
The Mathematica®Journal

Visualizing Complex Functions
with the Presentations Application
Murray Eisenberg
David J. M. Park, Jr.
Visualization is an invaluable companion to symbolic computation in un-
derstanding the complex plane and complex-valued functions of a complex
variable. The Presentations application, an add-on to Mathematica, provides
a rich set of tools for assisting such visualization. This article demonstrates
some capabilities of the application, especially those relevant in an intro-
duction to complex analysis, and it indicates some teaching and learning
issues that arise. Included are examples of how complex functions map
objects in the complex plane and on the Riemann sphere, and of how
complex functions behave near singularities and at branch points.

‡ Introduction
Visualization and symbolic computation are both essential to understanding how
functions behave. Visualizing the behavior of a real-valued function of a real vari-
able is often easy because the function’s graph may be plotted in the plane~a
space with just two real dimensions. On the other hand, visualizing the behavior
of a complex-valued function of a complex variable is more difficult because the
graph lives in a space with four real dimensions. Whereas Mathematica is replete
with resources for symbolic computation with complex functions, out of the box
it provides only a meager set of tools for visualizing such functions. To do much
more than what is provided by the two-parameter form of ParametricPlot~
the replacement for the standard add-on package Graphics`ComplexMap`~
even to plot the image of a simple curve in the complex plane requires the effort
of constructing the image set and its graphical representation and then combin-
ing the graphics objects. The Presentations application [1], written by the second
author, is a purchasable add-on to Mathematica that provides, among many other
things, a rich set of tools for plotting complex functions and some utilities for
complex symbolic computation. Presentations includes full documentation with in-
dividual help pages and examples for each command.

Presentations is the successor to both the Cardano3 [2] and DrawGraphics [1] appli-
cations. In a Mathematica-enriched introductory complex analysis course, the
first author prepared demonstration and exercise notebooks for Cardano3 [3] and
experimented with students’ using it; experience there led to some enhancement
of the application. The course used the textbook by Mathews and Howell [4],
which is fairly traditional in approach, although it does go a bit further than
some introductions in emphasizing mapping properties of complex functions. Pre-
sentations would be especially suitable for use with a less traditional, more visually
oriented text, such as the one by Needham [5], which inspired and helped guide
development of the application.

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

Presentations is the successor to both the Cardano3 [2] and DrawGraphics [1] appli-
cations. In a Mathematica-enriched introductory complex analysis course, the
first author prepared demonstration and exercise notebooks for Cardano3 [3] and
experimented with students’ using it; experience there led to some enhancement
of the application. The course used the textbook by Mathews and Howell [4],
which is fairly traditional in approach, although it does go a bit further than
some introductions in emphasizing mapping properties of complex functions. Pre-
sentations would be especially suitable for use with a less traditional, more visually
oriented text, such as the one by Needham [5], which inspired and helped guide
development of the application.

In this article we demonstrate some capabilities of the Presentations package
ComplexGraphics, especially those relevant in an introduction to complex analysis.
The examples include a geometric problem solved by complex means, represen-
tations of complex functions as mappings, depiction of singularities, analysis
of branch points, and a visualization of the Argument Principle. Typically the ex-
amples include embellishments that might be inappropriate for a novice at both
Mathematica and complex analysis to program, but these embellishments illus-
trate some of the advanced functionality of the packages.

Various graphical representations of complex functions are often needed to
emphasize their various features. DrawCartesianMap and DrawPolarMap plots
within Draw2D expressions can be used to emphasize mapping properties.
Riemann sphere plots can be used to better depict behavior near the point at
infinity, or to emphasize periodic behavior. ComplexDensityDraw and other
domain-coloring plots give an overall representation of a function in the plane
that emphasizes singular points and branch lines.
Representing complex values as vectors is one method for obtaining a four-di-
mensional picture~two dimensions in the plane and two dimensions in each
vector. By moving a single vector as a Locator around the domain, we can see
how a function varies along a path; superimposing the moving vector upon a
background ComplexPolarContour plot of the modulus provides even further
visual information. This visual information can be accompanied by panels giving
dynamically changing numerical values. More generally, dynamic interactivity is
especially effective in making various properties come alive. Presentations can give
an overall picture or zoom in on particular portions of the domain. Multi-
functions can be used with several of the plot types. All these techniques increase
our ability to understand complex function behavior.

Top-level Presentations complex graphics functions ultimately call upon more gen-
eral graphing routines like those in DrawGraphics, which is discussed in [6]; the
Presentations graphing routines, in turn, ultimately call built-in Mathematica func-
tions. To reproduce all the results in this notebook, in addition to Mathematica
and Presentations, will also require Ersek’s RootSearch package [7].

Only some of the functionality of Presentations is illustrated here, even for com-
plex functions. Visualizations of Riemann surfaces are discussed in [8]. Online re-
sources for visualizing complex functions are available that do not involve Mathe-
matica at all; see [9], for example.
This article is based upon the authors’ original paper [10] for the eighth Interna-
tional Mathematica Symposium (IMS’06) that used Cardano3. Thanks to the ad-
vances in Mathematica 6 and the concomitant development of the application, the
examples here go well beyond what was possible before.

‡ Initialization
To begin, we initialize the Presentations application.

Visualizing Complex Functions with the Presentations Application 227

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[3]:= Needs"Presentations`Master`"
To open the documentation for Presentations directly, evaluate the following in-
put cell.

In[4]:= PresentationsHelp

The function styleText will be used in several places to format point labels.

In[5]:= styleTexttxt_, z_, offset_: 0, 0 :
StyleComplexTextTraditionalFormtxt, z, offset,
FontSize  12, Bold;

‡ Geometry in the Complex Plane
Presentations contains a complete set of graphics primitives that directly use com-
plex numbers for points. Geometrical diagrams are an important part of mathe-
matical discussions, yet students find it difficult to draw such diagrams. The
power of complex algebra is that many such diagrams are more easily constructed
and drawn in the complex plane. Such diagrams are not only an excellent intro-
duction to Presentations and complex algebra, but also a valuable technique for
mathematical work.
The problem considered here is from a posting on MathGroup [11] (with Greek
letters used for the angle variables of the original):

I am trying to find the angle b corresponding to the points on the cir-
cumference of the circle H5 + 8 Cos@bD, 7 + 8 Sin@bDL that are a dis-
tance of 7 units from a point on the circumference of the circle
H13 Cos@aD, 13 Sin@aDL for angles a in the first quadrant.

The following creates a diagram for the problem.

