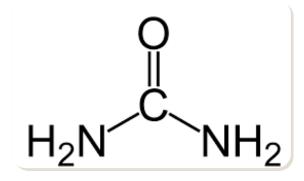


BCH 447

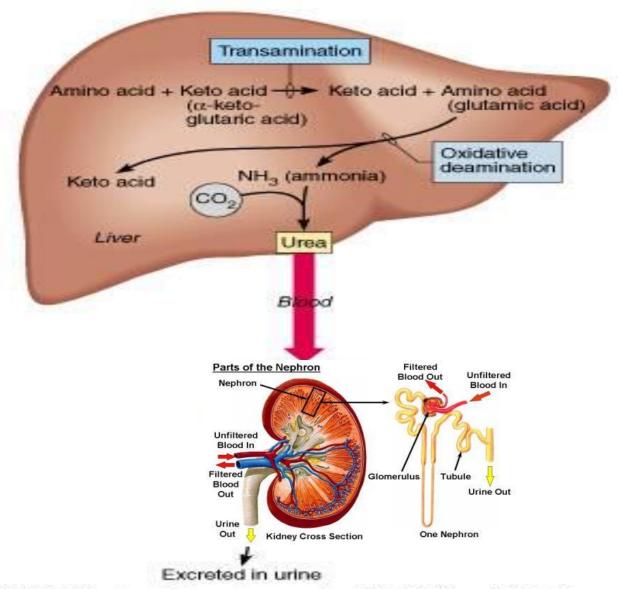
Estimation of Serum Urea


Objective:

• Estimation of Blood urea nitrogen (BUN) in serum sample.

-Urea:

• Urea is the highest **non-protein nitrogen** compound in the blood.



- Urea is the major **excretory product of protein metabolism**.
- Since historic assays for urea were based on measurement of nitrogen, the <u>term blood</u> urea nitrogen (BUN) has been used to refer to urea determination.

-Urea synthesis:

- Protein catabolism produces amino acids that can be oxidized.
- This results in the release of ammonia which is converted to urea (via urea cycle in the liver).
- Following synthesis in the liver, urea is carried out in the blood to the kidney which is readily filtered from the plasma by <u>glomerulus</u>.
- Most of the urea in the glomerular filtrate excreted in the urine, and some urea is reabsorbed through the renal tubules.
- The amount reabsorbed **depends on urine flow rate and extent of hydration** (the amount of urea reabsorbed increases with dehydration).

-Urea synthesis:

- Clinical Application:

- Measurement of urea used in :
- Evaluate renal function.
- To assess hydration status.
- To determine nitrogen balance.
- To aid in the diagnosis of renal diseases.
- Check a person's protein balance.

-Plasma urea Concentration:

- Measurement of Blood Urea Nitrogen (BUN) alone is less useful in diagnosing kidney diseases because it's blood level is influenced by dietary protein and hepatic function.
- But its diagnostic value improves with **serum creatinine values**.

	Type	Cause	
High urea (High urea conc. in plasma is called azotemia)	Pre-renal	 Cognitive heart failure. — — Dehydration. High protein diet. Increased protein catabolism. 	blood flow, less blood delivered to kidney, less urea is filtered.
	Renal	Renal failure .	
	Post-renal	 Urinary tract obstruction. 	
Low urea		 Low protein intake. Liver disease. Pregnancy. — — — — — 	During pregnency, glomerular filtration increases by 50%

d renal lood is y, then

n rate

Practical Part

-Principle (of the kit used):

- The Reagent used contains: Urease, Glutamate Dehydrogenase (GLDH), NADH, α-ketoglutaric acid, buffers and stabilizers .
- This test involves two reactions:

2.

1. NH2 - CO -NH2 + H2O
$$\longrightarrow$$
 2NH3 + CO2

Urea +

 α -KETOGLUTARIC ACID + NADH+H+ \longrightarrow GLUTAMIC ACID +NAD++H2O

• The absorbance at 340nm is measured over a limited time peroid, resulting in decreased readings due to the oxidation of NADH to NAD

-Method:

	Standard	Serum		
Reconstituted Reagent	3ml	3ml		
Pre-warm at 37°C for 2 min. and add:				
Standard	0.025/25µl	-		
Serum	-	0.025/25µl		

- After exactly 30 seconds . read and record absorbance A1 against distilled water at 340 nm.
- At exactly another 60 seconds after A1, read and record the absorbance A2 and determine ΔA (A1-A2).

