

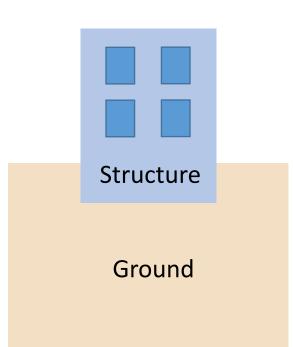

#### Foundation Engineering CE 483

# 2. Site Investigations

## Contents

- Introduction
- Program of site investigation
- Planning
- Execution / Implementation
- Reporting

> What is Site Investigation (SI)?


## > Why Site Investigation?

> What are the Objectives of Site Investigation?

## What is site investigation (SI)?

The design of foundations of structures (such as buildings, bridges, and dams) generally requires **information** about:

- Structure
- Ground



## >What is site investigation (SI)?

- Site investigation (SI) or soil exploration is the process of gathering information, within practical limits, about the stratification (layers) and engineering properties of the soils/rocks underlying the proposed construction site.
- The principal engineering properties of interest are the strength, deformation, and permeability characteristics.



## >Why site investigation (SI)?

Many engineering problems (failures) could have been avoided if a proper site investigation had been carried out.





The site has a **sinkhole risk** which might have been discovered in a proper site investigation

## >Why site investigation (SI)?

 The success or failure of a foundation depends essentially on the reliability of the knowledge obtained from the site investigation.
 Sophisticated theories alone will not give a safe and sound design.





## >Objectives of site investigation

The knowledge about the ground of the proposed construction site is obtained by Site Investigation, and used **to determine**:

#### Effect of changes: How will the design affect adjacent properties and the ground water?

**Type of design solution:** e.g. type of foundation: shallow or deep.

#### Suitability: of site for

the proposed construction?

#### **Design parameters:**

such as strength, compressibility, permeability & other parameters used for geotechnical design

Site Investigation

**Geo-materials:** available on site which can be reused?

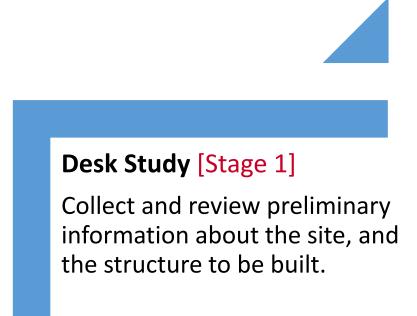
**Ground or Ground-water conditions:** that would affect the design and construction? e.g. expansive soil, collapsible soil, high ground water...

### >Objectives of site investigation



Manage the geotechnical risk

CE 483 - Foundation Engineering - 2. Site Investigation


## **Program of site investigation**

Before Site Investigation
 The sequence of Site Investigation

Program

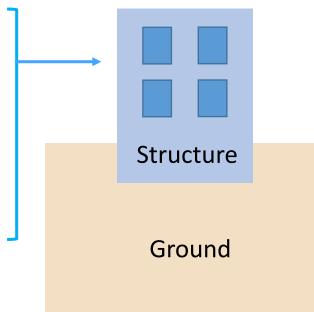
### **>**Before Site Investigation

- Site Investigation is usually carried out as part of **Subsurface Exploratory** program.
- Before conducting the Site Investigation, the program usually include: Desk Study and Site Reconnaissance.



Site Reconnaissance[Stage 2]

Visual inspection of the site.

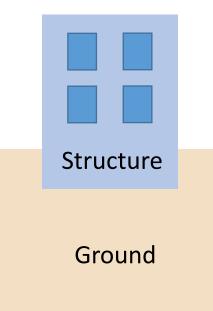

Program ➤ Before Site Investigation
Desk Study [Stage 1]

Collecting general information about the structure, from

the architectural and structural design:

#### **Information about the Structure**

- Type, dimensions, and use of the structure, and any special architectural considerations.
- the **load** that will be transmitted by the superstructure to the foundation system
- the requirements of the local building code (e.g. allowable settlement)