In[6]:= Withc  5  7 , r1  8, r2  13, 1  60 °, 1  25 °,
Draw2D
ComplexCurvec  r1  , , 0, 2 ,
Red, ComplexCurver2  , , 0, 2,
Gray, ComplexLinec, c  r1,
ComplexLinec, c  r1  1,
ComplexLine0, r2  1,
Blue, ComplexLiner2  1, c  r1  1,
Black, ComplexText"", c  r15  12,
ComplexText"", r25  12,
ComplexCirclePointc, 3, Black, LegacyLinen,
ComplexCirclePoint, 3, Black, LegacyPeacock & 
c  r1  1, r2  1,

Axes  True, Ticks  None,
PlotLabel  "Geometry Problem",

ImageSize  Scaled0.4


228 Murray Eisenberg and David J. M. Park, Jr.

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

Out[6]= b

a

Geometry Problem

Given a value of angle a, find angles b such that the blue line joining the two cir-
cled points has a length 7. To solve this problem, we simplify things by writing
the complex equation H5 + 7 ÂL + 8 ‰Â b - 13 ‰Â a = 7 for b with a as parameter.

In[7]:= eqn_  ComplexExpandAbs5  7   8    13    7

Out[7]= 5  13 Cos  8 Cos2  7  13 Sin  8 Sin2  7

An additional geometrical diagram (not shown) indicates that the equation for b
always has two roots. The roots are most easily found by using Ersek’s RootSearch
package [7].

In[8]:= Needs"Ersek`RootSearch`"
For example, evaluating RootSearch[eqn[/4],{,0,2}] gives the result
{{1.53612},{5.71073}}. To show how the solutions change as a varies
from 0 to p ê 2, we exploit the new dynamic interactivity introduced in Mathemat-
ica 6 as well as its ability to combine graphical and numerical information. First,
the following definition calculates the two b solutions with the graphics based on
the solutions and returns them in a list.

In[9]:= diagramdata_ :
Module
c  5  7 , r1  8, r2  13, 1, 2, , graphics,
1, 2  Flatten . Quiet

RootSearcheqn, , , , $MinPrecision::precset;
graphics 
Draw2D
ComplexCurvec  r1  , , 0, 2 ,
Red, ComplexCurver2  , , 0, 2,
Blue, ComplexLiner2  , c  r1  1,
ComplexLiner2  , c  r1  2,
LightBlue, ComplexCurver2    7  , , 0, 2 ,
Black, ComplexCirclePointc, 3, Black, LegacyLinen,
ComplexCirclePoint, 3, Black, LegacyPeacock & 
r2  , c  r1  1, c  r1  2, r2  ,

Axes  True, Ticks  None,
,

Visualizing Complex Functions with the Presentations Application 229

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[9]:=

Axes  True, Ticks  None,
PlotRange  10, 22, 8, 22,
ImageSize  Scaled0.4 ;

graphics, 1, 2;
The following Manipulate expression displays the graphics along with panels
showing the values of a and the corresponding two values of b.

In[10]:= Manipulate
Modulegraphics, 1, 2,
graphics, 1, 2  diagramdata;
 Prevent switching of solutions 
If1  2, 1, 2  2, 1;
Row
graphics,
 Numerical Information 
Column
PanelRowNumberForm Degree, 4, 2, "°", "  ",

Left, Top, FrameMargins  0, ImageSize  Scaled0.15,
PanelRowNumberForm1 Degree, 4, 2, "°", "1",
Left, Top, FrameMargins  0, ImageSize  Scaled0.15,

PanelRowNumberForm2 Degree, 4, 2, "°", "2",
Left, Top, FrameMargins  0, ImageSize  Scaled0.15

, Spacings  1
, Spacer10

,
"Geometry Problem Solved",

, 0.734, 0, 2

Out[10]=

Geometry Problem Solved

a

a 42.06°

b1 -39.91°

b2 80.23°

Such a dynamic presentation combining graphics and numerical data gives a su-
perb hands-on experience of a relationship and increases confidence in the consis-
tency of the solution method.

230 Murray Eisenberg and David J. M. Park, Jr.

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

‡ Complex Functions as Mappings of the Plane
The most direct way to represent a function f :  Ø  as a mapping is to display
side by side the domain and codomain planes (or their Riemann sphere compacti-
fications), to place in the domain some objects of interest, and to display the cor-
responding images of these objects under f in the codomain. Usually we locate
the objects with reference to some grid in the domain, and then display their im-
ages with reference to the image of that grid.

To represent such a function as a mapping with Presentations, we shall use two in-
stances of Draw2D, the first for the z domain and the second for the w = f HzL
codomain. The function Draw2D is the basic construct for readily combining
plots and other graphics objects without the need for using Prolog, Epilog, or
Show.
Our first example is an affine linear function of the form f HzL = a z + b.

In[11]:= fz_ : 2   z  3 

This example is a good place to start because it is so easy to calculate directly
(even with paper and pencil!) the images of lines and circles, and hence to under-
stand the very concept of a function f :  Ø  as a mapping~a concept that
many beginners at first find difficult. The plot we are going to construct will
show how a triangle and a circle upon a Cartesian grid map under f . The follow-
ing code just forms the objects to be plotted, but does not display them.

In[12]:= With
 Three points defining the triangle 
a  , b  1  , c  32  2,
 The center and radius defining the circle 
p  1  2, radius  45,

 The points to be drawn as outlined disks 
pts  ComplexCirclePoint, 3, Black, LegacyCadmiumOrange & 

a, b, c, p;
 The triangle and circle to be drawn thick and green 
triangle  LegacyCobaltGreen,

AbsoluteThickness3, ComplexLinea, b, c, a;
circle  LegacyCobaltGreen, AbsoluteThickness3,

ComplexCirclep, radius;
 Point labels in the z plane 
zLabels 
Black, styleText"a", a, 2, 1, styleText"b", b, 2, 1.5,
styleText"c", c, 1.5, 1, styleText"p", p, 1, 1;

 Point labels in the w plane 
wLabels  Black, styleTextHoldFormf"a", fa, 1.5, 0,

styleTextHoldFormf"b", fb, 1, 1.5,
styleTextHoldFormf"c", fc, 1.5, 1,
styleTextHoldFormf"p", fp, 1, 1.5;

 z plane domain 
zdomain 

Visualizing Complex Functions with the Presentations Application 231

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[12]:=

zdomain 
Opacity0.5, HTMLWheat,
DrawCartesianMapz, z, 2 1  , 2 1  ,
PlotPoints  30,
BoundaryStyle  DirectiveThick, Black,
Mesh  15, 15, MeshStyle  HTMLSeaGreen, DarkerBrown;

The function DrawCartesianMap produces the underlying grid for the z domain
plane. Note that although DrawCartesianMap is a two-dimensional construct, it
uses only a single complex iterator z, zmin, zmax where zmin and zmax delin-
eate a rectangular region in the complex plane. This is a general feature of the
complex plotting routines in Presentations. For polar plots the iterator would use
the ComplexPolarr,q] form of complex numbers provided by the package and
would then take the form:

 z, ComplexPolarrmin, qmin, ComplexPolarrmax, qmax, center.

