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Preface

X-ray diffraction crystallography for powder samples is well-established and widely
used in the field of materials characterization to obtain information on the atomic
scale structure of various substances in a variety of states. Of course, there have
been numerous advances in this field, since the discovery of X-ray diffraction from
crystals in 1912 by Max von Laue and in 1913 by W.L. Bragg and W.H. Bragg. The
origin of crystallography is traced to the study for the external appearance of natural
minerals and a large amount of data have been systematized by applying geometry
and group theory. Then, crystallography becomes a valuable method for the general
consideration of how crystals can be built from small units, corresponding to the
infinite repetition of identical structural units in space.

Many excellent and exhaustive books on X-ray diffraction and crystallography
are available, but the undergraduate students and young researchers and engineers
who wish to become acquainted with this subject frequently find them overwhelm-
ing. They find it difficult to identify and understand the essential points in the limited
time available to them, particularly on how to estimate useful structural informa-
tion from the X-ray diffraction data. Since X-ray powder diffraction is one of the
most common and leading methods in materials research, mastery of the subject is
essential.

In order to learn the fundamentals of X-ray diffraction crystallography well and
to be able to cope with the subject appropriately, a certain number of “exercises”
involving calculation of specific properties from measurements are strongly recom-
mended. This is particularly true for beginners of X-ray diffraction crystallography.
Recent general purpose X-ray diffraction equipments have a lot of inbuilt automa-
tion for structural analysis. When a sample is set in the machine and the preset
button is pressed, results are automatically generated some of which are misleading.
A good understanding of fundamentals helps one to recognize misleading output.

During the preparation of this book, we have tried to keep in mind the stu-
dents who come across X-ray diffraction crystallography for powder samples at
the first time. The primary objective is to offer a textbook to students with almost
no basic knowledge of X-rays and a guidebook for young scientists and engineers
engaged in full-scale materials development with emphasis on practical problem
solving. For the convenience of readers, some essential points with basic equations
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vi Preface

are summarized in each chapter, together with some relevant physical constants and
atomic scattering factors of elements listed in appendices.

Since practice perfects the acquisition of skills in X-ray diffraction crystallogra-
phy, 100 supplementary problems are also added with simple solutions. We hope
that the students will try to solve these supplementary problems by themselves to
deepen their understanding and competence of X-ray crystallography without seri-
ous difficulty. Since the field of X-ray structural analysis of materials is quite wide,
not all possible applications are covered. The subject matter in this book is restricted
to fundamental knowledge of X-ray diffraction crystallography for powder samples
only. The readers can refer to specialized books for other applications.

The production of high-quality multi-layered thin films with sufficient relia-
bility is an essential requirement for device fabrication in micro-electronics. An
iron-containing layered oxy-pnictide LaO1�xFxFeAs has received much attention
because it exhibits superconductivity below 43 K as reported recently by Dr. Hideo
Hosono in Japan. The interesting properties of such new synthetic functional mate-
rials are linked to their periodic and interfacial structures at a microscopic level,
although the origin of such peculiar features has not been fully understood yet. Nev-
ertheless, our understanding of most of the important properties of new functional
materials relies heavily upon their atomic scale structure. The beneficial utilization
of all materials should be pursued very actively to contribute to the most impor-
tant technological and social developments of the twenty-first century harmonized
with nature. Driven by environmental concerns, the interest in the recovery or recy-
cling of valuable metallic elements from wastes such as discarded electronic devices
will grow significantly over the next decade. The atomic scale structure of vari-
ous materials in a variety of states is essential from both the basic science and the
applied engineering points of view. Our goal is to take the most efficient approach
for describing the link between the atomic scale structure and properties of any
substance of interest.

The content of this book has been developed through lectures given to under-
graduate or junior-level graduate students in their first half (Master’s program) of
the doctoral course of the graduate school of engineering at both Tohoku and Kyoto
universities. If this book is used as a reference to supplement lectures in the field of
structural analysis of materials or as a guide for a researcher or engineer engaged in
structural analysis to confirm his or her degree of understanding and to compensate
for deficiency in self-instruction, it is an exceptional joy for us.

Many people have helped both directly or indirectly in preparing this book.
The authors are deeply indebted to Professors Masahiro Kitada for his valuable
advice on the original manuscript. Many thanks are due to Professor K.T. Jacob
(Indian Institute of Science, Bangalore), Professor N.J. Themelis (Columbia Uni-
versity), Professor Osamu Terasaki (Stockholm University) and Dr.Daniel Grüner
and Dr. Karin Söderberg (Stockholm University) and Dr. Sam Stevens (University
of Manchester) who read the manuscript and made many helpful suggestions.

The authors would like to thank Ms. Noriko Eguchi, Ms. Miwa Sasaki and
Mr. Yoshimasa Ito for their assistance in preparing figures and tables as well as the
electronic TeX typeset of this book. The authors are also indebted to many sources
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of material in this article. The encouragement of Dr. Claus Ascheron of Springer-
Verlag, Mr. Satoru Uchida and Manabu Uchida of Uchida-Rokakuho Publishing Ltd
should also be acknowledged.

Sendai, Japan Yoshio Waseda
January 2011 Eiichiro Matsubara

Kozo Shinoda

Note: A solution manual for 100 supplementary problems is available to instructors
who have adopted this book for regular classroom use or tutorial seminar use. To
obtain a copy of the solution manual, a request may be delivered on your depart-
mental letterhead to the publisher (or authors), specifying the purpose of use as an
organization (not personal).
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Chapter 1
Fundamental Properties of X-rays

1.1 Nature of X-rays

X-rays with energies ranging from about 100 eV to 10 MeV are classified as electro-
magnetic waves, which are only different from the radio waves, light, and gamma
rays in wavelength and energy. X-rays show wave nature with wavelength ranging
from about 10 to 10�3 nm. According to the quantum theory, the electromag-
netic wave can be treated as particles called photons or light quanta. The essential
characteristics of photons such as energy, momentum, etc., are summarized as
follows.

The propagation velocity c of electromagnetic wave (velocity of photon) with
frequency � and wavelength � is given by the relation.

c D �� .ms�1/ (1.1)

The velocity of light in the vacuum is a universal constant given as c D
299792458 m=s (�2:998 � 108 m=s). Each photon has an energy E , which is
proportional to its frequency,

E D h� D hc

�
.J/ (1.2)

where h is the Planck constant (6:6260 � 10�34 J � s). With E expressed in keV, and
� in nm, the following relation is obtained:

E.keV/ D 1:240

�.nm/
(1.3)

The momentum p is given by mv, the product of the mass m, and its velocity v.
The de Broglie relation for material wave relates wavelength to momentum.

� D h

p
D h

mv
(1.4)

1



2 1 Fundamental Properties of X-rays

The velocity of light can be reduced when traveling through a material medium,
but it does not become zero. Therefore, a photon is never at rest and so has no rest
mass me. However, it can be calculated using Einstein’s mass-energy equivalence
relation E D mc2.

E D mer
1 �

� v

c

�2
c2 (1.5)

It is worth noting that (1.5) is a relation derived from Lorentz transformation in the
case where the photon velocity can be equally set either from a stationary coordi-
nate or from a coordinate moving at velocity of v (Lorentz transformation is given
in detail in other books on electromagnetism: for example, P. Cornille, Advanced
Electromagnetism and Vacuum Physics, World Scientific Publishing, Singapore,
(2003)). The increase in mass of a photon with velocity may be estimated in the
following equation using the rest mass me:

m D mer
1 �

� v

c

�2
(1.6)

For example, an electron increases its mass when the accelerating voltage exceeds
100 kV, so that the common formula of 1

2
mv2 for kinetic energy cannot be used. In

such case, the velocity of electron should be treated relativistically as follows:

E D mc2 � mec
2 D mer

1 �
� v

c

�2
c2 � mec

2 (1.7)

v D c �
s

1 �
�

mec2

E C mec2

�2

(1.8)

The value of me is obtained, in the past, by using the relationship of m D h=.c�/

from precision scattering experiments, such as Compton scattering and me D
9:109 � 10�31 kg is usually employed as electron rest mass. This also means that an
electron behaves as a particle with the mass of 9:109 � 10�31 kg, and it corresponds
to the energy of E D mc2 D 8:187 � 10�14 J or 0:5109 � 106 eV in eV.

There is also a relationship between mass, energy, and momentum.

�
E

c

�2

� p2 D .mec/2 (1.9)

It is useful to compare the properties of electrons and photons. On the one hand,
the photon is an electromagnetic wave, which moves at the velocity of light some-
times called light quantum with momentum and energy and its energy depends upon
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the frequency �. The photon can also be treated as particle. On the other hand, the
electron has “mass” and “charge.” It is one of the elementary particles that is a
constituent of all substances. The electron has both particle and wave nature such
as photon. For example, when a metallic filament is heated, the electron inside it
is supplied with energy to jump out of the filament atom. Because of the negative
charge of the electron, (e D 1:602 � 10�19 C), it moves toward the anode in an
electric field and its direction of propagation can be changed by a magnetic field.

1.2 Production of X-rays

When a high voltage with several tens of kV is applied between two electrodes,
the high-speed electrons with sufficient kinetic energy, drawn out from the cath-
ode, collide with the anode (metallic target). The electrons rapidly slow down and
lose kinetic energy. Since the slowing down patterns (method of loosing kinetic
energy) vary with electrons, continuous X-rays with various wavelengths are gener-
ated. When an electron loses all its energy in a single collision, the generated X-ray
has the maximum energy (or the shortest wavelength D �SWL). The value of the
shortest wavelength limit can be estimated from the accelerating voltage V between
electrodes.

eV � h�max (1.10)

�SWL D c

�max
D hc

eV
(1.11)

The total X-ray intensity released in a fixed time interval is equivalent to the area
under the curve in Fig. 1.1. It is related to the atomic number of the anode target Z

and the tube current i :

Icont D AiZV 2 (1.12)

where A is a constant. For obtaining high intensity of white X-rays, (1.12) suggests
that it is better to use tungsten or gold with atomic number Z at the target, increase
accelerating voltage V , and draw larger current i as it corresponds to the number
of electrons that collide with the target in unit time. It may be noted that most of
the kinetic energy of the electrons striking the anode (target metal) is converted into
heat and less than 1% is transformed into X-rays. If the electron has sufficient kinetic
energy to eject an inner-shell electron, for example, a K shell electron, the atom will
become excited with a hole in the electron shell. When such hole is filled by an outer
shell electron, the atom regains its stable state. This process also includes production
of an X-ray photon with energy equal to the difference in the electron energy levels.

As the energy released in this process is a value specific to the target metal and
related electron shell, it is called characteristic X-ray. A linear relation between the
square root of frequency � of the characteristic X-ray and the atomic number Z of
the target material is given by Moseley’s law.
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Fig. 1.1 Schematic
representation of the X-ray
spectrum

p
� D BM.Z � �M/ (1.13)

Here, BM and �M are constants. This Moseley’s law can also be given in terms of
wavelength � of emitted characteristic X-ray:

1

�
D R.Z � SM/2

�
1

n2
1

� 1

n2
2

�
(1.14)

Here, R is the Rydberg constant (1:0973�107 m�1), SM is a screening constant, and
usually zero for K˛ line and one for Kˇ line. Furthermore, n1 and n2 represent the
principal quantum number of the inner shell and outer shell, respectively, involved
in the generation of characteristic X-rays. For example, n1 D 1 for K shell, n2 D 2

for L shell, and n3 D 3 for M shell. As characteristic X-rays are generated when
the applied voltage exceeds the so-called excitation voltage, corresponding to the
potential required to eject an electron from the K shell (e.g., Cu: 8.86 keV, Mo:
20.0 keV), the following approximate relation is available between the intensity of
K˛ radiation, IK, and the tube current, i , the applied voltage V , and the excitation
voltage VK:

IK D BSi.V � VK/1:67 (1.15)

Here, BS is a constant and the value of BS D 4:25�108 is usually employed. As it is
clear from (1.15), larger the intensity of characteristic X-rays, the larger the applied
voltage and current.

It can be seen from (1.14), characteristic radiation is emitted as a photoelec-
tron when the electron of a specific shell (the innermost shell of electrons, the
K shell) is released from the atom, when the electrons are pictured as orbiting
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the nucleus in specific shells. Therefore, this phenomenon occurs with a specific
energy (wavelength) and is called “photoelectric absorption.” The energy, Eej, of
the photoelectron emitted may be described in the following form as a difference
of the binding energy (EB) for electrons of the corresponding shell with which the
photoelectron belongs and the energy of incidence X-rays (h�):

Eej D h� � EB (1.16)

The recoil of atom is necessarily produced in the photoelectric absorption pro-
cess, but its energy variation is known to be negligibly small (see Question 1.6).
Equation (1.16) is based on such condition. Moreover, the value of binding energy
(EB) is also called absorption edge of the related shell.

1.3 Absorption of X-rays

X-rays which enter a sample are scattered by electrons around the nucleus of atoms
in the sample. The scattering usually occurs in various different directions other than
the direction of the incident X-rays, even if photoelectric absorption does not occur.
As a result, the reduction in intensity of X-rays which penetrate the substance is
necessarily detected. When X-rays with intensity I0 penetrate a uniform substance,
the intensity I after transmission through distance x is given by.

I D I0e��x (1.17)

Here, the proportional factor � is called linear absorption coefficient, which is
dependent on the wavelength of X-rays, the physical state (gas, liquid, and solid)
or density of the substance, and its unit is usually inverse of distance. However,
since the linear absorption coefficient � is proportional to density �,.�=�/ becomes
unique value of the substance, independent upon the state of the substance. The
quantity of .�=�/ is called the mass absorption coefficient and the specific values
for characteristic X-rays frequently-used are compiled (see Appendix A.2). Equa-
tion (1.17) can be re-written as (1.18) in terms of the mass absorption coefficient.

I D I0e�
�

�
�

�
�x (1.18)

Mass absorption coefficient of the sample of interest containing two or more ele-
ments can be estimated from (1.19) using the bulk density, �, and weight ratio of wj

for each element j.

�
�

�

�
D w1

�
�

�

�
1

C w2

�
�

�

�
2

C � � � D
X
jD1

wj

�
�

�

�
j

(1.19)
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Fig. 1.2 Wavelength dependences of mass absorption coefficient of X-ray using the La as an
example

Absorption of X-rays becomes small as transmittivity increases with increasing
energy (wavelength becomes shorter). However, if the incident X-ray energy comes
close to a specific value (or wavelength) as shown in Fig. 1.2, the photoelectric
absorption takes place by ejecting an electron in K-shell and then discontinu-
ous variation in absorption is found. Such specific energy (wavelength) is called
absorption edge. It may be added that monotonic variation in energy (wavelength)
dependence is again detected when the incident X-ray energy is away from the
absorption edge.

1.4 Solved Problems (12 Examples)

Question 1.1 Calculate the energy released per carbon atom when 1 g of
carbon is totally converted to energy.

