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Visualization  is  an  invaluable  companion  to  symbolic  computation  in  un-
derstanding the complex plane and complex-valued functions of a complex
variable. The Presentations application, an add-on to Mathematica, provides
a rich set of tools for assisting such visualization. This article demonstrates
some  capabilities  of  the  application,  especially  those  relevant  in  an  intro-
duction  to  complex  analysis,  and  it  indicates  some  teaching  and  learning
issues  that  arise.  Included  are  examples  of  how  complex  functions  map
objects  in  the  complex  plane  and  on  the  Riemann  sphere,  and  of  how
complex functions behave near singularities and at branch points.

‡ Introduction
Visualization and symbolic computation are both essential to understanding how
functions behave. Visualizing the behavior of a real-valued function of a real vari-
able  is  often  easy  because  the  function’s  graph  may  be  plotted  in  the  plane~a
space with just two real dimensions. On the other hand, visualizing the behavior
of a complex-valued function of a complex variable is more difficult because the
graph lives in a space with four real dimensions. Whereas Mathematica is replete
with resources for symbolic computation with complex functions, out of the box
it provides only a meager set of tools for visualizing such functions. To do much
more  than  what  is  provided  by  the  two-parameter  form  of  ParametricPlot~
the  replacement  for  the  standard  add-on  package  Graphics`ComplexMap`~
even to plot the image of a simple curve in the complex plane requires the effort
of constructing the image set and its  graphical representation and then combin-
ing the graphics objects.  The Presentations  application [1],  written by the second
author, is a purchasable add-on to Mathematica that provides, among many other
things,  a  rich  set  of  tools  for  plotting  complex  functions  and  some  utilities  for
complex symbolic computation. Presentations includes full documentation with in-
dividual help pages and examples for each command.

Presentations is the successor to both the Cardano3 [2] and DrawGraphics [1] appli-
cations.  In  a  Mathematica-enriched  introductory  complex  analysis  course,  the
first author prepared demonstration and exercise notebooks for Cardano3 [3] and
experimented with students’ using it; experience there led to some enhancement
of  the  application.  The  course  used  the  textbook  by  Mathews  and  Howell  [4],
which  is  fairly  traditional  in  approach,  although  it  does  go  a  bit  further  than
some introductions in emphasizing mapping properties of complex functions. Pre-
sentations would be especially suitable for use with a less traditional, more visually
oriented text, such as the one by Needham [5], which inspired and helped guide
development of the application.
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oriented text, such as the one by Needham [5], which inspired and helped guide
development of the application.

In  this  article  we  demonstrate  some  capabilities  of  the  Presentations  package
ComplexGraphics, especially those relevant in an introduction to complex analysis.
The examples include a geometric problem solved by complex means, represen-
tations  of  complex  functions  as  mappings,  depiction  of  singularities,  analysis
of branch points, and a visualization of the Argument Principle. Typically the ex-
amples include embellishments that might be inappropriate for a novice at  both
Mathematica  and  complex  analysis  to  program,  but  these  embellishments  illus-
trate some of the advanced functionality of the packages.

Various  graphical  representations  of  complex  functions  are  often  needed  to
emphasize  their  various  features.  DrawCartesianMap  and  DrawPolarMap  plots
within  Draw2D  expressions  can  be  used  to  emphasize  mapping  properties.
Riemann  sphere  plots  can  be  used  to  better  depict  behavior  near  the  point  at
infinity,  or  to  emphasize  periodic  behavior.  ComplexDensityDraw  and  other
domain-coloring  plots  give  an  overall  representation  of  a  function  in  the  plane
that emphasizes singular points and branch lines.
Representing  complex  values  as  vectors  is  one  method  for  obtaining  a  four-di-
mensional  picture~two  dimensions  in  the  plane  and  two  dimensions  in  each
vector.  By  moving  a  single  vector  as  a  Locator  around the  domain,  we  can  see
how  a  function  varies  along  a  path;  superimposing  the  moving  vector  upon  a
background  ComplexPolarContour  plot  of  the  modulus  provides  even  further
visual information. This visual information can be accompanied by panels giving
dynamically changing numerical  values.  More generally,  dynamic interactivity is
especially effective in making various properties come alive. Presentations can give
an  overall  picture  or  zoom  in  on  particular  portions  of  the  domain.  Multi-
functions can be used with several of the plot types. All these techniques increase
our ability to understand complex function behavior.

Top-level Presentations complex graphics functions ultimately call upon more gen-
eral  graphing routines  like  those  in  DrawGraphics,  which is  discussed in  [6];  the
Presentations graphing routines, in turn, ultimately call built-in Mathematica func-
tions.  To reproduce  all  the  results  in  this  notebook,  in  addition  to  Mathematica
and Presentations, will also require Ersek’s RootSearch package [7].

Only some of  the functionality of  Presentations  is  illustrated here,  even for com-
plex functions. Visualizations of Riemann surfaces are discussed in [8]. Online re-
sources for visualizing complex functions are available that do not involve Mathe-
matica at all; see [9], for example.
This article is based upon the authors’ original paper [10] for the eighth Interna-
tional  Mathematica  Symposium (IMS’06)  that  used  Cardano3.  Thanks  to  the  ad-
vances in Mathematica 6 and the concomitant development of the application, the
examples here go well beyond what was possible before.

‡ Initialization
To begin, we initialize the Presentations application.
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In[3]:= Needs"Presentations`Master`"
To open the documentation for  Presentations  directly,  evaluate the following in-
put cell. 

In[4]:= PresentationsHelp

The function styleText will be used in several places to format point labels.

In[5]:= styleTexttxt_, z_, offset_: 0, 0 :
StyleComplexTextTraditionalFormtxt, z, offset,
FontSize  12, Bold;

‡ Geometry in the Complex Plane
Presentations contains a complete set of graphics primitives that directly use com-
plex numbers for points.  Geometrical  diagrams are an important part of mathe-
matical  discussions,  yet  students  find  it  difficult  to  draw  such  diagrams.  The
power of complex algebra is that many such diagrams are more easily constructed
and drawn in the complex plane. Such diagrams are not only an excellent intro-
duction  to  Presentations  and  complex  algebra,  but  also  a  valuable  technique  for
mathematical work.
The problem considered here is from a posting on MathGroup  [11] (with Greek
letters used for the angle variables of the original): 

I am trying to find the angle b corresponding to the points on the cir-
cumference  of  the  circle  H5 + 8 Cos@bD, 7 + 8 Sin@bDL  that  are  a  dis-
tance  of  7  units  from  a  point  on  the  circumference  of  the  circle
H13 Cos@aD, 13 Sin@aDL for angles a in the first quadrant.

