
1

An Interoperability Study of ESB for C4I Systems

Abdullah Alghamdi, Muhammad Nasir, Iftikhar Ahmad

Department of Software Engineering, College of Computer &

Information Sciences, King Saud University, P.O. Box 51178,

Riyadh 11543, Kingdom of Saudi Arabia.

{(ghamdi,mnasir,iftahmad)@ksu.edu.sa}

Khalid A. Nafjan

Computer Technology Department,

Riyadh College of Technology, Riyadh, 11543, Kingdom of

Saudi Arabia.

{khnafjan@rct.edu.sa}

.

Abstract—Ever since the inception of the idea of collaborating the

enterprise systems, the need of an Enterprise Service Bus (ESB)

has been a relentless need of the market, the bigger the systems

get after collaboration the failures of the ESB’s was inevitable.

Things moved to more gravity when the bulkiest of the systems

like Defense architectures came into picture, with the advent of

this not of the efficiency but also the factors like stability,

reliability, resource utilization were also of pivotal importance.

This paper reviews a critical and comparative analysis of the

current ESB’s keeping in view the C4I System as a base, so as to

ascertain which ESB fulfills the requirements of the system of

systems. In comparison we try to analyze Mule ESB, GlassFish

ESB and Fuse ESB with respect to interoperability. This study

demonstrates that Mule is more feasible to C4I systems because it

is simple, easy to integrate, no adopter requirement and flexible.

Keywords-C4I, Enterprise Service Bus (ESB), Fuse ESB, Glass

Fish ESB, Mule ESB, Service Oriented Architecture (SOA),

Interoperability

I. INTRODUCTION AND MOTIVATION

Enterprise Service Bus (ESB) is a fundamental

constituent of Service Oriented Architecture (SOA). An ESB

provides secure message transfer service between applications

and interoperability using web services and related

technologies. ESB provides loosely coupled services. ESB can

be used to connect different army wing’s systems to

communicate with each other and share certain information.

The applications communicate with each other by services

invoking in a location independent fashion using ESB [1].

Command Control Communication Computer and

Intelligence (C4I) provide the army commanders situational

awareness, information about friendly forces, location and

status of enemy forces. The army commander then takes

decision on the basis of this information. But the commander

should have relevant knowledge and always have good

experience and take some stress. After taking decision about

his forces, friendly forces and also enemy forces commander

have to convey it to his and friendly force. For doing this

commander needs to be supported by tools to enable and

accelerate decision making and planning for war strategy. The

process of C4I technology is to expedite the chain links and

through that targeting information should pass to weapons.

Figure 1. Enterprise service bus support interoperability between different

C4I systems of various forces

A better and reliable tool can provide a better option to

commander to take decision. To interconnect different systems

of defense for proper exchange of data especially during a

war, ESB plays an important role. For this regard defense

systems required loosely coupled systems that can work

together and as well as independent. Defense systems require

a middleware that can interconnect their systems with each

other and should be reliable and strong in interoperability and

data transferring.

The paper is structured as follows; background, related

work, enterprise service buses, methodology and conclusion.

II. BACKGROUND

Service Oriented Architecture (SOA) provides loosely

coupled services that are Operating System or programming

language independent. Further, it adds this facility through

web services just like Simple Object Access Protocol (SOAP),

Representational State Transfer (REST), Remote Procedure

Call (RPC), Common Object Request Broker Architecture

(CORBA) etc. SOA provides facility for creation of

applications using services that can be organized in different

ways to make novel applications [2].

SOA has emerged new criteria for software development

and system integration through existing web services over the

2

internet. Presently, web services are being developed rapidly.

SOA has become an effective way in enabling different

applications to share data and work together over wide area

networks [3].

ESB assists as an infrastructure backbone for SOA

applications and services and facilitate enterprise integration.

ESB especially reduces cost and time to create new processes

through reutilization of existing applications and data. ESB is

considered more reliable for delivering messaging across

services even over hardware layer, and in critical

circumstances like network or software failure, the shot

messages are buffered and secured by the ESB’s and delivered

when the system is up and running again.