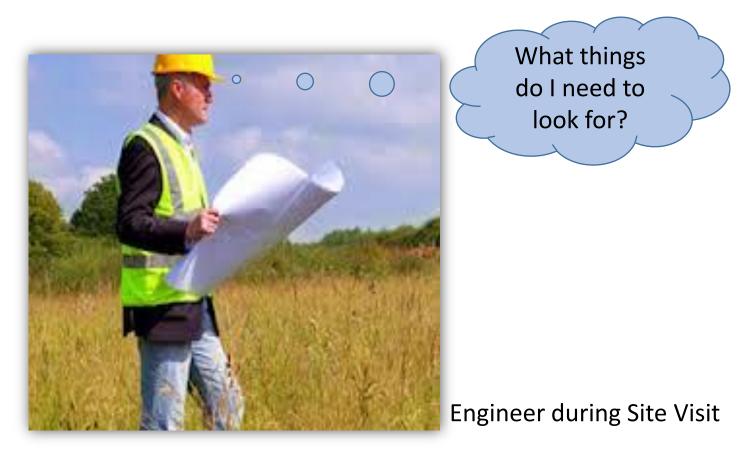



## Desk Study [Stage 1]

Collecting general information about the ground, from already existing data such as: geological maps, seismic maps, OS maps, Ariel Photography, Services records (Gas, Water, Electricity), Previous geo-environmental or geotechnical reports, ... etc. at or near site.

#### Information about the ground:

- the geological conditions of the ground (e.g. layers, Geological features, Ground water, Flood & Earthquake risk in the area, ..).
- the historical use of the site if previously used as quarry, agricultural land, industrial unit with contamination issue, man-made fill/slope, etc.






#### Ariel Photograph taken for a site – shows a possible sinkhole

## Site Reconnaissance [Stage 2]

The Site Reconnaissance is normally in the form of a **walk-over survey** of the site.



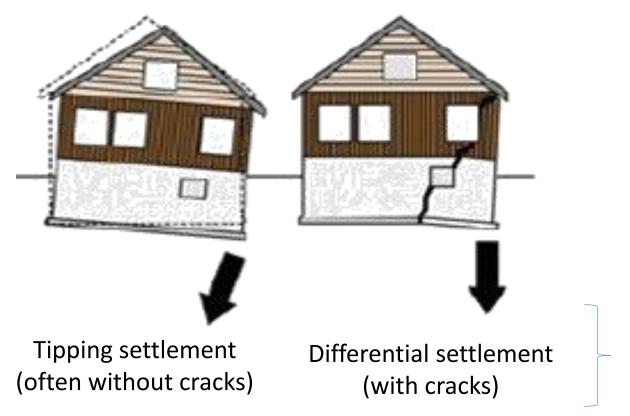
## Site Reconnaissance [Stage 2]

Important evidence to look for is:

- 1. Stratification of soil: from deep cut, such as those made for the construction of nearby highway or other projects if any.
- 2. **Slope**: signs of slope instability include bent trees, shrinkage cracks on the ground and displaced fences or drains.



Stratification of soil




Signs of slope instability

## Site Reconnaissance [Stage 2]

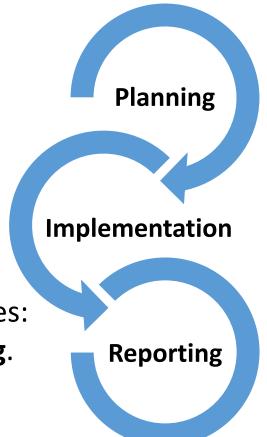
Important evidence to look for is:

**3. Structures:** type of buildings in the area and the existence of any cracks in walls or other problems. You may need to ask local people.



Indication of possible groundrelated problem

## Site Reconnaissance [Stage 2]


Other important evidence to look for is:

- 4. Mining: The presence of previous mining is often signs of subsidence and possibly disused mine shafts. Open cast mining is indicated by diverted streams replaced or removed fence/hedge lines.
- 5. Hydrogeology: Wet marshy ground, springs or seepage, ponds or streams and Wells.
- 6. **Topography:** possible existence of drainage ditches or abandoned debris or other man-made features.
- 7. Vegetation: may indicate the type of soil.
- 8. Access: It is essential that access to the site can be easily obtained. Possible problems include low overhead cables and watercourses.

#### Program

## The sequence of Site Investigation

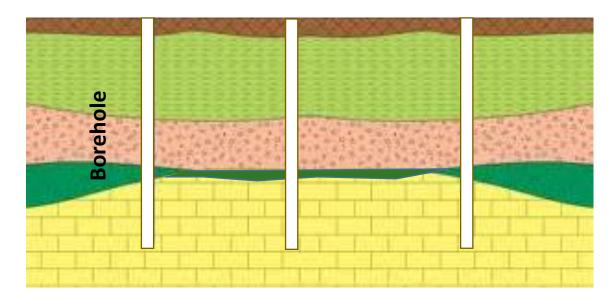
- Soil exploration is a requirement for the design of foundations of any project.
- In large construction projects, 2 site investigations (SI) are carried out:
  - Preliminary SI, followed by
  - Detailed SI.
- Whether investigation is preliminary or detailed, there are three important phases: planning, implementation and reporting.



