3.8 Harmonic Functions

Let U C R™ be an open set. Let f: U — C. If f is C? on U, and satisfies the Laplace equation
Af(z) = —f(x) =0, zel,

then we say that f is a harmonic function on U. The symbol A is called the Laplace operator.

In this course, we focus on the case n = 2, and identify R? with C. The Laplace equation
becomes o o

f f
Af(z) = =5(=)+ =5(2)=0, zeU.
1) = 55 + 5 ()

Note that a complex function is harmonic if and only if both of its real part and imaginary part
are harmonic.

Theorem 3.8.1. Let f be analytic in an open set U C C. Then f is harmonic in U.

Proof. Let f = u+iv. We have seen that f is infinitely many times complex differentiable, which
implies that 4 and v are infinitely many times real differentiable. From the Cauchy-Riemann

equation, we get u, = vy and uy = —v, in U. Thus,
Ugy T Uyy = Vyg — Ugy = 0, vgo+ Vyy = —Uyg + Ugy = 0,
which implies that both v and v are harmonic, and so is f. ]

From now on, we assume that a harmonic function is always real valued.

Lemma 3.8.1. Let u be a real valued C? function defined in an open set U. Then u is harmonic
in U if and only if u, — iuy is analytic in U.

Proof. Suppose u is harmonic in U. Then uz,uy, € C' and (uz); = (—uy)y and (ugz)y =
—(—uy)z. Cauchy-Riemann equation is satisfied by u, and —u,. So u, — iu, is analytic.
On the other hand, if u, — iu, is analytic, then the Cauchy-Riemann equation implies that
(ug)z = (—uy)y, i.€., Ugz + uyy = 0. So u is harmonic. O

Definition 3.8.1. Let u be a harmonic function in a domain U. If a real valued function v
satisfies that u + iv is analytic in U, then we say that v is a harmonic conjugate of u in U.

A harmonic conjugate must also be a harmonic function because it is the imaginary part of
an analytic function. If v and w are both harmonic conjugates of u in U, then v, = —u, = w;
and vy = u; = wy in U. Since U is connected, we get v — w is constant. This means that, the
harmonic conjugates of a harmonic function, if it exists, are unique up to an additive constant.
Also note that if v is a harmonic conjugate of u, then —u (instead of u) is a harmonic conjugate
of v. This is because —i(u + iv) = v — iu is analytic.
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Theorem 3.8.2. Let u be a harmonic function in a simply connected domain U. Then there
is a harmonic conjugate of u in U.

Proof. Let f = uz —iu, in U. From the above lemma, f is holomorphic in U. Since U is simply
connected, f has a primitive in U, say F. Write F' = u + iv. Then

um—iuy:f:F':Hm—iﬂy.

Thus, u; = u; and uy = uy in U. Since U is connected, we see that © — u is a real constant.
Let C =u—wu € R. Then F —C = u+ v is holomorphic in U. Thus, v is a harmonic conjugate
of u. 0

Remark. The theorem does not hold if we do not assume that U is simply connected. However,
a harmonic conjugate always exists locally: if u is a harmonic function in an open set U, then
for any disk D(zp,7) C U, there is f, which is analytic in D(zp,7) and satisfies that Re f = u.
Since such f is infinitely many times complex differentiable, we see that u is infinitely many
times real differentiable in D(zg,r). Since D(zp,7) C U can be chosen arbitrarily, we see that
every harmonic function is infinitely many times real differentiable.

Example.

1. Let D = C\ {0}. Let u(z) = In|z| = $In(z? + y?). Then u, = iz and uy =

50 Uy — tuy =

y
22 4y?-
ﬁ is holomorphic in D. From the above lemma, v is harmonic. If v is a
harmonic conjugate of u in D, then u + fv is a primitive of u, — iuy = % in D. However,
we already know that 1 has no primitive in C \ {0}. Recall that f|z|:1 & = 2mi #£ 0.

Thus, u has no harmonic conjugates in D.

2. Let u(x,y) = 22+ 2xy —y?. Then uy, +uyy = 2—2=0. So u is harmonic in R2. We now
find a harmonic conjugate of u. If v is a harmonic conjugate, then vy, = u, = 2z + 2y.
Thus, v = 2zy + y* + h(z), where h(z) is a differentiable function in . From —u, = vy,
we get 2y — 2z = 2y + h'(x). So we may choose h(x) = —x2. So one harmonic conjugate
of w is 2zy + y? — 22.

Theorem 3.8.3. [Mean Value Theorem for Harmonic Functions] Let u be harmonic on
D(z, R). Then for any r € (0, R),

1 2w )
U(Z()) = 271_/(; U(ZU + T’6Z€)d0;
1
u(zo) = 7rr2/| - u(z)dzdy.
z—z0|<r

Proof. This follows from the Mean Value Theorem for holomorphic functions, and the existence
of harmonic conjugates of u in the simply connected domain D(zp, R). O
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Corollary 3.8.1. With the above setup, if u attains its maximum at zg, then u is constant in
D(Zo, R) .

