3. EXPECTATIONS INVOLVING INDEPENDENT R. V. 'S AND MOMENT GENERATING FUNCTIONS

- Q1) Let X_1 , X_2 and X_3 be independent r.v.'s with means 4, 9, 3 and variances 3, 7, 5 respectively. For $Y=2X_1-3$ X_2+4 X_3 and $Z=X_1+2$ X_2-X_3 , find:
- a. E(Y) and E(Z).
- b. V(Y) and V(Z).
- Q2) If X and Y are independent r.v.'s with E(X)=3, E(Y)=5, V(X)=2, and V(Y)=5, find:
- a. E(XY)
- b. $E(X^2Y)$
- Q3) Let X and Y are independent r.v's with p.d.f $f(x) = e^{-x}$; x > 0,

$$f(y) = e^{-y}$$
; $y > 0$, find:

- a. E(Y) and V(X).
- b. E(Y) and V(Y).
- c. E(XY).
- d. $E(X^2 Y^3)$.
- Q4) A r.v. has $f(x) = \frac{1}{2}e^{-|x|}$; $for \infty < x < \infty$, find E(X) and V(X).
- Q5) Let $X_1, X_2, ..., X_n$ be independent and identically distributed having mean μ and variance σ^2 . Let $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$. Show that $E\left[\sum_{i=1}^n \left(X_i \overline{X}\right)^2\right] = (n-1)\sigma^2$.
- Q6) If we have

a.
$$f(x) = \frac{1}{b-a}$$
; $a \le x \le b$

b.
$$f(x) = \lambda e^{-\lambda x}$$
; $x > 0$

215 STAT

c.
$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} exp\left[-\frac{1}{2\sigma^2} (x - \mu)^2 \right]; -\infty < x < \infty$$

Find E(X) and V(X).

Q7) If $X \sim Exp(2)$ independent of $Y \sim Gamma(3,4)$, find:

- a. E(XY).
- b. $E(X^2 Y^3)$.
- c. V(X-Y)
- d. V(3X+2Y)

where

	pdf	E(X)	V(X)
$Exp(\lambda)$	$f(x) = \lambda e^{-\lambda x}; x > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$Gamma(\alpha, \beta)$	$f(x) = \frac{\beta^{\alpha}}{\Gamma \alpha} x^{\alpha - 1} e^{-\beta x}; x$ > 0	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$

- Q8) Find the moment generating function of X If you know that $f(x)=2e^{-2x}$, x>0
- Q9) Suppose independent r.v.'s X and Y are such that $M_{X+Y}(t) = \frac{e^{2t}-1}{2t-t^2}$. If $(x) = \lambda e^{-\lambda x}$; x > 0, what is the mgf of Y.

Q10) A r.v. has
$$f(x) = \frac{1}{2}e^{-|x|}$$
; for $-\infty < x < \infty$.

- a. Show that its mgf is given by $M_X(t) = \frac{1}{1-t^2}$ for -1<t<1.
- b. Using the mgf, find E(X) and V(X).

Q11) If X has
$$f(x) = \frac{3}{2}x^2$$
, $-1 < x < 1$

- a. Find mgf of X.
- b. Given the mgf in expanded form.
- c. Use the expanded form to determine a general formula for $E(X^n)$.

- Q12) X and Y are independent and identically distributed with $M(t) = e^{3t+t^2}$. Find the mgf of Z=2X-3Y+4.
- Q13) Suppose X has $M_X(t) = e^{3t+t^2}$. Find the mgf of $Z = \frac{1}{4}(X-3)$ and use it to find the mean and variance of Z.
- Q14) Suppose X is a r.v. for which the mgf is $M_X(t) = \frac{1}{4}(3e^t + e^{-t}), -\infty < t < \infty$.
- a. Find the mean and variance of X.
- b. Find the expanded form of the mgf.
- Q15) Let f(x) = 1; $0 \le x \le 1$. Use the moment generating function technique to find the moment generating function of Y=aX+b where a and b are constant.
- Q16) Let $f(x) = e^{-x}$; x > 0, find the mgf of Z=3-2X.
- Q17) X, Y and Z are independent r.v.'s with $X \sim Normal(1,3)$, $Y \sim Normal(5,2)$ and the mgf of their sum being $M_{X+Y+Z}(t) = e^{13t+3t^2}$. Determine the distribution of Z.