A feature that makes ESB attractive to users is that, its

ability to exploit configuration more than codification. There

is nothing wrong with writing codes. However, there are

plenty of codes to be written elsewhere that does not have

anything to do with interdependencies between applications

and services, thus making the applications capable and

difficult to manage [4].

For object level of composite applications an ESB

provides composition of services, communication between

objects and service deployment functions. Composite

application development methods also identify the state and

transitions a document goes through as each supplementary

service is called, while processing an overall process [5].
Without proper communication the desire target cannot be

achieved. The technology used to transport data between

systems especially in Defense Information Network System

(DINS) consist of information services and transfer system.

Information services provides secured, unsecured voice, data

electronic mail, video conferencing and images etc to users

with user owned equipments. All the activities in C4I system

is depend on telecommunication and computing support.

Defense Information Systems Agency (DISA) is responsible

for planning, developing and providing information services to

war fighters [6].

To make a secure defense system is a great deal in its true

sense; this is because of tremendous rise in threats in day-to-

day world. Many systems and methods are being used to make

secure army defense systems. For example Network

Intelligence (NI) which needs Processes: Department’s

member of intelligence bodies established to implement

technologies which is more valuable and useable for everyone.

National Intelligence analyzed their capabilities as to which

technologies they have and what else is needed to ensure the

security of the defense systems [7].

At this point of time many ESB are available to connect

different system and synchronize them so that they can easily

communicate with each other. Different companies are

providing their ESBs. It is very difficult to choose an ESB in

accordance with the set parameters and requirements. Hence,

we are going to evaluate Fuse, GlassFish and Mule ESBs.

III. RELATED WORK

To evaluate ESBs with respect to user needs is a

challenging task. There are many acceptable criteria for

evaluating ESBs. Acceptable criteria are those that lead

closely to a particular ESB that fulfill the requirements of

SOA application. Different researchers apply many criteria to

conduct the evaluation. Researchers usually compare general

ESBs, open source ESBs or commercial ESBs. Every

researcher imposes his own list of criteria to conduct his

evaluation and the most commonly base is cost. Cost is an

important factor but it turns ineffective when open source ESB

are compared.

Woolley applied Vollmer and Gilpin’s evaluation criteria to

two open sources ESBs, such as Apache Service Mix and

Mule Source Mule. They included current offering, strategy,

market pressure and integration into the list of criteria.

Woolley suggested that Mule ESB is the best and after this

Fiorono ESB. Other ESBs were BEA System Equalogic

Service Bus, IBM WebSphere Enterprise Service Bus and

Apache ServiceMix [8].

Desmet et al. compared two open sources ESBs such as

Apache ServiceMix and Mule Source Mule, and also two

commercial ESBs like IBM WebSphere Enterprise Service

Bus and BEA Systems Aqualogic Service Bus. This research

was on performance. Because of the flexibility ESBs may turn

into bottleneck if complicated messages use it with many

processes. In this worst case any business or defense process

might be paralyzed. Hence, the performance is an important

criterion for evaluation. Desmet et al. rated Open ESBs first

and commercial ESBs after them. ESB rates were based on the

performance test results [9].

Vollmer and Gilpin conducted evaluation on eight

commercial ESBs with hundred criteria, which were in three

grouped as market pressure, current offering and strategy.

They rated Cape Clear first and second to BEA Aqalogic

Service Bus. Other ESBs were IBM WebSphere ESB,

Fiorano, IONA Artix, PolarLake, Software AG and Sonic.

ESB rates were based on surveys and briefings [10].

Vittie also evaluated commercial ESBs. He used

integration, price and core bus feature as evaluation criteria.

He rated BEA Aqualogic Service Bus first and second to

Oracle SOA Suite. The others were Fiorano, Cape Clear,

Tibco Software, IBM Websphare Enterprise Service Bus,

Sonic and Software AG. This is based on information provides

by the consumers or was taken from the previous studies [11].

IV. ENTERPRISE SERVICES BUSES

a) MULE ESB

Mule ESB offer simple development model and

lightweight architecture, so integrating, interoperability and

creating services are easy and fast. Mule ESB needs low CPU

(Central Processing Unit) and memory and simplify

deployment and maintenance. Mule ESB does not need to

replace or change existing system it can easily work with any

existing infrastructure. It can easily deploy in any topology

with or without an application container. Mule ESB also

provide same performance and reliability challenges that are

required for even large SOA implementations.

