

# 2<sup>nd</sup> Midterm Exam-Solution

استعن بالله وكن على يقين بأن كل ما ورد في هذه الورقة تعرفه جيدا وقد تدربت عليه بما فيه الكفاية

#### Question #1:

Answer the following with *True* or *False*:

- 1. The non-parametric input modeling uses Uniform [0,1] numbers to generate random numbers for the rank of the random number from the sample. **TRUE**
- 2. The empirical input modeling of individual data sorts the data of sample from largest to smallest and uses Uniform [0,1] numbers to generate random numbers for the sample. **FALSE**
- 3. The empirical input modeling of grouped data gives random values that are not in the sample. **TRUE**
- 4. It possible that the non-parametric input modeling generates new random numbers that are not in the original sample. **FALSE**
- 5. In box plot, if the sample has vales that are greater than the lower fence or less than upper fence uses then the values are outliers. **FALSE**
- 6. For the box plot, the 1<sup>st</sup> quartile ( $Q_1$ ) is the point in the sorted data the has 25% of the data that are less than or equal to  $Q_1$ . **TRUE**
- 7. In EXCEL, the function RANDBETWEEN (a, b) is used to generate real valued random numbers between a and b. FALSE
- 8. The KURTUSIS measures the spread of data around the mean of the sample. **TRUE**
- 9. If the SKEWNESS of the sample is negative, then the data has long tail to the positive values. **FALSE**
- 10. In ARENA, the block DESCIDE is used to change the direction of the flow of entities in the simulation to choose from two or more directions. **TRUE**
- 11. In ARENA, the block CREATE is used to simulate processing time to any entity. **FALSE**
- 12. In ARENA, in the PROCESS block the ACTION (Seize, Delay, Release) means that the server can start a new service before the end of the current customer finish his service. **FALSE**
- 13. The block CREATE in Arena is used to simulate the arrival of new customers. **TRUE**
- 14. In moment matching for input modeling number of moment matching equations equals to number of all descriptive statistics of the sample. **FALSE**
- 15. The P-P plot is used to compare the empirical probabilities of the sample with the theoretical probability from the distribution. **TRUE**
- 16. In modeling input data, the histogram of the sample data is used to fit a theoretical PDF function to the data. **TRUE**





- 17. In modeling input data, the histogram of the sample data is used to fit a theoretical CDF function to the data. **FALSE**
- 18. In graphical method for input data modeling, the empirical distribution of the sample is used to find the best CDF function for the data. **TRUE**
- 19. In simulation of ATM system, the average number of customers in the waiting for ATM is computed as a simple mean. **FALSE**
- 20. In simulation of ATM system, the percentage that there are no customers using the ATM is computed by the time average. **TRUE**

#### **Question #2:**

A sample of data of size N = 200 has the following descriptive statistics:

| Mean               | 2.256   |
|--------------------|---------|
| Median             | 1.692   |
| Mode               | #N/A    |
| Standard Deviation | 1.829   |
| Sample Variance    | 3.344   |
| Kurtosis           | 3.199   |
| Skewness           | 1.816   |
| Range of Data      | 8.957   |
| Minimum Value      | 0.523   |
| Maximum Value      | 9.481   |
| Sum of Data        | 451.232 |

- 1. Model this sample as a **Uniform**[*a*,*b*] using moment matching to estimate the parameters. Write the estimated probability function (pdf) for the sample.
- 2. Model this sample as an **Exponential(\lambda)** uniform[a,b] using moment matching to estimate the parameters. Write the estimated probability function (pdf) for the sample.
- 3. Model this sample as an **Erlang**  $(\alpha, \beta)$  using moment matching to estimate the parameters. Write the estimated probability function (pdf) for the sample.

