Two sample T

1)

The phosphorus content was measured for independent samples of skim and whole Whole: $94.95 \quad 95.15 \quad 94.8594 .55 \quad 94.55 \quad 93.40 \begin{array}{lllllllll}95.05 & 94.35 & 94.70 & 94.90\end{array}$ $\begin{array}{llllllllllllllll}\text { Skim: } & 91.25 & 91.80 & 91.50 & 91.65 & 91.15 & 90.25 & 91.90 & 91.25 & 91.65 & 91.00\end{array}$
Assuming normal populations with equal variances
a) Test whether the average phosphorus content of skim milk is less than the average phosphorus content of whole milk. Use $\alpha=0.01$

1- Test for equality of variance
$H_{0}: \sigma_{12}=\sigma_{22}$
$H_{1}: \sigma_{12} \neq \sigma_{22}$

Conclusion: As F $\ngtr \mathrm{F}$ Critical one-tail, we fail reject the null hypothesis. This is the case, $1.0849>3.1789$. Therefore, we fail to reject the null hypothesis. The variances of the two populations are equal (p-value $=0.4527 \nless \alpha=0.05$)
(2- T test two samples for means assuming equal variance By Excel)

t-Test: Two-Sample Assuming Equal Variances

	skim	whole
Mean	91.34	94.645
Variance	0.233222	0.253028
Observations	10	10
Pooled Variance	0.243125	
Hypothesized Mean Difference	0	
$d f$	18	
t Stat	-14.9879	
$P(T<=t)$ one-tail	$6.53 \mathrm{E}-12$	
t Critical one-tail	2.55238	
$P(T<=t)$ two-tail	$1.31 \mathrm{E}-11$	
t Critical two-tail	2.87844	

1- Test hypothesis:
$H_{0}: \mu_{2} \geq \mu_{1}$
$H_{1}: \mu_{2}<\mu_{1}$
2- T stat $=-14.9879$
3- \quad T critical one tail $=2.55238$
4- Conclusion: We do a one-tail test. If t Stat <-t Critical one-tail, we reject the null hypothesis.As $-14.9879<-2.55238$ (p-value $=0.00000653<\alpha=0.01$). Therefore, we reject the null hypothesis

5- Independent random samples of 17 sophomores and 13 juniors attending a large university yield the following data on grade point averages:

Sophomores					
3.04	2.92	2.86	2.56	3.47	2.65
1.71	3.60	3.49	2.77	3.26	3.00
3.30	2.28	3.11	2.70	3.20	3.39
2.88	2.82	2.13	3.00	3.19	2.58
2.11	3.03	3.27	2.98		
2.60	3.13				

Assuming normal population. At the 5\% significance level, do the data provide sufficient evidence to conclude that the mean GPAs of sophomores and juniors at the university different?

1- Test for equality of variance
$H_{0}: \sigma_{12}=\sigma_{22}$
$H_{1}: \sigma_{12} \neq \sigma_{22}$

F-Test TwoSample for Variances

Juniors	Sophomores	
2.980769231	2.84	Mean
0.095641026	0.270225	Variance
13	17	Observations
12	16	df
	2.825408847	F
		$\mathrm{P}(\mathrm{F}<=\mathrm{f})$ one-
	0.037332216	tail
	2.598881158	F Critical
one-tail		

Conclusion: As F > F Critical one-tail, we reject the null hypothesis. Therefore, reject the null hypothesis. The variances of the two populations are unequal (p -value $=0.03733<\alpha=0.05$)

2- T test two samples for means assuming unequal variance By Excel

t-Test: Two-Sample Assuming Unequal Variances

Juniors	Sophomores	
2.980769231	2.84	Mean
0.095641026	0.270225	Variance
13	17	Observations
0	Hypothesized Mean Difference	
27	df	
	-0.923149563	t Stat
	0.182052992	$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail
	1.703288446	t Critical one-tail
	0.364105983	$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail
	2.051830516	t Critical two-tail