The Presentations functions Legacy and HTML, also used previously, provide short-
cuts for colors not defined in the kernel. They could also simply be clicked from
the ColorSchemes palette.
Finally, we insert the objects into two Draw2D expressions and combine the latter
in a Row. In the second Draw2D, it is the derived function ComplexMap[f] that
transforms the grid along with the triangle and circle.

In[13]:= Row
Draw2Dtriangle, circle, zdomain, pts, zLabels,

Axes  True, PlotRange  6,

PlotLabel  z, ImageSize  Scaled0.4,
Draw2Dtriangle, circle, zdomain, pts  ComplexMapf,

wLabels,
Axes  True, AxesOrigin  0, 0,
PlotRange  6, 6, 9, 3,
PlotLabel  HoldFormfz fz, ImageSize  Scaled0.4,

Spacer3

Out[13]=

The plot suggests that f maps lines to lines, and circles to circles; it further sug-
gests that rotation, stretching, and translation are involved. To verify analytically
that this is so, we need only write f as the composite of a rotation around the ori-
gin, a dilation, and a translation. The documentation for Presentations illustrates

232 Murray Eisenberg and David J. M. Park, Jr.

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

The plot suggests that f maps lines to lines, and circles to circles; it further sug-
gests that rotation, stretching, and translation are involved. To verify analytically
that this is so, we need only write f

the actions of rotations, dilations, and translations by means of animations in the
complex plane and their lifts to the Riemann sphere.
For a novice, such a first example should surely be simpler; for example, it might
involve mapping just a single line segment, foregoing labeling the points, and us-
ing default colors. Producing such a graphic may either precede the analysis, to
suggest what the analysis will reveal, or else follow the analysis, to confirm visu-
ally what the analysis predicts.
The simplest nonlinear polynomial is the squaring function. Here is a naive stu-
dent’s attempt to show how it maps.

In[14]:= grid  Opacity0.5, HTMLWheat,
DrawCartesianMapz, z, 2 1  , 2 1  ,
BoundaryStyle  DirectiveThick, Black,
Mesh  11, 11, MeshStyle  HTMLSeaGreen, DarkerBrown;

horiz  LegacyCadmiumOrange,
Thickness0.01, ComplexLine2  4 5, 2  4 5;

vert  LegacyCobaltGreen, Thickness0.01,
ComplexLine65  2 , 65  2 ;

In[17]:= Row
Draw2Dgrid, horiz, vert, PlotRange  4,

Axes  True, ImageSize  Scaled0.4,
Draw2Dgrid, horiz, vert  ComplexMap^2 &,
PlotRange  8, Axes  True,

ImagePadding  0, 0, 24, 6,
PlotLabel  "Wrong images\nof highlighted segments",
ImageSize  Scaled0.4, Spacer4

Out[17]=

The parabolic arcs shown as the images of the horizontal and vertical segments
of the grid are correct, but the images of the highlighted horizontal and vertical
segments are wrong. The student, trying to generalize from the case of affine lin-
ear mappings, had unreasonable expectations as to what the application would do.
What went wrong is this. When using ComplexMap to form the image of the grid
itself, Presentations applies the target function (here z # z2) to points along the
lines of the grid and then connects the resulting image points in the codomain.
For a primitive graphics object such as ComplexLine, however, it merely applies
the function to distinguished points of the object~for ComplexLine, its ver-
tices~and then forms the corresponding object in the codomain based upon the
images of the distinguished points.

Visualizing Complex Functions with the Presentations Application 233

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

What went wrong is this. When using ComplexMap to form the image of the grid
itself, Presentations applies the target function (here z # z2) to points along the
lines of the grid and then connects the resulting image points in the codomain.
For a primitive graphics object such as ComplexLine, however, it merely applies
the function to distinguished points of the object~for ComplexLine, its ver-
tices~and then forms the corresponding object in the codomain based upon the
images of the distinguished points.

It was the encounter with this misunderstanding by students that led to the new
Presentations primitive ComplexCurve to represent a curve in the complex plane
parameterized by a real variable. The Presentations routines find the image
of such a curve in the same way as for the lines in a grid~by sampling points
along the curve, calculating their images, and then connecting the image points.
The following modified curve, employing ComplexCurve objects, correctly repre-
sents the mapping.

In[18]:= grid  Opacity0.5, HTMLWheat,
DrawCartesianMapz, z, 2 1  , 2 1  ,
BoundaryStyle  DirectiveThick, Black,
Mesh  11, 11, MeshStyle  HTMLSeaGreen, DarkerBrown;

horizontal  LegacyCadmiumOrange, Thickness0.015,
ComplexCurve1  t 2  4 5  t  2  4 5, t, 0, 1;

vertical  LegacyCobaltGreen, Thickness0.015,
ComplexCurve1  s 65  2   s 65  2 , s, 0, 1;

In[21]:= Row
Draw2Dgrid, horizontal, vertical,

PlotRange  4, Axes  True, ImageSize  Scaled0.4,
Draw2Dgrid, horizontal, vertical  ComplexMap^2 &,
PlotRange  8, Axes  True, ImageSize  Scaled0.4, Spacer4

Out[21]=

Of course a rectangular grid is hardly the best way to understand how the squar-
ing function maps. A polar grid, in this case covering a half-disk that we create
first, is much better.

234 Murray Eisenberg and David J. M. Park, Jr.

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[22]:= polargrid  Opacity0.5, HTMLWheat,
DrawPolarMapz, z, ComplexPolar0, 0, ComplexPolar2, ,
BoundaryStyle  DirectiveThick, Black,
Mesh  5, 9, MeshStyle 
HTMLSeaGreen, DirectiveDashed, DarkerBrown;

Then the plot produced by the following code would show that the squaring
function doubles angles as it squares moduli. (The result has been suppressed.)