## Planning (A preliminary site investigation) [Stage 3]

#### Why planning

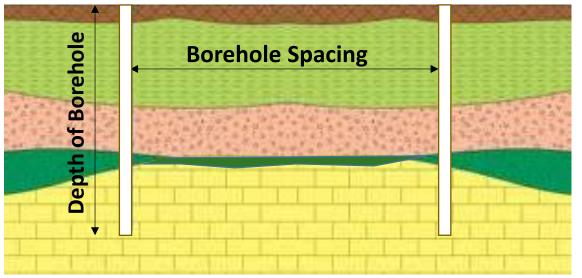
>Depth of investigation


Spacing of boreholes



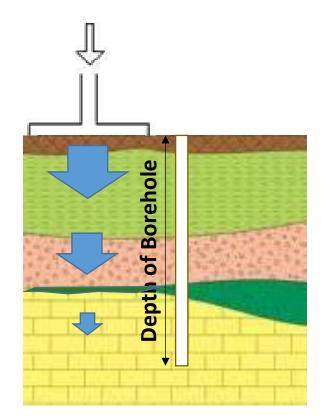
## > Why planning?

- How many borings do we need?
- How deep the borings should be?


The more the better, but what about the cost?



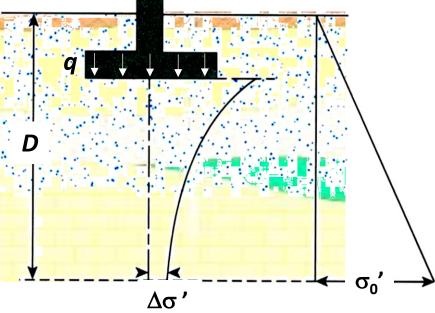
## Why planning?


Planning for site investigation is required to:

- Minimize cost of explorations and yet give reliable data.
- Decide on quantity and quality depending on type, size and importance of project and whether investigation is preliminary or detailed.
- Decide on minimum depth and spacing of exploration.



## Depth of investigation


- In general, depth of investigation should be such that any/all strata that are likely to experience settlement or failure due to loading.
- The estimated depths can be changed during the drilling operation, depending on the subsoil encountered.
- To determine the approximate minimum depth of boring, engineers may use the following rules:



## Depth of investigation

Determination of the minimum depth of boring

- 1. Determine the net increase of stress,  $\Delta\sigma'$  under a foundation with depth as shown in the Figure.
- 2. Estimate the variation of the vertical effective stress,  $\sigma'_0$ , with depth.
- 3. Determine the depth, D = D1, at which the stress increase  $\Delta\sigma'$  is equal to (1/10) q (q = estimated net stress on the foundation).
- 4. Determine the depth, D = D2, at which  $\Delta\sigma'/\sigma'_0 = 0.05$ .
- Unless bedrock is encountered, the smaller of the two depths, D1 and D2, is the approximate minimum depth of boring required.



### Depth of investigation

Table shows the minimum depths of borings for buildings based on the preceding rule.

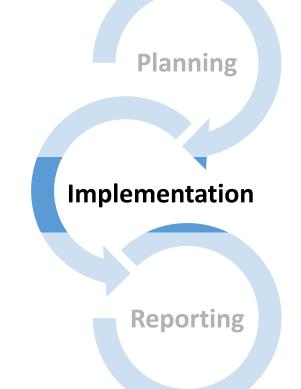
| Building     | Number of Stories |     |      |      |      |
|--------------|-------------------|-----|------|------|------|
| width<br>(m) | 1                 | 2   | 4    | 8    | 16   |
|              | Depth of Boring   |     |      |      |      |
| 30.5         | 3.4               | 6.1 | 10.1 | 16.2 | 24.1 |
| 61.0         | 3.7               | 6.7 | 12.5 | 20.7 | 32.9 |
| 122.0        | 3.7               | 7.0 | 13.7 | 24.7 | 41.5 |

#### What do you notice about this table?

## Spacing of boreholes

- There are no strict rules for the spacing of the boreholes.
- The following table gives some general guidelines for borehole spacing.
- These spacing can be increased or decreased, depending on the subsoil condition.
- If various soil strata are more or less uniform and predictable, the number of boreholes can be reduced.