Proof. We have seen a similar proposition, which says that if f is holomorphic in D(zg, R), and
|f| attains its maximum at zp, then |f| is constant in D(zp, R). The two proofs are similar.
Here is another proof. Let f be analytic such that « = Re f. Then e/ is also analytic, and
lef| = e*. Since u attains its maximum at zp, |ef| also attains its maximum at zp. An earlier
proposition shows that |ef| is constant, which implies that u = log |e/| is constant. O

Theorem 3.8.4. [Maximum Principle for Harmonic Functions| Let u be harmonic in a
domain U.

(i) Suppose that u has a local mazimum at zo € U. Then u is constant.

(i) If U is bounded, and u is continuous on U, then there is zo € OU such that u(zy) =
max{u(z):z € U}.

(iii) The above statements also hold if “maximum?” is replaced by “minimum”.

Proof. (i) From the above corollary, there is 79 > 0 such that w is constant in D(zg, 7). Let
w € U. Since D is connected, we may find a finite sequence of disks Dy = D(zk,7%), 0 < k < n,
in U, such that w € D,, and Dp_1 N Dy # 0, 1 < k < n. Since each Dy is simply connected,
there is fr holomorphic in Dy, such that u = Re f; in Di. We already see that u is constant in
Dgy. So Re fi = u is constant in Dy N D;. From C-R equations, we see that fi is constant in
Do N Di. From the Uniqueness Theorem, we see that fi is constant in D;. Thus, u = Re f; is
constant in D;. Using induction, we see that w is constant in every Dy. Since Dy_q1 N Dy # 0,
w is constant in | J;_y Dy. Thus, f(w) = f(20) as w € D,, and z € Dy.

(ii) Since U is bounded, U is compact. Since u is continuous on U, it attains its maximum
at some wg € U. If wg € OU, we may let zg = wg. If wyg € U, then (i) implies that w is constant
in U. The continuity then implies that u is constant in U. We may take zy to by any point on
au.

(iii) Note that —u is also harmonic, and when —u attains its maximum, u attains its
minimum. O

Corollary 3.8.2. Suppose u and v are both harmonic in a bounded domain U and continuous
on U. Suppose that u=v on OU. Then uw =v on U.

Proof. Let h = u —v. Then h is harmonic in U, continuous on U, and h = 0 on OU. From the
above theorem, h attains its maximum and minimum at QU. So h has to be 0 everywhere, i.e.,

w=wvin U. O

The above corollary says that, if v is harmonic in a bounded domain U and continuous on
U, then the values of u on U are determined by the values of u on 9U.
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We introduce the differential operators

0 0 .0 0 0 .0
82:;<8m_18y>’ az:;(ax“ay)-

This mean that, if f = u 4+ iv, then

0 1 . 1 . Uy + v Uy — U
form = Lot i) — Ly + i) = T
of 1 ) i . Uy — U Uy +u
fE::£:i(u:v_‘_zvx)_‘_i(uy—i_zvy): $2 Y JU2 y'

So the Cauchy-Riemann equation is equivalent to fz = 0; and if f is holomorphic, then f, =
Uy + iv, = f'. Moreover, it is clear that

09 _00 _1

020z 0z0z 4
Thus, if f is holomorphic, then Af = 0, from which we see again that f is harmonic. If u is
harmonic, then from 0:0zu = %Au = 0 we see that 0,u is holomorphic, which is used in a proof
a theorem.

Remark. The smoothness, mean value theorem and the maximum principle also hold for
harmonic functions in R"™ for n > 3. But the technique of complex analysis can not be used.
For example, the mean value theorem follows from the divergence theorem.

Homework. Chapter VIII, §1: 7 (a,b,c.e).

1. Find all real-valued C? differentiable functions h defined on (0,00) such that u(z,y) =
h(z* + y?) is harmonic on C \ {0}.

2. Prove that any positive harmonic function in R? is constant. Hint: If f is an entire
function with Re f > 0, then consider e~7.
Remark: This statement does not hold for R? with d > 3.

3. Let u be a nonconstant harmonic function on C. Show that for any ¢ € R, u~!(c) is
unbounded. Hint: {|z| > R} is connected for any R > 0.
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3.9 Winding Numbers

Let v be a closed curve, and o € C\ . The winding number or index of v with respect to « is

211 Z—Q

1 1
W(y, ) / dz.
gl

Example. Suppose 7 is a Jordan curve. If « lies in the exterior of 7, then applying Cauchy’s
Theorem to f(z) = -, we get W(y,a) = 0. If o lies in the interior of v, then applying
Cauchy’s Formula to f(z) = 1, we get W(y,a) = 1 or —1, where the sign depends on the
orientation of ~.

