
1

Evaluating ESB for C4I Architecture Framework Using

Analytic Hierarchy Process

Abdullah S Alghamdi, Iftikhar Ahmad, Muhammad Nasir

Department of Software Engineering, College of Computer & Information Sciences,

King Saud University, P.O. Box 51178, Riyadh 11543,

Kingdom of Saudi Arabia.

Abstract -An ESB is a platform that provides services such

as message routing and transformation. Along with this, it

has the capabilities to ease the pains of connecting

heterogeneous C4I systems among various defense forces.

This paper describes an assessing mechanism of optimum

selection of Enterprise Services Bus (ESB) for C4I

architecture framework. We use Analytic Hierarchy Process

(AHP) for analyzing different Enterprise Services Buses

(ESBs). In this paper, we present experimental results that

may be utilized for architecting C4I system and can further

help organizations in selecting an ESB in an optimized way.

Keywords: Architecture Frameworks (AFs), Command,

Control, Communications, Computers and Intelligence

(C4I) system, Analytic Hierarchy Process (AHP), Enterprise

Services Buses (ESBs)

1 Introduction

The interest of researchers, analyst, designer and
developers in C4I system made it more imperative and
attractive because of adaptation from civil and defense area.
Now a day there are many ESBs available in the market and
it is very difficult to choose which one is suitable. There are
many issues in the integration of heterogeneous C4I systems
that may be minimized using ESBs. Selecting an ESB is
very difficult for an organization because many factors
involve for selection. This paper describes an assessing
mechanism of four ESBs namely Mule, Glassfish,
WSO2and Fuse keeping in view the C4I System as a base,
so as to ascertain which ESB fulfills the requirements of the
system of systems. The assessing mechanism consists of two
criteria such as main criteria and sub-criteria. We evaluated
and rated the ESBs by assigning priorities, and calculating
weights on the basis of main criteria and sub-criteria. This
paper is divided into the following sections background,
related work, methodology and implementation, results, and
conclusion.

2 Background

The C4I systems are used in various departments where
command and control scenario exits such as; defense, police,
investigation, road, rail, airports, oil and gas. The C4I
systems mainly focus in defense applications. C4I systems
play a major role in development of information

management, data fusion, and dissemination and it consist of
people, procedures, technology, doctrine and authority [1].
The C4I system helps commander to acquire his objective in
any crucial situation. C4I consists of Command, Control,
Communications, Computers and Intelligence. The
Command is authority that a commander exercises over
subordinates by virtue of rank or assignment. The Control is
also authority which may be less than full command
exercised by a commander over part of the activities of
subordinate or other organizations. While Computers and
Communications process and transport information.
Intelligence refers to information and knowledge obtained
through observation, investigation, analysis, or
understanding [2].

Enterprise Service Bus (ESB) is a major component of
Service Oriented Architecture (SOA). An ESB provides
interoperability using web services and related technologies
and secure message transfer service between applications.
ESB provides loosely coupled services. ESB can be used for
communication and sharing certain information between
different army wing‟s system. Using ESB applications
communicate with each other by services invoking in a
location independent fashion [3].

 For SOA applications and services and ease enterprise
integration ESB assists as an infrastructure backbone.
Through reutilization of existing applications and data ESB
prominently reduces cost and time to create new processes.
In critical circumstances like network or software failure,
shot messages are buffered by ESB and securely delivered
when system is up and running again. ESB is considered
much reliable for delivering messaging across services even
over hardware layer [4].

Marvelous rise in threats on defense system it‟s a great

deal to make a secured defense system. Many ESBs are

available in the market to connect different system and

synchronize them so that they can easily communicate with

each other [5]. Different companies are providing their

ESBs. To choose an ESB in accordance with the set

parameters and requirements is a very difficult task. Hence,

we are going to evaluate Mule, GlassFish, WSO2 and Fuse

ESBs.

2

3 Related Work

It is a challenging task to evaluate ESBs with respect to

user needs; so much work has been done in the area. To

evaluate and compare ESBs based on certain criteria

researchers used different mechanism. But to fulfill the

requirements of SOA application is important criteria that

lead closely to a particular ESB. Comparisons that have

been done by researchers usually on general ESBs, open

source ESBs or commercial ESBs. Price is important factor

but it useless when open source ESBs are compared. Every

researcher represents its own list of criteria to conduct their

evaluation and the most commonly base is price.

