#### Foundation Engineering CE 483





#### Prof. H. Alawaji

Email: alawaji@ksu.edu.sa Room No. 2A- 47/1, Tel. 01-46-

# Contents

- Introduction
- Course General Information
- Prior Knowledge required for the course
- How to study the course?

# >Why Foundation Engineering? >What is Foundation Engineering?

# >Why Foundation Engineering?

- All civil engineering projects (buildings, roads, bridges, dams, tunnels and water tanks ..) is constructed **on** or **in** the **ground**.
- Civil engineers are required to identify and avoid the major risks posed by ground conditions. DO YOU THINK OF ANY RISK?



### >Why Foundation Engineering?



## >Why Foundation Engineering?

In the past several foundation-related engineering **problems**, such as the Leaning Tower of Pisa, prompted engineers to begin taking a more scientific-based approach to examining the subsurface.

Many engineering problems happened in the past because of poor understanding of the **behavior** of earth materials (soil & rock).



### >Why Foundation Engineering?





# Why Foundation Engineering?













Combined footing is usually used when: one column is located at or near the



# >What is Foundation Engineering?

Foundation engineering is part of Geotechnical Engineering, uses the principles of **soil mechanics** and **rock mechanics** to the design of those structures which support other structures, most typically buildings, bridges or transportation infrastructure.

Low-rise building supported by shallow foundations (footings) ——

> Deep foundation (piles) —

High building

### >Why Foundation Engineering?

Avalon Chrystie Place *New York, NY* 





# **Course General Information**

Content of the course
Course components
Schedule of Assessment Tasks
Learning Resources
Course Delivery
Course learning outcome assessment

**Course General Information** 

### Course contents

Site Investigations

Types of foundation and foundation materials

Bearing capacity of shallow foundation

Settlement of foundations

**Combined Foundation** 

Mat Foundation

Saudi Building Code for soils and foundations





| Assessment | Assessment task (eg. Essay, test, group project,<br>examination etc.) | Week due                                                  | Proportion of Final<br>Assessment |
|------------|-----------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------|
| 2          | Quizzes and assignments                                               | Bi-weekly basis                                           | 10%                               |
| 3          | Two Mid-term exams                                                    | The eigh <sup>th</sup> and<br>Therteen <sup>th</sup> week | 40 %                              |
| 4          | Final Exam                                                            | As scheduled by the registrar                             | 50 %                              |

موعد الاختبار الفصلي الأول الاربعاء ٢٧ / ٥ / ١٤٣٦ ه الموافق ١٨ / ٣ /١٥ ٢٠ م موعد الاختبار الفصلي الثاني الاحد ٣٠ / ٢ / ١٤٣٦ ه الموافق ١٩ / ٤ /١٠ ٢٠ م الوقت: بعد صلاة المغرب ان شاء الله. Course General Information Learning Resources

#### Main reference test book:

Principles of Foundation Engineering, Braja M Das, 7<sup>th</sup> ed, 2011 (or later ed)

#### **Other useful references:**

- Principle of Geotechnical Engineering , Braja M Das, 7<sup>th</sup> ed (or later ed).
- Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering, V. N. S. Murthy, 2003.
- GeotechniCAL on the web

PRINCIPLES OF

Licensed to:

#### FOUNDATION ENGINEERING



SEVENTH EDITION

#### Course General Information Course Delivery

| 1 Coverage of Planned Program |                                                                   |                             |                            |                                                                                            |  |
|-------------------------------|-------------------------------------------------------------------|-----------------------------|----------------------------|--------------------------------------------------------------------------------------------|--|
|                               | Topics                                                            | Planned<br>Contact<br>Hours | Actual<br>Contact<br>Hours | Reason for Variations if there is<br>a difference of more than 25% of<br>the hours planned |  |
| 1.                            | Introduction.                                                     | 2                           |                            |                                                                                            |  |
| 2.                            | Site Investigations                                               | 4                           |                            |                                                                                            |  |
| 3.                            | Types of foundation and foundation materials.                     | 2                           |                            |                                                                                            |  |
| 4.                            | Bearing capacity of Spread footings                               | 6                           |                            |                                                                                            |  |
| 5.                            | Bearing capacity of Combined footings                             | 4                           |                            |                                                                                            |  |
| 6.                            | Bearing Capacity of Mat Foundation.                               | 4                           |                            |                                                                                            |  |
| 7.                            | Evaluate the settlement of the selected foundations.              | 4                           |                            |                                                                                            |  |
| 8.                            | General overview of Saudi Building Code for soils and foundations | 4                           |                            |                                                                                            |  |