Lemma 3.9.1. W(y,a) € Z.
Proof. Suppose v is defined on [a,b]. Define F(t) = 57?;)(8—)ad57 a <t <b Then F is
continuous on [a,b], F(a) =0, F(b) = 2miW (v, «), and F'(t) = VZ;)(?Q for t € [a,b] other than
the partition points, say a = zg < 21 < - -+ < &, = b.We now compute
4,
dt

FO@E) —a) =D () = e FOF () (n(t) = @) =0, t € [a,0]\ {0, ... @n}.

Hence there is a constant C' € C such that C(n(t) — a) = e"'®), a <t < b. Since 7 is closed, we
have ef'(®) = ¢#'(®) = ¢0 = 1, which implies that F(b) € 2miZ. So W(y,a) = = F(b) € Z. O

T 2m

Remark. Let 6y be an argument of the C' in the above proof. From n(t) — a = Cef®) we see
that Im F'(t)+6y is an argument of n(t) —a for a < ¢t < b. Now suppose h is a continuous function
on [a,b] such that h(t) is an argument of 7(t) — « for a <t < b, then (h(t) —Im F(t) — 0y)/(2mi)
is an integer-valued continuous function on [a, b], which must be constant. Thus,

F(b)—F(a) iImF()—ilmF(a) h(b)—h(a)

W = —
(7, @) 2 2mi 2

This means that 27W (y, a) equals to the total increment of arg(z — «) along .
Lemma 3.9.2. The map o — W(y,a) is continuous on C\ .

Proof. Fix apg € C\ 7. Let (a;) be a sequence that converges to ag. It suffices to show that

e ﬁ uniformly on z € ~. Let r = dist(ap,y) > 0. For n big enough, we have

|a, — ap| < /2, which implies that dist(c,,7y) > /2. For those n, we have

‘ 1 _ 1 _ |, — gl < ]an—a0|7 zEn.

z—an,  zZ—aq |z — anl|z — ag r2/2

Thus, Hz_lan - Z_lao Iy < % when n is big enough, which implies that 2miW (v, o) =
1 1 P

fv —adz — fv —andz = 2miW (v, ag). O
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Corollary 3.9.1. W(~,-) is constant on each connected component of C\ ~.

Proof. This follows from the above two lemmas and the fact that a continuous integer valued
function is constant on a domain. O

Corollary 3.9.2. W(vy,a) =0 if a lies on the unbounded component of C\ 7.
1

? -

Proof. This follows from the fact that, as o — oo

— 0 uniformly in z € 7. O

We define a contour v to be a “sum” of finitely many closed curves ~;, 1 < k < n, which
may or may not have intersections. The repetitions in 7;’s are allowed. The integral along a
contour is defined to be f7 =31 f%. The winding number of a contour v with respect to
aeC\y=C\ Ui is W(y,a) = > p_; W(k, ). The above propositions also hold for
contours.

Examples.
1. The winding numbers of a trefoil knot in 5 different domains.

Observe that the winding number increases by 1 if we cross the contour from its right to its
left; decreases by 1 if we cross the contour from its left to its right.

Theorem 3.9.1. [The General Cauchy’s Theorem]| Let f be holomorphic in a domain U.
Let ~ be a contour in U such that W (vy,a) =0 for every a« € C\ U. Then f7 f=0.

The interested reader may refer to Chapter IV, § 3 of Lang’s book for a proof. Note that the
condition that W (vy,a) = 0 for every a € C\ U is necessary. For otherwise we may construct

a counterexample: f(z) = .

Theorem 3.9.2. [The General Cauchy’s Formula] Let f be holomorphic in a domain U.
Let v be a contour in U such that for every o € C\ U, W(v,a) =0. Let z9 € U. Then
1 fz) o

’YZ_ZO

Proof. Assuming the general Cauchy’s Theorem, the proof of this theorem is not difficult. Let
r > 0 be such that D(zp,r) C U. Define a contour 1 to be v + (=W (v, 20)){|z — 20| = r}.
Here if W (~,z9) = 0, then n = ~; if W(y,29) > 0, this should be understood as n = v +
W (v, z0){|z — 20| =r}~. Ilf Let U' = U \ {20}. Then for any o € C\ U’, W(n,a) = 0. Since

f(z

o Is holomorphic in U’, from the general Cauchy’s Theorem,

LIl L6 o [ SG),
|z—z0|=r

2w n 2= 20 2mi ~ 2= 20 211 zZ— 20
1 f(z)
= dz ~ W, ,
Gl M—— z (75 20) f (20)
where the last equality follows from the Cauchy’s Formula for Jordan curves. O

Homework. Find the winding numbers for a given closed curve. See the course webpage.
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