Woolley had done a patent work who applied Vollmer

and Gilpin‟s evaluation criteria to two open sources ESBs,

such as Apache Service Mix and Mule Source Mule. His list

of criteria included current offering, strategy, market

pressure and integration. Woolley suggested that Mule ESB

is the best and after this Fiorono ESB. Other ESBs were

BEA System Equalogic Service Bus, IBM WebSphere

Enterprise Service Bus and Apache ServiceMix [6].

Comparisons of two open sources ESBs such as Apache

ServiceMix and Mule Source Mule and also two

commercial ESBs like IBM WebSphare Enterprise Service

Bus and BEA Systems Aqualogic Service Bus have been

done by Desmet et al. Flexibility of ESBs may turn into

bottleneck if complicated messages use it with many

processes, so this research was on performance. In this

worst case any business or defense process might be

paralyzed. Hence, the performance is an important criterion

for evaluation. Rates of ESBs were based on the

performance test results. Desmet et al. rated Open ESBs first

and commercial ESBs after them [7].

Evaluation on eight commercial ESBs with hundred

criteria, which were in three grouped as market pressure,

current offering and strategy, were conducted by Vollmer

and Gilpin. They rated first Cape Clear and second to BEA

Aqalogic Service Bus. ESB rates were based on surveys and

briefings. Other ESBs were IBM WebSphere ESB, Fiorano,

IONA Artix, PolarLake, Software AG and Sonic [8].

Vittie used integration, price and core bus feature as

evaluation criteria on commercial ESBs. He rated first BEA

Aqualogic Service Bus and second to Oracle SOA Suite.

The others were Fiorano, Cape Clear, Tibco Software, IBM

Websphare Enterprise Service Bus, Sonic and Software AG.

His evaluation based on information provides by the

consumers or was taken from the previous studies [9].

On the basis of criteria like stateless, stateful,

extensibility and failover, Tobias et al. evaluated open

sources enterprise services buses such as Fuse, Mule and

OpenESB. They rated first to Fuse and second to Mule and

third to OpenESB. Their study discovered the need to

identify significant information resources and expose them

through loosely coupled, reusable, and composable services

for successful composition into workflows. The information

consumed by the business process, without the basic raw

material of workflow, the value of ESB orchestration would

be severely limited. The re-combination of information by

the orchestration engine in a new process would be difficult

to achieve, without access to information freed of business

process presumptions [10].

Alghamdi presented an approach to evaluate different

architecture framework for C4I system using MCDM such

as AHP. In designing and development process of C4I

systems interoperability is an important issue. [11].

 4 Enterprise Service Buses (ESBs)

4.1 Mule ESB

Integrating, interoperability and creating services are

easy and fast is Mule ESB because it offers simple

development model and lightweight architecture. For Mule

ESB low CPU, memory, simplify deployment and

maintenance required. No need to change or replace any

existing system to implement Mule ESB it can easily work

and deploy in any topology with or without an application

container. For large SOA implementation Mule ESB also

provide same performance and reliability challenges. Mule

ESB provides common transports such as JMS, HTTP,

SMTP, FTP, POP3, and XMPP are supported natively, as

are web services and pluggable connectivity. Messages

transferred through MULE along one of these protocols can

behave like synchronously or request-response [12].

Typically Mule ESB used JMS for messaging system

but any other messaging server can also be implemented

such as Microsoft Messaging Queuing (MSMQ), IBM

WebSphere MQ or TIBCO Rendezvous. We can connect

mainframe applications, web services, messaging, sockets

etc and interact with them consistently when using MULE

ESB because there are no specific rules for integration when

using it. Building block facility is also provided by Plug-in

architecture of Mule. Mule use Service Oriented

Architecture (SOA) that integrate existing system easily. It

can be use easily with any application server or as

standalone [13].