In[23]:= Witharc  LegacyCobaltGreen, Thickness0.01,
ComplexCurve53 Exp , , 0, ,

ray  LegacyCadmiumOrange, Thickness0.01,
ComplexLine0, ComplexPolar2, 4,

pts  ComplexCirclePoint53, 3, Black, LegacyCadmiumOrange,
ComplexCirclePoint5 3, 3, Black, LegacyLawnGreen,

Row
Draw2D

polargrid, ray, arc, pts,
PlotRange  4.2, Axes  True, ImageSize  Scaled0.4,

Draw2DArrowheads0.25, NeedhamMappingSymbol0, 1,
styleTextTraditionalFormz2, 0.5  0.6 ,

PlotRangeClipping  False, ImageSize  Scaled0.06,
ImagePadding  0, 0, 25, 10,

Draw2D
polargrid, ray, arc, pts  ComplexMap2 &, PlotRange 
4.2, Axes  True, ImageSize  Scaled0.4, Spacer5;


With Mathematica, and its special dynamic features, it takes little extra work to
convert such a static display into a dynamic presentation. We only have to keep
in mind which parameters are going to be variable or dynamic, and so it is useful
to develop the initial graphics within a Module or With expression that has the pa-
rameters as local variables.

In[24]:= Manipulate
Modulearc, ray, pts,
arcr_ : LegacyCobaltGreen,

Thickness0.01, ComplexCurver Exp , , 0, ;
ray_ : LegacyCadmiumOrange, Thickness0.01,

ComplexLine0, ComplexPolar2, ;
ptsr_, _ : ComplexCirclePointr, 4, Black,

LegacyCadmiumOrange, ComplexCirclePoint
ComplexPolarr, , 4, Black, LegacyLawnGreen;

Row
Draw2D

polargrid, ray, arcr, ptsr, ,
, , ,

Visualizing Complex Functions with the Presentations Application 235

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[24]:=

polargrid, ray, arcr, ptsr, ,
PlotRange  4.2, Axes  True, ImageSize  Scaled0.35,

Draw2DArrowheads0.25, NeedhamMappingSymbol0, 1,
styleTextTraditionalFormz2, 0.5  0.6 ,

PlotRangeClipping  False, ImageSize  Scaled0.06,
ImagePadding  0, 0, 25, 10,

Draw2D
polargrid, ray, arcr, ptsr,   ComplexMap^2 &,

PlotRange  4.2, Axes  True,

ImageSize  Scaled0.35, Spacer5
,
r, 53  N, 0, 2, Appearance  "Labeled",
, 4  N, 0, , Appearance  "Labeled"

Out[24]=

r 1.66667

q 0.785398

z 2

Similarly, the code could be modified to show dynamically what happens for vary-
ing powers zn of z.

‡ Lifting Complex Mappings to the Riemann Sphere
Mapping properties of some complex functions may be nicely visualized by con-
sidering them as mappings of the Riemann sphere W. Let 

`
= ‹ 8¶< be the ex-

tended complex plane, and let p : W Ø 
`

 be the stereographic projection onto the
equatorial plane, with the north pole going to the point at infinity. To visualize
the map p-1 :  Ø W, consider the part A of the closed disk D2H0L in the closed
first quadrant.

First, we create a double polar grid on A to distinguish points inside the unit cir-
cle from points outside it and highlight parts of the boundary of A.

In[25]:=

236 Murray Eisenberg and David J. M. Park, Jr.

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[25]:= polargrids  Opacity0.5, LegacyWheat,
DrawPolarMapz, z, ComplexPolar0, 0, ComplexPolar1, 2,
BoundaryStyle  DirectiveThick, LegacyDimGray,
Mesh  5, 8, MeshStyle  LegacyRoyalBlue,

DrawPolarMapz,
z, ComplexPolar1, 0, ComplexPolar2, 2,
BoundaryStyle  DirectiveThin, LegacyDimGray,
Mesh  5, 8, MeshStyle  LegacyIndianRed;

quarterCircle 
Purple, Thickness0.01, ComplexCurve , , 0, 2;

origin  LegacyCadmiumOrange,
PointSizeLarge, ComplexPoint0;

xAxis  LegacyCobaltGreen, Thickness0.01,
FineGrainLines0.02, 8ComplexLine0, 2;

graphics2D  polargrids, quarterCircle, xAxis, origin;
The output from the following depicts both A and its image p-1HAL on the Rie-
mann sphere. Projection of the plane onto the sphere is handled by Stereo
graphicMap.

In[30]:= Manipulate
Row
Draw2Dgraphics2D, PlotRange  1.15, 2.15, 0.15, 2.15,

Axes  True, AxesStyle  DirectiveLegacyDimGray,
Ticks  Range1, 2, Range0, 2, ImageSize  Scaled0.35,

Draw3DItems
ColoredRiemannSphereOpacity0.15, Orange, graphics2D 

StereographicMap  RotationTransformOp, 0, 0, 1,
ViewPoint  1.27415, 0.910696, 0.695037, ViewRiemann,
ImageSize  Scaled0.35

, Spacer8,
, 0, "Rotation angle", 0, 2 , FrameLabel  None, None,

Style"Mapping to the Riemann Sphere", FontWeight  Bold, None

Visualizing Complex Functions with the Presentations Application 237

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

Out[30]=

Mapping to the Riemann Sphere

Rotation angle

In the first author’s course, stereographic projection had been described geomet-
rically. When this graphic was demonstrated, students were curious to learn how
the application implemented the projection. The explicit formula for Stereo
graphicMap appears in the ComplexGraphics package code, but students could not
readily ferret that out. Using the application motivated the students to discover
the formula and thereby presented an opportunity for them to exercise three-di-
mensional vector methods.
Our final example of visualizing complex functions as mappings is the complex
sine. The following shows how sine maps a square grid in the z plane, with the
image lifted to the Riemann sphere.

In[31]:= grid  Opacity0.5, HTMLLinen,
DrawCartesianMapz, z, 2 1  , 2 1  ,
BoundaryStyle  DirectiveThin, Black,
Mesh  14, 14,
MeshStyle  LegacyDimGray, LegacyDimGray;

points  PointSizeLarge, TableHue0.1677 j 20,
ComplexPoint  j 10  0.95 , j, 0, 20;

positiveIAxis  LegacyMediumSeaGreen, Thick,

ComplexCurve y, y, 0, ;
primitives  grid, positiveIAxis, points;

238 Murray Eisenberg and David J. M. Park, Jr.

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[35]:= Row
Draw2Dprimitives, PlotRange  ,
Axes  True, AxesStyle  LegacyDimGray,
Ticks  2 Range2, 2, 2 Range2, 2,
Background  LegacyLinen,
ImageSize  Scaled0.4,

Draw3DItems
ColoredRiemannSphereOpacity0.2, LegacyLightSkyBlue,
primitives  ComplexMapSin  StereographicMap,

ViewPoint  0.991, 1.378, 0.2579, ViewRiemann,

Background  Opacity0.25, LegacyLightSkyBlue,
ImageSize  Scaled0.4, Spacer3

Out[35]=

The grid is embellished with colored points. Sine is periodic of real period 2 p,
and nothing better illustrates this than the way the image wraps around the Rie-
mann sphere, bringing the ends of the string of colored points together.

