King Saud University College of sciences Department of mathematics Second semester 1431/1432 H Dr. Borhen Halouani Time: 2 hours

First Midterm Exam Math 580 (Theory Measure I)

Exercise 1:

Let $(B_n)_{n\geq 1}$ be a sequence of subsets of \mathbb{R} defined as :

$$B_{2n-1} = \left[-2 - \frac{1}{n}; 1\right]$$
 and $B_{2n} = \left[-1; 2 + \frac{1}{n^2}\right]$

Determine the superior and inferior limits of (B_n) . Exercise 2:

Determine the σ -algebra of \mathbb{R} generated by $\mathcal{F} = \{[0; 2], [1; 3]\}$. Exercise 3:

Let $\mathcal{A} = \{A \in \mathcal{P}(\mathbb{R}) | A \text{ is countable or } A^c \text{ is uncountable} \}$ be a σ -algebra on \mathbb{R} and $\mu : \mathcal{A} \longrightarrow [0, \infty]$ a function defined as

$$\mu(A) = \begin{cases} 0 & \text{if } A \text{ is countable} \\ 1 & \text{otherwise.} \end{cases}$$

Prove that μ is a measure on \mathcal{A} .

Exercise 4:

Let (X, \mathcal{A}, m) be a measure space and $(A_n)_{n\geq 1}$ be a sequence of subsets of X contained in \mathcal{A} .

- 1. Prove that for all $n \ge 1$, $\bigcap_{k\ge n} A_k \in \mathcal{A}$ and $m\left(\bigcap_{k\ge n} A_k\right) \le \inf_{k\ge n} m(A_k)$.
- 2. If $B_n := \bigcap_{k \ge n} A_k$ and $b_n := \inf_{k \ge n} m(A_k)$. Prove that $B_n \subseteq B_{n+1}$ and $b_n \le b_{n+1}$.

3. Deduce that
$$m\left(\bigcup_n \left(\bigcap_{k\geq n} A_k\right)\right) \leq \sup_n \inf_{k\geq n} m(A_k).$$

4. If we define $\liminf_{n} A_n = \bigcup_{n} \left(\bigcap_{k \ge n} A_k \right)$, deduce *Fatou's Lemma* for sequences of subsets:

 $m(\liminf A_n) \le \liminf m(A_n).$