The following creates a diagram for the problem.

In[6]:= Withc  5  7 , r1  8, r2  13, 1  60 °, 1  25 °,
Draw2D
ComplexCurvec  r1  , , 0, 2 ,
Red, ComplexCurver2  , , 0, 2,
Gray, ComplexLinec, c  r1,
ComplexLinec, c  r1  1,
ComplexLine0, r2  1,
Blue, ComplexLiner2  1, c  r1  1,
Black, ComplexText"", c  r15  12,
ComplexText"", r25  12,
ComplexCirclePointc, 3, Black, LegacyLinen,
ComplexCirclePoint, 3, Black, LegacyPeacock & 
c  r1  1, r2  1,

Axes  True, Ticks  None,
PlotLabel  "Geometry Problem",

ImageSize  Scaled0.4

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Out[6]= b

a

Geometry Problem

Given a value of angle a, find angles b such that the blue line joining the two cir-
cled points has a length 7.  To solve this  problem, we simplify things by writing
the complex equation H5 + 7 ÂL + 8 ‰Â b - 13 ‰Â a = 7 for b with a as parameter.

In[7]:= eqn_  ComplexExpandAbs5  7   8    13    7

Out[7]= 5  13 Cos  8 Cos2  7  13 Sin  8 Sin2  7

An additional geometrical diagram (not shown) indicates that the equation for b
always has two roots. The roots are most easily found by using Ersek’s RootSearch
package [7].

In[8]:= Needs"Ersek`RootSearch`"
For  example,  evaluating  RootSearch[eqn[/4],{,0,2}]  gives  the  result
{{1.53612},{5.71073}}.  To  show  how  the  solutions  change  as  a  varies
from 0 to p ê 2, we exploit the new dynamic interactivity introduced in Mathemat-
ica 6 as well as its ability to combine graphical and numerical information. First,
the following definition calculates the two b solutions with the graphics based on
the solutions and returns them in a list.

In[9]:= diagramdata_ :
Module
c  5  7 , r1  8, r2  13, 1, 2, , graphics,
1, 2  Flatten . Quiet

RootSearcheqn, , , , $MinPrecision::precset;
graphics 
Draw2D
ComplexCurvec  r1  , , 0, 2 ,
Red, ComplexCurver2  , , 0, 2,
Blue, ComplexLiner2  , c  r1  1,
ComplexLiner2  , c  r1  2,
LightBlue, ComplexCurver2    7  , , 0, 2 ,
Black, ComplexCirclePointc, 3, Black, LegacyLinen,
ComplexCirclePoint, 3, Black, LegacyPeacock & 
r2  , c  r1  1, c  r1  2, r2  ,

Axes  True, Ticks  None,
,
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In[9]:=

Axes  True, Ticks  None,
PlotRange  10, 22, 8, 22,
ImageSize  Scaled0.4 ;

graphics, 1, 2;
The  following  Manipulate  expression  displays  the  graphics  along  with  panels
showing the values of a and the corresponding two values of b.

In[10]:= Manipulate
Modulegraphics, 1, 2,
graphics, 1, 2  diagramdata;
 Prevent switching of solutions 
If1  2, 1, 2  2, 1;
Row
graphics,
 Numerical Information 
Column
PanelRowNumberForm Degree, 4, 2, "°", "  ",

Left, Top, FrameMargins  0, ImageSize  Scaled0.15,
PanelRowNumberForm1 Degree, 4, 2, "°", "1",
Left, Top, FrameMargins  0, ImageSize  Scaled0.15,

PanelRowNumberForm2 Degree, 4, 2, "°", "2",
Left, Top, FrameMargins  0, ImageSize  Scaled0.15

, Spacings  1
, Spacer10

,
"Geometry Problem Solved",

, 0.734, 0, 2

Out[10]=

Geometry Problem Solved

a

a 42.06°

b1 -39.91°

b2 80.23°

Such a dynamic presentation combining graphics and numerical data gives a su-
perb hands-on experience of a relationship and increases confidence in the consis-
tency of the solution method.
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‡ Complex Functions as Mappings of the Plane
The most direct way to represent a function f :  Ø  as a mapping is to display
side by side the domain and codomain planes (or their Riemann sphere compacti-
fications), to place in the domain some objects of interest, and to display the cor-
responding images of  these objects  under f  in  the codomain.  Usually  we locate
the objects with reference to some grid in the domain, and then display their im-
ages with reference to the image of that grid.

To represent such a function as a mapping with Presentations, we shall use two in-
stances  of  Draw2D,  the  first  for  the  z  domain  and  the  second  for  the  w = f HzL
codomain.  The  function  Draw2D  is  the  basic  construct  for  readily  combining
plots  and other  graphics  objects  without  the need for  using Prolog,  Epilog,  or
Show.
Our first example is an affine linear function of the form f HzL = a z + b. 

In[11]:= fz_ : 2   z  3 

This  example  is  a  good  place  to  start  because  it  is  so  easy  to  calculate  directly
(even with paper and pencil!) the images of lines and circles, and hence to under-
stand  the  very  concept  of  a  function  f :  Ø   as  a  mapping~a  concept  that
many  beginners  at  first  find  difficult.  The  plot  we  are  going  to  construct  will
show how a triangle and a circle upon a Cartesian grid map under f . The follow-
ing code just forms the objects to be plotted, but does not display them.