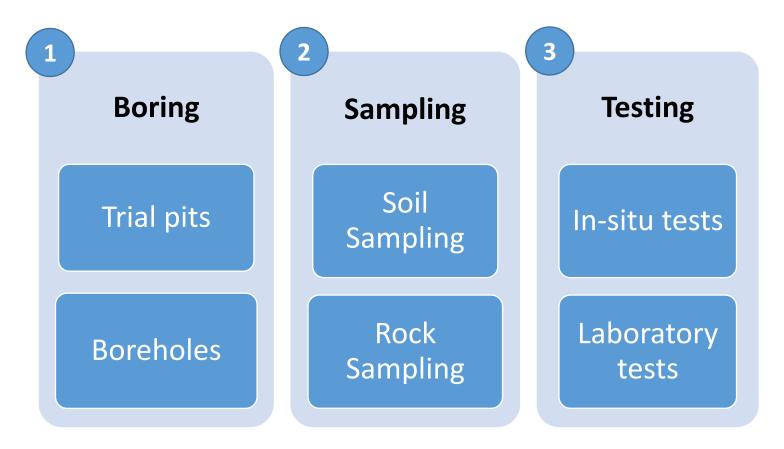
What do you notice about this table?


| Type of project             | Spacing (m) |
|-----------------------------|-------------|
| Multistory building         | 10-30       |
| One story industrial plants | 20-60       |
| Highways                    | 250-500     |
| Residential subdivision     | 250-500     |
| Dams and dikes              | 40-80       |

## **Implementation** (A detailed site investigation) [Stage 4]

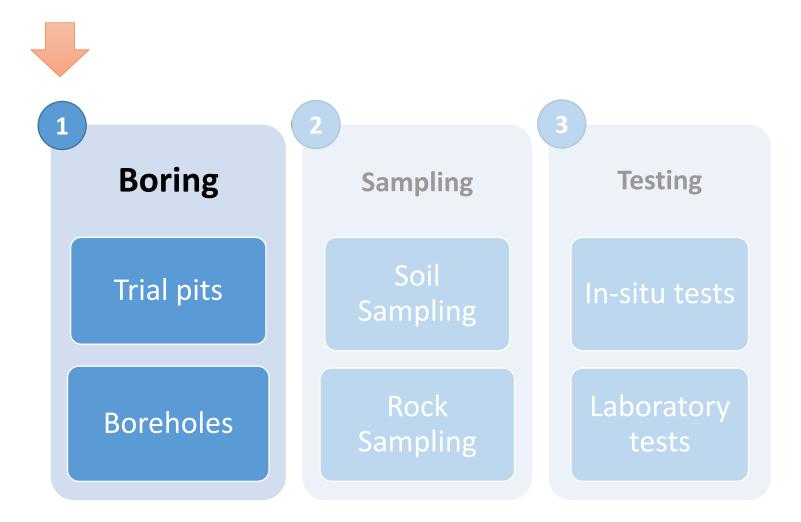


- Boring
- Sampling






#### Implementation

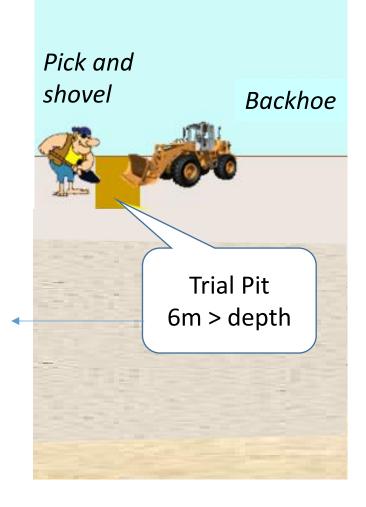

#### **>**Overview

The implementation phase of site investigation usually includes **three** important aspects:



#### Implementation

**>**Boring




Implementation > Boring

## **Trial pits**

- Trial pits are shallow excavations less than 6m deep.
- The trial pit is used extensively at the surface for block sampling and detection of services prior to borehole excavation.
- For safety ALL pits below a depth of 1.2m must be **supported**.

| Depth | Excavation Method   |  |
|-------|---------------------|--|
| 0-2m  | By Hand             |  |
| 2-4m  | Wheeled Back Hoe    |  |
| 4-6m  | Hydraulic Excavator |  |

