Multiple Choice

	1)) How many moles of NH ₃ are there in 77.5 g of NH ₃ ?											
)	A)	0.22 mol	B)	4.55 mol	C)	14.0 mol	D)	$1.31 \times 10^3 \text{ mol}$				
	2)) What is the mass of one copper atom?											
		A)	1.055×10 ⁻²² g	B)	63.55 g	C)	1 amu	D)	1.66×10 ⁻²⁴ g				
_	3)	How many sulfur atoms are there in 21.0 g of Al ₂ S ₃ ?											
		A)	8.42×10^{22}	B)	2.53×10^{23}	C)	2.14×10^{23}	D)	6.02×10^{23}				
_	4)	A 0.8715 g sample of sorbic acid is burned completely in oxygen to give 2.053 g of carbon dioxide (CO ₂) and 0.5601 g water (H ₂ O). The empirical formula of sorbic acid is:											
		A)	CH ₂ O	B)	C ₃ H ₄ O	C)	CH ₄ O ₃	D)	$C_3H_4O_2$				
	5) 0.500 mole of ammonia (NH ₃) occupies a 1.20 L flask at 150°C. Calculate the pressure (in atm) of the ammonia inside the flask.												
	\bigcup	A)	4.88	B)	5.13	C)	12.12	D)	14.47				
	6) A small bubble rises from the bottom of a lake, where the temperature and pressure are 4°C and 3.0 atm, to the water's surface, where the temperature is 25°C and the pressure is 0.95 atm. Calculate the final volume (in mL) of the bubble if its volume was 2.1 mL.												
	$\bigg)$	A)	7.1	B)	6.2	C)	5.8	D)	4.2				
	 7) What volume of CO₂ gas (in L) at 645 torr and 800 K could be produced by the reaction of 45 g of CaCO₃ according to the equation. CaCO₃(s) → CaO(s) + CO₂(g) 												
(A)	0.449	B)	22.4	C)	25.0	D)	34.8				
	8)		moles of chloridensity of the ga		at 20°C are hea	ted to 3	50°C while the	e volum	e is kept constant.				
		/	ncreases Not enough info		creases is given to corr	,	nains the same nswer the quest	ion					
	9)	9) A mixture of three gases has a total pressure of 1380 mmHg at 298 K. The mixture is analyzed and is found to contain 1.27 mol CO ₂ , 3.04 mol CO and 1.50 mol Ar. What is the partial pressure of Ar (in mmHg)?											
		A)	301	B)	327	C)	345	D)	356				
	10) When 0.560 g of Na(s) reacts with excess $F_2(g)$ to form NaF(s), 13.8 kJ of heat is evolved at standard-state conditions. What is the standard enthalpy of formation (ΔH_f^0) in kJ/mol of												

-1-

NaF(s)?

		A)	24.8	B)	-566.5	C)	-24.8	D)	566.5		
	11)	Calcium oxide and water react in an exothermic reaction: $CaO(s) + H_2O(\ell) \rightarrow Ca(OH)_2(s)$ $\Delta H^o_{rxn} = -64.8 \text{ kJ}$ How much heat would be liberated when 7.15 g CaO(s) is dropped into a beaker containing 152 g H_2O ?									
		A)	8.26 kJ	B)	9.16 kJ	C)	15.4 kJ	D)	7.15 kJ		
(12)	A gas is compressed in a cylinder from a volume of 20.0 L to 2.0 L by a constant pressure of 10.0 atm. Calculate the amount of work done. (1 L atm = 101.3 J)									
(A)	$1.01 \times 10^4 \text{ J}$	B)	-1.01×10 ⁴ J	C)	-1.82×10 ⁴ J	D)	1.82×10 ⁴ J		
	13) What is the molarity of an aqueous solution that is 26.0% by mass phosphoric acid and that has a density of 1.155 g/mL										
	\bigcup	A)	4.86 M	B)	4.05 M	C)	3.06 M	D)	2.78 M		
14) An aqueous solution of glucose boils at 100.45°C. What will be the freezing poir solution (in °C) ($K_f = 1.86$ °C/m, $K_b = 0.52$ °C/m)											
$\left(\right.$		A)	-1.6	B)	-0.45	C)	-1.1	D)	-1.4		
٠	15)	5) At 10°C one volume of water dissolves 3.10 volume of chlorine gas, Cl ₂ , at 1.0 a pressure. What is the Henry's law constant in mol/L.atm of this gas?									
(A)	0.13	B)	0.15	C)	0.17	D)	0.19		
When equal masses of the three non-electrolytes solutes, urea, (NH ₂) ₂ CO, glucose, C ₆ and sucrose, C ₁₂ H ₂₂ O ₁₁ , are dissolved separately each in exactly the same volume of Therefore:											
		A) B) C) D)	The glucose s The sucrose s	olution olution	l have the lowe will have the low will have the low ill have exactly	owest os owest os	motic pressure motic pressure				
	17)	The re	eaction A + 2B	→ prod				:			
		$rate = k[A]^2 [B]$ Predict by what factor the rate of the reaction will increases when the concentration of A is doubled and the concentration of B is tripled and the temperature remains constant.									
	$\underline{\underline{\hspace{0.5cm}}}$	A)	36	B)	24	C)	18	D)	12		
(18)	6.2×10		he half					onstant at 700 K is mol) the activation		
		A)	269.2	B)	250.6	C)	240.8	D)	283.4		