-Calculations:

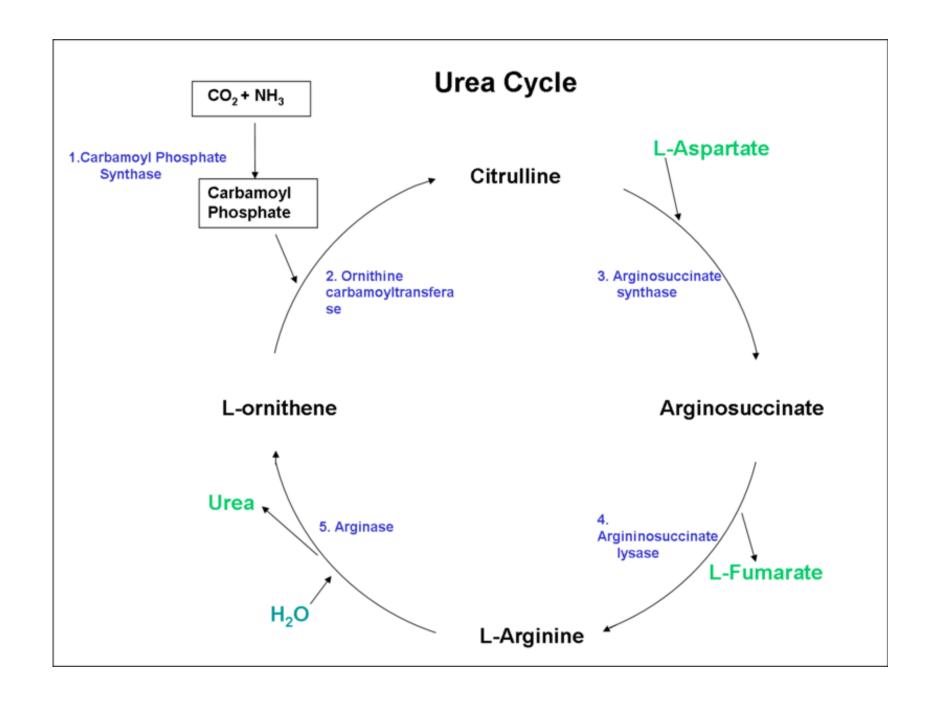
- Concentration of urea in serum sample:

- Standard concentration= 25 mg/dl

- Urea (mg/dL) = \triangle A (Sample) x 25 \triangle A (Standard)

-Discussion:

• Comment on the level of Urea in serum .


-Reference Value:

Blood urea conc.: (10 - 50 mg/ dl)

Estimation Of Arginase Activity In Liver Extract

- Introduction:

- Ammonia is a product of oxidative deamination of amino acids.
- It is toxic in even small amount and it must be removed from the body.
- Arginase is one of the important enzymes in urea cycle which is the major disposal form of amino groups derived from amino acids.
- Urea cycle catalyzed by a set of enzymes (Five enzymes) present in the liver, and then is transported in the blood to the kidneys for excretion.

- Principle:

-The arginase enzyme catalyzes **the fifth reaction** in the urea cycle, the enzyme is present **exclusively in the** liver .

-Arginase catalyzes the hydrolytic cleavage of the guanidine group of Arginine to regenerate ornithine and urea.

Arginine ↔ Urea + Ornithine

- -Two isozymes of this Enzyme exist,
- -First; Arginase I (In cytoplasm) for functions of urea cycle,
- Second; Arginase II to regulate the arginine/ornithine concentration in the cell (In mitochondria).
- Arginase requires a two-molecules metal of Co²⁺ and Mn²⁺ for it's activation while ornithine and lysine are potent inhibitors.

-The activity of the enzyme is determined by **measuring the amount of urea produced**, urea is reacted with the reagent iso-nitrosopropiophenone and heated in boiling water, leading to the production of a red color compound which is measured by spectrophotometry at 520nm.

Urea + iso-nitrosopropiophenone boiling water bath red color compound

- Question:

- What are the causes of high blood ammonia level?