To run Mule ESB‟s components does not require any

specific programmatic code Application Programming

Interface (API). Mule also provides support of integration

with Spring Framework and Business Process Management

(BPM). It supports XML, CVS, Binary, Streams, Record

and Java object etc. It provides the facility of zero code

intrusion. Objects are fully portable without any Mule

specific API on service object. Messaging framework of

Mule provides reads, transforms and sends data as message

between applications that are heterogeneous and not able to

read or process data coming from another application [14].

Mule has an advantage that it can convert data as

needed but other ESBs have to create an adapter for every

application and convert the data into single common

messaging format. In Mule no need for any kind of adapters

to connect applications and not required a common

3

messaging format. Information sent on any communication

channel, such as HTTP or JMS, and is translated as needed

along the way. When source applications connect to Mule

and want to share data with other target applications, it reads

data from one former, change it completely as needed so

that can be read by other application, and then sends it to the

later. This functionality of Mule enables to integrate all

types of applications even that are not built for integration.

The main advantage of Mule ESB is it allows different

applications to communicate with each other within intranet

or over the internet [15].

4.2 GlassFish ESB

GlassFish ESB provides interoperability and lightweight

integration platform with fast development tools. GlassFish

deploy SOA components with free dependencies and

flexibility. GlassFish consist of NetBeans tooling, GlassFish

application server, JBI runtime for deploying solutions,

integration engines, adapters for external systems, and

simple installer. Normalized Message Router (NMR) locates

appropriate service providers for transferring messages.

NMR is a part of JBI container [16].

Interoperability option provides facility to communicate

heterogeneous systems. To operate heterogeneous

environment, interoperability make easy to develop secure,

cross platform web services that are reliable and faster.

GlassFish ESB is reliable and high performance

infrastructure that increases interoperability and scalability

for different systems with different architecture and

provides secure interoperability for exchange of information

related to any defense wing. Glass Fish contains Net Beans

tooling, Glass Fish application server, Java Business

Integration (JBI) runtime for deploying solutions,

integration engines, adapter for external system, and simple

installer. GlassFish is highly integrated, scalable application

integration solution for SOA adapters [17].

Plug and play facility of GlassFish ESB allows users

and vendors to plug and play through these components and

services that can be interoperable. GlassFish ESB is based

on Open ESB that delivers a platform for integration,

Enterprise Architecture Integration (EAI) and Service

Oriented Architecture (SOA). To build flexible and robust

solutions for integration of an organization for their system,

using large number of components including binding

components (adaptors) and service engines (processors)

based on large number of standards, such as JBI, Java EE

and SOAP and so on. GlassFish ESB allows vertical and

horizontal scalability using JBI component architecture‟s

asynchronous and decupled designed model. Staged Event-

Driven Architecture (SEDA) provides synchronous,

message based nature, and this provides minimizing

blocking threads, scalability applications without explicit

code and associated memory requirements [18].

4.3 Fuse ESB

FUSE ESB has pluggable architecture and work with

other integration components just like OSGi, JMS, JCA and

JMX etc and can easily be embedded at endpoints that allow

distributed systems to intelligently interact without

mandating a centralized server. FUSE ESB based in Apache

ServiceMix and supports JBI and OSGi architectures that

allow using their preferred service solutions in their SOA.

FUSE ESB is a fully standard base and open source

interoperability platform for enterprise information

technology organizations. Organizations can use FUSE ESB

to use their service solution in their SOA with pluggable

architecture. Without mandating centralized server allow

distributed systems to interact intelligently in FUSE ESB.

Architecture of FUSE ESB and GlassFish ESB is same.

FUSE ESB includes FUSE Message Broker, FUSE services

framework and FUSE mediation router and is part of a

family of application integration and messaging components

based on apache projects. FUSE ESB is one of a family of

components that includes FUSE HQ, FUSE Message

Broker, FUSE Services Framework, and FUSE Mediation

Router. The FUSE components are tested for

interoperability, certified, and supported to combine the

speed and innovation of open source software with the

reliability and expertise of commercially provided enterprise

services [19].