3

Mule provides pluggable connectivity and common

transports such as JMS, HTTP, SMTP, FTP, POP3, and

XMPP are supported natively, as are web services. Messages

transferred through MULE ESB along one of these protocols

can behave like synchronously or request-response [12].

Messaging system that is typically used in Mule ESB is

JMS but any other messaging server can also be implemented

such as Microsoft Messaging Queuing (MSMQ), IBM

WebSphere MQ or TIBCO Rendezvous. There are no specific

rules for integration service layer when using Mule ESB. We

can connect mainframe applications, web services, messaging,

sockets etc and interact with them consistently.

Mule is lightweight integration platform and service

container that allow quick and easy interoperability to

applications. It is Java based messaging framework that allow

quick and easy connectivity of application and enable

exchange of data between them. Plug-in architecture of Mule

provides the facility for building block facility. Mule use SOA

that integrate existing system easily. Regardless of the

different technologies the applications use, including JMS,

SOAP, REST, MQ, JBI, AQ, caching, JavaSpaces,

GigaSpaces, Email, IM, JCA, AS400 Data Queues, System

I/OWeb Services, JDBC, HTTP, and more, Mule seamlessly

handles interactions among them all [13]. It can be use easily

with any application server or as standalone. Mule

components can be any type and can easily integrate anything

from a Plain Old Java Object (POJO) as a part of any other

framework.

Mule ESB does not require any specific programmatic

code Application Programming Interface (API) to run its

components. It provides facility of connectivity over several

protocols just like HTTP, SOAP, JMS, SMTP, FTP etc. Mule

also provides support of integration with Spring Framework

and Business Process Management (BPM).

Mule handles interaction among technologies that

applications use, including JMS, Web Services, Hyper Text

Transfer Protocol, Java Database Connectivity and many

more. Mule has capacity to manage all interactions between

applications and components transparently. No matter,

whether they are on same machine or over internet. In Mule,

no specific messaging format, it can be in any format from

SOAP to binary files. Mule relies on JMS for the support of

high availability. Mule has no prescribed message format. It

supports XML, CVS, Binary, Streams, Record and Java object

etc. It provides the facility of zero code intrusion. Objects are

fully portable without any Mule specific API on service

object.

Mule provides messaging framework that reads,

transforms and send data as message between applications that

are not able to read or process data coming from another

application [13].When source applications connect to Mule

and want to share data with other target applications, it reads

data from one former, change it completely as needed so that

can be read by other application, and then sends it to the later.

This functionality of Mule enables to integrate all types of

applications even that are not built for integration [14].
The main advantage of Mule ESB is it allows different

applications to communicate with each other within intranet or

over the internet. Mule has an advantage that it can convert
data as needed but other ESBs have to create an adapter for
every application and convert the data into single common
messaging format. In Mule no need for any kind of adapters to
connect applications and not required a common messaging
format. Information sent on any communication channel, such
as HTTP or JMS, and is translated as needed along the way.

b) GlassFish ESB

GlassFish ESB provides lightweight integration platform

with fast development tools and deploy SOA components with

free dependencies and flexibility. GlassFish ESB is easy to

integrate and provides interoperability. It contains GlassFish

application server, NetBeans tooling, JBI runtime for

deploying solutions, integration engines, adapters for external

systems, and simple installer. GlassFish ESB provides JBI

container that support components and includes a Normalized

Message Router (NMR) to locate appropriate service

providers [15].

Interoperability option provides facility to communicate

heterogeneous systems. Make easy to develop secure, cross

platform web services that are reliable and faster that will

operate heterogeneous environments.

GlassFish ESB is reliable and high performance

infrastructure. It increases interoperability and scalability for

different systems with different architecture and provides

secure interoperability for exchange of information related to

any defense wing. Glass Fish is highly integrated, scalable

application integration solution for SOA adapters. It contains

Glass Fish application server, Net Bean s tooling, Java

Business Integration (JBI) runtime for deploying solutions,

integration engines, adapter for external system, and simple

installer [16].