#### Course General Information Course learning outcome assessment

- 1. Understand the methods of site investigations and determine the site characteristics.
- 2. Understand the types of foundations.
- 3. Understand the types of loads to be applied to foundations.
- 4. Evaluate the bearing capacity of soils and rocks.
- 5. Select the proper type of foundation according to the site and structure characteristics.
- 6. Evaluate the settlement of the selected foundations.
- 7. Design of Spread footings, Combined footings, and Mat foundations
- 8. General overview of Saudi Building Code for soils and foundations

CE 382 Geotechnical Engineering-I

CE 370 Reinforced Concrete Design

CE 481 Geotechnical Engineering-II

- Classification of soil and rocks
- Physical Properties of soil
- > In-situ stress: Total and effective stress principle
- Stress distribution in soil mass
- Basic mechanics of soil: stress and strain relationship
- Shear strength Parameters
- Compressibility Parameters
- Rates of loading and seepage

# Classification of soil and rocks

- Soil in nature is inhomogeneous and presents in layers.
- Soil types have geological names e.g. Alluvium, Marine sand, ..
- Soils are classified for engineering purpose.



# Physical Properties of soil

#### **Plasticity of soil**



# Physical Properties of soil



# In-situ stress: Total and effective stress principle

In-situ stresses occur in all directions (vertical, horizontal,..).

The vertical stress is cased by the self-weight of soil and called overburden pressure.

Vertical effective stress,  $\sigma'$  (at depth Z):

 $\sigma' = \sigma - u$ 

Total stress,  $\sigma = \gamma_{Sat-soil} \cdot z$ Pore water pressure,  $u = \gamma_{water} \cdot z$ 

Question: what is the effective stress when the ground becomes dry (i.e. no water)?



# Stress distribution in soil mass

- The increase in the vertical stress in soil (caused by a load applied over a limited area) decreases with depth.
- The values can be determined by using the procedure described in Chapter 10 (Principle of Geotechnical Engineering, Das, 2010).



Basic mechanics of soil: stress & strain relationship



What is stress and strain?

Why is the relation between stress and strain so important?

Basic mechanics of soil: stress & strain relationship

Stress  $\leftarrow$  (soil parameters: *E*, *G*,  $\mu$ , ...)  $\rightarrow$  Strain



**Typical stress strain curve – from compression test** 

# Shear strength Parameters

#### **Mohr-Coulomb criterion**

 Based on the general relationship between the shear stress and normal stress, soil is considered to have two shear strength parameters at the ultimate condition (failure):
Strength envelope





- These soil parameters varies depending on type of loading (drained or untrained) and type of soil (coarse or fine).
- Usually, coarse soils (such as sand and gravel) have mainly internal friction angle φ' and no cohesion (c' = 0), therefore they are called frictional soils or non-cohesive soils.

# Compressibility Parameters

- Stress increase in the ground (caused by the construction of foundations or other reason) may compress soil and lead to foundation settlement.
- Laboratory consolidation test is usually used to determine the following compressibility parameters (used to calculate settlement and its rate):
  - Compression Index (C<sub>c</sub>) & Swell Index (C<sub>s</sub>)
  - Coefficient of Volume Compressibility (m<sub>v</sub>)
  - Coefficient of consolidation (C<sub>v</sub>)





# Compressibility Parameters

Normally Consolidated and Overconsolidated Clays



If OCR = 1 normally consolidated



### Rates of loading and seepage



- If the rate of drainage is *quicker* than the rate of loading, effective stress and volume changes occur quickly these are called **drained loading** conditions.
- This loading usually happens in coarse soils (Sand and Gravel), and causes immediate settlement. How?
- Drained strength parameters ( $\phi'$ , c') are used here.

### Rates of loading and seepage



- On the contrary, if the rate of drainage is *slower* than the rate of loading, the pore pressure increases and the effective stress and volume changes occur very slowly - these are **undrained loading** conditions.
- This loading usually happens in fine soils (Silt and Clay), and causes consolidation settlement. WHY?
- Undrained strength parameter (C<sub>u</sub>) is used here.

Learning resources
Attend and participate - with interest
Prepare well for your exams

### Learning resources

• The presentation for each lecture will be available on-line:

on the Balckboard.

- Please download/print the presentation hand-out and bring it along with you.
- Also make sure you have the required text book and any other useful references/ links for the course available.





### >Attend and participate - with interest

- Plan to attend the lectures and tutorials with intention to understand and enjoy the subject.
- No one ever can make student understand a subject if he is not interested.
- Participate in any interactive discussion, questions, or quizzes.
- Work by YOURSELF on any Homework or Assignment and submit your reports ON-TIME.



### Prepare well for your exams

- Do not panic
- Allow enough time to prepare for your mid-term exams and final exam.



Work Hard (but not too hard)