1. PROBABILITY, CONDITIONAL PROBABILITY, AND INDEPENDENCE

Q1. Consider the experiment of flipping a balanced coin three times independently.

(a) The number of points in the sample space is						
(A) 2	(B) 6	(C) 8	(D) 3	(E) 9		
(b) The probability	y of getting exactly	y two heads is				
(A) 0.125	(B) 0.375	(C) 0.667	(D) 0.333	(E) 0.451		
(c) The events 'ex	actly two heads' a	nd 'exactly three	heads' are			
(A) Independent	(B) disjoint	(C) equally	(D) identical	(E) None		
		likely				
(d) The events 'the	first coin is head'	and 'the second a	and the third coins	are tails' are		
(A) Independent	(B) disjoint	(C) equally	(D) identical	(E) None		
		likely				

Q2. Suppose that a fair die is thrown twice independently, then

- 1. the probability that the sum of numbers of the two dice is less than or equal to [€] is; (A) 0.1667 (B) 0.6667 (C) 0.8333 (D) 0.1389
- the probability that at least one of the die shows [€] is;
 (A) 0.6667 (B) 0.3056 (C) 0.8333 (D) 0.1389
- 3. the probability that one die shows one and the sum of the two dice is four is; (A) 0.0556 (B) 0.6667 (C) 0.3056 (D) 0.1389
- 4. the event A={the sum of two dice is 4} and the event B={exactly one die shows two} are,(A) Independent (B) Dependent(C) Joint (D) None of these.

Q3. Assume that P(A) = 0.3, P(B) = 0.4, $P(A \cap B \cap C) = 0.03$, and $P(\overline{A \cap B}) = 0.88$, then

1. the events A and B are, (A) Independent (B) Dependent (C) Disjoint (D) None of these.

2. $P(C|A \cap B)$ is equal to,

(A) 0.65 (B) 0.25 (C) 0.35 (D) 0.14

Q5. If the probability that it will rain tomorrow is 0.23, then the probability that it will not rain tomorrow is:

(A) -0.23 (B) 0.77 (C) -0.77 (D) 0.23

Q5. The probability that a factory will open a branch in Riyadh is 0.7, the probability that it will open a branch in Jeddah is 0.4, and the probability that it will open a branch in either Riyadh or Jeddah or both is 0.8. Then, the probability that it will open a branch:

1) in both cities is:

(A) 0.1	(B) 0.9	(C) 0.3	(D) 0.8
2) in neither city is:			
(A) 0.4	(B) 0.7	(C) 0.3	(D) 0.2

Q6. The probability that a lab specimen is contaminated is 0.10. Three independent specimen are checked.

1) the probability that none is contaminated is:

(A) 0.0475	(B) 0.001	(C) 0.729	(D) 0. 3
2) the prol	bability that	exactly one sai	mple is contam	inated is:
(A) 0.758	(B) 0.0 ^A	(C) 0.7°V	(D) 0. 3

Q7. 200 adults are classified according to sex and their level of education in the following table:

Sex	Male (M)	Female (F)
Education		
Elementary (E)	28	50
Secondary (S)	38	45
College (C)	22	17

If a person is selected at random from this group, then:

1) the probability that he is a male is:

2) The probability that the person is male given that the person has a secondary education is:

(A) 0.4318 (B) 0.4578 (C) 0.19 (D) 0.44

3) The probability that the person does not have a college degree given that the person is a female is:

(A) 0.8482 (B) 0.1518 (C) 0.475 (D) 0.085

4) Are the events M and E independent? Why? $[P(M)=0.44 \neq P(M|E)=0.359 \Rightarrow$ dependent]

Q8. 1000 individuals are classified below by sex and smoking habit.

		SEX		
		Male (M)	Female (F)	
	Daily (D)	300	50	
SMOKING	Occasionally (O)	200	50	
HABIT	Not at all (N)	100	300	

A person is selected randomly from this group.

- 1. Find the probability that the person is female. [P(F)=0.4]
- 2. Find the probability that the person is female and smokes daily. $[P(F \cap D)=0.05]$
- 3. Find the probability that the person is female, given that the person smokes daily. [P(F|D)=0.1429]
- 4. Are the events F and D independent? Why? $[P(F)=0.4 \neq P(F|D)=0.1429 \Rightarrow dependent]$

Q9. Two engines operate independently, if the probability that an engine will start is 0.4, and the probability that the other engine will start is 0.6, then the probability that both will start is:

Q10. If P(B) = 0.3 and P(A|B) = 0.4, then $P(A \cap B)$ equals to;

(A) 0.67 (B) 0.12 (C) 0.75 (D) 0.3

Q11. The probability that a computer system has an electrical failure is 0.15, and the probability that it has a virus is 0.25, and the probability that it has both problems is 0.10, then the probability that the computer system has the electrical failure or the virus is:

(A) 1.15 (B) 0.2 (C) 0.15 (D) 0.30

(A) independent

Q12. From a box containing 4 black balls and 2 green balls, 3 balls are drawn independently in succession, each ball being replaced in the box before the next draw is made. The probability of drawing 2 green balls and 1 black ball is:

