic reasons.

4.3. Use of cubic spline for processing transistor electrical characteristics

293

Fig. 4.2. The output current-voltage characteristics

of the modern transistor with 1 mm gate width

Listing 4.3

The original table of the transistor characteristics

U
ds

 U
gs

 0 -1 -2 -3

0 0 0 0 0

0.2 94.5065 39.3361 0 0

0.4 179.9835 0 0

0.5 206.7334 45.3559 0 0

1 207.3824 49.0988 0 0

2 211.1779 55.4772 0 0

4 214.8481 66.276 0 0

6 217.707 76.2717 0 0

7.65 224.2229 0 0

8 0 0

8.35 89.793 0 0

9 0.809 0

10 242.0198 102.0164 5.1056 0

10.8 10.369 0

11 0

11.65 1.0724

12 266.5736 123.9969 22.674

13 37.3677 8.6525

14 298.5628 157.1723 58.0258 42.0182

Chapter 4. Cubic Spline

294

To build electrical circuits based on the above transistor, we must know the

parameters of its equivalent circuit. To determine these parameters by method

[11], the empty cells of the OCVC table should be filled beforehand. The pro-

gram given below allows doing it by means of the spline interpolation.

Listing 4.4

Sub main()

 Dim X() As Double

 Dim F() As Double

 Dim MOM() As Double

 Dim m As Integer, n As Integer

 Dim g As Integer, d As Integer

 Dim k As Integer, r As Integer

 Dim s As Double

 m = Selection.Rows.Count 'quantity of rows

 n = Selection.Columns.Count 'quantity of columns

 ReDim X(2 To n)

 ReDim F(2 To n)

 ReDim MOM(2 To n)

 For g = 2 To m 'setting row number

'Formation of arrays X and F for row No. g:

 For r = 2 To n

 X(r) = Selection.Cells(1, r)

 F(r) = Selection.Cells(g, r)

 If F(r) <> 0 Then Exit For

 Next r

 k = r

 For d = k + 1 To n

 If Selection.Cells(g, d) <> 0 Then

 r = r + 1

 X(r) = Selection.Cells(1, d)

 F(r) = Selection.Cells(g, d)

 End If

 Next d

'Calculating array MOM of moments for row No. g:

 Call mos(2, r, X, F, 0, 0, 0, 0, MOM)

'Filling all cells of row No. g:

 For d = 2 To n

 Call si(2, r, X, F, MOM, _

 Selection.Cells(1, d), s)

 Selection.Cells(g, d) = s

 Next d

4.3. Use of cubic spline for processing transistor electrical characteristics

295

 Next g

End Sub

We enter this program into Module1 of the BookNM workbook. The source

data are the values given in table Listing 4.3. The program uses this table in the

transposed form (Fig. 4.3).

Fig. 4.3. The transposed table of the transistor characteristics:

the number format without decimals is set for range C3:U6

For transposing a matrix, Excel includes the TRANSPOSE function (p. 141),

which interprets the contents of empty cells as zero.

After using the TRANSPOSE function, we fulfill the following operations:

1) select the table shown in Fig. 4.3, which is the transposition result;

2) copy this table into Windows Clipboard, for example, by clicking on the

Copy button in the Clipboard area of the Home tab;

3) click on the Paste arrow;

4) in the Paste Values area of the open window, click on the left icon.

The table, depicted in Fig. 4.3, visually does not change. We must select this

table of the transistor characteristics (range B2:U6) before running program

Listing 4.4.

When executing the program, the g cycle parameter accepts the values of

2, 3, 4 and 5. Respectively, the cells of the 2nd, 3rd, 4th and 5th rows of the

selected table are being filled.

Let us consider arrays X and F at a fixed value of g. Before calling the mos

subroutine, arrays X and F contain the following values.

The F array begins with zero, i.e., F(2) = 0. The next elements of the F

array are the values of the g-th row (of the selected table), but not all: the zeros,

which are between the nonzero values, are eliminated. It is these zeros that filled

the empty cells of table Listing 4.3 upon its transposition by the TRANSPOSE

function.

Chapter 4. Cubic Spline

296

The X array contains the values of the 1st row (of the selected table), which

are located above the g-th row’s values included in the F array.

For example:

 for fixed g = 2, array F contains the values of F(2) = 0, F(3) = 95,

F(4) = 180, F(5) = 207, F(6) = 207, F(7) = 211, F(8) = 215,

F(9) = 218, F(10) = 224, F(11) = 242, F(12) = 267, F(13) = 299,

and array X contains the values of X(2) = 0, X(3) = 0.2, X(4) = 0.4,

X(5) = 0.5, X(6) = 1, X(7) = 2, X(8) = 4, X(9) = 6, X(10) = 7.65,

X(11) = 10, X(12) = 12, X(13) = 14 (k = 2, r = 13);

 for fixed g = 4, array F contains the values of F(2) = 0, F(3) = 0,

F(4) = 0, F(5) = 0, F(6) = 0, F(7) = 0, F(8) = 0, F(9) = 0, F(10) = 0,

F(11) = 0, F(12) = 0, F(13) = 1, F(14) = 5, F(15) = 10, F(16) = 23,

F(17) = 37, F(18) = 58, and array X contains the values of X(2) = 0,

X(3) = 0.2, X(4) = 0.4, X(5) = 0.5, X(6) = 1, X(7) = 2, X(8) = 4,

X(9) = 6, X(10) = 7.65, X(11) = 8, X(12) = 8.35, X(13) = 9,

X(14) = 10, X(15) = 10.8, X(16) = 12, X(17) = 13, X(18) = 14

(k = 2, r = 18).

For every value of g (2, 3, 4 and 5), the MOM array of the spline moments,

corresponding to arrays X and F, is calculated by means of the mos subroutine.

In the call of this subroutine, boundary conditions (4.15) and (4.16) are used,

where 0
)(2 gr

ff . The values, being calculated when executing the si sub-

routine, fill the cells of the g-th row of the table. Thus, zero or nonzero values

fill the cells with zeros of Fig. 4.3. Fig. 4.4 shows the program execution result.

Fig. 4.4. The transposed table of the transistor characteristics after the execution

After transposing the last table (Fig. 4.4) by means of the TRANSPOSE

function, we have table Listing 4.5, which is similar to Listing 4.3, but without

empty cells. Table Listing 4.5 can be used for calculating parameters of the tran-

sistor equivalent circuit by method [11].

4.3. Use of cubic spline for processing transistor electrical characteristics

297

Listing 4.5

The completed table of the transistor characteristics

U
ds

 U
gs

 0 -1 -2 -3

0 0 0 0 0

0.2 94.5065 39.3361 0 0

0.4 179.9835 47.336 0 0

0.5 206.7334 45.3559 0 0

1 207.3824 49.0988 0 0

2 211.1779 55.4772 0 0

4 214.8481 66.276 0 0

6 217.707 76.2717 0 0

7.65 224.2229 85.364 0 0

8 226.068 87.537 0 0

8.35 228.206 89.793 0 0

9 232.931 94.227 0.809 0

10 242.0198 102.0164 5.1056 0

10.8 250.805 109.515 10.369 0

11 253.214 111.626 12.04 0

11.65 261.644 119.291 18.554 1.0724

12 266.5736 123.9969 22.674 1.102

13 282 139.645 37.3677 8.6525

14 298.5628 157.1723 58.0258 42.0182

Chapter 4. Cubic Spline

298

4.4. Spline integration

According to the rules of integration and basic integrals [3], the integral of

polynomial (4.4) over segment],[
1 ii

xx equals

311

1

242
)(

i

ii

i

ii
i

x

i
x

h
MM

h
ff

dxxS .

Therefore, the integral of the spline over segment],[ba equals

r

ki
i

ii
r

ki
i

ii
b

a

h
MM

h
ff

dxxS

1

31

1

1

242
)(. (4.20)

Formulas (4.19) and (4.20) give the following estimation of the spline inte-

gration error:

)()()(4

max

b

a

b

a

hOdxxSdxxf ,

where 0
max

h is the maximum grid step.

Let us enter the following declaration of function ios (from “integral of

spline”) into Module10 of the BookNM workbook.

Listing 4.6

Function ios(ByVal k, ByVal r, ByRef X() As Double, _

 ByRef F() As Double, ByRef M() As Double)

 Dim i As Integer

 Dim h As Double

 ios = 0

 For i = k + 1 To r

 h = X(i) - X(i - 1)

 ios = ios + (F(i - 1) + F(i)) / 2 * h - _

 (M(i - 1) + M(i)) / 24 * h ^ 3

 Next i

End Function

4.4. Spline integration

299

The ios function returns (into the program) the value of the integral of

spline S(x) over segment],[ba . Parameters k, r, X, F and M have the same

sense as the corresponding parameters of the si subroutine (p. 291). We will use

the ios function for solving the following task.

Table Listing 4.7 below is taken from Task 3.1 in book [8]. It contains the

mass of a vertically falling plastic foam ball (with radius equal to one inch) and

the results of measurement of its coordinate at different instants of time.

Listing 4.7

Experimental dependence of coordinate

of a falling ball versus time

Ball mass M in kilograms 0.000254

Time t in seconds Coordinate y in meters

-0.132 0

0 0.075

0.1 0.26

0.2 0.525

0.3 0.87

0.4 1.27

0.5 1.73

0.6 2.23

0.7 2.77

0.8 3.35

Because of the air resistance, the ball movement differs from the movement

of a material point with the same mass, M = 0.000254 kg. To estimate this dif-

ference, we have to calculate the ball velocity at moment t = 0.8 s and compare it

with the corresponding velocity of the material point.

For solving this task, we use the laws of mechanics as follows:

 according to the work-energy theorem, the change in kinetic energy of the

ball is equal to the work done by the forces acting on the ball, i.e., by the gravita-

tional and air resistance forces;

 according to Newton’s second law, the resultant of the forces, acting on

the ball, is equal to the product of its mass, M, and acceleration,
2

2

dt

yd
, which is

a function of the y coordinate.

Thus, the change in kinetic energy of the ball (which will be calculated by a

program) is equal to

Chapter 4. Cubic Spline

300

b

a

dyyyMW)(
2

, (4.21)

where a = 0, b = 3.35,

2

2

2
)(

dt

yd
yy . (4.22)

Let us consider the following program for calculating the change in kinetic

energy of the ball.

Listing 4.8

Sub main()

 Dim T() As Double

 Dim Y() As Double

 Dim Y2() As Double

 Dim MOM() As Double

 Dim m As Integer

 Dim i As Integer

 Dim W As Double

 m = Selection.Rows.Count 'quantity of rows

 ReDim T(3 To m)

 ReDim Y(3 To m)

 ReDim Y2(3 To m)

 ReDim MOM(3 To m)

'Inputting dependence of coordinate Y versus time T:

 For i = 3 To m

 T(i) = Selection.Cells(i, 1)

 Y(i) = Selection.Cells(i, 2)

 Next i

'Calculating spline moments, i.e., acceleration Y2:

1: Call mos(3, m, T, Y, -2, 0, -2, 0, Y2)

'Calculating and outputting change in kinetic energy:

2: Call mos(3, m, Y, Y2, -2, 0, -2, 0, MOM)

3: W = Selection.Cells(1, 2) * ios(3, m, Y, Y2, MOM)

4: MsgBox "W =" & Str(Round(W, 6)) & " J"

End Sub

The source data for this program are the values given in table Listing 4.7

(Fig. 4.5). We have to select this Excel table before running the program.

The program contains two calls of the mos subroutine, operators 1 and 2.

In these calls, we use boundary conditions (4.17) and (4.18) for the constancy of

the spline moments at the left and right ends of segment],[ba :
43

MM and

4.4. Spline integration

301

1mm
MM (m = 12). Operator 1 calculates the)(

2
yy function values accord-

ing to formula (4.22). Operator 2 calculates array MOM of the spline moments,

which are used for integrating the)(
2

yy function over],[ba . Operator 3, con-

taining the call of the ios function, calculates the change in kinetic energy of

the ball according to formula (4.21). When executing operator 4, the calculated

value is rounded up to six decimal places and displayed in the standard window

(Fig. 4.6). To finish the program execution, we must click on the OK button in

this window.

Fig. 4.5. The Excel table containing the experimental data

Fig. 4.6. The execution result

Chapter 4. Cubic Spline

302

According to the program execution result (Fig. 4.6), the change in kinetic

energy of the ball is equal to

J004542.0W .

Because the material point’s acceleration is equal to the free fall acceleration,

g = 0.981 m / s
2
, the change in its kinetic energy on segment],[ba is equal to the

following value:

J008347.0)(abMg .

Because of the zero value of the ball velocity at moment t = -0.132 s, the

ball’s kinetic energy at t = 0.8 s is equal to W:

J004542.0
2

2M V
W .

This gives the following value of the ball velocity at moment t = 0.8 s:

s/m5.980
2

M

W
V .

The corresponding value for the material point is

s/m8.107
)(2

M

abMg
V .

Thus, the air resistance plays an important role in the fall of the plastic foam ball.

To consolidate the material of this and the previous sections, we advise the

reader to write a program for calculating the average value of function)(xf on

segment],[ba . Formula

b

a

average
dxxf

ab
f)(

1

and the cubic spline on uniform grid
0

xa <
1

x <
2

x < ... <
2n

x <
1n

x <

bx
n

 must be used. The)(xf function is from Appendix 4; segment],[ba is

this function’s domain.

4.5. Iterative methods for solving the nonlinear algebraic equation

303

4.5. Iterative methods for solving

the nonlinear algebraic equation

Let nonlinear function)(xf and segment],[vu be given with the following

properties:

 function)(xf is continuous and monotonous on],[vu ;

 the function values on the left and right boundaries of segment],[vu

have different signs.

We will consider nonlinear algebraic equation

0)(xf . (4.23)

It is obvious that this equation has one and only one solution on],[vu . We have

to find this solution.

A segment containing a unique solution of equation (4.23), for example

],[vu , is called the uncertainty segment.

Equation (4.23) can be solved by using the Solver add-in for Excel. Such

usage of Solver will be considered on an example of

5.1cos)(xxxf . (4.24)

For this function, segment [0.5, 2.5] is the uncertainty segment (this is easily

verified).

We enter an initial approximation of the solution, for example 2, into cell G1.

Into cell F1, we enter formula

=G1-COS(G1)-1.5

corresponding to mathematical formula (4.24). Fig. 4.7 shows the worksheet

after clicking on the tick button of the Excel formula bar.

Let us fulfill the following operations:

1) Data > Solver in area Analysis;

2) in the Solver Parameters window opened, enter F1 into text box Set

Objective;

3) turn on option Value Of, and put zero into the corresponding text box;

4) enter G1 into text box By Changing Variable Cells;

5) enter GRG Nonlinear into box Select a Solving Method by means of the

drop-down list (Fig. 4.8);

Chapter 4. Cubic Spline

304

6) click on the Solve button;

7) in the Solver Results window opened (Fig. 4.9), click on OK to finish

solving equation (4.23), (4.24).

Fig. 4.7. The Excel worksheet before start of solving equation (4.23), (4.24)

Fig. 4.8. The Solver Parameters window before start of solving the equation

4.5. Iterative methods for solving the nonlinear algebraic equation

305

Fig. 4.9

The following solution results are given in Fig. 4.10:

 cell G1 contains the result of solving equation (4.23), (4.24): x =

1.535395;

 cell F1 contains 1.44E-07.

The last value, f (1.535395) = 1.44·10
-7

, is the so-called residual right-hand

side of equation (4.23), (4.24). It characterizes the accuracy of solving this

equation.

Fig. 4.10. The Excel worksheet upon termination of solving the equation

Chapter 4. Cubic Spline

306

If the accuracy of the solution is unsatisfactory, we must:

1) open the Options window by clicking on the Options button in the Solver

Parameters window depicted in Fig. 4.8;

2) change settings in the Options window;

3) click on the OK button for returning to the Solver Parameters window.

The limitation of the Solver add-in is obvious: it “must know” how to calcu-

late the value of)(xf at an arbitrary value of x. Therefore, we cannot use this

procedure if)(xf is a tabular (grid) function.

Below, we will develop a program for solving equation (4.23), in which

)(xf is a tabular function. Let us consider the bisection method, which will be

used in this program.

Let
u

f and
v

f be the values of)(xf on the corresponding boundaries of

segment],[vu , and these values have different signs. The bisection method

includes the following steps.

1. The midpoint of segment],[vu and the function value in this midpoint

are calculated according to formulas

2/)(vuw (4.25)

and)(wff
w

.

2. If the signs of
w

f and
u

f are the same, the left boundary of],[vu is

shifted to the right: assignments wu and
wu

ff are performed. Further, the

4th item is fulfilled.

3. If the signs of
w

f and
v

f are the same, the right boundary of],[vu is

shifted to the left: assignments wv and
wv

ff are performed.

4. The previous three items are repeated (that is, the iteration is repeated)

until condition

uv (4.26)

is satisfied, where is a given positive constant.

5. When condition (4.26) is satisfied, the iterative process of solving equa-

tion (4.23) terminates. The w value is considered as the solution of this equation.

If the residual right-hand side of equation (4.23),)(wff
w

, is not small

enough, we have to reduce the value of in condition (4.26).

If the uncertainty segment is not known, it can be found by means of the step-

by-step movement along the x axis in the direction of decrease or increase of the

)(xf function as long as
u

f and
v

f have identical signs, i.e., until satisfaction

of condition 0
vu

ff . In Section 1.13, we already talked about the movement

4.5. Iterative methods for solving the nonlinear algebraic equation

307

along the x axis when considering various cycles. In Section 6.2, the step-by-step

movement will be used to find the segment that contains the minimum point of

a nonlinear function of one variable.

The limitation of the bisection method is the same as for the Solver add-in:

the program realization of the method “must know” how to calculate the)(xf

value at an arbitrary value of x. Therefore, the program realization of the bisec-

tion method for tabular function)(xf will use the spline interpolation to deter-

mine the function value at any x value, i.e., for the function continuation.

We will solve the following task by the bisection method.

Time moments t (further, x) and corresponding values of coordinate y of the

vertically falling plastic foam ball are given in table Listing 4.7 from the previ-

ous section. We are interested in the T moment of time when the ball has a given

coordinate, for example Y = 1 m.

The desired value of T is the solution of equation (4.23), where

Yxyxf)()(. (4.27)

Because)(xy is a grid function (defined by table Listing 4.7),)(xf determined

by (4.27) is a grid function too.

According to table Listing 4.7:

 at 3.0u and 4.0v , segment],[vu is the uncertainty segment;

 13.01)3.0(yf
u

, 27.01)4.0(yf
v

.

To solve equation (4.23), (4.27) by the bisection method, we will use the

cubic spline to determine the function value for any x value (for example,

35.0x), i.e., for making the)(xf function continuous.

The following code is intended for determining moment T when the ball has

a given Y coordinate.

Listing 4.9

Dim ns As Long 'counter of calls

Dim m As Integer

Dim X() As Double

Dim F() As Double

Dim MOM() As Double

Sub main()

 Dim s As String, Y As Double

 Dim i As Integer

 Dim u As Double, fu As Double

 Dim v As Double, fv As Double

 Dim w As Double, fw As Double

Chapter 4. Cubic Spline

308

 Dim epsilon As Double

1: s = InputBox("Enter value of Y and click OK")

2: Y = Val(s)

 m = Selection.Rows.Count 'quantity of rows

 ReDim X(3 To m)

 ReDim F(3 To m)

 ReDim MOM(3 To m)

 For i = 3 To m

 X(i) = Selection.Cells(i, 1)

 F(i) = Selection.Cells(i, 2) - Y

 If F(i) = 0 Then

3: MsgBox "T =" & Str(Round(X(i), 6))

 End

 End If

 Next i

 If F(3) * F(m) > 0 Then

 MsgBox "On boundaries of segment [" & _

 Cstr(X(3)) & ", " & Cstr(X(m)) & "], " & _

 vbCrLf & "function f(x) has identical signs"

 End

 End If

'Calculating spline moments:

 Call mos(3, m, X, F, -2, 0, -2, 0, MOM)

'Searching uncertainty segment:

 For i = 4 To m

4: If F(i - 1) * F(i) < 0 Then Exit For

 Next i

5: epsilon = (X(i) - X(i - 1)) * 1E-6

'Solving equation:

 u = X(i - 1): fu = F(i - 1)

 v = X(i): fv = F(i)

 ns = 0

6: Call segment(u, fu, v, fv, w, fw, u, fu, v, fv)

7: If v - u >= epsilon GoTo 6

8: MsgBox "T =" & Str(Round(w, 6)) & vbCrLf & _

 CStr(ns) & " iterations"

End Sub

Sub segment(ByVal u As Double, ByVal fu As Double, _

 ByVal v As Double, ByVal fv As Double, _

 ByRef w As Double, ByRef fw As Double, _

 ByRef uu As Double, ByRef fuu As Double, _

4.5. Iterative methods for solving the nonlinear algebraic equation

309

 ByRef vv As Double, ByRef fvv As Double)

 ns = ns + 1

 If Sgn(fu) = 0 Then

 uu = u: fuu = fu

 vv = u: fvv = fu

 Exit Sub

 End If

 If Sgn(fv) = 0 Then

 uu = v: fuu = fv

 vv = v: fvv = fv

 Exit Sub

 End If

9: w = (u + v) / 2 'bisection method

 Call si(3, m, X, F, MOM, w, fw)

 If Sgn(fw) = Sgn(fu) Then

 uu = w: fuu = fw

 Exit Sub

 End If

 If Sgn(fw) = Sgn(fv) Then

 vv = w: fvv = fw

 End If

End Sub

The source data are given in table Listing 4.7 (Fig. 4.5). We must select this

Excel table before the code execution. A value of Y must be entered into the text

box of the standard window (see operators 1 and 2 and Fig. 4.11). Uncertainty

segment],[
1 ii

xx is determined by means of operator 4.

Fig. 4.11. The window with the coordinate of the falling plastic foam ball

Chapter 4. Cubic Spline

310

Further, equation (4.23), (4.27) is solved by the bisection method (see opera-

tors 6 and 7). In condition (4.26) for finishing the iterative process, the value of

 is equal to a millionth part of the initial uncertainty segment’s length (see

operator 5).

In the iterative process, the segment subroutine is used for reducing the

uncertainty segment length (see operator 6). This subroutine is declared below

the main program.

When executing operator 8, the solution of equation (4.23), (4.27) is rounded

up to six decimal places and displayed in the standard window (Fig. 4.12):

T = 0.334042. The number of iterations is also displayed in this window; it

equals 20. We have to click on the OK button for finishing the execution of code

Listing 4.9.

Fig. 4.12. The window for the bisection method with the

calculated moment of time and the number of iterations

Let us use the secant method (instead of the bisection method) in the itera-

tive process of solving equation (4.23), (4.27). For that, formula (4.25) must be

replaced with the following:

uv

v

ff

fuv
vw

)(
. (4.28)

For obtaining the last formula, let us consider the geometric interpretation of

the secant method depicted in Fig. 4.13. According to this figure, we can deter-

mine a new position (wx) of the uncertainty segment boundary (left or right)

as follows:

1) run the secant line through points (u, u
f) and (v, v

f);

2) denote the coordinate of the crosspoint of this line with the x axis by w.

4.5. Iterative methods for solving the nonlinear algebraic equation

311

According to Fig. 4.13, the slope of the secant line, passing through points

(u, u
f) and (v, v

f), is equal to

wv

f

uw

f
vu .

This ratio leads to formula (4.28).

Fig. 4.13. The geometric interpretation of the secant method

For replacing the iterative method in code Listing 4.9, we have to replace

operator 9 with the following:

9: w = v -(v – u) * fv / (fv – fu) 'secant method

Fig. 4.14 shows the result of executing the new version of code Listing 4.9 for

Y = 1. As we see, the number of iterations is reduced to 12 (from 20).

Let us consider the question of the convergence of the above iterative

processes defined by formulas (4.25) and (4.28). Starting with the bisection

method, we use the following designations:

 xwj 1 ;

 j is xu or xv to get the same sign of j as the sign of 1j

defined above.

Here, j is the iteration number, x is the exact solution of the equation, that

is, 0)(xf .

Chapter 4. Cubic Spline

312

Fig. 4.14. The window for the secant method with the

calculated moment of time and the number of iterations

The x location near any boundary of the initial uncertainty segment is the

worst situation for the convergence. In this case,

jj C1 , (4.29)

where C is a constant close to 0.5 on the left. At an arbitrary location of x ,

double inequality 0 ≤ C < 0.5 is true for the bisection method.

Formula (4.29) allows us to estimate the rate of the convergence of the itera-

tive process. According to this formula, quantity 1j is proportional to the first

power of quantity j , that is, the bisection method’s iterative process converges

linearly.

Similar consideration of the secant method also gives formula (4.29) for

estimating the rate of the convergence of the corresponding iterative process, but

with inequality 0 ≤ C < 1.

In Section 5.5, we will consider another version of the secant method whose

iterative process has quadratic convergence according to formula (5.26) or, in the

simplest form,

11 jjj C , (4.30)

where C is a constant, 1j , j , 1j are small quantities, j is the iteration

number.

We advise the reader to write a program for solving equation 0)(xf on

segment],[ba by the bisection and secant methods. In this equation,)(xf is

a function from Appendix 4; segment],[ba is this function’s domain. The user-

4.5. Iterative methods for solving the nonlinear algebraic equation

313

defined form with the CheckBox element (for choosing the method) must be the

user interface of the program. Segment],[ba must be the initial uncertainty

segment.

In the next section, we will develop a noniterative method for solving the

nonlinear algebraic equation with grid function)(xf . In Section 5.5, we will

return to iterative methods for solving the nonlinear algebraic equation.

Chapter 4. Cubic Spline

314

4.6. Noniterative method for solving

the nonlinear algebraic equation

In the previous section, we considered two iterative methods for solving

equation (4.23), (4.27), at that, we used the spline interpolation of grid function

(4.27) in the program realization of these methods. However, equation (4.23),

(4.27) can be solved by means of the cubic spline construction without any itera-

tions.

The fact is that, having calculated the moments of the spline, which corre-

sponds to grid function)(xf on segment [-0.132, 0.8], we obtain the representa-

tion of)(xf in the form of third-degree polynomial)(xS on the uncertainty

segment, for example],[vu = [0.3, 0.4]. To obtain the value of T, it is enough to

solve cubic equation 0)(xS , which can be written in canonical form

023 dcxbxax . (4.31)

According to handbook [3], equation (4.23), (4.27) is solved in the following

three stages if 0a .

1. By substituting

a

b
zx

3
, (4.32)

equation (4.31) is transformed to

0233 qzpz , (4.33)

where
2

2

3

3
3

a

bac
p ,

a

d

a

bc

a

b
q

23

3

327

2
2 .

2. The real roots of equation (4.33) are calculated, one or three (two of

which may coincide), and then the corresponding roots of equation (4.31) are

calculated.

For solving equation (4.33), we use the method represented in the table of

Appendix 5. For subsequent calculations of the real roots of equation (4.31), we

use formula (4.32).

3. The unique solution of equation (4.23), (4.27) is determined.

4.6. Noniterative method for solving the nonlinear algebraic equation

315

The declaration of the table subroutine, intended for calculating the real

roots of equation (4.31), follows:

Listing 4.10

Sub table(ByVal a, ByVal b, ByVal c, ByVal d, _

 ByRef x() As Double)

 Dim b3a As Double, p As Double, q As Double

 Dim r As Double, gamma As Double, phi As Double

 Const beta = 1 / 3, pi = 3.141592654

 x(1) = 1E+308

 x(2) = 1E+308

 x(3) = 1E+308

 If 27 * a ^ 3 = 0 Then Exit Sub 'if a = 0

 b3a = b / (3 * a)

 p = (3 * a * c - b ^ 2) / (3 * a ^ 2) / 3

 q = (2 * b ^ 3 / (27 * a ^ 3) - b * c / _

 (3 * a ^ 2) + d / a) / 2

 r = Sgn(q) * Sqr(Abs(p))

 If r ^ 3 = 0 Then 'if p = 0

 x(1) = -Sgn(q) * Abs(2 * q) ^ beta - b3a

 Exit Sub

 End If

 If q = 0 Then 'if q = 0

 x(1) = - b3a

 If p < 0 Then

 x(2) = Sqr(-3 * p) - b3a

 x(3) = -Sqr(-3 * p) - b3a

 End If

 Exit Sub

 End If

 gamma = q / r ^ 3 'gamma > 0

 If p < 0 Then

 If gamma <= 1 Then

 phi = Atn(Sqr(1 - gamma ^ 2) / gamma)

 x(1) = -2 * r * Cos(phi / 3) - b3a

 x(2) = 2 * r * Cos((pi - phi) / 3) - b3a

 x(3) = 2 * r * Cos((pi + phi) / 3) - b3a

 Else

 phi = Log(gamma + Sqr(gamma ^ 2 - 1))

 x(1) = -2 * r * _

 (Exp(phi / 3) + Exp(-phi / 3)) / 2 - b3a

 End If

Chapter 4. Cubic Spline

316

 Else

 phi = Log(gamma + Sqr(gamma ^ 2 + 1))

 x(1) = -2 * r * _

 (Exp(phi / 3) - Exp(-phi / 3)) / 2 - b3a

 End If

End Sub

The subroutine name (table) is due to the fact that the subroutine algorithm

is based on the table in Appendix 5. Let us enter declaration Listing 4.10 into

Module11 of the BookNM workbook.

The table subroutine parameters have the following sense:

 a, b, c, d are coefficients a, b and c and constant term d of cubic equation

(4.31);

 x is an array for real solutions (one or three; free elements of the x array

are assumed to be equal to 10
308

).

The following program is intended for determining the T moment when the

falling plastic foam ball (from the two previous sections) has a given Y coordi-

nate.

Listing 4.11

Sub main()

 Dim s As String, Y As Double

 Dim m As Integer

 Dim X() As Double

 Dim F() As Double

 Dim MOM() As Double

 Dim i As Integer, h As Double

 Dim a1 As Double, a2 As Double

 Dim b1 As Double, b2 As Double

 Dim a As Double, b As Double

 Dim c As Double, d As Double

 Dim T As Double

 Dim xxx(1 To 3) As Double, k As Integer

1: s = InputBox("Enter value of Y and click OK")

2: Y = Val(s)

 m = Selection.Rows.Count 'quantity of rows

 ReDim X(3 To m)

 ReDim F(3 To m)

 ReDim MOM(3 To m)

 For i = 3 To m

 X(i) = Selection.Cells(i, 1)

 F(i) = Selection.Cells(i, 2) - Y

4.6. Noniterative method for solving the nonlinear algebraic equation

317

 If F(i) = 0 Then

3: MsgBox "T =" & Str(Round(X(i), 6))

 End

 End If

 Next i

 If F(3) * F(m) > 0 Then

 MsgBox "On boundaries of segment [" & _

 CStr(X(3)) & ", " & CStr(X(m)) & "], " & _

 vbCrLf & "function f(x) has identical signs"

 End

 End If

'Calculating spline moments:

 Call mos(3, m, X, F, -2, 0, -2, 0, MOM)

'Searching uncertainty segment:

 For i = 4 To m

4: If F(i - 1) * F(i) < 0 Then Exit For

 Next i

'Forming cubic equation:

 h = X(i) - X(i - 1)

 a1 = MOM(i - 1) / (6 * h)

 a2 = MOM(i) / (6 * h)

 b1 = (F(i - 1) - MOM(i - 1) * h ^ 2 / 6) / h

 b2 = (F(i) - MOM(i) * h ^ 2 / 6) / h

5: a = a2 - a1

6: b = 3 * a1 * X(i) - 3 * a2 * X(i - 1)

7: c = 3 * a2 * X(i - 1) ^ 2 - 3 * a1 * X(i) ^ 2 + _

 b2 - b1

8: d = a1 * X(i) ^ 3 - a2 * X(i - 1) ^ 3 + _

 b1 * X(i) - b2 * X(i - 1)

'Solving linear equation:

 If 27 * a ^ 3 = 0 And 2 * b = 0 Then

9: T = -d / c

10: MsgBox "T =" & Str(Round(T, 6)) & _

 vbCrLf & "- root of linear equation"

 End

 End If

'Solving quadratic equation:

 If 27 * a ^ 3 = 0 Then

11: T = (-c + Sqr(c ^ 2 - 4 * b * d)) / (2 * b)

 If X(i - 1) <= T And T <= X(i) Then

12: MsgBox "T =" & Str(Round(T, 6)) & _

 vbCrLf & "- root of quadratic equation"

Chapter 4. Cubic Spline

318

 End

 End If

13: T = (-c - Sqr(c ^ 2 - 4 * b * d)) / (2 * b)

 If X(i - 1) <= T And T <= X(i) Then

14: MsgBox "T =" & Str(Round(T, 6)) & _

 vbCrLf & "- root of quadratic equation"

 End

 End If

 End If

'Solving cubic or linear equation:

15: Call table(a, b, c, d, xxx)

 If xxx(2) = 1E+308 Then

16: MsgBox "T =" & Str(Round(xxx(1), 6)) & _

 vbCrLf & "- root of cubic equation"

 End

 End If

 If X(i - 1) <= xxx(1) And xxx(1) <= X(i) _

 And X(i - 1) <= xxx(2) And xxx(2) <= X(i) _

 And X(i - 1) <= xxx(3) And xxx(3) <= X(i) Then

17: T = (F(i) * X(i - 1) - F(i - 1) * X(i)) / _

 (F(i) - F(i - 1))

18: MsgBox "T =" & Str(Round(T, 6)) & _

 vbCrLf & "- root of linear equation"

 End

 End If

 For k = 1 To 3

 If X(i - 1) <= xxx(k) And xxx(k) <= X(i) Then

19: MsgBox "T =" & Str(Round(xxx(k), 6)) & _

 vbCrLf & "- root of cubic equation"

 End

 End If

 Next k

End Sub

The source data are given in table Listing 4.7 (Fig. 4.5). We must select this

Excel table before the program execution. The value of Y must be entered into

the text box of the standard window (see operators 1 and 2 and Fig. 4.11).

Uncertainty segment],[
1 ii

xx is determined by means of operator 4.

Operators 5 — 8 calculate the coefficients and constant term of cubic equa-

tion (4.31) according to the following formulas:

12
aaa ,

4.6. Noniterative method for solving the nonlinear algebraic equation

319

121
33

ii
xaxab ,

12

2

1

2

12
33 bbxaxac

ii
,

121

3

12

3

1 iiii
xbxbxaxad ,

where

i

i

h

M
a

6

1

1
,

i

i

h

M
a

62
,

i

ii

i h

hM
fb

1

6

2

1

11
,

i

ii

i h

hM
fb

1

6

2

2
.

For obtaining these formulas, we must transform expression (4.4) to the follow-

ing form:

dcxbxaxxS 23)(.

After determining a, b, c and d, the approximate solution of equation (4.23),

(4.27) is calculated by solving one of three algebraic equations — a linear, quad-

ratic or cubic equation.

1. The linear equation is solved if the resulting values of coefficients a and b

are equal to zero. Operator 9 calculates a root of equation 0dcx according

to formula cdx / .

2. The quadratic equation is solved at the zero value of a (0b). Two roots

of equation 02 dcxbx are calculated by operators 11 and 13 according

to the well known formula [3],

)2/(42 bbdccx .

The solution of equation (4.23), (4.27) is the root (x or x) belonging to

uncertainty segment],[
1 ii

xx .

3. The cubic equation is solved when 0a . One or three real roots of equa-

tion 023 dcxbxax are the result of calling the table subroutine

(operator 15).

In the ordinary situation, uncertainty segment],[
1 ii

xx contains only one

out of one or three real roots of equation 023 dcxbxax , and this root is

the solution of equation (4.23), (4.27). However, an extraordinary situation is

possible when the number of real roots of equation 023 dcxbxax is

Chapter 4. Cubic Spline

320

equal to three, and all these roots belong to uncertainty segment],[
1 ii

xx . In

this case, operator 17 calculates the solution of equation (4.23), (4.27) according

to the following formula:

1

11

ii

iiii

ff

xfxf
x .

This formula is obtained by solving equation 0)(xL , in which

1

1

1

1
)(

ii

i

i

ii

i

i xx

xx
f

xx

xx
fxL (4.34)

is the linear function that equals
1i

f and
i

f on the corresponding boundaries of

segment],[
1 ii

xx .

As a result of executing operator 3, 10, 12, 14, 16, 18 or 19, the solution

of equation (4.23), (4.27) is rounded up to six decimal places and displayed in

the standard window (Fig. 4.15). After clicking on the OK button, the program

execution is terminated.

Fig. 4.15. The window for the noniterative method

with the calculated moment of time and

the type of the solved algebraic equation

We advise the reader to write a program, similar to Listing 4.11, for solving

equation 0)(xf on segment],[ba by the noniterative method. In this equa-

tion,)(xf is a function from Appendix 4; segment],[ba is this function’s

domain. Uniform grid
0

xa <
1

x <
2

x < ... <
2n

x <
1n

x < bx
n

 must

be used.

4.7. Calculating the charge storage capacity

321

4.7. Calculating the charge storage capacity

Having studied the cubic spline construction, we will continue the modeling

of the silicon photosensitive target (Section 3.13).

It was mentioned on p. 264 that semiconductor layer -6 μm ≤ x ≤ 6 μm,

perpendicular to the x axis, is the potential well for signal electrons generated by

light falling on the layer plane. In this regard, an important electrical parameter

is the charge storage capacity of the target cell.

The charge storage capacity,
max

Q , is the signal electrons’ maximum charge

(in absolute value), which can be localized in the considered layer of unit area

(meter × meter).

The value of
max

Q is calculated in the following five stages:

1) the moments of cubic spline)(xS , determined by the tabulated electric

charge density,

)(
)(

exp)(
0

xN
Tk

xqu
Nqxf

A
b

,

are calculated, where)(xu is the solution of Shockley-Poisson equation (3.68),

a ≤ x ≤ 0;

2) the coordinate, ex , at which spline)(xS changes its sign from nega-

tive (at ex) to positive (at ex), is calculated;

3) the second derivative,
2

w , of spline)(xS at point ex is calculated

(
2

w is used in the next item when integrating the cubic spline over segment

e ≤ x ≤ 0);

4) the positive charge,
1

Q , localized in the semiconductor layer, a ≤ x ≤ 0,

is calculated by integrating)(xS over segment e ≤ x ≤ 0:

dxxSQ

e

0

1
)(; (4.35)

Chapter 4. Cubic Spline

322

5) the calculated value of
1

Q is multiplied by 2 because the right-hand side

of the semiconductor layer (x > 0) exists in addition to the reviewed left-hand

side of the layer (x < 0):

1
2QQ

max
. (4.36)

Let us consider the program for calculating the charge storage capacity,

max
Q .