19)	The unit for a third order reaction rate constant is:										
	A)	s ⁻¹	B)	$\text{mol}^{-2} L^2 s^{-1}$	C)	$\operatorname{mol}^2 \operatorname{L}^{-2} \operatorname{s}^{-1}$	D)	mol ³ L ⁻³ s ⁻¹			
20)	4.21	moles of S ₂ Cl ₄	gas are				on				
	$S_2Cl_4(g) \rightleftharpoons 2SCl_2(g)$ Comes to equilibrium and 1.25 moles of S_2Cl_4 are found in the reaction vessel. Calculate for the reaction.										
	A)	14.0	B)	17.0	C)	19.5	D)	21.5			
21) At 700 K, the reaction											
$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ has an equilibrium constant $K_c = 4.3 \times 10^6$, and the following concentrations are p [SO ₂] 0.01 M; [SO ₃] = 10.0 M and [O ₂] = 0.10 M Therefore:											
	A) The reaction mixture is at equilibrium. B) The reaction must proceed to the right to reach equilibrium. C) The reaction must proceed to the left to reach equilibrium. D) There is not enough information to answer.										
22	22) What is the pH of 1.0 L buffer solution that is 0.12 M lactic acid, $HC_3H_5O_3$, and 0.10 M sodium lactate, $NaC_3H_5O_3$, after the addition of 0.01 mole of gaseous HCl (assuming that this will not change the volume of the solution)? For lactic acid: $K_a = 1.4 \times 10^{-4}$.										
	A)	3.3	B)	3.5	C)	3.7	D)	3.9			
23	3) Which of the following systems could be used to prepare a buffer solution of pH = 10? 1) CH ₃ COOH/CH ₃ COONa (K _a = 1.8×10 ⁻⁵) 2) NH ₃ /NH ₄ C1 (K _b = 1.8×10 ⁻⁵) 3) HCOOH/HCOONa (K _a = 1.7×10 ⁻⁴) 4) HCN/NaCN (K _a = 4.9×10 ⁻¹⁰)										
	A)	1, 2	B)	2, 4	C)	1, 3	D)	4 only			
24) The	conjugated acid	of NH ₂	is:							
	A)	HNO_3	B)	HNO_2	C)	NH_4^+	D)	NH_3			
25) The 1	pOH of 2.5×10 ⁻²	3 M Ba((OH) ₂ solution	is:						
	A)	5.0	B)	2.5	C)	2.3	D)	2.1			
26) The _l	pH of 100 ml of	0.002	M HCl solution	ı is:						
	A)	0.27	B)	2.0	C)	0.2	D)	2.7			
27) The 1	рН of 1.6 М КС)H solut	tion is:							

A)	13.8	B)	14.2	C)	12.4	D)	1.6	
28) The wate	-	fee drink is	5.0. Hov	w many time	s greater	is [H ⁺] in co	offee than	in neutral
<u>A)</u>	200	B)	100	C)	10	D)	2	
29) The	pH of 0.05 N	M acetic aci	$d(K_a = 1.$	8×10 ⁻⁵) solut	ion is:			
(A)	3	B)	4	C)	5	D)	6	
30) The	pH of 0.1 M	ammonia ($K_b = 1.8 \times$	(10 ⁻⁵) solution	n is:			
A)	2.87	B)	11.13	C)	8.94	D)	12.56	