In[12]:= With
 Three points defining the triangle 
a  , b  1  , c  32  2,
 The center and radius defining the circle 
p  1  2, radius  45,

 The points to be drawn as outlined disks 
pts  ComplexCirclePoint, 3, Black, LegacyCadmiumOrange & 

a, b, c, p;
 The triangle and circle to be drawn thick and green 
triangle  LegacyCobaltGreen,

AbsoluteThickness3, ComplexLinea, b, c, a;
circle  LegacyCobaltGreen, AbsoluteThickness3,

ComplexCirclep, radius;
 Point labels in the z plane 
zLabels 
Black, styleText"a", a, 2, 1, styleText"b", b, 2, 1.5,
styleText"c", c, 1.5, 1, styleText"p", p, 1, 1;

 Point labels in the w plane 
wLabels  Black, styleTextHoldFormf"a", fa, 1.5, 0,

styleTextHoldFormf"b", fb, 1, 1.5,
styleTextHoldFormf"c", fc, 1.5, 1,
styleTextHoldFormf"p", fp, 1, 1.5;

 z plane domain 
zdomain 
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In[12]:=

zdomain 
Opacity0.5, HTMLWheat,
DrawCartesianMapz, z, 2 1  , 2 1  ,
PlotPoints  30,
BoundaryStyle  DirectiveThick, Black,
Mesh  15, 15, MeshStyle  HTMLSeaGreen, DarkerBrown;

The function DrawCartesianMap produces the underlying grid for the z domain
plane. Note that although DrawCartesianMap  is a two-dimensional construct, it
uses only a single complex iterator z, zmin, zmax where zmin and zmax delin-
eate  a  rectangular  region  in  the  complex  plane.  This  is  a  general  feature  of  the
complex plotting routines in Presentations.  For polar plots the iterator would use
the ComplexPolarr,q]  form of complex numbers provided by the package and
would then take the form:

 z, ComplexPolarrmin, qmin, ComplexPolarrmax, qmax, center.

The Presentations functions Legacy and HTML, also used previously, provide short-
cuts for colors not defined in the kernel. They could also simply be clicked from
the ColorSchemes palette. 
Finally, we insert the objects into two Draw2D expressions and combine the latter
in  a  Row.  In  the  second  Draw2D,  it  is  the  derived  function  ComplexMap[f]  that
transforms the grid along with the triangle and circle. 

In[13]:= Row
Draw2Dtriangle, circle, zdomain, pts, zLabels,

Axes  True, PlotRange  6,

PlotLabel  z, ImageSize  Scaled0.4,
Draw2Dtriangle, circle, zdomain, pts  ComplexMapf,

wLabels,
Axes  True, AxesOrigin  0, 0,
PlotRange  6, 6, 9, 3,
PlotLabel  HoldFormfz fz, ImageSize  Scaled0.4,

Spacer3

Out[13]=

The plot suggests that f  maps lines to lines, and circles to circles; it further sug-
gests that rotation, stretching, and translation are involved. To verify analytically
that this is so, we need only write f  as the composite of a rotation around the ori-
gin,  a  dilation,  and a  translation.  The documentation for  Presentations  illustrates 
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The plot suggests that f  maps lines to lines, and circles to circles; it further sug-
gests that rotation, stretching, and translation are involved. To verify analytically
that this is so, we need only write f

the actions of rotations, dilations, and translations by means of animations in the
complex plane and their lifts to the Riemann sphere. 
For a novice, such a first example should surely be simpler; for example, it might
involve mapping just a single line segment, foregoing labeling the points, and us-
ing default  colors.  Producing such a  graphic  may either  precede the analysis,  to
suggest what the analysis will reveal, or else follow the analysis, to confirm visu-
ally what the analysis predicts.  
The simplest nonlinear polynomial is the squaring function. Here is a naive stu-
dent’s attempt to show how it maps. 

In[14]:= grid  Opacity0.5, HTMLWheat,
DrawCartesianMapz, z, 2 1  , 2 1  ,
BoundaryStyle  DirectiveThick, Black,
Mesh  11, 11, MeshStyle  HTMLSeaGreen, DarkerBrown;

horiz  LegacyCadmiumOrange,
Thickness0.01, ComplexLine2  4 5, 2  4 5;

vert  LegacyCobaltGreen, Thickness0.01,
ComplexLine65  2 , 65  2 ;

In[17]:= Row
Draw2Dgrid, horiz, vert, PlotRange  4,

Axes  True, ImageSize  Scaled0.4,
Draw2Dgrid, horiz, vert  ComplexMap^2 &,
PlotRange  8, Axes  True,

ImagePadding  0, 0, 24, 6,
PlotLabel  "Wrong images\nof highlighted segments",
ImageSize  Scaled0.4, Spacer4

Out[17]=

The parabolic  arcs  shown as  the images  of  the horizontal  and vertical  segments
of the grid are correct, but the images of the highlighted horizontal and vertical
segments are wrong. The student, trying to generalize from the case of affine lin-
ear mappings, had unreasonable expectations as to what the application would do. 
What went wrong is this. When using ComplexMap to form the image of the grid
itself,  Presentations  applies  the  target  function  (here  z # z2)  to  points  along  the
lines  of  the grid  and then connects  the resulting image points  in  the codomain.
For a primitive graphics object such as ComplexLine, however, it merely applies
the  function  to  distinguished  points  of  the  object~for  ComplexLine,  its  ver-
tices~and then forms the corresponding object in the codomain based upon the
images of the distinguished points.
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What went wrong is this. When using ComplexMap to form the image of the grid
itself,  Presentations  applies  the  target  function  (here  z # z2)  to  points  along  the
lines  of  the grid  and then connects  the resulting image points  in  the codomain.
For a primitive graphics object such as ComplexLine, however, it merely applies
the  function  to  distinguished  points  of  the  object~for  ComplexLine,  its  ver-
tices~and then forms the corresponding object in the codomain based upon the
images of the distinguished points.

It was the encounter with this misunderstanding by students that led to the new
Presentations  primitive  ComplexCurve  to  represent  a  curve  in  the  complex  plane
parameterized  by  a  real  variable.  The  Presentations  routines  find  the  image
of  such  a  curve  in  the  same  way  as  for  the  lines  in  a  grid~by  sampling  points
along the curve, calculating their images, and then connecting the image points.
The following modified curve, employing ComplexCurve objects, correctly repre-
sents the mapping.