The source data table below is a part of the table represented in Fig. 3.15.

Listing 4.12

NA u0 x u

7.00E+20 0.00E+00 -1.00E-05 0.000E+00

7.00E+20 4.89E-02 -9.00E-06 1.320E-06

7.00E+20 1.91E-01 -8.00E-06 5.782E-05

7.00E+20 4.12E-01 -7.00E-06 2.529E-03

7.00E+20 6.91E-01 -6.00E-06 1.057E-01

7.00E+20 1.00E+00 -5.00E-06 1.272E+00

7.00E+20 1.31E+00 -4.00E-06 3.521E+00

7.00E+20 1.59E+00 -3.00E-06 6.851E+00

7.00E+20 1.81E+00 -2.00E-06 1.126E+01

7.00E+20 1.95E+00 -1.00E-06 1.676E+01

7.00E+20 1.98E+00 -6.00E-07 1.926E+01

7.00E+20 1.99E+00 -4.00E-07 2.057E+01

7.00E+20 2.00E+00 -3.00E-07 2.124E+01

7.00E+20 2.00E+00 -2.00E-07 2.193E+01

-3.00E+22 2.00E+00 -1.00E-07 2.262E+01

-3.00E+22 2.00E+00 0.00E+00 2.286E+01

The program follows:

Listing 4.13

Sub main()

 Dim m As Integer

 Dim X() As Double

 Dim NA() As Double

 Dim U() As Double

 Dim F() As Double

 Dim MOM() As Double

 Const q = 1.6E-19

 Const kb = 1.38E-23

4.7. Calculating the charge storage capacity

323

 Const T = 300

 Dim w As Double, w1 As Double, w2 As Double

 Dim i As Integer, h As Double

 Dim a1 As Double, a2 As Double

 Dim b1 As Double, b2 As Double

 Dim a As Double, b As Double

 Dim c As Double, d As Double

 Dim e As Double

 Dim xxx(1 To 3) As Double, k As Integer

 m = Selection.Rows.Count 'quantity of rows

 ReDim X(2 To m)

 ReDim NA(2 To m)

 ReDim U(2 To m)

 ReDim F(2 To m)

 ReDim MOM(2 To m)

 w = q / (kb * T)

 For i = 2 To m

 NA(i) = Selection.Cells(i, 1)

 X(i) = Selection.Cells(i, 3)

 U(i) = Selection.Cells(i, 4)

 Next i

 For i = 2 To m

 F(i) = q * (NA(2) * Exp(-w * U(i)) - NA(i))

 Next i

'Calculating spline moments:

 w = 6 * (F(3) - F(2)) / (X(3) - X(2)) ^ 2

 w1 = 6 * (F(m - 1) - F(m)) / (X(m) - X(m - 1)) ^ 2

0: Call mos(2, m, X, F, 1, w, 1, w1, MOM)

'Searching uncertainty segment:

 For i = 3 To m

4: If F(i - 1) * F(i) < 0 Then Exit For

 Next i

'Forming cubic equation:

 h = X(i) - X(i - 1)

 a1 = MOM(i - 1) / (6 * h)

 a2 = MOM(i) / (6 * h)

 b1 = (F(i - 1) - MOM(i - 1) * h ^ 2 / 6) / h

 b2 = (F(i) - MOM(i) * h ^ 2 / 6) / h

5: a = a2 - a1

6: b = 3 * a1 * X(i) - 3 * a2 * X(i - 1)

7: c = 3 * a2 * X(i - 1) ^ 2 - 3 * a1 * X(i) ^ 2 + _

 b2 - b1

Chapter 4. Cubic Spline

324

8: d = a1 * X(i) ^ 3 - a2 * X(i - 1) ^ 3 + _

 b1 * X(i) - b2 * X(i - 1)

'Solving linear equation:

 If 27 * a ^ 3 = 0 And 2 * b = 0 Then

9: e = -d / c

 GoTo 21

 End If

'Solving quadratic equation:

 If 27 * a ^ 3 = 0 Then

11: e = (-c + Sqr(c ^ 2 - 4 * b * d)) / (2 * b)

 If X(i - 1) <= e And e <= X(i) Then GoTo 21

13: e = (-c - Sqr(c ^ 2 - 4 * b * d)) / (2 * b)

 If X(i - 1) <= e And e <= X(i) Then GoTo 21

 End If

'Solving cubic or linear equation:

15: Call table(a, b, c, d, xxx)

 If xxx(2) = 1E+308 Then

16: e = xxx(1)

 GoTo 21

 End If

 If X(i - 1) <= xxx(1) And xxx(1) <= X(i) _

 And X(i - 1) <= xxx(2) And xxx(2) <= X(i) _

 And X(i - 1) <= xxx(3) And xxx(3) <= X(i) Then

17: e = (F(i) * X(i - 1) - F(i - 1) * X(i)) / _

 (F(i) - F(i - 1))

 GoTo 21

 End If

 For k = 1 To 3

 If X(i - 1) <= xxx(k) And xxx(k) <= X(i) Then

19: e = xxx(k)

 GoTo 21

 End If

 Next k

'Calculating charge storage capacity:

21: Call si(2, m, X, F, MOM, e, w, w1, w2)

 X(i - 1) = e

 F(i - 1) = 0

 MOM(i - 1) = w2

22: w1 = ios(i - 1, m, X, F, MOM) 'calculating Q1

23: w = Round(2 * w1, 4) 'calculating Qmax

24: MsgBox "Qmax = " & CStr(w) & " C/m^2"

End Sub

4.7. Calculating the charge storage capacity

325

The source data are the values given in table Listing 4.12 (Fig. 4.16). We

must select this table before running the program.

Fig. 4.16. The Excel table with the source data

The program contains the call of the mos subroutine (operator 0) intended

for calculating the spline moments. In this call, conditions (4.13) and (4.14) are

used, corresponding to the zero value of the derivative on the left and right

boundaries of segment]0,[a : 0)(
2

aff , 0)0(ff
m

 (m = 17).

The value of e is the result of solving equation 0)(xS by the noniterative

method given in the previous section. Regarding the part that solves this equa-

tion, program Listing 4.13 is similar to program Listing 4.11. The solution of the

cubic equation is equal to e = -1.967·10
-7

 (we observed this value by using the

program debugger of Visual Basic Environment).

Operator 21 calculates the
2

w value of the second derivative of the)(xS

spline at point ex by calling the si subroutine intended for the spline inter-

polation. Further, the
2

w value is used (as the moment) when integrating)(xS

over segment]0,[e .

Chapter 4. Cubic Spline

326

Operator 22 calculates charge
1

Q according to formula (4.35) by calling the

ios function intended for integrating the cubic spline. Operator 23 calculates

the charge storage capacity,
max

Q , according to formula (4.36) and rounds the

result up to four decimal places. When executing operator 24, the rounded

charge storage capacity is displayed in the standard window (Fig. 4.17).

Fig. 4.17. The window with the program execution result

The calculated value of
max

Q is of interest for designing both the photosensi-

tive target and elements of extraction of signal electrons stored in the target’s

cells: the considered device belongs to the class of charge transfer devices.

4.8. Subroutine for automatic creation of graphs

327

4.8. Subroutine for automatic creation of graphs

Further, we will use the graph creation subroutine whose declaration given

below must be put into Module12 of the BookNM workbook.

Listing 4.14

Sub graph(ByVal sb, ByVal se, ByVal sx, ByVal sy)

 Dim wbOldSelection As Range

 Set wbOldSelection = Selection

 Range(sb & ":" & se).Select

 Dim sn As String

 sn = ActiveSheet.Name

 Selection.NumberFormat = "0.00E+00"

 Charts.Add

 ActiveChart.ChartType = xlXYScatterSmoothNoMarkers

 ActiveChart.SetSourceData Source:= _

 Sheets(sn).Range(sb & ":" & se), PlotBy:= _

 xlColumns

 ActiveChart.Location Where:=xlLocationAsObject, _

 Name:=sn

 ActiveChart.Axes(xlValue).MajorGridlines.Select

 Selection.Delete

 ActiveChart.Legend.Select

 Selection.Delete

 With ActiveChart

 .Axes(xlCategory, xlPrimary).HasTitle = True

 .Axes(xlCategory, _

 xlPrimary).AxisTitle.Characters.Text = sx

 .Axes(xlValue, xlPrimary).HasTitle = True

 .Axes(xlValue, _

 xlPrimary).AxisTitle.Characters.Text = sy

 End With

 ActiveChart.Axes(xlCategory).AxisTitle.Select

 Selection.AutoScaleFont = True

 With Selection.Font

Chapter 4. Cubic Spline

328

 .FontStyle = "regular"

 .Size = 12

 End With

 ActiveChart.Axes(xlValue).AxisTitle.Select

 Selection.AutoScaleFont = True

 With Selection.Font

 .FontStyle = "regular"

 .Size = 12

 End With

 wbOldSelection.Select

End Sub

The parameters of the graph subroutine are the following four strings:

 sb, se — the strings, which define the Excel range containing the argu-

ment and function values: sb is the address of the top left cell of the range; se is

the address of the bottom right cell;

 sx, sy — the names of the horizontal and vertical axes, respectively.

In the parameter names:

 letter “s” corresponds to word “string”;

 “b” corresponds to word “beginning”;

 “e” corresponds to word “end”;

 “x” means the horizontal axis;

 “y” means the vertical axis.

The basis of the graph subroutine are operators 1 — 32 of program

Listing 3.18. However, we see something new in the above subroutine, namely,

the selection recovery (pp. 173 and 174):

 in the subroutine beginning, operator

Set wbOldSelection = Selection

assigns the selected range to the wbOldSelection variable of the Range

type;

 in the subroutine end, operator

wbOldSelection.Select

selects the wbOldSelection range.

Because of these two operators, the source data table is selected in Fig. 6.37:

the graph subroutine execution (see operator 13 in Listing 6.15) does not

change the selection. This picture can be considered as an example of the subrou-

tine work.

4.9. Cubic spline usage for solving the second-order linear differential equation

329

4.9. Cubic spline usage for solving the second-

order linear differential equation

In Chapter 3, for solving the boundary value problem for the second-order

linear differential equation, we considered a method based on the solution ap-

proximation by the second-degree polynomial (Section 3.14). Below, for solving

the same problem, we will consider a method based on the solution approxima-

tion by the cubic spline.

As shown in Section 3.4, equation (3.6) can be written in form (3.30),

)()(
2

2

xFUxE

dx

Ud
, (4.37)

where)(xE and)(xF are given functions,)(xU is an unknown function. Con-

ditions (3.7) and (3.8) on the boundaries of segment],[ba take form (3.33) and

(3.36),

312
)()(AaUAaUA , (4.38)

312
)()(BbUBbUB , (4.39)

where
1

A ,
2

A ,
3

A ,
1

B ,
2

B ,
3

B are given parameters.

We will develop a cubic spline method for solving the formulated boundary

value problem, (4.37) — (4.39), on the following grid familiar to us:
k

xa <

1k
x <

2k
x < ... <

2r
x <

1r
x < bx

r
.

Let
k

U ,
1k

U ,
2k

U , ...,
2r

U ,
1r

U ,
r

U be the solution values at points

k
x ,

1k
x ,

2k
x , ...,

2r
x ,

1r
x ,

r
x , respectively. The)(xS cubic spline

is considered whose graph passes through points (
k

x , k
U), (

1k
x , 1k

U),

(
2k

x , 2k
U), . . . , (2r

x , 2r
U), (

1r
x , 1r

U), (
r

x , r
U).

Because the spline moments are the values of)(xS at the grid nodes, equa-

tion (4.37) gives the following expression for the moment at the i-th node:

iiii
UEFM , (4.40)

Chapter 4. Cubic Spline

330

where
i

F and
i

E are the values of functions)(xE and)(xF at the i-th node,

k ≤ i ≤ r.

After replacing
i

f with
i

U in expression (4.10) for
i
, we have

1

1

1

1

6

ii

i

ii

i

ii

i hh

h

UU

h

UU

. (4.41)

By substituting expressions (4.40) and (4.41) into (4.9), we obtain the follow-

ing equality:

i
iiiiii

ii
iii

ii
U

hhhhhh
EU

hhh
E

)(

6

)(

6
2

)(

6

111
1

1
1

111
11

1
2

)(

6
iiiiii

iii
ii

FFFU
hhh

E .

Substituting expressions (4.10) for
i
 and

i
, we get

1
1

1
1

)(

6
i

iii
i

ii

i U
hhh

E
hh

h

i
iiiiii

i
U

hhhhhh
E

)(

6

)(

6
2

111

1
11

1
1

1

)(

6
i

iii
i

ii

i U
hhh

E
hh

h

1
1

1

1
1

2
i

ii

i

ii
ii

i F
hh

h
FF

hh

h
.

Let us multiply both sides of the last equality by 3/
1ii

hh . The following

linear algebraic equation is the result:

iiiiiii
UUU

11
, (4.42)

where
1i

U ,
i

U ,
1i

U are the unknowns, i = k + 1, k + 2, ..., r – 2, r – 1,

)(3

)6(

1

2

11

ii

iii

i hh

hEh
,

4.9. Cubic spline usage for solving the second-order linear differential equation

331

2
3

2
1iiii

hhE ,

)(3

)6(

1

2

11

ii

iii

i hh

hEh
, (4.43)

)(33

2

)(3
1

2

11

1
1

1

2

1

ii

iii

iii
ii

iii

i hh

hhF
hhF

hh

hhF
.

We write the boundary conditions in the following form similar to (3.11) and

(3.12):

kkkk
UU

1
2 , (4.44)

rrrr
UU 2

1
, (4.45)

where
k

,
k

,
r

,
r
 are given parameters.

To obtain formulas for calculating the values of
k

 and
k

, we set i = k,

11 kkk
hxx ,

11 kk
Uf ,

kk
Uf in expression (4.8):

1

1

1

11

62
)0(

k

kk

k

kkk

kk
h

MM

h

UUh
MxS .

Let us multiply both sides of the last equality by
1

A and substitute expressions

kkkk
UEFM ,

1111 kkkk
UEFM ,

corresponding to (4.40) at i = k and i = k + 1. The following equality is the result:

1

1

1

1

11 2
)()0(

k

kkk

kkkk h

UU
A

h
UEFAxSA

1

111

1 6 k

kkkkkk
h

UEFUEF
A . (4.46)

Because)(aUU
k

 and)()0(aUxS
k

, expression

kk
UAAxSA

231
)0((4.47)

follows from (4.38).

Equating the right-hand sides of (4.46) and (4.47), we have

Chapter 4. Cubic Spline

332

1

1

1

1

123 2
)(

k

kkk

kkkk h

UU
A

h
UEFAUAA

1

111

1 6 k

kkkkkk
h

UEFUEF
A .

This equation can be written in form (4.44), where

211
2

1

1
2

11

3)3(

)6(

AhAhE

AhE

kkk

kk

k
, (4.48)

211
2

1

13111

3)3(

]6)2[(

AhAhE

hAAhFF

kkk

kkkk

k
. (4.49)

To obtain formulas for calculating the values of
r
 and

r
 in (4.45), we set

i = r,
rrr

hxx
1

,
rr

Uf ,
11 rr

Uf in (4.6):

r

rr

r

rrr

rr
h

MM

h

UUh
MxS

62
)0(

11
.

Let us multiply both sides of the last equality by
1

B and substitute expressions

rrrr
UEFM ,

1111 rrrr
UEFM ,

corresponding to (4.40) at i = r and i = r – 1. The following equality is the result:

r

rrr

rrrr h

UU
B

h
UEFBxSB 1

111 2
)()0(

r

rrrrrr
h

UEFUEF
B

6

111

1
. (4.50)

Because)(bUU
r

 and)()0(bUxS
r

, expression

rr
UBBxSB

231
)0((4.51)

follows from (4.39).

Equating the right-hand sides of (4.50) and (4.51), we have

r

rrr

rrrr h

UU
B

h
UEFBUBB 1

1123 2
)(

4.9. Cubic spline usage for solving the second-order linear differential equation

333

r

rrrrrr
h

UEFUEF
B

6

111

1
. (4.52)

This equation can be written in form (4.45), where

21

2

1

2

1

3)3(

)6(

BhBhE

BhE

rrr

rr

r
, (4.53)

21

2

311

3)3(

]6)2[(

BhBhE

hBBhFF

rrr

rrrr

r
. (4.54)

The system of linear algebraic equations (4.42), (4.44) and (4.45) is called the

cubic spline scheme for boundary value problem (4.37) — (4.39).

The values of unknown
k

U ,
1k

U ,
2k

U , ...,
2r

U ,
1r

U ,
r

U are deter-

mined by solving the formulated cubic spline scheme. In this case, the decompo-

sition method (Section 3.2) can be used because forms (3.9), (3.11) and (3.12)

are respectively available for equations (4.42), (4.44) and (4.45). Formulas

(4.48), (4.49) and 2
k

 are used in formulas (3.16) and (3.17) to start the

forward sweep. Formulas (4.53), (4.54) and 2
r

 are used in formula (3.18)

to start the backward sweep.

Chapter 4. Cubic Spline

334

4.10. Program realization of the cubic spline method

for solving the linear differential equation

Let us develop a subroutine for solving differential equation (4.37) under

conditions (4.38) and (4.39) on the left and right boundaries of segment],[ba .

The values of parameters
k

 and
k

 in equation (4.44), corresponding to the

left boundary condition, are calculated according to formulas (4.48) and (4.49).

These values and 2
k

 are used in formulas (3.16) and (3.17) for starting the

forward sweep of the decomposition method. Further, the calculation is per-

formed according to recurrence formulas (3.14) and (3.15).

The values of parameters
r

 and
r
 in equation (4.45), corresponding to the

right boundary condition, are calculated according to formulas (4.53) and (4.54).

These values and 2
r

 are used in formula (3.18) for starting the backward

sweep. Further, the calculation is performed according to recurrence formula

(3.13).

The fobas subroutine for solving the boundary value problem for differen-

tial equation (4.37) has the following form:

Listing 4.15

Sub fobas(ByVal k, ByVal r, ByRef X() As Double, _

 ByRef E() As Double, ByRef F() As Double, _

 ByVal A1, ByVal A2, ByVal A3, _

 ByVal B1, ByVal B2, ByVal B3, _

 ByRef U() As Double)

 Dim alpha As Double, beta As Double

 Dim gamma As Double, delta As Double

 Dim i As Integer, w As Double

 Const c As Double = 2 / 3

 Dim h() As Double: ReDim h(k + 1 To r)

 Dim P() As Double: ReDim P(k + 1 To r)

 Dim Q() As Double: ReDim Q(k + 1 To r)

 For i = k + 1 To r

 h(i) = X(i) - X(i - 1)

 Next i

4.10. Program realization of the cubic spline method for solving the linear differential equation

335

'Forward sweep:

 w = (E(k) * h(k + 1) ^ 2 - 3) * A1 + _

 3 * h(k + 1) * A2

 gamma = (E(k + 1) * h(k + 1) ^ 2 + 6) * A1 / w

 delta = ((2 * F(k) + F(k + 1)) * _

 h(k + 1) * A1 + 6 * A3) * h(k + 1) / w

 P(k + 1) = -gamma / 2

 Q(k + 1) = delta / 2

 For i = k + 1 To r - 1

 w = 3 * (h(i) + h(i + 1))

 alpha = h(i + 1) * _

 (E(i - 1) * h(i) ^ 2 + 6) / w

 beta = c * E(i) * h(i) * h(i + 1) - 2

 gamma = h(i) * _

 (E(i + 1) * h(i + 1) ^ 2 + 6) / w

 delta = F(i - 1) * h(i) ^ 2 * h(i + 1) / w + _

 c * F(i) * h(i) * h(i + 1) + _

 F(i + 1) * h(i + 1) ^ 2 * h(i) / w

 w = alpha * P(i) + beta

 P(i + 1) = -gamma / w

 Q(i + 1) = (delta - alpha * Q(i)) / w

 Next i

'Backward sweep:

 w = (E(r) * h(r) ^ 2 - 3) * B1 - 3 * h(r) * B2

 alpha = (E(r - 1) * h(r) ^ 2 + 6) * B1 / w

 delta = ((2 * F(r) + F(r - 1)) * _

 h(r) * B1 - 6 * B3) * h(r) / w

 U(r) = (delta - alpha * Q(r)) / _

 (alpha * P(r) + 2)

 For i = r To k + 1 Step -1

 U(i - 1) = P(i) * U(i) + Q(i)

 Next i

End Sub

We enter the above declaration into Module13 of the BookNM workbook.

The set of parameters of fobas is close to the set of parameters of the foba

subroutine in Section 3.15:

 k, r are numbers of the left and right boundary nodes of the grid;

 X is an array of grid nodes;

 E is an array of values of the coefficient of equation (4.37) at the grid

nodes;

Chapter 4. Cubic Spline

336

 F is an array of values of the right-hand side of equation (4.37);

 A1, A2, A3 are values of the corresponding parameters in left boundary

condition (4.38);

 B1, B2, B3 are values of the corresponding parameters in right boundary

condition (4.39);

 U is an array intended for the solution values.

The developed fobas subroutine will be used in the remaining sections of

this chapter for solving two concrete boundary value problems.

4.11. Solving the linear differential equation by the cubic spline method

337

4.11. Solving the linear differential equation

by the cubic spline method

To demonstrate the use of the cubic spline method described above, we will

solve equation (3.42) with boundary conditions (3.43). This boundary value

problem, concerning temperature characteristics of the radial flow between paral-

lel round disks, can be written in form (4.37) — (4.39), where

xcxxE)13(25.0)(4 ,

0)(xF ,

0
311

BBA ,

1
232

BAA .

As in Section 3.6, we consider that c = 10 and a ≤ x ≤ b, where a = 0, b = 1.5.

The program below is intended for solving the formulated problem by using

the fobas subroutine from the previous section.

Listing 4.16

Sub main()

 Dim X() As Double

 Dim E() As Double

 Dim F() As Double

 Dim U() As Double

 Dim c As Double, b As Double, l As Integer

 Dim h As Double, i As Integer

 Dim sb As String, se As String

 c = Selection.Cells(1, 2)

 b = Selection.Cells(2, 2)

 l = Selection.Cells(3, 2)

 h = b / l

 ReDim X(5 To 5 + l)

 ReDim E(5 To 5 + l)

 ReDim F(5 To 5 + l)

 ReDim U(5 To 5 + l)

 For i = 5 To 5 + l

 X(i) = (i - 5) * h

Chapter 4. Cubic Spline

338

 E(i) = -0.25 * X(i) ^ 4 - (3 * c + 1) * X(i)

 F(i) = 0

 Next i

0: Call fobas(5, 5 + l, X, E, F, 0, 1, 1, 0, 1, 0, U)

 Selection.Cells(4, 3) = "x"

 Selection.Cells(4, 4) = "U"

 For i = 5 To 5 + l

 Selection.Cells(i, 3) = X(i)

 Selection.Cells(i, 4) = U(i)

 Next i

 sb = Selection.Cells(5, 3).Address

 se = Selection.Cells(5 + l, 4).Address

1: Call graph(sb, se, "x", "U")

 For i = 5 To 5 + l

 Selection.Cells(i, 1) = X(i)

2: U(i) = U(i) * Exp(-X(i) ^ 3 / 6)

 Selection.Cells(i, 2) = U(i)

 Next i

 sb = Selection.Cells(5, 1).Address

 se = Selection.Cells(5 + l, 2).Address

3: Call graph(sb, se, "x", "u")

 Range("P33").Select

End Sub

This main program is used similarly to programs Listing 3.2 and Listing 3.3

of Section 3.6:

 the initial data are the values located in the table (Fig. 3.2a);

 we must select this Excel table before the program execution (Fig. 3.2b).

Let us consider several operators of program Listing 4.16.

Operator 0 is the call of the fobas subroutine for solving boundary value

problem (3.42), (3.43) by the cubic spline method. The calculated values of the

solution,)(xU , are put into the U column (Fig. 4.18). The)(xU graph on the

Excel worksheet is created automatically when executing the graph subroutine

from Section 4.8; operator 1 is the subroutine call.

Operator 2 calculates solution)(xu of boundary value problem (3.39),

(3.40) by using formula (3.41). The calculated values of)(xu are put into the u

column (Fig. 4.18). The)(xu graph on the Excel worksheet is the result of the

second call of the graph subroutine (operator 3). This)(xu dependence is

close to)(xu depicted in Fig. 3.3.

4.11. Solving the linear differential equation by the cubic spline method

339

Fig. 4.18. The solutions of problems (3.42), (3.43) and (3.39), (3.40)

and the corresponding graphs (after their displacement by the mouse)

Note that one of the fobas parameters is the X array of grid nodes, i.e., this

subroutine is usable for both uniform and nonuniform grids. In this section, we

used a uniform grid; in the next section, a nonuniform grid will be used.

Chapter 4. Cubic Spline

340

4.12. Modeling of heating of a geophysical cable.

Locally one-dimensional scheme

Cables for geophysical works are intended for repeated descent of instru-

ments (fastened to the end of the cable) into a borehole and for electrical connec-

tion of these instruments with terrestrial equipment. By measuring the cable

length, the depth of the strata bedding can be determined. Single- and multi-

strand cables are used in practice.

Let us consider the cross section of an armored single-strand cable for geo-

physical works (Fig. 4.19).

Fig. 4.19. Cross section of an armored single-strand cable: 0 is

the cross section center, a, r
1
, r

2
, b are special points of the x radius

According to website http://www.proelectro.ru/lib/kabel/128.html, the cable

for temperatures up to 180 °C has the following design. The central conductor

4.12. Modeling of heating of a geophysical cable. Locally one-dimensional scheme

341

consists of seven copper wires, each of diameter 0.35 mm. This conductor is

covered with a 1.35 mm polymer layer for electrical insulation. A cotton layer

(which is an electrical insulator too) and double-layer armor (two zinced steel

wires) cover the polymer.

We will consider that the conductor is a copper wire of radius 0.5 mm

(0 ≤ x ≤ a in Fig. 4.20) and the insulator has the following three layers:

 the 1.35 mm homogeneous polymer adjoins the central wire (a ≤ x ≤
1
r);

 the 0.35 mm homogeneous cotton adjoins the armor (
2

r ≤ x ≤ b);

 the 0.3 mm non-homogeneous material is placed between these two layers

(
1
r < x <

2
r).

Fig. 4.20. The circular ring, a ≤ x ≤ b, corresponding

to an axially-symmetric insulator

We should calculate the overheating of the conductor and insulator (in rela-

tion to the armor) caused by constant electric current
0

I in the conductor. At

high electric current, this overheating added to the armor (borehole) temperature

damages the cable. The problem will be solved under the assumption that physi-

cal parameters of the conductor and insulator are temperature-independent.

The temperature distribution in the insulator,)(xu at a ≤ x ≤ b, is described

by the following heat equation in cylindrical coordinates:

x

u
xx

xxt

u
cd)(

1
, (4.55)

Chapter 4. Cubic Spline

342

where t is time, x is the radial coordinate,)(x is the thermal conductivity of the

insulator,)(xc is the specific heat capacity,)(xd is the density of the insulator.

Because constI
0

, the temperature distribution does not depend on time,

0/ tu , and equation (4.55) becomes

0)(
dx

du
xx

xd

d
. (4.56)

The boundary conditions are as follows:

)()(aTa
dx

du
, (4.57)

)()(bTbu , (4.58)

where a, b are the inner and outer radii of the ring corresponding to the compli-

cated insulator (Fig. 4.20),)(aT is the derivative of temperature with respect

to x on the inner boundary of the ring,)(bT is the temperature on the outer

boundary.

To use the fobas subroutine from Section 4.10, we will transform boundary

value problem (4.56) — (4.58). For that, we use the following designation:

)()(xxx . (4.59)

Equation (4.56) takes form

0)(
dx

du
x

xd

d
.

By differentiating the left-hand side of the last equation as the product of two

functions,)(x and dxdu / , we can write this equation as follows:

0
2

2

dx

du

dx

d

dx

ud
.

Dividing both sides by)(x , we have the following equation:

0)(
2

2

dx

du
xg

dx

ud
, (4.60)

where

dx

ddxd
xg

ln/
)(. (4.61)

Excluding the first derivative from equation (4.60) by substitution (3.27),

)(

)(
)()(

x

a
xUxu , (4.62)

4.12. Modeling of heating of a geophysical cable. Locally one-dimensional scheme

343

we write equation (4.60) in form (4.37),

)()(
2

2

xFUxE

dx

Ud
,

where

)(5.0)(25.0 2 xgxgE ,

0F

according to (3.31) and (3.32). Using formula (4.61), we have

2

22
ln

5.0
ln

25.0
dx

d

dx

d
E . (4.63)

Boundary conditions (4.57) and (4.58) take forms (4.38) and (4.39),

312
)()(AaUAaUA ,

312
)()(BbUBbUB ,

where

1
1

A ,

)(
ln

5.0
2

a
dx

d
A ,

)(
3

aTA , (4.64)

0
1

B ,

1
2

B ,

)(

)(
)(

3 a

b
bTB

according to (3.34), (3.35), (3.37) and (3.38).

We need a formula that relates the electric current,
0

I , with the derivative of

temperature (with respect to x) on the inner boundary of the ring,)(aT .

To relate
0

I with)(aT , let us look at a piece of wire of length h. Geometri-

cally, this piece of wire is a right circular cylinder [3] of height h with the base

whose radius is equal to a.

According to the heat equation in integral form, the power of electric current

is equal to the heat flow through the lateral surface of the cylinder:

MaTaRI)()(2

0
, (4.65)

Chapter 4. Cubic Spline

344

where R is the electric resistance of the piece of wire, M is the lateral area of the

cylinder. Because

h

a

R
2

, haM 2 ,

where is the resistivity of copper, equality (4.65) gives

)(2

)(
32

2

0

aa

I
aT . (4.66)

Let us develop a program for calculation of overheating of the conductor and

insulator (in relation to the armor) caused by the
0

I current. This program will

use the source data table given below.

Listing 4.17

a 5.00E-04

I0 25

rho 1.78E-08

r1 1.85E-03

l1 10

lambda1 0.25

r2 2.15E-03

l2 5

b 2.50E-03

l3 5

lambda3 0.05

In Listing 4.17, we see:

 a — the radius of the copper wire or the inner radius of the homogeneous

polymer (Fig. 4.20), in meters;

0

I — the electric current in the copper wire, in amperes;

 — the resistivity of copper, in Ω·m;

1
r — the outer radius of the homogeneous polymer, in meters;

1

l — the number of steps on segment a ≤ x ≤
1
r ;

1

 — the thermal conductivity of the homogeneous polymer, W / (m·K);

2

r — the outer radius of the non-homogeneous material, in meters;

2

l — the number of steps on segment
1
r ≤ x ≤

2
r ;

4.12. Modeling of heating of a geophysical cable. Locally one-dimensional scheme

345

 b — the outer radius of the homogeneous cotton, in meters;

3

l — the number of steps on segment
2

r ≤ x ≤ b;

3
 — the thermal conductivity of the homogeneous cotton, W / (m·K).

The)(xu dependence should be the main result of the program execution.

The program follows:

Listing 4.18

Sub main()

 Dim x() As Double

 Dim lambda() As Double

 Dim mu() As Double

 Dim ln_mu() As Double

 Dim ln_mu1() As Double

 Dim ln_mu2() As Double

 Dim E() As Double

 Dim F() As Double

 Dim U() As Double

 Dim a As Double, I0 As Double, rho As Double

 Dim r1 As Double, l1 As Integer, lambda1 As Double

 Dim r2 As Double, l2 As Integer

 Dim b As Double, l3 As Integer, lambda3 As Double

 Dim h1 As Double, h2 As Double, h3 As Double

 Dim l As Integer, i As Integer

 Dim T1a As Double, Tb As Double

 Dim A1 As Double, A2 As Double, A3 As Double

 Dim B1 As Double, B2 As Double, B3 As Double

 Const pi As Double = 3.141592654

 Dim w As Double

 Dim sb As String, se As String

 a = Selection.Cells(1, 2)

 I0 = Selection.Cells(2, 2)

 rho = Selection.Cells(3, 2)

 r1 = Selection.Cells(4, 2)

 l1 = Selection.Cells(5, 2)

 lambda1 = Selection.Cells(6, 2)

 r2 = Selection.Cells(7, 2)

 l2 = Selection.Cells(8, 2)

 b = Selection.Cells(9, 2)

 l3 = Selection.Cells(10, 2)

 lambda3 = Selection.Cells(11, 2)

Chapter 4. Cubic Spline

346

 h1 = (r1 - a) / l1

 h2 = (r2 - r1) / l2

 h3 = (b - r2) / l3

 l = l1 + l2 + l3

 ReDim x(13 To 13 + l)

 ReDim lambda(13 To 13 + l)

 ReDim mu(13 To 13 + l)

 ReDim ln_mu(13 To 13 + l)

 ReDim ln_mu1(13 To 13 + l)

 ReDim ln_mu2(13 To 13 + l)

 ReDim E(13 To 13 + l)

 ReDim F(13 To 13 + l)

 ReDim U(13 To 13 + l)

'Definition of arrays x and lambda:

 x(13) = a

 lambda(13) = lambda1

 For i = 14 To 13 + l1

 x(i) = x(i - 1) + h1

 lambda(i) = lambda1

 Next i

 For i = 14 + l1 To 13 + l1 + l2

 x(i) = x(i - 1) + h2

 lambda(i) = 0.5 * (lambda1 - lambda3) * _

 Cos(pi * (x(i) - r1) / (r2 - r1)) + _

 0.5 * (lambda1 + lambda3)

 Next i

 For i = 14 + l1 + l2 To 13 + l

 x(i) = x(i - 1) + h3

 lambda(i) = lambda3

 Next i

 Selection.Cells(12, 1) = "x"

 Selection.Cells(12, 2) = "lambda"

 For i = 13 To 13 + l

 Selection.Cells(i, 1) = x(i)

 Selection.Cells(i, 2) = lambda(i)

 Next i

 sb = Selection.Cells(13, 1).Address

 se = Selection.Cells(13 + l, 2).Address

1: Call graph(sb, se, "x", "lambda")

'Definition of arrays mu, ln_mu, ln_mu1 and ln_mu2:

 For i = 13 To 13 + l

 mu(i) = lambda(i) * x(i)

4.12. Modeling of heating of a geophysical cable. Locally one-dimensional scheme

347

 ln_mu(i) = Log(mu(i))

 Next i

2: Call mos(13, 13 + l, x, ln_mu, _

 0, -2 / a ^ 2, 0, -2 / b ^ 2, ln_mu2)

 For i = 13 To 13 + l

3: Call si(13, 13 + l, x, ln_mu, ln_mu2, _

 x(i), w, ln_mu1(i))

 Next i

'Definition and solution of boundary value problem:

 For i = 13 To 13 + l

 E(i) = -0.25 * ln_mu1(i) ^ 2 - 0.5 * ln_mu2(i)

 F(i) = 0

 Next i

 T1a = -I0 ^ 2 * rho / _

 (2 * pi ^ 2 * a ^ 3 * lambda1)

 Tb = 0

 A1 = 1

 A2 = -0.5 * ln_mu1(13)

 A3 = T1a

 B1 = 0

 B2 = 1

 B3 = Tb * Sqr(mu(13 + l) / mu(13))

4: Call fobas(13, 13 + l, x, E, F, A1, A2, A3, _

 B1, B2, B3, U)

 Selection.Cells(12, 3) = "x"

 Selection.Cells(12, 4) = "u"

 For i = 13 To 13 + l

 Selection.Cells(i, 3) = x(i)

5: U(i) = U(i) * Sqr(mu(13) / mu(i))

 Selection.Cells(i, 4) = U(i)

 Next i

 sb = Selection.Cells(13, 3).Address

 se = Selection.Cells(13 + l, 4).Address

6: Call graph(sb, se, "x", "u")

 Range("O36").Select

End Sub

The source data for this program are the values located in the Excel table

depicted in Fig. 4.21. We must select this table before the program execution.

Let us consider the main stages of the program execution.

After inputting the source data, the)(x function is defined in domain

],[ba as follows:

Chapter 4. Cubic Spline

348

bxr

rxr
rr

rx

rxa

x

23

21

31

12

131

11

if

if
2

cos
2

if

)(

Operator 1 displays the)(x graph on the Excel worksheet (Fig. 4.22).

Fig. 4.21. The source data table

Further, function)(x is determined according to formula (4.59), and

)(ln x ,
dx

d ln
,

2

2 ln

dx

d
 are determined too. Function

2

2 ln

dx

d
 is the result of

calling the mos subroutine (operator 2) with parameters defined by formulas

(4.15) and (4.16), in which

22

2 1
)(

ln

a
a

dx

d
f
k

,
22

2 1
)(

ln

b
b

dx

d
f
r

.

Function
dx

d ln
 is the result of calling the si subroutine (operator 3).

4.12. Modeling of heating of a geophysical cable. Locally one-dimensional scheme

349

Fig. 4.22. The program execution results:)(x is the thermal

conductivity change;)(xu is the overheating change

Thus, we defined boundary value problem (4.37) — (4.39) by using formulas

(4.63), (4.64) and (4.66), 0F . Operator 4 is the call of the fobas subroutine

for solving this problem by the cubic spline method. Function)(xU is the result.

Operator 5 calculates solution)(xu of boundary value problem (4.56) —

(4.58) by using formula (4.62). The)(xu graph, also located on the Excel work-

sheet (Fig. 4.22), is the result of the second call of the graph subroutine (opera-

tor 6). The)(xu dependence shows the wire and insulator overheating.

According to Fig. 4.22, the wire overheating is equal to
ba

TTT =

21.8 K for
0

I = 25 A. The insulator around the wire has the same overheating.

For
0

I = 50 A, the program execution gives)50(T = 87.3 K.

