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This is straight from a book I'm reading, which suggests to convert cos 6 into 0.5(z + 1/2)
and then solve the integral on the unit circle. This is what I don't understand. The two
singularities of this function are at 2 & 1/3 and so the unit circle only encircles one of the
singularities. The rest of the calculations I understand, but I just don't understand how you

1 can decide to calculate this on the unit circle and not a circle of a different radius? My only
idea is that changing the radius of the circle on which the contour integral is evaluated will
shift the singularities appropriately, is this the case?

As an aside, is there a difference between the term "singularity" and "pole" in contour
integration?
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In a mixed real/complex-analytic way we can notice that:
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and by replacing 6 with arctan t we get:
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and the last integral can be computed through the residue of the integrand function in the
simple pole z = i4/3 (aside: not every singularity is a simple pole. Multiple poles and essential
singularities may occur, too), leading to:
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The substitution cos 6 = %(z + 1/z) is actually z = €%, which, for 0 < < 2, parametrises

the circle |z| = 1. This is a closed contour, so you can then evaluate the integral by looking at
the one pole inside it.

Poles are a particular type of singularity, the ones that have an expansion with finitely many
negative terms. Since you're only interested in the coefficient of 1/(z — z9), yes, poles are
basically the same as singularities: you're unlikely to have to deal with essential singularities,
and removable ones don't do anything.
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the residue at z = 2 — /3 is
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and the integral is 27ir = 2&

V3

as a check on the answer you may use the expansion:
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in the integral over the period 27 odd powers of cos 6 give zero, so
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repeated integration by parts gives:
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hence

(using the binomial theorem to obtain the closed-form expression on the right)
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