Answer 1.1 Energy E is expressed by Einstein’s relation of E D mc2 where m is
mass and c is the speed of light. If this relationship is utilized, considering SI unit
that expresses mass in kg,

E D 1 � 10�3 � .2:998 � 1010/2 D 8:99 � 1013 J

The atomic weight per mole (molar mass) for carbon is 12.011 g from reference
table (for example, Appendix A.2). Thus, the number of atoms included in 1 g
carbon is calculated as .1=12:011/ � 0:6022 � 1024 D 5:01 � 1022 because the
numbers of atoms are included in one mole of carbon is the Avogadro’s number
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.0:6022 � 1024/. Therefore, the energy release per carbon atom can be estimated as:

.8:99 � 1013/

.5:01 � 1022/
D 1:79 � 10�9 J

Question 1.2 Calculate (1) strength of the electric field E , (2), force on the
electron F , (3) acceleration of electron ˛, when a voltage of 10 kV is applied
between two electrodes separated by an interval of 10 mm.

Answer 1.2 The work, W , if electric charge Q (coulomb, C) moves under voltage V

is expressed by W D VQ. When an electron is accelerated under 1 V of difference
in potential, the energy obtained by the electron is called 1 eV. Since the elementary
charge e is 1:602 � 10�19 (C),

1eV D 1:602 � 10�19 � 1 (C)(V)

D 1:602 � 10�19 (J)

Electric field E can be expressed with E D V=d , where the distance, d , between
electrodes and the applied voltage being V . The force F on the electron with
elementary charge e is given by;

F D eE (N)

Here, the unit of F is Newton. Acceleration ˛ of electrons is given by the following
equation in which m is the mass of the electron:

˛ D eE

m
.m=s2/

.1/ E D 10 .kV/

10 .mm/
D 104 .V/

10�2 .m/
D 106 .V=m/

.2/ F D 1:602 � 10�19 � 106 D 1:602 � 10�13 .N/

.3/ ˛ D 1:602 � 10�13

9:109 � 10�31
D 1:76 � 1017 .m=s2/

Question 1.3 X-rays are generated by making the electrically charged parti-
cles (electrons) with sufficient kinetic energy in vacuum collide with cathode,
as widely used in the experiment of an X-ray tube. The resultant X-rays can
be divided into two parts: continuous X-rays (also called white X-rays) and
characteristic X-rays. The wavelength distribution and intensity of continu-
ous X-rays are usually depending upon the applied voltage. A clear limit is
recognized on the short wavelength side.
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(1) Estimate the speed of electron before collision when applied voltage is
30,000 V and compare it with the speed of light in vacuum.

(2) In addition, obtain the relation of the shortest wavelength limit �SWL of
X-rays generated with the applied voltage V , when an electron loses all
energy in a single collision.

Answer 1.3 Electrons are drawn out from cathode by applying the high voltage of
tens of thousands of V between two metallic electrodes installed in the X-ray tube
in vacuum. The electrons collide with anode at high speed. The velocity of electrons
is given by,

eV D mv2

2
! v2 D 2eV

m

where e is the electric charge of the electron, V the applied voltage across the
electrodes, m the mass of the electron, and v the speed of the electron before the
collision. When values of rest mass me D 9:110 � 10�31 .kg/ as mass of electron,
elementary electron charge e D 1:602 � 1019 .C/ and V D 3 � 104 .V/ are used for
calculating the speed of electron v.

v2 D 2 � 1:602 � 10�19 � 3 � 104

9:110 � 10�31
D 1:055 � 1016; v D 1:002 � 108 m=s

Therefore, the speed of electron just before impact is about one-third of the speed
of light in vacuum .2:998 � 108 m=s/.

Some electrons release all their energy in a single collision. However, some other
electrons behave differently. The electrons slow down gradually due to successive
collisions. In this case, the energy of electron (eV) which is released partially and
the corresponding X-rays (photon) generated have less energy compared with the
energy (h�max) of the X-rays generated when electrons are stopped with one colli-
sion. This is a factor which shows the maximum strength moves toward the shorter
wavelength sides, as X-rays of various wavelengths generate, and higher the inten-
sity of the applied voltage, higher the strength of the wavelength of X-rays (see
Fig. 1). Every photon has the energy h�, where h is the Planck constant and � the
frequency.

The relationship of eV D h�max can be used, when electrons are stopped in one
impact and all energy is released at once. Moreover, frequency (�) and wavelength
(�) are described by a relation of � D c=�, where c is the speed of light. Therefore,
the relation between the wavelength �SWL in m and the applied voltage V may be
given as follows:

�SWL D c=�max D hc=eV D .6:626 � 10�34/ � .2:998 � 108/

.1:602 � 10�19/V
D .12:40 � 10�7/

V

This relation can be applied to more general cases, such as the production of electro-
magnetic waves by rapidly decelerating any electrically charged particle including
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electron of sufficient kinetic energy, and it is independent of the anode material.
When wavelength is expressed in nm, voltage in kV, and the relationship becomes
�V D 1:240.
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Fig. 1 Schematic diagram for X-ray spectrum as a function of applied voltage

Question 1.4 K˛1 radiation of Fe is the characteristic X-rays emitted when
one of the electrons in L shell falls into the vacancy produced by knocking
an electron out of the K-shell, and its wavelength is 0.1936 nm. Obtain the
energy difference related to this process for X-ray emission.

Answer 1.4 Consider the process in which an L shell electron moves to the vacancy
created in the K shell of the target (Fe) by collision with highly accelerated electrons
from a filament. The wavelength of the photon released in this process is given by
�, (with frequency �). We also use Planck’s constant h of .6:626 � 10�34 Js/ and
the velocity of light c of .2:998 � 108 ms�1/. Energy per photon is given by,

E D h� D hc

�

Using Avogadro’s number NA, one can obtain the energy difference �E related to
the X-ray release process per mole of Fe.

�E D NAhc

�
D 0:6022 � 1024 � 6:626 � 10�34 � 2:998 � 108

0:1936 � 10�9

D 11:9626

0:1936
� 10�7 D 6:1979 � 108 J=mole
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Reference: The electrons released from a filament have sufficient kinetic energy and
collide with the Fe target. Therefore, an electron of K-shell is readily ejected. This
gives the state of FeC ion left in an excited state with a hole in the K-shell. When
this hole is filled by an electron from an outer shell (L-shell), an X-ray photon is
emitted and its energy is equal to the difference in the two electron energy levels.
This variation responds to the following electron arrangement of FeC.

Before release K1 L8 M14 N2
After release K2 L7 M14 N2

Question 1.5 Explain atomic density and electron density.

Answer 1.5 The atomic density Na of a substance for one-component system is
given by the following equation, involving atomic weight M , Avogadro’s number
NA, and the density �.

Na D NA

M
�: (1)

In the SI system, Na .m�3/, NA D 0:6022 � 1024 .mol�1/, �.kg=m3/, and
M .kg=mol/, respectively.

The electron density Ne of a substance consisting of single element is given by,

Ne D NA

M
Z� (2)

Each atom involves Z electrons (usually Z is equal to the atomic number) and the
unit of Ne is also .m�3/.

The quantity Na D NA=M in (1) or Ne D .NAZ/=M in (2), respectively, gives
the number of atoms or that of electrons per unit mass (kg), when excluding den-
sity, �. They are frequently called “atomic density” or “electron density.” However,
it should be kept in mind that the number per m3 (per unit volume) is completely
different from the number per 1 kg (per unit mass). For example, the following val-
ues of atomic number and electron number per unit mass (D1kg) are obtained for
aluminum with the molar mass of 26.98 g and the atomic number of 13:

Na D 0:6022 � 1024

26:98 � 10�3
D 2:232 � 1025 .kg�1/

Ne D 0:6022 � 1024

26:98 � 10�3
� 13 D 2:9 � 1026 .kg�1/

Since the density of aluminum is 2:70 Mg=m3 D 2:70 � 103 kg=m3 from reference
table (Appendix A.2), we can estimate the corresponding values per unit volume as
Na D 6:026 � 1028 .m�3/ and Ne D 7:83 � 1029 .m�3/, respectively.
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Reference: Avogadro’s number provides the number of atom (or molecule) included
in one mole of substance. Since the atomic weight is usually expressed by the num-
ber of grams per mole, the factor of 10�3 is required for using Avogadro’s number
in the SI unit system.

Question 1.6 The energy of a photoelectron, Eej, emitted as the result of pho-
toelectron absorption process may be given in the following with the binding
energy EB of the electron in the corresponding shell:

Eej D h� � EB

Here, h� is the energy of incident X-rays, and this relationship has been
obtained with an assumption that the energy accompanying the recoil of atom,
which necessarily occurs in photoelectron absorption, is negligible.

Calculate the energy accompanying the recoil of atom in the following
condition for Pb. The photoelectron absorption process of K shell for Pb was
made by irradiating X-rays with the energy of 100 keV against a Pb plate and
assuming that the momentum of the incident X-rays was shared equally by
Pb atom and photoelectron. In addition, the molar mass (atomic weight) of
Pb is 207.2 g and the atomic mass unit is 1amu D 1:66054 � 10�27 kg D
931:5 � 103 keV.

Answer 1.6 The energy of the incident X-rays is given as 100 keV, so that its
momentum can be described as being 100 keV=c, using the speed of light c. Since
the atom and photoelectron shared the momentum equally, the recoil energy of atom
will be 50 keV=c. Schematic diagram of this process is illustrated in Fig. 1.

Fig. 1 Schematic diagram for the photo electron absorption process assuming that the momentum
of the incident X-rays was shared equally by atom and photoelectron. Energy of X-ray radiation is
100 keV

On the other hand, one should consider for the atom that 1amu D 931:5�103 keV
is used in the same way as the energy which is the equivalent energy amount of
the rest mass for electron, me. The molar mass of 207.2 g for Pb is equivalent to
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207.2 amu, so that the mass of 1 mole of Pb is equivalent to the energy of 207:2 �
931:5 � 103 D 193006:8 � 103 keV=c.

When the speed of recoil atom is v and the molar mass of Pb is MA, its energy
can be expressed by 1

2
MAv2. According to the given assumption and the momen-

tum described as p D MAv, the energy of the recoil atom, EA
r , may be obtained

as follows:

EA
r D 1

2
MAv2 D p2

2MA
D .50/2

2 � .193006:8 � 103/
D 0:0065 � 10�3 .keV/

The recoil energy of atom in the photoelectron absorption process shows just a
very small value as mentioned here using the result of Pb as an example, although
the recoil of the atom never fails to take place.

Reference:

Energy of 1 amu D 1:66054 � 10�27 � .2:99792 � 108/2

1:60218 � 10�19
D 9:315 � 108 .eV/

On the other hand, the energy of an electron with rest mass me D 9:109 � 10�31 .kg/

can be obtained in the following with the relationship of 1 .eV/ D 1:602 � 10�19 .J/:

E D mec
2 D 9:109 � 10�31 � .2:998 � 108/2

1:602 � 1019
D 0:5109 � 106 .eV/

Question 1.7 Explain the Rydberg constant in Moseley’s law with respect to
the wavelength of characteristic X-rays, and obtain its value.

Answer 1.7 Moseley’s law can be written as,

1

�
D R.Z � SM/2

�
1

n2
1

� 1

n2
2

�
(1)

The wavelength of the X-ray photon .�/ corresponds to the shifting of an electron
from the shell of the quantum number n2 to the shell of the quantum number of n1.
Here, Z is the atomic number and SM is a screening constant.

Using the elementary electron charge of e, the energy of electron characterized
by the circular movement around the nucleus charge Ze in each shell (orbital) may
be given, for example, with respect to an electron of quantum number n1 shell in
the following form:

En D �2�2me4

h2

Z2

n2
1

(2)

Here, h is a Planck constant and m represents the mass of electron. The energy of
this photon is given by,
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h� D En2
� En1

D �E D 2�2me4

h2
Z2

�
1

n2
1

� 1

n2
2

�
(3)

The following equation will also be obtained, if the relationship of E D h� D hc
�

is employed while using the velocity of photon, c:

1

�
D 2�2me4

ch3
Z2

�
1

n2
1

� 1

n2
2

�
(4)

If the value of electron mass is assumed to be rest mass of electron and a compar-
ison of (1) with (4) is made, the Rydberg constant R can be estimated. It may be
noted that the term of .Z � SM/2 in (1) could be empirically obtained from the
measurements on various characteristic X-rays as reported by H.G.J. Moseley in
1913.

R D 2�2me4

ch3
D 2 � .3:142/2 � .9:109 � 10�28/ � .4:803 � 10�10/4

.2:998 � 1010/ � .6:626 � 10�27/3

D 109:743 � 103 .cm�1/ D 1:097 � 107 .m�1/ (5)

The experimental value of R can be obtained from the ionization energy (�13.6 eV)
of hydrogen (H). The corresponding wave number (frequency) is 109737:31 cm�1,
in good agreement with the value obtained from (5). In addition, since Moseley’s
law and the experimental results are all described by using the cgs unit system (gauss
system), 4:803 � 10�10 esu has been used for the elemental electron charge e. Con-
version into the SI unit system is given by (SI unit � velocity of light � 10�1) (e.g.,
5th edition of the Iwanami Physics-and-Chemistry Dictionary p. 1526 (1985)). That
is to say, the amount of elementary electron charge e can be expressed as:

1:602 � 10�19Coulomb � 2:998 � 1010 cm=s � 10�1 D 4:803 � 10�10 esu

The Rydberg constant is more strictly defined by the following equation:

R D 2�2�e4

ch3
(6)

1

�
D 1

m
C 1

mp
(7)

Here, m is electron mass and mP is nucleus (proton) mass.The detected difference
is quite small, but the value of mP depends on the element. Then, it can be seen
from the relation of (6) and (7) that a slightly different value of R is obtained for
each element. However, if a comparison is made with a hydrogen atom, there is a
difference of about 1,800 times between the electron mass me D 9:109 � 10�31 kg
and the proton mass which is mP D 1:67 � 10�27 kg. Therefore, the relationship of
(6) is usually treated as � D m, because mP is very large in comparison with me.
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Reference: The definition of the Rydberg constant in the SI unit is given in the form
where the factor of .1=4�	0/ is included by using the dielectric constant 	0.8:854�
10�12 F=m/ in vacuum for correlating with nucleus charge Ze.

R D 2�2�e4

ch3
�
�

1

4�	0

�2

D me4

8	2
0ch3

D 9:109 � 10�31 � .1:602 � 10�19/4

8 � .8:854 � 10�12/2 � .2:998 � 108/ � .6:626 � 10�34/3

D 9:109 � .1:602/4 � 10�107

8 � .8:854/2 � .2:998/ � .6:626/3 � 10�118
D 1:097 � 107 .m�1/

Question 1.8 When the X-ray diffraction experiment is made for a plate
sample in the transmission mode, it is readily expected that absorption
becomes large and diffraction intensity becomes weak as the sample thickness
increases. Obtain the thickness of a plate sample which makes the diffrac-
tion intensity maximum and calculate the value of aluminum for the Cu-K˛

radiation.

Back
side

Surface
side

x
dx

t

t-x
I0 I

Fig. A Geometry for a case where X-ray penetrates a plate sample

Answer 1.8 X-ray diffraction experiment in the transmission mode includes both
absorption and scattering of X-rays. Let us consider the case where the sample
thickness is t , the linear absorption coefficient �, the scattering coefficient S , and
the intensity of incident X-rays I0 as referred to Fig. A.