It was mentioned above that the considered geophysical cable was designed

for temperatures up to 180 °C. Therefore, for given current
0

I , the cable can be

Chapter 4. Cubic Spline

350

used in boreholes whose temperature does not exceed)(180
0

IT degrees

Celsius, where)(
0

IT is the result of the program execution for
0

I .

We could use the finite difference method (Chapter 3) in the above program

concerning the geophysical cable. However, the cubic spline method is more

accurate because we use the nonuniform grid. Let us focus on this.

As it was stated at the end of Section 3.14, at the transition from a uniform

grid to a nonuniform grid, the error of the finite difference analog of the second

derivative changes from the 2nd order of smallness to the 1st order. According to

formula (4.19), the second derivative of the difference between the function and

the corresponding cubic spline has the 2nd order of smallness for both uniform

and nonuniform grids. Thus, the cubic spline method is more accurate than the

finite difference method in the case of a nonuniform grid.

Let us return to (4.55). This form of the heat equation is caused by the axial

symmetry of the problem under consideration (Fig. 4.20). In the absence of this

symmetry (Fig. 4.23), the heat equation has the following form:

2211
x

u

xx

u

xt

u
cd , (4.67)

where
1

x and
2

x are the Cartesian coordinates,),(
21

xx is the thermal con-

ductivity of the insulator,),(
21

xxc is the specific heat capacity,),(
21

xxd is

the density. We must solve the initial value problem for (4.67), i.e., calculate the

temperature distribution,),,(
21

xxtu , at t > 0 when),,0(
21

xxu is given.

For solving this problem, we introduce a uniform grid on the t axis, that is,

we consider moments kt , where is the time step, k = 1, 2, 3, ... Besides,

we cover the equation’s domain (Fig. 4.23) by a two-dimensional spatial grid.

According to the locally one-dimensional scheme (LOS) [4], to calculate the

values of),,(
21

xxtu over the values of),,(
21

xxtu , we must successively

solve the boundary value problems for the following differential equations:

1

,21

1

,21,21
),(~),,(),(~

dx

xxud

xd

dxxtuxxu
cd

jjj
, (4.68)

2

2,1

2

2,12,1
),,(),(~),,(

dx

xxtdu

xd

dxxuxxtu
cd

iii
, (4.69)

where),(~
21

xxu is an auxiliary function of two variables,
i

x
,1

 and
j

x
,2

 are the

coordinates of the gridlines (Fig. 4.23), indices i and j are the gridline numbers.

4.12. Modeling of heating of a geophysical cable. Locally one-dimensional scheme

351

Fig. 4.23. Cross section of an axially-asymmetric insulator;

ring bxxa 2

2

2

1
 is the equation’s domain

More precisely, the calculation of the temperature distribution at the t mo-

ment,),,(
21

xxtu , over the known distribution at the previous t moment,

),,(
21

xxtu , includes the following two stages:

1) calculation of two-dimensional distribution),(~
21

xxu by solving the

boundary value problems for differential equation (4.68) at fixed values of j

(
1

x is the independent variable);

2) calculation of two-dimensional distribution),,(
21

xxtu by solving the

boundary value problems for differential equation (4.69) at fixed values of i

(
2

x is the independent variable).

To solve the boundary value problems for equations (4.68) and (4.69) of the

LOS, the following two methods are used: the finite difference method in [4] and

the cubic spline method in [6]. In other words, the locally one-dimensional finite

difference scheme and the locally one-dimensional cubic spline scheme are

respectively developed in [4] and [6].

The LOS can be used for solving various problems with n ≥ 2 spatial coordi-

nates: the problem solved in [6] has little resemblance to the above one.

In addition to the cubic spline, more simple quadratic and linear splines are

used for the solution of applied problems. Below, we will consider these splines.

352

Chapter 5.

Quadratic and Linear Splines

In addition to the third-degree (cubic) spline of the previous chapter, we con-

sider the simpler second-degree (quadratic) and first-degree (linear) splines. The

quadratic spline is used for solving the initial value problem (of Cauchy) for the

system of differential equations. The linear spline is used in the least-squares

method.

While solving the initial value problem, the system of nonlinear algebraic

equations should be solved. Therefore, we also consider the Newton method. For

solving a single nonlinear algebraic equation, in addition to the Newton (tangent)

method, we consider two Newton-like methods, namely, the secant and

Steffensen methods (the consideration of the secant method was started in

Section 4.5).

For demonstration of the splines possibilities, programs are developed for the

following purposes:

 to simulate the piano mechanism linking a key with hammer;

 to determine the dependence of production results versus factors (the so-

called production function) by the least-squares method;

 to solve the sound insulation problem.

The last problem also demonstrates possibilities of user-defined subroutines

for the forward and backward discrete Fourier transforms of a periodic tabular

function. These subroutines (Section 5.11) are based on the corresponding

Algol 60 procedures developed by A. L. Zakharov, scientific worker of Pulsar

R&D Manufacturing Company, Moscow, in the end of the 1970s.

5.1. Definition of quadratic spline. Spline slopes

353

5.1. Definition of quadratic spline. Spline slopes

As in Section 4.1, let us consider segment],[ba covered with grid

k
xa <

1k
x <

2k
x < ... <

2r
x <

1r
x < bx

r
. Values

k
f ,

1k
f ,

2k
f , ...,

2r
f ,

1r
f ,

r
f of grid function)(xf are given.

A quadratic spline (or second-degree spline, Fig. 5.1) is function)(xP ,

which satisfies the following conditions:

1) on each elementary segment
1i

x ≤ x ≤
i

x (k + 1 ≤ i ≤ r), the spline

coincides with a second-degree polynomial (generally, the polynomials are

different on different elementary segments);

2) at the grid nodes, the spline has the grid function values:
ii

fxP)(;

3) the spline has a continuous derivative, i.e., the spline is smooth;

4) on the left boundary of segment],[ba , the spline satisfies an additional

condition (the boundary condition may be formulated on the right boundary).

Fig. 5.1. The quadratic spline graph

Chapter 5. Quadratic and Linear Splines

354

According to item (2), the)(xP graph passes through points (
k

x , k
f),

(
1k

x , 1k
f), (

2k
x , 2k

f), . . . , (
2r

x , 2r
f), (

1r
x , 1r

f), (
r

x , r
f).

According to item (3), the jumps of derivative)(xP are absent at the interior

grid nodes, i.e., at points
1k

x ,
2k

x , ...,
2r

x ,
1r

x .

The values of)(xP at the grid nodes are called slopes of the quadratic

spline:
ii

QxP)((k ≤ i ≤ r).

Let the spline slopes,
i

Q (k ≤ i ≤ r), be given. In this case, items (1) and (3)

of the quadratic spline definition lead to the following expression for the deriva-

tive on elementary segment],[
1 ii

xx :

i

i

i

i

i

i h

xx
Q

h

xx
QxP

1

1
)(, (5.1)

where
1iii

xxh is the elementary segment’s length or the grid step, k + 1 ≤

i ≤ r.

By integrating (5.1), we obtain the following expression:

C
h

xx
Q

h

xx
QxP

i

i

i

i

i

i 2

)(

2

)(
)(

2

1

2

1
, (5.2)

where C is the integration constant.

Assuming that slope
1i

Q is known, we will determine integration constant

C and slope
i

Q . The resulting expression for C will be substituted into expres-

sion (5.2) for)(xP .

According to item (2) of the quadratic spline definition, we have the follow-

ing equalities:

11
)(

ii
fxP ,

ii
fxP)(.

Using expression (5.2), we get the system of two linear algebraic equations with

unknown C and
i

Q :

211

i

ii

h
QfC , (5.3)

i

i

i
fC

h
Q

2
. (5.4)

5.1. Definition of quadratic spline. Spline slopes

355

Substituting expression (5.3) into equation (5.4), we have

1

1
2

i

i

ii

i
Q

h

ff
Q . (5.5)

By substituting expression (5.3) into (5.2), we obtain the following expres-

sion for the spline on segment],[
1 ii

xx :

1

2

1

2

1 2

)(

2

)(

2
)(

i

i

i

i

i

ii

i
f

h

xx
Q

h

xxh
QxP . (5.6)

According to item (4) of the quadratic spline definition, we define the slope

on the left boundary of segment],[ba as follows:

)(afQ
k

,

where)(af is a given value of the function derivative on the left boundary.

Using recurrence formula (5.5) successively at i = k + 1, k + 2, ..., r, we can

calculate all slopes of the quadratic spline. Further, we can:

 interpolate grid function)(xf by means of formula (5.6);

 calculate the)(xf value at arbitrary point x of segment],[ba by using

formula (5.1).

The error of interpolating the)(xf function (and its derivatives) by the

)(xP spline (and by its derivatives) is determined by the following expression:

)()()(3)()(n

max

nn hOxPxf ,

where }{max
1

i

rik

max
hh is the maximum grid step (0

max
h), n = 0, 1, 2

is the derivative order,)()()0(xfxf ,)()()0(xPxP . The sense of the used

O notation is explained in Section 3.1.

The above mathematical construction of quadratic spline will be used for

solving the initial value problem for the system of differential equations.

Chapter 5. Quadratic and Linear Splines

356

5.2. Method for solving the initial value problem

for the system of differential equations

Let the system of two differential equations

),,(vuxE
dx

du
, (5.7)

),,(vuxF
dx

dv
 (5.8)

be given on segment],[ba . Generally, E and F are nonlinear functions of three

variables.

Let the values of unknown functions)(xu and)(xv be given on the left

boundary:

Aau)(,

Qav)(,

where A and Q are parameters.

The conditions on the left boundary are called the initial conditions.

For solving this initial value (Cauchy) problem on segment],[ba , the grid is

constructed (Fig. 5.1) and the)(xu and)(xv functions are considered as quad-

ratic splines. In this case, according to equations (5.7) and (5.8), the values of

functions E and F at the grid nodes are the slopes of these splines.

With regard to splines)(xu and)(xv , expression (5.5) for the slope takes

the following forms:

),,(2),,(
111

1

iii
i

ii

iii
vuxE

h

uu
vuxE ,

),,(2),,(
111

1

iii
i

ii

iii
vuxF

h

vv
vuxF

or

),,(
2 iii

i

i
vuxE

h
u , (5.9)

5.2. Method for solving the initial value problem for the system of differential equations

357

),,(
2 iii

i

i
vuxF

h
v , (5.10)

where

),,(
2 1111 iii

i

i
vuxE

h
u ,

),,(
2 1111 iii

i

i
vuxF

h
v .

Equations (5.9) and (5.10) form the system of algebraic equations with

respect to
i

u and
i

v (at known
1i

u and
1i

v).

If Aauu
k

)(and Qavv
k

)(are given, unknown functions)(xu and

)(xv can be calculated at all grid nodes on segment],[ba by solving the system

of algebraic equations (5.9) and (5.10) successively at i = k + 1, k + 2, ..., r.

As an example, we will solve the system of differential equations

v
dx

du
, (5.11)

u

v

dx

dv

2

2

 (5.12)

on segment]1,0[. The initial conditions look like

Au)0(,

Qv)0(.

This initial value problem was solved in the fifth chapter of book [5] while

modeling a catalytic converter.

The catalytic converter is a device intended for lowering toxicity of waste

gases in the car exhaust system.

Let us write system (5.11), (5.12) in form (5.7), (5.8), where

vE ,

u

v
F

2

2

.

We see that E is a linear function of variable v, F is a nonlinear function of

variables u and v.

Algebraic equations (5.9) and (5.10) take the following form:

Chapter 5. Quadratic and Linear Splines

358

i

i

i
v

h
u

2
, (5.13)

i

ii

i u

vh
v

22

2

, (5.14)

where

11 2 i

i

i
v

h
u ,

1

2

1

1 22
i

ii

i u

vh
v .

Let us solve the system of algebraic equations (5.13) and (5.14) for unknown

i
u and

i
v .

Equation (5.13) can be written as

i

i

i
v

h
u

2
. (5.15)

Multiplying both sides of equation (5.14) by
i

u2 and substituting expression

(5.15) for
i

u , we obtain

2
2

)2(

i

i h
v . (5.16)

Formulas (5.16) and (5.15) allow us to calculate the values of
i

v and
i

u suc-

cessively at i = k + 1, k + 2, ..., r.

5.3. Program for solving the initial value problem

359

5.3. Program for solving the initial value problem

Let us develop a program for solving the initial value problem for the system

of differential equations (5.11) and (5.12). Number l = r – k of steps on segment

]1,0[and the values of A and Q are given in the table below.

l 10

A 0.25

Q -0.1

As a result of the program execution, dependences)(xu and)(xv should appear

under the original table.

The program has the following form:

Listing 5.1

Sub main()

 Dim l As Integer

 Dim u As Double, v As Double

 Dim h As Double, h2 As Double

 Dim i As Integer

 Dim alpha As Double, beta As Double

 l = Selection.Cells(1, 2)

 u = Selection.Cells(2, 2) 'value of A

 v = Selection.Cells(3, 2) 'value of Q

 h = 1 / l: h2 = h / 2

 Selection.Cells(4, 1) = "x"

 Selection.Cells(4, 2) = "u"

 Selection.Cells(4, 3) = "v"

 Selection.Cells(5, 1) = 0

 Selection.Cells(5, 2) = u

 Selection.Cells(5, 3) = v

 For i = 6 To 5 + l 'movement along axis x

 Selection.Cells(i, 1) = (i - 5) * h

 alpha = u + h2 * v

 beta = v - h2 * v ^ 2 / (2 - u)

 v = (2 - alpha) * beta / (2 - alpha + _

Chapter 5. Quadratic and Linear Splines

360

 h2 * beta)

 u = alpha + h2 * v

 Selection.Cells(i, 2) = u

 Selection.Cells(i, 3) = v

 Next i

End Sub

The program uses the values of the above table (Fig. 5.2). We must select this

Excel table before the program execution. The coordinates of the grid nodes and

the corresponding values of the)(xu and)(xv dependences are placed in col-

umns x, u, v (Fig. 5.3).

Fig. 5.2. The Excel table with the source data

Fig. 5.3. The program execution results

5.3. Program for solving the initial value problem

361

We advise the reader to write a program (similar to Listing 5.1) for solving

the Bernoulli differential equation [3],

2)(uxf
dx

du
,

on segment],[ba under initial condition 1)(au . In this equation,)(xf is

a function from Appendix 4; segment],[ba is this function’s domain.

Chapter 5. Quadratic and Linear Splines

362

5.4. Solving the system of nonlinear algebraic

equations by the Newton method

In Section 5.6, we will need to solve the system of nonlinear algebraic equa-

tions

1211
)...,,,(

n
xxxf ,

2212
)...,,,(

n
xxxf , (5.17)

.

nnn
xxxf)...,,,(

21
,

where functions
1
f ,

2
f , ...,

n
f are twice differentiable with respect to argu-

ments
1

x ,
2

x , ...,
n

x , right-hand sides
1
,

2
, ...,

n
 are given constants (we

can consider them equal to zero). The solution process is iterative.

To understand the iteration content, we write solution x)...,,,(
21 n

xxx

of system (5.17) in form

111
zxx j ,

222
zxx j , ...,

n

j

nn
zxx ,

where jj

n

jj xxx x)...,,,(
21

 is the j-th approximation of the x solution,
1

z ,

2
z , ...,

n
z are small quantities.

By substituting expressions for
1

x ,
2

x , ...,
n

x into (5.17), we obtain the fol-

lowing system of nonlinear algebraic equations with respect to
1

z ,
2

z , ...,
n

z :

122111
)...,,,(

n

j

n

jj zxzxzxf ,

222112
)...,,,(

n

j

n

jj zxzxzxf ,

.

nn

j

n

jj

n
zxzxzxf)...,,,(

2211
.

5.4. Solving the system of nonlinear algebraic equations by the Newton method

363

Using Taylor’s formula [3] for functions of n variables in a neighborhood of

point jx , we have

)...,,,()...,,,(
212211

j

n

jj

in

j

n

jj

i
xxxfzxzxzxf

)()...,,,(...
!1

1 2

21
2

2
1

1 max

j

n

jj

i
n

n
zOxxxf

x
z

x
z

x
z ,

1 ≤ i ≤ n. At that, the last algebraic equations with respect to
1

z ,
2

z , ...,
n

z

take the following linear form:

)()()(...)()(2

11

1

2

1

2

1

1

1 max

jj

n
n

jj zOf
x

f
z

x

f
z

x

f
z xxxx ,

)()()(...)()(2

22

2

2

2

2

1

2

1 max

jj

n

n

jj zOf
x

f
z

x

f
z

x

f
z xxxx ,

.

)()()(...)()(2

2

2

1

1 max

j

nn

j

n

n

n

jnjn
zOf

x

f
z

x

f
z

x

f
z xxxx ,

where
max

z is the maximum of small quantities ||
1

z , ||
2

z , ..., ||
n

z ,

}|{|max
1

i

ni

max
zz .

In the Newton method, the (1j)th approximation of the solution (j = 0, 1,

2, ...) is calculated over the known j-th approximation as follows:

1) matrix

)(...)()(

....

)(...)()(

)(...)()(

...

....

...

...

21

2

2

2

1

2

1

2

1

1

1

21

22221

11211

j

n

njnjn

j

n

jj

j

n

jj

nnnn

n

n

x

f

x

f

x

f

x

f

x

f

x

f

x

f

x

f

x

f

aaa

aaa

aaa

xxx

xxx

xxx

 (5.18)

of the partial derivatives of functions
1
f ,

2
f , ...,

n
f is calculated;

Chapter 5. Quadratic and Linear Splines

364

2) vector

)(

....

)(

)(

...
22

11

2

1

j

nn

j

j

n f

f

f

b

b

b

x

x

x

 (5.19)

is calculated;

3) the system of linear algebraic equations

nnnnnn

nn

nn

bzazaza

bzazaza

bzazaza

...

.........

,...

,...

2211

22222121

11212111

 (5.20)

is solved, for example, by the Gaussian elimination method considered in

Sections 3.9 and 3.10;

4) the (1j)th approximation of the solution is calculated according to for-

mulas

11

1

1
zxx jj ,

22

1

2
zxx jj , (5.21)

.

n

j

n

j

n
zxx 1 .

Various conditions can be applied for finishing the iterative process; we will

use the following:

max
z , (5.22)

where is a given positive constant,

}|{|max
1

i

ni

max
zz .

Matrix (5.18) of the partial derivatives of functions
1
f ,

2
f , ...,

n
f is called

the Jacobian matrix of these functions.

5.5. Newton and Newton-like methods for solving the single nonlinear algebraic equation

365

5.5. Newton and Newton-like methods for solving

the single nonlinear algebraic equation

It is obvious that the Newton iterative process of the previous section can be

used for solving not only the system of nonlinear algebraic equations, but also

for solving one equation, which can be considered as a system containing one

equation with respect to
1

x :

111
)(xf .

In this case, the Newton method has a simple geometric interpretation.

The geometric interpretation will be considered on an example of equation

(4.23),

0)(xf ,

satisfying the following conditions in the)(xf function’s domain:

 the)(xf function is continuous and monotonous;

 the derivative,)(xf , is continuous, i.e., the)(xf function is smooth;

)(xf is different from 0;

 the equation solution, x , exists.

In addition, we suppose that the solution’s initial approximation (0x , which must

be given) is located in the)(xf function’s domain.

The Newton iterative process, defined by items (1) — (4) of the previous sec-

tion, can be written as follows:

)(

)(1

j

j
jj

xf

xf
xx , (5.23)

where jx , 1jx are the j-th and (1j)th approximations of the equation solu-

tion, j = 0, 1, 2, ... Initial approximation 0x is given.

Fig. 5.4 gives the geometric interpretation of the process of solving equation

0)(xf . According to this figure, the (1j)th approximation of the x solu-

tion can be determined as follows:

1) restore the perpendicular to the x axis from point jx ;

Chapter 5. Quadratic and Linear Splines

366

2) run the tangent line through the point of intersection of the perpendicular

with the)(xf graph;

3) consider the coordinate of the point of intersection of the tangent line with

the x axis as the (1j)th approximation of the equation solution, 1jx .

Fig. 5.4. The geometric interpretation of the Newton method

This algorithm follows from formula (5.23) and the following property of the

tangent line passing through the point with coordinates jx and)(jxf : the slope

of this tangent line is equal to

1

)(
)(

jj

j
j

xx

xf
xf .

Due to the above geometric interpretation of the Newton method, it is also

called the tangent method.

In Section 4.5, equation (4.23), (4.24) of form 05.1cos xx was solved

by using the Solver add-in for Excel. Below is a code for solving this equation

by the tangent method.

Listing 5.2

Sub main()

 Dim j_lim As Integer

 Dim zeta As Double

 Dim x As Double

5.5. Newton and Newton-like methods for solving the single nonlinear algebraic equation

367

 Dim f As Double

 Dim a As Double

 Dim j As Integer

 Dim z As Double

1: j_lim = Range("I1").Value

2: zeta = Range("H1").Value

3: x = Range("G1").Value

 For j = 1 To j_lim 'Newton iterations

4: Call f_function(x, f)

5: Call fx_jacobian(x, a)

6: z = -f / a

7: x = x + z

8: If Abs(z) < zeta Then Exit For

 Next j

9: Range("G2").Value = x

10: Range("F2").Value = f

11: Range("E2").Value = a

12: Range("I2").Value = j

End Sub

Sub f_function(ByVal x As Double, _

 ByRef f As Double)

 f = x - Cos(x) - 1.5

End Sub

Sub fx_jacobian(ByVal x As Double, _

 ByRef fx As Double)

 fx = 1 + Sin(x)

End Sub

In this code:

1) j_lim is the limiting number of iterations; its value is taken from cell I1

of the active worksheet (operator 1);

2) zeta is constant in condition (5.22) of finishing the Newton iterative

process; its value is taken from cell H1 (operator 2);

3) x is the current approximation of the equation solution; the initial value of

x (the initial approximation of the solution) is taken from cell G1 (operator 3).

After inputting the values of j_lim, zeta and x, the j cycle of the Newton

iterations is performed. In this cycle:

1) operator 4 calculates value f of the function according to formula

5.1cos)(xxxf by calling the f_function subroutine;

Chapter 5. Quadratic and Linear Splines

368

2) operator 5 calculates the derivative’s value, a, according to formula

xxf sin1)(by calling the fx_jacobian subroutine;

3) operators 6 and 7 calculate the next approximation of the equation solu-

tion according to formula (5.23);

4) operator 8 checks condition (5.22), || z , for finishing the Newton

iterations.

When finishing the iterative process (after leaving the j cycle), the calculated

values of x, f and a are respectively put into cells G2, F2 and E2 (operators 9,

10 and 11). Operator 12 puts the number of the Newton iterations into cell I2.

Fig. 5.5 shows the Excel worksheet upon termination of the code execution.

Cell G2 contains the following value of the solution of equation (4.23), (4.24):

x = 1.535394. It practically coincides with the x value calculated by means of

Excel in Section 4.5.

Fig. 5.5. The worksheet upon termination of solving the equation

Let us consider the question of the convergence of the Newton iterative pro-

cess defined by formula (5.23). For that, we use the following designation (simi-

lar to the designations on p. 311): jj xx , where x is the exact solution

of the equation, i.e., 0)(xf . Let j be a small quantity.

Substituting expressions jj xx and 11 jj xx into formula

(5.23), we have

)(

)(1

j

j
jj

xf

xf
.

Let us use expressions similar to (3.1) for)(jxf and)(jxf and

take into account 0)(xf . At that, we have the following chain of equalities:

])[()()(

])[()()(5.0)()(

2

32
1

jj

jjj
jj

Oxfxf

Oxfxfxf

5.5. Newton and Newton-like methods for solving the single nonlinear algebraic equation

369

])[()()(

])[()()(5.0)(

2

32

jj

jjj
j

Oxfxf

Oxfxf

])[()()(

])[()(5.0

2

2

jj

jj
j

Oxfxf

Oxf

)()(

)()(5.0
)(2

j

j
j

Oxf

Oxf
.

Neglecting)(jO in the numerator and denominator, we have the following

formula:

21)(
)(

)(
5.0 jj

xf

xf
. (5.24)

Because 0)(xf , the last formula shows that the Newton iterative process

has quadratic convergence.

The secant method (Section 4.5), defined by formula (4.28) in form

)()(

)()(

1

1
1

jj

jjj
jj

xfxf

xfxx
xx , (5.25)

can be considered as a Newton-like method. The reason is that formula (5.25)

takes form (5.23) of the Newton (tangent) method at 01jj xx because

)(
)()(

1

1
j

jj

jj

xf
xx

xfxf
.

As we see, the secant method in form (5.25) needs two initial approximations

of the equation solution, 0x and 1x .

Fig. 5.6 gives the geometric interpretation of the secant method. According to

this figure, the (1j)th approximation of the x solution over the (1j)th and

j-th approximations can be calculated as follows:

1) restore the perpendiculars to the x axis from points 1jx and jx of the

x axis;

2) run the secant line through points),(1

u

j fx and),(
v

j fx of intersection

of the perpendiculars with the)(xf graph;

3) consider the coordinate of the point of intersection of the secant line with

the x axis as the (1j)th approximation of the equation solution, 1jx .

Formula, intended for estimating the rate of the convergence of the secant

method’s iterative process, is close to formula (5.24):

Chapter 5. Quadratic and Linear Splines

370

11

)(

)(
5.0 jjj

xf

xf
. (5.26)

The derivation of this formula is similar to the above derivation of (5.24). For-

mula (4.30) is the simplified form of (5.26).

Fig. 5.6. The geometric interpretation of the secant method:

)(1j

u
xff ,)(j

v
xff

In Section 4.5, we considered another version of the secant method, which

has slow (linear) convergence according to formula (4.29). However, 0)(xf

is not the necessary condition for the convergence.

The Steffensen method, defined by formula

)()]([

)(2
1

jjj

j
jj

xfxfxf

xf
xx ,

can also be considered as a Newton-like method. The reason is that the last for-

mula takes form (5.23) of the Newton method because

)()()()]([jjjjj xfxfxfxfxf

at 0)(jxf .

Unlike the previous Newton-like method, the Steffensen method needs only

one initial approximation of the equation solution, 0x .

5.5. Newton and Newton-like methods for solving the single nonlinear algebraic equation

371

Fig. 5.7 shows the possibility of cycling the Newton iterative process without

convergence to solution x if not all conditions, formulated at the beginning of

this section, are satisfied (set j = 0 in Fig. 5.7). If the Newton method is used for

solving the system of nonlinear algebraic equations (5.17), the cycling is also

possible.

Fig. 5.7. Cycling the iterative process of the Newton (tangent) method

The Newton method, described in the previous section, may be considered as

the tangent method generalization to the system of nonlinear algebraic equations

(5.17). The secant and Steffensen methods also have the generalizations.

In Appendix 6, the Excel circular reference is used for realization of the tan-

gent method for solving nonlinear equation 05.1cos xx . In a similar way,

we can realize the bisection, secant and Steffensen methods in Excel without

programming in VBA.

We advise the reader to write a program for solving equation 0)(xf on

segment],[ba by the Steffensen method. In this equation,)(xf is a function

from Appendix 4; segment],[ba is this function’s domain. The user-defined

form (as the user interface of the program) must include the CheckBox element

for choice of the solution’s initial approximation:

 ax0 in the absence of the check mark;

 bx0 in the presence of the check mark.

If point)(jj xfx appears outside segment],[ba during the solution, the

secant method with)(5.01 bax j must be used for continuation of solving

equation 0)(xf .

Chapter 5. Quadratic and Linear Splines

372

5.6. Modeling of the piano mechanism

linking a key with hammer

In Section 5.2, we considered a method for solving the initial value problem

for the system of two first-order differential equations, (5.7) and (5.8). However,

the solution method does not change if the number of the system equations is

greater than two, as in the initial value problem below.

Article [12] considers a series of mathematical models of the piano mecha-

nism linking a key with hammer. We will use the model of medium complexity,

in which the key and hammer motion is described by the following system of

second-order differential equations:

),(
312

2

1

2

uuE

dt

ud
, (5.27)

dt

du
uuE

dt

ud
3

314
2

3

2

,, , (5.28)

where

1

31

312

)(
),(

m

uukf
uuE , (5.29)

3

31

2

3

3

314

)(

,,
qup

uuk
dt

du
q

dt

du
uuE . (5.30)

In this model,
1

u is the key’s displacement downward,
3

u is the hammer’s

displacement forward, f is the force acting on the key, k is the elastic constant

of the spring,
1

m is the key’s mass, p and q are given constants,
33

mqup is

the hammer’s mass depending on its displacement (more exactly,
3

m is the

hammer’s effective mass).

We have to develop a code for solving this system of differential equations

on the time segment, 0 ≤ t ≤ b, with the following zero initial conditions:

5.6. Modeling of the piano mechanism linking a key with hammer

373

0)0()0()0()0(
3

3

1

1 dt

du
u

dt

du
u .

Let us introduce the key and hammer velocities,
2

u and
4

u respectively, as

follows:

2

1
u

dt

du
,

4

3
u

dt

du
.

The system of equations (5.27) and (5.28) takes the following form:

)(
21

1
uE

dt

du
,

),(
312

2
uuE

dt

du
,

)(
43

3
uE

dt

du
, (5.31)

),,(
4314

4
uuuE

dt

du
,

where

21
uE ,

1

31

2

)(

m

uukf
E ,

43
uE , (5.32)

3

31

2

4

4

)(

qup

uukqu
E .

The initial conditions become

0)0()0()0()0(
4321

uuuu . (5.33)

As in Section 5.2, we construct the grid on segment 0 ≤ t ≤ b for solving the

formulated initial value problem and consider functions)(
1

tu ,)(
2

tu ,)(
3

tu ,

)(
4

tu at the grid nodes. The grid step is assumed constant: lb / , where l is

a given number of time steps.

Chapter 5. Quadratic and Linear Splines

374

Let it be the coordinate of a node, which is not the initial time moment,

i.e., 1 ≤ i ≤ l. To calculate the values of)(
1

tu ,)(
2

tu ,)(
3

tu ,)(
4

tu over known

values of)(
1

tu ,)(
2

tu ,)(
3

tu ,)(
4

tu , we must solve the following

system of nonlinear algebraic equations:

)]([
2

)()]([
2

)(
211211

tuEtutuEtu ,

)](),([
2

)()](),([
2

)(
31223122

tutuEtututuEtu ,

)]([
2

)()]([
2

)(
433433

tuEtutuEtu ,

)](),(),([
2

)(
43144

tututuEtu

)](),(),([
2

)(
43144

tututuEtu .

After designations

1211
)]([

2
)(tuEtu ,

23122
)](),([

2
)(tutuEtu ,

3433
)]([

2
)(tuEtu , (5.34)

443144
)](),(),([

2
)(tututuEtu ,

we can write this system of nonlinear algebraic equations in form (5.17) at n = 4:

143211
),,,(xxxxf ,

243212
),,,(xxxxf ,

343213
),,,(xxxxf , (5.35)

443214
),,,(xxxxf ,

where)(
11

tux ,)(
22

tux ,)(
33

tux ,)(
44

tux .

According to expressions (5.32), we have

5.6. Modeling of the piano mechanism linking a key with hammer

375

212111 2
)(

2
xxxExf ,

1

31

231222

)(

2
),(

2 m

xxkf
xxxExf ,

434333 2
)(

2
xxxExf , (5.36)

3

31

2

4

4431444

)(

2
),,(

2 qxp

xxkqx
xxxxExf .

For solving the system of nonlinear algebraic equations (5.35) by the Newton

method, we need expressions for the partial derivatives of functions
1
f ,

2
f ,

3
f ,

4
f with respect to arguments

1
x ,

2
x ,

3
x ,

4
x , i.e., for the elements of Jacobian

matrix (5.18). By using the basic rules of differentiation [3], we obtain

1

1

1

x

f
,

2
2

1

x

f
, 0

4

1

3

1

x

f

x

f
,

11

2

2m

k

x

f
, 1

2

2

x

f
,

13

2

2m

k

x

f
, 0

4

2

x

f
,

0

2

3

1

3

x

f

x

f
, 1

3

3

x

f
,

2
4

3

x

f
, (5.37)

31

4

2 qxp

k

x

f
, 0

2

4

x

f
,

2

3

31

2

43

3

4

)(

)]([)(

2
qxp

qxxkqxqxpk

x

f
,

3

4

4

4
1

qxp

qx

x

f
.

Let us develop a code for solving the system of differential equations (5.31)

with initial conditions (5.33). In table Listing 5.3 with the source data for the

required code:

 l is the number of time steps;

 τ is the time step in seconds;

 f is the force acting on the key, in newtons;

 m
1
 is the key’s mass in kilograms;

Chapter 5. Quadratic and Linear Splines

376

 p, q, k are constants in expressions (5.29) and (5.30); their dimensions are

as follows: [p] = kg, [q] = kg / m, [k] = N / m;

 ζ is a positive constant in condition (5.22) for finishing the Newton itera-

tive process.

Listing 5.3

l 30

tau 1.00E-03

f 10

m1 0.074

p 0.406

q 18.3

k 1.16E+04

zeta 1.00E-09

As results of the execution, we must have the values of time t and the corre-

sponding values of the key’s and hammer’s displacements and velocities, i.e., we

must have
1

u ,
2

1
u

dt

du
,

3
u ,

4

3
u

dt

du
 as functions of time t.

Below are the main program and the e_functions and fx_jacobian

subroutines for solving the initial value problem.

Listing 5.4

Dim tau As Double

Dim f As Double, m1 As Double

Dim p As Double, q As Double

Dim k As Double

Dim tau2 As Double

Sub main()

 Dim l As Integer

 Dim zeta As Double

 Dim u(1 To 4) As Double

 Dim x(1 To 4) As Double

 Dim z(1 To 4) As Double

 Dim e(1 To 4) As Double

 Dim a(1 To 4, 1 To 4) As Double

 Dim b(1 To 4) As Double

 Dim alpha(1 To 4) As Double

 Dim m As Integer, i As Integer, j As Integer

 Dim max As Double

5.6. Modeling of the piano mechanism linking a key with hammer

377

 Dim sb As String, se As String

 l = Selection.Cells(1, 2)

 tau = Selection.Cells(2, 2)

 f = Selection.Cells(3, 2)

 m1 = Selection.Cells(4, 2)

 p = Selection.Cells(5, 2)

 q = Selection.Cells(6, 2)

 k = Selection.Cells(7, 2)

 zeta = Selection.Cells(8, 2)

 tau2 = tau / 2

 For m = 1 To 4

1: u(m) = 0 'values at t = 0

 Next m

 Selection.Cells(9, 1) = "t"

 Selection.Cells(9, 2) = "u1"

 Selection.Cells(9, 3) = "u2"

 Selection.Cells(9, 4) = "u3"

 Selection.Cells(9, 5) = "t"

 Selection.Cells(9, 6) = "u4"

 Selection.Cells(9, 7) = "j max"

 Selection.Cells(10, 1) = 0

 Selection.Cells(10, 2) = u(1)

 Selection.Cells(10, 3) = u(2)

 Selection.Cells(10, 4) = u(3)

 Selection.Cells(10, 5) = 0

 Selection.Cells(10, 6) = u(4)

 For i = 11 To 10 + l 'movement along time axis

2: Call e_functions(u, e)

 For m = 1 To 4

3: alpha(m) = u(m) + tau2 * e(m)

4: x(m) = u(m) + tau * e(m)

 Next m

 For j = 1 To 1000 'Newton iterations

5: Call fx_jacobian(x, a)

6: Call e_functions(x, e)

 For m = 1 To 4

7: b(m) = alpha(m) - (x(m) - tau2 * e(m))

 Next m

8: Call gauss(4, a, b, z)

 For m = 1 To 4

9: x(m) = x(m) + z(m)

 Next m

Chapter 5. Quadratic and Linear Splines

378

 max = 0

 For m = 1 To 4

 If Abs(z(m)) > max Then _

 max = Abs(z(m))

 Next m

10: If max < zeta Then Exit For

 Next j

 For m = 1 To 4

11: u(m) = x(m)

 Next m

 Selection.Cells(i, 1) = (i - 10) * tau

 Selection.Cells(i, 2) = u(1)

 Selection.Cells(i, 3) = u(2)

 Selection.Cells(i, 4) = u(3)

 Selection.Cells(i, 5) = (i - 10) * tau

 Selection.Cells(i, 6) = u(4)

 Selection.Cells(i, 7) = j

 Next i

 sb = Selection.Cells(10, 1).Address

 se = Selection.Cells(10 + l, 2).Address

12: Call graph(sb, se, "t, s", "u1, m")

 sb = Selection.Cells(10, 5).Address

 se = Selection.Cells(10 + l, 6).Address

13: Call graph(sb, se, "t, s", "u4, m/s")

 Range("O36").Select

End Sub

Sub e_functions(ByRef x() As Double, _

 ByRef e() As Double)

 e(1) = x(2)

 e(2) = (f - k * (x(1) - x(3))) / m1

 e(3) = x(4)

 e(4) = (q * x(4) ^ 2 + k * (x(1) - x(3))) / _

 (p - q * x(3))

End Sub

Sub fx_jacobian(ByRef x() As Double, _

 ByRef fx() As Double)

 Dim m3 As Double

 fx(1, 1) = 1

 fx(1, 2) = -tau2

 fx(1, 3) = 0: fx(1, 4) = 0

5.6. Modeling of the piano mechanism linking a key with hammer

379

 fx(2, 1) = tau2 * k / m1

 fx(2, 2) = 1

 fx(2, 3) = -tau2 * k / m1

 fx(2, 4) = 0

 fx(3, 1) = 0: fx(3, 2) = 0

 fx(3, 3) = 1

 fx(3, 4) = -tau2

 m3 = p - q * x(3)

 fx(4, 1) = -tau2 * k / m3

 fx(4, 2) = 0

 fx(4, 3) = tau2 * (k * m3 - _

 (q * x(4) ^ 2 + k * (x(1) - x(3))) * q) / m3 ^ 2

 fx(4, 4) = 1 - tau * q * x(4) / m3

End Sub

The u array contains values
1

u ,
2

u ,
3

u ,
4

u of the solution. Operator 1 sets

the solution’s values at 0t according to (5.33). The x array contains the solu-

tion approximations.