#### **Solution**

1. Uniform[a,b]  $\rightarrow$  2 parameters  $\rightarrow$  we need 2 equations from moment matching

Sample mean = 2.256 theoretical mean =  $(a+b)/2 \rightarrow 2.256 = (a+b)/2 \rightarrow a+b = 4.512$ Sample variance = 3.344 theoretical mean =  $(b-a)^2/12 \rightarrow 3.344 = (b-a)^2/12 \rightarrow -a+b = 6.335$ Then a= -0.9115 and b=5.4235  $\rightarrow$  f(x) = 1/6.335 -0.9115 <= x <= 5.4235

2.  $Exp(\lambda) \rightarrow 1$  parameter  $\rightarrow$  we need one equations from moment matching

Sample mean = 2.256 theoretical mean =  $1/\lambda \rightarrow 2.256 = 1/\lambda \rightarrow \lambda = 0.4432$ 

Then,  $f(x) = (0.4432) e^{-0.4432 x}$ 

3. Erlang  $(\alpha,\beta) \rightarrow 2$  parameters  $\rightarrow$  we need 2 equations from moment matching

Sample mean = 2.256 theoretical mean =  $\alpha\beta$   $\rightarrow$  2.256 =  $\alpha\beta$ Sample variance = 3.344 theoretical mean =  $\alpha\beta^2$   $\rightarrow$  3.344 =  $\alpha\beta^2$ Mean/Variance =  $1/\beta$  = 2.256/3.344 = 0.675  $\rightarrow$   $\beta$  = 1.482  $\rightarrow$   $\alpha$  = 1.522

## **Question #3:**



Customers arrive to a minimarket according to a random process with arrival rate that is assumed to be constant. After the customer finishes shopping, the arriving customers proceeds to a single server checkout counter. The checkout sever takes a random amount of time to finish the checkout for a customer. Data collected for customers entered the minimarket in the last 40 mints as follows.

|       | (Col.1)      | (Col.2)      | (Col.3)       |         | (Col.5)   | (Col.6)   | (Col.6)   | (Col.7)     |
|-------|--------------|--------------|---------------|---------|-----------|-----------|-----------|-------------|
| Cust. | Arrival time | Service time | Service start | (Col.4) | Wait Time | Dep. time | Idle Time | Money Spent |
| #     | (min)        | (min)        | (min)         | WAITE?  | (min)     | (min)     | (min)     | (SR)        |
| 1     | 0.24         | 0.33         | 0.24          | 0       | 0         | 0.58      | 0.24      | 30          |
| 2     | 0.93         | 2.10         | 0.93          | 0       | 0.00      | 3.03      | 0.36      | 20          |
| 3     | 1.76         | 9.51         | 3.03          | 1       | 1.27      | 12.54     | 0.00      | 30          |
| 4     | 9.39         | 4.27         | 12.54         | 1       | 3.15      | 16.81     | 0.00      | 20          |
| 5     | 12.58        | 4.22         | 16.81         | 1       | 4.23      | 21.03     | 0.00      | 20          |
| 6     | 14.26        | 1.42         | 21.03         | 1       | 6.77      | 22.45     | 0.00      | 20          |
| 7     | 19.29        | 0.49         | 22.45         | 1       | 3.16      | 22.94     | 0.00      | 30          |
| 8     | 22.52        | 1.53         | 22.94         | 1       | 0.42      | 24.47     | 0.00      | 10          |
| 9     | 27.94        | 2.25         | 27.94         | 0       | 0.00      | 30.19     | 3.48      | 20          |
| 10    | 37.96        | 1.61         | 37.96         | 0       | 0.00      | 39.56     | 7.77      | 30          |

Answer The following

- **1.** What is the expected service time?
- **2.** What is the average waiting time?
- **3.** What is the average money spent by any customer?
- 4. What is the percentage of customers spending at most 20 SR during the simulation run?
- 5. What is the probability that the cashier is BUSY serving customers during the simulation time?
- **6.** On average what is the expected time that customers spend in the minimarket from the time they enter until the time the leave the minimarket?

### Solution

- 1. E[Service time] = (sum of Col.2)/(# observations) = 27.73/10 = 2.773 min
- 2. Ave.[waiting time] = (sum of Col.5)/(# observations) = 19/10 = 1.9 min
- 3. Ave. [money spent by any customer] = (sum of Col.7)/(# observations) = 230/10 = 23 SR
- 4. Percentage of customers spending at most 20 SR
  - = (Number of observation $\leq$  20 of Col.7)/(# observations)= 6/10 = 0.6
- 5. Prob{the cashier is BUSY } = 1 Prob{ the cashier is IDLE} = 1 (Sum of idle intervals) / (Total Sim. Time)