1. Test hypothesis:
$H_{0}: \mu_{2}=\mu_{1}$
$H_{1}: \mu_{2} \neq \mu_{1}$
2. T stat $=-0.9231$
3. T critical two tail $=2.05183$
4. Conclusion: We do a two-tail test (inequality). If t Stat < -t Critical two-tail or t Stat $>\mathrm{t}$ Critical two-tail, we reject the null hypothesis. This is not the case, -$2.05183<-0.9231<2.05183$. Therefore, we do not reject the null hypothesis (p-value $=0.3641 \nless \alpha=0.05$)

3-
8- In an experiment comparing 2 feeding methods for caves, eight pairs of twins were used one twin receiving Method A and other twin receiving Method B. At the end of a given time, the calves were slaughtered and cooked, and the meat was rated for its taste (with a higher number indicating a better taste):

Twin pair	Method A	Method B
1	27	23
2	37	28
3	31	30
4	38	32
5	29	27
6	35	29
7	41	36
8	37	31

Assuming approximate normality, test if the average taste score for calves fed by Method B is less than the average taste foe calves fed by Method A. Use $\alpha=0.05$.
(T test parried two samples for means By Excel)

method a	method b	
34.375	29.5	Mean
23.69642857	14.57142857	Variance
8	8	Observations
	0.857204246	Pearson Correlation
0	Hypothesized Mean Difference	
	7	df
	-5.445859126	t Stat
	0.000480113	$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail
	1.894578605	t Critical one-tail
	0.000960226	$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail
	2.364624252	t Critical two-tail

1. Test hypothesis:

$$
\begin{aligned}
& H_{0}: \mu_{b} \geq \mu_{a} \\
& H_{1}: \mu_{b}<\mu_{a}
\end{aligned}
$$

2. T stat $=-5.44585$
3. T critical one tail $=1.89457$
4. Conclusion: We do a one-tail test . If t Stat <-t Critical one-tail, we reject the null hypothesis.As $-5.44585<-1.89457$ (p -value $=0.00048<\alpha=0.05$) . Therefore, we reject the null hypothesis

PEARSON CORRELATION COEFFICIENT

4) We have the table illustrates the age X and blood pressure Y for eight female.

68	49	60	42	55	63	36	42	X
152	145	155	140	150	140	118	125	Y

Find:

	By Excel (using (fx) and (Data Analysis))
Correlation=0.791832	CORREL(M3:M10;N3:N10)

Positive correlation between x and y

Ten Corvettes between 1 and 6 years old were randomly selected from last year's sales records in Virginia Beach, Virginia. The following data were obtained, where x denotes age, in years, and y denotes sales price, in hundreds of dollars.

x	6	6	6	4	2	5	4	5	1	2
y	125	115	130	160	219	150	190	163	260	260

a) Determine the regression equation for the data.
b) Compute and interpret the coefficient of determination, r^{2}.
c) Obtain a point estimate for the mean sales price of all 4-year-old Corvettes.
(Linear regression by Excel)

SUMMARY OUTPUT								
Regression Statistics								
Multiple R	0.967871585							
R Square	0.936775406							
Adjusted R Square	0.928872332							
Standard Error	14.24652913							
Observations	10							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	24057.89126	24057.89	118.533	$4.48427 \mathrm{E}-06$			
Residual	8	1623.708738	202.9636					
Total	9	25681.6						
	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%	Lower 95.0\%	Upper 95.0\%
Intercept	291.6019417	11.43289905	25.50551	5.98E-09	265.2376293	317.9662542	265.2376293	317.9662542
x	-27.90291262	2.562889198	-10.8873	4.48E-06	-33.81294571	-21.99287953	-33.81294571	-21.99287953

a) $\hat{y}=291.6019-27.9029 x$

For every unit in x we expect that y to decrease by 27.9029
b) $\mathrm{R}^{2}=0.9367$
93.67\% of the variation in y data is explained by x
c) c) $\hat{y}=291.6019-27.9029(4)=180$