Since the intensity of the incident X-rays reaching the thin layer dx which is at
distance of x from the sample surface is given by I0e��x , the scattering intensity
dI 0

x from the thin layer dx (with scattering coefficient S ) is given by the following
equation:

dI 0
x D SI0e��xdx (1)

The scattering intensity dIx passes through the distance of .t � x/ in the sample
and the absorption during this passage is expressed by the form of e��.t�x/. There-
fore, the scattering intensity of the thin layer dx after passing through the sample
may be given in the following form:

dIx D .SI0e��xdx/e��.t�x/ D SI0e��t dx (2)
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The scattering intensity of the overall sample will be equal to the result obtained
by integrating the intensity of the thin layer dx with respect to the sample thickness
from zero to t .

I D
Z t

0

SI0e��t dx D SI0t � e��t (3)

The maximum value of I is given under the condition of dI=dt D 0.

dI

dt
D SI0.e��t � t�e��t / D 0; t� D 1 ! t D 1

�
(4)

We can find the values of mass absorption coefficient .�=�/ and density .�/

of aluminum for Cu-K˛ radiation in the reference table (e.g., Appendix A.2). The
results are .�=�/ D 49:6 cm2=g and � D 2:70 g=cm3, respectively. The linear
absorption coefficient of aluminum is calculated in the following:

� D
�

�

�

�
� D 49:6 � 2:70 D 133:92 .cm�1/

Therefore, the desired sample thickness t can be estimated as follows:

t D 1

�
D
�

1

133:92

�
D 7:47 � 10�3 .cm/ D 74:7 .
m/

Question 1.9 There is a substance of linear absorption coefficient �.

(1) Obtain a simple relation to give the sample thickness x required to reduce
the amount of transmitted X-ray intensity by half.

(2) Calculate also the corresponding thickness of Fe-17 mass % Cr alloy
.density D 7:76 � 106 g=m3/ for Mo-K˛ radiation, using the relation
obtained in (1).

Answer 1.9 Let us consider the intensity of the incident X-rays as I0 and that of the
transmitted X-rays as I . Then,

I D I0e��x (1)

If the condition of I D I0

2
is imposed, taken into account, one obtains,

I0

2
D I ��x

e (2)

1

2
D e��x (3)
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When the logarithm of both sides is taken, we obtain log 1 � log 2 D ��x log e.
The result is � log 2 D ��x, as they are log1 D 0, and loge D 1. Here, natural
logarithm is used and the required relation is given as follows:

x D log2

�
' 0:693

�
(4)

The values of mass absorption coefficients of Fe and Cr for the Mo-K˛ radiation
are 37:6 and 29:9 cm2=g obtained from Appendix A.2, respectively. The concentra-
tion of Cr is given by 17 mass %, so that the weight ratio of two alloy components
can be set as wFe D 0:83 and wCr D 0:17. Then, the mass absorption coefficient of
the alloy is expressed in the following:

�
�

�

�
Alloy

D wFe

�
�

�

�
Fe

C wCr

�
�

�

�
Cr

D 0:83 � .37:6/ C 0:17 � .29:9/ D 36:3 .cm2=g/

Next, note that the unit of the density of the Fe–Cr alloy is expressed in cgs,
7:76 � 106 g=m3 D 7:76 g=cm3. We obtain,

�Alloy D 36:3 � 7:76 .cm�1/ D 281:7 .cm�1/

x D 0:693

281:7
D 0:0025 cm D 0:025 mm D 25 
m

Question 1.10 Calculate the mass absorption coefficient of lithium niobate
.LiNbO3/ for Cu-K˛ radiation.

Answer 1.10 The atomic weight of Li, Nb, and oxygen (O) and their mass absorp-
tion coefficients for Cu-K˛ radiation are obtained from Appendix A.2, as follows:

Atomic weight Mass-absorption coefficient

(g) �=� .cm2=g/

Li 6.941 0.5

Nb 92.906 145

O 15.999 11.5

The molar weight(molar mass) M per 1 mole of LiNbO3 is given in the following:

M D 6:941 C 92:906 C .15:999 � 3/ D 147:844 .g/

The weight ratio wj of three components of Li, Nb, and O is to be obtained.
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wLi D 6:941

147:844
D 0:047; wNb D 92:906

147:844
D 0:628; wO D 47:997

147:844
D 0:325

Then, the mass absorption coefficient of lithium niobate can be obtained as follows:

�
�

�

�
LiNbO3

D
X

wj

�
�

�

�
j
D 0:047 � 0:5 C 0:628 � 145 C 0:325 � 11:5

D 94:8 .cm2=g/

Question 1.11 A thin plate of pure iron is suitable for a filter for Co-K˛

radiation, but it is also known to easily oxidize in air. For excluding such
difficulty,we frequently utilize crystalline hematite powder (Fe2O3:density
5:24�106 g=m3). Obtain the thickness of a filter consisting of hematite powder
which reduces the intensity of Co-Kˇ radiation to 1/500 of the K˛ radiation
case. Given condition is as follows. The intensity ratio between Co-K˛ and
Co-Kˇ is found to be given by 5:1 without a filter. The packing density of
powder sample is known usually about 70% of the bulk crystal.

Answer 1.11 The atomic weight of Fe and oxygen (O) and their mass absorption
coefficients for Co-K˛ and Co-Kˇ radiations are obtained from Appendix A.2, as
follows:

Atomic � /� for Co-K˛ � /� for Co-Kˇ

weight (g) (cm2=g) (cm2=g)

Fe 55.845 57.2 342

O 15.999 18.0 13.3

The weight ratio of Fe and O in hematite crystal is estimated in the following:

MFe2O3 D 55:845 � 2 C 15:999 � 3 D 159:687

wFe D 55:845 � 2

159:687
D 0:699; wO D 0:301

The mass absorption coefficients of hematite crystals for Co-K˛ and Co-Kˇ radia-
tions are, respectively, to be calculated.

�
�

�

�˛

Fe2O3

D 0:699 � 57:2 C 0:301 � 18:0 D 45:4 .cm2=g/

�
�

�

�ˇ

Fe2O3

D 0:699 � 342 C 0:301 � 13:3 D 243:1 .cm2=g/
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It is noteworthy that the density of hematite in the filter presently prepared is equiv-
alent to 70% of the value of bulk crystal by considering the packing density, so that
we have to use the density value of �f D 5:24 � 0:70 D 3:67 g=cm3 Therefore, the
value of the linear absorption coefficient of hematite powder packed into the filter
for Co-K˛ and Co-Kˇ radiations will be, respectively, as follows:

�˛ D
�

�

�

�˛

Fe2O3

� �f D 45:4 � 3:67 D 166:6 .cm�1/

�ˇ D
�

�

�

�ˇ

Fe2O3

� �f D 24:1 � 3:67 D 892:2 .cm�1/

The intensity ratio of Co-K˛ and Co-Kˇ radiations before and after passing through
the filter consisting of hematite powder may be described in the following equation:

ICo�Kˇ

ICo�K˛

D I
ˇ
0 e��ˇt

I ˛
0 e��˛ t

From the given condition, the ratio between I ˛
0 and I

ˇ
0 is 5:1 without filter, and it

should be 500:1 after passing through the filter. They are expressed as follows:

1

500
D 1

5

e��ˇt

e��˛ t
! 1

100
D e.�˛��ˇ/t

Take the logarithm of both sides and obtain the thickness by using the values of �˛

and �ˇ .

.�˛ � �ˇ /t D � log 100 .* log e D 1; log 1 D 0/

.166:6 � 892:2/t D �4:605

t D 0:0063 .cm�1/ D 63 .
m/

Question 1.12 For discussing the influence of X-rays on the human body
etc., it would be convenient if the effect of a substance consisting of multi-
elements, such as water (H2O) and air (N2, O2, others), can be described by
information of each constituent element (H, O, N, and others) with an appro-
priate factor. For this purpose, the value of effective element number NZ is
often used and it is given by the following equation:

NZ D 2:94

q
a1Z2:94

1 C a2Z2:94
2 C � � �

where a1; a2 : : : is the electron component ratio which corresponds to the rate
of the number of electrons belonging to each element with the atomic number
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Z1; Z2; : : : to the total number of electrons of a substance. Find the effective
atomic number of water and air. Here, the air composition is given by 75.5%
of nitrogen, 23.2% of oxygen, and 1.3% of argon in weight ratio.

Answer 1.12 Water (H2O) consists of two hydrogen atoms and one oxygen atom,
whereas the number of electrons are one for hydrogen and eight for oxygen. The
values of atomic weight per mole (molar mass) of hydrogen and oxygen (molar
mass) are 1.008 and 15.999 g, respectively. Each electron density per unit mass is
given as follows:

For hydrogen N H
e D 0:6022 � 1024

1:008
� 1 D 0:597 � 1024 .g�1/

For oxygen N O
e D 0:6022 � 1024

15:999
� 8 D 0:301 � 1024 .g�1/

In water (H2O), the weight ratio can be approximated by 2=18 for hydrogen and
16=18 for oxygen, respectively. Then, the number of electrons in hydrogen
and oxygen contained in 1 g water are 0:597 � 1024 � .2=18/ D 0:0663 � 1024

and 0:301 � 1024 � .16=18/ D 0:2676 � 1024,respectively, so that the number
of electrons contained in 1 g water is estimated to be .0:0663 C 0:2676/ � 1024 D
0:3339�1024. Therefore, the electron component ratio of water is found as follows:

aH D 0:0663

0:3339
D 0:199

aO D 0:2262

0:3339
D 0:801

NZ D 2:94
p

0:199 � 12:94 C 0:801 � 82:94

D 2:94
p

0:199 C 362:007 D 2:94
p

362:206 D 7:42

Here, we use the relationship of NZ D X
1
y ! ln NZ D 1

y
lnX ! NZ D e

1
y

lnX

On the other hand, the molar masses of nitrogen, oxygen, and argon are 14.01,
15.999, and 39.948 g, respectively. Since 75.5% of nitrogen (7 electrons), 23.2% of
oxygen (8 electrons), and 1.3% of argon (18 electrons) in weight ratio are contained
in 1 g of air, each electron numbers is estimated in the following:

For nitrogen N N
e D 0:6022 � 1024

14:01
� 0:755 � 7 D 0:2272 � 1024

For oxygen N O
e D 0:6022 � 1024

15:999
� 0:232 � 8 D 0:0699 � 1024

For argon N Ar
e D 0:6022 � 1024

39:948
� 0:013 � 18 D 0:0035 � 1024
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Therefore, the value of .0:2272 C 0:0699 C 0:0035/ � 1024 D 0:3006 � 1024 is
corresponding to the number of electrons in 1 g of air. The rate to the total number
of electrons of each element is as follows:

aN D 0:2272

0:3006
D 0:756

aO D 0:0699

0:3006
D 0:232

aAr D 0:0035

0:3006
D 0:012

Accordingly, the effective atomic number of air is estimated in the following:

NZ D 2:94
p

0:756 � 72:94 C 0:232 � 82:94 C 0:012 � 182:94

D 2:94
p

230:73 C 104:85 C 58:84 D 2:94
p

394:42 D 7:64



Chapter 2
Geometry of Crystals

2.1 Lattice and Crystal Systems

The origin of crystallography can be traced to the study for the external appearance
of natural minerals, such as quartz, fluorite, pyrite, and corundum, which are reg-
ular in shape and clearly exhibit a good deal of symmetry. A large amount of data
for such minerals have been systematized by applying geometry and group theory.
“Crystallography” involves the general consideration of how crystals can be built
from small units. This corresponds to the infinite repetition of identical structural
units (frequently referred to as a unit cell) in space. In other words, the structure of
all crystals can be described by a lattice, with a group of atoms allocated to every
lattice point.

Crystals can be classified into 32 point groups on the basis of eight kinds of
symmetry elements. There are seven crystal systems for classification, which con-
sist of 14 kinds of Bravais lattices. For convenience, these relations are illustrated
in Fig. 2.1. Furthermore, if it is extended to include space groups, by adding point
groups, Bravais lattices, screw axis, and glide reflection axis, there will be 230 clas-
sifications in total. In other words, all crystals “belong to one of 230 space groups,”
the details available in other books on crystallography (see for example Interna-
tional Tables for X-ray Crystallography published by the International Union of
Crystallography).

Let us consider the three-dimensional arrangement of points called a point lat-
tice, as shown in Fig. 2.2.When the atomic position or configuration in crystal
is described by a lattice point, any point indicates exactly the same environment
(Didentical surroundings) as any other point in the lattice. This means the lattice
point can be reproduced by repeating a small unit. This small repeating unit is
referred to as a unit cell (or sometime called unit lattice) where all sequences can
be given by three vectors a, b, and c (or those lengths a, b and c) and the interaxial
angles between them, ˛, ˇ, and � . The relationship between a, b, c and ˛, ˇ, � is
illustrated in Fig. 2.3, and these lengths and angles are called the lattice parameters
or lattice constants of the unit cell.

As shown in Fig. 2.2, there is more than one way to choose a unit cell, so that
it is better to select a unit cell in the direction where three axes have the highest

21
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Fig. 2.1 Symmetry elements in crystals and their relationships for classification

Fig. 2.2 Different ways for selecting a unit cell in a point lattice

symmetry. On the other hand, all three lengths a, b, and c in case of Fig. 2.3 have
different values, and all three angles ˛, ˇ, and � are also found to be different from
each other. This case called as “triclinic system” shows an axis with the altissimo
symmetry of only a onefold axis (no symmetry) or N1 rotatory inversion (or rotoin-
version) axis. For convenience, some essential points on “how atoms are arranged
in a substance” are given below.
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Fig. 2.3 Example of a unit
cell

Four macroscopic symmetry operations or symmetry elements are well known:
“reflection,” “rotation,” “inversion,” and “rotatory inversion.” For example, several
planes of symmetry in a cube are readily noticed. In this symmetry of reflection, if
a body shows symmetry with respect to a certain plane passing through it, reflection
of either half of the body in the plane as in a mirror makes a body coincident with the
other half. A body shows n-fold rotation symmetry around an axis, when a rotation
by .360=n/ı or .2�=n/ brings it into self-coincidence. One can easily understand
that a cube has a fourfold rotation axis normal to each face, a threefold axis along
each body diagonal, and twofold axis joining the centers of opposite edges. In gen-
eral, there are one, two, three, four and six fold axes for a rotation axis, but a onefold
axis corresponds to no symmetry at all.

A body having an inversion center can bring itself into coincidence, when every
point in the body is inverted or reflected at the inversion center. The corresponding
points of the body are at equal distances from the center on a line drawn through
the center. A cube is known to have such a center at the intersection of its body
diagonals. In general, there is either one, two, three, four or sixfold axes for a
rotatory-inversion axis. It is noted for an n-fold, rotatory-inversion axis exists when
a body comes into coincidence with itself by coupling the rotation by .360=n/ı
around the axis followed by inversion operation in a center lying on the axis.