$$= 1 - (0.24 + 0.36 + 3.48 + 7.77)/39.56 = 1 - 0.2995 = 0.7005$$

6. E[time that customers spend in the minimarket] = Sum (difference Col.6 - Col.1) /10

= (0.34+2.1+10.78+7.42+8.45+8.19+3.65+1.95+2.25+1.6)/10 = 4.673 min

### **Question #4:**

The following table is a snap-shot of a simulation run. This data represents the arrival times and the departure times of customers to a service:

| Cust. | Arrival in |    | Dep.  | out |
|-------|------------|----|-------|-----|
| #     | Time       |    | Time  |     |
| 11    | 48.92      | +1 | 48.96 | -1  |
| 12    | 49.62      | +1 | 52.98 | -1  |
| 13    | 54.06      | +1 | 55.64 | -1  |
| 14    | 56.24      | +1 | 56.41 | -1  |
| 15    | 57.03      | +1 | 57.76 | -1  |
| 16    | 69.63      | +1 | 79.75 | -1  |
| 17    | 70.00      | +1 | 80.32 | -1  |
| 18    | 76.47      | +1 | 83.67 | -1  |

|       |       |        | # in  |          | (No.Q)*(Int |
|-------|-------|--------|-------|----------|-------------|
| start | end   | change | queue | interval | erval)      |
| 48    | 48.92 | 0      | 0     | 0.92     | 0           |
| 48.92 | 48.96 | 1      | 1     | 0.04     | 0.04        |
| 48.96 | 49.62 | -1     | 0     | 0.66     | 0           |
| 49.62 | 52.98 | 1      | 1     | 3.36     | 3.36        |
| 52.98 | 54.06 | -1     | 0     | 1.08     | 0           |
| 54.06 | 55.64 | 1      | 1     | 1.58     | 1.58        |
| 55.64 | 56.24 | -1     | 0     | 0.6      | 0           |
| 56.24 | 56.41 | 1      | 1     | 0.17     | 0.17        |



| 19 | 79.77 | +1 | 84.59 | -1 |
|----|-------|----|-------|----|
| 20 | 84.48 | +1 | 88.40 | -1 |
| 21 | 87.77 | +1 | 90.00 | -1 |
| 22 | 92.91 | +1 | 93.82 | -1 |

| 56.41 | 57.03 | -1 | 0 | 0.62  | 0     |
|-------|-------|----|---|-------|-------|
| 57.03 | 57.76 | 1  | 1 | 0.73  | 0.73  |
| 57.76 | 69.63 | -1 | 0 | 11.87 | 0     |
| 69.63 | 70    | 1  | 1 | 0.37  | 0.37  |
| 70    | 76.47 | 1  | 2 | 6.47  | 12.94 |
| 76.47 | 79.75 | 1  | 3 | 3.28  | 9.84  |
| 79.75 | 79.77 | -1 | 2 | 0.02  | 0.04  |
| 79.77 | 80.32 | 1  | 3 | 0.55  | 1.65  |
| 80.32 | 83.67 | -1 | 2 | 3.35  | 6.7   |
| 83.67 | 84.48 | -1 | 1 | 0.81  | 0.81  |
| 84.48 | 84.59 | 1  | 2 | 0.11  | 0.22  |
| 84.59 | 87.77 | -1 | 1 | 3.18  | 3.18  |
| 87.77 | 88.4  | 1  | 2 | 0.63  | 1.26  |
| 88.4  | 90    | -1 | 1 | 1.6   | 1.6   |
| 90    | 92.91 | -1 | 0 | 2.91  | 0     |
| 92.91 | 93.82 | 1  | 1 | 0.91  | 0.91  |
| 93.82 | 94    | -1 | 0 | 0.18  | 0     |

### Answer The following

- 1. Compute the table of number of customers in the system during the simulation period.
- 2. What is the average number of customers in the system during the simulation period?
- 3. What is the probability that there are 2 customers in the system during simulation period?