In[18]:= grid  Opacity0.5, HTMLWheat,
DrawCartesianMapz, z, 2 1  , 2 1  ,
BoundaryStyle  DirectiveThick, Black,
Mesh  11, 11, MeshStyle  HTMLSeaGreen, DarkerBrown;

horizontal  LegacyCadmiumOrange, Thickness0.015,
ComplexCurve1  t 2  4 5  t  2  4 5, t, 0, 1;

vertical  LegacyCobaltGreen, Thickness0.015,
ComplexCurve1  s 65  2   s 65  2 , s, 0, 1;

In[21]:= Row
Draw2Dgrid, horizontal, vertical,

PlotRange  4, Axes  True, ImageSize  Scaled0.4,
Draw2Dgrid, horizontal, vertical  ComplexMap^2 &,
PlotRange  8, Axes  True, ImageSize  Scaled0.4, Spacer4

Out[21]=

Of course a rectangular grid is hardly the best way to understand how the squar-
ing  function maps.  A  polar  grid,  in  this  case  covering  a  half-disk  that  we create
first, is much better.
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In[22]:= polargrid  Opacity0.5, HTMLWheat,
DrawPolarMapz, z, ComplexPolar0, 0, ComplexPolar2, ,
BoundaryStyle  DirectiveThick, Black,
Mesh  5, 9, MeshStyle 
HTMLSeaGreen, DirectiveDashed, DarkerBrown;

Then  the  plot  produced  by  the  following  code  would  show  that  the  squaring
function doubles angles as it squares moduli. (The result has been suppressed.)

In[23]:= Witharc  LegacyCobaltGreen, Thickness0.01,
ComplexCurve53 Exp , , 0, ,

ray  LegacyCadmiumOrange, Thickness0.01,
ComplexLine0, ComplexPolar2, 4,

pts  ComplexCirclePoint53, 3, Black, LegacyCadmiumOrange,
ComplexCirclePoint5 3, 3, Black, LegacyLawnGreen,

Row
Draw2D

polargrid, ray, arc, pts,
PlotRange  4.2, Axes  True, ImageSize  Scaled0.4,

Draw2DArrowheads0.25, NeedhamMappingSymbol0, 1,
styleTextTraditionalFormz2, 0.5  0.6 ,

PlotRangeClipping  False, ImageSize  Scaled0.06,
ImagePadding  0, 0, 25, 10,

Draw2D
polargrid, ray, arc, pts  ComplexMap2 &, PlotRange 
4.2, Axes  True, ImageSize  Scaled0.4, Spacer5;


With  Mathematica,  and  its  special  dynamic  features,  it  takes  little  extra  work  to
convert such a static display into a dynamic presentation. We only have to keep
in mind which parameters are going to be variable or dynamic, and so it is useful
to develop the initial graphics within a Module or With expression that has the pa-
rameters as local variables.

In[24]:= Manipulate
Modulearc, ray, pts,
arcr_ : LegacyCobaltGreen,

Thickness0.01, ComplexCurver Exp , , 0, ;
ray_ : LegacyCadmiumOrange, Thickness0.01,

ComplexLine0, ComplexPolar2, ;
ptsr_, _ : ComplexCirclePointr, 4, Black,

LegacyCadmiumOrange, ComplexCirclePoint
ComplexPolarr, , 4, Black, LegacyLawnGreen;

Row
Draw2D

polargrid, ray, arcr, ptsr, ,
, , ,

Visualizing Complex Functions with the Presentations Application 235

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.



In[24]:=

polargrid, ray, arcr, ptsr, ,
PlotRange  4.2, Axes  True, ImageSize  Scaled0.35,

Draw2DArrowheads0.25, NeedhamMappingSymbol0, 1,
styleTextTraditionalFormz2, 0.5  0.6 ,

PlotRangeClipping  False, ImageSize  Scaled0.06,
ImagePadding  0, 0, 25, 10,

Draw2D
polargrid, ray, arcr, ptsr,   ComplexMap^2 &,

PlotRange  4.2, Axes  True,

ImageSize  Scaled0.35, Spacer5
,
r, 53  N, 0, 2, Appearance  "Labeled",
, 4  N, 0, , Appearance  "Labeled"

Out[24]=

r 1.66667

q 0.785398

z 2

Similarly, the code could be modified to show dynamically what happens for vary-
ing powers zn of z.

‡ Lifting Complex Mappings to the Riemann Sphere
Mapping properties of some complex functions may be nicely visualized by con-
sidering them as mappings of the Riemann sphere W. Let 

`
= ‹ 8¶< be the ex-

tended complex plane, and let p : W Ø 
`

 be the stereographic projection onto the
equatorial  plane, with the north pole going to the point at infinity.  To visualize
the  map p-1 :  Ø W,  consider  the  part  A  of  the  closed  disk  D2H0L  in  the  closed
first quadrant. 

First, we create a double polar grid on A to distinguish points inside the unit cir-
cle from points outside it and highlight parts of the boundary of A. 

In[25]:=
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In[25]:= polargrids  Opacity0.5, LegacyWheat,
DrawPolarMapz, z, ComplexPolar0, 0, ComplexPolar1, 2,
BoundaryStyle  DirectiveThick, LegacyDimGray,
Mesh  5, 8, MeshStyle  LegacyRoyalBlue,

DrawPolarMapz,
z, ComplexPolar1, 0, ComplexPolar2, 2,
BoundaryStyle  DirectiveThin, LegacyDimGray,
Mesh  5, 8, MeshStyle  LegacyIndianRed;

quarterCircle 
Purple, Thickness0.01, ComplexCurve , , 0, 2;

origin  LegacyCadmiumOrange,
PointSizeLarge, ComplexPoint0;

xAxis  LegacyCobaltGreen, Thickness0.01,
FineGrainLines0.02, 8ComplexLine0, 2;

graphics2D  polargrids, quarterCircle, xAxis, origin;
The output from the following depicts both A  and its image p-1HAL  on the Rie-
mann  sphere.  Projection  of  the  plane  onto  the  sphere  is  handled  by  Stereo
graphicMap.

In[30]:= Manipulate
Row
Draw2Dgraphics2D, PlotRange  1.15, 2.15, 0.15, 2.15,

Axes  True, AxesStyle  DirectiveLegacyDimGray,
Ticks  Range1, 2, Range0, 2, ImageSize  Scaled0.35,

Draw3DItems
ColoredRiemannSphereOpacity0.15, Orange, graphics2D 

StereographicMap  RotationTransformOp, 0, 0, 1,
ViewPoint  1.27415, 0.910696, 0.695037, ViewRiemann,
ImageSize  Scaled0.35

, Spacer8,
, 0, "Rotation angle", 0, 2 , FrameLabel  None, None,

Style"Mapping to the Riemann Sphere", FontWeight  Bold, None
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Out[30]=

Mapping to the Riemann Sphere

Rotation angle

In the first author’s course, stereographic projection had been described geomet-
rically. When this graphic was demonstrated, students were curious to learn how
the  application  implemented  the  projection.  The  explicit  formula  for  Stereo
graphicMap appears in the ComplexGraphics package code, but students could not
readily  ferret  that  out.  Using the  application motivated the  students  to  discover
the formula and thereby presented an opportunity for them to exercise three-di-
mensional vector methods.
Our  final  example  of  visualizing  complex  functions  as  mappings  is  the  complex
sine.  The following shows how sine maps a  square grid in the z  plane,  with the
image lifted to the Riemann sphere.