By putting lattice points at the corner of these crystal systems for finding a cer-
tain minimum set of symmetry elements, seven kinds of crystal systems are obtained
as shown in Table 2.1. That is, only seven different kinds of cells are necessary to
cover all possible point lattices or all crystals can be classified into one of the seven
crystal systems. Nevertheless, there are other ways for fulfilling the condition that
each point has identical surroundings. In this regard, Auguste Bravais (physicist in
France) found that there are 14 possible point lattices and no more and we use Bra-
vais lattices as shown in Fig. 2.4. Since the unit cell including two or more lattice
points is chosen in the Bravais lattice for convenience, some of the Bravais lattices
can be expressed by other simple lattices. For example, the face-centered cubic lat-
tice is also described by a trigonal (rhombohedral) lattice which contains only one
lattice point (see Question 2.5).

The symbols P , F , I , etc. in Fig. 2.4 or Table 2.1 are given on the basis of the
following rule. When a unit cell has only one lattice point, it is called a primitive
(or simple) cell, and usually represented by P . In addition, although the trigonal
(rhombohedral) crystal system can also be classified into primitive, we use R as the
symbol. Other symbols are nonprimitive cells and more than one lattice point per
cell is included. It may be suggested that any cell containing lattice points only at
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Table 2.1 Summary of seven crystal systems and Bravais lattices

System Axial lengths and angles Bravais lattice Lattice symbol

Cubic Three equal axes at right angles Simple P

a D b D c, ˛ D ˇ D � D 90ı Body-centered I

Face-centered F

Tetragonal Three axes at right angles, two equals Simple P

a D b ¤ c, ˛ D ˇ D � D 90ı Body-centered I

Orthorhombic Three unequal axes at right angles Simple P

a ¤ b ¤ c, ˛ D ˇ D � D 90ı Body-centered I

Base-centered C

Face-centered F

Trigonal� Three equal axes, equally inclined Simple R

a D b D c, ˛ D ˇ D � ¤ 90ı

Hexagonal Two equal coplanar axes at, Simple P

120ı third axis at right angles
a D b ¤ c, ˛ D ˇ D 90ı, � D 120ı

Monoclinic Three unequal axes, one pair not Simple P

at right angles a ¤ b ¤ c, Base-centered C

˛ ¤ � D 90ı ¤ ˇ

Triclinic Three unequal axes, unequally Simple P

inclined and none at right angles
a ¤ b ¤ c, ˛ ¤ ˇ ¤ � ¤ 90ı

�Also called rhombohedral.

the corners is primitive, whereas one containing additional points in the interior or
on a cell face is nonprimitive. Symbols I and F refer to body-centered and face-
centered cells, respectively. The symbols A, B , and C represent base-centered cells
where the lattice point is given at the center on one pair of opposite facesA,B , orC .
Here, the face of C , for example, is the face defined by b-axis and a-axis.

There are various substances and the atomic arrangements in these substances
reveal a variety of crystal structures characterized by a certain periodicity. Of course,
all structures cannot be covered here. However, many of elements in the periodic
table are metals and about 70% of them have relatively simple crystal structure with
high symmetry, such as the body-centered cubic (bcc), face-centered cubic (fcc),
and hexagonal close-packed (hcp) lattices. Typical features of these three crystal
structures are summarized in Fig. 2.5.

Crystals can be broadly classified into three categories from the point of view of
bonding: “metallic,” “ionic,” and “covalent.” In metallic crystals, a large number of
electrons (conduction or valence electrons) are free to move the inside of the system,
without belonging to specific atoms but shared by the whole system. This bonding
arising from a conduction electron is not very strong. For example, the interatomic
distances of alkali metals are relatively large, because the kinetic energy of con-
duction electrons is relatively low at the large interatomic distances. This leads to
weak binding and simple structure. On the other hand, ionic crystals consist of pos-
itive and negative ions, and the ionic bond results from the electrostatic interaction



2.1 Lattice and Crystal Systems 25

Fig. 2.4 The fourteen Bravais lattices

of oppositely charged ions in the solid state. Typical examples are metal–halogen
compounds, and two typical structures found for ionic crystals are sodium chloride
and cesium chloride structures. In sodium chloride, NaC and Cl� ions are arranged
to form the structure as shown in Fig. 2.6.

In ionic crystals, ionic arrangements that minimize electrostatic repulsion and
maximize electrostatic attraction are preferred. In many cases, the negative ions
(anions) of large size are densely arranged so as to avoid their direct contact, and
the positive ions (cations) of small size occupy the positions equivalent to the vacant
space produced by anions. Therefore, the correlation is recognized between crystal
structure and the size ratio, for example, the ratio of ionic radii D rc=ra, where rc

and ra are the radii of cation and anion, respectively. When the value of rc=ra is
0.225, one can find the tetrahedral arrangement with the coordination number of 4,
and the octahedral arrangement with the coordination number of 6 in the rc=ra D
0:414 case. Thus, the value of rc=ra has a critical value for ionic configurations.
For actual ionic crystals, the arrangement is quite likely to avoid direct contact of
the same electric-charged ions mainly arising from energetic constraints. Therefore,
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Fig. 2.5 Typical crystal structures of metallic elements

Fig. 2.6 Crystal structure of
sodium chloride

many combinations of rc=ra found in an actual ionic crystal show a little bit larger
values than the critical values based on spherical models.

The covalent bond, having strong directional properties, is the classical electron
pair, and silicon and germanium are included in this category. These crystals have
the diamond structure with atoms bonded to four nearest neighbors at tetrahedral
angles.

2.2 Lattice Planes and Directions

The key points for describing crystal planes and directions are discussed below. In
order to show a lattice plane, Miller indices are usually employed. Miller indices
are defined as the reciprocals of the fractional intercepts which the plane makes
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with the crystallographic axes. For example, if a plane is described by the Miller
indices of (h k l), the plane makes fractional intercepts of 1=h, 1=k, and 1=l with
the axes a, b, and c, respectively. This reciprocal symbolism enables us to give the
Miller indices being zero, when a plane is parallel to an axis. For example, the center
position of a body-centered cubic lattice is expressed by 1

2
1
2

1
2

and the position of
surface-centered lattice as 1

2
1
2
0; 1

2
0 1

2
; 0 1

2
1
2

. Some generalized rules for presentation
are as follows:

(1) The distance from the origin to the intersection of the desired plane with
each crystal axis is determined from the basis of unit length, such as a lattice
parameter. As shown in Fig. 2.7, the a-axis intersects at the unit length of 1=h.

(2) The reciprocals of three numbers are taken and let the minimum integer ratio
(h k l) be the index of the corresponding plane.

(3) If the desired plane is parallel to a certain axis, the distance from the origin in
the axis to the intersection becomes infinite. In that case, the index is expressed
by zero. For example, (h 0 0) represents a plane parallel to b-axis and c-axis.

(4) Although a set of planes parallel to it can be found for every plane, Miller
indices usually refer to that plane in the set which is nearest to the origin.

(5) When a plane intercepts at the negative side in any axis, such negative value is
represented by writing a bar over the Miller indices, for example, ( Nh Nk Nl).

(6) There are sets of equivalent lattice planes related by symmetry, for example, the
planes of a cube, (100), (010), (N100), (0N10), (001), and (00N1).They are called
“planes of a form” and the expression of f001g is used. The number of the
equivalent lattice planes in one plane of a form corresponds to the multiplicity
factor and they are given for seven crystal systems in Table 2.2.

Fig. 2.7 Example of Miller indices for plane
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Table 2.2 Multiplicity factors for crystalline powder samples

Cubic hkl hkk hk0 hh0 hhh h00
48� 24 24� 12 8 6

Hexagonal hk � l hh � l h0 � l hk � 0 hh � 0 h0 � 0 00 � l
24� 12 12 12� 6 6 2

Trigonal Referred to hkl Nkkh hkk hk0 Nkhh hhh hh0 h00
rhombohedral axes 12� 12� 6 12� 6 2 6 6

Referred to hk � l hh � l h0 � l hk � 0 hh � 0 0h � 0 00 � l
hexagonal axes 12� 12� 6 12� 6 6 2

Tetragonal hkl hhl hh0 hk0 h0l h00 00l
16� 8 4 8� 7 4 2

Orthorhombic hkl hk0 h00 0k0 00l h0l 0kl
8 4 2 2 2 4 4

Monoclinic hkl hk0 0kl h0l h00 0k0 00l
(Orthogonal axis: b) 4 4 4 2 2 2 2

Triclinic hkl hk0 0kl h0l h00 0k0 00l
2 2 2 2 2 2 2

�In some crystals, planes having these indices comprise of two forms with the same spacing but
different structure factor. In such case, the multiplicity factor for each form is half the value given
here.

On the other hand, the direction of crystal lattice is given by any coordinates
u v w on a line passing through the origin. Note that the indices are not necessarily
integer, because this line will also pass through the point of 2u 2v 2w, etc. Never-
theless, the direction is described using the method based on the Miller indices. For
example, translation of the origin is carried out to a certain point, and if the set of
u v w is found the minimum integer, when the shift is made by moving the point
by ua in the direction of a-axis, vb in the direction of b-axis, and wc in the direc-
tion of c-axis, the indices of the direction of the line is expressed as [u v w] in a
square bracket. Negative indices are written with a bar over the number, for exam-
ple, [Nu Nv Nw]. The equivalent direction related by symmetry is called “directions of a
form” and described by hu v w i, similar to the plane case. As already described, the
direction indices are not necessarily integer. Nevertheless, since all of [ 1

2
1
2
1�, [112],

[224], etc. indicate the same direction, they are usually described by [112]. For con-
venience, some examples of the plane indices and direction indices are shown in
Fig. 2.8.

With respect to the hexagonal system, a slightly different method for plane index-
ing is employed: the so-called Miller–Bravais indices refer to plane indices with four
axes such as (h k i l), instead of Miller indices. The unit cell of a hexagonal lattice
is given by two equal and coplanar vectors of a1 and a2 with 120ı to one another,
and a third axis c at right angle, as shown in Fig. 2.9. In addition, the third axis
of a3, lying on the basal plane of the hexagonal prism, is symmetrically related to
a1 and a2 and then it is often used with the other two. The complete hexagonal
lattice is obtained by repeated translations of the points at the unit cell corners by
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Fig. 2.8 Example of some indices for planes and directions in cubic system

Fig. 2.9 Example of the indices for unit cell, planes, and directions in hexagonal system

the vectors a1, a2, and c. It is noted for the Miller–Bravais indices that the relation
of i D �.h C k/ between h and k is always satisfied. This is because the value
of i depends on the h and k values, since the intercepts of a plane on a1 and a2

determine its intercept on a3 (see Fig. 2.9).
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The indices of directions in the hexagonal system, the notation using four indices
[u v t w], is used, and in this case there is a relation t D �.u C v/. The indices of
some planes and directions in the hexagonal system are illustrated in Fig. 2.9. More
details such as interaction of three indices and four indices in the hexagonal crystal
lattice are given in Question 2.11.

2.3 Planes of a Zone and Interplanar Spacing

As shown earlier, there are sets of equivalent planes by symmetry in any crystal
lattice and they are called planes of a form. Atoms in crystals can be arranged not
only on a lattice plane but also on a group of straight lines which are mutually
parallel. This straight line is called “zone axis” and all the planes parallel to the
direction of this line are called “planes of a zone.” Such planes have quite different
indices and spacings, but their parallelism to a line is satisfied. For example, the
plane of a zone which belongs to the zone axis [001] in a cubic system is shown in
Fig. 2.10.

If a plane belongs to a zone whose indices are (h k l) and the indices of zone axis
are [u v w], the following relation is satisfied:

hu C kv C lw D 0: (2.1)

Let us consider any two planes to be planes of a zone, when they are both parallel to
their line of intersection. If these two planes are denoted by (h1 k1 l1) and (h2 k2 l2),
the indices of their zone axis [u v w] are given by the following relations:

u D k1l2 � k2l1; v D l1h2 � l2h1; w D h1k2 � h2k1: (2.2)

The value of the interplanar spacing d is a function of both the plane indices
(h k l) and the lattice parameters (a, b, c, ˛, ˇ, and � ). The relationship between
the plane indices (h k l) and the interplanar spacing d depends on crystal systems.

Fig. 2.10 Example of the
planes belonging to the zone
axis [001] in cubic system
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For example, the interplanar spacing d of the plane of (h k l) for the cubic and
tetragonal systems is given in the following equations:

d D ap
h2 C k2 C l2

(cubic) (2.3)

d D a

h2 C k2 C l2.a2=c2/
(tetragonal) (2.4)

It may be worth mentioning that lower indices the plane has, larger the value of
interplanar spacing becomes, and the density of the lattice points in the correspond-
ing plane also becomes large.

2.4 Stereographic Projection

To display the angular relationships between planes and directions in a crystal dis-
tributed over three dimensions, various methods are employed. For this purpose, the
stereographic projection based on spherical projection is very common in crystal-
lography, because this projection method enables us to permit graphical solution of
angular problems between planes.

In spherical projection, the direction of a plane when placing the crystal at the
center of the sphere is represented by a point that the straight line drawn in the direc-
tion that passes through the center of the sphere intersects the surface of the sphere.
The sphere is called a reference sphere or a projection sphere. The direction of
any plane can be represented by the inclination of the normal to that plane. Then, all
the planes in a crystal can be described by a set of plane normals radiating from
one point within the crystal. If a reference sphere is placed about this point, the plane
normals intersect the surface of the sphere in a set of points called poles. The pole
position on the sphere represents the direction of the corresponding plane. The
plane can also be represented by the trace (line) the extended plane makes in the
sphere surface.

The spherical projection can accurately represent the symmetry of the angular
relationships between planes and directions as well as zone, but the use of sphere is
not always convenient, because the measurement of angles on a flat sheet is more
convenient in comparison with measurements on the surface of a sphere. For this
purpose, the stereographic projection is widely used. The method is similar to that
used by geographers who want to transfer a world map from a terrestrial globe to a
sheet of an atlas. Particularly, the equiangular stereographic projection is preferred
in crystallography, because it preserves angular relationships faithfully, although
area is distorted.

Stereographic projection is one of the perspective projection methods. As shown
in Fig. 2.11, the projection plane is normal to the line NS that connects two poles,
N (north pole) and S (south pole), and at the midpoint of the diameter AB of pro-
jection sphere a crystal C is placed. A light source is set at S (south pole), whereas
the observer views the projection from N (north pole) just opposite the light source.
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Fig. 2.11 Fundamentals of stereographic projection

Fig. 2.12 The intersection of
lines drawn between the poles
of planes in the northern
hemisphere and the south
poles is recorded on the
equatorial plane in the
stereographic projection

If a certain plane of the crystal has its pole at P, the stereographic projection of P
can be obtained as P0, by drawing the line NP, and it will intersect the projection
plane. Alternatively stated, if a pole P is located in the southern hemisphere, its
stereographic projection P0 is made from the arctic (north pole) N being the point
of perspective and P0 corresponds to the intersection of a straight line NP with a
projection plane. If a pole Q is in the northern hemisphere, consider the intersection
Q0 with the straight line SQ which makes the Antarctic (south pole) S the point of
perspective. It may be added that the stereographic projection of the pole Q is the
shadow cast denoted by Q0 on the projection plane when a light source is placed
at S. As shown in Fig. 2.12, a line for each of the poles in the northern hemisphere is
projected to the south pole and its intersection with equatorial plane of the equator
can be marked with a point.