By means of the i cycle, the movement along the time axis is performed with

step τ. The u array, used in the call of the e_functions subroutine (opera-

tor 2), contains values
1

u ,
2

u ,
3

u ,
4

u of the solution at the t moment

of time. This subroutine calculates corresponding values
1

E ,
2

E ,
3

E ,
4

E

of the e array according to formulas (5.32). Operator 3 calculates values

1
,

2
,

3
,

4
 of the alpha array according to formulas (5.34). Operator 4

calculates the x array of the initial approximation of the solution at the t moment

according to formulas

)]([)(
2111

tuEtux ,

)](),([)(
31222

tutuEtux ,

)]([)(
4333

tuEtux ,

)](),(),([)(
431444

tututuEtux .

Further (inside the i cycle being under consideration), the j cycle of the

Newton iterations is performed. In the j cycle:

1) by calling the fx_jacobian subroutine (operator 5), the a array is cal-

culated according to formulas (5.18) and (5.37);

2) after calling the e_functions subroutine (operator 6), the b array is

calculated according to formulas (5.19) and (5.36) by means of operator 7;

Chapter 5. Quadratic and Linear Splines

380

3) by calling the gauss subroutine (operator 8), the system of linear alge-

braic equations (5.20), defined by arrays a and b, is solved;

4) by means of operator 9, the next approximation of the solution at the t

moment is calculated according to formulas (5.21);

5) operator 10 checks if condition (5.22) is satisfied for termination of the

Newton iterations.

When terminating the iterative process (after leaving the j cycle), values
1

u ,

2
u ,

3
u ,

4
u of the solution at the t moment (which are in the x array) are

assigned to the u array’s elements by means of operator 11. These values

(together with the value of t and the number of the Newton iterations,
max

j) are

put into cells of Excel.

At the end of the main program (after leaving the i cycle), the graphs of

calculated dependences)(
1

tu and)(
4

tu are constructed automatically by means

of the graph subroutine. Operators 12 and 13 are the calls of this subroutine.

The declarations of e_functions and fx_jacobian are located below

the main program (see Listing 5.4).

The e_functions subroutine calculates values
1

E ,
2

E ,
3

E ,
4

E according

to formulas (5.32). The parameters of this subroutine have the following sense:

 x is an array of values
1

u ,
2

u ,
3

u ,
4

u ;

 e is a one-dimensional array intended for the required values.

The fx_jacobian subroutine calculates the Jacobian matrix of functions

1
f ,

2
f ,

3
f ,

4
f according to formulas (5.18) and (5.37). The parameters have

the following sense:

 x is an array of arguments
1

x ,
2

x ,
3

x ,
4

x ;

 fx is a two-dimensional array intended for the required values of the par-

tial derivatives.

The source data for code Listing 5.4 are the values given in table Listing 5.3

considered above. The corresponding Excel table, depicted in Fig. 5.8, must be

selected before the code execution.

Upon termination of the execution, the values of t,
1

u ,
2

u ,
3

u ,
4

u and
max

j

are located in the corresponding columns on the Excel worksheet (Fig. 5.9).

Besides, the)(
1

tu and)(
4

tu graphs are located on this worksheet; Fig. 5.10

shows them completely.

The graphs, depicted in Fig. 5.10, are results of the mentioned calls of the

graph subroutine.

5.6. Modeling of the piano mechanism linking a key with hammer

381

Fig. 5.8. The Excel table with the source data

Fig. 5.9. The code execution results

Chapter 5. Quadratic and Linear Splines

382

a

b

Fig. 5.10. The automatically created graphs: a —)(
1

tu ; b —)(
4

tu

5.7. Definition of linear spline

383

5.7. Definition of linear spline

The simplest spline, linear, is defined as follows.

Let values
k

f ,
1k

f ,
2k

f , ...,
2r

f ,
1r

f ,
r

f of grid function)(xf be

given at the nodes of grid
k

x <
1k

x <
2k

x < ... <
2r

x <
1r

x <
r

x .

A linear spline (or first-degree spline, Fig. 5.11) is function)(xL , which satis-

fies the following conditions:

1) on each elementary segment
1i

x ≤ x ≤
i

x (k + 1 ≤ i ≤ r), the spline

coincides with a first-degree polynomial (generally, the polynomials are different

on different elementary segments);

2) at the grid nodes, the spline has the corresponding grid function values:

ii
fxL)(.

Fig. 5.11. The linear spline graph

According to condition (2), the)(xL graph passes through points (
k

x , k
f),

(
1k

x , 1k
f), (

2k
x , 2k

f), . . . , (2r
x , 2r

f), (
1r

x , 1r
f), (

r
x , r

f).

Chapter 5. Quadratic and Linear Splines

384

The definition of linear spline leads to the following expression for the)(xL

function on elementary segment],[
1 ii

xx :

i

i

i
i

i

i h

xx
f

h

xx
fxL

1

1
)(, (5.38)

where
1iii

xxh is the elementary segment’s length or the grid step, k + 1 ≤

i ≤ r. Thus, the linear spline is the linearly interpolated tabular function.

Formula (5.38) was already used in programs Listing 4.11 and Listing 4.13:

see formula (4.34) on p. 320.

The error of interpolating the)(xf function (and its derivative) by the)(xL

spline (and by its derivative) is determined by the following expression:

)()()(2)()(n

max

nn hOxLxf , (5.39)

where }{max
1

i

rik

max
hh is the maximum grid step (0

max
h), n = 0, 1 is

the derivative order,)()()0(xfxf ,)()()0(xLxL .

It is obvious that the mathematical constructions of the linear and cubic

splines are similar. However, the cubic interpolation is much more exact than the

linear interpolation: the interpolation errors differ by two orders of
max

h . To

make sure, we have to compare expressions (4.19) and (5.39).

The linear spline can be used for interpolation, differentiation and integration

of the grid (tabular) function. For this purpose, we can use the si subroutine and

the ios function, developed for the cubic spline construction, but all elements of

the M array (containing the spline moments) must be zero in the calls of these

user-defined procedures.

When the moments are nullified, formula (4.20), realized in the ios func-

tion, takes the following form:

r

ki
i

ii
b

a

b

a

h
ff

dxxLdxxf

1

1

2
)()(. (5.40)

It is obvious that summand
i

ii h
ff

2

1 is equal to the area of a trapezium with

height
1iii

xxh and bases
1i

f and
i

f . Therefore, integration formula

(5.40) is widely known as the trapezoidal method.

Formula (5.39) gives the following estimation of the error of numerical inte-

gration by the trapezoidal method:

5.7. Definition of linear spline

385

)(
2

)()()(2

1

1

max

r

ki
i

ii
b

a

b

a

b

a

hOh
ff

dxxfdxxLdxxf ,

where 0
max

h is the maximum grid step.

The linear spline can be used in the noniterative method for solving the non-

linear algebraic equation (instead of the cubic spline, Section 4.6). This leads to

a simplification of the program, but also to a deterioration in accuracy of the

equation solution.

We advise the reader to write a program for calculating the values of func-

tion

1

)(1)(

x

a

dyyfxu (5.41)

at the nodes of a uniform grid on segment],[ba . In this formula,)(xf is

a function from Appendix 4; segment],[ba is the)(xf function’s domain. The

integration must be performed by the user-defined ios function, as the program

realization of formula (5.40).

Function (5.41) is the analytical solution of the Bernoulli differential equa-

tion [3],

2)(uxf
dx

du
,

on segment],[ba under initial condition 1)(au . On p. 361, we spoke about

the numerical solution of this initial value problem.

We advise the reader to write a program, similar to Listing 4.11, for solving

equation 0)(xf on segment],[ba by the noniterative method based on the

linear spline. In this equation,)(xf is a function from Appendix 4; segment

],[ba is this function’s domain. Uniform grid
0

xa <
1

x <
2

x < ... <
2n

x <

1n
x < bx

n
 must be used.

In the next section, the linear spline will be used in the least-squares method.

Besides, this mathematical construction appears in the sound insulation problem.

Chapter 5. Quadratic and Linear Splines

386

5.8. The least-squares method

The linear spline can be used in the least-squares method. We will consider

this question on an example of the following table from Task 8.1 in book [13].

The source data

The land plot

number (j
)

The land quality

mark (

x

j
)

The wheat

productivity (

u

j
),

centner per hectare

1 30 23.5

2 35 23.7

3 35 24.0

4 38 26.7

5 29 24.3

6 40 28.8

7 45 33.5

8 37 27.6

9 35 23.0

10 40 29.4

11 50 30.5

12 52 35.0

The above table gives the values characterizing the land quality and wheat

productivity for each of ν = 12 land plots. The least-squares method allows us to

establish the functional dependence of the wheat productivity, u, on the land

quality mark, x.

Let)(xF be an unknown functional dependence (of a given type) defined up

to parameters
1

c ,
2

c , ...,
n

c . More precisely, this dependence looks like

),...,,,(
21

xcccF
n

, where
1

c ,
2

c , ...,
n

c and x are the function parameters and

argument, respectively.

According to the least-squares method under consideration,)(xF is the

required functional dependence of productivity u on mark x if the parameters

of)(xF are equal to the coordinates of the minimum point of function

5.8. The least-squares method

387

1

2

21
])([)...,,,(

j
jjn

uxFcccG (5.42)

on
1

c ,
2

c , ...,
n

c .

Let us assume that:

1))(xF is linear spline)(xL at a grid on the x axis;

2) the n number of the grid nodes and their location are given:
1

z < ... <

z < ... <
n

z are the coordinates of the grid nodes on the x axis;

3) parameters
1

c ,
2

c , ...,
n

c of)(xF are values
1

L , ..., L , ...,
n

L of

the)(xL spline at grid nodes
1

z , ..., z , ...,
n

z , respectively.

According to the least-squares method, we have to find the minimum point of

function

1

2

1
])([)...,,...,,(

j
jjn

uxLLLLG (5.43)

on
1

L , ..., L , ...,
n

L .

In Section 6.12, we will minimize this function iteratively (by subroutines

mini and minim). Here, we will consider a noniterative method to find the

required minimum point, which is based on the concept of fundamental spline.

According to the necessary condition for an extreme value [3], the minimum

points of function (5.43) belong to the set of points that are solutions of the sys-

tem of equations

0
1

L

G
,

. . .

0
i

L

G
, (5.44)

. . .

0
n

L

G
.

Therefore, for finding the minimum point of function (5.43), we have to solve

the last system and then to analyse the solution results.

The solution of system (5.44) begins with the following concept of funda-

mental spline.

Chapter 5. Quadratic and Linear Splines

388

The fundamental spline,)(x , is a spline equaling to 1 at the z node of

grid
1

z < ... < z < ... <
n

z and 0 at all other n – 1 nodes. Because 1 ≤ κ ≤ n,

we have n fundamental splines)(
1

x , ...,)(x , ...,)(x
n

.

If the fundamental splines are linear, then (according to the fundamental

spline definition) an arbitrary linear spline can be written as follows:

)(...)(...)()(
11

xLxLxLxL
nn

)(...)(...)(
11

xLxLxL
nnii

.

Using the last expression and formula (5.43), we have the following chain of

equalities:

1

}/)(])({[5.0

j
ijjj

i

LxLuxL
L

G

1

]})()[({

j
jjji

uxLx

1
11

]})(...)(...)()[({

j
jjnnjjji

uxLxLxLx

...)]()([...)]()([

11
11

j
jji

j
jji

xxLxxL

11

])([)]()([

j
jji

j
jnjin

uxxxL

111

11
)(...)(...)(

j

njijn

j

jij

j

jij
LLL

1

)(

j
jij

u , (5.45)

where

)(
jiij

x , (5.46)

1 ≤ i ≤ n, 1 ≤ j ≤ ν,

i.e., coefficients
ij

 form the A matrix of size n × ν:

5.8. The least-squares method

389

nnn
...

....

...

...

21

22221

11211

A . (5.47)

Due to (5.45), equations (5.44) become linear algebraic equations

,......

...........

,......

...........

,......

11

11

111111

nnnnnn

ininii

nn

rLqLqLq

rLqLqLq

rLqLqLq

 (5.48)

where

1

)(

j

jiji
q ,

1

)(

j

jiji
ur . (5.49)

The system of linear algebraic equations (5.48) can be written as matrix

equation

RQL , (5.50)

where Q is the system matrix, R is the vector of the right-hand sides, L is the

vector of the unknown variables:

nnnn

inii

n

qqq

qqq

qqq

......

.....

......

.....

......

1

1

1111

Q ,

n

i

r

r

r

...

...
1

R ,

n
L

L

L

...

...
1

L . (5.51)

The system of linear algebraic equations (5.48) can be solved for unknown

1
L , ..., L , ...,

n
L (the linear spline values at the grid nodes) by the Gaussian

elimination method, i.e., by means of subroutine gaus or gauss.

Chapter 5. Quadratic and Linear Splines

390

5.9. Program to determine the dependence of

the wheat productivity on the land quality

Let us develop a program for computing values

1
L , ..., L , ...,

n
L of the

linear spline at the nodes of grid
1

z < ... < z < ... <
n

z on the x axis, which is

based on the theoretical material of the previous section.

In the source data table given below:

 n is the number of the grid nodes;

 the Z column contains the x coordinates of the grid nodes;

 the remaining two columns (Mark and Productivity) are the same as in

table “The source data” of the previous section.

Listing 5.5

n 3

Mark Productivity Z

30 23.5 25

35 23.7 45

35 24.0 55

38 26.7

29 24.3

40 28.8

45 33.5

37 27.6

35 23.0

40 29.4

50 30.5

52 35.0

The program for solving this task follows:

Listing 5.6

Sub main()

 Dim X() As Double

 Dim U() As Double

 Dim Z() As Double

5.9. Program to determine the dependence of the wheat productivity on the land quality

391

 Dim lambda() As Double

 Dim MOM() As Double

 Dim A() As Double

 Dim Q() As Double

 Dim R() As Double

 Dim L() As Double

 Dim m As Integer

 Dim n As Integer

 Dim j As Integer

 Dim i As Integer, k As Integer

 m = Selection.Rows.Count 'quantity of rows

 n = Selection.Cells(1, 2) 'number of nodes

 ReDim X(3 To m)

 ReDim U(3 To m)

 ReDim Z(1 To n)

 ReDim lambda(1 To n)

 ReDim MOM(1 To n)

 ReDim A(1 To n, 3 To m)

 ReDim Q(1 To n, 1 To n)

 ReDim R(1 To n)

 ReDim L(1 To n)

 For j = 3 To m

 X(j) = Selection.Cells(j, 1)

 U(j) = Selection.Cells(j, 2)

 Next j

'Preparations for spline interpolation:

 For i = 1 To n

 Z(i) = Selection.Cells(2 + i, 3)

0: MOM(i) = 0

 Next i

'Forming matrix A:

 For i = 1 To n

 For k = 1 To n 'forming i-th spline

 If k = i Then

 lambda(k) = 1

 Else

 lambda(k) = 0

 End If

 Next k

 For j = 3 To m

 'calculating values of i-th spline

1: Call si(1, n, Z, lambda, MOM, X(j), _

Chapter 5. Quadratic and Linear Splines

392

 A(i, j))

 Next j

 Next i

'Forming matrix Q and vector R:

 For i = 1 To n

 For k = 1 To n

 Q(i, k) = 0

 For j = 3 To m

 Q(i, k) = Q(i, k) + A(i, j) * A(k, j)

 Next j

 Next k

 R(i) = 0

 For j = 3 To m

 R(i) = R(i) + A(i, j) * U(j)

 Next j

 Next i

'Solving system of linear algebraic equations:

2: Call gauss(n, Q, R, L)

'Outputting results:

 Selection.Cells(2, 4) = "L"

 For i = 1 To n

 Selection.Cells(2 + i, 4) = L(i)

 Next i

End Sub

The A matrix (array A) is formed according to formulas (5.46) and (5.47) by

means of the si subroutine used for the interpolation (operator 1). Because the

fundamental splines,)(
1

x , ...,)(x
i

, ...,)(x
n

, are linear (not cubic), the

MOM array of the moments is nulled by operator 0.

Matrix Q and vector R are formed according to formulas (5.49) and (5.51).

Matrix equation (5.50) is solved by calling the gauss subroutine (operator 2).

We can use the simpler subroutine by replacing the subroutine name with gaus

in operator 2.

The remaining operators of the program put the L solution of matrix equation

(5.50) into cells of Excel.

The source data for program Listing 5.6 are given in table Listing 5.5

(Fig. 5.12). Before the program execution, we must select this Excel table (range

B2:D15).

The execution results are the linear spline values at the grid nodes, which

are in the L column located near the Z column (Fig. 5.13). Fig. 5.14 shows the

experimental points and the calculated line.

5.9. Program to determine the dependence of the wheat productivity on the land quality

393

Fig. 5.12. The Excel table with the source data

Fig. 5.13. The program execution results

Chapter 5. Quadratic and Linear Splines

394

Fig. 5.14. Experimental points and the fractured line of functional

dependence of the wheat productivity (in units of centner per hectare)

on the land quality mark

According to Fig. 5.14, we really determined the minimum point of function

(5.43).

The value of spline)(xL at point x, located between nodes
1i

z and
i

z

(i = 2, 3, ..., n – 1, n), can be calculated by means of the Excel formula corre-

sponding to mathematical formula (5.38) of the following form:

1

11
)()(

)(

ii

iiii

zz

LzxLxz
xL

If
1

zx , then

12

2112
)()(

)(
zz

LzxLxz
xL .

If
n

zx , then

1

11
)()(

)(

nn

nnnn

zz

LzxLxz
xL .

Note that the cubic spline can be used instead of the linear spline in the least-

squares method. In this case, naturally, the fundamental splines are cubic.

The functional dependence of the wheat productivity on the land quality

mark, determined by the least-squares method, describes the dependence of pro-

duction results on factors. Such dependence is called the production function; it

is the basis for many economic calculations.

5.10. The forward and backward Fourier transforms of a periodic function

395

5.10. The forward and backward Fourier

transforms of a periodic function

Let)(tf be a real-valued periodic function of time t with given period T,

which describes an oscillation with frequency T/1 . This function can be repre-

sented as the Fourier series [3]:

1

0
)]sin()cos([

2
)(

k
kk

tkbtka
a

tf , (5.52)

where T/2 is the cyclic frequency,
0

a ,
k

a ,
k

b are the Fourier coeffi-

cients:

T

k
dttktf

T
a

0

)cos()(
2

, (5.53)

k = 0, 1, 2, 3, ...,

T

k
dttktf

T
b

0

)sin()(
2

, (5.54)

k = 1, 2, 3, ...

Let us recall several terms related to periodic function

)sin()(
kkk

tkAtf , (5.55)

where k is a natural number.

The oscillation, described by this formula, is called a harmonic oscillation

with cyclic frequency k . Quantities
k

A ,
k

tk ,
k

 are respectively the

amplitude, phase and initial phase of the harmonic oscillation.

Using this terminology, we can say that (5.52) — (5.54) is the decomposition

of the oscillation, described by the)(tf function, into harmonic oscillations:

1

0

1

0)sin(
2

)(
2

)(

k
kk

k
k

tkA
a

tf
a

tf . (5.56)

The Fourier coefficients, amplitude and initial phase are related by the following

formulas:

Chapter 5. Quadratic and Linear Splines

396

kkk
Aa sin ,

kkk
Ab cos , (5.57)

22
kkk

baA ,

where k = 1, 2, 3, ...

The calculation of the coefficients of the function’s expansion into the Fouri-

er series is called the analysis or forward Fourier transform. The analysis is de-

fined by formulas (5.53) and (5.54).

The calculation of the)(tf function’s values, which correspond to the

known coefficients,
0

a ,
k

a and
k

b (k = 1, 2, 3, ...), is called the synthesis or

backward Fourier transform. The synthesis is defined by formula (5.52).

Along with the Fourier transform theory, which considers the)(tf function

known at all points of period],0[T , there is a theory, which considers the)(tf

function known only at the nodes of a uniform grid on],0[T .

Let n be a given number of equal steps or elementary segments],[
1 jj

tt ,

j = 1, 2, …, n, on period],0[T and)(tf be a grid function given at points

0
0

t , nTt /
1

, nTt /2
2

, ..., nTnt
n

/)1(
1

, Tt
n

. We respectively

denote the)(tf function’s values at these points as
0

f ,
1
f ,

2
f , ...,

1n
f ,

n
f ,

at that,
0

f =
n

f because of the)(tf periodicity. The calculation of the Fourier

coefficients of grid function)(tf is called the forward discrete Fourier trans-

form. The calculation of values
0

f ,
1
f ,

2
f , ...,

1n
f ,

n
f , which correspond to

the Fourier coefficients, is called the backward discrete Fourier transform.

The Data Analysis add-in for Excel includes the Fourier Analysis procedure

for performing the discrete Fourier transform. We will consider the use of this

procedure on an example of function

)2cos()sin(1)(tttf . (5.58)

Into cells A1:A8 on an Excel worksheet, we put this function’s values at the

first n = 8 points (ωt = 0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4) of the period with 9

equidistant points (0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4, 2π), i.e., we enter num-

bers 2, 1.707107, 1, 1.707107, 2, 0.292893, -1, 0.292893 (Fig. 5.15).

Let us fulfill the following operations:

1) Data > Data Analysis > Fourier Analysis > OK;

2) in the Fourier Analysis window opened, enter A1:A8 into text box

Input Range;

3) after activating text box Output Range, enter B1 into it (Fig. 5.16);

5.10. The forward and backward Fourier transforms of a periodic function

397

4) click on the OK button to get the procedure execution results (Fig. 5.17).

Fig. 5.15. The Excel worksheet with the Fourier analysis source data

Fig. 5.16. The Fourier Analysis window before the procedure execution

Fig. 5.17. The Excel worksheet with the Fourier analysis results

Chapter 5. Quadratic and Linear Splines

398

If we locate the mouse pointer on an exclamation mark (near the B1 cell), the

following information appears: The number in this cell is formatted as text or

preceded by an apostrophe. We should not be afraid of this information.

According to Fig. 5.17, the calculation results (in cells B1:B8) are the coeffi-

cients of the Fourier series in complex form: letter “i” (in cells B2, B4, B6 and

B8) means the imaginary unit, 1i .

The complex representation of the Fourier series [3] can be written as

1

0
)(

k

tik

k

tik

k
ececctf ,

where
00

ac ,
k

c and
k

c are complex Fourier coefficients, k = 1, 2, 3, ...

For using the procedure execution results, we have to know the following:

1) the values of coefficients
0

c and
k

c in front of
tik

e (k = 1, 2, 3, 4), mul-

tiplied by n = 8, are respectively located in cells B1, B2, B3, B4, B5 (the first half

of the set of complex Fourier coefficients);

2) the values of coefficients
k

c in front of
tik

e (k = 1, 2, 3, 4), multi-

plied by 8, are respectively located in cells B8, B7, B6, B5 (the second half of

the set of complex Fourier coefficients);

3)
k

c =
k

c = 0 for k > 4.

For verifying it, we will use the following expressions, which follow from the

Euler relation for complex numbers [3]:

22
)sin(

tiktiktiktik
ieie

i

ee
tk , (5.59)

2
)cos(

tiktik
ee

tk . (5.60)

Using (5.59) at k = 1 and (5.60) at k = 2, we write expression (5.58) in form

titititi
e

i
eee

i
tf

22

1

2

1

2
1)(

22
. (5.61)

Multiplying values
0

c = 1,
1

c = 2/i ,
2

c = 2/1 ,
3

c = 0,
4

c =
4

c = 0,

3
c = 0,

2
c = 2/1 ,

1
c = 2/i by 8, we obtain the Fourier analysis results

depicted in Fig. 5.17. Let us pay attention to the following: the value of both
4

8c

and
4

8c is in the B5 cell.

5.10. The forward and backward Fourier transforms of a periodic function

399

We see that the complex coefficients in front of functions
tik

e and
tik

e

in expression (5.61) are conjugate, i.e., differ from each other only in the sign in

front of the imaginary unit. This is the property of the expansion of real-valued

functions, as)(tf , in terms of
tik

e . The expansion of complex-valued func-

tions in terms of
tik

e does not have such property.

In the bottom left corner of the Fourier Analysis window (Fig. 5.16), we see

a little square field (element CheckBox) called Inverse. When clicking on this

field, the check mark appears in it, meaning the switching from the forward

transform (analysis) to the backward transform (synthesis).

Let the worksheet, depicted in Fig. 5.17, be active. To verify the correctness

of working the Fourier Analysis procedure, we fulfill the following operations:

1) Data > Data Analysis > Fourier Analysis > OK;

2) in the Fourier Analysis window opened, enter B1:B8 into text box

Input Range;

3) after activating text box Output Range, enter E1 into it;

4) by clicking on element Inverse, set the check mark in it;

5) click on the OK button for starting the procedure execution.

The execution results are depicted in Fig. 5.18. We see practical coincidence

of columns A and E, and that is natural because the forward and backward Fou-

rier transforms are performed successively.

If the mouse pointer is located on an exclamation mark (near the E1 cell), the

same information appears as in the case of Fig. 5.17.

Fig. 5.18. The Excel worksheet with results of the analysis and synthesis

The main drawback of the Fourier Analysis procedure consists in the follow-

ing: the number of steps on the period is not arbitrary, it must be a power of 2,

i.e., n must be equal to 2, 4, 8 (as in the above example), 16, 32, 64 or so on.

It is because this procedure realizes the so-called fast Fourier transformation [3].

Chapter 5. Quadratic and Linear Splines

400

5.11. Subroutines for the forward and backward

discrete Fourier transforms

In this section, we will develop subroutines for the forward and backward

discrete Fourier transforms, free of the drawback formulated at the end of the

previous section. These subroutines will be used in the next section.

At first, let us obtain a discrete analog of formula (5.53) at k = 0, 1, 2, 3, ...

We use designation

)()cos()(tgtktf (5.62)

and consider periodic third-degree spline)(tS , which respectively assumes

values
0

g ,
1

g ,
2

g , ...,
1n

g ,
n

g at points 0,
1

t ,
2

t , ...,
1n

t ,
n

t (
n

gg
0

).

According to expression (4.20), the integral of)(tS equals

n

j

jj
n

j

jj
T

h
MM

h
gg

dttS

1

31

1

1

0
242

)(, (5.63)

where nTh / is the grid step,
0

M ,
1

M ,
2

M , ...,
1n

M ,
n

M are the spline

moments,
n

MM
0

.

Let us consider equation (4.9) in form

jjjjjj
MMM

11
2 , (5.64)

j = 1, 2, …, n, taking into account the periodicity of)(tg and)(tS , i.e., the fol-

lowing equalities:

11
gg

n
,

11
MM

n
,

where
1n

g and
1n

M are the values of the)(tg and)(tS functions, respec-

tively, at additional node hTt
n 1

. Because of the grid step constancy and

expressions (4.10), we have

2

1
jj

,

)2(
3

11
2

jjjj
ggg

h
.

5.11. Subroutines for the forward and backward discrete Fourier transforms

401

Equation (5.64) takes the following form:

)2(
3

2

1
2

2

1
11

2
11 jjjjjj

ggg
h

MMM .

Summing both sides of the last equation over j = 1, 2, …, n, we obtain

n

j
j

n

j
j

n

j
j

MMM

1
1

11
1 2

1
2

2

1

n

j
j

n

j
j

n

j
j

ggg
h 1

1
11

1
2

2
3

or

n

j
j

n

j
j

n

j
j

MMM

111
2

1
2

2

1 n

j
j

n

j
j

n

j
j

ggg
h 111

2
2

3

or

0

1

n

j

j
M .

Expression (5.63) becomes simpler:

n

j

j

n

j

jj
T

ghh
gg

dttS

11

1

0
2

)(.

Taking into account expression (5.62), we obtain

T

k
dttktf

T
a

0

)cos()(
2

n
jkf

n
jhkfh

T

n

j
j

n

j
j

2
cos

2
)cos(

2

11

. (5.65)

This formula is the required discrete analog of formula (5.53) at k = 0, 1, 2, 3, ...

Similarly, we can obtain the following discrete analog of formula (5.54):

n
jkf

n
b

n

j

jk

2
sin

2

1

, (5.66)

k = 1, 2, 3, ...

According to (5.52), (5.65) and (5.66), the formulas of the backward and

forward discrete Fourier transforms can be written in the following form for an

odd value of n:

Chapter 5. Quadratic and Linear Splines

402

2/)1(

1

2120

2
cos

2
sin

n

k

kkj n
jkd

n
jkddf , (5.67)

n

j

j
f

n
d

1

0

1
, (5.68)

n
jkf

n
d

n

j

jk

2
sin

2

1

12
, (5.69)

n
jkf

n
d

n

j

jk

2
cos

2

1

2
, (5.70)

where j = 0, 1, 2, ..., n in (5.67), k = 1, 2, 3, ..., 2/)1(n in (5.69) and (5.70).

Similarly, we have the following for an even value of n.

The backward discrete Fourier transform is performed according to formula

2/

1

2120

2
cos

2
sin

n

k

kkj n
jkd

n
jkddf , (5.71)

j = 0, 1, 2, ..., n.

The forward discrete Fourier transform is performed according to formulas

(5.68) — (5.70) at k = 1, 2, 3, ..., 2/)2(n and

0)sin(
1

1

1
jf

n
d

n

j

jn
, (5.72)

)cos(
1

1

jf
n

d
n

j

jn
. (5.73)

Let us pay attention to the following:

 the Fourier coefficients do not depend on the period size;

 the number of Fourier coefficients is equal to n, i.e., to the number of

equal steps on the period (when n is even, we do not take into account coefficient

1n
d , which is equal to zero).

Into Module14 of the BookNM workbook, we enter the following declaration

of the subroutine for the forward discrete Fourier transform:

Listing 5.7

Sub fouf(ByVal n, ByRef F() As Double, _

 ByRef D() As Double, Optional m)

5.11. Subroutines for the forward and backward discrete Fourier transforms

403

 Dim m2 As Integer, j As Integer, k2 As Integer

 Dim a As Double, b As Double

 Dim w As Double, z As Double

 Dim c0 As Double, s0 As Double

 Dim c1 As Double, s1 As Double

 Dim c2 As Double, s2 As Double

 Const pi As Double = 3.141592654

 If IsMissing(m) Then

 m2 = n

 ElseIf m < 0 Or m > n Then

 m2 = n

 Else

 m2 = m

 End If

 a = 0

 For j = 1 To n

 a = a + F(j)

 Next j

 D(0) = a / n

 w = 2 * pi / n

 c0 = Cos(w): s0 = Sin(w)

 z = 2 / n

 c1 = 1: s1 = 0

 For k2 = 2 To m2 Step 2

 w = c1 * c0 - s1 * s0

 s1 = s1 * c0 + c1 * s0: s2 = s1

 c1 = w: c2 = c1

 a = 0: b = 0

 For j = 1 To n

 a = a + F(j) * c2

 b = b + F(j) * s2

 w = c2 * c1 - s2 * s1

 s2 = s2 * c1 + c2 * s1: c2 = w

 Next j

 D(k2 - 1) = b * z

 D(k2) = a * z

 If k2 = n Then

 D(k2 - 1) = 0

 D(k2) = D(k2) / 2

 End If

 Next k2

End Sub

Chapter 5. Quadratic and Linear Splines

404

The subroutine name (fouf) occurs from words “Fourier” and “forward”.

The subroutine parameters have the following sense:

 n is the number of equal steps on the period;

 F is an array of the function values;

 D is an array intended for the Fourier coefficients;

 m is the doubled number of harmonic oscillations, which are of interest

(this optional parameter is used for possible reducing the execution time).

The basis of this subroutine are formulas (5.68) — (5.70), (5.72) and (5.73).

According to formulas (5.69) and (5.70), the forward discrete Fourier transform

requires the calculation of the sine and cosine values, repeated many times.

These values can be calculated in one of two ways:

 by the multiple calls of built-in functions Sin(x) and Cos(x);

 by the single call of functions Sin(x) and Cos(x) for calculating the

values of)/2sin(n and)/2cos(n , and by subsequent usage of trigonometric

formulas for calculating the values of)/2sin(nkj and)/2cos(nkj at k > 1

and/or j > 1.

To reduce the execution time, the second way is used, which is based on the

following trigonometric formulas [3]:

)sin()cos()cos()sin()sin(, (5.74)

)sin()sin()cos()cos()cos(, (5.75)

where α and β are angles.

Into Module15 of the BookNM workbook, we enter the following declaration

of the subroutine for the backward discrete Fourier transform:

Listing 5.8

Sub foub(ByVal n, ByRef F() As Double, _

 ByRef D() As Double, Optional m)

 Dim m2 As Integer, j As Integer, k2 As Integer

 Dim w As Double, z As Double

 Dim c0 As Double, s0 As Double

 Dim c1 As Double, s1 As Double

 Dim c2 As Double, s2 As Double

 Const pi As Double = 3.141592654

 If IsMissing(m) Then

 m2 = n

 ElseIf m < 0 Or m > n Then

 m2 = n

 Else

 m2 = m

 End If

5.11. Subroutines for the forward and backward discrete Fourier transforms

405

 w = 2 * pi / n

 c0 = Cos(w): c1 = c0: c2 = c1

 s0 = Sin(w): s1 = s0: s2 = s1

 For j = 1 To n

 z = D(0)

 For k2 = 2 To m2 Step 2

 z = z + D(k2 - 1) * s2 + D(k2) * c2

 w = c2 * c1 - s2 * s1

 s2 = s2 * c1 + c2 * s1: c2 = w

 Next k2

 F(j) = z: w = c1 * c0 - s1 * s0

 s1 = s1 * c0 + c1 * s0: s2 = s1

 c1 = w: c2 = c1

 Next j

 F(0) = F(n)

End Sub

The subroutine name (foub) occurs from words “Fourier” and “backward”.

The parameters have the following sense:

 n is the number of equal steps on the period;

 F is an array intended for the function values;

 D is an array of the Fourier coefficients;

 m is the doubled number of harmonic oscillations, which are considered.

Formulas (5.67), (5.71), (5.74) and (5.75) are used in the foub subroutine.

Chapter 5. Quadratic and Linear Splines

406

5.12. Solving the sound insulation problem

The sound waves, emitted by a sound source (by a vibrating body), propagate

in the medium (in a solid body, liquid or gas) in the form of longitudinal oscilla-

tions of the density of the medium. The ear of an adult person perceives sound

oscillations with frequency T/1 from 17 — 20 Hz to about 20 kHz.

To lower the sound level (i.e., the amplitude of the density oscillation),

soundproof coverings are used. A technique of constructing such coverings with

given acoustic parameters was developed at the Andreyev Acoustics Institute,

Moscow. According to Fig. 5.19 (from page http://www.akin.ru/r_comm15.htm

of the institute website), the covering is characterized by efficiency with respect

to lowering the sound level. As we see, both the calculated and experimental

dependences for the covering’s efficiency are linear splines whose argument is

the logarithm of frequency 2// kTk of harmonic oscillation (5.55).

Fig. 5.19. The calculated (dark) and experimental (light) dependences of

the efficiency on the frequency: between the fractures, the efficiency is a linear

function of the logarithm of frequency (the base of logarithm does not matter due

to proportionality of logarithms with different bases [3]: xMx
ba

loglog)

5.12. Solving the sound insulation problem

407

Let us return to modeling of the bar oscillation in Section 3.20. We will at-

tach weightless membrane Ms (whose area equals A) to the bar and consider that

this membrane is the sound source, at that, dependence)(tu in Fig. 3.18 is the

Ms membrane deviation. Besides, we will place the mechanism in a box with the

soundproof covering whose efficiency is defined by the calculated (dark) de-

pendence in Fig. 5.19.

We have to answer the following question: by how many decibels is the

sound (from the Ms membrane) attenuated, when it goes through the box’s

soundproof covering?

Outside the box, we place weightless membrane Mr (whose area equals A) of

the sound receiver;)(tu
r

 is the periodic dependence, which characterizes the Mr

membrane deviation (Fig. 5.20). We have to determine difference Δ (in decibels)

between the intensities of the oscillations of membranes Ms and Mr.

Fig. 5.20. The membranes separated by the soundproof covering

We use the following definition of the intensity of the harmonic oscillation

with frequency Tk / :

)(lg10lg10 2

2

2

12

2

kkkk
ddAP ,

where lg is the decimal logarithm,
k

A is the oscillation amplitude,
12k

d ,
k

d
2

are the Fourier coefficients of this oscillation, k = 1, 2, 3, ...

The intensities of the harmonic oscillations of membranes Ms and Mr are

given by formulas

])()[(lg10 2

2

2

12

s

k

s

k

s

k
ddP , (5.76)

])()[(lg10 2

2

2

12

r

k

r

k

r

k
ddP , (5.77)

where s

k
d

12
, s

k
d

2
 and r

k
d

12
, r

k
d

2
 are the Fourier coefficients of dependences

)(tu and)(tu
r

, respectively, k = 1, 2, 3, ...

Chapter 5. Quadratic and Linear Splines

408

The efficiency (in decibels) of the soundproof covering at frequency Tk / is

equal to

r

k

s

kk
PP . (5.78)

The sound oscillation of the environment density can be written in form

(5.56). Let us assume that phase
k

tk of harmonic oscillation (5.55) does

not change when the sound goes through the soundproof covering, and amplitude

A
k
 changes only (k = 1, 2, 3, ...). In this case, the sound attenuation is calculated

as follows.

1. By means of the fouf subroutine, the forward discrete Fourier transform

of the)(tu dependence, depicted in Fig. 3.18 (n = 25), is performed, that is,

Fourier coefficients sd
0

, s

k
d

12
, s

k
d

2
 of this dependence are calculated, k = 1,

2, ..., 12.

2. The summary intensity of the oscillation of membrane Ms is calculated

according to formula

12

1

2

2

2

12
])()[(lg10

k

s

k

s

ks
ddP . (5.79)

3. For every frequency Tk / , the values of

20/

1212
10 ks

k

r

k
dd , (5.80)

20/

22
10 ks

k

r

k
dd (5.81)

are calculated, where
k

 is the efficiency of the soundproof covering at the con-

sidered frequency, k = 1, 2, ..., 12. Formulas (5.80) and (5.81) follow from the

logarithm properties [3] and formulas (5.57), (5.76) — (5.78).