GlassFish is Open Source ESB it provides lightweight

interoperable tool and flexible and without dependencies.

GlassFish provides pluggable architecture, through these

components and services that can be interoperable, allow users

and vendors to plug and play.

GlassFish ESB is based on Open ESB that delivers a

platform for integration, Enterprise Architecture Integration

(EAI) and Service Oriented Architecture (SOA). Based on

large number of standards, such as JBI, Java EE and SOAP

and so on, allows enterprises to build flexible, healthy

solutions for integration their system using a large number of

components including binding components (adaptors) and

service engines (processors) [17].

GlassFish ESB use JBI component architecture’s

asynchronous and decupled designed model that allows

vertical and horizontal scalability. Advantage of Staged Event-

Driven Architecture (SEDA) can be taken because of its

synchronous, message based nature, and this provides

minimizing blocking threads, associated memory requirements

and scalability applications without explicit code.

c) FUSE ESB

FUSE ESB can easily be embedded at endpoints that allow

distributed systems to intelligently interact without mandating

a centralized server. FUSE ESB has a pluggable architecture

4

and work with other integration components already being

used just like OSGi, JMS, JCA and JMX etc. FUSE ESB

supports JBI and OSGi architectures that allow using their

preferred service solutions in their SOA [18].

FUSE ESB based on Apache ServiceMix and is a fully

standard base and open source interoperability platform for

enterprise information technology organizations. FUSE ESB

allows organizations to use their service solution in their SOA

with pluggable architecture. It is lightweight in

interoperability so, all FUSE components provide the solution;

can easily setup at endpoints. In FUSE without mandating

centralized server allow distributed systems to interact

intelligently.

FUSE ESB is part of application integration and

messaging components based on apache projects that also

includes FUSE Message Broker, FUSE services framework

and FUSE mediation router. FUSE ESB is one of a family of

components that includes FUSE HQ, FUSE Message Broker,

FUSE Services Framework, and FUSE Mediation Router. The

FUSE components are tested for interoperability, certified, and

supported to combine the speed and innovation of open source

software with the reliability and expertise of commercially

provided enterprise services [19].

FUSE ESB provides facility to use their preferred service

solution in their SOA with pluggable Java Business

Integration (JBI) and Open Service Gateway initiative (OSGi)

architecture. It also provides the support for Spring

Framework, which is lightweight container for application

components. The advantage of Spring Framework is provides

advantage to write light weight JBI components using POJO.

FUSE ESB also support interoperability through Web services

to complex and distributed services or standalone service.

To locate appropriate service provider JBI container

support components and includes Normalized Message Router

(NMR). FUSE ESB JBI container and FUSE ESB components

deployed with any standard JBI-compliant Service Engine or

with Binding components. NMR provides the interface for

connectivity between service providers for many-to-many

connectivity. In JBI Components Service Engine provide

some the logic needed to provide services for massage

transformation, composition or advance message routing,

inside of the JBI environment. They can only communicate

with other components inside of the JBI [20].

 In JBI components Binding Components provide access

via a particular protocol outside the JBI environment to

services. They implement the logic needed to connect to a

transport and receive a message through that transport.

Binding components are also responsible to normalize the

message for JBI environment.

The NMR uses Web Service Definition Language

(WSDL) based messaging model to act through the message

exchange between JBI components. WSDL based model

provides insurance that the JBI components are fully

decoupled. The WSDL model defines operation between

service provider and service consumer through message

exchange [21].

V. METHODLOGY

The procedure or methodology introduced in this work

consists of steps such as selection of goal, determine

evaluation scale, determine evaluation criteria, assignment of

priorities, result and comparative analysis and final decision as

shown in the figure below.

Fig. 2 Evaluation procedure

a) Selection of Goal

The first step of methodology is selection of goal. The goal is

ESB interoperability analysis for C4I system. The main aim of

this work is to analyze semantic, syntactic and network

interoperability for C4I architecture framework.

b) Determine Evaluation Scale

The scale used in this work is fifteen point scale. The scale

contains numbers 1 to 15. So, we use this scale for measuring

different types of interoperability aspects for C4I systems.

c) Determine Evaluation Criteria

The interoperability study is divided into criteria such as

semantic interoperability, syntactic interoperability and

network interoperability. Therefore, we analyze

interoperability on the basis of three aspects like semantic,

syntactic and network.