FUSE ESB provides the support for Spring Framework,

which is lightweight container for application components

and facility to use their preferred service solution in their

SOA with pluggable Java Business Integration (JBI) and

Open Service Gateway initiative (OSGi) architecture. The

advantage of Spring Framework is provides advantage to

write light weight JBI components using POJO. Through

Web services FUSE ESB support interoperability to

complex and distributed services or standalone service.

Inside JBI environment, JBI Components Service Engine

provides logic needed to provide services for massage

transformation, orchestration or advance message routing,

so they can only communicate with other components inside

of the JBI [20].

 For accessing outside the JBI environment to service,

JBI components Binding Components provide access via a

particular protocol. They implement the logic needed to

connect to a transport and receive a message through that

transport [21].

4.4 WSO2

WSO2 is easy-to-use open source ESB available under
the Apache Software License and allow administrators to
simply and easily configure message routing, virtualization,
intermediation, transformation, logging, task scheduling,
load balancing, failover routing, event brokering, etc. The
runtime has been designed to be completely asynchronous,
non-blocking and streaming based on the Apache

4

Synapse core. WSO2 ESB supports all the widely used
transports including HTTP/s, JMS, VFS and domain specific
transports like FIX, HL7 and so on. A new transport can be
added easily using the Axis2 transport framework and plug-
in to the ESB [22].

WSO2 ESB provides browser based Graphical User
Interface (GUI) for configuring the ESB, an integration
registry for browsing, loading, and configuring services; and
graphical management and monitoring tools. WSO2 also
provides Web management console that is most useful.
Although the XML based configuration file are not difficult
to understand, so the console makes mistakes less likely.
When operators and administrators are not ESB developer
then it comes true in that environment like large
organizations. WSO2 management console also provides
useful monitoring functions, allowing administrators to see
graphical view of all kind of traffic including message traffic
to proxies, end points and sequences, as well as details such
as min/max/average response times, faults and total message
counts [23].

WSO2 ESB automatically optimizes the parsing of
messages so it can perform virtualization and routing. WSO2
ESB includes non-blocking http/s transport permits ultra-fast
execution and support for large number of connections.
Asynchronous JavaScript and XML (AJAX) Web-based
administration console facilitate monitoring, management,
and definition of policies, routing and transformation [24].

5 Methodology and Implememtation

The methodology incorporated in this evaluation
consists of goal selection, decision of criteria; determine the
alternatives, building hierarchy, assignment of priorities,
calculation of weights, and consistency test as shown in
Figure 1. Further, this work is implemented using multi-
criteria decision making software.

Figure 1: Methodology Process

5.1 Goal Selection

First of all, we selected a goal for this work. The goal is
Evaluating ESB for C4I architecture framework. Four ESBs
such as Mule, GlassFish, WSO2 and Fuse are selected for
analysis purpose.

5.2 Decision of Criteria

Secondly, we decided criteria and sub-criteria. The main
criteria consist of Interoperability‟, „Extensibility‟,
„Messaging‟, „Easiness‟, and „Connectivity support‟. The
main criteria are further divided into sub-criteria. The
criterion „Interoperability‟ is divided into sub-criteria
namely „Syntactic‟, „Semantic‟ and „Network‟. In the same
way, the criterion „Messaging‟ is divided into „Reliability‟,
„Security‟ and „Speed‟. The selection of criteria and sub-
criteria is based on the works as done by many other
researchers [10,11,6].

5.3 Determine the alternatives

Thirdly, we determined the alternatives such as Mule,

GlassFish,WSO2 and Fuse. These alternatives are the focus

of this work.

5.4 Building Hierarchy

The hierarchy is built on the bases of criteria, sub-criteria
and alternatives as shown in Figure 2. The goal “Evaluating
ESB for C4I architecture framework” is at top of the
hierarchy. The criteria and sub-criteria are shown in the
middle. The alternatives are at bottom of the hierarchy but
these are not shown due complexity in the diagram.

5.5 Assignment of Priorities

The assignment of priorities is based on the information
obtained from previous works [6, 10,11]. The scale used for
pairwise comparison is nine points scale .

5.6 Calculation of Weights

The weights of each node (criteria, and sub-criteria) are
calculated on the bases of assigned priorities as shown in
Table 1 to Table 3.