4. The summary intensity of the oscillation of membrane Mr is calculated

according to formula

12

1

2

2

2

12
])()[(lg10

k

r

k

r

kr
ddP . (5.82)

5. The required sound attenuation is calculated according to the following

formula:

rs
PP . (5.83)

To obtain dependence)(tu
r

 of the Mr membrane deviation, we have to per-

form the backward discrete Fourier transform by means of the foub subroutine

5.12. Solving the sound insulation problem

409

according to formula (5.67), which includes 0
0

rd and the values of rd
1

, rd
2

,

rd
3

, rd
4

, ..., rd
23

, rd
24

 calculated according to formulas (5.80) and (5.81).

As the source data for a program, intended for solving our problem, we use

table Listing 5.9, which includes:

 the results of solving the oscillation equation (Fig. 3.18);

 the dependence of the covering’s efficiency on the frequency.

Listing 5.9

M 0.001 N 8

K 800 frequency

efficiency

L 100 17 5

F t u 45 1

0.00E+00 0.00E+00 6.62E-04 100 13.8

0.00E+00 2.00E-03 -5.89E-03 126 10

0.00E+00 4.00E-03 5.89E-03 158 8.8

0.00E+00 6.00E-03 -1.60E-03 720 8.8

0.00E+00 8.00E-03 -3.07E-03 1100 10

0.00E+00 1.00E-02 4.66E-03 1600 10

0.00E+00 1.20E-02 -2.57E-03

0.00E+00 1.40E-02 -1.01E-03

0.00E+00 1.60E-02 3.20E-03

0.00E+00 1.80E-02 -2.67E-03

0.00E+00 2.00E-02 2.91E-04

0.00E+00 2.20E-02 1.87E-03

0.00E+00 2.40E-02 -2.27E-03

0.00E+00 2.60E-02 9.54E-04

5.00E+00 2.80E-02 8.20E-04

1.00E+01 3.00E-02 1.65E-02

5.00E+00 3.20E-02 1.77E-02

0.00E+00 3.40E-02 -1.46E-02

0.00E+00 3.60E-02 1.48E-03

0.00E+00 3.80E-02 1.03E-02

0.00E+00 4.00E-02 -1.25E-02

0.00E+00 4.20E-02 5.17E-03

0.00E+00 4.40E-02 4.59E-03

0.00E+00 4.60E-02 -9.23E-03

0.00E+00 4.80E-02 6.32E-03

0.00E+00 5.00E-02 6.62E-04

Chapter 5. Quadratic and Linear Splines

410

The subtable with the dependence of the covering’s efficiency on the fre-

quency includes:

 N, the number of the frequency values;

 the frequency values (in hertzs) in column frequency;

 the efficiency values (in decibels) in column efficiency, according to the

dark dependence in Fig. 5.19.

The program follows:

Listing 5.10

Sub main()

 Dim T() As Double

 Dim U() As Double

 Dim D() As Double

 Dim m As Integer

 Dim N As Integer

 Dim j As Integer, k2 As Integer

 Dim i As Integer

 Dim sb As String, se As String

 Dim fr As Double, eff As Double

 Dim ln_frequ() As Double

 Dim efficiency() As Double

 Dim MOM() As Double

 Dim Ps As Double, Pr As Double

 Dim w As Double

 m = Selection.Rows.Count 'quantity of rows

 N = Selection.Cells(1, 5)

 ReDim T(0 To m - 5)

 ReDim U(0 To m - 5)

 ReDim D(0 To m - 5)

 ReDim ln_frequ(1 To N)

 ReDim efficiency(1 To N)

 ReDim MOM(1 To N)

 For j = 0 To m - 5

 T(j) = Selection.Cells(j + 5, 2)

 U(j) = Selection.Cells(j + 5, 3)

 Next j

 sb = Selection.Cells(5, 2).Address

 se = Selection.Cells(m, 3).Address

0: Call graph(sb, se, "t, s", "u, m")

 For i = 1 To N

 ln_frequ(i) = Log(Selection.Cells(i + 2, 4))

 efficiency(i) = Selection.Cells(i + 2, 5)

5.12. Solving the sound insulation problem

411

 MOM(i) = 0

 Next i

1: Call fouf(m - 5, U, D)

 D(0) = 0

 fr = 1 / T(m - 5) 'value of main frequency 1/T

'Calculating value of Ps:

 w = 0

 For k2 = 2 To m - 5 Step 2

 w = w + D(k2 - 1) ^ 2 + D(k2) ^ 2

 Next k2

 Ps = 10 * Log(w) / 2.302585093

'Calculating value of Pr:

 w = 0

 For k2 = 2 To m - 5 Step 2

2: Call si(1, N, ln_frequ, efficiency, MOM, _

 Log(k2 / 2 * fr), eff)

 D(k2 - 1) = D(k2 - 1) * 10 ^ (-eff / 20)

 D(k2) = D(k2) * 10 ^ (-eff / 20)

 w = w + D(k2 - 1) ^ 2 + D(k2) ^ 2

 Next k2

 Pr = 10 * Log(w) / 2.302585093

'Calculating sound attenuation:

3: w = Ps - Pr

4: MsgBox "delta =" & Str(Round(w, 3)) & " dB"

'Synthesis of time dependence:

5: Call foub(m - 5, U, D)

 sb = Selection.Cells(5, 6).Address

 se = Selection.Cells(m, 7).Address

 Selection.Cells(4, 6) = "t"

 Selection.Cells(4, 7) = "ur"

 For j = 0 To m - 5

 Selection.Cells(j + 5, 6) = T(j)

 Selection.Cells(j + 5, 7) = U(j)

 Next j

6: Call graph(sb, se, "t, s", "ur, m")

 Range("O33").Select

End Sub

Operator 0 of this program creates the)(tu graph of the bar deviation, i.e.,

of the deviation of membrane Ms, which is the sound source. For that, the

graph subroutine (Section 4.8) is used for the first time.

Chapter 5. Quadratic and Linear Splines

412

Further, dependence)(tu is expanded into the Fourier series by calling the

fouf subroutine for the forward discrete Fourier transform (operator 1). By

means of the first k2 cycle, the value of
s

P is calculated according to formula

(5.79).

By means of the second k2 cycle, the value
r

P is calculated according to

formulas (5.80) — (5.82). In this case, the linear spline, determined by the de-

pendence of efficiency on frequency in tabular form, is used. The argument of the

linear spline is ln_ frequ — the logarithm of frequency or the so-called logarith-

mic frequency (see operator 2 and the caption to Fig. 5.19).

Operator 3 calculates the sound attenuation according to formula (5.83). The

resulting value is rounded up to three decimal places and put into the standard

window (operator 4).

By calling the foub subroutine for the backward discrete Fourier transform,

periodic time dependence)(tu
r

 of the deviation of membrane Mr
, which is the

sound receiver, is synthesized (operator 5). Operator 6 creates the)(tu
r

 graph.

For that, the graph subroutine is used for the second time.

The source data for program Listing 5.10 are the values given in complex

table Listing 5.9 (Fig. 5.21). Before running the program, this Excel table (range

B2:F31) must be selected.

Fig. 5.21. The Excel table with the source data

After starting the program execution:

1) the)(tu graph appears;

5.12. Solving the sound insulation problem

413

2) the window with the Δ value of the sound attenuation appears (Fig. 5.22);

3) after clicking on OK, the)(tu
r

 dependence and its graph appear.

Fig. 5.23 shows the Excel worksheet upon termination of the program execu-

tion. The automatically constructed graphs of dependences)(tu and)(tu
r

 are

on this worksheet; Fig. 5.24 shows them completely.

Fig. 5.22. Window with the calculated sound attenuation

Fig. 5.23. The calculated)(tu
r

 dependence and graphs

Chapter 5. Quadratic and Linear Splines

414

a

b

Fig. 5.24. The automatically created graphs: a —)(tu ; b —)(tu
r

We advise the reader to return to the task on p. 279 for calculating the Fouri-

er coefficients of dependences)(tv and)(ti .

415

Chapter 6.

Numerical Methods

for Nonlinear Programming

For solving a series of applied problems, in particular the ones involving

optimization, we must find minimum point x of linear or nonlinear non-

negative function)(xF =)...,,,(
21 n

xxxF , where x =)...,,,(
21 n

xxx is

a point (vector) of the n-dimensional space, n ≥ 1. The)(xF function being min-

imized is called an objective function.

Minimizing a linear objective function with linear constraints is called linear

programming. Minimizing a nonlinear objective function (with or without con-

straints) is called nonlinear programming.

The minimization, which does not require knowledge of mathematical

expressions for partial derivatives of the objective function with respect to its

arguments, is called the search for the minimum point. The importance of search

methods follows from the fact that expressions for the partial derivatives are

often unavailable.

In the first section of this chapter, tasks of linear and nonlinear programming

are solved by means of the Solver add-in. In the fifth chapter of book [2], we

demonstrated that Solver for Excel 2007 can give an incorrect result upon mini-

mizing nonlinear function

2

1

22

1221
)1()(100),(xxxxxF (6.1)

known as the Rosenbrock function. We did not observe this drawback in the later

versions of Excel (2010 and 2013). However, the minimization method, realized

in Solver for the later versions of Excel, is less efficient than the Powell method

[14] considered in this chapter (p. 454).

The x point is called a local minimum of function)(xF if a neighborhood

of x exists, where inequality)()(xx FF is satisfied. Function)(xF can be

unimodal, with one local minimum, or multimodal, with several local minima.

Two subroutines are developed that are intended to find a local minimum of

the)(xF function of one or several variables. In the case of several variables,

these subroutines realize the coordinate-descent and Powell methods.

Chapter 6. Numerical Methods for Nonlinear Programming

416

Possibilities of the developed minimization subroutines are demonstrated on

the following mathematical and applied tasks:

 optimizing the dimensions of a one-liter tin can;

 determining the equilibrium state of a four-spring mechanical system;

 minimizing a nonlinear function with nonlinear constraints and a tabular

function of two variables;

 determining the local minima of a multimodal function of two variables.

Besides, the minimization subroutines are used:

 in the shooting method for solving the nonlinear differential equation with

boundary conditions;

 in the least-squares method for determining the production function.

It is obvious that the problem of maximizing positive function)(xG is

equivalent to the problem of minimizing function)(/1)(xx GF . Therefore, the

minimization subroutines of this chapter can be used to find the maxima of func-

tion)(xG .

6.1. Minimizing linear and nonlinear functions of several variables by the Solver add-in

417

6.1. Minimizing linear and nonlinear functions

of several variables by the Solver add-in

We used the Solver add-in for solving the nonlinear algebraic equation (Sec-

tion 4.5). Let us consider two more examples of using this add-in — for solving

problems of linear and nonlinear programming.

Initially, we will solve the following transportation problem of linear pro-

gramming from article [15].

There are three points (A
1
, A

2
, A

3
) for sending identical loads and four points

(B
1
, B

2
, B

3
, B

4
) for receiving them. Let

ij
c be the expenses for relocation of one

load from A
i
 to B

j
 (i = 1, 2, 3, j = 1, 2, 3, 4). We have to find the minimum of

total expenses for the required relocations from points A
1
, A

2
, A

3
 to points B

1
,

B
2
, B

3
, B

4
.

More precisely, the source data for the problem include:

 the matrix of expenses for transportation of one load looking like

8612

1244

6543

34333231

24232221

14131211

cccc

cccc

cccc

C ;

 the number of loads at points A
1
, A

2
, A

3
: 8

1
a , 5

2
a , 7

3
a ;

 the requirement for loads at points B
1
, B

2
, B

3
, B

4
: 4

1
b , 4

2
b ,

2
3

b , 10
4

b (note that
3214321

aaabbbb).

We have to find:

 the minimum of total expenses for the load relocations from points A
1
,

A
2
, A

3
 to points B

1
, B

2
, B

3
, B

4
;

 the corresponding number of loads relocated from point A
i
 to point B

j

(i = 1, 2, 3, j = 1, 2, 3, 4).

For solving the formulated problem, let us put:

 the C matrix into range A1:D3 on an Excel worksheet;

 values 8
1

a , 5
2

a , 7
3

a into cells E1:E3 of the same worksheet;

 values 4
1

b , 4
2

b , 2
3

b , 10
4

b into cells A4:D4 (Fig. 6.1).

Chapter 6. Numerical Methods for Nonlinear Programming

418

Fig. 6.1. The Excel worksheet with the source data:

the shaded range corresponds to the C matrix

We will use matrix

34333231

24232221

14131211

xxxx

xxxx

xxxx

X ,

where
ij

x is the number of loads relocated from A
i
 to B

j
.

Product
ijij

xc denotes the expenses for the load relocation from point A
i

to point B
j
 (i = 1, 2, 3, j = 1, 2, 3, 4). The total expenses for the relocations are

equal to

ji

ijij
xcF

,

, (6.2)

where the summation is over i = 1, 2, 3 and j = 1, 2, 3, 4.

Formula (6.2) gives the linear function of 12 variables,

),,,,,,,,,,,(
343332312423222114131211

xxxxxxxxxxxxFF ,

whose arguments are the X matrix elements. We have to minimize this function

with linear constraints

i

j

ij
ax

4

1

, (6.3)

i = 1, 2, 3,

j

i

ij
bx

3

1

, (6.4)

j = 1, 2, 3, 4.

Continuing to fill the Excel worksheet, we allot cells A5:D7 for the X matrix

elements, which are unknown, and put arbitrary numbers into these cells (for

example, units). Into cell F2, we enter formula

=SUMPRODUCT(A1:D3;A5:D7)

6.1. Minimizing linear and nonlinear functions of several variables by the Solver add-in

419

corresponding to mathematical formula (6.2). Into cells E5, E6 and E7, we enter

formulas

=SUM(A5:D5)

=SUM(A6:D6)

=SUM(A7:D7)

corresponding to the left-hand side of constraints (6.3). Into cells A8, B8, C8 and

D8, we enter formulas

=SUM(A5:A7)

=SUM(B5:B7)

=SUM(C5:C7)

=SUM(D5:D7)

corresponding to the left-hand side of constraints (6.4).

Upon tuning Excel so that formulas are displayed in cells (p. 193), the work-

sheet takes the form depicted in Fig. 6.2. We return to the customary tuning of

Excel when the calculated results are in cells.

Fig. 6.2. The Excel worksheet with the formulas in the cells: the shaded

top and bottom ranges correspond to the C and X matrices, respectively

Let us fulfill the following operations:

1) Data > Solver in area Analysis;

2) in the Solver Parameters window, enter F2 into text box Set Objective;

3) turn on option Min;

4) enter A5:D7 into text box By Changing Variable Cells;

5) by means of clicks on the Add button, successively enter conditions

E5:E7=E1:E3 and A8:D8=A4:D4 into box Subject to the

Constraints (in addition to the equal sign, we can use comparison signs “less

than or equal to” and “greater than or equal to” in the constraints);

Chapter 6. Numerical Methods for Nonlinear Programming

420

6) enter Simplex LP into box Select a Solving Method by means of the drop-

down list (Fig. 6.3);

7) click on the Solve button;

8) in the Solver Results window opened, click on OK.

Fig. 6.3. The Solver Parameters window before minimizing

linear function (6.2) with linear constraints (6.3) and (6.4)

Results of minimizing function (6.2) with constraints (6.3) and (6.4) appear

in cell F2 and range A5:D7 (Fig. 6.4).

Value 58 in cell F2 gives the minimum of total expenses for the load reloca-

tions. The contents of range A5:D7 suggest the distribution of the load reloca-

tions for minimizing the total expenses.

For example:

6.1. Minimizing linear and nonlinear functions of several variables by the Solver add-in

421

 value 1
11

x (in cell A5) means that one load must be relocated from

point A
1
 to point B

1
;

 value 5
24

x (in cell D6) means that five loads must be relocated from

point A
2
 to point B

4
.

Fig. 6.4. The worksheet upon termination of minimizing

function (6.2) with constraints (6.3) and (6.4)

According to the source data for the problem solved by us, equality

4

1

3

1 j

j

i

i
ba

is satisfied. If this equality is not satisfied, that is,

4

1

3

1 j

j

i

i
ba ,

we should introduce virtual point B
5
 (for receiving the loads) and consider that

4

1

3

1

5

j

j

i

i
bab ,

0
352515

ccc .

Further, we use the above method for solving the problem of minimizing the

total expenses for the load relocations from points A
1
, A

2
, A

3
 to points B

1
, B

2
,

B
3
, B

4
, B

5
. The calculated values of

15
x ,

25
x ,

35
x are the numbers of loads

remaining at points A
1
, A

2
, A

3
.

Chapter 6. Numerical Methods for Nonlinear Programming

422

According to the fourth chapter of book [2], the considered operation mode

of Solver for Excel 2007 can be used for solving the system of linear algebraic

equations (3.49). Solver for the later versions of Excel does not have this ability.

Below, we will minimize nonlinear function (6.1), the Rosenbrock function,

by means of the Solver add-in. The graph of this rather popular test function is

depicted in Fig. 6.5, which is taken from the following page of Wikipedia, the

free encyclopedia: http://en.wikipedia.org/wiki/Rosenbrock_function.

The following is obvious:

 nonlinear function (6.1) is continuous and non-negative;

 point x of the function minimum has coordinates 1
21

xx , and

0)1,1(F ;

 point x is in “ravine” (on the dark stripe in Fig. 6.5).

Let us show that the Rosenbrock function does not have other minimum points.

Fig. 6.5. Graphic of Rosenbrock function 2

1

22

1221
)1()(100),(xxxxxF

The partial derivatives of function (6.1) are defined by the following algebra-

ic expressions:

6.1. Minimizing linear and nonlinear functions of several variables by the Solver add-in

423

22400400/
121

3
11

xxxxxF , (6.5)

)
2

122
(200/ xxxF . (6.6)

According to the necessary condition for an extreme value [3], the minimum

points of function),(
21

xxF belong to the set of points),(
21

xx that are solu-

tions of the system of equations

0/
1

xF ,

0/
2

xF

or

022400400
121

3

1
xxxx ,

02

12
xx .

According to the second equation, 2

12
xx . Substituting this expression into the

first equation, we have 1
1

x . Consequently, 12

12
xx .

Thus, function (6.1) has the unique minimum point with coordinates

1
21

xx , i.e., the function is unimodal, and high-quality minimization tools

must find this point under any initial approximation.

To minimize function (6.1) by means of the Solver add-in, we assume that:

 the G1 and H1 cells contain the values of
1

x and
2

x , respectively;

 the F1 cell contains the value of),(
21

xxF .

Into cell F1, we enter formula

=100*(H1-G1^2)^2+(1-G1)^2

corresponding to mathematical formula (6.1). Into cells G1 and H1, we respec-

tively enter values - 5.5 and 0.5 defining the initial approximation of the mini-

mum point:
1

x = - 5.5 and
2

x = 0.5 (Fig. 6.6).

Fig. 6.6. The worksheet before minimizing nonlinear function (6.1)

Chapter 6. Numerical Methods for Nonlinear Programming

424

Let us fulfill the following operations:

1) Data > Solver in area Analysis;

2) in the Solver Parameters window opened, enter F1 into text box Set

Objective;

3) turn on option Min;

4) enter G1:H1 into text box By Changing Variable Cells;

5) enter GRG Nonlinear into box Select a Solving Method by means of the

drop-down list (Fig. 6.7)

6) click on the Solve button;

7) click on the OK button in the Solver Results window.

The result of minimizing the Rosenbrock function is given in Fig. 6.8.

Fig. 6.7. The Solver Parameters window before minimizing function (6.1)

6.1. Minimizing linear and nonlinear functions of several variables by the Solver add-in

425

Fig. 6.8. The worksheet upon termination of minimizing function (6.1)

The Excel formula, intended for calculating the values of objective function

),(
21

xxF , may include Excel functions, in particular, user-defined functions.

To demonstrate this, let us consider the following user-defined function corre-

sponding to mathematical function (6.1).

Listing 6.1

Function Rosenbrock(x1, x2)

 Rosenbrock = 100 * (x2 - x1 ^ 2) ^ 2 + _

 (1 - x1) ^ 2

End Function

We put this declaration into Module16 of the BookNM workbook and formula

=Rosenbrock(G1;H1)

into cell F1.

Excel user-defined functions, developed by means of VBA, may be very

complicated. Therefore, the Solver add-in allows us to solve quite complex

problems.

During the minimization, we can see results of iterations. For demonstrating

this possibility of the Solver add-in, we will solve the previous task again (see

Fig. 6.9, which is similar to Fig. 6.6).

Fig. 6.9. The worksheet before minimizing nonlinear function (6.1)

To see results of iterations, we fulfill the following operations:

1) click on the Options button in the Solver Parameters window depicted in

Fig. 6.7;

Chapter 6. Numerical Methods for Nonlinear Programming

426

2) in the Options window opened, turn on option Show Iteration Results

(Fig. 6.10);

3) click on the OK button;

4) click on the Solve button in the Solver Parameters window (Fig. 6.7).

Fig. 6.10. The Options window with option Show Iteration Results turned on

6.1. Minimizing linear and nonlinear functions of several variables by the Solver add-in

427

Fig. 6.11a shows the result of the first iteration. After the next 4 clicks on

Continue in window Show Trial Solution, we see the result of the 5th iteration

(Fig. 6.11b). After the next 16 clicks on Continue, the Solver Results window

appears. We click on OK in the last window to terminate the execution.

Fig. 6.12, which is similar to Fig. 6.8, shows the result. Thus, 21 iterations were

performed.

The Powell minimization method (Section 6.5) gives the same result after 5

iterations (p. 454).

a

b

Fig. 6.11. The worksheet after the 1st (a) and 5th (b) iterations

Fig. 6.12. The worksheet upon termination of minimizing function (6.1)

Chapter 6. Numerical Methods for Nonlinear Programming

428

6.2. Method for minimizing a nonlinear

function of one variable

The minimization of a nonlinear function of one variable,)(xf , is an itera-

tive process, which needs an initial approximation of the required minimum

point. When developing the minimization method, we will assume that)(xf

satisfies the following conditions (in the function’s domain including the unique

minimum point, x , and its initial approximation, 0x):

 the)(xf function is continuous and non-negative;

 the derivative,)(xf , is continuous (that is, the function is smooth).

In the algorithm below, the minimization of)(xf includes the following

three stages:

1) finding the so-called uncertainty segment, which contains point x within

itself;

2) reducing the uncertainty segment to one and a half times;

3) reducing the uncertainty segment by means of the parabolic interpolation

of)(xf .

For finding the uncertainty segment, the movement along the x axis must be

in the direction of decreasing)(xf , at that, each step is twice as large as the

previous step (as in the second chapter of book [16]).

When searching the uncertainty segment, only three points are stored, whose

designations are a, b, c, at that, point a is the last, b is the penultimate point,

c precedes b. The function values at these points are also stored:)(aff
a

,

)(bff
b

,)(cff
c

. The movement is terminated when function)(xf

becomes increasing, i.e., condition
ba

ff is satisfied (Fig. 6.13). Resulting

],[ca is the uncertainty segment.

Let d be the midpoint of segment],[ba : 2/)(bad . After calculating

value)(dff
d

 (Fig. 6.14), the condition of the termination of searching the

minimum point is checked and, if needed, the uncertainty segment is reduced

according to the following algorithm.

6.2. Method for minimizing a nonlinear function of one variable

429

Fig. 6.13. Termination of searching the uncertainty segment:],[ca is

the uncertainty segment; the movement from right to left took place

Fig. 6.14. The result of calculating value)(dff
d

:

segments],[da ,],[bd and],[cb are equal in length

1. If condition
bdb

fff is satisfied (is a given positive constant),

the minimization is terminated, and assignments dx ,
d

fxf)(are per-

formed. Otherwise, the next item is fulfilled.

Chapter 6. Numerical Methods for Nonlinear Programming

430

2. Of the four points (a, b, c, d), three neighboring points are chosen, such

that the function value at the midpoint is less than the function values at the

endpoints. These three points are denoted by letters a, b, c; the corresponding

function values are denoted by
a

f ,
b

f ,
c

f , respectively. As a result, the uncer-

tainty segment,],[ca , is reduced to one and a half times (Fig. 6.15).

3. The minimum point of the parabola, passing through points A = (a, a
f),

B = (b, b
f), C = (c, c

f), is calculated according to formula

)()()(

)()()(
5.0

222222

bafacfcbf

bafacfcbf
d

cba

cba . (6.7)

The derivation of this formula is given below.

4. Value)(dff
d

 is calculated (Fig. 6.15). The jump to the first item is

performed.

Fig. 6.15. The results of reducing the uncertainty segment to 1.5 times and

of the parabolic interpolation:],[ca is the resulting uncertainty segment;

b is the midpoint of],[ca ; d is the minimum point of the parabola

Let us derive formula (6.7).

According to the Lagrange interpolation formula [3], the equation of the

quadratic parabola, passing through points A, B, C (Fig. 6.15), is as follows:

cba
f

bcac

bxax
f

cbab

cxax
f

caba

cxbx
y

))((

))((

))((

))((

))((

))((
.

6.2. Method for minimizing a nonlinear function of one variable

431

Using the basic rules of differentiation [3], we obtain

cba
f

bcac

bxax
f

cbab

cxax
f

caba

cxbx

dx

dy

))((

)()(

))((

)()(

))((

)()(
.

We bring the right-hand side of this expression down to common denominator:

aa
fcbfcbx

cbcabadx

dy
)()(2[

))()((

1
22

])()(2)()(2 2222

ccbb
fbafbaxfcafcax .

The coordinate of the minimum point of the considered quadratic parabola is

the solution of equation 0/ dxdy , that is,

bbaa
fcafcaxfcbfcbx)()(2)()(2 2222

0)()(2 22

cc
fbafbax

or

cba
fbaxfcaxfcbx)(2)(2)(2

cba
fbafcafcb)()()(222222 .

This solution, denoted by d, has form (6.7).

Chapter 6. Numerical Methods for Nonlinear Programming

432

6.3. The coordinate-descent method

Let)...,,,(

210 n
xxxFx be a continuous and non-negative function of n

variables. Besides, we assume that this function has the unique minimum point

and continuous partial derivatives
1

/ xF ,
2

/ xF , …,
n

xF / . Determining

the minimum point of)...,,,(
21 n

xxxF is an iterative process.

In the coordinate-descent method, each iteration consists of successive mini-

mizations of the F function on arguments
1

x ,
2

x , …,
n

x : at first, the minimiza-

tion of the F function on
1

x is performed, then on
2

x , ..., and on
n

x . The itera-

tions are repeated until the condition of the termination of searching the mini-

mum point is satisfied.

The declaration of the mini subroutine, realizing the coordinate-descent

method, is given below. We enter it into Module17 of the BookNM workbook.

Listing 6.2

Sub mini(ByVal n, ByRef x() As Double, _

 ByRef ss() As Double, ByVal rho, Optional alpha)

 Dim fa As Double, fb As Double, fc As Double

 Dim fd As Double

 Dim a As Double, b As Double, c As Double

 Dim d As Double, e As Double

 Dim s() As Double: ReDim s(n)

 Dim y() As Double: ReDim y(n)

 Dim z() As Double: ReDim z(n)

 Dim sss() As Double: ReDim sss(n, n)

 Dim i As Byte, j As Byte

 d = 0

 For j = 1 To n

 For i = 1 To n

 If i <> j Then d = ss(i, j) ^ 2 + d

 Next i

 Next j

6.3. The coordinate-descent method

433

 If d <> 0 Then

 MsgBox "mini: Array ss is non-diagonal"

 End 'immediate termination of macro

 End If

 For j = 1 To n

 For i = 1 To n

 sss(i, j) = ss(i, j)

 Next i

 Next j

m1: For i = 0 To n

 y(i) = x(i)

 z(i) = x(i)

 Next i

 For j = 1 To n 'j - number of descent direction

 For i = 1 To n

 s(i) = ss(i, j)

 Next i

 d = 0

 For i = 1 To n

 d = s(i) ^ 2 + d

 Next i

 If d = 0 Then

 For i = 1 To n

 s(i) = sss(i, j)

 Next i

 Else

 For i = 1 To n

 sss(i, j) = s(i)

 Next i

 End If

'Finding uncertainty segment:

 fa = y(0): fb = y(0): fc = y(0)

 a = 0: b = 0: c = 0

 d = 1: e = 1

s1: For i = 1 To n

 x(i) = y(i) + d * s(i)

 Next i

 Call func(n, x)

 If Not IsMissing(alpha) Then

 If x(0) < alpha Then GoTo m3

 End If

 fd = x(0)

Chapter 6. Numerical Methods for Nonlinear Programming

434

 If fd < fa Then

 fc = fb: fb = fa: fa = fd

 c = b: b = a: a = d

 d = 2 * d + e

 GoTo s1

 Else

 If fa = fb Then

 fb = fd

 b = d

 e = -2 * d

 d = e

 GoTo s1

 End If

 End If

 fc = fb: fb = fa: fa = fd

 c = b: b = a: a = d

 d = (a + b) * 0.5

 For i = 1 To n

 x(i) = y(i) + d * s(i)

 Next i

 Call func(n, x)

 If Not IsMissing(alpha) Then

 If x(0) < alpha Then GoTo m3

 End If

 fd = x(0)

'Reducing uncertainty segment:

s2: If Abs(fb - fd) < rho * fb Then GoTo s0

 If (c - d) * (d - b) < 0 Then

 If fd < fb Then

 fc = fb: fb = fd

 c = b: b = d

 Else

 fa = fd

 a = d

 End If

 Else

 If fd < fb Then

 fa = fb: fb = fd

 a = b: b = d

 Else

 fc = fd

 c = d

6.3. The coordinate-descent method

435

 End If

 End If

 d = fa * (b - c) + fb * (c - a) + fc * (a - b)

 If d = 0 Then GoTo s0

 d = (fa * (b * b - c * c) + _

 fb * (c * c - a * a) + _

 fc * (a * a - b * b)) / (2 * d)

 For i = 1 To n

 x(i) = y(i) + d * s(i)

 Next i

 Call func(n, x)

 If Not IsMissing(alpha) Then

 If x(0) < alpha Then GoTo m3

 End If

 fd = x(0)

 GoTo s2

s0: For i = 1 To n

 ss(i, j) = x(i) - y(i)

 y(i) = x(i)

 Next i

 y(0) = x(0)

 Next j

'Checking condition of minimization termination:

m3: If Not IsMissing(alpha) Then

 If test(n, x, z, rho, alpha) Then GoTo m1

 Else

 If test(n, x, z, rho) Then GoTo m1

 End If

End Sub

The mini subroutine under consideration has five parameters, and parameter

alpha is optional.

The obligatory parameters have the following sense:

 n is the number of variables;

 x is an array with elements x(0), x(1), x(2), …, x(n), at that,

memory cell x(0) contains the F function’s value corresponding to the values

of
1

x ,
2

x , …,
n

x being in memory cells x(1), x(2), …, x(n), respectively;

 ss is a two-dimensional array n × n, corresponding to diagonal matrix S

of initial steps: memory cell ss(1, 1) contains the initial step along the

1
x axis, cell ss(2, 2) contains the initial step along the

2
x axis, …, cell

Chapter 6. Numerical Methods for Nonlinear Programming

436

ss(n, n) contains the initial step along the
n

x axis (the diagonal matrix is

a square matrix that has nonzero elements only on its main diagonal);

 rho is the relative change in F, terminating the minimization along an

axis (see in the first item of the algorithm in the previous section).

The above declaration of the mini subroutine, Listing 6.2, contains three

calls of the func subroutine intended for calculation of the F function’s value

(the value of the x(0) element) corresponding to the current values of elements

x(1), x(2), …, x(n).

Optional parameter alpha of the mini subroutine is used when we know

that the minimum value of non-negative function F is equal to zero: when condi-

tion F is satisfied, operator GoTo m3 (following the func subroutine

calls) is performed, and then the test function is called.

In the test function declaration, conditions must be formulated for termi-

nating the minimization. The call of this function is performed when F and

also at the end of every iteration, that is, after minimizations of the F function on

all arguments
1

x ,
2

x , …,
n

x .

Function test returns True to the mini subroutine if none of the minimi-

zation termination conditions is satisfied. In this case, the next iteration is per-

formed (that is, the minimizations of the F function on arguments
1

x ,
2

x , …,

n
x are repeated) and the call of function test is again performed. The mini

subroutine execution is terminated when test returns False.

To control the course of the)...,,,(
210 n

xxxFx function minimization,

the test function declaration must contain operators for putting the current

values of elements x(0), x(1), x(2), …, x(n) into cells on the Excel work-

sheet.

Note that from iteration to iteration in the course of the minimization:

 not only one-dimensional array x is being changed, but two-dimensional

array ss, corresponding to matrix S of initial steps for the next iteration, is also

being changed;

 when changing array ss, the S matrix remains diagonal in the considered

coordinate-descent method.

6.4. Examples of using the minimization methods

437

6.4. Examples of using the minimization methods

The mini subroutine from the previous section will be used for solving the

following two tasks: the optimization of a tin can and the Rosenbrock function

minimization.

The optimization of a tin can.
According to this task, we have to determine a variant of the cylindrical tin

can of a given volume, which is the best in terms of the amount of tin required.

The volume and total area of a right circular cylinder [3] are respectively

defined by formulas

hrV 2 ,

)(2 hrrA ,

where r is the base radius, h is the height. The first formula leads to

2
r

V
h . (6.8)

By means of this expression, we eliminate h from the second formula:

r

V
rrA 22)(2 . (6.9)

For given volume V of the tin can, the total area is defined by the last formu-

la. We have to find the minimum point of the)(rA function for positive values

of the r argument.

Because the objective function,)(rA defined by (6.9), has a simple form, the

optimization task can be solved analytically. For that, according to [3], we must

fulfill the following:

1) find real roots of equation

0
dr

dA
; (6.10)

2) choose those of the roots, which are positive and satisfy the following

inequality:

Chapter 6. Numerical Methods for Nonlinear Programming

438

0
2

2

dr

Ad
.

Using formula (6.9) and the basic rules of differentiation [3], we obtain

)2(
2 3

2
Vr

rdr

dA
.

Thus, equation (6.10) becomes

02 3 Vr .

This equation has only one real root:

3

2

V
r . (6.11)

The second derivative of the)(rA function equals

)(
4

3

32

2

Vr

rdr

Ad
.

We see that the second derivative is positive for any positive value of r. There-

fore, formula (6.11) gives the desired optimal value of r.

According to formula (6.11), for V = 1000 cm
3
 (that is, in the case of the one-

liter can), the optimal base radius is equal to r = 5.41926 cm. Formulas (6.8)

and (6.9) lead to the following optimal values of the height and total area of the

tin can: h = 10.83853 cm, A = 553.5810 cm
2
.

For optimizing the one-liter can by means of subroutine mini, we enter the

following text of program main, subroutine func and function test into

Module1 of the BookNM workbook.

Listing 6.3

Dim nf As Long 'counter of calls of func

Dim nt As Long 'counter of calls of test

Sub main()

 Dim x() As Double

 Dim ss() As Double

 Dim n As Byte

 n = 1 'number of variables

 ReDim x(n)

6.4. Examples of using the minimization methods

439

 ReDim ss(1 To n, 1 To n)

 x(1) = Range("Sheet2!G1").Value

 ss(1, 1) = Range("Sheet2!G2").Value

 If ss(1, 1) ^ 2 = 0 Then

 Range("Sheet2!A1").Value = _

 "Initial step must be increased"

 End

 End If

 nf = 0

 nt = 0

0: Call func(n, x) 'it must be before minimization

1: Call mini(n, x, ss, 1E-6)

End Sub

Sub func(ByVal n, ByRef x() As Double)

 Const pi As Double = 3.141592654

 nf = nf + 1

 x(0) = 2 * pi * x(1) ^ 4 + 2 * 1000 / x(1) ^ 2

End Sub

Function test(ByVal n, ByRef x() As Double, _

 ByRef z() As Double, ByVal rho, Optional alpha) _

 As Boolean

 nt = nt + 1

 Range("Sheet2!A" & CStr(nt)) = x(0)

 Range("Sheet2!B" & CStr(nt)) = x(1)

 Range("Sheet2!C" & CStr(nt)) = nt

 Range("Sheet2!D" & CStr(nt)) = nf

2: If Abs(z(0) - x(0)) < n * rho * z(0) Then

 test = False

 Else

 test = True

 End If

 If Not IsMissing(alpha) Then

 If x(0) < alpha Then test = False

 End If

3: If n = 1 Or nt = 1048576 Then test = False

End Function

When executing the test function, the values of x(0) =)(
1

F , x(1) =

1
, nt and nf are put into the nt-th row on the Sheet2 worksheet.

Chapter 6. Numerical Methods for Nonlinear Programming

440

The sense of the last two variables follows:

 nt is the current number of the iterations, i.e., of the test function calls;

 nf is the current number of the calculated values of objective function

)(
1

F , i.e., of the func function calls.

In other words, the nt variable is the counter of the test function calls, the

nf variable is the counter of the func function calls. The Excel row number

may be considered as the iteration number (we will use this in Section 6.7).

The mini subroutine execution is terminated when the relative change of

the)(
1

F function becomes less than ρ = 10
-6

: conditional operator 2 (where n

is equal to unity) includes variables z(0) and x(0), i.e., the)(
1

F function

values at the iteration’s beginning and end, respectively.

Due to operator 3, the mini subroutine execution also terminates when the

number of arguments is equal to one or the Sheet2 worksheet does not contain

empty rows. We will encounter operator

If n = 1 Or nt = 1048576 Then test = False

more than once in this chapter.

According to (6.9), objective function)(
1

F has the following form:

2
1

4

1

2

11
22)()(

V
AF . (6.12)

We made substitution 2

1
r in order to have only non-negative values of the r

radius in the course of the A area minimization. The tin can volume is given in

the func subroutine; it is equal to V = 1000.

The initial approximation of the minimum point, x(1) =
1

, and initial step

ss(1, 1) =
11

s are respectively taken from cells G1 and G2 on the Sheet2

worksheet. The sign of
11

s determines the direction of the initial step, and ||
11

s

determines its size. Before the mini subroutine call (operator 1), the initial

value of objective function x(0) =)(
1

F must be defined. For that, operator 0

is used, which calculates the x(0) value corresponding to the x(1) value by

means of the func subroutine.

Fig. 6.16 shows the Sheet2 worksheet (a) before and (b) after the execution

of code Listing 6.3. According to Fig. 6.16a, the initial value of the
1

 variable

equals 1, initial step
11

s equals 0.01.