By this method, all poles can be depicted inside an equatorial circle (basic circle).
In this case, it is required to distinguish the projecting point with N being the point
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of perspective and the projecting point with S being the point of perspective. Such
issue is easily resolved by using different symbols, for example, � for the former
and ı for the latter. Great circles on the reference sphere project as circular arcs,
whereas small circles project as circles, but their projected center does not coincide
with their projection center. One can also select any arbitrary plane perpendicular to
NS besides the equatorial plane as a projection plane. In this case, only the diameter
of the basic circle changes but the relative positions of projections are unchanged.

The net graphics obtained by projecting meridian circles and latitude circles at
every 1ı or 2ı on the equatorial plane is called polar net. Polar net is used for obtain-
ing the projecting point on the equatorial plane with respect to a point on a projection
sphere. When considering a terrestrial globe, the longitudinal lines correspond to
great circles, whereas the latitude lines are small circles, except the equator. The
net graphics obtained by projecting the meridian circles and latitude circles on one
meridian circle is called Wulff net. In this case, the longitude lines are drawn by the
stereographic projection of the great circles connecting the north and south poles
of the net at interval of 2ı, and they are displayed with thick arc (line) at every 10ı.
The latitude lines on the Wulff net are obtained by the stereographic projection of
the small circle extending from side to side at intervals of 2ı, corresponding to the
intersection of a projection sphere with a plane perpendicular to NS axis. The Wulff
net is quite convenient for estimating the angle between two planes.

In the analysis using the Wulff net, a tracing paper containing the stereographic
projection is usually placed on a copy of the Wulff net and the centers are made
coincident and fixed by a tack. The stereographic projection is made on a tracing
paper with the basic circle of the same diameter as that of the Wulff net. The center
of the stereographic projection always coincide with the Wulff net center. Although
the uncertainty of the angle determined from the Wulff net analysis is about 1ı,
it is sufficient in most cases. It should be remembered that the angle between two
poles is taken to average the angle between two normals, n and it is not the dihedral
angle (� ) between the corresponding two planes P1 and P2. Since the poles of the
planes lie on great circle (the zone circle), these two angles are simply related as
n D 180ı � �, as shown in Fig. 2.13. Some essential points of the stereographic
projection are given below.

Fig. 2.13 Relationship
between the angle of
intersection of normal and the
dihedral angle formed by two
planes P1 and P2
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Fig. 2.14 Methods for obtaining (a) the pole of great circles, (b) the pole of small circles, and (c)
the angle between the two lattice planes A and B using the stereographic projection

In the stereographic projection, circles on the reference (projection) sphere
project as circles or two circular arcs, if they do not pass through the points, N and S,
being the point of perspective. Whereas, circles project as straight lines through the
center of the projection, if they pass through the points, being the perspective point.
In other words, projected great circles always pass the intersection between the basic
circle and the straight line passing through a center of the basic circle. This is called
“theorem of corresponding circle to circle.” On the other hand, the angle given by
two stereographically projected great circles (it also includes the straight line case)
is equal to the spherical angle of two great circles on the reference sphere. This is
called “theorem of conformal mapping.”

To obtain the pole of a great circle on the projection plane, with respect to a great
circle ACB in Fig. 2.11 (see also Fig. 2.14a), the diameter FOG which is perpendicu-
lar to the diameter AOB is put on the equator of the Wulff net, and P is taken from C
at 90ı. On the other hand, to obtain the pole P of a small circle on the projection
plane (see Fig. 2.14b), the diameter AOBO1CD is taken with the center of a small
circle as O1; then, this is put on the equator of the Wulff net and set point P divid-
ing equally the angle between BC into two parts. To know the angle between the
lattice planes A and B, put on the projection on the Wulff net at first, and as shown
in Fig. 2.14c, it is rotated and it is made for A and B so as to get on one meridian
circle. Next, if we measure the value of angle on the meridian, it is equivalent to the
angle of interest.

Rotation of the stereographic projection is readily made by using the polar net
and the Wulff net. In addition, the so-called standard projection is very useful for dis-
cussing problems of crystal orientation, because it gives the relative orientation of all
the important planes in the crystal at a single look. Such projections are obtained by
choosing some important lattice planes of low indices as the projection plane, such
as the lattice planes of (110), (100), (111), or (0001), which are frequently encoun-
tered. In this process, the projection of main poles is made by placing a crystal so as
to coincide the directions of [100], [110], [111], or [0001] with the north–south NS
axis given in Fig. 2.11. Some standard projections, such as cubic crystals on (001)
and on (011) are available in textbooks or handbooks for X-ray analysis. When this
is utilized, one can obtain information about the relative relationships of main lat-
tice planes in a crystal. It is also extremely convenient for dealing with problems of
crystal orientation. Some selected examples are given in Questions 2.19–2.22.
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2.5 Solved Problems (21 Examples)

Question 2.1 Illustrate (100), (110), (111), and (112) planes in cubic lattice
and direction indices of [010], [111], [N100], and [120].

Answer 2.1 About given Miller indices, planes are shown in Fig. 1 and directions
are illustrated in Fig. 2.

Fig. 1 Examples of the plane indices in cubic lattice

Fig. 2 Examples of the direction indices in cubic lattice

In addition, there are sets of equivalent lattice planes related by symmetry, for exam-
ple, the faces of a cube, (100), (010), (N100), (0N10), (001), and (00N1). They are called
planes of a form and the expression of f001g is used. Similarly, with respect to the
direction, it is shown for [110], [101], [011], etc. as h110i.

Question 2.2 Answer the following questions about body-centered cubic
(bcc) structure with the lattice parameter “a.”

(1) Obtain the volume of void, supposing the case where the spherical atoms
of radius rA are arranged in each lattice point. Calculate also the porosity
and packing fraction.
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(2) The position of the maximum void in this body-centered cubic lattice is
known to be corresponding to the tetrahedral site (1/2, 1/4, 0), and to
equivalent position. Obtain the radius of maximum sphere that fits to this
space.

Answer 2.2

(1) In body-centered cubic (bcc) structure, atoms contacting each other are seen on
diagonals and then we obtain the following relationship:

4 � rA D a
p
3

rA D
p
3

4
a

In a unit cell of bcc structure, there are two atoms: one atom at eight corners
(8 � 1=8 D 1) and one atom at the center. Therefore, the volume VA occupied
by atoms is described by

VA D 2 � 4

3
�

 p
3

4
a

!3

D
p
3�

8
a3:

The unit cell volume is expressed by a3, so that the void volume VH is as
follows:

VH D a3 � VA D
 
1 �

p
3

8
�

!
a3:

The porosity in the bcc lattice is given in the following:

�
VH

a3

�
D
 
1 �

p
3

8
�

!3

D 0:32:

Therefore, the packing fraction of bcc lattice is 0.68.
(2) If the radius of the sphere which fits to void is rX, the following relationship is

obtained by geometric conditions (see Fig. 1):

.rA C rX/
2 D

�a
4

�2 C
�a
2

�2

:

Next, using the relation of rA D
p

3
4
a in the bcc lattice, the radius of the

maximum sphere which fits to void is given by following equations:

 p
3

4
a C rX

!2

D
�a
4

�2 C
�a
2

�2 D
�
5

16
a

�2

; rX D
 p

5 � p
3

4

!
a
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Reference: You will understand that the maximum radius which fits to void in the
bcc lattice is about 30% of the radius of the constituent atom in the following result:

rX

rA
D
�p

5�p
3

4

�
a

p
3

4
a

D
p
5p
3

� 1 D 0:29:

Fig. 1 Tetrahedral voids in the bcc lattice. (Filled circle) Metal atoms, (open circle) Tetrahedral
void

Question 2.3 At 278 K, iron (Fe) is found to show bcc structure with a lattice
parameter of 0.2866 nm. Obtain the density of iron from this information.

Answer 2.3 The bcc structure includes two atoms per unit cell. If Avogadro’s num-
ber is NA, one mole of iron includes NA=2 unit cells. Therefore, the volume V per
mole of Fe (atomic volume) is given by

V D .0:2866� 10�9/3

0:6022� 1024=2
:

The atomic weight M (molar mass) per 1 mol of Fe is 55.845 g is obtained from
Appendix A.2. Therefore, from the relationship of V D M=�, we can estimate the
density value of � as follows:

� D 55:845 � 2
.0:2866 � 10�9/3 � 0:6022� 1024

D 7:88 � 106 g=m3:

Reference: The experimental value of density for Fe is 7:87�106 g=m3. Since some
defects such as vacancy and dislocation are usually included in an actual crystal,
there are some differences between the density estimated from the X-ray structure
data and the experimental value.
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Question 2.4 Beryllium (Be) mineral is expressed by a chemical formula
(3BeO � Al2O3 � 6SiO2), and it is revealed that the structure is hexagonal with
the lattice parameters a D 0:9215 nm and c D 0:9169 nm, and density
2:68 � 106 g=m3. Obtain the numbers of molecules contained in a unit cell.

Answer 2.4 At first, we obtain the molecular weight of beryllium mineral using
a chemical formula from the molecular weight per 1 mol of the individual oxide
component:

BeO D 25:01 g; Al2O3 D 101:96 g; SiO2 D 60:08 g

3BeO C Al2O3 C 6SiO2 D 537:47 g=mol

If this molecular weight is divided by Avogadro’s number, one obtain the value
equivalent to the weight of one beryllium mineral molecule.

Fig. 1 Geometric feature found in hexagonal system

Next, we estimate the volume of a unit cell for beryllium mineral from the given
values of lattice parameters. As readily seen in Fig. 1, in a unit cell of hexagonal

system, the value of c is given by twice the height of

�q
2
3
a

�
for the regular tetra-

hedron of length a of one side, and the area of the parallelogram which corresponds

to the base is given by

�q
3
4
a2

�
.Therefore, the volume V of a unit cell of hexagonal

system is given in the following equation (see also Appendix A.6):

V D
p
3

2
a2c D 0:866a2c

D 0:866 � .0:9215 � 10�9/2 � .0:9169 � 10�9/ D 0:6743� 10�27 Œm3�:

The product of the volume of a unit cell and the density corresponds to the weight
of one beryllium mineral molecule, so that if this value is compared with the value
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calculated from molecular weight and Avogadro’s number, the number of molecules
in a unit cell will be obtained:

0:6743 � 10�27 � 2:68 � 106�
537:47

0:6022�1024

� D 2:02:

Thus, the number of molecules in a unit cell is estimated to be two.

Question 2.5 (1) Illustrate that a trigonal cell (it is also called rhombohedral
cell) is recognized in the face-centered cubic (fcc) cell. (2) The fcc structure is
known in the close-packed arrangement of spheres with the identical size and
its layer stacking sequence of ABCABC type. Illustrate that the layer stacking
sequence of ABAB type found in the hexagonal close-packed (hcp) structure
is also detected.

Answer 2.5 If six atoms in the six cell faces of the fcc lattice and two atoms of both
sides of a diagonal line in a cubic are tied, a trigonal (rhombohedral) cell is built
up as shown in Fig. 1. When the lattice parameter of fcc lattice is set as “a0,” the
lattice parameter of trigonal lattice is given by a0=

p
2. The lattice parameters of the

trigonal system are

a D b D c D a0=
p
2; ˛ D ˇ D � D 60ı:

Next, if you look at the (111) plane centering on the [111] direction of the fcc
lattice, a part of the (0002) plane of hexagonal close-packed (hcp)-type stacking will
be recognized, as seen in Fig. 2. In this case, when two layers corresponding to the
(111) plane are considered as A and B layers, the atomic position of the corner of a
cubic lattice in the diagonal line corresponds to the C layer.

Fig. 1 The trigonal (rhombohedral) lattice recognized in fcc lattice
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Fig. 2 Stacking of atoms in fcc lattice and hcp lattice

Question 2.6 The atomic weight per 1 mol of copper (Cu) with face-centered
cubic (fcc) structure and the density at 298 K are 63.54 g and 8:89�106 g=m3,
respectively. Estimate the nearest-neighbor distance of Cu atoms.

Answer 2.6 In the fcc lattice, four atoms are known to be included in a unit cell.
When Avogadro’s number is denoted byNA, 1 mol Cu (63.54 g) includesNA=4 unit
cells. If the lattice parameter is set as “a,” the volume of 1 mol Cu (Dthe atomic
volume) V can be expressed as V D a3NA=4. On the other hand, we obtain the
relationship of a3NA=4 D M=�; using the atomic weight M and density �, the
lattice parameter can be estimated as follows:

a3 D 4 � 63:54
0:6022 � 1024 � 8:89 � 106

a D 3:621 � 10�10 m:

The nearest-neighbor distance r of Cu atoms can be calculated since Cu atoms
are in contact along the diagonal line of a cell face in the fcc structure:

r D a=
p
2 D 2:560 � 10�10 m D 0:2560 nm:
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Question 2.7 Answer the following questions about gold (Au), which has fcc
structure with the lattice parameter a D 0:4070 nm.

(1) Obtain the nearest-neighbor distance, the second nearest-neighbor dis-
tance, and their coordination numbers.

(2) Obtain the values of density and packing fraction when the density of gold
atoms are considered as hard spheres.

(3) Obtain the maximum radii of the spheres which just fit the octahedral and
tetrahedral voids produced in the fcc structure consisting of hard spheres.

Answer 2.7

(1) When you look at the characteristic feature of the fcc lattice, the distance
between the atoms which occupy the corners of a unit cell is equal to the lattice
parameter “a,” and the distance between the atom located at a center position of
the cell face and the atom which occupies a corner position is a

p
2=2 D a=

p
2.

Thus, the nearest-neighbor distance is estimated to be r1 D a=
p
2 and the

second nearest-neighbor distance is r2 D a. It is seen that a=
p
2 < a.

r1 D ap
2

D 0:4070

1:4142
D 0:2878 nm r2 D a D 0:4070 nm:

Fig. 1 Geometric feature found in fcc lattice

With respect to the coordination number in the nearest-neighbor distance, let us
consider the atom A occupying the corner position (see Fig. 1). At the distance
of r1 from atom A, there are four atoms marked by B1 which occupy the cen-
ter position of the cell face, considering the four equivalent planes for a unit
cell around A. One can also find two planes cross at right angles to this face
and consider the situation in both upper and lower sides. For example, there
are four atoms marked by B2 in both sides and similarly we find four atoms
corresponding to B3. Thus, the total nearest neighbors are 3 � 4 D 12.

You may also estimate the coordination numbers in nearest-neighbor region
from the characteristic features of the fcc lattice, which has close-packed
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Fig. 2 Stacking of atoms in fcc lattice

arrangement of spheres with the identical sizes and layer stacking sequence of
ABCABC type. When considering the environments with respect to the sphere
which is located in the layer B with the help of Fig. 2, there are three atoms in
both layers of A and C and six atoms in layer of B, so that we can find of total
of 12 atoms in the nearest-neighbor distance. For the second nearest-neighbor
case, let us consider the environments around the A atom occupying the corner
position in Fig. 1. There are four atoms in the plane and two atoms at both sides.
Therefore, the coordination number of the second nearest-neighbor atoms is 6.