Semantic interoperability provides exchange of data in

messaging format between systems. It is necessary to use both

messaging standard and coding of messaging data with a

vocabulary standard so that receiving system can easily

interpret the data being exchange. In C4I system semantic

interoperability is critical in exchanging information between

different wings of forces to ensure good decision about any

critical situation especially during war. Without semantic

interoperability systems will create islands of forces

Selection of Goal (ESB Interoperability Assay)

Determine Evaluation Scale

Determine Evaluation Criteria

Assignment of Priorities

Results and comparative analysis

Final Decision

5

information which can be accessed by only subset of that

wing. Missing of semantic interoperability will lead towards

redundant of data entry, unnecessary duplicate testing etc.

Syntactic interoperability allows detecting syntax errors

and also allows to receiving system to request for resending

the message that is not received properly or misrepresent.

Without syntactic interoperability proper communication is

not possible. In C4I systems every wing has its own system

and different syntax, so syntactic interoperability plays a

major role to make better and proper communication between

all systems properly and without errors.

Network interoperability is the continuous ability to send

and receive data between interconnected networks providing

the level of quality expected by the end user customer without

any negative impact to the sending and or receiving networks.

Network interoperability plays a major role in C4I system. In

C4I system every wing of force is working separately and

connectivity of every system is possible only if proper

network interoperability exist. It provides a common platform

for every system either they homogeneous or heterogeneous.

d) Assignment of Priorities

The priorities are assigned to each EBS such as Mule, Fuse

and GlassFish based on knowledge and experience from

reviewed research as mentioned in related work and enterprise

services busses’ literature. We rate 6 to Mule ESB in semantic

interoperability because it provides very simple and no

specific message format, it can be any type from SOAP to

binary files. After Mule ESB we rate GlassFish ESB 5 and

FUSE ESB 4, both provide bit more complicated messaging

format as compare to Mule ESB. For syntactic

interoperability we rate 6 to Mule, in it no need to create

adopter for multiple application or systems to communicate.

Information can be transfer through any communication

channel such like HTTP or JMS and is translated as needed

along the way. After Mule ESB we rate FUSE ESB 5 and

GlassFish 4 for syntactic interoperability. Both need adopters

for exchanging information. For network interoperability we

rate 6 to GlassFish ESB because its provide dependency free

and flexible integration of systems. It also provides more

secure and reliable integration between forces as compare to

Fuse ESB and Mule ESB.

e) Results and comparative analysis

Results derived using above method are shown in the Table1.

The total weights of Mule, Fuse and GlassFish are 16, 14 and

15 respectively. Therefore, the use of Mule ESB in defense

architecture framework is more appropriate as compared to

others enterprise service busses.

TABLE I. COMPARATIVE ANALYSIS OF ESB

f) Final Decision

The results and comparative analysis indicate that the use of

Mule ESB in the architecture of C4I system is suitable because

it has more features and strengths in semantic and syntactic

interoperability. Further, it will help more to tackle

interoperability issues faced among different C4I systems of

various forces such as army, air and naval forces. The

GlassFish and Fuse buses have secondary rating in this assay

process.

V. CONCLUSION

This paper described a brief introduction of enterprise services

buses keeping in view the C4I System as a base, so as to

ascertain which ESB fulfills the requirements of the system of

systems (SOS). Further a comparative analysis of three main

Enterprise Service Buses (ESBs) for instance Mule, GlassFish

and Fuse is made. We also assessed their feasibility to defense

system applications such as C4I systems. The comparative

analysis of ESBs such as Mule, GlassFish and Fuse is made

using weight assignment on the bases of literature surveyed.

This study described that Mule is more feasible to C4I systems

as compared to Fuse and Glassfish because it is simple, easy

to integrate, no adopter requirement and flexible.

Acknowledgment

Special thanks to all ASERLAB members for their valuable

suggestions throughout this work.