(A) 6/27	(B) 2/	27	(C) 12	2/27		(D) 4	/27	
Q13. If P(A ₁)=0.4, I	$P(A_1 \cap A_2)$	2)=0.2,	and P(A	$A_3 A_1 \cap A_3 $	A ₂)=0.75	5, then		
(1) $P(A_2 A_1)$	equals t	0						
(A)	0.00	(B)	0.20	(C)	0.08	(D)	0.50	
(2) $P(A_1 \cap A_2)$	$_2 \cap A_3$) ec	uals to)					
(A)	0.06	(B)	0.35	(C)	0.15	(D)	0.08	
Q14. If P(A)=0.9, P	(B)=0.6,	and P((A∩B)=	0.5, the	en:			
(1) $P(A \cap B^C)$) equals	to						
(A) 0.	.4		(B) 0.	1		(C) 0	.5	(D) 0.3
(2) $P(A^C \cap B^C)$	^C) equals	s to						
(A) 0.	.2		(B) 0.	.6		(C) 0	.0	(D) 0.5
(3) P(B A) e	quals to							
(A) 0	.5556		(B) 0.	8333		(C) 0	.6000	(D) 0.0
(4) The even	its A and	B are						

(5) The events A and B are	(2) unsjonne	(0) joint	(2) 110110
(A) disjoint	(B) dependent	(C) independent	(D) none

(C) joint

(D) none

(B) disjoint

Q15. Suppose that the experiment is to randomly select with replacement 2 children and register their gender (B=boy, G=girl) from a family having 2 boys and 6 girls.

(1) The number of outcomes	(elements of th	e samp	le spac	e) of this	s experiment equals to		
(A) 4	(B) 6	(C) 5	(D)	125			
(2) The event that represents	registering at n	nost one	e boy is	5			
$(A) \{GG, GB, BG\}$	(B) {GB, BG]	}	(C) {(GB} ^C	$(D) \{GB, BG, BB\}$		
(3) The probability of register	ering no girls eq	uals to					
(A) 0.2500	(B) 0.0625		(C) 0.	4219	(D) 0.1780		
(4) The probability of registering exactly one boy equals to							
(A) 0.1406	(B) 0.3750		(C) 0.	0141	(D) 0.0423		
(5) The probability of register	ering at most on	e boy e	quals to	O			
(A) 0.0156	(B) 0.5000		(C) 0.	4219	(D) 0.9375		

Q16. A total of 36 members of a club play tennis, 28 play squash, 18 play badminton, 22 play both tennis and squash, 12 play both tennis and badminton, 9 play both squash and badminton, 4 play all 3. What is the probability that at least one a member of this club plays at least one sport. Assuming that the total number of members in the club is 50.

Q17. A group of women in a certain hospital were selected it was found out that 18% were married, 2% of them have exceeded the age of 25, 81% are not married and didn't exceed the age of 25. A woman was selected at random

- 1- What is the probability that the women is married or exceeded the age of 25.
- 2- What is the probability that the exceeded the age of 25 given that she is married.
- 3- Is the married status and the age independent.

Q18. If the probability of passing course (A) is 0.6, passing course (B) is 0.7, passing course A or B is 0.9.

Find:

- 1- Probability of passing course A and B.
- 2- Probability of passing course A only.
- 3- Probability of passing course B and not passing course A.
- 4- Probability of not passing course A and B.
- 5- Probability of passing course B or not passing course A.

Q19. Our sample space S is the population of adults in a small town. They can be categorized according to gender and employment status.

	Employed	Unemployed	Total
Male	460	40	500
Female	140	260	400
Total	600	300	900

One individual is to be selected at random for a publicity tour. The concerned events

- \circ *M* : a man is chosen
- \circ E: the one chosen is employed
- \circ *F*: a Female is chosen
- *U*: The one chosen is unemployed
- 1. If the chosen is employed, what is the probability to be Female.
- 2. If the chosen is unemployed, what is the probability to be Female.
- 3. If the chosen is unemployed, what is the probability to be Male.
- 4. If the chosen is Male, what is the probability to be unemployed.

Q20. The probability that a regularly scheduled flight departs on time is P(D) = 0.83; the probability that it arrives on time is P(A) = 0.82; and the probability that it departs and arrives on time is $P(D \cap A) = 0.78$.

Find the probability that a plane

- 1- arrives on time given that it departed on time.
- 2- departed on time given that it has arrived on time.
- 3- arrived on time given that it has not departed on time.

The difference of A and B, denoted by A-B, is the set of all elements of A which do not belong to B. Note that

 $A-B=A \cap B^{\circ}$ Note also $A=(A \cap B)U(A \cap B^{\circ})$, and, $B=(B \cap A)U(B \cap A^{\circ})$

Q21. Suppose we have a fuse box containing 20 fuses of which 5 are defective D and 12 are non-defective N. If 2 fuses are selected at random and removed from the box in succession without replacing the first, what is the probability that both fuses are defective.

Q22. Three cards are drawn in succession, without replacement, from an ordinary deck of playing cards. Fined $P(A_1 \cap A_2 \cap A_3)$, where the events A_1 , A_2 , and A_3 are defined as follows: $A_1 = \{\text{the 1-st card is a red ace}\}$

 $A_2 = \{$ the 2-nd card is a 10 or a jack $\}$

 $A_3 = \{$ the 3-rd card is a number greater than 3 but less than 7 $\}$