King Saud University
College of sciences
Department of mathematics
Second semester 1431/1432 H

Dr. Borhen Halouani
Time: 3 hours
Full Marks: 50

Final Exam Math 580 (Theory Measure I)

Exercise 1:(15 points)

Let f_{n}, f be positives, measurables functions on a measure space (X, \mathcal{A}, μ) and $f \in L^{1}$. We suppose that:

$$
f \leq \liminf _{n \rightarrow+\infty} f_{n} \quad \mu-a . e \quad \text { and } \limsup _{n \rightarrow+\infty} \int f_{n} d \mu \leq \int f d \mu .
$$

1. Prove that $\int f d \mu \leq \liminf _{n \rightarrow+\infty} \int f_{n} d \mu$. Deduce that

$$
\lim _{n \rightarrow+\infty} \int f_{n} d \mu=\int f d \mu
$$

2. Show that $f=\liminf _{n \rightarrow+\infty} f_{n} \quad \mu$-a.e.
3. Prove that $\forall a, b \in \mathbb{R},|a-b|=a+b-2 \min \{a, b\}$ and deduce that $\left(f_{n}\right)$ converges to f in L^{1}.
4. Give an example of sequence $\left(f_{n}\right)$ to show that $\left(f_{n}\right)$ does not necessary convergent to $f \quad \mu$-a.e.

Exercise 2:(15 points)

Let $f:[0,1] \longrightarrow[0,+\infty)$ be a Borel function and $A \subset \mathbb{R}^{3}$ be the set

$$
A:=\left\{(x, y, z) / 0 \leq x \leq 1 ; y^{2}+z^{2} \leq f(x)\right\}
$$

1. Prove that the function $F:[0,1] \times \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ defined by $F(x, y, z)=$ $y^{2}+z^{2}-f(x)$ is a Borel function and deduce that $A \in \mathcal{B}\left(\mathbb{R}^{3}\right)$.
2. For every $x \in[0,1]$, determine the section $A_{x}:=\{(y, z) /(x, y, z) \in A\}$. Verify that $A_{x} \in \mathcal{B}\left(\mathbb{R}^{2}\right)$ and compute its Lebesgue measure $\lambda_{2}\left(A_{x}\right)$.
3. Compute the volume $\lambda_{3}(A)$ of A as function of f.
4. Verify that $\lambda_{3}(A)=\frac{\pi}{4}$ if $f(x)=x^{3}, \forall x \in[0,1]$.

Problem:(20 points)

 defined by

$$
f_{n}(t, x, y):=e^{-(n+x) y}\left(e^{i y t}-1\right) .
$$

1. Show that $\forall(t, x, y) \in \mathbb{R} \times \mathbb{R}_{+} \times(0,+\infty)$,

$$
\sum_{n \geq 1}\left|f_{n}(t, x, y)\right| \leq|t| \frac{y e^{-y}}{1-e^{-y}}
$$

and $f(t, x, y):=\sum_{n=1}^{+\infty} f_{n}(t, x, y)=\frac{e^{-x y}}{e^{y}-1}\left(e^{i y t}-1\right)$.
2. Show that for every $(t, x) \in \mathbb{R} \times \mathbb{R}_{+}$, the function $y \longmapsto f(t, x, y) \in L^{1}\left(\mathbb{R}_{+}, \lambda\right)$ and

$$
\int_{0}^{+\infty} f(t, x, y) d y=\sum_{n \geq 1} \frac{i t}{(n+x-i t)(n+x)}
$$

3. For $(t, x, y) \in \mathbb{R} \times \mathbb{R}_{+} \times \mathbb{R}_{+}$, let $u(t, x, y):=\frac{e^{-x y}}{e^{y}-1} \sin (y t)$. Show that $\forall(t, x) \in \mathbb{R} \times \mathbb{R}_{+}$, the function $y \longmapsto u(t, x, y) \in L^{1}\left(\mathbb{R}_{+}, \lambda\right)$ and

$$
\int_{0}^{+\infty} \frac{e^{-x y}}{e^{y}-1} \sin (y t) d y=\sum_{n \geq 1} \frac{t}{(n+x)^{2}+t^{2}}
$$

4. Show that the function $g: \mathbb{R} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ defined by

$$
g(t, x):=\int_{0}^{+\infty} \frac{e^{-x y}}{e^{y}-1} \sin (y t) d y
$$

is of class $C^{2}\left(\mathbb{R} \times \mathbb{R}_{+}\right)^{1}$ and satisfying the equation $\frac{\partial^{2} g}{\partial t^{2}}+\frac{\partial^{2} g}{\partial x^{2}}=0$ on $\mathbb{R} \times \mathbb{R}_{+}$.

[^0]
[^0]: ${ }^{1}$ The class $C^{2}\left(\mathbb{R} \times \mathbb{R}_{+}\right)$is the set of all functions f twice differentiable and $f^{\prime \prime}$ is continuous on $\mathbb{R} \times \mathbb{R}_{+}$.