(2) The volume V of a unit cell for fcc structure is given by a3. On the other hand,
one atom located at a corner is shared by eight cells and atom in the face center
is shared by two cells. Then the number of atoms “n” which belongs to a unit
cell is n D 1

8
�8C 1

2
�6 D 4. Since the atomic weight of 1 mol. Au is 196.97 g

from Appendix A.2, the mass m of one atom of Au can be computed using
Avogadro’s number as follows:

m D 196:97

0:6022 � 1024
D 327:0 � 10�24 Œg�:

Then, we obtain the density value of �:

� D 4m

a3
D 4 � .327:0� 10�24/

.0:4070� 10�9/3
D 1:308 � 10�21

0:0674 � 10�27
D 19:41 � 106 g=m3:

(Reference: Measured density value D 19:28 � 106 g=m3.)
In fcc structure, the atoms are in contact along the diagonal line of a cube face,
so that the lattice parameter a is related to the atomic radius r by the relation
4r D a

p
2:

r D
p
2

4
a ! r D a

23=2
:

The volume V 0 of four atomic spheres contained in a unit cell is obtained:

V 0 D 4 �
�
4

3
�r3

�
D 4 �

�
4

3
�

�
�
� a

23=2

�3 D 16

3
� � a3

16
p
2

D �a3

3
p
2
:
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Since the volume V of a unit cell is given by a3, the packing fraction � is
obtained from the relation of V 0=V :

� D �a3

3
p
2

�
a3 D �

3
p
2

D 0:741:

(3) Let us consider the case where the hard sphere with the atomic radius r D
a=23=2 is arranged in the fcc lattice. As shown in Fig. 3a, the void is found at
the center of a unit cell as well as the midpoint of each edge-line. The void at the
center of unit cell is surrounded by six spheres and constitutes the octahedral
interstitial site. Since such void position forms the fcc lattice with the lattice
parameter “a,” the octahedral void has four equivalent positions per unit cell.

The tetrahedral void of the regular tetrahedron surrounded by four spheres
is shown in Fig. 3b. Such tetrahedral voids form a simple cubic lattice with the
lattice parameter a=2. This tetrahedral void has eight equivalent positions per
unit cell.

Fig. 3 (a) Octahedral void and (b) tetrahedral void in fcc lattice

Next, we will estimate the maximum radius of the sphere which is just fit
to the octahedral void, ro, and tetrahedral void, rt, in fact structure. With the
help of the relationships found in Fig. 3a, geometry of the octahedral void is
illustrated in Fig. 4 and we obtain the value of ro in the following way:

AC D 2.r C ro/ D .AB2 C BC2/1=2 D 2
p
2r

ro D r.
p
2 � 1/ D 0:414r

With respect to the tetrahedral voids, a relationship found in Fig. 5 is helpful.
For triangle ABC, we find AC D a

p
2 and AB D p

3r . The relationship of
AB D BC is also recognized.

Considering triangle ABM (or CBM), the distance BM is given as BM Dp
2r=2. When the center of the tetrahedral void is denoted by O, the position

of O corresponds to the center of the distance BM, so that it is given by OM Dp
2r=2.
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Fig. 4 Geometry of the octahedral void in fcc lattice

Fig. 5 Geometry of the tetrahedral void in fcc lattice

On the other hand, we take triangle AOM that AM is a half of AC and
r D a=23=2 and the angle AMO is 90 degrees, so that from the relationship
of AO2 D AM2 C OM2, we obtain

AO2 D
� a

23=2

�2 C
 p

2r

2

!2

D
 
2
p
2r

2
p
2

!2

C
�
rp
2

�2

.* a D 2
p
2r/

D
�
1C 1

2

�
r2 D 3

2
r2

AO D
r
3

2
r:

Using the relationship of AO D r C rt, the desired value is obtained as follow:

r C rt D
r
3

2
r; rt D

 r
3

2
C 1

!
r D 0:225r:

From these results, we obtain that a sphere of radius about 41% of main con-
stituent atoms can fit into the octahedral void in fcc structure and a sphere with
radius about 23% of main constituent atoms can fit into the tetrahedral void.
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Question 2.8 If spheres of equal size are used to fill space, there are two ways
for arranging spheres; in square form and in hexagonal form.

(1) Compute the percentage of void of these two cases for two-dimensional
array of spheres.

(2) Explain the packing fraction of three-dimensional array of spheres.

Answer 2.8 In two-dimensional array of spheres, each sphere is found to be in
contact with four spheres in the square form. On the other hand, each sphere contacts
with six spheres in the hexagonal form, as illustrated in Fig. 1. This implies that the
coordination numbers of the nearest neighbors are 4 in the square form and 6 in the
hexagonal form, respectively.

(1) When the radius of a sphere is given by r , the area produced by one set of
sphere array in the square form is expressed as 2r � 2r D 4r2. Since the area
occupied by a sphere is �r2, the percentage of void area AV in the square form
is as follows:

AV D 4r2 � �r2

4r2
D 1 � �

4
D 0:215:

Fig. 1 Two-dimensional array of spheres in the square and hexagonal forms

In the hexagonal form, our notice focuses the area of an equilateral triangle
with one edge-line of 2r (see Fig. 1). Since the height of the equilateral triangle
is

p
3r , the area of this triangle is given by

p
3r2. The sum of an (adjacent)

interior angle of the equilateral triangle is 180ı. This suggests that the area
occupied by a sphere is expressed with �r2=2 , because it is equivalent to half
of a sphere. Therefore, the percentage of void area AV in the hexagonal form is

AV D
p
3r2 � �r2

2p
3r2

D 1 � �

2
p
3

D 0:093:
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(2) With respect to the packing fraction of three-dimensional array of the equal size
spheres, the value in the hexagonal form is higher than the square case. This is
readily found from the results of Question (1).

Question 2.9 Iron (Fe) is present as � -phase characterized by face-centered
cubic (fcc) structure with the lattice parameter of 0.3647 nm at temperatures
near 1,273 K. The Fe–C alloy containing 2.0 mass% of carbon (C) can form
either the interstitial and substitutional solid solution. Calculate the value of
density in these two cases and compare with the experimental value of 7:65�
106 g=m3.

Answer 2.9 From Appendix A.2, the atomic weight of Fe and C are 55.845 g and
12.011 g, respectively. For the Fe–C alloy containing 2.0 mass% of carbon (C), the
atomic percent of the constituent elements can be calculated.

At first, we compute the molar values of each component such as 98:0=55:845D
1:7549 for Fe and 2:0=12:011 D 0:1665 for C, and 1:7549C 0:1665 D 1:9214 for
alloy. Then, the desired values are given by the following:

Atomic % of Fe .1:7549=1:9214/� 100 D 91:33 at %:

Atomic % of C .0:1665=1:9214/� 100 D 8:67 at %:

Density is mass per unit volume. Taking into consideration that four atoms per
unit cell are included in fcc structure, the density can be calculated if Fe forms a
solid solution with C of either interstitial or substitutional type.

(1) Density in interstitial-type solid solution is given by (mass of Fe C mass of C)/
unit volume.

Mass 4 � f55:845C .8:67=91:33/� 12:011g D 227:94 g
Volume .0:3647/3 � 10�27 � 0:6022� 1024 D 29:21 � 10�6 m3

Density 227:94=.29:21� 10�6/ D 7:80 � 106 g=m3

(2) Density in substitutional-type solid solution may be calculated as (mass/unit
volume)

Mass 4 � .0:9133� 55:845C 0:0867 � 12:011/ D 208:18 g
Volumes .0:3647/3 � 10�27 � 0:6022� 1024 D 29:21 � 10�6 m3

Density 208:18=.29:21� 10�6/ D 7:13 � 106 g=m3

By comparing the two calculated density values with measured density of 7:65�
106 g=m3, it can be concluded that the Fe–C alloy forms an interstitial solid
solution.
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Question 2.10 Copper (Cu) is known to form substitutional solid solution
with nickel (Ni) and show face-centered cubic (fcc) structure. For Cu (lat-
tice parameter: 0.3625 nm) which contains 0.001 mass% of Ni, calculate the
distance between Ni atoms in this solid solution.

Answer 2.10 From Appendix A.2, the atomic weights per mole for Cu and Ni are
63.55 and 53.69 g, respectively. First calculate the atomic percent of Cu and Ni in
the alloy. The moles of each component are obtained as 0:001=58:69 D 0:000017

for Cu and 99:999=63:55 D 1:57355 for Ni, and 1:57355C 0:000017 D 1:573567

for the alloy.

Atomic % of Ni .0:000017=1:573567/� 100 D 0:0011

Atomic % of Cu 100� 0:0011 D 99:9989

Considering the concentrations of the two components in atomic percent, if
there are one million atoms of the alloy in total, 999,989 are Cu atoms and 11 are
nickel atoms. This is approximately equivalent to there being one nickel atom as an
impurity in 100,000 Cu atoms.

Four atoms are contained in a unit cell of fcc structure, 100,000 Cu atoms form
25,000 unit cells. If Ni atoms are thought to replace the position of Cu atoms at
random, one Ni atom will be homogeneously distributed in these 25,000 unit cells.
In other words, Ni atoms are separated, at least, by multiples of the unit cell; in the
present case, .25;000/1=3 D 29:24 unit cells. Therefore, the distance between the
impurity Ni atoms contained in Cu is estimated to be 29.24� the lattice parameter
.0:3615 nm/ D 10:57 nm. This result suggests that the impurity atoms are located in
a relatively close region even for the cases where the impurity content is very small
at the level of 0.001%. The impurity effect, for example at the level of 0.001%,
cannot necessarily be ignored.

Reference: If there are 100 atoms denoted by A, 25 unit cells are known to be
formed in fcc structure. Let us consider the A–B binary alloy containing 25 at.% of
B atoms with fcc structure. When B atoms replace the position of A atom at random,
one atom per unit cell will be replaced with B atom in this alloy. On the other hand,
if B atoms are not distributed randomly, but occupy some designated positions, an
ordered structure (frequently called superlattice) will be formed.

Question 2.11 A slightly different method than the usual Miller indices is
employed for indexing planes in the hexagonal system. It is called the Miller–
Bravais indices. Explain the essential points of the Miller–Bravais indices
including some of its merits for indexing both planes and directions.

Answer 2.11 As shown in Fig. 1, a unit cell of a hexagonal lattice is provided by
two equal and coplanar vectors a1 and a2 which are 120ı to one another and the
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third axis c perpendicular to vectors a1 and a2. The complete hexagonal lattice is
given by repeated translations of the points at the unit cell corners by the vectors a1,
a2, and c. The plane indexed by the usual Miller indices is allowed for hexagonal
system. However, it can sometimes cause confusion. For example, “Is the plane of
(100) completely equivalent to the plane of (N110)?” Miller–Bravais indices refers to
plane indices with four axes such as (h k i l), instead of Miller indices. Then, the
use of Miller–Bravais indices enables us to provide one way by showing (100) !
(1N100) and (N110) ! (10N10), respectively.

The key points of Miller–Bravais indices for hexagonal system are summarized
below:

(1) As shown in Fig. 1, we employ four axes, by adding the vector a3 to vectors a1

and a2. Vector c remains perpendicular to vectors a1 and a2.
(2) Direction of the planes is decided in the same manner as for Miller indices,

except for the use of four coordinate axes a1, a2, a3, and c.
(3) As a result, the plane indices refer to plane indices with four digit number such

as (h k i l); they always have a relationship i D .hC k/.

Third point suggests that the value of i depends on h and k values, so that by
replacing the index i by a dot, a different plane symbol written as (hk � l) is some-
times employed. However, this method is not strongly recommended because the
advantage of Miller–Bravais indices (for example, similar indices to similar planes)
is not always retained. For example, all six side planes of a hexagonal prism of Fig. 2
are considered crytallographically equivalent and such mutual relationship can be
readily recognized from (10N10), (01N10), (N1100), (N1010), (0N110), and (1N100) in the
Miller–Bravais notation. Such mutual relationship is not obtained directly from the
abbreviated symbols ; (10�0), (01�0), (N11�0), (N10�0), (0N1�0) and (1N1�0).

Fig. 1 Method for describing the planes in hexagonal system

However, the Miller–Bravais indices for directions in hexagonal system is
slightly complicated. The directions in hexagonal system are simply described
by three basic vectors a1, a2, and c, then we use only three digits such as [UVW ]
to represent a direction referred to the three axes. Some examples for direction
indices are illustrated in Fig. 2 together with some planes. Just as the case for plane,
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Fig. 2 Typical planes in hexagonal system

we can use four indices [u v t w]. For convenience, some additional notes are given
below.

The use of four indices for directions in hexagonal system is based on four
component vectors, parallel to a1, a2, a3, and c. The third index is known to
be equivalent to the sum of the first and second indices with change in sign,
t D �.u C v/. When [UVW ] are the direction indices referred to three axes,
[u v t w] corresponds to the four axes case. The relationships between these two
indices are:

U D u � i u D .2U � V /=3
V D v � t v D .2V � U /=3
W D w t D �.u C v/ D �.U C V /=3

w D W

Therefore, we find that [100] ! [2N1N10] and [210] ! [10N10]. To facilitate under-
standing, Fig. 3 shows a simple example of the straight line which passes along the
origin on the bottom plane.

The coordinates of the desired point in crystal lattice are generally given by dis-
tances of parallel translations with respect to each axes required to reach the points
from the origin. For describing the directions in hexagonal system, we frequently
make a detour so as to obtain the distance equal to the negative value of the sum of
the distances x and y, .�.x C y// moved by parallel translations with respect to a1

and a2, respectively. It is noteworthy that this is equivalent to the distance moved by
parallel translation with respect to a3 (see Fig. 3). The direction is given by the ratio
of the distances moved in parallel to each axes. The slightly complicated procedure
for the hexagonal system is based on the objective of providing similar indices to
similar directions.
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Fig. 3 Examples of the directions in hexagonal system

Question 2.12 Calculate the bond angle, � , of O–Si–O in silica (SiO2)
assuming that Si and O atoms form regular tetrahedron with Si at the center.

Answer 2.12 Let us consider the case where the peak positions of a cube character-
ized by the length of a are connected to form regular tetrahedron as shown in Fig. 1.

A

B

P

O
2
q

Fig. 1 Geometry in regular tetrahedron

The position of O in this figure corresponds to a center of both cube and regular
tetrahedron. The positions denoted by A and B represent corners of regular tetrahe-
dron and P gives the midpoint of regular tetrahedron which is characterized by the
length of AB. The angle AOB is equivalent to the desired angle, � , of the O–Si–O
bond. Therefore, the following relationship is readily found in triangle AOP:

AP D AB

2
D a

p
2

2
OP D a

2
tan
�

2
D a

p
2=2

a=2
D p

2

�

2
D 54:74ı � D 109:48ı
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Question 2.13 Silica (SiO2) is known to form chain-like, sheet-like or network
structures on the basis of tetrahedral unit of SiO4�

4 . Figure A shows the atomic
arrangement of ˇ-cristobalite at 583 K, which is the high temperature phase
where Si atoms form diamond structure and each Si is surrounded by four
oxygen atoms to form a tetrahedral unit.

(1) Estimate the radius of SiO4�
4 ion assuming the condition that the lattice

parameter of ˇ-cristobalite is given by 0.716 nm and the radius of oxygen
ion is 0.140 nm.

(2) Estimate the radius ratio assuming the condition that Si4C ions make
contact with O2� ions.