REFERENCES

[1] Martin Keen, Amit Acharya, Susan Bishop, Alan Hopkins, Sven

Milinski, Chris Nott, Rick Robinson, Jonathan Adams and Paul
Verschueren, “Patterns: Implementing an SOA using Enterprise Service
Bus”, IBM Redbooks, SG24-6346-00 , July 5, 2004.
http://www.redbooks.ibm.com/redbooks/pdfs/sg246346.pdf

[2] Luis Garces-Erice, “Building an Enterprise Service Bus for Real-Time
SOA: A Messaging Middleware Stack”, 33rd Annual IEEE International
Computer Software and Applications Conference, pp. 79-84, 2009, doi:
10.1109/COMPSAC.2009.119

[3] James Bean “SOA and Web Services Interface Design”, Morgan
Kaufmann, ISBN13: 978-0-12-374891-1, Oct 2009.
http://www.elsevier.com/wps/find/bookdescription.cws_home/717477

[4] Antonio J. Rao, Valverde and Jose F. Aldana Montes, “Extending ESB
for Semantic Web Services”, On the Move to Meaningful Internet
System: OTM 2008 Workshops, Springer Berlin/Heideberg, Volume
5333/2010, ISBN: 978-3-540-88874-1 , DOI: 10.1007/978-3-540-
88875-8_122 , pp 957-964, Nov 19, 2008,
http://www.springerlink.com/content/v62727537h6751v3/fulltext.pdf

[5] Frank Cohen, “Fast SOA”, Morgan Kaufmann, ISBN-13: 978-0-12-
369513-0, ISBN-10: 0-12-369513-9, Chapter 2: Managing the XML
Explosion, Nov, 2006.
http://www.elsevier.com/wps/find/bookdescription.cws_home/710099

[6] Abdullah S. Alghamdi, “Evaluating Defense Architecture Framwork for
C4I System using Analytic Hirarchy Process”, Journal of Computer
Science 5(12): 1075-1081, 2009.

[7] Saurabh Mittal, Bernard Zeigler, Jose L. Risco Martin, Ferat Sahin and
Mo Jamshidi, “Modeling and Simulation for systems of systems
Engineering”, Chap 5, Wiley [Imprint], Inc. 2008.
http://acims.arizona.edu/PUBLICATIONS/PDF/Mo_Chapt_5_MittalZei
glerJoseFeratV4.pdf

[8] Robert Woolley, “Enterprise Service Bus (ESB) Product Evaluation
Comparisons”, Utah Department of Technology Services, Oct 18, 2006;

Criterion
Mule

ESB

Fuse

ESB

GlassFish

ESB

Semantic Interoperability 6 4 5

Syntactic Interoperability 6 5 4

Network Interoperability 4 5 6

Total 16 14 15

http://www.redbooks.ibm.com/redbooks/pdfs/sg246346.pdf
http://dx.doi.org/10.1109/COMPSAC.2009.119
http://www.elsevier.com/wps/find/bookdescription.cws_home/717477
http://www.springerlink.com/content/v62727537h6751v3/fulltext.pdf
http://www.elsevier.com/wps/find/bookdescription.cws_home/710099
http://acims.arizona.edu/PUBLICATIONS/PDF/Mo_Chapt_5_MittalZeiglerJoseFeratV4.pdf
http://acims.arizona.edu/PUBLICATIONS/PDF/Mo_Chapt_5_MittalZeiglerJoseFeratV4.pdf

6

http://dts.utah.gov/techresearch/researchservices/researchanalysis/resour
ces/esbCompare061018.pdf: Webpage accessed on Dec 15, 2009.