‡ Singularities
One way to visualize the behavior of a function f :  Ø  at singularities is to
plot in 3-space the modulus f :  Ø . This can be realized in a ComplexPo
larSurface with second argument Abs. (More generally, a second argument s
for a function s :  Ø  will provide a plot of the composite sÎ f :  Ø . Other
instructive cases are s = Re and s = Im.)
The following function has poles at z = -2, z = -1, z = 1, z = Â, and z = -Â.

In[36]:= fz_ : z Cosz z  12 z2  12 z2  3 z  2 
Due to the symmetry about the origin of two pairs of the poles of f , it is appro-
priate to plot over a polar region. The following plot depicts that
lim zØ z0 f HzL = ¶ at each pole z0. (We could have used dynamic interactivity
to zoom in on each pole.)

Visualizing Complex Functions with the Presentations Application 239

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[37]:= Draw3DItems
ColorMixLegacyMediumSeaGreen, White0.2,
 Draw the entire surface 
ComplexPolarSurfacefz, Abs,
z, ComplexPolar0, 0, ComplexPolar3, 2 , 0,
Mesh  None,

 Draw a finegrained image in the region of the weak pole at 2 
ComplexPolarSurfacefz, Abs,
z, ComplexPolar1.75, 170 °, ComplexPolar2.25, 190 °, 0,
Mesh  None,

PlotRange  0, 0.5, BoxRatios  1, 1, 0.5,
Axes  True, Background  LegacyAliceBlue,
PlotLabel  Row"Surface plot of ", HoldFormAbsfz,
ViewPoint  0.3, 2.7, 2.1

Out[37]=

The funnels at the poles appear to have different girths. The following calcula-
tion confirms that observation quantitatively.
In[38]:= poles  z . UnionSolveDenominatorfz 0, z;

Tablez0,
With  0.05,
NIntegratefz, z, z0     , z0     , z0     ,

z0     , z0       Abs, z0, poles  TableForm
Out[39]//TableForm=

2 0.023242

1 0.212176

 0.361677

 0.361677

1 0.479623

240 Murray Eisenberg and David J. M. Park, Jr.

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

‡ Multifunctions
The next example, suggested by a problem in Needham [5, p. 117] uses function-
ality of Presentations that is more advanced than what might be introduced in a
first course in complex analysis. It concerns the following complex function.

In[40]:= fz_ : z  1 z  
3

The objective is to determine the nature of the branch points z = 1 and z = Â and
how the function varies as we follow various paths in the complex plane. To do
so we shall employ a different representation of a complex function that uses a
single movable point z in the complex domain with an attached vector pointing
from z to z + f HzL.

First, we make a background plot on which to superimpose the moving complex
vector.

In[41]:= backplot  ComplexPolarContourfz,
z, ComplexPolar0, , ComplexPolar3, , Abs,
PlotRange  3,

PlotPoints  15, 24, MaxRecursion  2,
ColorFunctionScaling  False,

Contours  Range0, 3, 0.25,
ColorFunction 
ColorData"ThermometerColors"Rescale, 0, 3 &;

In[42]:= Draw2Dbackplot,
Frame  True, FrameLabel  Re, Im, RotateLabel  False,
PlotLabel 
RowTraditionalFormz, " domain coloring by modulus of ",

TraditionalFormHoldFormfz

Out[42]=

Strictly speaking, we do not need a background plot, but could just move a Lo
cator around in the plane with perhaps a domain mesh. We could also choose
between many different types of background plots. Although the information in
the background plot is redundant, it does help orient the viewer, and modulus in-
formation is one of the best “orienters”.

Visualizing Complex Functions with the Presentations Application 241

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

Strictly speaking, we do not need a background plot, but could just move a Lo
cator around in the plane with perhaps a domain mesh. We could also choose
between many different types of background plots. Although the information in
the background plot is redundant, it does help orient the viewer, and modulus in-
formation is one of the best “orienters”.
In order to find all branches of the multifunction, we solve f HzL = w for w by tak-
ing sixth powers to clear the radical, so that the equation to be solved becomes
w6 = H-1 + zL3 H-Â + zL2.

In[43]:= wvalues  w . Solvefz6  w6, w
Out[43]=  1  z   z13, 1  z   z13,

113 1  z   z13, 113 1  z   z13,
123 1  z   z13, 123 1  z   z13

The Presentations multifunction capability allows the generation of continuous
sets of solutions along a path, even if a branch line is crossed. A path in the com-
plex plane is first initialized using the Multivalues function. Multivalues has
memory, and its first argument will routinely contain the values from the most
recent evaluation. On initialization there are no previous values, so Null is sup-
plied. The second argument is the list of expressions for the solutions and the
third is the variable.
In[44]:= testpath  MultivaluesNull, wvalues, z;
We then calculate two successive values, which were conveniently picked to cross
the branch line going from +1 to -¶. Successive sets of multivalues are calcu-
lated using the companion function CalculateMultivalues, which carries the
particular pathname as a subvalue. The routine returns the list of values and the
permutation of the solutions used for those values.
In[45]:= CalculateMultivaluestestpath0.

CalculateMultivaluestestpath.01 
Out[45]= 0.5  0.866025 , 0.5  0.866025 ,

0.5  0.866025 , 0.5  0.866025 , 1.  2.220451016 ,
1.  2.220451016 , 1, 2, 3, 4, 5, 6

Out[46]= 0.497323  0.871422 , 0.497323  0.871422 ,
0.506012  0.866405 , 0.506012  0.866405 ,
1.00333  0.00501655 , 1.00333  0.00501655 , 2, 1, 4, 3, 6, 5

Note that the values have been permuted between the two solutions and that all
the solutions from the second evaluation are close to the solutions from the first
evaluation. Often we will only be interested in the first solution that is generated.
The following generates a table of values of the first solution as testpath circles
the branch point at z = 1. For multivalues with memory to work properly, the
steps on the path should be reasonably close. Here they are just close enough to
work and yet give a short output list of angle, first function value, and permuta-
tion used.