In[31]:= grid  Opacity0.5, HTMLLinen,
DrawCartesianMapz, z, 2 1  , 2 1  ,
BoundaryStyle  DirectiveThin, Black,
Mesh  14, 14,
MeshStyle  LegacyDimGray, LegacyDimGray;

points  PointSizeLarge, TableHue0.1677 j 20,
ComplexPoint  j 10  0.95 , j, 0, 20;

positiveIAxis  LegacyMediumSeaGreen, Thick,

ComplexCurve y, y, 0, ;
primitives  grid, positiveIAxis, points;
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In[35]:= Row
Draw2Dprimitives, PlotRange  ,
Axes  True, AxesStyle  LegacyDimGray,
Ticks  2 Range2, 2, 2 Range2, 2,
Background  LegacyLinen,
ImageSize  Scaled0.4,

Draw3DItems
ColoredRiemannSphereOpacity0.2, LegacyLightSkyBlue,
primitives  ComplexMapSin  StereographicMap,

ViewPoint  0.991, 1.378, 0.2579, ViewRiemann,

Background  Opacity0.25, LegacyLightSkyBlue,
ImageSize  Scaled0.4, Spacer3

Out[35]=

The grid  is  embellished with  colored  points.  Sine  is  periodic  of  real  period  2 p,
and nothing better illustrates this than the way the image wraps around the Rie-
mann sphere, bringing the ends of the string of colored points together. 

‡ Singularities
One  way  to  visualize  the  behavior  of  a  function  f :  Ø   at  singularities  is  to
plot  in  3-space  the  modulus f :  Ø .  This  can  be  realized  in  a  ComplexPo
larSurface  with  second argument  Abs.  (More  generally,  a  second argument  s
for a function s :  Ø  will provide a plot of the composite sÎ f :  Ø . Other
instructive cases are s = Re and s = Im.)
The following function has poles at z = -2, z = -1, z = 1, z = Â, and z = -Â.

In[36]:= fz_ : z Cosz z  12 z2  12 z2  3 z  2 
Due to the symmetry about the origin of two pairs of the poles of f , it is appro-
priate  to  plot  over  a  polar  region.  The  following  plot  depicts  that
lim zØ z0 f HzL = ¶  at  each  pole  z0.  (We could  have  used  dynamic  interactivity
to zoom in on each pole.) 

Visualizing Complex Functions with the Presentations Application 239

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.



In[37]:= Draw3DItems
ColorMixLegacyMediumSeaGreen, White0.2,
 Draw the entire surface 
ComplexPolarSurfacefz, Abs,
z, ComplexPolar0, 0, ComplexPolar3, 2 , 0,
Mesh  None,

 Draw a finegrained image in the region of the weak pole at 2 
ComplexPolarSurfacefz, Abs,
z, ComplexPolar1.75, 170 °, ComplexPolar2.25, 190 °, 0,
Mesh  None,

PlotRange  0, 0.5, BoxRatios  1, 1, 0.5,
Axes  True, Background  LegacyAliceBlue,
PlotLabel  Row"Surface plot of ", HoldFormAbsfz,
ViewPoint  0.3, 2.7, 2.1

Out[37]=

The funnels  at  the  poles  appear  to  have different  girths.  The following calcula-
tion confirms that observation quantitatively. 
In[38]:= poles  z . UnionSolveDenominatorfz 0, z;

Tablez0,
With  0.05,
NIntegratefz, z, z0     , z0     , z0     ,

z0     , z0       Abs, z0, poles  TableForm
Out[39]//TableForm= 

2 0.023242

1 0.212176

 0.361677

 0.361677

1 0.479623
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‡ Multifunctions
The next example, suggested by a problem in Needham [5, p. 117] uses function-
ality  of  Presentations  that  is  more  advanced  than  what  might  be  introduced  in  a
first course in complex analysis. It concerns the following complex function. 

In[40]:= fz_ : z  1 z  
3

The objective is to determine the nature of the branch points z = 1 and z = Â and
how the function varies as we follow various paths in the complex plane.  To do
so  we  shall  employ  a  different  representation  of  a  complex  function  that  uses  a
single movable point  z  in the complex domain with an attached vector pointing
from z to z + f HzL.

First, we make a background plot on which to superimpose the moving complex
vector. 

In[41]:= backplot  ComplexPolarContourfz,
z, ComplexPolar0, , ComplexPolar3, , Abs,
PlotRange  3,

PlotPoints  15, 24, MaxRecursion  2,
ColorFunctionScaling  False,

Contours  Range0, 3, 0.25,
ColorFunction 
ColorData"ThermometerColors"Rescale, 0, 3 &;

In[42]:= Draw2Dbackplot,
Frame  True, FrameLabel  Re, Im, RotateLabel  False,
PlotLabel 
RowTraditionalFormz, " domain coloring by modulus of ",

TraditionalFormHoldFormfz

Out[42]=

Strictly speaking, we do not need a background plot,  but could just  move a Lo
cator  around in  the  plane  with  perhaps  a  domain mesh.  We could  also  choose
between many different types of background plots.  Although the information in
the background plot is redundant, it does help orient the viewer, and modulus in-
formation is one of the best “orienters”.
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Strictly speaking, we do not need a background plot,  but could just  move a Lo
cator  around in  the  plane  with  perhaps  a  domain mesh.  We could  also  choose
between many different types of background plots.  Although the information in
the background plot is redundant, it does help orient the viewer, and modulus in-
formation is one of the best “orienters”.
In order to find all branches of the multifunction, we solve f HzL = w for w by tak-
ing sixth  powers  to  clear  the  radical,  so  that  the  equation to  be  solved becomes
w6 = H-1 + zL3 H-Â + zL2. 