5.7 Consistency Test

The consistency ratio is calculated based on the weights. If
the consistency ratio is less than 10 percent, the
inconsistency is acceptable. Otherwise, we need to revise
the subjective judgment. In this work the consistency ratio is
less than 10 percent so there is no any inconsistency.

 Goal selection

Decision of criteria

Determine the alternatives

Building hierarchy

Assignment of priorities

Calculation of weights

Consistency test

5

Figure 2: Hierarchy consist of goal, criteria and sub-criteria

TABLE I. CRITERIA WEIGHTS

Weights Interoperability Extensibility Connectivity Support Easiness Messaging Total

Local 0.38 0.09 0.18 0.12 0.23 1.00

Global 0.38 0.09 0.18 0.12 0.23 1.00

TABLE II. INTEROPERABILITY SUB CRITERIA WEIGHTS

Weights Syntactic Semantic Network Total

Local 0.33 0.33 0.34 1.00

Global 0.12 0.12 0.14 0.38

TABLE III. MESSAGING SUB CRITERIA WEIGHTS

Weights Reliability Security Speed Total

Local 0.32 0.21 0.47 1.00

Global 0.07 0.05 0.11 0.23

Table 1 shows weights of main criteria. The sum of local

weights (0.38+0.09+0.18+0.12+0.23) is equal to 1 and same

for global weights (0.38+0.09+0.18+0.12+0.23).

Interoperability sub-criterion weights are shown in Table 2.

The sum of interoperability local criteria‟s weights

(0.33+0.33+0.34) is equal to 1 and sum of global weights

(0.12+0.12+0.14) is equal to 0.38 that is its global weight.

Same is the case with sub-criterion Messaging such as the

sum of local weights (0.32+0.21+0.47) is equal to 1 and

global weights (0.07+0.05+0.11) is equal to 0.23 that is

Messaging global weight.

Figure 3: Criteia‟s Analysis

Figure 3 shows criteria ranking such as interoperability,

messaging, connectivity support, easiness and extensibility.

Evaluating ESB for C4I Architecture Framework

Interoperability Extensibility Connectivity Support Easiness Messaging

Syntactic

Semantic

Network

Reliability

Security

Speed

6

6 Results

Figure 4: Comparative Analysis of WSO2, Mule, GlassFish

and Fuse Enterprise Services Buses

Results in Figure 4 shows that WSO2 is best ESB in the

application of C4I architecture framework. The Mule is

rated as second Glassfish as third and Fuse as fourth in this

work of assessment. Further, Mule is best in case of

easiness, messaging and connectivity support while WSO2is

preferable in terms of interoperability and extensibility.

However, WSO2 and Mule is optimum as compared to

other ESBs such as GlassFish and Fuse.

7 Conclusion

The MCDM technique is used to evaluate three ESBs such

as Mule, GlassFish, WSO2 and Fuse. The evaluation

process consists of main criteria and sub-criteria. According

to our study, we have concluded that among all the ESBs,

the WSo2 and Mule is most suitable to tackle the current

issues of C4I architecture framework such as

interoperability, messaging, connectivity suppor, and

easiness.

REFERENCES

[1] Lean Weng YEOH, Ming Chun NG, Architecting C4I

Systems, Second International Symposium on engineering

Systems MIT, Cambridge, Massachusetts, June 15-17,

2009.

[2] United States Department of Defense (USDoD) , Joint

Doctrine for Command, Control, Communications

&Computer (C4) Systems Support for Joint Operations,

Joint Chiefs of Staff, 30 May 1995, Available on website

accessed on Sept 01, 2009.

http://www.dtic.mil/doctrine/jel/new_pubs/jp6_0.pdf

[3] Luis Garces-Erice, “Building an Enterprise Service Bus

for Real-Time SOA: A Messaging Middleware Stack”, 33rd

Annual IEEE International Computer Software and

Applications Conference, pp. 79-84, 2009, doi:

10.1109/COMPSAC.2009.119.