6.4. Examples of using the minimization methods

441

According to Fig. 6.16b, only one iteration was performed for the minimiza-

tion of function (6.12) because it is a function of one variable (see operator 3);

the iteration result is in cells A1 and B1. The final value of
1

 (which is in the

B1 cell) is equal to 2.328087. In this case, the radius of the tin can base,

2

1
r = 5.41999, is close to the optimal value, r = 5.41926, calculated

according to formula (6.11). During the search for the minimum point, 13 values

of the objective function were calculated. The final value of the objective

function (which is in the A1 cell) is equal to A = 553.5811.

a

b

Fig. 6.16. The Sheet2 worksheet (a) before and (b) after minimization of)(
1

F

We see conditional operator 2 in code Listing 6.3. It can be replaced with one

of the following two assignment operators with logical expression in the right-

hand side:

test = Not Abs(z(0) - x(0)) < n * rho * z(0)

or

test = Abs(z(0) - x(0)) >= n * rho * z(0)

Chapter 6. Numerical Methods for Nonlinear Programming

442

The Rosenbrock function minimization.

To find the minimum point of nonlinear function (6.1) by the coordinate-

descent method, we change the text of program main, subroutine func and

function test as follows:

Listing 6.4

Dim nf As Long 'counter of calls of func

Dim nt As Long 'counter of calls of test

Sub main()

 Dim x() As Double

 Dim ss() As Double

 Dim n As Byte

 Dim i As Byte, j As Byte

 Dim d As Double

 n = 2 'number of variables

 ReDim x(n)

 ReDim ss(1 To n, 1 To n)

 For j = 1 To n

 x(j) = Worksheets("Sheet2").Cells(1, 6 + j)

 For i = 1 To n

 ss(i, j) = Worksheets("Sheet2"). _

 Cells(1 + i, 6 + j)

 Next i

 Next j

 For j = 1 To n

 d = 0

 For i = 1 To n

 d = ss(i, j) ^ 2 + d

 Next i

 If d = 0 Then

 Range("Sheet2!A1").Value = _

 "You must increase" & Str(j) & _

 "-th initial step"

 End

 End If

 Next j

 nf = 0

 nt = 0

 Call func(n, x) 'it must be before minimization

1: Call mini(n, x, ss, 1E-6, 1E-6)

End Sub

6.4. Examples of using the minimization methods

443

Sub func(ByVal n, ByRef x() As Double)

 nf = nf + 1

 x(0) = 100 * (x(2) - x(1) ^ 2) ^ 2 + _

 (1 - x(1)) ^ 2

End Sub

Function test(ByVal n, ByRef x() As Double, _

 ByRef z() As Double, ByVal rho, Optional alpha) _

 As Boolean

 Dim j As Byte

 nt = nt + 1

 For j = 0 To n

 Worksheets("Sheet2").Cells(nt, j + 1) = x(j)

 Next j

 Worksheets("Sheet2").Cells(nt, n + 2) = nt

 Worksheets("Sheet2").Cells(nt, n + 3) = nf

2: If Abs(z(0) - x(0)) < n * rho * z(0) Then

 test = False

 Else

 test = True

 End If

 If Not IsMissing(alpha) Then

3: If x(0) < alpha Then test = False

 End If

 If n = 1 Or nt = 1048576 Then test = False

End Function

According to conditional operators 2 and 3, the test function returns

False into the mini subroutine when at least one condition is satisfied of the

following two:

 the relative change of objective function),(
21

xxF on one iteration

becomes less than 2ρ = 2·10
-6

 (the number of arguments is equal to 2);

 the objective function value becomes less than α = 10
-6

.

In this case, the search of the minimum point of the Rosenbrock function termi-

nates.

When executing the test function, the values of x(0) =),(
21

xxF ,

x(1) =
1

x , x(2) =
2

x and the current values of nt and nf (that is, the num-

bers of calls of test and func, respectively) are put into cells on the Sheet2

worksheet.

Chapter 6. Numerical Methods for Nonlinear Programming

444

Fig. 6.17 shows worksheet Sheet2 (a) before and (b, c) after executing code

Listing 6.4.

Coordinates x(1) =
1

x , x(2) =
2

x of the initial approximation of the

minimum point and also initial steps ss(1, 1) =
11

s , ss(2, 2) =
22

s are

respectively taken from ranges G1:H1 and G2:H3 on worksheet Sheet2

(Fig. 6.17a). Before calling the mini subroutine, the initial value of the

objective function is calculated by calling the func subroutine. The result of

the Rosenbrock function minimization is located in range A2066:C2066

(Fig. 6.17c).

a

b

c

Fig. 6.17. The Sheet2 worksheet (a) before and

(b, c) after the execution of code Listing 6.4

6.4. Examples of using the minimization methods

445

According to Fig. 6.17a, the initial values of the variables equal 0

1
x = -5.5,

0

2
x = 0.5 (we used these initial values in Section 6.1 when minimizing the

Rosenbrock function by the Solver add-in), initial steps
11

s and
22

s are equal to

0.01, and
12

s =
21

s = 0.

Fig. 6.17b and 6.17c show the results of the initial and final iterations.

According to Fig. 6.17c, the result of the execution of code Listing 6.4 is

1
x =

2
x = 1, and during the execution:

 2066 iterations were performed;

 16781 values of objective function (6.1) were calculated.

Further, we will consider the Powell minimization method. According to

Fig. 6.18 (similar to Fig. 6.17c), the method usage reduces:

 the number of iterations to 5;

 the number of the calculated values of objective function (6.1) to 376.

Chapter 6. Numerical Methods for Nonlinear Programming

446

6.5. The Powell minimization method

Let)...,,,(

21 n
xxxx be a point of the n-dimensional space, n ≥ 2. We

have to find the unique minimum point of non-negative and continuous function

)(xF , which has continuous partial derivatives
1

/ xF ,
2

/ xF , …,
n

xF / .

As mentioned earlier, the minimization of the)(xF function is an iterative

process. According to the Powell method (based on a good theory [14]), each

iteration consists of successive minimizations of the)(xF function along direc-

tions 1S , 2S , ..., nS (which are defined by the S matrix), at that, a set of direc-

tions for the next iteration is formed. More precisely, one iteration includes the

following seven stages.

1. For i = 1, 2, …, n, vectors ix are defined according to recurrence formula

i

i

ii Sxx 1 ,

where 0x is the initial approximation of the minimum point for the given itera-

tion,
i

 is the minimum point of the following function of one variable:

)()(1 ii

i
Ff Sx .

2. The maximum change in the)(xF function,

)}()({max 1

1

ii

ni

FF xx ,

is defined. Integer k is defined as the serial number of the direction along which

this change has happened.

3. Values)2(0xxn

a
FF ,)(n

b
FF x ,)(0xFF

c
 are defined.

4. If 0
ca

FF and

2

)2(2

ca

bc

abc FF

FF
FFF ,

6.5. The Powell minimization method

447

then the 5th item is fulfilled. Otherwise, nx is assigned to 0x , and the jump to

the 7th item is performed without changing the set of minimization directions.

5. Two vectors are defined according to formulas

01 xxS nn ,

1nn Sxx ,

where is the minimum point of the following function of one variable:

)()(1

1

nn

n
Ff Sx .

6. The new set of the n minimization directions (matrix S) for the next

iteration is formed as follows:

1S , ..., 1kS , 1kS , ..., nS , 1nS ,

where k is the integer defined in the 2nd item. Assignment xx0 is per-

formed.

7. If none of the termination conditions of the)(xF function minimization

is satisfied, the following iteration is performed.

The method of Section 6.2 is used for minimizing)(
1
f ,)(

2
f , …,)(

n
f ,

)(
1n

f .

The declaration of the minim subroutine, realizing the Powell method, is

given below. We enter it into Module18 of the BookNM workbook.

Listing 6.5

Sub minim(ByVal n, ByRef x() As Double, _

 ByRef ss() As Double, ByVal rho, Optional alpha)

 Dim fa As Double, fb As Double, fc As Double, _

 fd As Double

 Dim a As Double, b As Double, c As Double, _

 d As Double, e As Double, dm As Double

 Dim s() As Double: ReDim s(n)

 Dim y() As Double: ReDim y(n)

 Dim z() As Double: ReDim z(n)

 Dim sss() As Double: ReDim sss(n, n)

 Dim i As Byte, j As Byte, k As Byte, m As Byte

 For j = 1 To n

 For i = 1 To n

 sss(i, j) = ss(i, j)

 Next i

Chapter 6. Numerical Methods for Nonlinear Programming

448

 Next j

m1: For i = 0 To n

 y(i) = x(i)

 z(i) = x(i)

 Next i

 dm = 0

 For j = 1 To n 'j - number of descent direction

 For i = 1 To n

 s(i) = ss(i, j)

 Next i

 d = 0

 For i = 1 To n

 d = s(i) ^ 2 + d

 Next i

 If d = 0 Then

 For i = 1 To n

 s(i) = sss(i, j)

 Next i

 Else

 For i = 1 To n

 sss(i, j) = s(i)

 Next i

 End If

'Finding uncertainty segment:

 fa = y(0): fb = y(0): fc = y(0)

 a = 0: b = 0: c = 0

 d = 1: e = 1

s1: For i = 1 To n

 x(i) = y(i) + d * s(i)

 Next i

 Call func(n, x)

 If Not IsMissing(alpha) Then

 If x(0) < alpha Then GoTo m3

 End If

 fd = x(0)

 If fd < fa Then

 fc = fb: fb = fa: fa = fd

 c = b: b = a: a = d

 d = 2 * d + e

 GoTo s1

 Else

 If fa = fb Then

6.5. The Powell minimization method

449

 fb = fd

 b = d

 e = -2 * d

 d = e

 GoTo s1

 End If

 End If

 fc = fb: fb = fa: fa = fd

 c = b: b = a: a = d

 d = (a + b) * 0.5

 For i = 1 To n

 x(i) = y(i) + d * s(i)

 Next i

 Call func(n, x)

 If Not IsMissing(alpha) Then

 If x(0) < alpha Then GoTo m3

 End If

 fd = x(0)

'Reducing uncertainty segment:

s2: If Abs(fb - fd) < rho * fb Then GoTo s0

 If (c - d) * (d - b) < 0 Then

 If fd < fb Then

 fc = fb: fb = fd

 c = b: b = d

 Else

 fa = fd

 a = d

 End If

 Else

 If fd < fb Then

 fa = fb: fb = fd

 a = b: b = d

 Else

 fc = fd

 c = d

 End If

 End If

 d = fa * (b - c) + fb * (c - a) + fc * (a - b)

 If d = 0 Then GoTo s0

 d = (fa * (b * b - c * c) + _

 fb * (c * c - a * a) + _

 fc * (a * a - b * b)) / (2 * d)

Chapter 6. Numerical Methods for Nonlinear Programming

450

 For i = 1 To n

 x(i) = y(i) + d * s(i)

 Next i

 Call func(n, x)

 If Not IsMissing(alpha) Then

 If x(0) < alpha Then GoTo m3

 End If

 fd = x(0)

 GoTo s2

s0: d = y(0) - x(0)

 If d > dm Then

 dm = d

 m = j

 End If

 For i = 1 To n

 ss(i, j) = x(i) - y(i)

 y(i) = x(i)

 Next i

 y(0) = x(0)

 Next j

 If n = 1 Then GoTo m3

'Last descent:

 For i = 1 To n

 x(i) = 2 * y(i) - z(i)

 Next i

 Call func(n, x)

 If Not IsMissing(alpha) Then

 If x(0) < alpha Then GoTo m3

 End If

 fa = x(0): fb = y(0): fc = z(0)

 a = fa - fc

 If a >= 0 Then GoTo m2

 a = (fc - fb - dm) / a

 If 2 * (fc - 2 * fb + fa) * a ^ 2 >= dm Then _

 GoTo m2

 For j = m To n - 1

 k = j + 1

 For i = 1 To n

 ss(i, j) = ss(i, k)

 Next i

 Next j

 For i = 1 To n

6.5. The Powell minimization method

451

 s(i) = y(i) - z(i)

 Next i

'Finding uncertainty segment:

 fa = y(0): fb = y(0): fc = y(0)

 a = 0: b = 0: c = 0

 d = 1: e = 1

h1: For i = 1 To n

 x(i) = y(i) + d * s(i)

 Next i

 Call func(n, x)

 If Not IsMissing(alpha) Then

 If x(0) < alpha Then GoTo m3

 End If

 fd = x(0)

 If fd < fa Then

 fc = fb: fb = fa: fa = fd

 c = b: b = a: a = d

 d = 2 * d + e

 GoTo h1

 Else

 If fa = fb Then

 fb = fd

 b = d

 e = -2 * d

 d = e

 GoTo h1

 End If

 End If

 fc = fb: fb = fa: fa = fd

 c = b: b = a: a = d

 d = (a + b) * 0.5

 For i = 1 To n

 x(i) = y(i) + d * s(i)

 Next i

 Call func(n, x)

 If Not IsMissing(alpha) Then

 If x(0) < alpha Then GoTo m3

 End If

 fd = x(0)

'Reducing uncertainty segment:

h2: If Abs(fb - fd) < rho * fb Then GoTo h0

 If (c - d) * (d - b) < 0 Then

Chapter 6. Numerical Methods for Nonlinear Programming

452

 If fd < fb Then

 fc = fb: fb = fd

 c = b: b = d

 Else

 fa = fd

 a = d

 End If

 Else

 If fd < fb Then

 fa = fb: fb = fd

 a = b: b = d

 Else

 fc = fd

 c = d

 End If

 End If

 d = fa * (b - c) + fb * (c - a) + fc * (a - b)

 If d = 0 Then GoTo h0

 d = (fa * (b * b - c * c) + _

 fb * (c * c - a * a) + _

 fc * (a * a - b * b)) / (2 * d)

 For i = 1 To n

 x(i) = y(i) + d * s(i)

 Next i

 Call func(n, x)

 If Not IsMissing(alpha) Then

 If x(0) < alpha Then GoTo m3

 End If

 fd = x(0)

 GoTo h2

h0: For i = 1 To n

 ss(i, n) = x(i) - y(i)

 y(i) = x(i)

 Next i

 y(0) = x(0)

'Writing result of descents into array x:

m2: For i = 0 To n

 x(i) = y(i)

 Next i

'Checking condition of minimization termination:

m3: If Not IsMissing(alpha) Then

 If test(n, x, z, rho, alpha) Then GoTo m1

6.5. The Powell minimization method

453

 Else

 If test(n, x, z, rho) Then GoTo m1

 End If

End Sub

The minim subroutine parameters have the same sense as the corresponding

parameters of the mini subroutine (p. 435). However, two-dimensional array

ss may be non-diagonal.

In the minim subroutine, elements ss(1, j), ss(2, j), ..., ss(n, j) of

the ss array, corresponding to the j-th column (jS) of the S matrix, define the

j-th descent direction and the initial step along this direction, which equals

2
...

2
2

2
1 njjjj

ssss , j = 1, 2, ..., n. The descent directions, defined by the

ss array (matrix S), is generally changing from iteration to iteration during the

)...,,,(
21 n

xxxF function minimization.

Let us test the new subroutine by means of the Rosenbrock function. For this

purpose, we replace line

1: Call mini(n, x, ss, 1E-6, 1E-6)

with line

1: Call minim(n, x, ss, 1E-6, 1E-6)

in Listing 6.4. We leave subroutine func, function test and the initial data

without change.

The result of the Rosenbrock function minimization by the Powell method is

located in cells A5:C5 (Fig. 6.18).

Fig. 6.18. The Sheet2 worksheet upon termination of the code execution

Chapter 6. Numerical Methods for Nonlinear Programming

454

We see that the obtained minimum point is the same as when using the

Solver add-in and coordinate-descent method:
1

x =
2

x = 1. The minimization

of function (6.1) requires:

 5 iterations of the Powell method (Fig. 6.18);

 21 iterations of Solver (p. 427);

 2066 iterations of the coordinate-descent method (p. 445).

Thus, the Powell method is more efficient than the Solver add-in and coordi-

nate-descent method for the Rosenbrock function. This is due to the following:

1) minimum point)1,1(x is located in the ravine (p. 422);

2) in the Powell method, the initial descent directions, which are parallel to

the
1

x and
2

x axes, are being converted to the descent directions, 1S and 2S ,

oriented along the ravine bottom (Fig. 6.19).

Fig. 6.19. The level curves of the Rosenbrock function in the neighborhood

of the minimum point and vectors 1S and 2S for the 4th iteration

6.5. The Powell minimization method

455

The iteration results,),(1

2

1

1
xx ,),(2

2

2

1
xx ,),(3

2

3

1
xx ,),(4

2

4

1
xx , …, approach

minimum point)1,1(x along the ravine bottom. This assertion follows from

Fig. 6.18 and 6.19.

Chapter 6. Numerical Methods for Nonlinear Programming

456

6.6. Determining the equilibrium

state of a four-spring system

Below, we will determine the equilibrium state of the mechanical system

depicted in Fig. 6.20. This system is formed by four weightless springs of the

same length, λ = 2 meter (without a load), but with different elastic constants.

The springs are located in the plane of the paper with axes
1

x and
2

x . One ends

of the springs are fastened together, the other ends are attached to tops A
1
, A

2
,

A
3
, A

4
 of an imaginary square with the 2-meter side.

Fig. 6.20. The four-spring system: the
3

x axis is directed “towards us”

and passes through the springs junction point with zero coordinates

The outside force, vector f directed along the
3

x axis (for example, the force

of gravity), acts on body M attached to the springs junction. The value of this

force, || ff , is given, and this value is negative if vector f and axis
3

x do

not coincide in direction (according to the common practice in physics), i.e., the

vector is directed “from us” (Fig. 6.20). The elastic constants of the springs equal

1
K ,

2
K ,

3
K ,

4
K , respectively.

6.6. Determining the equilibrium state of a four-spring system

457

We have to find coordinates
1

x ,
2

x ,
3

x of the springs junction point in the

equilibrium state, which is the result of a damped oscillation of the mechanical

system. The damping occurs, for example, because of the air resistance: the

resistance force is proportional to the velocity of body M and is directed opposite

to the velocity vector.

According to the principle of minimum potential energy of the elasticity the-

ory, the work of the elasticity forces and of the outside force for relocation of the

M body from the origin of coordinates to the point with coordinates
1

x ,
2

x ,
3

x

(that is, the potential energy of body M) assumes its minimum value in the equi-

librium state. We will use this principle.

Up to a constant, the potential energy of body M is equal to

4

1

2

2

33

2

22

2

11321
)()()(

2
),,(

m
mmm

m
axaxax

K
xxxF

Cxf
3

, (6.13)

where
1m

a ,
2m

a are the first two coordinates of point Am
, which are equal to ±1,

3m
a = 0 is the third coordinate of point Am (m = 1, 2, 3, 4), C is a positive con-

stant introduced to ensure the positivity of function),,(
321

xxxF . Difference

2

33

2

22

2

11
)()()(

mmm
axaxax is the change in the length of

the m-th spring.

For the minimization of function (6.13), initially, we use the coordinate-

descent method. The corresponding code is given below.

Listing 6.6

Dim nf As Long 'counter of calls of func

Dim nt As Long 'counter of calls of test

Dim K1 As Double, K2 As Double

Dim K3 As Double, K4 As Double

Dim f As Double, C As Double

Sub main()

 Dim x() As Double

 Dim ss() As Double

 Dim n As Byte, i As Byte, j As Byte

 Dim d As Double

 K1 = Range("Sheet2!G5").Value

 K2 = Range("Sheet2!H5").Value

Chapter 6. Numerical Methods for Nonlinear Programming

458

 K3 = Range("Sheet2!I5").Value

 K4 = Range("Sheet2!J5").Value

 f = Range("Sheet2!G6").Value

 C = Range("Sheet2!H6").Value

 n = 3 'number of variables

 ReDim x(n)

 ReDim ss(1 To n, 1 To n)

 For j = 1 To n

1: x(j) = Worksheets("Sheet2").Cells(1, 6 + j)

 For i = 1 To n

2: ss(i, j) = Worksheets("Sheet2"). _

 Cells(1 + i, 6 + j)

 Next i

 Next j

 For j = 1 To n

 d = 0

 For i = 1 To n

 d = ss(i, j) ^ 2 + d

 Next i

 If d = 0 Then

 Range("Sheet2!A1").Value = _

 "You must increase" & Str(j) & _

 "-th initial step"

 End

 End If

 Next j

 nf = 0

 nt = 0

 Call func(n, x) 'it must be before minimization

3: Call mini(n, x, ss, 1E-6)

End Sub

Sub func(ByVal n, ByRef x() As Double)

 Const lambda As Double = 1.414213562

 nf = nf + 1

 x(0) = K1 / 2 * (Sqr((x(1) - 1) ^ 2 + _

 (x(2) - 1) ^ 2 + x(3) ^ 2) - lambda) ^ 2 + _

 K2 / 2 * (Sqr((x(1) + 1) ^ 2 + _

 (x(2) - 1) ^ 2 + x(3) ^ 2) - lambda) ^ 2 + _

 K3 / 2 * (Sqr((x(1) + 1) ^ 2 + _

 (x(2) + 1) ^ 2 + x(3) ^ 2) - lambda) ^ 2 + _

 K4 / 2 * (Sqr((x(1) - 1) ^ 2 + _

6.6. Determining the equilibrium state of a four-spring system

459

 (x(2) + 1) ^ 2 + x(3) ^ 2) - lambda) ^ 2 - _

 f * x(3) + C

End Sub

Function test(ByVal n, ByRef x() As Double, _

 ByRef z() As Double, ByVal rho, Optional alpha) _

 As Boolean

 Dim j As Byte

 nt = nt + 1

 For j = 0 To n

 Worksheets("Sheet2").Cells(nt, j + 1) = x(j)

 Next j

 Worksheets("Sheet2").Cells(nt, n + 2) = nt

 Worksheets("Sheet2").Cells(nt, n + 3) = nf

 If Abs(z(0) - x(0)) < n * rho * z(0) Then

 test = False

 Else

 test = True

 End If

 If Not IsMissing(alpha) Then

 If x(0) < alpha Then test = False

 End If

 If n = 1 Or nt = 1048576 Then test = False

End Function

The test function returns False when the relative change of function

(6.13) on one iteration becomes less than 3ρ = 3·10
-6

 (the number of arguments is

equal to 3). In this case, the search of the minimum point terminates.

When executing the test function, the values of x(0), x(1), x(2),

x(3), nt and nf are put into cells on the Sheet2 worksheet.

By means of operators 1 and 2, coordinates x(1), x(2), x(3) of the initial

approximation of the minimum point and initial steps ss(1, 1), ss(2, 2),

ss(3, 3) are respectively taken from ranges G1:I1 and G2:I4 on the Sheet2

worksheet. Assignment operators 1 and 2 interpret the contents of the empty

cells as zero.

Elastic constants
1

K ,
2

K ,
3

K ,
4

K of the springs (in units of N / m) are

respectively taken from cells G5, H5, I5, J5. The value of force f (in newtons) is

taken from G6; constant C is taken from H6.

According to Fig. 6.21a:

 the initial values of variables
1

x ,
2

x ,
3

x are equal to zero;

Chapter 6. Numerical Methods for Nonlinear Programming

460

 initial steps
11

s ,
22

s ,
33

s are equal to 0.01;

 the elastic constants have the following values:
1

K = 100,
2

K = 200,

3
K = 300,

4
K = 400;

 the force: f = - 800;

 the constant: C = 10000.

According to Fig. 6.21b:

 the springs junction point has coordinates
1

x = - 0.01278,
2

x = - 0.33154,

3
x = -1.96816 in the equilibrium state (the coordinates are in meters);

 the number of iterations equals 4;

 88 values of objective function (6.13) were calculated during the minimi-

zation.

a

b

Fig. 6.21. The Sheet2 worksheet (a) before and (b) after the code execution

6.6. Determining the equilibrium state of a four-spring system

461

The use of the Powell method for the minimization of function (6.13) is not

difficult. For this purpose, we have to replace mini with minim in operator 3.

Upon the change in the minimization method, only the number of the calcu-

lated values of objective function (6.13) changes markedly — from 88 to 95.

The above minimization problem is the only one in this chapter whose solu-

tion by the Powell method is not more efficient than by the coordinate-descent

method.

Chapter 6. Numerical Methods for Nonlinear Programming

462

6.7. Minimization with nonlinear constraints

Minimizing nonlinear function)...,,,(

210 n
xxxFx with constraints is

a frequently encountered problem. Often the following m inequalities play the

role of these constraints:

0)...,,,(
211 n

xxxC ,

0)...,,,(
212 n

xxxC , (6.14)

.

0)...,,,(
21 nm

xxxC ,

where)...,,,(
21 ni

xxxC is a given dependence, 1 ≤ i ≤ m. If this dependence is

nonlinear, the corresponding inequality is called a nonlinear constraint. Later we

will consider a constraint of the equality type.

In the case of simple dependences)...,,,(
21 ni

xxxC , 1 ≤ i ≤ m, the formu-

lated minimization problem can be solved by replacing the variables.

For n = 1, we already replaced the variable for solving the task of optimizing

a tin can in Section 6.4. In order to have only non-negative values of radius r in

the course of minimization of area A, we minimized a function with argument

1
 related with r as 2

1
r , instead of minimizing the)(rA function.

For n > 1, we will consider the variable replacement method on an example

of Rosenbrock function (6.1) with constraints 1
1

x and 7.0||
2

x , which can

be written in form (6.14),

01
1

x , (6.15)

0||7.0
2

x . (6.16)

We introduce new variables
1

 and
2

 defined by equations

2

11
1x , (6.17)

22
sin7.0x . (6.18)

6.7. Minimization with nonlinear constraints

463

It is visible that variables
1

x and
2

x satisfy the required inequalities, (6.15) and

(6.16), for all values of
1

 and
2

 from to . Substituting expressions

(6.17) and (6.18) into formula (6.1), we get the following objective function:

4

1

222

1221
])1(sin7.0[100),(G . (6.19)

After obtaining the minimum point of this function,),(
21

χ , the required

values,
1

x and
2

x , must be calculated by means of formulas (6.17) and (6.18).

The text of program main, subroutine func and function test, intended

for minimizing function (6.1) with constraints (6.15) and (6.16), has the follow-

ing form:

Listing 6.7

Dim nf As Long 'counter of calls of func

Dim nt As Long 'counter of calls of test

Sub main()

 Dim x() As Double

 Dim ss() As Double

 Dim n As Byte

 Dim i As Byte, j As Byte

 Dim d As Double

 n = 2 'number of variables

 ReDim x(n)

 ReDim ss(1 To n, 1 To n)

 For j = 1 To n

 x(j) = Worksheets("Sheet2").Cells(1, 6 + j)

 For i = 1 To n

 ss(i, j) = Worksheets("Sheet2"). _

 Cells(1 + i, 6 + j)

 Next i

 Next j

 For j = 1 To n

 d = 0

 For i = 1 To n

 d = ss(i, j) ^ 2 + d

 Next i

 If d = 0 Then

 Range("Sheet2!A1").Value = _

 "You must increase" & Str(j) & _

Chapter 6. Numerical Methods for Nonlinear Programming

464

 "-th initial step"

 End

 End If

 Next j

 nf = 0

 nt = 0

 Call func(n, x) 'it must be before minimization

1: Call minim(n, x, ss, 1E-6, 1E-6)

2: Worksheets("Sheet2").Cells(nt + 1, 2) = _

 1 - x(1) ^ 2

3: Worksheets("Sheet2").Cells(nt + 1, 3) = _

 0.7 * Sin(x(2))

End Sub

Sub func(ByVal n, ByRef x() As Double)

 Dim x1 As Double, x2 As Double

 nf = nf + 1

 x1 = 1 - x(1) ^ 2

 x2 = 0.7 * sin(x(2))

 x(0) = 100 * (x2 - x1 ^ 2) ^ 2 + x(1) ^ 4

End Sub

Function test(ByVal n, ByRef x() As Double, _

 ByRef z() As Double, ByVal rho, Optional alpha) _

 As Boolean

 Dim j As Byte

 nt = nt + 1

 For j = 0 To n

 Worksheets("Sheet2").Cells(nt, j + 1) = x(j)

 Next j

 Worksheets("Sheet2").Cells(nt, n + 2) = nt

 Worksheets("Sheet2").Cells(nt, n + 3) = nf

 If Abs(z(0) - x(0)) < n * rho * z(0) Then

 test = False

 Else

 test = True

 End If

 If Not IsMissing(alpha) Then

 If x(0) < alpha Then test = False

 End If

 If n = 1 Or nt = 1048576 Then test = False

End Function

6.7. Minimization with nonlinear constraints

465

From code Listing 6.4 for solving the minimization problem without con-

straints, the above code differs in the following:

 in operators of the func subroutine because it is now intended for calcu-

lating values of objective function),(
21

G according to formula (6.19)

instead of (6.1);

 in operator 1 because we use the Powell method in the new program;

 in the presence of operators 2 and 3, which correspond to formulas (6.17)

and (6.18), respectively.

After obtaining the values of
1

 and
2

, operators 2 and 3 calculate the

values of
1

x and
2

x , i.e., the solution of the minimization problem for the

Rosenbrock function with constraints (6.15) and (6.16).

Fig. 6.22 shows the Sheet2 worksheet upon termination of the code execu-

tion.

Fig. 6.22. The worksheet upon termination of the code execution

According to Fig. 6.22:

 the initial approximation of the minimum point, defined by the values of

cells G1 and H1, has coordinates 0

1
 = -3 and 0

2
 = 5;

 the initial steps, defined by the values of cells G2:H3, are directed along

the
1

 and
2

 axes and are equal to 0.01;

Chapter 6. Numerical Methods for Nonlinear Programming

466

 the coordinates of the minimum point of function),(
21

G are

1
 = - 0.403 and

2
 = 7.854;

 the required values are
1

x = 0.837 and
2

x = 0.7; they are located in cells

B14 and C14.

When replacing minim with mini in operator 1 (that is, when using the

coordinate-descent method) the number of iterations increases from 13 to 254,

and the number of the calculated values of objective function),(
21

G

increases from 505 to 2372.

The application of the variable replacement method, which was considered,

is very limited. For minimizing nonlinear function)...,,,(
21 n

xxxF with con-

straints (6.14), the penalty function method is more universal. According to this

method, functions

)](...)()([2)()(
21

xxxxx
m

k

k
DDDFG (6.20)

of vector argument)...,,,(
21 n

xxxx , k ≥ 0, are being sequentially mini-

mized for k = 0, 1, 2, ... The value of k determines the “weight” of sum

)(...)()(
21

xxx
m

DDD , i.e., its contribution to the)(x
k

G function; m is

the number of the constraints.

We use formula

}0),(min{)(xx p

ii
CD ,

where the p power is an odd natural number, for example 3, 1 ≤ i ≤ m.

According to the last formula:

 0)(x
i

D when 0)(x
i

C , i.e., the i-th inequality of (6.14) is satisfied;

 0)()(xx p

ii
CD when 0)(x

i
C , i.e., the i-th inequality of (6.14) is

unsatisfied.

We can combine functions (6.20) into the following single function with

additional argument
1n

x :

)](...)()([)(),(
2111

xxxxx
mnn

DDDxFxG . (6.21)

The original problem with constraints is reduced to a sequence of problems

without constraints: we must find the minimum point of each of functions

)1,()(
0

xx GG ,)2,()(
1

xx GG ,)4,()(
2

xx GG , ...,)2,()(k

k
GG xx , ...

6.7. Minimization with nonlinear constraints

467

It is obvious that the obtained sequence of minimum points
0

x ,
1

x ,
2

x , ...,

k
x , ... converges to required solution x of the minimization problem for func-

tion)(xF with constraints (6.14).

For a fixed value of k, one of the considered methods for unconstrained

minimization (the coordinate-descent or Powell method) minimizes function

)2,()(k

k
GG xx , at that, minimum point

1k
x of)2,()(1

1

k

k
GG xx is

used as the initial approximation of the
k

x minimum point of function

)2,()(k

k
GG xx .

We must specify initial approximation 0x of minimum point
0

x of function

)1,()(
0

xx GG . The 0x point may be considered as the initial approximation

of required x .

Functions (6.20) are called the penalty functions. Let also:

 function (6.21) of form

)](...)()([)(),...,,,(
211121

xxxx
mnnn

DDDxFxxxxG

be called the penalty function;

 summand)](...)()([
211

xxx
mn

DDDx be called the penalty.

The penalty function method allows to solve the minimization problem for

Rosenbrock function (6.1) with constraint 12

2

2

1
xx , which can be written in

form (6.14),

0),(
211

xxC , (6.22)

where

1),(2

2

2

1211
xxxxC . (6.23)

To use the Powell method for minimizing function (6.1) with this constraint,

we must enter the following code into Module1.

Listing 6.8

Const DBL_MAX = 1E+308

Dim nf As Long 'counter of calls of func

Dim nt As Long 'counter of calls of test

Dim m As Byte

Dim y0 As Double, z0 As Double

Chapter 6. Numerical Methods for Nonlinear Programming

468

Sub main()

 Dim x() As Double

 Dim ss() As Double

 Dim n As Byte, i As Byte, j As Byte

 Dim d As Double

 n = 2 'number of variables

 m = 1 'number of constraints

 ReDim x(-1 To n + m)

 ReDim ss(1 To n, 1 To n)

 For j = 1 To n

 x(j) = Worksheets("Sheet2").Cells(1, 6 + j)

 For i = 1 To n

 ss(i, j) = Worksheets("Sheet2"). _

 Cells(1 + i, 6 + j)

 Next i

 Next j

 For j = 1 To n

 d = 0

 For i = 1 To n

 d = ss(i, j) ^ 2 + d

 Next i

 If d = 0 Then

 Range("Sheet2!A1").Value = _

 "You must increase" & Str(j) & _

 "-th initial step"

 End

 End If

 Next j

 nf = 0

 nt = 0

 x(n + 1) = 1

 Call func(n, x) 'it must be before minimization

 z0 = x(0): y0 = DBL_MAX

1: Call minim(n, x, ss, 1E-3, 1E-6)

End Sub

Sub func(ByVal n, ByRef x() As Double)

 Dim c As Double

 nf = nf + 1

 c = -x(1) ^ 2 - x(2) ^ 2 + 1

2: If c > = 0 Then

 x(-1) = 0

6.7. Minimization with nonlinear constraints

469

 Else

 x(-1) = x(3) * (-c ^ 3) 'penalty, p = 3

 End If

 x(0) = 100 * (x(2) - x(1) ^ 2) ^ 2 + _

 (1 - x(1)) ^ 2 + x(-1)

End Sub

Function test(ByVal n, ByRef x() As Double, _

 ByRef z() As Double, ByVal rho, Optional alpha) _

 As Boolean

 Dim j As Integer

 nt = nt + 1

 For j = -1 To n + m

 Worksheets("Sheet2").Cells(nt, j + 2) = x(j)

 Next j

 Worksheets("Sheet2").Cells(nt, n + m + 3) = nf

 If Abs(z0 - x(0)) < n * rho * z0 Then

 If Abs(y0 - x(0)) < n * rho * y0 Then

 test = False

 Else

 x(n + 1) = x(n + 1) * 2

 If x(n + 1) > DBL_MAX Then

 test = False

 Else

 test = True

 End If

 y0 = x(0)

 Call func(n, x)

 End If

 Else

 test = True

 End If

 z0 = x(0)

 If Not IsMissing(alpha) Then

 If x(0) < alpha Then test = False

 End If

 If n = 1 Or nt = 1048576 Then test = False

End Function

The results of the code execution are depicted in Fig. 6.23. As we see, initial

approximation 0x , defined by the values of cells G1 and H1, has coordinates

Chapter 6. Numerical Methods for Nonlinear Programming

470

0

1
x = -5.5 and 0

2
x = 0.5. According to the contents of cells G2:H3, the initial

steps are directed along the
1

x and
2

x axes and equal 0.01.

Fig. 6.23. The Sheet2 worksheet upon termination of the code execution

Columns A and B contain the values of penalty x(-1) =),(
2113

xxDx and

penalty function x(0) =),,(
321

xxxG , respectively. Columns C, D and E con-

tain the values of coordinates x(1) =
1

x and x(2) =
2

x and variable x(3) =

kx 2
3

. Column F contains the current value of nf, i.e., the current number of

the func subroutine calls. The coordinates of the obtained minimum point, x ,

are equal to
1

x = 0.787 and
2

x = 0.62.

6.7. Minimization with nonlinear constraints

471

When replacing minim with mini in operator 1 (that is, when using the

coordinate-descent method), the number of iterations increases from 26 to 153,

and the number of the calculated values of the objective function increases from

385 to 1313.

The penalty function method allows solving the minimization problem for the

)...,,,(
21 n

xxxF function when the equality type constraints are present among

constraints (6.14); for example, 0)...,,,(
211 n

xxxC may be the first con-

straint. In this case, we use)()(
11

xx qCD in expressions (6.20) and (6.21),

where power q is an even natural number, for example 2.

As an example of using this form of the penalty function method, we will

consider the minimization problem for Rosenbrock function (6.1) with constraint

12

2

2

1
xx , which can be written as follows:

0),(
211

xxC ,

where the left-hand side is defined by (6.23), i.e., 1),(2

2

2

1211
xxxxC .

To minimize function (6.1) with this constraint, we must change the func

subroutine declaration in code Listing 6.8 as follows:

Listing 6.9

Sub func(ByVal n, ByRef x() As Double)

 Dim c As Double

 nf = nf + 1

 c = -x(1) ^ 2 - x(2) ^ 2 + 1

2: If c = 0 Then x(-1) = 0 Else _

 x(-1) = x(3) * c ^ 2 'penalty, q = 2

 x(0) = 100 * (x(2) - x(1) ^ 2) ^ 2 + _

 (1 - x(1)) ^ 2 + x(-1)

End Sub

The code execution results are depicted in Fig. 6.24.

As we see, initial approximation 0x of the minimum point has coordinates

0

1
x = -5.5 and 0

2
x = 0.5, the initial steps are directed along the

1
x and

2
x axes

and equal 0.01. The coordinates of the obtained minimum point, x , are equal to

1
x = 0.786 and

2
x = 0.618. When replacing the minim subroutine with mini,

Chapter 6. Numerical Methods for Nonlinear Programming

472

the number of iterations increases from 18 to 67, the number of the calculated

values of the penalty function increases from 347 to 686.