In[43]:= wvalues  w . Solvefz6  w6, w
Out[43]=  1  z   z13, 1  z   z13,

113 1  z   z13, 113 1  z   z13,
123 1  z   z13, 123 1  z   z13

The  Presentations  multifunction  capability  allows  the  generation  of  continuous
sets of solutions along a path, even if a branch line is crossed. A path in the com-
plex  plane  is  first  initialized  using  the  Multivalues  function.  Multivalues  has
memory,  and  its  first  argument  will  routinely  contain  the  values  from the  most
recent evaluation. On initialization there are no previous values,  so Null  is  sup-
plied.  The  second  argument  is  the  list  of  expressions  for  the  solutions  and  the
third is the variable.
In[44]:= testpath  MultivaluesNull, wvalues, z;
We then calculate two successive values, which were conveniently picked to cross
the  branch line  going  from +1 to  -¶.  Successive  sets  of  multivalues  are  calcu-
lated  using  the  companion  function  CalculateMultivalues,  which  carries  the
particular pathname as a subvalue. The routine returns the list of values and the
permutation of the solutions used for those values.
In[45]:= CalculateMultivaluestestpath0.

CalculateMultivaluestestpath.01 
Out[45]= 0.5  0.866025 , 0.5  0.866025 ,

0.5  0.866025 , 0.5  0.866025 , 1.  2.220451016 ,
1.  2.220451016 , 1, 2, 3, 4, 5, 6

Out[46]= 0.497323  0.871422 , 0.497323  0.871422 ,
0.506012  0.866405 , 0.506012  0.866405 ,
1.00333  0.00501655 , 1.00333  0.00501655 , 2, 1, 4, 3, 6, 5

Note that the values have been permuted between the two solutions and that all
the solutions from the second evaluation are close to the solutions from the first
evaluation. Often we will only be interested in the first solution that is generated.
The following generates a table of values of the first solution as testpath circles
the  branch  point  at  z = 1.  For  multivalues  with  memory  to  work  properly,  the
steps on the path should be reasonably close. Here they are just close enough to
work and yet give a short output list of angle, first function value, and permuta-
tion used.
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In[47]:= testpath  MultivaluesNull, wvalues, z;
Column
Table, FirstFirst, Last &CalculateMultivalues

testpath1  0.2  , , 0, 2 , 2 12
1, 7, 8, 9, 13  sample path to indicate change 

Out[48]=

0, 0.505044  0.119094 , 1, 2, 3, 4, 5, 6
, 0.142909  0.464146 , 1, 2, 3, 4, 5, 6
 7 

6
, 0.0233462  0.496879 , 2, 1, 4, 3, 6, 5

 4 
3
, 0.110254  0.497419 , 2, 1, 4, 3, 6, 5

2 , 0.505044  0.119094 , 2, 1, 4, 3, 6, 5
Note that a complete circuit has reversed the function value. As we will show, it
takes two complete circuits to return to the original function value.
In the following presentation a background graphic consisting of a contour plot
of  the  modulus  f HzL  is  given  to  provide  some  overall  orientation  for  the
viewer. A locator is provided as a red CirclePoint.  This can be used to sample
f  at any point included in the domain of the graphic. Attached to the locator is a
vector that  gives  the value of  the first  solution (at  half  scale)  of  w = f HzL  at  that
point. On the right of the graphic, the numerical values of z  and f HzL  are given,
in Cartesian and polar form. The notation r—q is the form returned by the Presen- 
tations  function  ComplexPolar[r,]  to  represent  the  polar  form r ‰Â q,  in  other
words, the value of PolarToComplex@ComplexPolar[r,].

In[49]:= DynamicModulezpt  1., 1.65, w, root,
Module
f  Functionz, z  1 z  

3 , wvalues, z,
wvalues  MultivaluesNull, w . Solvew6  fz6, w, z;
Row
Draw2D

backplot,
DynamicArrowzpt, zpt 

12 ToCoordinatesroot  ExtractCalculateMultivalues
wvaluesToComplexzpt, 1, 1,

LocatorDynamiczpt, GraphicsCirclePoint
0, 0, 3, Black, Red,

Frame  True, FrameLabel  Re, Im, RotateLabel  False,
PlotRange  3,

PlotLabel  Rowf"z", "\n as a Riemann Surface",
Background  None, ImageSize  Scaled0.45,

DynamicColumn
ComplexArgumentPanelToComplexzpt, True, True, False,

"z", Top, Left, ImageSize  Scaled0.4, Spacer10,
ComplexArgumentPanelroot, True, True, False,

, ,
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In[49]:=

ComplexArgumentPanelroot, True, True, False,
Rowf"z", Top, Left,
ImageSize  Scaled0.4  Column ,

Spacer10  Row 


Out[49]=

z
1.+1.65 Â

1.92938—1.02593 H58.7816°L

-1 + z H-Â + zL1ê3

-0.761593-1.12945 Â

1.36223—-2.16407 H-123.992°L

Dragging the locator around the branch points demonstrates the multivalued na-
ture  of  f .  The  locator  must  be  dragged  twice  around  the  point  z = 1,  or  three
times around the point  z = Â,  in order to return to its  original  value.  It  must  be
dragged six times around the complex of both branch points in order to return to
its  original  value.  This  illustrates  that  it  is  not  possible  to  have  only  a  single
branch line that joins the two branch points. There must be at least one branch
line that goes to infinity.

Another way to present the same situation, carried out in [10], would be to attach
all six solution vectors to each point in an array. But it is amazing how much in-
formation  can  be  obtained  with  a  single  movable  point  and  a  single  continuous
solution.  This  is  a  true  four-dimensional  representation,  although  a  local  one:
the domain of the function provides two dimensions, and the vector provides two
more  dimensions.  By  moving  the  locator,  the  complete  four  dimensions  are  re-
vealed. Lastly, by showing only a single solution, we are in effect moving on the
function’s  Riemann  surface,  where  the  function  is  single-valued.  By  moving  to
various  points  on  the  surface  we  can  recover  all  of  the  values.  Thus  we  can  ex-
plore the entire surface and return to a starting point with no discontinuities and
no artifacts of intersecting surfaces. Of course we do not see the surface as an ob-
ject in four-dimensional space; it just smiles at us like the Cheshire cat.

The Riemann surface is a complex surface. One way to visualize it as surface-like
in real  three-dimensional  space is  to represent  it  as  a  ComplexPolar  object  but,
instead of r  and q  as arguments, use graphical objects that give the modulus and
argument of the surface.