Fig. A Structure of ˇ-cristobalite

Answer 2.13

(1) If the distance between Si–Si is given byR, it is found equivalent to the distance
between (000) and .1=4; 1=4; 1=4/, from geometric condition:

.R/2 D
�
1

4
a

�2

C
�
1

4
a

�2

C
�
1

4
a

�2

D 3
�a
4

�2

:
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O2� ion combines with two Si4C ions and the condition of keeping the distance
of R for two silicon ions, thus we obtain the following relationship:

R D 2rSi C 2rO D
"
3

�
0:716

4

�2
#1=2

D 0:310 nm:

The radius of SiO4�
4 D 0:155 nm:

2rSi D 0:310� 2 � .0:140/
2rSi D 0:03 rSi D 0:015 nm .Reference Si4C D 0:041 nm/

(2) Since the length of edge of SiO4�
4 tetrahedron is 2rO (see Fig. 1) and the bond

angles of a tetrahedron is given by 109.48ı (see Question 2.12), the following
relationship is readily found:

sin

�
109:48

2

�
D rO

rO C rSi
D 0:816

rO D 0:816.rO C rSi/ D 0:816

.1 � 0:816/rSi

rSi

rO
D 1 � 0:816

0:816
D 0:225

Fig. 1 Geometry of SiO4�

4 tetrahedron

Question 2.14 In ionic crystals, anions of the relatively larger size are densely
arranged so as to avoid their direct contact, whereas cations of relatively
smaller size occupy the positions equivalent to the vacant space produced by
anions. For this reason, if the radii of cation and anion are described by rc and
ra, respectively, some correlations are recognized between the coordination
numbers and the size ratio of rc=ra. Estimate the specific values of rc=ra for
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cases that cations are surround by anions with the coordination numbers of 3,
4, 6, and 8.

Fig. A Four typical geometries for arraying equal spheres

Answer 2.14

(1) When the coordination number is 3, a cation is likely to occupy the position
equivalent to the center of an equilateral triangle of ABC formed by three
anions as shown in Fig. 1. The height and the center of gravity for the equi-
lateral triangle with its one edge being 2ra are given by

p
3ra and the height �

2
3

, respectively. Then, the value of 2
3

� p
3ra is exactly equivalent to ra C rc

ra C rc D 2
p
3

3
� ra ) rc D

 
2
p
3

3
� 1

!
ra

rc

ra
D 2

p
3

3
� 1 D 0:155

Fig. 1 Geometric relation for the 3-coordination case

(2) When the coordination number is 4, a cation is at the center of a regular tetra-
hedron, formed by four anions as shown in Fig. 2. Consider the triangle ABC
corresponding to the plane where the vacant space existed in the regular tetrahe-
dron with its one edge being 2ra. We find the relationship, AB D BC D p

3ra,
so that 	ABC is an isosceles triangle. With respect to the triangle 	ABM,
AM D ra and AB D p

3ra. Hence BM D p
2ra. If O is the center of the vacant

space the distance of AO is exactly equivalent to ra C rc.
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Since the center O of the vacant space is also the center of regular tetrahe-

dron, O is equivalent to the midpoint of BM. Therefore, OM D 1
2

BM D
p

2
2
ra.

Next, if triangle AOM is considered, we obtain the following relationships:

.AO/2 D .ra C rc/
2 D .OM/2 C

�
1

2
AM

�2

D
 p

2

2
ra

!2

C .ra/
2 D

 r
3

2
ra

!2

;

ra C rc D
r
3

2
ra ) rc D

 r
3

2
� 1

!
ra

rc

ra
D
r
3

2
� 1 D 0:2247:

Fig. 2 Geometric relation for the 4-coordination case

(3) When the coordination number is 6, the cation is located at the center of an
octahedron formed by six anions. As shown in Fig. 3, the distance of AC or BD,
corresponding to the diagonal line of the cross-sectional view of ABCD portion
of octahedron, is exactly equal to twice the value of .ra Crc/. When considering
that one edge of the cross-sectional view of the square ABCD is 2ra, we obtain
the following result:

2.ra C rc/ D 2
p
2ra ) rc D .

p
2 � 1/ra

rc

ra
D .

p
2 � 1/ D 0:414:

Fig. 3 Geometric relation for the 6-coordination case
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(4) For 8-coordination, it is difficult to visualize the cation in the vacant space of a
polyhedron formed by anions. Nevertheless, if the appropriate value of rc=ra is
given, one can obtain the ionic arrangements in which a cation is located at a
center of body-centered cubic (bcc) lattice formed by eight anions. In this case,
the diagonal line of the cross-sectional view of ABGF portion of bcc lattice with
one edge of 2ra just corresponds to twice the value of .ra C rc/ as readily seen
in Fig. 3. Here, the lengths of each edge of square ABGF are 2ra and 2

p
2ra,

respectively. Therefore,

2.ra C rc/ D p
3 � .2ra/ ra C rc D p

3ra ) rc D .
p
3 � 1/ra

rc

ra
D p

3 � 1 D 0:732

Fig. 4 Geometric relation for the 8-coordination case

Reference: .BF/2 D .BG/2 C .FG/2

Œ2.rc C ra/�
2 D .2

p
2ra/

2 C .2ra/
2 D .12ra/

2 D .2
p
3ra/

2:

Question 2.15 Caesium chloride (CsCl) crystal has cubic structure in which
CsC ions occupy the center position of a unit cell and its corner positions are
occupied by Cl� ions. The density of caesium chloride is 3:97 � 106 g=m3.

(1) If the ionic radii of CsC ion and Cl� ion are 0.169 and 0.181 nm,
respectively, compute the lattice parameter and compare with the value
estimated from density.

(2) There is a threshold value of the ratio of the radii of positive/negative ions
for alkali halides having CsCl-type structure. The radius rC of a positive
ion needs such as to just fit the space formed by eight negative ions of the
radius of r� without their direct contact. Calculate the minimum value of
the ratio of rC=r�.
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Answer 2.15

(1) If CsC and Cl� ions are represented by black and white circles, respectively,
geometry of a unit cell of the CsCl is shown in Fig. 1. Let a be the lattice param-
eter. Thus, AB D a; AC D p

3a. The CsC and Cl� ions are arranged along the
diagonal AC such that

AC D 2.rC C 2r�/ D 2.0:169C 0:181/ D p
3a;

a D 2.0:169C 0:181/p
3

D 0:404 nm:

Fig. 1 Geometry of CsCl-type structure

The unit cell accommodates one CsC ion and one Cl� ion, because the ion at
corners is shared by eight unit cells .8� 1

8
D 1/. The molecular weight of CsCl

is 132:90C 35:45 D 168:35 g (sum of atomic weights). Therefore, the mass m
of the unit cell is

m D 168:35

0:6022� 1024
D 2:796 � 10�22 g

Using the relation between the density (�) and the unit cell volume (a3)

a3 D m

�
D 2:796 � 10�22

3:97 � 106
D 0:0704� 10�27 m3;

a D 3
p
0:0704� 10�27 D 0:413 � 10�9 m D 0:413 nm:

This value of a D 0:413 nm is larger by 2% than the lattice parameter a D
0:404 nm calculated from their ionic radii. Thus, the lattice parameter of ionic
crystals computed from measured density is realistic. The radii of ions such
as CsC and Cl� complied in handbooks are usually derived from mean values
of interionic distance obtained from various ionic crystals. The lattice param-
eter of CsCl crystal determined by X-ray diffraction is a D 0:4123 nm (see
Appendix A.9).
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(2) The following relationship may be obtained by referring to the condition of
Fig. 1:

AC D 2.rC C r�/ D a
p
3; AB D 2r� D a:

When two relationships are coupled, the radius ratio obtained is equal to that
estimated in Question 2.14 for the coordination number 8.

AC

AB
D rC C r�

r� D p
3;

rC

r� D p
3 � 1 D 0:732:

From this result, if the ratio of the ionic radii between cations and anions is
smaller than 0.732, direct contact of anions will be allowed, and then this makes
an ionic crystal unstable due to the strong repulsion between ions with the same
electric charge.

Question 2.16 Water (H2O) crystallizes to form ice, when cooled below 273 K
(0ıC) under 1 atmospheric pressure. Ice has hexagonal crystal structure with
the lattice parameters of a D 0:453 nm and c D 0:741 nm. The density of ice
at 1 atmospheric pressure at 273 K is 0:917� 106 g=m3. Estimate the number
of water molecules (H2O) contained in a unit cell of ice crystal.

Answer 2.16 In hexagonal crystal system, a unit cell is given by a prism with a
vertical axis perpendicular to a rhombus-shaped base and the equal edges of which
are at 60ı and 120ı with respect to each other (see Fig. 2.9). The length of the
rhombus edge is designated by two equal vectors, a1 and a2. Considering that
a1 and a2 axes make an angle of 60ı, the volume V of a unit cell can be obtained as
follows (refer to Appendix A.5):

V D a2sin60ı � c D .0:453/2 � .0:866/� .0:741/ D 0:132 � 10�27 nm3

The molecular weight of water (m) obtained from Avogadro’s number (NA) and
density (�) assuming one molecule per unit cell is;

m D �NAV D 0:917 � 106 � 0:6022 � 1024 � 0:132 � 10�27 D 72:9 g

The molecular weight of water is 1:008�2C15:999 D 18:015 g, using values of the
atomic weights compiled in Appendix A.2. Then, we obtain 72:9=18:015 D 4:05.
This suggests that four water molecules are included in a unit cell of ice crystal. As
a result, each oxygen is quite likely to be surrounded by four oxygen in ice crystal
(see Fig. 1).

Note: The error in the measurement of lattice parameter and density is respon-
sible for non-integer value 4.05. Water can crystallize in other structures such as
trigonal lattices, tetragonal lattices etc., depending on temperature and pressure.
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Fig. 1 Arrangement of water molecules in ice crystal

Question 2.17 Many compounds with the formula ABX3 have the perovskite
structure and a typical example is the natural mineral CaTiO3. In the Per-
ovskite structure, A atom occupy the center of a cubic unit cell and B and
X atoms occupy the cell corners and face centers, respectively. There are
two types of perovskite structure. Explain the essential points of two types
including correlations of the unit cell. Also answer the following questions.

(1) In barium titanate (BaTiO3), titanium occupy the center of a cubic unit
cell, whereas barium and oxygen share the corner and the center of the
cell faces, respectively. Assuming that titanium atoms share the vacant
space formed by Ba-O lattice, what is the nature of the coordination and
the resulting radius ratio constraint?

(2) Why does titanium occupy the vacant space located in this position.

Answer 2.17 Two types of the perovskite structures are characterized by two differ-
ent unit cells. For example, MoF3 and ReO3 belong to the so-called ReO3 structure,
in which Mo atoms share all corner positions of a cubic unit cell, whereas F atoms
occupy the midpoint of all edge-lines (see Fig. 1). Perovskite A-type structure can
be obtained by adding A of ABX3 to the center of a cubic unit cell of the ReO3

base consisting of B and X. The structure can also be generated by adding X to the
midpoint of all edge-lines of a cubic unit cell in which A and B form the CsCl type
atomic arrangement. Such correlations are readily seen in Fig. 1.

In the structure of intermetallic compounds such as Cu3Au and Cu3Pt, Au atoms
occupy all corner positions of the fcc lattice, whereas Cu atoms share all center posi-
tions of cell faces of fcc lattice. Perovskite B-type structure is obtained by adding B
to the center of a cubic unit cell of the Cu3Au base consisting of A and X. Such
correlations are illustrated in Fig. 2. It is also noted that the description of layer,
as shown in Fig. 3, facilitates our understanding of the characteristic of the two
perovskite structures.
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Fig. 1 Perovskite A-type structure

Fig. 2 Perovskite B-type structure

Since the atomic arrangement in perovskite structure is characterized by a forma-
tion where A and X are closely packed and B fits into its vacant space as shown in
Figs. 1 and 2, it is desirable that the magnitude of A and X are equal and B is small.

(1) The structure of barium titanate (BaTiO3) can be readily understood by refer-
ring to the B-type unit cell in Fig. 2. Ba2C ions occupy the position of (000)
corresponding to A-site, whereas Ti4C ions corresponding to the B site occupy
the position

�
1
2

1
2

1
2

�
. Three oxygens (O) keep the positions

�
0 1

2
1
2

�
;
�

1
2
0 1

2

�
, and�

1
2

1
2
0
�

of X. Here, B is found to be surrounded by six X. Incidentally, there are
12X distributed around A. Therefore, Ti4C ions share the center position of octa-
hedron consisting of six oxygen atoms. There are four positions corresponding
to such vacant space given by octahedron in an fcc type unit cell formed by
A and X (refer to Question 2.7) and one of them (25%) is occupied by Ti4C ion.



60 2 Geometry of Crystals

Fig. 3 Layer structure found in perovskite

(2) The octahedral position except for the octahedral void surrounded by six oxygen
atoms in a unit cell is found at the midpoint of edge-lines in a unit cell and it
will be surrounded by two Ba2C ions and four oxygen atoms. Since the structure
becomes unstable when two kinds of positive ions such as Ba2C and Ti4C are
approaching, it is thought that Ti4C ions preferentially fit into the octahedral
void surrounded by six oxygens. The radii of Ba2C ion and O2� ion are 0:135
and 0:140 nm, respectively, so that barium titanate shows a slight deviation from
an ideal perovskite structure. The dipole resulting from this lattice distortion is
responsible for the ferroelectric properties.

Question 2.18 Explain the procedure of stereographic projection for an
octahedron by setting a plane of projection to the equator.

Answer 2.18 By setting the plane of projection to the equatorial plane, the equato-
rial plane becomes the basic circle of stereographic projection. Figure 1 shows the
relation when a light source is placed at south pole and the projection is made to the
equatorial plane are shown in Fig. 2.

In the present case, the stereographic projection of a pole located on the upper
half of the northern hemisphere is obtained by finding the intersection on the pro-
jection plane of the line connecting the target pole and south pole S. Conversely,
one can get the stereographic projection of the pole located on the lower half of the
southern hemisphere by finding the intersection on the projection plane of the line
connecting the target pole and north pole N. To show the hemisphere in which the
point is located, signs such as ˚ � and � ı, are used for differentiation.
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Fig. 1 Procedure of Stereographic projection of octahedron

Fig. 2 The results of projection to equatorial plane

Question 2.19 Explain two types of nets, such as the polar net and the Wulff
net. In addition, explain the procedure that 40ı rotation of a pole P1 about any
Q1 axis on a plane of projection.

Answer 2.19

(1) The polar net is a figure (refer to Fig. 1) of the meshes at every 2ı (or 1ı)
obtained by projecting all meridian circles and latitude circles on an equatorial
plane. The pole net is useful for finding the projecting point to the equatorial
plane about the point on a projection sphere with the given coordinates (�; �) as
shown in Fig. 2.