Fig. 6.24. The Sheet2 worksheet after the code execution

Besides the above methods, the barrier function method is used for the

)(xF function minimization with nonlinear constraints. It differs from the penal-

ty function method in the form of the second summand in formula (6.20):

][)(/1...)(/1)(/12)()(
21

xxxxx p

m

ppk

k
CCCFG , (6.24)

where p is an even natural number. The),(
1n

xG x function has the following

form:

][)(/1...)(/1)(/1)(),(
21

1

11
xxxxx p

m

pp

nn
CCCxFxG . (6.25)

Summand][)(/1...)(/1)(/1
21

1

1
xxx p

m

pp

n
CCCx is called the barrier; func-

tions (6.24) and (6.25) are called the barrier functions.

As we see, function (6.25) is close to (6.21) in form. Therefore, the new code

for minimizing function (6.1) with constraint (6.22), (6.23) by the Powell method

differs from Listing 6.8 only in the following operator:

2: x(-1) = 1 / x(3) * (1 / c ^ 2) 'barrier, p = 2

6.7. Minimization with nonlinear constraints

473

For constraints in the form of inequalities (6.14), initial approximation 0x of

the minimum point must satisfy these inequalities. For example,)0,0(0x

may be when minimizing function (6.1) with constraint (6.22), (6.23) by the new

version of code Listing 6.8. Therefore, the method being considered is often

called the interior point method.

Fig. 6.25 shows the results of using the new version of code Listing 6.8 (with

minim in operator 1).

a

b

Fig. 6.25. The initial (a) and final (b) iterations

As we see in Fig. 6.25, initial approximation 0x of the minimum point has

zero coordinates, the initial steps are directed along the
1

x and
2

x axes and

equal 0.01. The coordinates of the obtained minimum point, x , are equal to

1
x = 0.786 and

2
x = 0.616. When replacing minim with mini in operator 1,

the number of iterations increases from 60 to 314, and the number of the calcu-

lated values of the barrier function increases from 703 to 2552.

Let us solve one more minimization problem for Rosenbrock function (6.1),

when constraint 12

2

2

1
xx is imposed on the minimum point. This inequality

can be written in form (6.22), where 1),(2

2

2

1211
xxxxC .

Chapter 6. Numerical Methods for Nonlinear Programming

474

For minimizing function (6.1) with this constraint by the penalty function and

Powell methods, we use Listing 6.8 with minim in operator 1 and the following

func subroutine:

Listing 6.10

Sub func(ByVal n, ByRef x() As Double)

 Dim c As Double

 nf = nf + 1

 c = x(1) ^ 2 + x(2) ^ 2 - 1

2: If c >= 0 Then

 x(-1) = 0

 Else

 x(-1) = x(3) * (-c ^ 3) 'penalty, p = 3

 End If

 x(0) = 100 * (x(2) - x(1) ^ 2) ^ 2 + _

 (1 - x(1)) ^ 2 + x(-1)

End Sub

Fig. 6.26 shows the results of using the last version of code Listing 6.8.

Fig. 6.26. The Sheet2 worksheet upon termination of the code execution

As we see in Fig. 6.26, initial approximation 0x of the minimum point has

coordinates 0

1
x = -5.5 and 0

2
x = 0.5, the initial steps are directed along the

1
x

and
2

x axes and equal 0.01. The coordinates of the obtained minimum point,

x , are equal to
1

x = 1 and
2

x = 1.

The barrier function method gives an incorrect result.

6.8. Minimization of the multimodal function

475

6.8. Minimization of the multimodal function

The search methods (the coordinate-descent and Powell methods) considered

above were developed for finding the minimum point of the so-called unimodal

function,)...,,,(
210 n

xxxFx , that has a single local minimum. Application

of these methods to the multimodal function, with several local minima, gives

only one minimum point, which depends on the initial approximation of the

minimum point and on the directions and values of initial steps.

Let function)...,,,(
21 n

xxxF be multimodal inside its domain, and all the

minima are to be found. The solution of this problem may be required for subse-

quent definition of the global minimum or for solving the maximin problem, i.e.,

for definition of the function’s maximum value among the local minima.

All local minima can be found if the initial approximation of the minimum

point is defined by means of the random-number generator and, at that, the code

execution is sufficiently long.

For example, let us consider function

])1()(100)[cos(cos),(2

1

22

122

2

1

2

21
xxxxxxxF (6.26)

in the rectangle given by inequalities

5.55.0
1

x ,

55.0
2

x .

To find the local minima of function (6.26) inside its domain (the above rec-

tangle), we use the following text of program main, subroutine func and func-

tion test:

Listing 6.11

Dim nf As Long 'counter of calls of func

Dim nt As Long 'counter of calls of test

Dim np As Long 'counter of minimum points

Sub main()

 Dim x() As Double

 Dim ss() As Double

Chapter 6. Numerical Methods for Nonlinear Programming

476

 Dim n As Byte

 Dim i As Byte, j As Byte

 Dim d As Double

 Dim sec As Long

 Dim min As Byte, hour As Byte

 Dim st As String

 Dim stp As Date

 Dim np_lim As Long

 n = 2 'number of variables

 ReDim x(n)

 ReDim ss(1 To n, 1 To n)

1: sec = Range("Sheet2!G4").Value

2: hour = sec \ 3600

3: min = (sec - hour * 3600) \ 60

4: sec = sec - hour * 3600 - min * 60

5: st = CStr(hour) & ":" & CStr(min) & ":" _

 & CStr(sec)

6: stp = Now + TimeValue(st)

7: np_lim = Range("Sheet2!H4").Value

8: Randomize 'it must be before calling Rnd

9: np = 0

beg:

10: np = np + 1

11: x(1) = 0.5 + (5.5 - 0.5) * Rnd

12: x(2) = 0.5 + (5 - 0.5) * Rnd

 For j = 1 To n

 For i = 1 To n

 ss(i, j) = Worksheets("Sheet2"). _

 Cells(1 + i, 6 + j)

 Next i

 Next j

 For j = 1 To n

 d = 0

 For i = 1 To n

 d = ss(i, j) ^ 2 + d

 Next i

 If d = 0 Then

 Range("Sheet2!A1").Value = _

 "You must increase" & Str(j) & _

 "-th initial step"

 End

 End If

6.8. Minimization of the multimodal function

477

 Next j

 nf = 0

 nt = 0

 Call func(n, x) 'it must be before minimization

 Call minim(n, x, ss, 1E-6, 1E-6) 'Powell method

13: For j = 0 To n

14: Worksheets("Sheet2").Cells(np, j + 1) = x(j)

15: Next j

16: Worksheets("Sheet2").Cells(np, n + 2) = nt

17: Worksheets("Sheet2").Cells(np, n + 3) = nf

18: If Now < stp And np < np_lim And np < 1048576 _

 Then GoTo beg

End Sub

Sub func(ByVal n, ByRef x() As Double)

 nf = nf + 1

 x(0) = (Cos(x(1)) ^ 2 + Cos(x(2)) ^ 2) * _

 (100 * (x(2) - x(1) ^ 2) ^ 2 + (1 - x(1)) ^ 2)

End Sub

Function test(ByVal n, ByRef x() As Double, _

 ByRef z() As Double, ByVal rho, Optional alpha) _

 As Boolean

 Dim j As Byte

 nt = nt + 1

 If Abs(z(0) - x(0)) < n * rho * z(0) Then

 test = False

 Else

 test = True

 End If

 If Not IsMissing(alpha) Then

 If x(0) < alpha Then test = False

 End If

End Function

From code Listing 6.4, intended for minimizing the Rosenbrock function,

the last code differs in operators of the func subroutine and presence of opera-

tors 1 — 18 in the main program. Let us consider the purpose of these addi-

tional operators.

Operator 1 assigns the specified limiting execution time (in seconds), being

in cell Sheet2!G4, to variable sec of the Long data type. Operators 2 — 5

form the st string of format "hh:mm:ss", in which hh is one or two digits

Chapter 6. Numerical Methods for Nonlinear Programming

478

defining the number of hours, mm is the number of minutes, ss is the number of

seconds. Operator 6 determines the moment of the execution termination and

assigns it to variable stp (from word “stop”) of the Date data type.

Operator 7 assigns the limiting number of found minimum points to variable

np_lim of the Long data type. This number is taken from cell Sheet2!H4.

The Randomize operator (labeled by 8) prepares the built-in random-

number generator for work; operator 9 nullifies the np counter of the found

minimum points.

Operator 10, below label beg (from “beginning”), increases the np counter

by 1. Operators 11 and 12 define the coordinates of initial approximation 0x of

the next minimum point by means of the Rnd function returning real numbers

uniformly distributed on segment]1,0[.

The 0x point falls into any place of rectangle 5.55.0
1

x and

55.0
2

x with equal probability.

Below operator 12, we see familiar operators of the function minimization

by the Powell method. Upon termination of the minim subroutine execution,

operators 13 — 18 are performed.

Operators 13 — 17 put the result of searching the local minimum into the

empty row on the Sheet2 worksheet. The result includes:

 x(0) — the value of function F ;

 x(1), x(2) — the values of arguments
1

x and
2

x ;

 nt, nf — the numbers of the test and func calls required for finding

the local minimum.

Operator 18 performs the jump to label beg if the following three conditions

are satisfied simultaneously:

 the execution time is less than the limiting time;

 the number of found minimum points is less than the limiting number;

 empty rows still stay on the Excel worksheet.

After the jump to label beg, the new 0x point is defined randomly and the

minimization is repeated.

Fig. 6.27 shows the beginning of the Sheet2 worksheet after the code execu-

tion. The limiting execution time and the limiting number of found minimum

points are equal to 1 second and 100, respectively. During the code execution,

100 minimum points were calculated; coordinates of seven of them are given in

table “The minimization results” below. The 93 remaining points practically

6.8. Minimization of the multimodal function

479

coincide with these seven points or are outside the domain defined by inequali-

ties 5.55.0
1

x and 55.0
2

x .

Fig. 6.27. The first 16 rows on the Sheet2 worksheet

after the code execution

The minimization results

Minimum’s number),(
210

xxFx
1

x
2

x

1 0 1.57 1.57

2 0 4.71 1.57

3 0 4.71 4.71

4 0 1.57 4.71

5 0 1 1

6 0.397 2.13 4.54

7 0.732 1.88 3.55

When creating table “The minimization results”, we applied the Excel filter

to the worksheet of Fig. 6.27 as follows:

1) set the number format with two decimal places for columns B and C;

2) select columns A:E;

3) Data > Filter in area Sort & Filter (Fig. 6.28);

Chapter 6. Numerical Methods for Nonlinear Programming

480

4) in the first row of the B column, fulfill Number Filters > Custom Filter by

means of the drop-down list;

5) in the Custom AutoFilter window opened, set the following: ≥ 0.5 and ≤

5.5 (Fig. 6.29);

6) click on the OK button;

7) in the first row of the C column, fulfill Number Filters > Custom Filter;

8) in the Custom AutoFilter window opened, set the following: ≥ 0.5 and ≤ 5

(Fig. 6.30);

9) click on the OK button.

Fig. 6.28. The first 16 rows on the Sheet2 worksheet

after starting the filter

The first four minima in table “The minimization results” are located at the

points, where the first multiplicand of objective function (6.26) is equal to zero:

0coscos
2

2

1

2 xx

6.8. Minimization of the multimodal function

481

because 2/ = 1.57, 2/3 = 4.71, i.e.,)57.1(cos =)71.4(cos = 0.

The 5th minimum has coordinates
1

x =
2

x = 1, for which the second multi-

plicand of objective function (6.26) is equal to zero:

0)1()(100 2

1

22

12
xxx .

The 6th and 7th minima are not so obvious: objective function (6.26) has

nonzero values at points (2.13; 4.54) and (1.88; 3.55).

Fig. 6.29. Setting the constraints for
1

x during the filter usage

Fig. 6.30. Setting the constraints for
2

x during the filter usage

Chapter 6. Numerical Methods for Nonlinear Programming

482

Strictly speaking, the above method for minimizing the multimodal function

does not guarantee finding all local minima inside the function’s domain. How-

ever, the probability of this is close to unity if the code execution is sufficiently

long.

Often, we do not believe in the adequacy of the obtained solution of a mini-

mization problem, even when we know that the objective function is unimodal.

In this case, the use of this section’s method is a good idea.

We advise the reader to write a program for finding the global minimum of

function

)()(),(
2

2

21

2

121
xfxfxxF

inside rectangle
111

bxa and
222

bxa , where)(
11

xf and)(
22

xf are

functions from Appendix 4, segments],[
11

ba and],[
22

ba are the domains of

functions)(
11

xf and)(
22

xf , respectively.

In addition, we advise the reader to use the random-number generator for

defining both the initial approximation of the minimum point and the initial steps

along the
1

x and
2

x axes.

By the way, the last minimum in table “The minimization results” (with co-

ordinates
1

x = 1.88 and
2

x = 3.55) is the solution of the following maximin

problem: to determine the maximum value of function (6.26) among the local

minima inside rectangle 5.55.0
1

x and 55.0
2

x . The global minimum

is equal to zero; it is reached at the first five minimum points.

6.9. Minimization of the tabular function

483

6.9. Minimization of the tabular function

To demonstrate the possibilities of the numerical methods for nonlinear pro-

gramming, we used simple functions that can be differentiated analytically. For

example, we easily derived expressions (6.5) and (6.6) for the partial derivatives

of the Rosenbrock function. In this case, methods of the third chapter in book

[16], using the first and second partial derivatives of the objective function, are

effective for the minimization.

In practice, it is often necessary to minimize a function in tabular form or

a function whose values are calculated implicitly, for example, by solving any

equation. In these cases, the analytical differentiation of the function being min-

imized is impossible, and the search methods take on special significance.

We will consider the minimization of a positive tabular function of two vari-

ables. The values of arguments
1

x and
2

x and of function),(
210

xxFx are

given in table Listing 6.12 and Fig. 6.31.

Listing 6.12

The positive tabular function of two variables

x
1
 x

2
 0 0.2 0.4 0.6 0.8

2 1.703125 1.529781 1.981909 3.548149 7.270101

2.2 1.673125 1.282539 1.514134 2.903724 6.656206

2.4 1.883125 1.23895 1.201694 2.35404 6.07493

2.6 2.333125 1.399014 1.04459 1.899096 5.526274

2.8 3.023125 1.762731 1.042822 1.538892 5.010238

3 3.953125 2.330101 1.196389 1.273429 4.526821

3.2 5.123125 3.101124 1.505292 1.102706 4.076024

3.4 6.533125 4.075801 1.969531 1.026724 3.657846

3.6 8.183125 5.25413 2.589105 1.045483 3.272287

3.8 10.07313 6.636113 3.364015 1.158982 2.919348

4 12.20313 8.221749 4.294261 1.367221 2.599029

Chapter 6. Numerical Methods for Nonlinear Programming

484

Fig. 6.31. The Excel table with source data

According to Fig. 6.31:

 cells B3:B13 contain values
i

x
,1

 of argument
1

x (0 ≤ i ≤ k, k = 10), i.e.,

grid nodes
0,1

x ,
1,1

x , ...,
k

x
,1

 on axis
1

x ;

 cells C2:G2 contain values
j

x
,2

 of argument
2

x (0 ≤ j ≤ r, r = 4), i.e.,

grid nodes
0,2

x ,
1,2

x , ...,
r

x
,2

 on axis
2

x ;

 cells C3:G13 contain the),(
21

xxF function values.

The code intended for minimizing the),(
21

xxF function follows:

Listing 6.13

Const DBL_MAX = 1E+308

Dim x1() As Double 'grid nodes on axis x1

Dim x2() As Double 'grid nodes on axis x2

Dim k As Integer 'number of segments on x1

Dim r As Integer 'number of segments on x2

Dim ff() As Double 'values of function F

Dim f1() As Double 'values of splines

Dim f2() As Double 'values of function of x2

Dim mm() As Double 'values of moments about x2

Dim m1() As Double 'values of moments about x1

6.9. Minimization of the tabular function

485

Dim m2() As Double 'values of moments about x2

Dim nf As Long 'counter of calls of func

Dim nt As Long 'counter of calls of test

Dim no As Integer 'shift for output

Sub main()

 Dim x(2) As Double

 Dim ss(1 To 2, 1 To 2) As Double

 Dim i As Integer, j As Integer

 Dim min As Double

 k = Selection.Rows.Count - 2

 r = Selection.Columns.Count - 2

 ReDim x1(k)

 ReDim x2(r)

 ReDim ff(k, r)

 ReDim f1(k)

 ReDim f2(r)

 ReDim mm(k, r)

 ReDim m1(k)

 ReDim m2(r)

 For i = 0 To k

 x1(i) = Selection.Cells(2 + i, 1)

 Next i

 For j = 0 To r

 x2(j) = Selection.Cells(1, 2 + j)

 Next j

 For i = 0 To k

 For j = 0 To r

 ff(i, j) = Selection.Cells(2 + i, 2 + j)

 Next j

 Next i

'Calculation of 2D array of moments about x2:

 For i = 0 To k

 For j = 0 To r

 f2(j) = ff(i, j)

 Next j

0: Call mos(0, r, x2, f2, 0, 0, 0, 0, m2)

 For j = 0 To r

 mm(i, j) = m2(j)

 Next j

 Next i

'Specifying initial approximation of minimum point:

Chapter 6. Numerical Methods for Nonlinear Programming

486

 min = DBL_MAX

 For i = 0 To k

 For j = 0 To r

 If ff(i, j) < min Then

 min = ff(i, j)

 x(1) = x1(i)

 x(2) = x2(j)

 End If

 Next j

 Next i

 no = i + 2

'Specifying initial steps:

 ss(1, 1) = 0.01: ss(1, 2) = 0

 ss(2, 1) = 0: ss(2, 2) = 0.01

'Searching minimum point:

 nf = 0

 nt = 0

 Call func(2, x) 'it must be before minimization

 Selection.Cells(no, 1) = x(0)

 Selection.Cells(no, 2) = x(1)

 Selection.Cells(no, 3) = x(2)

 Call minim(2, x, ss, 1E-6) 'Powell method

'Outputting minimum point:

 Selection.Cells(no + 1, 1) = x(0)

 Selection.Cells(no + 1, 2) = x(1)

 Selection.Cells(no + 1, 3) = x(2)

 Selection.Cells(no + 1, 4) = nt

 Selection.Cells(no + 1, 5) = nf

End Sub

Sub func(ByVal n, ByRef x() As Double)

 Dim i As Integer

 Dim j As Integer

 nf = nf + 1

 For i = 0 To k

 For j = 0 To r

 f2(j) = ff(i, j)

 m2(j) = mm(i, j)

 Next j

1: Call si(0, r, x2, f2, m2, x(2), f1(i))

 Next i

2: Call mos(0, k, x1, f1, 0, 0, 0, 0, m1)

6.9. Minimization of the tabular function

487

3: Call si(0, k, x1, f1, m1, x(1), x(0))

End Sub

Function test(ByVal n, ByRef x() As Double, _

 ByRef z() As Double, ByVal rho, Optional alpha) _

 As Boolean

 Dim j As Byte

 nt = nt + 1

 If Abs(z(0) - x(0)) < n * rho * z(0) Then

 test = False

 Else

 test = True

 End If

 If Not IsMissing(alpha) Then

 If x(0) < alpha Then test = False

 End If

End Function

We enter this code into Module1 of the BookNM workbook. The source data

are in the Excel table (Fig. 6.31); this table (range B2:G13) should be selected

before the code execution.

Let us consider the three main stages of the code execution.

First of all, the moments of cubic splines)(
20

xS ,)(
21

xS , . . . ,)(
2

xS
k

,

defined by grid functions),()(
20,120

xxFxf ,),()(
21,121

xxFxf , . . . ,

),()(
2,12

xxFxf
kk

, are calculated by means of operator 0:

)(
20

xf and)(
20

xS correspond to range C3:G3;

)(
21

xf and)(
21

xS correspond to range C4:G4;

)(
2

xf
k

 and)(
2

xS
k

 correspond to range C13:G13.

These moments are stored in two-dimensional array mm. Later this array is used

(by means of one-dimensional array m2) in the func subroutine for the spline

interpolation (operator 1).

Further, coordinates x(1) and x(2) of initial approximation 0x of the x

minimum point are specified as follows:

 the minimum of range C3:G13 (Fig. 6.31) is found: min = 1.026724

(cell F10);

 the point, where function F equals min, is taken as the initial approxima-

tion: x(1) = 3.4, x(2) = 0.6.

Chapter 6. Numerical Methods for Nonlinear Programming

488

In last turn, two-dimensional array ss of initial steps is specified and the

search for the minimum point is performed by the Powell method. The following

data are put into the Excel worksheet:

 initial array x into cells B14:D14 (Fig. 6.32);

 final array x and the final values of nt and nf into cells B15:F15.

Fig. 6.32. The code execution results

Let us use the following notations:
1

 and
2

 are the current values of vari-

ables x(1) and x(2), respectively.

The value of objective function)(
2

,
10

F is the result of the func

subroutine execution. This value is calculated as follows:

1) by means of the si subroutine (operator 1), grid function)(
1

xf is

determined according to the following formulas:

)(
0,1

xf =)(
20

S ,)(
1,1

xf =)(
21

S , . . . ,)(
,1 k

xf =)(
2k

S ;

2) by means of the mos subroutine (operator 2), the moments of spline

)(
1

xS , corresponding to)(
1

xf , are calculated;

3) by means of the si subroutine (operator 3), the value of)(
1

S is calcu-

lated, which is considered as the objective function’s value:

6.9. Minimization of the tabular function

489

x(0) =
0

 =)(
2

,
1

F =)(
1

S .

According to Fig. 6.32, the found minimum point of the),(
21

xxF function,

given by table Listing 6.12, has coordinates
1

x = 3.111 and
2

x = 0.525, and the

minimum value of),(
21

xxF is equal to),(
21

xxF = 0.905.

We advise the reader to develop a noniterative method and corresponding

program for minimizing a positive tabular function of two variables (similar to

the method and program of Section 4.6). Listing 6.12 must be used for testing the

program.

Besides splines)(
20

xS ,)(
21

xS , . . . ,)(
2

xS
k

 considered above, cubic

splines)(
1

0 xS ,)(
1

1 xS , . . . ,)(
1

xS r must be used. The last set of splines is

defined by grid functions),()(
0,211

0 xxFxf ,),()(
1,211

1 xxFxf , . . . ,

),()(
,211 r

r xxFxf :

)(
1

0 xf and)(
1

0 xS correspond to range C3:C13 in Fig. 6.31;

)(
1

1 xf and)(
1

1 xS correspond to range D3:D13;

)(
1

xf r and)(
1

xS r correspond to range G3:G13.

In the next two chapters, we will minimize a function whose values are calcu-

lated implicitly, more precisely, by solving the initial value problems for the sys-

tem of differential equations.

Chapter 6. Numerical Methods for Nonlinear Programming

490

6.10. Solving the nonlinear differential

equation by the shooting method

Minimization of an implicit function may be required to solve the following

boundary value problem on segment],[ba :

dx

du
uxF

dx

ud
,,

2

2

, (6.27)

Aau)(, (6.28)

Bbu)(, (6.29)

where A and B are given parameters, F is a nonlinear function of variables x, y

and z.

Problem (6.27) — (6.29) was solved by the quasilinearization method in Sec-

tion 3.12. Below, this problem will be solved by the shooting method.

We introduce unknown function

dx

du
xv)(.

This expression can be written in the following equation form:

),,(vuxE
dx

du
, (6.30)

where E is a function of simple form: vE .

Equation (6.27) becomes

),,(vuxF
dx

dv
. (6.31)

In Section 5.2, the method for solving the system of equations (6.30) and

(6.31) was developed for initial conditions (6.28) and

Qav)(. (6.32)

According to the shooting method, problem (6.27) — (6.29) can be solved by

the repeated solution of system (6.30), (6.31) with initial conditions (6.28) and

(6.32) for different values of Q until satisfaction of condition (6.29) at point b.

Let us consider the shooting model, which is a good illustration of the shoot-

ing method (this explains the method name).

6.10. Solving the nonlinear differential equation by the shooting method

491

If we neglect the air resistance, then Newton’s second law gives the projectile

trajectory,)(xu , described by equation (6.27), where

22 /)1(VQgF .

In this expression:

)(a
dx

du
Q is the slope of the gun barrel located at point),(Aa with

coordinates x = a and u = A;

 V is the projectile velocity at the moment of leaving the barrel;

 g is the free fall acceleration.

Let us assume that the target is at point),(Bb with coordinates x = b and

u = B. Solving the system of equations (6.30) and (6.31) with initial conditions

(6.28) and (6.32) at various values of Q, we simulate the shooting when varying

the slope of the gun barrel (Fig. 6.33).

Fig. 6.33. Graphic image of the)(xu solution of system (6.30), (6.31)

with initial conditions (6.28) and (6.32) at two values of Q

To obtain slope Q , at which the projectile hits the target at point (b, B), we

have to solve algebraic equation

BbQu),(, (6.33)

where),(xQu is the result of solving the system of differential equations (6.30)

and (6.31) with initial conditions (6.28) and (6.32) at given Q.

Chapter 6. Numerical Methods for Nonlinear Programming

492

The above algebraic equation can be solved by the bisection, secant or

Steffensen method (Sections 4.5 and 5.5). We will solve it by minimizing the

following function:

2]),([)(BbQuQG . (6.34)

The method for solving algebraic equation (6.33) by minimizing function

(6.34) is based on the following obvious assertion: the problem of solving the

system of nonlinear algebraic equations (5.17) is equivalent to the problem of

finding point x , at which non-negative function

22

22

2

11
])([...])([])([)(

nn
fffF xxxx (6.35)

is equal to 0. Here,)...,,,(
21 n

xxxx is a point of the n-dimensional space,

n ≥ 1.

Minimizing the)...,,,(
21 n

xxxF function, defined by (6.35), is a popular

method for solving the system of nonlinear algebraic equations (5.17).

6.11. Modeling of the hammer motion in the piano mechanism

493

6.11. Modeling of the hammer motion

in the piano mechanism

As an example of using the shooting method, we will solve the following task

of modeling of the hammer motion in the piano mechanism when rupture of the

spring occurs:

 in addition to the initial time moment, a = 0, of rupture of the spring,

another moment, b = 20 ms, is given;

 we know that the hammer’s displacement forward is equal to A
3
 = 7 mm

and B
3
 = 15 mm at moments a and b, respectively;

 we have to determine values A
4
 and B

4
 of the hammer velocity at these

moments.

For solving this task, we use the simplified mathematical model of the piano

mechanism: the elastic constant of the spring, k, equals zero in model (5.27) —

(5.30). In this case, the hammer’s displacement is described by equation

dt

du
uE

dt

ud
3

34
2

3

2

, , (6.36)

where

3

2

3

3

34
,

qup

dt

du
q

dt

du
uE .

Second-order nonlinear differential equation (6.36) is considered on time

segment 0 ≤ t ≤ b. We have to solve this equation with boundary conditions

33
)0(Au , (6.37)

33
)(Bbu . (6.38)

As in Section 5.6, let us introduce the hammer velocity, dtduu /
34

. We

obtain the following system of first-order differential equations:

)(
43

3 uE
dt

du
, (6.39)

Chapter 6. Numerical Methods for Nonlinear Programming

494

),(
434

4 uuE
dt

du
, (6.40)

where

43
uE ,

3

2

4

4 qup

qu
E .

According to the shooting method, boundary value problem (6.36) — (6.38)

can be solved by the repeated solution of the system of differential equations

(6.39) and (6.40) with initial conditions (6.37) and

44
)0(Au . (6.41)

For obtaining desired value
4

A of the hammer velocity at the initial time

moment, we have to minimize the following function similar to (6.34):

2

3434
]),([)(BbAuAG , (6.42)

where function),(
43

tAu is the result of solving the system of equations (6.39)

and (6.40) with initial conditions (6.37) and (6.41) at given
4

A .

Function (6.42) will be minimized by the mini subroutine. We could use the

minim subroutine because mini and minim work equally in the case of a one-

variable function (n = 1).

In the source data table given below, values l, τ, p, q and ζ have the same

sense as in table Listing 5.3 (p. 376).

Listing 6.14

l 20

tau 1.00E-03

A4 0

p 0.406

q 18.3

zeta 1.00E-09

A3 0.007

B3 0.015

The sense of the remaining values in table Listing 6.14 is as follows:

4

A is the initial approximation of the minimum point of function (6.42)

in units of m / s;

6.11. Modeling of the hammer motion in the piano mechanism

495

3

A is the given value of)0(
3

u in meters;

3

B is the given value of)(
3

bu in meters, lb .

The code for solving the problem of minimizing function (6.42) has the fol-

lowing form:

Listing 6.15

Dim x(0 To 1) As Double 'array for minimization

Dim nf As Long 'counter of calls of func

Dim nt As Long 'counter of calls of test

Dim l As Integer, tau As Double

Dim A4 As Double

Dim p As Double, q As Double

Dim zeta As Double

Dim A3 As Double, B3 As Double

Dim tau2 As Double

Dim uu() As Double

Dim jj() As Integer

Sub main()

 Dim ss(1 To 1, 1 To 1) As Double

 Dim i As Integer

 Dim sb As String, se As String

 l = Selection.Cells(1, 2)

 tau = Selection.Cells(2, 2)

 A4 = Selection.Cells(3, 2)

 p = Selection.Cells(4, 2)

 q = Selection.Cells(5, 2)

 zeta = Selection.Cells(6, 2)

 A3 = Selection.Cells(7, 2)

 B3 = Selection.Cells(8, 2)

 tau2 = tau / 2

 ReDim uu(1 To 4, 0 To l)

 ReDim jj(0 To l)

 x(1) = A4 'initial approximation of A4

 ss(1, 1) = 1E-6 'initial step along A4 axis

 nf = 0: nt = 0

 Call func(1, x) 'it must be before minimization

 Call mini(1, x, ss, 1E-12, 1E-12)

 MsgBox "A4 = " & CStr(Round(x(1), 3)) & " m/s"

 MsgBox "B4 = " & CStr(Round(uu(4, l), 3)) & " m/s"

 Selection.Cells(9, 1) = "t"

Chapter 6. Numerical Methods for Nonlinear Programming

496

 Selection.Cells(9, 2) = "u3"

 Selection.Cells(9, 3) = "u4"

 Selection.Cells(9, 4) = "j max"

 For i = 0 To l 'movement along time axis

 Selection.Cells(10 + i, 1) = i * tau

 Selection.Cells(10 + i, 2) = uu(3, i)

 Selection.Cells(10 + i, 3) = uu(4, i)

 Selection.Cells(10 + i, 4) = jj(i)

12: Selection.Cells(10 + i, 4). _

 HorizontalAlignment = xlCenter 'alignment

 Next i

 sb = Selection.Cells(10, 1).Address

 se = Selection.Cells(10 + l, 2).Address

13: Call graph(sb, se, "t, s", "u3, m")

End Sub

Sub e_functions(ByRef x() As Double, _

 ByRef e() As Double)

 e(3) = x(4)

 e(4) = q * x(4) ^ 2 / (p - q * x(3))

End Sub

Sub fx_jacobian(ByRef x() As Double, _

 ByRef fx() As Double)

 Dim m3 As Double

 fx(3, 3) = 1: fx(3, 4) = -tau2

 m3 = p - q * x(3)

 fx(4, 3) = -tau2 * (q * x(4) / m3) ^ 2

 fx(4, 4) = 1 - tau * q * x(4) / m3

End Sub

Sub func(ByVal n, ByRef x() As Double)

 Dim m As Integer

 Dim i As Integer, j As Integer

 Dim u(3 To 4) As Double

 Dim xx(3 To 4) As Double

 Dim z(3 To 4) As Double

 Dim e(3 To 4) As Double

 Dim a(3 To 4, 3 To 4) As Double

 Dim b(3 To 4) As Double

 Dim alpha(3 To 4) As Double

 Dim max As Double

6.11. Modeling of the hammer motion in the piano mechanism

497

 nf = nf + 1

1: u(3) = A3: u(4) = x(1) 'values at t=0

 For m = 3 To 4

 uu(m, 0) = u(m)

 Next m

 jj(0) = 0

 For i = 1 To l 'movement along time axis

2: Call e_functions(u, e)

 For m = 3 To 4

3: alpha(m) = u(m) + tau2 * e(m)

4: xx(m) = u(m) + tau * e(m)

 Next m

 For j = 1 To 1000 'Newton iterations

5: Call fx_jacobian(xx, a)

6: Call e_functions(xx, e)

 For m = 3 To 4

7: b(m) = alpha(m) - _

 (xx(m) - tau2 * e(m))

 Next m

8: Call gauss(2, a, b, z, 2, 2)

 For m = 3 To 4

9: xx(m) = xx(m) + z(m)

 Next m

 max = 0

 For m = 3 To 4

 If Abs(z(m)) > max Then _

 max = Abs(z(m))

 Next m

10: If max < zeta Then Exit For

 Next j

 For m = 3 To 4

11: u(m) = xx(m)

 uu(m, i) = u(m)

 Next m

 jj(i) = j

 Next i

14: x(0) = (u(3) - B3) ^ 2

End Sub

Function test(ByVal n, ByRef x() As Double, _

 ByRef z() As Double, ByVal rho, Optional alpha) _

 As Boolean

Chapter 6. Numerical Methods for Nonlinear Programming

498

 nt = nt + 1

 If Abs(z(0) - x(0)) < n * rho * z(0) Then

 test = False

 Else

 test = True

 End If

 If Not IsMissing(alpha) Then

 If x(0) < alpha Then test = False

 End If

 If n = 1 Or nt = 1048576 Then test = False

End Function

This code for minimizing function (6.42), actually, is a combination of two

codes — for optimizing a tin can (Section 6.4) and for simulation of the piano

mechanism (Section 5.6). Operator 14 defines the objective function’s form.

The source data for the code are specified in table Listing 6.14 (Fig. 6.34).

We must select this table before the code execution.

Fig. 6.34. The Excel table with the source data

During the execution:

1) the window with calculated velocity
4

A =
4

A = 0.294 m / s appears

(Fig. 6.35);

2) after clicking on the OK button, the window with calculated velocity

4
B =

4
B = 0.623 m / s appears (Fig. 6.36);

6.11. Modeling of the hammer motion in the piano mechanism

499

3) after clicking on button OK, the following results, depicted in Fig. 6.37,

appear:

 the values of t,
3

u and
4

u ;

 the numbers of the Newton iterations,
max

j ;

 the graph of dependence)(
3

tu .

The last graph is the result of the graph subroutine execution (operator 13).

On p. 328, we used Fig. 6.37 to demonstrate the features of this subroutine

intended for automatic creation of graphs.

In section “Instead of Conclusions”, we will need the dependences of the cal-

culated values of
4

A and
4

B versus the number of steps on segment 0 ≤ t ≤ b.

These dependences, depicted in Fig. 6.38, were obtained by executing code

Listing 6.15 for l = 2, 3, 5, 10, 20, 30. The time step is equal to lb / , where

b = 0.02.

Fig. 6.35. Window with the calculated value

of the hammer velocity at moment a = 0

Fig. 6.36. Window with the calculated value

of the hammer velocity at moment b = 20 ms

Chapter 6. Numerical Methods for Nonlinear Programming

500

Fig. 6.37. The code execution results, which include the)(
3

tu graph

Fig. 6.38. Velocities
4

A (dashed curve) and
4

B (continuous curve)

versus the number of time steps, i.e., dependences)(
4

lA and)(
4

lB

6.12. Nonlinear programming and the least-squares method

501

6.12. Nonlinear programming

and the least-squares method

In Section 5.8, we considered the least-squares method to solve the task of

determining the production function, more precisely, the functional dependence

of the wheat productivity on the land quality. Let us return to this question.

According to the least-squares method, to get required values
1

L , ..., L , ...,

n
L of the linear spline at the grid nodes,

1
z < ... < z < ... <

n
z , we have to

find the minimum point of non-negative function (5.43) of form

1

2

1
])([)...,,...,,(

j
jjn

uxLLLLG .

In Section 5.9, we minimized this function by solving the system of linear alge-

braic equations (5.48). In this section, we will use the Powell method for the

minimization.

Below is a code for finding required values
1

L , ..., L , ...,
n

L .

Listing 6.16

Dim nf As Long 'counter of calls of func

Dim nt As Long 'counter of calls of test

Dim m As Integer

Dim XX() As Double

Dim UU() As Double

Dim ZZ() As Double

Sub main()

 Dim x() As Double

 Dim ss() As Double

 Dim n As Integer

 Dim i As Integer

 Dim j As Integer

 Dim d As Double

 m = Selection.Rows.Count 'quantity of rows

 n = Selection.Cells(1, 2) 'number of nodes

Chapter 6. Numerical Methods for Nonlinear Programming

502

 ReDim XX(3 To m)

 ReDim UU(3 To m)

 ReDim ZZ(1 To n)

 ReDim x(n)

 ReDim ss(1 To n, 1 To n)

 For j = 3 To m

 XX(j) = Selection.Cells(j, 1)

 UU(j) = Selection.Cells(j, 2)

 Next j

 For i = 1 To n

 ZZ(i) = Selection.Cells(2 + i, 3)

 Next i

 For j = 1 To n

 x(j) = Cells(1, 6 + j)

 For i = 1 To n

 ss(i, j) = Cells(1 + i, 6 + j)

 Next i

 Next j

 For j = 1 To n

 d = 0

 For i = 1 To n

 d = ss(i, j) ^ 2 + d

 Next i

 If d = 0 Then

 Cells(1, 1).Value = _

 "You must increase" & Str(j) & _

 "-th initial step"

 End

 End If

 Next j

 nf = 0

 nt = 0

 Call func(n, x) 'it must be before minimization

0: Call minim(n, x, ss, 1E-6) 'Powell method

'Output of results:

 For j = 0 To n

 Selection.Cells(m + 2, j + 1) = x(j)

 Next j

 Selection.Cells(m + 2, n + 2) = nt

 Selection.Cells(m + 2, n + 3) = nf

 Selection.Cells(2, 4) = "L"

 For i = 1 To n

6.12. Nonlinear programming and the least-squares method

503

 Selection.Cells(2 + i, 4) = x(i)

 Next i

End Sub

Sub func(ByVal n, ByRef x() As Double)

 Dim j As Integer, L As Double

 nf = nf + 1

 x(0) = 0

 For j = 3 To m

 If XX(j) <= ZZ(2) Then

 L = ((ZZ(2) - XX(j)) * x(1) + _

 (XX(j) - ZZ(1)) * x(2)) / (ZZ(2) - ZZ(1))

 Else

 L = ((ZZ(3) - XX(j)) * x(2) + _

 (XX(j) - ZZ(2)) * x(3)) / (ZZ(3) - ZZ(2))

 End If

 x(0) = x(0) + (L – UU(j)) ^ 2

 Next j

End Sub

Function test(ByVal n, ByRef x() As Double, _

 ByRef z() As Double, ByVal rho, Optional alpha) _

 As Boolean

 Dim j As Byte

 nt = nt + 1

 If Abs(z(0) - x(0)) < n * rho * z(0) Then

 test = False

 Else

 test = True

 End If

 If Not IsMissing(alpha) Then

 If x(0) < alpha Then test = False

 End If

End Function

This code has features of program Listing 5.6.