242 Murray Eisenberg and David J. M. Park, Jr.

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[47]:= testpath  MultivaluesNull, wvalues, z;
Column
Table, FirstFirst, Last &CalculateMultivalues

testpath1  0.2  , , 0, 2 , 2 12
1, 7, 8, 9, 13  sample path to indicate change 

Out[48]=

0, 0.505044  0.119094 , 1, 2, 3, 4, 5, 6
, 0.142909  0.464146 , 1, 2, 3, 4, 5, 6
 7 

6
, 0.0233462  0.496879 , 2, 1, 4, 3, 6, 5

 4 
3
, 0.110254  0.497419 , 2, 1, 4, 3, 6, 5

2 , 0.505044  0.119094 , 2, 1, 4, 3, 6, 5
Note that a complete circuit has reversed the function value. As we will show, it
takes two complete circuits to return to the original function value.
In the following presentation a background graphic consisting of a contour plot
of the modulus f HzL is given to provide some overall orientation for the
viewer. A locator is provided as a red CirclePoint. This can be used to sample
f at any point included in the domain of the graphic. Attached to the locator is a
vector that gives the value of the first solution (at half scale) of w = f HzL at that
point. On the right of the graphic, the numerical values of z and f HzL are given,
in Cartesian and polar form. The notation r—q is the form returned by the Presen-
tations function ComplexPolar[r,] to represent the polar form r ‰Â q, in other
words, the value of PolarToComplex@ComplexPolar[r,].

In[49]:= DynamicModulezpt  1., 1.65, w, root,
Module
f  Functionz, z  1 z  

3 , wvalues, z,
wvalues  MultivaluesNull, w . Solvew6  fz6, w, z;
Row
Draw2D

backplot,
DynamicArrowzpt, zpt 

12 ToCoordinatesroot  ExtractCalculateMultivalues
wvaluesToComplexzpt, 1, 1,

LocatorDynamiczpt, GraphicsCirclePoint
0, 0, 3, Black, Red,

Frame  True, FrameLabel  Re, Im, RotateLabel  False,
PlotRange  3,

PlotLabel  Rowf"z", "\n as a Riemann Surface",
Background  None, ImageSize  Scaled0.45,

DynamicColumn
ComplexArgumentPanelToComplexzpt, True, True, False,

"z", Top, Left, ImageSize  Scaled0.4, Spacer10,
ComplexArgumentPanelroot, True, True, False,

, ,

Visualizing Complex Functions with the Presentations Application 243

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[49]:=

ComplexArgumentPanelroot, True, True, False,
Rowf"z", Top, Left,
ImageSize  Scaled0.4  Column ,

Spacer10  Row 


Out[49]=

z
1.+1.65 Â

1.92938—1.02593 H58.7816°L

-1 + z H-Â + zL1ê3

-0.761593-1.12945 Â

1.36223—-2.16407 H-123.992°L

Dragging the locator around the branch points demonstrates the multivalued na-
ture of f . The locator must be dragged twice around the point z = 1, or three
times around the point z = Â, in order to return to its original value. It must be
dragged six times around the complex of both branch points in order to return to
its original value. This illustrates that it is not possible to have only a single
branch line that joins the two branch points. There must be at least one branch
line that goes to infinity.

Another way to present the same situation, carried out in [10], would be to attach
all six solution vectors to each point in an array. But it is amazing how much in-
formation can be obtained with a single movable point and a single continuous
solution. This is a true four-dimensional representation, although a local one:
the domain of the function provides two dimensions, and the vector provides two
more dimensions. By moving the locator, the complete four dimensions are re-
vealed. Lastly, by showing only a single solution, we are in effect moving on the
function’s Riemann surface, where the function is single-valued. By moving to
various points on the surface we can recover all of the values. Thus we can ex-
plore the entire surface and return to a starting point with no discontinuities and
no artifacts of intersecting surfaces. Of course we do not see the surface as an ob-
ject in four-dimensional space; it just smiles at us like the Cheshire cat.

The Riemann surface is a complex surface. One way to visualize it as surface-like
in real three-dimensional space is to represent it as a ComplexPolar object but,
instead of r and q as arguments, use graphical objects that give the modulus and
argument of the surface.

In[50]:= ColumnStyle"Riemann surface ", FontFamily  "Helvetica",
Row

Draw3DItems
Opacity0.8, HTMLSteelBlue,

244 Murray Eisenberg and David J. M. Park, Jr.

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[50]:=

Opacity0.8, HTMLSteelBlue,
TableComplexPolarSurfacew, Abs,

z, ComplexPolar0, , ComplexPolar3, ,
Mesh  3, 24, w, wvalues,

NeutralLighting0, 0.6, 0.2, NiceRotation,

PlotLabel  Row"Modulus of ", fz,
ViewPoint  2.1421, 0.695506, 0.133009, Boxed  False,
ImageSize  Scaled0.4

,
StyleRow"", 18,
Draw3DItems
Opacity0.8, Orange,
TableComplexPolarSurfacew, Arg,

z, ComplexPolar0, , ComplexPolar3, ,
Mesh  3, 24, w, wvalues,

NeutralLighting0, 0.6, 0.2, NiceRotation,

PlotLabel  Row"Argument of ", fz,
ViewPoint  2.1421, 0.695506, 0.133009, Boxed  False,
ImageSize  Scaled0.4


, Alignment  Center, Spacings  1

Out[50]=

Riemann surface =



For aesthetic reasons the Box and Axes for the images were suppressed. There is
one artifact in this presentation: in the argument graphic we must identify the up-
per edges (which occur at p) with the corresponding lower edges (which occur at
-p). Moreover, it is quite difficult to trace the paths that were used around the
branch points in the previous, vector-locator, presentation. Perhaps a better pre-
sentation is obtained by a picture that looks more closely about one of the branch
points, for example, z = 1.

In[51]:= ColumnStyle"Riemann surface ", FontFamily  "Helvetica",
Row

Draw3DItems
Opacity0.8, HTMLSteelBlue,
TableComplexPolarSurfacew, Abs,

,

Visualizing Complex Functions with the Presentations Application 245

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[51]:=

TableComplexPolarSurfacew, Abs,
z, ComplexPolar0, , ComplexPolar0.2, , 1,
Mesh  3, 24, w, wvalues,

NeutralLighting0, 0.6, 0.2,
NiceRotation,
PlotLabel  Row"Modulus of ", fz, Boxed  False,
ViewPoint  2.1421, 0.695506, 0.133009,
ImageSize  Scaled0.4

,
StyleRow"", 18,
Draw3DItems
Opacity0.6, Orange,

TableComplexPolarSurfacew, Arg,

z, ComplexPolar0, , ComplexPolar0.2, , 1,
Mesh  3, 24, w, Partwvalues, 1, 2,

Opacity0.6, Blue,
TableComplexPolarSurfacew, Arg,

z, ComplexPolar0, , ComplexPolar0.2, , 1,
Mesh  3, 24, w, Partwvalues, 3, 4,

Opacity0.6, Green,
TableComplexPolarSurfacew, Arg,

z, ComplexPolar0, , ComplexPolar0.2, , 1,
Mesh  3, 24, w, Partwvalues, 5, 6,

NeutralLighting0, 0.6, 0.2,
NiceRotation,

PlotLabel  Row"Argument of ", fz,
ViewPoint  2.1421, 0.695506, 0.133009,
Boxed  False, BoxRatios  1, 1, 1,
ImageSize  Scaled0.4


, Alignment  Center, Spacings  1

Out[51]=

Riemann surface =



Viewed closely about the point z = 1, the Riemann argument surface appears as
three separate surfaces, each of which requires two revolutions to return to the

1 and you will see one of the surfaces. Now take a de-
tour around the other zero at Â and return to circling the zero at 1. You will be
on a different surface. Take one more detour and you will be on the third sur-
face. This behavior might not have been discovered from the vector-locator pre-
sentation alone. Multiple presentations that complement each other are often the
route to a fuller understanding of the beauty of complex functions.