In[50]:= ColumnStyle"Riemann surface ", FontFamily  "Helvetica",
Row

Draw3DItems
Opacity0.8, HTMLSteelBlue,
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In[50]:=

Opacity0.8, HTMLSteelBlue,
TableComplexPolarSurfacew, Abs,

z, ComplexPolar0, , ComplexPolar3, ,
Mesh  3, 24, w, wvalues,

NeutralLighting0, 0.6, 0.2, NiceRotation,

PlotLabel  Row"Modulus of ", fz,
ViewPoint  2.1421, 0.695506, 0.133009, Boxed  False,
ImageSize  Scaled0.4

,
StyleRow"", 18,
Draw3DItems
Opacity0.8, Orange,
TableComplexPolarSurfacew, Arg,

z, ComplexPolar0, , ComplexPolar3, ,
Mesh  3, 24, w, wvalues,

NeutralLighting0, 0.6, 0.2, NiceRotation,

PlotLabel  Row"Argument of ", fz,
ViewPoint  2.1421, 0.695506, 0.133009, Boxed  False,
ImageSize  Scaled0.4


, Alignment  Center, Spacings  1

Out[50]=

Riemann surface =



For aesthetic reasons the Box and Axes for the images were suppressed. There is
one artifact in this presentation: in the argument graphic we must identify the up-
per edges (which occur at p) with the corresponding lower edges (which occur at
-p).  Moreover,  it  is  quite  difficult  to  trace the paths  that  were used around the
branch points in the previous, vector-locator, presentation. Perhaps a better pre-
sentation is obtained by a picture that looks more closely about one of the branch
points, for example, z = 1.

In[51]:= ColumnStyle"Riemann surface ", FontFamily  "Helvetica",
Row

Draw3DItems
Opacity0.8, HTMLSteelBlue,
TableComplexPolarSurfacew, Abs,

,
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In[51]:=

TableComplexPolarSurfacew, Abs,
z, ComplexPolar0, , ComplexPolar0.2, , 1,
Mesh  3, 24, w, wvalues,

NeutralLighting0, 0.6, 0.2,
NiceRotation,
PlotLabel  Row"Modulus of ", fz, Boxed  False,
ViewPoint  2.1421, 0.695506, 0.133009,
ImageSize  Scaled0.4

,
StyleRow"", 18,
Draw3DItems
Opacity0.6, Orange,

TableComplexPolarSurfacew, Arg,

z, ComplexPolar0, , ComplexPolar0.2, , 1,
Mesh  3, 24, w, Partwvalues, 1, 2,

Opacity0.6, Blue,
TableComplexPolarSurfacew, Arg,

z, ComplexPolar0, , ComplexPolar0.2, , 1,
Mesh  3, 24, w, Partwvalues, 3, 4,

Opacity0.6, Green,
TableComplexPolarSurfacew, Arg,

z, ComplexPolar0, , ComplexPolar0.2, , 1,
Mesh  3, 24, w, Partwvalues, 5, 6,

NeutralLighting0, 0.6, 0.2,
NiceRotation,

PlotLabel  Row"Argument of ", fz,
ViewPoint  2.1421, 0.695506, 0.133009,
Boxed  False, BoxRatios  1, 1, 1,
ImageSize  Scaled0.4


, Alignment  Center, Spacings  1

Out[51]=

Riemann surface =



Viewed closely about the point z = 1, the Riemann argument surface appears as
three  separate  surfaces,  each  of  which  requires  two  revolutions  to  return  to  the 

1 and you will see one of the surfaces. Now take a de-
tour around the other zero at Â  and return to circling the zero at 1.  You will  be
on a  different  surface.  Take  one  more  detour  and you will  be  on the  third  sur-
face. This behavior might not have been discovered from the vector-locator pre-
sentation alone. Multiple presentations that complement each other are often the
route to a fuller understanding of the beauty of complex functions.
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Viewed closely about the point z = 1
three  separate  surfaces,  each  of
original  value.  Go  back  to  the  dynamic  vector-locator  presentation.  Circle
closely around the zero at 1 and you will see one of the surfaces. Now take a de-
tour around the other zero   return to circling the zero at 1.  You will  be
on a  different  surface.  Take  one  more  detour  and you will  be  on the  third  sur-
face. This behavior might not have been discovered from the vector-locator pre-
sentation alone. Multiple presentations that complement each other are often the
route to a fuller understanding of the beauty of complex functions.

Visualizing Riemann surfaces of multifunctions by means of surfaces in three-di-
mensional space also appears in [8].

‡ The Argument Principle
Domain coloring may also be used to visualize general principles about complex
functions.  We illustrate  this  with an adaptation of  an example by Lundmark [9]
concerning  the  Argument  Principle.  (Lundmark  also  provides  online  examples
of  similar  types  of  domain-coloring  plots  created  using  tools  other  than  Mathe-
matica.) 
The following function has a pole of order 3 at z = 0, a zero of order 2 at z = 2,
and zeros of order 1 at z = -2 - 2 Â and -1 + 2 Â.

In[52]:= fz_ : z  22 z  1  2  z  2  2  z3
To illustrate the Argument Principle, we shall construct a graphic in two stages.
In the first stage we construct a background graphic that is colored according to
the  argument  of  the  function  and  then  superimpose  modulus  contours  on  top
of that. The function DomainColoring can generally be used for three-color col-
oring to indicate argument and modulus simultaneously. But here we use it with
an  ArgColor  routine  that  colors  from  IndianRed  to  Yellow  as  the  argument
varies from 0 to 2 p. (This results from the “0” argument in ArgColor that speci-
fies  the  branch  point  in  the  z  domain  to  be  at  0  radians.  Normally  it  is  at  -p.)
Finally, ComplexCartesianContour is used to plot a selected set of modulus con-
tours without any contour shading so that they overlay the argument coloring.

In[53]:= With
zmin  3 1  , zmax  3 1  ,
colorfunction 
ArgColorLegacyIndianRed, Yellow, Black, LegacySmoke0,

Draw2D
background 

DomainColoringfz,
z, zmin, zmax, colorfunction, PlotPoints  200,

ComplexCartesianContourfz, z, zmin, zmax, Abs,

Contours 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 20, 100, 200,
ContourShading None,

PlotRange 0, 250,
PlotRange 3,

Frame True, FrameLabel Re, Im, RotateLabel  False,
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In[53]:=

Frame  True, FrameLabel  Re, Im, RotateLabel  False,
PlotLabel 
Row"Domain Coloring of ", fz, "\n with Modulus Contours"



Out[53]=

In  the  second  stage  of  constructing  the  graphic,  upon  that  background  we  plot
two simple closed curves, the first around the points z = 2 and z = -1 + 2 Â,  and
the  second  around  z = 0  and  z = -2 - 2 Â.  (In  Mathematica  5  these  points  were
obtained  by  clicking  and  copying  points.  In  Mathematica  6  they  could  be  ob-
tained by using the LocatorLine routine in Presentations that allows any number
of  locators  to be positioned on the graphic  and used to copy their  coordinates.)
Each  of  the  branch  points  is  labeled  with  its  signed  multiplicity,  a  positive  sign
denoting a zero and a negative sign denoting a pole.

