Example 1

A hypothesis test is to be performed to determine whether the mean waiting time during peak hours for customers in a <u>supermarket has increased from the previous mean waiting time of 8.2 minutes</u>. Previous experience indicates that the waiting time follows a normal distribution with standard deviation equal 3.8 minutes. To test the hypothesis, a random sample of 25 customers will be selected yields mean $\bar{x} = 9.75$.. **Answer the questions 1 to 9.**

Question 1:

The null and alternative hypotheses are...

(A) $H_0: \mu \ge 8.2 \& H_1: \mu < 8.2$	(B) $H_0: \mu = 8.2 \& H_1: \mu \neq 8.2$
(C) $H_0: \mu \le 8.2 \& H_1: \mu > 8.2$	(D) $H_0: \overline{X} \neq 8.2 \& H_1: \overline{X} = 8.2$

Question 2:

This hypothesis test is classifies as...

(A) Right-tailed	(B) Two-tailed
(C) Multi-tailed	(D) left-tailed

Question 3:

The appropriate test statistic is...

(A)
$$Z = \frac{\overline{X} - \mu}{S / \sqrt{n}}$$
 (B) $Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$ (C) $T = \frac{\overline{X} - \mu}{S / \sqrt{n}}$

Question 4:

The critical region is best described by figure....

Question 5:

With significance level equal 0.05, the decision criterion for the hypothesis test in terms of the computed value of the test statistic is....

(A) Reject H_0 if $z_{stat} < -1.645$

(B) Reject H_0 if $z_{stat} > 1.96$

(C) Reject H_0 if $Z_{stat} > 1.645$ or $Z_{stat} < -1.645$ (D) Reject H_0 if $Z_{stat} > 1.645$

Question 6:

The computed value of our test statistic is....

(A) -2.04(B) 3.98 (C) 2.04 (D) 0.54

Solution:

$$z_{stat} = \frac{9.75 - 8.2}{3.8 / \sqrt{25}} = 2.04$$

Question 7:

The decision would be to....

- (A) Cannot be determined
- (B) Do not reject the null hypothesis.
- (C) Reject the null hypothesis.
- (D) Reject the alternative hypothesis.

Question 8:

Suppose that in fact the waiting time is increased to 9 minutes (μ_1 =9.9), then the decision has been made is...

(A) Committing Type I error

(B) Committing Type II error

(C) Correct decision($1-\alpha$)

(D) Correct decision $(1-\beta)$

Question 9:

A 95% confidence interval is $8.3 < \mu < 11.2$. The null hypothesis is $H_0: \mu \le 8.2$ $H_1: \mu > 8.2$

What is the decision?

- (A) Reject the null hypothesis.
- (B) Do not Reject the null hypothesis.
- (C) Can not be determined
- (D) Reject the alternative hypothesis.

End of example 1

Example 2

It assumed from last experience that 75% of sports viewers are male. A famous sport newspaper reports that this proportion is greater than 0.75. A random sample of 400 season ticket holders reveals that 352 are male. We wish to test the above hypothesis. **Answer the questions 1 to 10.**

Question 1:

The null and alternative hypotheses are...

(A)
$$H_0: P \ge 0.75$$
 & $H_1: P < 0.75$ (B) $H_0: \pi < 0.75$ & $H_1: \pi \ge 0.75$

(C)
$$H_0: \pi \le 0.75 \& H_1: \pi > 0.75$$
 (D) $H_0: \pi \ne 0.75 \& H_1: \pi = 0.75$

Question2:

This hypothesis test is classifies as...

(A) Two-tailed	(B) Right-tailed
(C) Opposite-tailed	(D) left-tailed

Question 3:

The appropriate test statistic is...

(A)
$$Z = \frac{P - \pi}{\sqrt{\pi (1 - \pi)/n}}$$
 (B) $T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$

(C)
$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$
 (D) $\chi^2 = \frac{P - \pi}{\sqrt{\pi (1 - \pi)/n}}$

Question 4:

With significance level equal 0.05, the decision criterion for the hypothesis test in terms of the computed value of the test statistic (Z_{stat}) is....

(A) Reject
$$H_0$$
 if $Z_c < -1.96$ (B) Reject H_0 if $Z_c > 1.96$

(C) Reject
$$H_0$$
 if $Z_c > 1.96$ or $Z_c < -1.96$ (D) Reject H_0 if $Z_c > 1.645$

Question 5:

With level of significance 5%, the critical region is best described by figure....

Question 6:

The computed value of our test statistic is....

(A) 0.01 (B) 5.99 (C) 0.23 (D) -0.01

Solution:

$$z_c = \frac{350/400 - 0.75}{\sqrt{(.75)(.25)/400}} = \frac{0.875 - 0.75}{0.0217} = \frac{0.88 - 0.75}{0.0217} = 5.99$$

Question 7:

The decision would be to....

- (A) Do not Reject the null hypothesis
- (B) Cannot be determined.
- (C) Reject the null hypothesis.
- (D Reject the alternative hypothesis.

Question 8:

Suppose that in fact the true proportion is 0.85, then the decision has been made is... $\boldsymbol{\alpha}$

(A) Rejecting the true hypothesis(α) type1 error	(B)Do not Rejecting the false hypothesis (β) type11 error.
(C) Do not rejecting the true hypothesis($1-\alpha$)Correct decision	(D) Rejecting the false hypothesis($1-\beta$)Correct decision

Question 9:

Suppose that in fact the true proportion is 0.74, then the decision has been made is...

(A) Rejecting the true hypothesis($^{\alpha}$) type1 error	(B)Do not Rejecting the false hypothesis (eta) type11 error.
(C) Do not rejecting the true	(D) Rejecting the false
hypothesis($^{1-lpha}$)Correct decision	hypothesis($^{1-eta}$)Correct decision

Question10: A 95% confidence interval is $0.85 \le \pi \le 0.91$. The null hypothesis is

 $H_0: \pi \le 0.75$

 $H_1: \pi > 0.75$

What is the decision?

- (A) Reject the null hypothesis.
- (B) Do not Reject the null hypothesis.
- (C) Cannot be determined
- (D) Reject the alternative hypothesis.

End of example 2