246 Murray Eisenberg and David J. M. Park, Jr.

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

Viewed closely about the point z = 1
three separate surfaces, each of
original value. Go back to the dynamic vector-locator presentation. Circle
closely around the zero at 1 and you will see one of the surfaces. Now take a de-
tour around the other zero return to circling the zero at 1. You will be
on a different surface. Take one more detour and you will be on the third sur-
face. This behavior might not have been discovered from the vector-locator pre-
sentation alone. Multiple presentations that complement each other are often the
route to a fuller understanding of the beauty of complex functions.

Visualizing Riemann surfaces of multifunctions by means of surfaces in three-di-
mensional space also appears in [8].

‡ The Argument Principle
Domain coloring may also be used to visualize general principles about complex
functions. We illustrate this with an adaptation of an example by Lundmark [9]
concerning the Argument Principle. (Lundmark also provides online examples
of similar types of domain-coloring plots created using tools other than Mathe-
matica.)
The following function has a pole of order 3 at z = 0, a zero of order 2 at z = 2,
and zeros of order 1 at z = -2 - 2 Â and -1 + 2 Â.

In[52]:= fz_ : z  22 z  1  2  z  2  2  z3
To illustrate the Argument Principle, we shall construct a graphic in two stages.
In the first stage we construct a background graphic that is colored according to
the argument of the function and then superimpose modulus contours on top
of that. The function DomainColoring can generally be used for three-color col-
oring to indicate argument and modulus simultaneously. But here we use it with
an ArgColor routine that colors from IndianRed to Yellow as the argument
varies from 0 to 2 p. (This results from the “0” argument in ArgColor that speci-
fies the branch point in the z domain to be at 0 radians. Normally it is at -p.)
Finally, ComplexCartesianContour is used to plot a selected set of modulus con-
tours without any contour shading so that they overlay the argument coloring.

In[53]:= With
zmin  3 1  , zmax  3 1  ,
colorfunction 
ArgColorLegacyIndianRed, Yellow, Black, LegacySmoke0,

Draw2D
background 

DomainColoringfz,
z, zmin, zmax, colorfunction, PlotPoints  200,

ComplexCartesianContourfz, z, zmin, zmax, Abs,

Contours 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 20, 100, 200,
ContourShading None,

PlotRange 0, 250,
PlotRange 3,

Frame True, FrameLabel Re, Im, RotateLabel  False,

Visualizing Complex Functions with the Presentations Application 247

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

 at Â and

In[53]:=

Frame  True, FrameLabel  Re, Im, RotateLabel  False,
PlotLabel 
Row"Domain Coloring of ", fz, "\n with Modulus Contours"



Out[53]=

In the second stage of constructing the graphic, upon that background we plot
two simple closed curves, the first around the points z = 2 and z = -1 + 2 Â, and
the second around z = 0 and z = -2 - 2 Â. (In Mathematica 5 these points were
obtained by clicking and copying points. In Mathematica 6 they could be ob-
tained by using the LocatorLine routine in Presentations that allows any number
of locators to be positioned on the graphic and used to copy their coordinates.)
Each of the branch points is labeled with its signed multiplicity, a positive sign
denoting a zero and a negative sign denoting a pole.

In[54]:= poleszeros  2, 1  2 , 2  2 , 0; offset  0.1  0.2 ;

In[55]:= circuit1  SplineToLine0.342528, 0.32536, 0.369328, 0.492018,
0.020937, 1.3094, 0.809841, 1.2826, 1.60042, 0.43842,
2.2436, 0.633552, 2.4044, 1.47773, 2.458, 2.20131,
1.52002, 2.5497, 0.421251, 2.05391,
0.181733, 1.08914, 0.342528, 0.32536, Cubic, 40;

circuit2  SplineToLine2.51327, 0.0632296, 2.27208, 0.626015,
1.92369, 1.229, 1.5351, 1.63099, 1.06611, 2.01958,
0.302329, 2.38137, 0.582047, 2.54216,
1.41282, 2.48856, 1.62722, 2.05978, 1.58702, 1.64439,
1.30563, 1.44339, 0.943837, 1.53719,
0.488249, 1.69799, 0.113059, 1.72479,
0.168333, 1.56399, 0.530123, 1.2692, 0.771317, 0.894007,
0.918713, 0.398221, 1.15991, 0.124365,
1.5351, 0.512955, 2.07108, 0.620152,
2.48647, 0.298561, 2.51327, 0.0632296, Cubic, 50;

In[57]:=

248 Murray Eisenberg and David J. M. Park, Jr.

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[57]:= With
zmin  3 1  , zmax  3 1  ,
colorfunction 
ArgColorLegacyIndianRed, Yellow, Black, LegacySmoke,

Draw2D
background,
ComplexCirclePoint1, 4, Black, LegacySkyBlue & 
2, 1  2 , 2  2 ,

ComplexCirclePoint0, 5, Black, Blue,
AbsoluteThickness2, Arrowheads0.06, 0.8,
LegacyDodgerBlue, Arrowcircuit1,
LegacySeaGreen, Arrowheads0.06, 0.2, Arrowcircuit2,
Black,

MapThread
ComplexTextStyle2, FontSize  12, FontWeight  "Bold",

1 &, offset  poleszeros, 2, 1, 1, 3,
PlotRange  3,

Frame  True, FrameLabel  Re, Im,
PlotLabel 
Row"Domain Coloring of ", fz, "\n with Modulus Contours"



Out[57]=

As the argument coloring indicates, as z makes a circuit of each simple closed
curve, the number of times the argument of f HzL increments by 2 p equals the
sum of the orders of the zeros and poles inside that curve. And that is precisely
what, according to the Argument Principle, happens in general for a meromor-
phic function f : Let g be a positively oriented, simple closed curve that does not
pass through any zeros or poles of f . As z winds around g, the image curve f Îg
winds N - P times around w = 0, where N is the number of zeros of f inside g
and P is the number of poles inside g, where each zero and pole is counted as
many times as its multiplicity.