In[54]:= poleszeros  2, 1  2 , 2  2 , 0; offset  0.1  0.2 ;

In[55]:= circuit1  SplineToLine0.342528, 0.32536, 0.369328, 0.492018,
0.020937, 1.3094, 0.809841, 1.2826, 1.60042, 0.43842,
2.2436, 0.633552, 2.4044, 1.47773, 2.458, 2.20131,
1.52002, 2.5497, 0.421251, 2.05391,
0.181733, 1.08914, 0.342528, 0.32536, Cubic, 40;

circuit2  SplineToLine2.51327, 0.0632296, 2.27208, 0.626015,
1.92369, 1.229, 1.5351, 1.63099, 1.06611, 2.01958,
0.302329, 2.38137, 0.582047, 2.54216,
1.41282, 2.48856, 1.62722, 2.05978, 1.58702, 1.64439,
1.30563, 1.44339, 0.943837, 1.53719,
0.488249, 1.69799, 0.113059, 1.72479,
0.168333, 1.56399, 0.530123, 1.2692, 0.771317, 0.894007,
0.918713, 0.398221, 1.15991, 0.124365,
1.5351, 0.512955, 2.07108, 0.620152,
2.48647, 0.298561, 2.51327, 0.0632296, Cubic, 50;

In[57]:=
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In[57]:= With
zmin  3 1  , zmax  3 1  ,
colorfunction 
ArgColorLegacyIndianRed, Yellow, Black, LegacySmoke,

Draw2D
background,
ComplexCirclePoint1, 4, Black, LegacySkyBlue & 
2, 1  2 , 2  2 ,

ComplexCirclePoint0, 5, Black, Blue,
AbsoluteThickness2, Arrowheads0.06, 0.8,
LegacyDodgerBlue, Arrowcircuit1,
LegacySeaGreen, Arrowheads0.06, 0.2, Arrowcircuit2,
Black,

MapThread
ComplexTextStyle2, FontSize  12, FontWeight  "Bold",

1 &, offset  poleszeros, 2, 1, 1, 3,
PlotRange  3,

Frame  True, FrameLabel  Re, Im,
PlotLabel 
Row"Domain Coloring of ", fz, "\n with Modulus Contours"



Out[57]=

As  the  argument  coloring  indicates,  as  z  makes  a  circuit  of  each  simple  closed
curve,  the  number  of  times  the  argument  of  f HzL  increments  by  2 p  equals  the
sum of the orders of  the zeros and poles inside that  curve.  And that  is  precisely
what,  according to  the  Argument  Principle,  happens  in  general  for  a  meromor-
phic function f : Let g be a positively oriented, simple closed curve that does not
pass through any zeros or poles of f . As z winds around g, the image curve f Îg
winds N - P  times around w = 0, where N  is  the number of zeros of f  inside g
and  P  is  the  number  of  poles  inside  g,  where  each  zero  and  pole  is  counted  as
many times as its multiplicity.
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As  the  argument  coloring  indicates,  as  z  makes  a  circuit  of  each  simple  closed
curve,  the  number  of  times  the  argument  of  f HzL  increments  by  2 p  equals  the
sum of the orders of  the zeros and poles inside that  curve.  And that  is  precisely
what,  according to  the  Argument  Principle,  happens  in  general  for  a  meromor-
phic function f : Let g
pass through any zeros or poles of f . As z winds around g, the image curve f Îg
winds N - P  times around w = 0, where N  is  the number of zeros of f  inside g
and  P  is  the  number  of  poles  inside  g,  where  each  zero  and  pole  is  counted  as
many times as its multiplicity. 

‡ Conclusion
Ideally, students coming to a complex analysis course where Presentations  is used
would already be experienced with Mathematica.  In reality,  unfortunately,  this  is
seldom  the  case:  students  must  learn  Mathematica  fundamentals  with  specifics
about  Presentations  as  they  are  learning  about  complex  numbers  and  complex
functions. In the first-named author’s course, two days’ class time was spent in a
laboratory setting with a hands-on, rapid introduction to Mathematica,  including
a first glimpse of some functionality of Cardano3 that is now in Presentations. Al-
though that arrangement was hardly optimal, it sufficed to get them started.

To a Mathematica novice, the syntax of graphics routines in Cardano3, with their
multiple, deeply-nested list arguments, was daunting. In the first author’s course,
few students  succeeded in constructing a  syntactically  correct  domain-codomain
mapping graphic  without  direct  access  to the documentation;  they therefore re-
lied upon instructor-provided templates for their own work. 

As a result of that teaching experience of the first author and the entirely new fea-
tures  introduced  with  Mathematica  6,  the  Cardano3  routines  were  completely
redesigned  and  rewritten  and  then  incorporated  in  the  Presentations  application,
the  successor  to  DrawGraphics.  One  major  flaw  in  the  Cardano3  design  was  an
attempt  to  create  a  container  and user  interface  that  would  handle  all  complex-
function graphics. It is now recognized that packages should not create new inter-
faces, which are just additional specialized things that students have to learn, but
should instead simply extend Mathematica and mesh with its standard usage.

Until  such  a  time  as  technical  students  can  begin  learning  Mathematica  in  sec-
ondary school, it will remain a challenge to bring them up to speed for Mathemat-
ica use in college courses. A temporary and imperfect, but still useful, alternative
could be to provide the kinds of examples shown here as webMathematica applica-
tions  or  Demonstrations  (demonstrations.wolfram.com).  For  now the  best  solu-
tion  may  be  specially  designed  Mathematica  tutorials  that  present  the  common
constructions used in the course and introductory labs. But there is a wonderful
payoff when students can obtain hands-on visual experience of the mathematical
objects to complement their analytical work. 
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