Sampling Distribution for Sample Proportion:

Example:

Suppose that the proportion of all college students who have used sport facilities in the past 6 months is 0.40 . For a random sample of 200 students, what is the probability that the proportion of students who have used sport facilities in the past 6 months is less than 0.32 ?

Solution:

Let \hat{p} be the sample proportion of students who have used sportfacilities in the past 6 months.

We are given that:

$$
\begin{aligned}
& p=0.40 \\
& n=200 \text { (large) }
\end{aligned}
$$

We want to find $\mathrm{P}(\hat{\mathrm{p}}<0.32)$.
Note that:

$$
\begin{aligned}
& \hat{p} \sim N\left(p, \sqrt{\frac{p(1-p)}{n}}\right) \\
& \hat{p} \sim \mathrm{~N}\left(0.4, \sqrt{\frac{0.4 \times 0.6}{200}}\right)
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \mathrm{P}(\hat{p}<0.32)=\mathrm{P}\left(\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}<\frac{0.32-p}{\sqrt{\frac{p(1-p)}{n}}}\right) \\
&=\mathrm{P}\left(Z<\frac{0.32-0.4}{\sqrt{\frac{0.4 \times 0.6}{200}}}\right) \\
&=\mathrm{P}(\mathrm{Z}<-2.31)=0.0104 \\
&-1-
\end{aligned}
$$

Sampling Distribution ofthe Difference between Proportions of Two Samples:

Example:

Suppose that 25% of the male students and 20% of the female students in a certain university are left-handed. A random sample of 35 male students is taken from this university. Another random sample of 30 female students is independently taken from this university. Let \hat{p}_{1} and \hat{p}_{2} be the proportions of left-handed students in the two samples, respectively.
(1) Find $E\left(\hat{p}_{1}-\hat{p}_{2}\right)=\mu_{\hat{p}_{1}-\hat{p}_{2}}$, the mean of $\hat{p}_{1}-\hat{p}_{2}$.
(2) Find $\operatorname{Var}\left(\hat{p}_{1}-\hat{p}_{2}\right)=\sigma_{\hat{p}_{1}-\hat{p}_{2}}^{2}$, the variance of $\hat{p}_{1}-\hat{p}_{2}$.
(3) Find $\sigma_{\hat{p}_{1}-\hat{p}_{2}}$, the standard deviation of $\hat{p}_{1}-\hat{p}_{2}$.
(4) Find an approximate distribution of $\hat{p}_{1}-\hat{p}_{2}$.
(5) Find $\mathrm{P}\left(0.10<\hat{p}_{1}-\hat{p}_{2}<0.2\right)$.

Solution:

We are given that:

$$
\begin{aligned}
& p_{1}=0.25 \quad p_{2}=0.20 \\
& n_{1}=35 \text { (large) } n_{2}=30(\text { large })
\end{aligned}
$$

(1) $E\left(\hat{p}_{1}-\hat{p}_{2}\right)=p_{1}-p_{2}=0.25-0.20=0.05$
(2) $\operatorname{Var}\left(\hat{p}_{1}-\hat{p}_{2}\right)=\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{1}}=\frac{0.25 \times 0.75}{35}+\frac{0.2 \times 0.8}{30}=0.01069$
(3) $\sigma_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{\operatorname{Var}\left(\hat{p}_{1}-\hat{p}_{2}\right)}=\sqrt{0.01069}=0.1034$
(4) $\hat{p}_{1}-\hat{p}_{2} \sim N\left(p_{1}-p_{2}, \sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{1}}}\right)=N(0.05,0.1034)$
(5) $\mathrm{P}\left(0.1<\hat{p}_{1}-\hat{p}_{2}<0.2\right)$

$$
\begin{aligned}
& \mathrm{P}\left(0.1<\hat{p}_{1}-\hat{p}_{2}<0.2\right)= \\
& =P\left(\frac{0.1-\left(p_{1}-p_{2}\right)}{\left.\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{1}}}<\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-\left(p_{1}-p_{2}\right)}{\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{1}}}}<\frac{0.2-\left(p_{1}-p_{2}\right)}{\left.\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{1}}}\right)}\right)} \begin{array}{l}
=P\left(\frac{0.1-0.05}{\sqrt{0.01069}}<Z \quad \frac{0.2-0.05}{\sqrt{0.01069}}\right) \\
=P\left(\frac{0.1-0.05}{0.1034}<Z<\frac{0.2-0.05}{0.1034}\right) \\
=P(0.48<Z<1.45) \\
=P(Z<1.45)-P(Z<0.48) \\
\quad=0.9265-0.6844 \\
=0.2421
\end{array}\right.
\end{aligned}
$$