Visualizing Complex Functions with the Presentations Application 249

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

As the argument coloring indicates, as z makes a circuit of each simple closed
curve, the number of times the argument of f HzL increments by 2 p equals the
sum of the orders of the zeros and poles inside that curve. And that is precisely
what, according to the Argument Principle, happens in general for a meromor-
phic function f : Let g
pass through any zeros or poles of f . As z winds around g, the image curve f Îg
winds N - P times around w = 0, where N is the number of zeros of f inside g
and P is the number of poles inside g, where each zero and pole is counted as
many times as its multiplicity.

‡ Conclusion
Ideally, students coming to a complex analysis course where Presentations is used
would already be experienced with Mathematica. In reality, unfortunately, this is
seldom the case: students must learn Mathematica fundamentals with specifics
about Presentations as they are learning about complex numbers and complex
functions. In the first-named author’s course, two days’ class time was spent in a
laboratory setting with a hands-on, rapid introduction to Mathematica, including
a first glimpse of some functionality of Cardano3 that is now in Presentations. Al-
though that arrangement was hardly optimal, it sufficed to get them started.

To a Mathematica novice, the syntax of graphics routines in Cardano3, with their
multiple, deeply-nested list arguments, was daunting. In the first author’s course,
few students succeeded in constructing a syntactically correct domain-codomain
mapping graphic without direct access to the documentation; they therefore re-
lied upon instructor-provided templates for their own work.

As a result of that teaching experience of the first author and the entirely new fea-
tures introduced with Mathematica 6, the Cardano3 routines were completely
redesigned and rewritten and then incorporated in the Presentations application,
the successor to DrawGraphics. One major flaw in the Cardano3 design was an
attempt to create a container and user interface that would handle all complex-
function graphics. It is now recognized that packages should not create new inter-
faces, which are just additional specialized things that students have to learn, but
should instead simply extend Mathematica and mesh with its standard usage.

Until such a time as technical students can begin learning Mathematica in sec-
ondary school, it will remain a challenge to bring them up to speed for Mathemat-
ica use in college courses. A temporary and imperfect, but still useful, alternative
could be to provide the kinds of examples shown here as webMathematica applica-
tions or Demonstrations (demonstrations.wolfram.com). For now the best solu-
tion may be specially designed Mathematica tutorials that present the common
constructions used in the course and introductory labs. But there is a wonderful
payoff when students can obtain hands-on visual experience of the mathematical
objects to complement their analytical work.

‡ References
[1] D. J. M. Park, Jr. “Presentations Package for Mathematica: Custom Graphics and Presen-

tations with Mathematica.” (Dec 12, 2007)
home.comcast.net/~djmpark/DrawGraphicsPage.html.

[2] D. J. M. Park, Jr. “Cardano3 Package.” (Jun 19, 2006)
home.comcast.net/~djmpark/Cardano3Page.html.

250 Murray Eisenberg and David J. M. Park, Jr.

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

[3] M. Eisenberg. “Math 421~Fall 2006: Complex Variables.” (Jan 7, 2007)
www.math.umass.edu/Courses/Math_421_Eisenberg, (see Files link).

[4] J. H. Mathews and R. W. Howell, Complex Analysis for Mathematics and Engineering,
5th ed., Sudbury, MA: Jones and Bartlett Publishers, 2006.

[5] T. Needham, Visual Complex Analysis, New York: Oxford University Press, 1997.

[6] D. J. M. Park, Jr., “DrawGraphics,” Mathematica in Education and Research, 10(1), 2005
pp. 41|66.

[7] T. Ersek. “RootSearch Looks for All Roots of an Equation between xmin and xmax.”
(May 2, 2006) library.wolfram.com/infocenter/MathSource/4482.

[8] S. Kivelä, “On the Visualization of Riemann Surfaces,” in Applied Mathematica, Elec-
tronic Proceedings of the Eighth International Mathematica Symposium (IMS’06), Avi-
gnon, France (Y. Papegay, ed.), Sophia Antipolis, France: INRIA, 2006 ISBN 2-7261-1289-7.
internationalmathematicasymposium.org/IMS2006/IMS2006_CD/html/articles.html.

[9] H. Lundmark. “Hans Lundmark’s Complex Analysis Pages.” (Jan 28, 2008)
www.mai.liu.se/~halun/complex.

[10] M. Eisenberg and D. J. M. Park, Jr., “Visualizing Complex Functions with the Cardano3
Application,” in Applied Mathematica, Electronic Proceedings of the Eighth Inter-
national Mathematica Symposium (IMS’06), Avignon, France (Y. Papegay, ed.), Sophia
Antipolis, France: INRIA, 2006 ISBN 2-7261-1289-7
internationalmathematicasymposium.org/IMS2006/IMS2006_CD/html/articles.html.

[11] Anonymous. “MathGroup Archive 2006.” (Feb 2006)
forums.wolfram.com/mathgroup/archive/2006/Feb/msg00336.html.

About the Authors
Murray Eisenberg is a professor of mathematics and statistics at the University of
Massachusetts Amherst and received his A.B. and A.M. from the University of
Pennsylvania and his Ph.D. from Wesleyan University. Eisenberg’s principal mathematical
interest is the topology of dynamical systems. He has published articles on topological
dynamics, the APL and J programming languages, and the use of computers in teaching
undergraduate mathematics, and is the author of three undergraduate textbooks.

David J. M. Park, Jr. received a B.S. and M.S. in electrical engineering from M.I.T. Park
worked on microwave and beam design elements of early cesium beam tubes for atomic
clocks and on masers. While working as a computer consultant he became involved in bio-
chemistry and developmental biology, published a number of articles in the field, and
worked for a period of time at the Laboratory for Theoretical Biology at N.I.H. In his
retirement he has used Mathematica to renew an interest in mathematical physics and in
the process has developed packages used by many Mathematica users. Most recently he
has been collaborating with Renan Cabrera and Jean-François Gouyet to design Tensorial,
a Mathematica package for tensor calculus.

Murray Eisenberg
Department of Mathematics and Statistics
University of Massachusetts
Lederle Graduate Research Tower
710 North Pleasant Street
Amherst, MA 01003-9305 USA
murray@math.umass.edu
www.math.umass.edu/~murray

David J. M. Park, Jr.
1429 Searchlight Way
Mount Airy, MD 21771 USA
djmpark@comcast.net
home.comcast.net/~djmpark

Visualizing Complex Functions with the Presentations Application 251

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