[4] Martin Keen, Amit Acharya, Susan Bishop, Alan

Hopkins, Sven Milinski, Chris Nott, Rick Robinson,

Jonathan Adams and Paul Verschueren, “Patterns:

Implementing an SOA using Enterprise Service Bus”, IBM

Redbooks, SG24-6346-00 , July 5, 2004.

http://www.redbooks.ibm.com/redbooks/pdfs/sg246346.pdf

[5] Saurabh Mittal, Bernard Zeigler, Jose L. Risco Martin,

Ferat Sahin and Mo Jamshidi, “Modeling and Simulation

for systems of systems Engineering”, Chap 5, Wiley

[Imprint], Inc. 2008.

http://acims.arizona.edu/PUBLICATIONS/PDF/Mo_Chapt

_5_MittalZeiglerJoseFeratV4.pdf

[6] Robert Woolley, “Enterprise Service Bus (ESB)

Product Evaluation Comparisons”, Utah Department of

Technology Services, Oct 18, 2006;

http://dts.utah.gov/techresearch/researchservices/researchan

alysis/resources/esbCompare061018.pdf: Webpage

accessed on Dec 15, 2009.

[7] Stein. Desmet, Bruno Volckaert, Steven Van Assche,

Dietrich Van Der Weken, Bart Dhoedt, Filip De Turck,

“Throughput Evaluation of Different Enterprise Service Bus

Approaches”, Conference on Software Engineering

Research and Practice; Jun 25-28, 2007, ISBN: 1-60132-

033-7, 1-60132-034-5 (1-60132-035-3), CSREA Press, pp.

378-384. http://www.ibcn.intec.ugent.be/papers/3032.pdf

[8] Ken Vollmer and Mike Gilpin, “The Forrester Wave:

Enterprise Service Bus, Q2 2006”, BEA Systems, Nov 17,

2006,

http://whitepapers.zdnet.co.uk/0,1000000651,260256988p,0

0.htm

[9] Lori MacVittie, “Review: ESB Suites”, Networking

Computing, CMP Media LLC, March 10, 2006.

http://www.networkcomputing.com/wireless/review-esb-

suites.php.

[10] Tobias Kruessmann, Arne koschel, Martin Murphy,

Adrian Trenaman, Irina Astrova, “High Availability:

Evaluating Open Source Enterprise Services Buses”

Proceedings of the ITI 2009 31th Int. Conf. on information

Technology Interface, June 22-25, 2009, Cavtat, Croatia.

http://www.dtic.mil/doctrine/jel/new_pubs/jp6_0.pdf
http://dx.doi.org/10.1109/COMPSAC.2009.119
http://www.redbooks.ibm.com/redbooks/pdfs/sg246346.pdf
http://acims.arizona.edu/PUBLICATIONS/PDF/Mo_Chapt_5_MittalZeiglerJoseFeratV4.pdf
http://acims.arizona.edu/PUBLICATIONS/PDF/Mo_Chapt_5_MittalZeiglerJoseFeratV4.pdf
http://dts.utah.gov/techresearch/researchservices/researchanalysis/resources/esbCompare061018.pdf
http://dts.utah.gov/techresearch/researchservices/researchanalysis/resources/esbCompare061018.pdf
http://www.ibcn.intec.ugent.be/papers/3032.pdf
http://whitepapers.zdnet.co.uk/0,1000000651,260256988p,00.htm
http://whitepapers.zdnet.co.uk/0,1000000651,260256988p,00.htm
http://www.networkcomputing.com/wireless/review-esb-suites.php
http://www.networkcomputing.com/wireless/review-esb-suites.php

7

[11] Abdullah S. Alghamdi, “Evaluating Defense

Architecture Framwork for C4I System using Analytic

Hirarchy Process”, Journal of Computer Science 5(12):

1075-1081, 2009.

[12] Peter Delia, Antoine Borg, Ricston Lts “MULE 2: A

Developer Guide to ESB and Integration Plaeform”,

Professional and Applied Computing, Apress, ISBN: 978-1-

4302-0981-2 (Print) 978-1-4302-0982-9 (Online), DOI

10.1007/978-1-4302-0982-9, chapter 1, pp 1-28, Feb 7,

2009. http://www.springerlink.com/content/978-1-4302-

0981-2

[13] http://www.mulesoft.org/display/MULE/Home:

Webpage accessed on Sep 10, 2009.

