First Midterm Exam Math 580 (Theory Measure I)

Exercise 1:

Let $\left(B_{n}\right)_{n \geq 1}$ be a sequence of subsets of \mathbb{R} defined as :

$$
\left.\left.B_{2 n-1}=\right]-2-\frac{1}{n} ; 1\right] \text { and } B_{2 n}=\left[-1 ; 2+\frac{1}{n^{2}}[\right.
$$

Determine the superior and inferior limits of $\left(B_{n}\right)$.

Exercise 2:

Determine the σ-algebra of \mathbb{R} generated by $\mathcal{F}=\{[0 ; 2],[1 ; 3]\}$.

Exercise 3:

Let $\mathcal{A}=\left\{A \in \mathcal{P}(\mathbb{R}) \mid A\right.$ is countable or A^{c} is uncountable $\}$ be a σ-algebra on \mathbb{R} and $\mu: \mathcal{A} \longrightarrow[0, \infty]$ a function defined as

$$
\mu(A)=\left\{\begin{array}{cc}
0 \text { if } A \text { is countable } \\
1 & \text { otherwise }
\end{array}\right.
$$

Prove that μ is a measure on \mathcal{A}.

Exercise 4:

Let (X, \mathcal{A}, m) be a measure space and $\left(A_{n}\right)_{n \geq 1}$ be a sequence of subsets of X contained in \mathcal{A}.

1. Prove that for all $n \geq 1, \bigcap_{k \geq n} A_{k} \in \mathcal{A}$ and $m\left(\bigcap_{k \geq n} A_{k}\right) \leq \inf _{k \geq n} m\left(A_{k}\right)$.
2. If $B_{n}:=\bigcap_{k \geq n} A_{k}$ and $b_{n}:=\inf _{k \geq n} m\left(A_{k}\right)$. Prove that $B_{n} \subseteq B_{n+1}$ and $b_{n} \leq b_{n+1}$.
3. Deduce that $m\left(\bigcup_{n}\left(\bigcap_{k \geq n} A_{k}\right)\right) \leq \sup _{n} \inf _{k \geq n} m\left(A_{k}\right)$.
4. If we define $\underset{n}{\lim \inf } A_{n}=\bigcup_{n}\left(\bigcap_{k \geq n} A_{k}\right)$, deduce Fatou's Lemma for sequences of subsets:

$$
m\left(\liminf A_{n}\right) \leq \liminf m\left(A_{n}\right)
$$