#### **Solution:**

- 1. See the table
- 2. average number of customers in the system during the simulation period = (No.Q)\*(Interval)/Sim Time = 45.4/(94-48) = 0.987 customers
- 3. probability that there are 2 customers in the system = (Total intervals #queue=2)/(Simulation Time)
  - = (6.47+0.02+3.35+0.11+0.63)/(94-48) = 10.58/46 = 0.23

### **Question #5:**

Students in College of Science arrive to a *Mr. Cafe* coffee shop to get their beverages and sandwiches during break time. It is estimated that the time between students' arrival is an integer uniform distribution between 3 and 8 minutes. After students get their order they may choose either to DINE-IN the coffee shop or take their orders for TO-GO and leave the coffee shop. From past experience, it is known that 60% of the students who get their orders choose to DINE-IN the coffee shop and 40% choose to TO-GO with their orders. The students who choose to DINE-IN the coffee shop spend an integer uniform distribution between 5 and 15 minute on the table of the coffee shop.

Random Seeds U[0,1]:

| 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0.909 | 0.635 | 0.077 | 0.309 | 0.114 | 0.277 | 0.887 | 0.698 | 0.394 | 0.823 |
| 0.228 | 0.809 | 0.456 | 0.590 | 0.767 | 0.063 | 0.099 | 0.116 | 0.270 | 0.882 |
| 0.787 | 0.724 | 0.458 | 0.254 | 0.127 | 0.272 | 0.707 | 0.013 | 0.611 | 0.577 |
| 0.140 | 0.135 | 0.153 | 0.536 | 0.126 | 0.271 | 0.362 | 0.179 | 0.934 | 0.316 |

- 1. Use the above random seeds to simulate the first 10 students arrived to *Mr. Cafe* coffee shop. Make a table of results that compute the following:
  - Student number = 1, 2, ..., 10
  - Time between student's arrival (in minutes)



- Arrival time of student # *j* (in minutes)
- The order type of the students (DINE-IN or TO-GO)
- The time that student stay on table for DINE-IN (in minutes)
- The time at which the student leave the coffee shop after DINE-IN (in minutes)
- 2. What is the average number of TO-GO students?
- 3. What is the average time that students stay in the coffee shop for DINE-IN?
- 4. simulation blocks of ARENA and the inputs values of each block.

### **Solution**

1. simulate the first 10 students arrived to Mr. Cafe coffee shop

|     | U[0,1] | Time Bet. Arrivals |             |             |               |             | DINE_IN time |
|-----|--------|--------------------|-------------|-------------|---------------|-------------|--------------|
|     | seed   | Int U[3,8]         | Arrivl time | U[0,1] seed | Order type    | U[0,1] seed | Int U[5,15]  |
| ST# | row1   | min                | min         | row2        | Ber.(0.6,0.4) | row3        | min          |
| 1   | 0.909  | 8.0                | 8.0         | 0.228       | DINE-IN       | 0.787       | 13.0         |
| 2   | 0.635  | 6.0                | 14          | 0.809       | TO-GO         | 0.724       | 0.0          |
| 3   | 0.077  | 3.0                | 17          | 0.456       | DINE-IN       | 0.458       | 10.0         |
| 4   | 0.309  | 4.0                | 21          | 0.59        | DINE-IN       | 0.254       | 7.0          |
| 5   | 0.114  | 3.0                | 24          | 0.767       | TO-GO         | 0.127       | 0.0          |
| 6   | 0.277  | 4.0                | 28          | 0.063       | DINE-IN       | 0.272       | 7.0          |
| 7   | 0.887  | 8.0                | 36          | 0.099       | DINE-IN       | 0.707       | 12.0         |
| 8   | 0.698  | 7.0                | 43          | 0.116       | DINE-IN       | 0.013       | 5.0          |
| 9   | 0.394  | 5.0                | 48          | 0.27        | DINE-IN       | 0.611       | 11.0         |
| 10  | 0.823  | 7.0                | 55          | 0.882       | TO-GO         | 0.577       | 0.0          |

- 2. average number of TO-GO students = (no. of TO-GO stud.)/Sim. time = 3 / 55 = 0.055 To-go std/min
- 3. average time that students stay in the coffee shop for DINE-IN
  - = (Total DINE-IN time)/(No. DINE-IN STD) = 65 / 7 = 9.286 min

### 4. blocks of ARENA



دعواتنا لكم بالتوفيق والسداد