In addition to table Listing 5.5 (with the source data for program Listing 5.6),

the G1:I4 range contains the source data for code Listing 6.16 (Fig. 6.39):

 range G1:I1 contains zero initial approximations of required coordinates

x(1) =
1

L , x(2) =
2

L , x(3) =
3

L of the minimum point;

Chapter 6. Numerical Methods for Nonlinear Programming

504

 range G2:I4 contains the S matrix of initial steps.

Arrays XX, UU, ZZ are used in Listing 6.16 instead of arrays X, U, Z in

Listing 5.6. Before the code execution, we must select the B2:D15 range.

Fig. 6.39. The source data

According to Fig. 6.40, four iterations were performed and 104 values of

objective function (5.43) were calculated during the minimization by the Powell

method (by means of the minim subroutine, see operator 0). The calculated

values
1

L ,
2

L ,
3

L of the linear spline at grid nodes
1

z <
2

z <
3

z are respec-

tively placed in cells E4, E5 and E6 (and also in cells C17, D17 and E17). Natu-

rally, these values are the same as when using program Listing 5.6.

When using the minim subroutine in the least-squares method, we can easily

switch to another form of the required functional dependence, for example, to

quadratic form

2

321321
),,,(xCxCCxCCCF . (6.43)

The values of constants
1

C ,
2

C and
3

C must be determined by minimizing the

following non-negative function similar to (5.42):

1

2

321321
]),,,([),,(

j
jj

uxCCCFCCCG , (6.44)

6.12. Nonlinear programming and the least-squares method

505

where
j

x and
j

u are the values given in columns Mark and Productivity of the

source data table depicted in Fig. 6.39, 1 ≤ j ≤ ν (ν = 12 is the number of land

plots).

Fig. 6.40. The execution results

The following code is intended for finding the values of constants
1

C ,
2

C

and
3

C by means of the Powell minimization method.

Listing 6.17

Dim nf As Long 'counter of calls of func

Dim nt As Long 'counter of calls of test

Dim m As Integer

Dim XX() As Double

Dim UU() As Double

Sub main()

 Dim x() As Double

 Dim ss() As Double

 Dim n As Integer

 Dim i As Integer

 Dim j As Integer

Chapter 6. Numerical Methods for Nonlinear Programming

506

 Dim d As Double

 m = Selection.Rows.Count 'quantity of rows

 n = Selection.Cells(1, 2) 'number of nodes

 ReDim XX(3 To m)

 ReDim UU(3 To m)

 ReDim x(n)

 ReDim ss(1 To n, 1 To n)

 For j = 3 To m

 XX(j) = Selection.Cells(j, 1)

 UU(j) = Selection.Cells(j, 2)

 Next j

 For j = 1 To n

 x(j) = Cells(1, 6 + j)

 For i = 1 To n

 ss(i, j) = Cells(1 + i, 6 + j)

 Next i

 Next j

 For j = 1 To n

 d = 0

 For i = 1 To n

 d = ss(i, j) ^ 2 + d

 Next i

 If d = 0 Then

 Cells(1, 1).Value = _

 "You must increase" & Str(j) & _

 "-th initial step"

 End

 End If

 Next j

 nf = 0

 nt = 0

 Call func(n, x) 'it must be before minimization

0: Call minim(n, x, ss, 1E-6) 'Powell method

'Output of results:

 For j = 0 To n

 Selection.Cells(m + 2, j + 1) = x(j)

 Next j

 Selection.Cells(m + 2, n + 2) = nt

 Selection.Cells(m + 2, n + 3) = nf

 Selection.Cells(2, 4) = "C"

 For i = 1 To n

 Selection.Cells(2 + i, 4) = x(i)

6.12. Nonlinear programming and the least-squares method

507

 Next i

End Sub

Sub func(ByVal n, ByRef x() As Double)

 Dim j As Integer

 Dim F As Double

 nf = nf + 1

 x(0) = 0

 For j = 3 To m

 F = x(1) + x(2) * XX(j) + x(3) * XX(j) ^ 2

 x(0) = x(0) + (F - UU(j)) ^ 2

 Next j

End Sub

Function test(ByVal n, ByRef x() As Double, _

 ByRef z() As Double, ByVal rho, Optional alpha) _

 As Boolean

 Dim j As Byte

 nt = nt + 1

 If Abs(z(0) - x(0)) < n * rho * z(0) Then

 test = False

 Else

 test = True

 End If

 If Not IsMissing(alpha) Then

 If x(0) < alpha Then test = False

 End If

End Function

This code slightly differs from Listing 6.16.

For code Listing 6.17, the source data are almost the same as for code

Listing 6.16:

 column Z may be absent (Fig. 6.41);

 range G1:I1 contains zero initial approximations of required coordinates

x(1) =
1

C , x(2) =
2

C , x(3) =
3

C of the minimum point;

 range G2:I4 contains the S matrix of initial steps.

Before the code execution, we must select the B2:C15 range.

According to Fig. 6.42, four iterations were performed and 92 values of

objective function (6.44) were calculated during the minimization by the Powell

method. The calculated values, *
1

C , *
2

C and *
3

C , are respectively placed in cells

Chapter 6. Numerical Methods for Nonlinear Programming

508

E4, E5 and E6 (and also in cells C17, D17 and E17). Fig. 6.43 shows the graph

of quadratic dependence (6.43) with the calculated constants:

2

321321
),,,(xCxCCxCCCF ,

where *
1

C = 10.2961, *
2

C = 0.37988 and *
3

C = 0.00158.

Fig. 6.41. The source data

Fig. 6.42. The execution results

6.12. Nonlinear programming and the least-squares method

509

Fig. 6.43. The experimental points and the quadratic line of the functional

dependence of the wheat productivity on the land quality mark

510

Instead of Conclusions

For solving mathematical and applied tasks, an alternative to the numerical

method is the analytical method aimed at obtaining a solution in the formula

form. It is interesting to compare these two methods.

The obvious advantage of numerical methods over analytical ones is their

generality. However, numerical methods have a disadvantage consisting in the

approximate nature of the numerical solution of a task. Therefore, for improving

the accuracy, we have to run the program (realizing the numerical method)

several times while changing the values of the numerical method parameters.

The program execution must be repeated until the execution results become

independent of the parameter values. It is these results that are reliable.

As an illustration, let us return to the task of modeling of the hammer motion

in the piano mechanism when the spring is ruptured (Section 6.11).

In this task:

 the numerical method parameter is l — the number of steps on the time

segment considered, 0 ≤ t ≤ b = 20 ms;

 the results of solving the task are
4

A and
4

B — the hammer velocities at

the initial time moment and in 20 ms, respectively.

It is obvious that the accuracy of the numerical solution of the formulated

task improves with increasing l.

We solved the task for different values of l and depicted dependences)(
4

lA

and)(
4

lB in Fig. 6.38. According to these dependences, the values of
4

A and

4
B do not depend on l beyond 10. Therefore, the values obtained at l = 20 (

4
A =

0.294 m / s and
4

B = 0.623 m / s) are authentic within the limits of the used

mathematical model of the hammer motion when the spring is ruptured.

The question of losing the numerical solution accuracy was also considered

at the end of Section 3.7.

Analytical and numerical methods are used successively for solving many

problems. For example, the integral of a complex function may be a result of the

analytical solution, and the numerical integration is required for obtaining the

values of this integral: according to formula (5.41) on p. 385, the numerical inte-

Instead of Conclusions

511

gration of function)(xf must be done to complete the analytical solution of the

initial value problem for the Bernoulli differential equation.

One more example of successive usage of analytical and numerical methods

is in Section 4.12, where:

1) the first derivative was excluded from differential equation (4.60) by sub-

stitution (4.62);

2) the resulting problem was solved numerically by the cubic spline method;

3) the original problem for differential equation (4.60) was solved by using

formula (4.62).

Guided by the material of Section 2.14, we can create Personal Macro Work-

book with our program modules. However, we can go even further, namely, can

modify our program modules for using them as the Excel add-ins. For this pur-

pose, package Microsoft Visual Studio can be used. Let us consider how to tune

Microsoft Visual Studio 2010 for this.

According to Section 1.24, the Start Page window opens when starting

Microsoft Visual Studio 2010. Further, we must:

1) click on the New Project hyperlink;

2) in the left area of the New Project window opened, click on the plus sign

against Other Languages;

3) in the open list, click on the plus sign against Visual Basic;

4) in the open list, click on the plus sign against Office, and further click on

line 2010 (or 2007);

5) in the list of the central area of the New Project window, click on line

Excel 2010 Add-In.

As a result, the necessary operation mode of Visual Studio is set. The follow-

ing information in the right area of the New Project window speaks about it:

A project for creating a managed code add-in for Excel 2010.

Further, we must specify the project name and the project folder location by

using text boxes Name and Location. At clicking on the OK button, the window

of Visual Basic Environment appears. This window includes the code window

with automatically generated lines.

Information on creating an add-in for Excel is available in the following

internet resource: http://msdn.microsoft.com/en-us/library/.

The idea of writing this book was spurred by book [17], the best seller of the

end of the 1960s. The last book convinced the author that learning numerical

methods is more effective if it follows learning programming and builds on the

skills of programming. In this case, the learner has the possibility to grasp diffi-

cult material on numerical methods by developing the program modules that

realize these methods.

In conclusion, the author would like to share the experience of using Excel

for solving scientific and engineering problems.

Instead of Conclusions

512

In Pulsar R&D Manufacturing Company, Moscow, tabular processor Excel,

equipped with macros, is used as a preprocessor and postprocessor for compli-

cated programs written earlier in the Visual C++ programming language (a part

of Microsoft Visual Studio) for mathematical modeling of microwave transistors

[18]. In other words, the source data for the modeling are prepared in Excel and

the results are processed in Excel, in particular, graphs are constructed.

As we know, the Visual Basic programming language includes the Shell

function (p. 106), which allows running, from Excel, the executable file of an

arbitrary program, in particular, of a program written in Visual C++. By using

the Shell function, the author created the system of mathematical modeling

based on Excel. In this system, programs (written in Visual C++) and Excel

exchange data by means of text files.

When developing a program in Visual C++ (or in any other programming

language), we should pay attention to the following: the text file with the tabula-

tion character, as the substring connector (p. 95), is not only the text file, but also

the Excel workbook containing one worksheet. When we open such file with

Excel, substrings appear in separate cells, and Excel interprets a substring, which

contains digits and other features of a number, as the corresponding number.

The author hopes that he has managed to achieve the goals formulated at

the beginning of the book. It remains to wish the reader successful solution of

interesting problems.

513

Appendix 1.

Data Types of Visual Basic and VBA

Data type Memory cell size
Values of variable / constant

or comment

Boolean

(logical)

2 B

True (logical unit),

False (logical zero)

Byte

(short integer

unsigned)

1 B Integers from 0 to 255

Integer

(integer)

2 B Integers from -32768 to 32767

Long

(long integer)

4 B

Integers from -2147483648

to 2147483647

Currency

(scaled integer)
8 B

Numbers with four decimal places

from -922337203685477.5808

to 922337203685477.5807

Single

(single-precision)
4 B

Numbers with a fractional part

from -3.402823·10
38

to -1.401298·10
-45

for negative values

and from 1.401298·10
-45

to 3.402823·10
38

for positive values

Double

(double-precision)
8 B

Numbers with a fractional part

from -1.79769313486231·10
308

to -4.94065645841247·10
-324

for negative values

and from 4.94065645841247·10
-324

to 1.79769313486232·10
308

for positive values

Date

(date-time)
8 B

Date from 1 January 100

to 31 December 9999

and time from 0:00:00 to 23:59:59

Appendix 1. Data Types of Visual Basic and VBA

514

Data type Memory cell size
Values of variable / constant

or comment

String

10 B +

1 B per character

for string of

variable length

String length from 0 to 2
31

 characters

1 B per character

for string of

fixed length

String length from 1 to 2
16

 characters

Variant

16 B

if the choice by

context gives

data type

Boolean, Byte,

Integer, Long,

Currency,

Single, Double

or Date

Values correspond to the Boolean,

Byte, Integer, Long,

Currency, Single, Double or

Date data type

22 B +

1 B per character

if the choice

is not made

Values correspond to String of

variable length

Object 4 B
The memory cell stores the object

reference

User-defined

Depends

on the quantity

of fields and

their data types

Created by the Type operator

515

Appendix 2.

Greek and Russian Alphabets

Denoted by Latin Letters

The Greek alphabet with English names of the letters

Lowercase

(small) letter

Uppercase

(capital) letter

English

name

α Α Alpha

β Β Beta

γ Γ Gamma

δ Δ Delta

ε Ε Epsilon

ζ Ζ Zeta

η Η Eta

θ Θ Theta

ι Ι Iota

κ Κ Kappa

λ Λ Lambda

μ Μ Mu

ν Ν Nu

ξ Ξ Xi

ο Ο Omicron

π Π Pi

ρ Ρ Rho

σ Σ Sigma

τ Τ Tau

υ Υ Upsilon

φ Φ Phi

χ Χ Chi

ψ Ψ Psi

ω Ω Omega

Appendix 2. Greek and Russian Alphabets Denoted by Latin Letters

516

The Russian alphabet denoted by Latin letters

Russian Latin Russian Latin
а; А a; A п p

б; Б b; B р r

в v с s

г g т t

д d у u

е; Е ye, e; Ye, E ф f

ё; Ё yo; Yo х kh, h

ж zh ц ts

з z ч tch, ch

и i ш sh

й y щ sch

к k ы y

л l э e

м m ю yu

н n я ya

о o ъ, ь apostrophe

517

Appendix 3.

The Main Mathematical Functions

The main mathematical functions of Visual Basic

Call of

the function

Return value, mathematical designation

and domain of the function

Abs(x) Absolute value of x, || x

Atn(x) Arctangent of x, xarctan

Cos(x) Cosine of x, xcos

Exp(x) Exponential function, xex exp (Fig. 3.6)

Fix(x) The result of truncating the fractional part of x

Int(x) The greatest integer not exceeding x

Log(x) Natural logarithm of x, xln , at x > 0

Sgn(x) Sign function: -1, 0 or 1, depending on the sign of x

Sin(x) Sine of x, xsin

Sqr(x) Square root of x, x , at x ≥ 0

Tan(x) Tangent of x, xtan , at)5.0(kx , k is an integer

Examples of using the above functions

The Visual Basic operators for calculating the values of trigonometric func-

tion xcot , of inverse trigonometric functions xarcsin , xarccos and xarccot

and of decimal logarithm xlg are given below.

cot_x = Cos(x) / Sin(x) 'if Sin(x) <> 0

arcsin_x = Atn(x / Sqr(1 - x ^ 2)) 'if Abs(x) < 1

arccos_x = Atn(Sqr(1 - x ^ 2) / x)

 'if x > 0 And x <= 1

arccot_x = Atn(1 / x) 'if x > 0

lg_x = Log(x) / 2.302585093 'if x > 0

518

Appendix 4.

Material for Tasks

The table below, taken from [19], contains 31 functions)(xf and their

domains],[ba with the following properties:

 function)(xf is continuous and monotonous on segment],[ba ;

 the signs of)(xf on the left and right boundaries of],[ba are different.

This table is used in tasks for the reader (the tasks begin with words “we

advise the reader”). The)(af values, given in the table, are intended to help the

reader debug his programs.

By using this table, a teacher can create 31 variants of tasks for exams. The

variant number may be a student’s birthday.

No. of

variant
Function f(x) a b f(a)

1 xx 35.0/)sin38.3(2 3 0.3905776

2 xx 1)]6.3sin(3[

0 0.85 0.3333333

3 xx33.01cos 0 1 0.5403023

4 xx24.01sin 0 1 0.841471

5 2502.125.0 3 xx 2 3 -1.2502

6 xxx ln1.0 2 1 2 0.1

7 5ln43 xx 2 4 -1.772589

8 2xx ee 0 1 -2

9 5.23 xxx 0.4 1 -0.7307382

10 3/15/)(tan3/)(tantan 53 xxx 0 0.8 -0.3333333

11 xxx /1)/1sin(2)/2cos(1 2 -1.099089

12 xxx ln2)cos(ln)sin(ln 1 3 -1

13 8.1ln xx 2 3 0.4931472

Appendix 4. Material for Tasks

519

No. of

variant
Function f(x) a b f(a)

14 xxarctan4.0 1 2 0.1853982

15 3/1tanxx 0.2 1 -0.2927913

16 2)1.055.0tan(xx 0.4 1 0.171389

17 xx)/1sin(2 1.2 2 0.0598231

18 xxx)1ln(sin1 0 1.5 1

19 xx)2cos(52.0 0.5 1 0.4029458

20 xx 3)1ln(2 3 0.024503

21 xxex 10ln 3 4 -8.815851

22 xx eex 143 1 3 -8.649598

23 5ln6ln2 2 xx 1 3 -5

24 xxx cossin2 0.4 1 -0.6095263

25 1)2/exp(cos 2 xxx 1 2 -0.0662284

26 xx tan1 0 0.9 1

27 xxx 10)cos()sin(22 0 1 1

28 21 2xx ee -1 0 -0.5665994

29 xx 1cos1 0 0.9 0.4596977

30 xxx)2/cot()2/tan(1 2 -0.2841852

31 xx cos 0.5 2.5 -0.3775826

520

Appendix 5.

Analytical Method for Solving

the Cubic Algebraic Equation

Below, we will present Method 3 of handbook [3] for solving cubic equation

0233 qzpz , where p and q are nonzero real numbers.

Let us consider variable pr , the sign coinciding with the sign of q,

i.e., 0/
3

rq . The auxiliary value, φ, and the roots,
1

z ,
2

z and
3

z , are

determined according to the following table.

0p

0p 032 pq

or 10

032 pq

or 1

21
arctan

arccos

1ln

Arcosh

2

1ln

Arsinh

2

3
cos2

1
rz

3
ch2

1
rz

3
sh2

1
rz

3
cos2

2
rz

3
sh3

3
ch

2
rirz

3
ch3

3
sh

2
rirz

3
cos2

3
rz

3
sh3

3
ch

3
rirz

3
ch3

3
sh

3
rirz

As we see, the above formulas for calculating the roots depend on the signs

of p and 32 pq (i is the imaginary unit). The following mathematical functions

are used:

 ch, sh — the hyperbolic cosine and sine:

2/(coshch)xx eexx , 2/)(sinhsh xx eexx ;

 Arcosh, Arsinh — the area-hyperbolic cosine and sine.

521

Appendix 6.

Realization of the Tangent Method

by Using the Excel Circular Reference

To use the circular reference feature, let us tune Excel as follows:

1) click on the File button;

2) Options > Formulas;

3) turn on option Automatic in area Calculation options of the Excel Options

window;

4) turn on option Enable iterative calculation;

5) for example, set 100 for the limiting number of iterations in text box

Maximum Iterations;

6) for example, set 0.001 for the final relative error in text box Maximum

Change;

7) click on the OK button.

If a formula, placed in an Excel cell, contains the reference to the same cell

(maybe not directly but indirectly, through a series of other references), we say

that the circular reference exists. The cyclic reference is used when we want to

realize an iterative or recurrence process.

Let us use the cyclic reference for solving nonlinear algebraic equation

0)(xf , where 5.1cos)(xxxf , by the tangent method (Section 5.5).

For that, we fulfill the following operations on an Excel worksheet.

1. Into cell G2, intended for variable x, enter an initial approximation of the

solution, for example 2.

2. Into cell F2, enter formula

=G2-COS(G2)-1.5

corresponding to mathematical formula 5.1cos)(xxxf . When clicking

on the tick button of the Excel formula bar, value 0.916147 appears in cell F2.

3. Into cell E2, enter formula

=1+SIN(G2)

corresponding to mathematical formula xxf sin1)(. When clicking on the

tick button, value 1.909297 appears in the E2 cell.

Appendix 6. Realization of the Tangent Method by Using the Excel Circular Reference

522

4. Into cell G2, intended for variable x, enter formula

=G2-F2/E2

corresponding to mathematical formula

)(

)(1

j

j
jj

xf

xf
xx

of the tangent method. When we click on the tick button, values 1.999373, 0 and

1.535394 appear in cells E2, F2 and G2, respectively.

The multiple circular reference to cell G2 gives the last three values. Thus,

G2 contains the result of solving equation 05.1cos xx , which is equal to

x = 1.535394.

In a similar way, the cyclic reference can be used for solving equation

0)(xf by other iterative methods of Sections 4.5 and 5.5.

523

References List

1. G. Z. Garber, Bases of Programming in Visual Basic and VBA for Excel 2007

(in Russian), Moscow: SOLON-PRESS, 2008.

2. G. Z. Garber, Bases of Programming in VBA for Excel and of Numerical

Methods (in Russian), Moscow: PRINTKOM, 2009.

3. I. N. Bronshtein, K. A. Semendyayev, G. Musiol, H. Muehlig, Handbook of

Mathematics, 5th edition, Springer, 2007.

4. A. A. Samarskii, The Theory of Difference Schemes, Marcel Dekker, 2001.

5. T. Y. Na, Computational Methods in Engineering: Boundary Value Prob-

lems, Academic Press, 1979.

6. G. Z. Garber, E. V. Kostyukov, Yu. A. Kuznetsov, Two-dimensional model-

ing of a cell of photosensitive silicon charge-coupled device for color televi-

sion cameras (in Russian), Electronic Engineering. Series 2. Semiconductor

Devices, 1989, no. 3, pp. 40 – 44.

7. W. Shockley, Electrons and Holes in Semiconductors, with Applications to

Transistor Electronics, Van Nostrand Reinhold, 1950.

8. H. Gould, J. Tobochnik, An Introduction to Computer Simulation Methods:

Applications to Physical Systems, Addison-Wesley, 1988.

9. J. H. Ahlberg, E. N. Nilson, J. L. Walsh, The Theory of Splines and Their

Applications, Academic Press, 1967.

10. G. Z. Garber, Model for simulation of AlGaAs-GaAs power heterostructure

FETs, Proceedings of EUROCON 2005 – The International Conference on

“Computer as a Tool”, Belgrade: IEEE, 2005, vol. 1, pp. 867 – 870.

11. G. Z. Garber, Method for calculating a small-signal equivalent circuit of

extremely high frequency heterostructural field-effect transistors, Journal of

Communications Technology and Electronics, 2005, vol. 50, no. 7, pp. 822 –

825.

12. A. Oledzki, Dynamics of piano mechanisms, Mechanism and Machine Theo-

ry, 1972, vol. 7, pp. 373 – 385.

http://www.springeronline.com/sgw/cda/frontpage/0,10735,5-175-22-2222288-detailsPage%253Dppmmedia%257CotherBooks%257CotherBooks%2526seqNo%253D1%2526CIPageCounter%253DCI_MORE_BOOKS_BY_AUTHOR0,00.html
http://www.springeronline.com/sgw/cda/frontpage/0,10735,5-175-22-2222288-detailsPage%253Dppmmedia%257CotherBooks%257CotherBooks%2526seqNo%253D1%2526CIPageCounter%253DCI_MORE_BOOKS_BY_AUTHOR0,00.html

References List

524

13. S. N. Volkov, Land Management. Economic and Mathematical Methods and

Models (in Russian), Moscow: KOLOS, 2001.

14. M. J. D. Powell, An efficient method for finding the minimum of a function

of several variables without calculating derivatives, The Computer Journal,

1964, vol. 7, no. 2, pp. 155 – 162.

15. M. I. Korobochkin, Solving optimization problems of linear and nonlinear

programming in Excel (in Russian), Land Management, Cadastre and Moni-

toring of Lands, 2006, no. 12, pp. 73 – 76.

16. D. M. Himmelblau, Applied Nonlinear Programming, McGraw-Hill, 1972.

17. D. D. McCracken, W. S. Dorn, Numerical Methods and Fortran Program-

ming, John Wiley and Sons, 1965.

18. G. Z. Garber, Experience of using Microsoft Excel for mathematical model-

ing of microwave transistors (in Russian), Electronic Engineering. Series 2.

Semiconductor Devices, 2012, no. 2, pp. 22 – 27.

19. V. B. Glagolev, Visual Basic 6.0. Collection of tasks for laboratory and prac-

tical classes (in Russian), Publishing House of Moscow Power Engineering

Institute, 2000.

525

Subject Index

A

Abs 230, 517

Activate 161, 162, 167

ActiveCell 148, 155, 156, 158, 174

ActiveChart 245

ActiveSheet 155, 168, 169, 245

ActiveWorkbook 155, 162, 163

Add 152, 162, 164, 167, 170, 245

Add Watch 19, 72, 73, 75

Address 172, 174, 245

And 48 – 52

Append 101, 102, 106, 108

Application 148, 152, 154 – 160, 165

Array

static 68

dynamic 71

As 23, 29, 77, 78, 81, 90, 101, 103

Atn 45, 315, 517

Auto_Open 159, 160

Average 154, 155

B

Boolean 23, 29, 43, 48, 439, 513

ByRef 80

Byte 23, 24, 43, 513

ByVal 80

C

Calculate 158

Calculation 156, 159

Call 79

Caption 117, 120, 121

Case 56, 57

Case Else 57

CBool 43

CByte 43

CCur 43

CDate 43

CDbl 43

Cells 148, 167, 169, 172, 173

Charts 245

CheckBox 125 – 127, 151

CInt 43, 44, 51, 153

Clear 172

Clear All Breakpoints 19

CLng 43

Close 102 – 104, 161, 164

Color 169

Columns 142, 172, 173, 188, 189

CommandButton 120, 151

Const 29, 30, 210

Constant

built-in 31

user-defined 29

Cos 46, 517

Count 142, 162, 168, 188, 189

Course

backward 225

forward 225

CSng 43

CStr 43, 44, 96, 153

Currency 23, 24, 27, 29, 43, 513

CVar 43

Cycle

Do…Loop 61

Do Until…Loop 62, 63, 103

Do While…Loop 61, 62

Do…Loop Until 64

Do…Loop While 63

For Each…Next 172

For…Next 58

While…Wend 61

Subject Index

526

D

Date 25, 26, 29, 43, 47, 170, 513

Delete 167, 245

Dialogs 156 – 158

Dim 23 – 25, 80, 210

Do 61 – 64

Double 24, 29, 43, 513

E

Else 54, 55, 188, 403

ElseIf 55, 403

End 180, 181, 433

End Function 77, 78, 139

End If 54, 55, 188, 403

End Select 57

End Sub 16, 79, 80

End Type 90, 92

End With 91 – 93, 156 – 158

EOF 103, 104

Erase 75

Event of object 151

exe 106, 132, 135, 138

Exit Do 64

Exit For 60, 245

Exit Function 83

Exit Sub 83, 309

Exp 216, 220 – 222, 517

F

False 29, 48, 49, 126, 513

fb 210, 211, 213

FileFormat 161

FileName 161

Fix 51, 517

foba 252, 253, 258

fobas 334, 335, 338, 347

Font 118, 156, 169

For 58 – 60, 101, 103

For Each 172

forbac 262 – 264

forbacs 266

Format 100, 170

Formula 148, 171, 174

FormulaR1C1 171

forwback 271, 272, 277

foub 404, 405, 411

fouf 402, 404, 411

FreeFile 101, 103

FullName 161, 162

Func9 188 – 190

Function 77, 78, 139

G

gaus 228, 229, 234

gauss 230, 232, 234, 236, 497

GoTo 52, 54, 308

graph 173, 327, 328, 338

H

Height 117

Hypotenuse 139 – 141

I

If 53 – 55, 188, 403

IIf 56

In 172

Input 101 – 104, 108

InputBox 85, 87, 148

Int 51, 517

Integer 23, 24, 43, 513

ios 298 – 300

IsMissing 82, 83, 290

Italic 156, 169

J

Jacobian matrix 364

K

Kill 106

L

Label 118, 151

LBound 74, 75

LCase 96

Left 97, 98

Len 97

Line Input 102, 103

LOF 103, 104

Log 45, 315, 517

Long 23, 24, 25, 43, 513

Loop 61 – 64

LTrim 95, 96

Subject Index

527

M

MDETERM 224

Method

barrier function 472

bisection 306, 309

interior point 473

of object 151, 152

penalty function 466

secant 310, 311

Steffensen 370

tangent 366

trapezoidal 384

variable replacement 462

Mid 97, 98

mini 432, 435, 436, 439, 442

minim 447, 453, 464, 486

MINVERSE 224

MkDir 103 – 105

MMULT 224

Mod 39, 40, 42, 56

mos 288, 289, 294

MsgBox 85 – 88, 98

N

Name 120, 161, 162, 167, 169

Next 58 – 60, 172

Not 48 – 50, 82

Now 25, 26, 47, 100, 153, 159, 476

NumberFormat 148, 245

O

Object 151, 166, 514

Offset 172, 174

OnTime 159, 160

Open 101, 103

Operator

case 56

conditional 53

conditional jump 54

unconditional jump 52

Option Base 69

Option Explicit 24

Optional 82, 83, 230

Or 48 – 51, 112

Output 101 – 103

P

Password 161

Path 161, 163

PERSONAL.XLSB 184 – 186, 189, 190

Preserve 73, 74

Print 102, 103

Private 81, 121

Procedure

built-in 85

Fourier Analysis 396

user-defined

function 77

subroutine 79

Property of object 151, 152

Public 81

Public Const 82

Q

QBColor 169

Quit 158, 165

R

Randomize 76, 476, 478

Range 148, 152 – 154, 171, 172, 178

ReDim 71, 73 – 75, 142, 210

ReferenceStyle 148

Replace 97

Reset 20

Right 97, 98

RmDir 106

Rnd 46, 75, 76, 476, 478

Rosenbrock 425

Round 45, 46, 51, 300

Rows 142, 172, 173, 188, 189

RTrim 95, 96

Run 19

Run To Cursor 19

S

Save 161, 162

SaveAs 161, 164

Select 148, 153, 172, 174, 178, 328

Select Case 56, 57

Selection 148, 173, 174, 181, 328

Set 152, 164, 170, 174, 182, 328

Subject Index

SetFocus 134

Sgn 45, 309, 517

Shell 106, 135, 138, 512

Show 134, 136, 156 – 158

si 290, 291, 294, 324

Sin 81, 517

Single 24, 42, 43, 513

Space 96

Sqr 17, 46, 517

Step 58 – 60

Step Into 19, 82, 114

Step Out 82

Step Over 82

Str 27, 43, 44, 300

String 27, 43, 94, 514

Sub 16, 79, 80

Sum 154, 155, 174

Sweep

backward 202

forward 202

T

table 315, 316, 318, 324

Tan 517

Text 121, 123, 125

TextAlign 120

TextBox 120 – 122, 125, 151

Then 53 – 55, 188, 403

Time 25, 26, 47, 100, 159

TimeValue 99, 100, 159, 476

To 58 – 60, 68, 71

Toggle Breakpoint 19

TRANSPOSE 141, 142, 224, 295

TRANSPOSEA 142, 143, 224

Trim 95, 96

True 48, 49, 126, 513

Type 90, 92

TypeName 188

U

UBound 74, 75

UCase 96

Until 62 – 64, 71, 103

UserForm 116, 151

V

Val 27, 33 – 35

Value 122, 126, 156, 172 – 174

Variable

local 81

module 81

public 81

Variant 24, 25, 43, 82, 514

vbCrLf 98, 99, 126, 148

vbTab 95

W

Wend 61

While 61 – 63

Width 117

With 91 – 93, 156 – 158

Workbook 161, 164

Workbooks 152, 161, 162, 164

Worksheet 167 – 170

Worksheets 152 – 155, 167 – 170

X

xlCalculationAutomatic 156

xlCalculationManual 156, 159

XLSTART 186

Подписано в печать 21.06.2013

Формат 60х88/16. Печ. л. 33
Заказ № 125

Отпечатано в полн. соотв. с электронной версией заказчика

в ООО «ИПЦ «Маска»

117246, Москва, Научный проезд, 20

	Foundations of Excel VBA Programming and Numerical Methods
	Title
	Contents
	Introduction
	Chapter 1. Programming in Visual Basic
	1.1. Elements of Visual Basic Environment
	1.2. Main commands of the program debugger
	1.3. Variables. Data types
	1.4. Two main functions for conversion of data types
	1.5. Constants
	1.6. Obtaining information
	1.7. Assignment operator
	1.8. Arithmetic expression
	1.9. Mathematical functions. Functions of date and time
	1.10. Logical expression
	1.11. GoTo operator
	1.12. Decision-making constructs
	1.13. Cycles
	1.14. Manifestation of the error of real numbers’ computer representation
	1.15. Arrays
	1.16. User-defined procedures
	1.17. Built-in procedures. Usage of standard windows
	1.18. Records
	1.19. Work with strings
	1.20. Work with text files
	1.21. Matrix terminology. Formulation of demonstration tasks
	1.22. Program for transposing a matrix relative to its auxiliary diagonal
	1.23. User-defined forms
	1.24. Digression. Developing programs with the form in Microsoft Visual Studio

	Chapter 2. Programming in VBA
	2.1. Loading the form from the Excel window. Running the program executable file
	2.2. Layout of the control elements on the Excel worksheet
	2.3. User-defined functions of Excel
	2.4. Two methods for developing Excel macros
	2.5. Excel Macro Recorder
	2.6. VBA code generated by Excel Macro Recorder and its editing
	2.7. Objects and events
	2.8. Object Application
	2.9. Objects Workbook, Workbooks and ActiveWorkbook
	2.10. Objects Worksheet, Worksheets and ActiveSheet
	2.11. Objects Range, Selection and ActiveCell
	2.12. Study of objects
	2.13. Using the Excel table as the user interface of programs
	2.14. Two more Excel macros. Personal Macro Workbook
	2.15. One more user-defined function of Excel
	2.16. Digression. Change of Excel options

	Chapter 3. Finite Difference Method for Solving Differential Equations
	3.1. Finite difference analogs of derivatives for a uniform grid
	3.2. Finite difference scheme for the linear differential equation. The decomposition method
	3.3. Sufficient stability conditions for the decomposition method
	3.4. Simplification of the second-order linear differential equation
	3.5. Program realization of the decomposition method
	3.6. Examples of using the decomposition method
	3.7. Examples of the computing error. Instability and loss of accuracy
	3.8. Solving the system of linear algebraic equations by using Excel functions
	3.9. Solving the system of linear algebraic equations by the Gaussian elimination method
	3.10. Two subroutines for solving the system of linear algebraic equations
	3.11. Reduction of the computing error
	3.12. Solving the nonlinear differential equation by the quasilinearization method
	3.13. Solving the Shockley-Poisson equation
	3.14. Finite difference analogs of derivatives for a nonuniform grid
	3.15. The decomposition method for a nonuniform grid
	3.16. Solving the Shockley-Poisson equation on a nonuniform grid
	3.17. Use of solution symmetry
	3.18. The cyclic decomposition method
	3.19. Program realization of the cyclic decomposition method
	3.20. Solving the oscillation equation

	Chapter 4. Cubic Spline
	4.1. Definition of cubic spline. Spline moments
	4.2. Spline interpolation
	4.3. Use of cubic spline for processing transistor electrical characteristics
	4.4. Spline integration
	4.5. Iterative methods for solving the nonlinear algebraic equation
	4.6. Noniterative method for solving the nonlinear algebraic equation
	4.7. Calculating the charge storage capacity
	4.8. Subroutine for automatic creation of graphs
	4.9. Cubic spline usage for solving the second-order linear differential equation
	4.10. Program realization of the cubic spline method for solving the linear differential equation
	4.11. Solving the linear differential equation by the cubic spline method
	4.12. Modeling of heating of a geophysical cable. Locally one-dimensional scheme

	Chapter 5. Quadratic and Linear Splines
	5.1. Definition of quadratic spline. Spline slopes
	5.2. Method for solving the initial value problem for the system of differential equations
	5.3. Program for solving the initial value problem
	5.4. Solving the system of nonlinear algebraic equations by the Newton method
	5.5. Newton and Newton-like methods for solving the single nonlinear algebraic equation
	5.6. Modeling of the piano mechanism linking a key with hammer
	5.7. Definition of linear spline
	5.8. The least-squares method
	5.9. Program to determine the dependence of the wheat productivity on the land quality
	5.10. The forward and backward Fourier transforms of a periodic function
	5.11. Subroutines for the forward and backward discrete Fourier transforms
	5.12. Solving the sound insulation problem

	Chapter 6. Numerical Methods for Nonlinear Programming
	6.1. Minimizing linear and nonlinear functions of several variables by the Solver add-in
	6.2. Method for minimizing a nonlinear function of one variable
	6.3. The coordinate-descent method
	6.4. Examples of using the minimization methods
	6.5. The Powell minimization method
	6.6. Determining the equilibrium state of a four-spring system
	6.7. Minimization with nonlinear constraints
	6.8. Minimization of the multimodal function
	6.9. Minimization of the tabular function
	6.10. Solving the nonlinear differential equation by the shooting method
	6.11. Modeling of the hammer motion in the piano mechanism
	6.12. Nonlinear programming and the least-squares method

	Instead of Conclusions
	Appendix 1. Data Types of Visual Basic and VBA
	Appendix 2. Greek and Russian Alphabets Denoted by Latin Letters
	Appendix 3. The Main Mathematical Functions
	Appendix 4. Material for Tasks
	Appendix 5. Analytical Method for Solving the Cubic Algebraic Equation
	Appendix 6. Realization of the Tangent Method by Using the Excel Circular Reference
	References List
	Subject Index