[14] Vina Ermagan, Ingolf H. Krüger and Massimiliano

Menarini, “Aspect-oriented modeling approach to define

routing in enterprise service bus architectures”, ACM New

York, ISBN: 978-1-60558—025-8, Pages 15-20, 2008 ,

Bookmark DOI:

http://doi.acm.org/10.1145/1370731.1370735

[15] Ricky E. Sward and Kelly J. Whiteacre, “A Multi-

Language Service Oriented Architecture Using an

Enterprise Service Bus”, ACM New York, Volum 28,

pages: 85-90, Issue 3, December 2008, DOI:

http://doi.acm.org/10.1145/1454497.1454489

[16] Vasiliev and Yuli, “Beginning Database-Driven

Application Development in Java EE Using GlassFish”,

Apress, ISBN: 978-1-4302-0963-8 (Print) 978-1-4302-

0964-5 (Online), Springer Link Date: Apr 21, 2009, DOI:

10.1007/978-1-4302-0964-5.

http://www.springerlink.com/content/978-1-4302-0963-8

[17] Sun MicroSystems, “Sun GlassFish Enterprise Service

Bus”, 2009

http://www.sun.com/software/javaenterprisesystem/javacap

s/glassfish-esb-ds.pdf: Webpage accessed on Dec 30, 2009

[18] Mike Somekh, Mark Foster, Rastislav Kannocz

“GlassFisg ESB High Availability and Clustring, Sun

Micro Systems”, White paper, Chapter 1 Introduction, Dec

2009.

https://www.sun.com/offers/docs/glassfish_esb_ha_wp.pdf

[19] http://www.fusesource.com: Webpage accessed on Sep

1, 2009

[20] Adam Badura,Bartosz Sakowicz and Dariusz

Makowski, “Integration of Management protocols based on

Apche ServiceMix JBI platform”, CADSM 2009. 10th

International Conference, pp: 381-384, Feb 2009,

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04839

857.

[21] Tijs Rademakers and Jos Dirksen, “Open Source ESBs

in Action”, Manning Publications, ISBN 1933988215,

Sample Chapt 1, Sep 2008

http://www.manning.com/rademakers/sample_ch01_ESB.p

df

[22] WSO2 ESB, Last published 25
th

 Jan 2010,

http://wso2.org/project/esb/java/2.1.3/docs/index.html

Webpage accessed on 20th Feb 2010.

[23] Steven Nunez, “WSO2: A lightweight, fast, and free

ESB”, InfoWorld, 6
th

 Nov 2007,

http://www.infoworld.com/d/architecture/wso2-lightweight-

fast-and-free-esb-781.

[24] Emsworth, “WSO2 Enterprise Service Bus”, Cover

Pages Hosted by OASIS, England, 11
th

 Jun 2007,

http://xml.coverpages.org/WSO2-ESBv10.html.

http://www.springerlink.com/content/978-1-4302-0981-2
http://www.springerlink.com/content/978-1-4302-0981-2
http://www.mulesoft.org/display/MULE/Home
http://doi.acm.org/10.1145/1370731.1370735
http://doi.acm.org/10.1145/1454497.1454489
http://www.springerlink.com/content/978-1-4302-0963-8
http://www.sun.com/software/javaenterprisesystem/javacaps/glassfish-esb-ds.pdf
http://www.sun.com/software/javaenterprisesystem/javacaps/glassfish-esb-ds.pdf
https://www.sun.com/offers/docs/glassfish_esb_ha_wp.pdf
http://www.fusesource.com/
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04839857
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04839857
http://www.manning.com/rademakers/sample_ch01_ESB.pdf
http://www.manning.com/rademakers/sample_ch01_ESB.pdf
http://wso2.org/project/esb/java/2.1.3/docs/index.html
http://www.infoworld.com/d/architecture/wso2-lightweight-fast-and-free-esb-781
http://www.infoworld.com/d/architecture/wso2-lightweight-fast-and-free-esb-781
http://xml.coverpages.org/WSO2-ESBv10.html