[9] Stein. Desmet, Bruno Volckaert, Steven Van Assche, Dietrich Van Der
Weken, Bart Dhoedt, Filip De Turck, “Throughput Evaluation of
Different Enterprise Service Bus Approaches”, Conference on Software
Engineering Research and Practice; Jun 25-28, 2007, ISBN: 1-60132-
033-7, 1-60132-034-5 (1-60132-035-3), CSREA Press, pp. 378-384.
http://www.ibcn.intec.ugent.be/papers/3032.pdf

[10] Ken Vollmer and Mike Gilpin, “The Forrester Wave: Enterprise Service
Bus, Q2 2006”, BEA Systems, Nov 17, 2006,
http://whitepapers.zdnet.co.uk/0,1000000651,260256988p,00.htm

[11] Lori MacVittie, “Review: ESB Suites”, Networking Computing, CMP
Media LLC, March 10, 2006.
http://www.networkcomputing.com/wireless/review-esb-suites.php

[12] Peter Delia, Antoine Borg, Ricston Lts “MULE 2: A Developer Guide to
ESB and Integration Plaeform”, Professional and Applied Computing,
Apress, ISBN: 978-1-4302-0981-2 (Print) 978-1-4302-0982-9 (Online),
DOI 10.1007/978-1-4302-0982-9, chapter 1, pp 1-28, Feb 7, 2009.
http://www.springerlink.com/content/978-1-4302-0981-2

[13] http://www.mulesoft.org/display/MULE/Home: Webpage accessed on
Sep 10, 2009

[14] Kruessmann T., Koshel A., Murphy M., Trenaman A., and Astrova I,
“High availability: Evaluating Open Source Enterprise Service Bus”,
Information Technology Interfaces, Proceedings of the ITI 2009 31st
International Conference , Jun 22-25, 2009, pp 615-620. DOI:
10.1109/ITI.2009.5196157
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05196157

[15] Vasiliev and Yuli, “Beginning Database-Driven Application
Development in Java EE Using GlassFish”, Apress, ISBN: 978-1-4302-
0963-8 (Print) 978-1-4302-0964-5 (Online), Springer Link Date: Apr 21,
2009, DOI: 10.1007/978-1-4302-0964-5.
http://www.springerlink.com/content/978-1-4302-0963-8

[16] Sun MicroSystems, “Sun GlassFish Enterprise Service Bus”, 2009
http://www.sun.com/software/javaenterprisesystem/javacaps/glassfish-
esb-ds.pdf: Webpage accessed on Dec 30, 2009

[17] Michael Shephared, “Semantic Interoperability”, CHPSTP Workshop,
Dalhousie University, May 25-27, 2005,
http://web.his.uvic.ca/chpstp/RLE01/RLE%20Shepherdv2.pdf:
Webpage accessed on Nov 30, 2009

[18] http://en.wikipedia.org/wiki/FUSE_ESB: Webpage accessed on Jan 5,
2010.

[19] http://www.fusesource.com: Webpage accessed on Sep 1, 2009

[20] Adam Badura,Bartosz Sakowicz and Dariusz Makowski, “Integration of
Management protocols based on Apche ServiceMix JBI platform”,
CADSM 2009. 10th International Conference, pp: 381-384, Feb 2009,
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04839857

[21] Tijs Rademakers and Jos Dirksen, “Open Source ESBs in Action”,
Manning Publications, ISBN 1933988215, Sample Chapt 1, Sep 2008
http://www.manning.com/rademakers/sample_ch01_ESB.pdf

http://dts.utah.gov/techresearch/researchservices/researchanalysis/resources/esbCompare061018.pdf
http://dts.utah.gov/techresearch/researchservices/researchanalysis/resources/esbCompare061018.pdf
http://www.ibcn.intec.ugent.be/papers/3032.pdf
http://whitepapers.zdnet.co.uk/0,1000000651,260256988p,00.htm
http://www.networkcomputing.com/wireless/review-esb-suites.php
http://www.springerlink.com/content/978-1-4302-0981-2
http://www.mulesoft.org/display/MULE/Home
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05196157
http://www.springerlink.com/content/978-1-4302-0963-8
http://www.sun.com/software/javaenterprisesystem/javacaps/glassfish-esb-ds.pdf
http://www.sun.com/software/javaenterprisesystem/javacaps/glassfish-esb-ds.pdf
http://web.his.uvic.ca/chpstp/RLE01/RLE%20Shepherdv2.pdf
http://en.wikipedia.org/wiki/FUSE_ESB
http://www.fusesource.com/
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04839857
http://www.manning.com/rademakers/sample_ch01_ESB.pdf