(2) The Wulff net is a figure of the meshes at every 2ı (or 1ı) obtained by project-
ing a sphere drawn with parallels of latitude and longitude on a plane parallel to
the north–south axis of the sphere. For example, the longitude lines correspond
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Fig. 1 Polar net

Fig. 2 Example of the use of the polar net

Fig. 3 Projection of the grid net of globe for producing the Wulff net

to great circles connecting the north and south poles of the net and the latitude
lines are small circles extending from side to side of the net. Figure 3 shows
the stereographic projection of the grid net of sphere (the NS direction perpen-
dicular to the N0S0 one) for drawing the Wulff net. This drawing includes the
positions of the angular coordinates � and the corresponding pole distance �.
Wulff net (refer to Fig. 4) is used, for example, to estimate the angle between
the lattice planes A and B, as shown in Fig. 5.
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Fig. 4 Wulff net Fig. 5 Example of the use of the Wulff
net

Fig. 6 Example of the rotating operation of a pole P1 by 40ı about an arbitrary axis Q1 on the
projection plane

To rotate by 40ı around an axis perpendicular to a projection plane (corre-
sponding to the case of rotating projection about the NS axis in Fig. 2.11), put
the stereographic projection on the pole net and rotate projection at required angle
(40ı) about a central axis. On the other hand, to rotate the pole P1 by 40ı around
the arbitrary axis Q1 on projection plane (40 degrees rotation around the arbitrary
axis on the circle ADBE in Fig. 2.11), the following procedures are made using the
Wulff net. Rotate so as to fit the north–south axis of the Wulff net with the axis Q1.
As a result, Q1 moves to Q2, and P1 moves to P2, respectively, as shown in Fig. 6.
Next, P2 moves to P3, by moving the pole P2 only by 40ı along the latitude line on



64 2 Geometry of Crystals

the Wulff net. Furthermore, rotate reversely the projection only by the same angle
as the first operation, and return the axis Q3 to Q1. As a result, P3 is set to P4.

Question 2.20 Find the geocentric angle between Sendai, Japan (38ı of north
latitude and 141ı of east longitude) and Los Angeles, USA (33ı of north
latitude and 120ı of west longitude) using the Wulff net.

Answer 2.20 Put the tracing paper on a copy of the Wulff net. Fix the centers by
a tack as shown in Fig. 1. This makes the centers always coincident. Subsequently,
the positions of Sendai (�) and Los Angeles (X) are marked in the tracing paper.

Next, rotate the tracing paper so as to get the marked two points on the longitude
line of great circle of Wulff net. In Fig. 1, two points marked by � and X will be
on the same longitude line of the great circle when rotating the tracing paper from
position 1� to position 2�. We obtain the value of 76ı for the angle from the scale
of Wulff net.

Note: An uncertainty of 1ı (or 2ı) is generally encountered when using the Wulff
net of approximately 90 mm in diameter.

Fig. 1 Method for obtaining the angle of two positions with the Wulff net

Question 2.21 In the standard stereographic projection of cubic crystals, when
setting a pole of (111) on the center of basic circle, find other poles of f111g,
f100g, and f110g.
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Answer 2.21 The results are summarized in Fig. 1. Since the orientation of any plane
in crystal can be represented by the inclination of the normal to that plane itself, the
indices of a pole located at the position of 90ı relative to each zone (i.e., the set of
planes) present the zone axis.

Fig. 1 Standard stereographic projection of cubic crystals on a (111) pole

Putting a crystal on the center of a reference sphere, the plane normal intersects
the surface of the sphere in a set of points called poles. Each plane is represented by
the intersection between normal and the reference sphere using the Miller indices.
If the axis of a zone is given by the indices [u v w], and any plane belongs to that
zone denoted by the indices (h k l), the well-known relation (hu C kv C lw D 0)
called Weiss rule for the zone is satisfied. It may be noted that the Weiss rule is
independent of the crystal system. If two planes of (h1k1l1) and (h2k2l2) belong to
one zone axis of [u v w], the following relationships are obtained:

h1u C k1v C l1w D 0 and h2u C k2v C l2w D 0;

.ph1 C qh2/u C .pk1 C qk2/v C .pl1 C ql2/w D 0;

where p and q are arbitrary integers. In other words, if a zone axis [u v w] contains
two planes (h1k1l1) and (h2k2l2), planes represented by p.h1k1l1/ C q.h2k2l2/

also belong the same zone. For example, the planes (N120) and (520) set as p D 1

and q D 2 belong to a zone [001] D [002] including the planes of (100) and (N110).

Reference: If any two nonparallel planes of (h k l) and (h0 k0 l 0) cross on one
straight line and its direction is given by [u v w] as shown in Fig. 2, this direction



66 2 Geometry of Crystals

is called zone axis [u v w]. The indices of the zone axis [u v w] are related to the
indices of the two planes and the vectors of a, b, and c which define a unit cell.

0
@ u

v
w

1
A D

0
@ kl 0 � lk0
lh0 � hl 0
hk0 � kh0
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A �
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a b c

h k l
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hkl

Fig. 2 The line of intersection of two planes relevant to zone axis



Chapter 3
Scattering and Diffraction

An X-ray beam is an electromagnetic wave characterized by an electric field vibrat-
ing at constant frequency, perpendicular to the direction of movement. This variation
of the electric field gives electrons (charged particles) a sinusoidal change with
time at the same frequency. As a result of periodic acceleration and deceleration of
the electron, a new electromagnetic wave, i.e., X-rays are generated. In this sense,
X-rays are scattered by electrons. This phenomenon is called Thomson scattering.
On the other hand, the physical phenomenon called “diffraction as a function of
atomic position” is also found when an X-ray beam encounters a crystal whose
atomic arrangement shows the long range periodicity. The intensity of diffracted
X-rays depends on not only the atomic arrangement but also the atomic species.
When considering diffraction of X-rays from a crystal, one needs information about
“atomic scattering factors” which provide a measure of the scattering ability of X-
rays per atom. Since the nucleus of an atom is relatively heavy compared with an
X-ray photon, it does not scatter X-rays. The scattering ability of an atom depends
only on electrons, their number, and distribution.

3.1 Scattering by a Single Electron

In X-ray scattering by electrons, the scattered X-rays have the same frequency
(wavelength) as the incident beam and is “coherent” with the incident X-rays. As
shown in Fig. 3.1, if the incident X-ray beam traveling along the X -axis meets a
single electron with massm (kg) and charge e coulombs (C) located at the origin O,
the intensity I of the scattered X-rays at position P in the X -Z plane at a distance r
(m) from the origin may be expressed by the “Thomson equation”:

I D I0

��0

4�

�2
�

e4

m2r2

�
sin2 ˛ D I0

K

r2

�
1C cos2 2�

2

�
(3.1)

where I0 is the intensity of incident X-rays, �0 D 4� � 10�7 .m kgC�2/, and ˛ is
the angle between the scattering direction and that of the acceleration of electron.
On the other hand, 2� in (3.1) is the angle between the line of OP connecting from

67
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Fig. 3.1 The relationship of the components of the electric vector of the incident radiation at a
point O to the components of that of the scattered radiation at a point of observation P

the origin O to the point of measurement P, and the X -axis, the direction of the
incident X-ray beam. The constant K D .2:8179 � 10�15/2 .m2/ is equivalent to
the square of the electron radius re in classical electromagnetic theory. X-rays are
scattered by an electron in all directions, but (3.1) clearly shows that the intensity
of scattered X-rays decreases as the inverse square of the distance from the electron
at origin, as well as a function of the scattering angle. In addition, the intensity of
scattered X-rays is larger both in forward and backward directions compared to the
direction at right angle to the incident X-ray beam. The term in the parenthesis in
the last expression of (3.1) is called the “polarization factor.”

For example, the ratio of (I=I0) at the position of 0.01 m away from an elec-
tron at origin is extremely small about 7:94 � 10�26. Nevertheless, the intensity of
scattered X-rays can be amplified for detection without any difficulty, because the
number of electrons contained in 1 mg of substance is of the order of 1020 � 1021

and such a large number of electrons interfere with each other.
Finding the absolute value of the scattering intensity from one electron using

(3.1) is a very difficult task either by measurement or by calculation. However, for
most applications only the relative values of intensities of X-ray scattering and X-ray
diffraction are required. It may be assumed that all terms in (3.1) except for the
polarization factor may be considered as a constant.

There is another way for X-ray scattering by an electron and it is characterized by
a quite different mechanism from Thomson scattering. Compton scattering occurs
when X-rays encounter a loosely bound or free electrons. It is relatively easy to
understand Compton scattering by considering X-rays as particles (photons) which
have energy h�0 rather than as waves.

As shown in Fig. 3.2, if a photon collides with a loosely bound electron and the
collision between photon and electron is considered an elastic one, in a way similar
to two billiard balls, the electron is knocked aside at an angle � and the direction of
the incident X-ray photon is altered by an angle 2� (it is called recoil phenomenon).
In this collision process, a part of the energy h�0 of the incident X-ray photon is
converted to kinetic energy of the electron. As a result, the energy of the incident
X-ray photon after collision becomes h� which is smaller than h�0. For this reason,
the wavelength � after collision becomes slightly longer than the wavelength of the
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Fig. 3.2 Collision of photon and an electron (Compton scattering)

incident X-ray beam �0 before impact and the relationship is given in unit of nm as
follows:

�� D � � �0 D
�
h

mc

�
.1 � cos 2�/ D 0:002426.1� cos 2�/ (3.2)

The term of .h=mc/ D 0:002426 nm is called the “Compton wavelength.” Accord-
ing to (3.2), the increase in wavelength due to the Compton scattering depends only
on the scattering angle 2� and �� values are estimated to be zero at 2� D 0 and
0.005 nm at 2� D 180ı, respectively. The phase of X-rays produced by Compton
scattering is not the same as that of the incident X-ray beam, because of the change
in wavelength. The Compton modified radiation cannot take part in diffraction
because it has no specific phase relation with the incident X-ray beam and there-
fore cannot produce any interference effect. For this reason, Compton scattering is
often called “incoherent scattering.”

3.2 Scattering by a Single Atom

If an X-ray beam encounters an atom consisting of the nucleus and a certain number
of electrons, each electron produces coherent scattering intensity given by (3.1), the
so-called Thomson equation. Since the mass of the nucleus is much larger than that
of electron, the X-ray beam cannot oscillate the nucleus to any appreciable extent.
The acceleration and deceleration of the nucleus to emit X-ray are not functional.
Therefore, when considering the net effect of X-ray scattering from an atom, one
needs to take into consideration only scattering by electrons associated with the
atom. This is also evident from (3.1) since the square of mass of scattering particle
appears in the denominator.

The scattering amplitude of a single atom with atomic number Z containing
Z electrons is equal to Z times the scattering amplitude from one electron in the
forward direction. Because in direction the scattering angle is zero .2� D 0/, the
phases of X-rays scattered by all electrons in one atom are completely coincident,
so that the amplitude of the scattered X-rays can be simply added. However, when
the scattering angle has nonzero values, there is variation in the phase of X-rays
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scattered from individual electrons in an atom. In other words, the X-rays scattered
by electrons located at, for example, the point A and point B in space, have phase dif-
ference because of difference in optical path, when the scattering angle is not zero.
As a result, the scattering amplitude of a single atom decreases with increase in � .
The scattering amplitude of an atom also depends on the wavelength of the incident
X-rays. For example, at the same scattering angles 2� , the shorter the wavelength is,
the larger the phase difference becomes. This implies that the scattering amplitude
becomes relatively small when the shorter wavelength is used.

In order to calculate the scattering amplitude of X-rays for atoms containing more
than two electrons, it is necessary to bear in mind that the charge of electrons are
not focused at fixed points; rather it is distributed in space like a cloud. The electron
density function 	.r/ as a function of distance r away from the nucleus at origin
is useful for describing electron distribution. Let us consider that the wave vectors
of the incident X-rays and the scattered X-rays are given by .s0/ and .s/, respec-
tively. The scattered X-rays at the distance r will produce the optical path difference
.s � s0/ � r in comparison with the scattered X-rays at origin. If the wavelength of
the incident X-rays is given by �, the scattering amplitude of X-rays irradiated in
the direction of s can be described by

	 exp

�
2�i

�
.s � s0/ � r

�
dV (3.3)

The amplitude of the coherent scattering from a single electron may be obtained
by integrating over the volumes occupied by electron with the help of the phases
relevant to 	dV . Then, the scattering factor fe per electron in electron unit is
obtained

fe D
Z

exp

�
2�i

�
.s � s0/ � r

�
	dV (3.4)

Note that the value of fe corresponds to the ratio between the amplitude of coherent
scattering by a single electron which has distribution and that of X-rays scattered by
a single electron whose location is fixed at a point according to the classical view.

Further, the wave vectors of s0 and s are related

q D s � s0 ) jqj D q D 2 sin �

�
(3.5)

Here, the vector q is frequently called “scattering vector (or wave vector).” This is
the vector required to turn the direction of incident X-rays to that of the scattered
radiation by angle 2� , thus, s D s0 C q.

Since the electron density distribution of inner shell is quite likely to be approxi-
mated by spherical symmetry, the scattering factors for atom containing more than
two electrons can be readily estimated. For example, if the electron density distribu-
tion around the nucleus set at origin is given by 	 D 	.r/ as a function of distance r ,
the scattering factor fe can be obtained as
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fe D
Z 1

0

4�r2	.r/
sin 2�qr

2�qr
dr (3.6)

The amplitude of the coherent scattering per atom including n electrons is computed
by the sum of fe regarding all electrons using the following equation.

f D
X

j

fen D
X

j

Z 1

0

4�r2	j .r/
sin 2�qr

2�qr
dr (3.7)

This f is usually called “X-ray atomic scattering factor” or simply “the atomic scat-
tering factor.” Sometimes f is called “the form factor” because it depends on the
distribution of electrons around the nucleus. The quantity f provides the efficiency
or ability of the coherent scattering per atom and it is defined as a ratio of the ampli-
tude of the wave scattered from one atom to that scattered from one electron under
the same condition. Therefore, f D Z for any atom which scatters in the forward
direction.

Equation (3.7) implies that f is a function of (sin �=�) for any atom. The electron
density distributions in atoms have been provided from the electron wave func-
tions by using several techniques, such as Hatree–Fock and Fermi–Thomas–Dirac
approximation and a number of theoretical calculations for the atomic scattering fac-
tors of elements were carried out as a function (sin �=�). Such results are compiled
in the International Tables for X-ray Crystallography, Vol.C (Kluwer Academic
Pub., London, UK, 1999). The atomic scattering factors as a function (sin �=�) are
shown in Fig. 3.3 using the results for Al, Fe, and Ag as examples. The f value
decreases as (sin �=�) increases.

The variable of Q defined by

2�q D 2� � 2 sin �

�
D 4�

sin �

�
D Q (3.8)

Fig. 3.3 Atomic scattering factors of Al, Fe, and Ag
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The variable of Q is often used. It can be obtained from (2�q) in (3.7) using (3.5).
Equation (3.7) can be rewritten as

f D
X

j

fen D
X

j

Z 1

0

4�r2	j .r/
sinQr

Qr
dr (3.9)

It is useful to summarize some important points regarding scattering of X-rays
from a single atom. When monochromatic X-ray beam encounters an atom, two
scattering processes, coherent and incoherent, simultaneously occur in all direc-
tions. The intensity of incoherent (Compton) scattering for light elements (with
small atomic number) is found to increase with decreasing atomic number Z. Fur-
thermore, as the quantity of (sin �=�) increases intensity of incoherent (Compton)
scattering increases. Thus, the intensities of unmodified (coherent) scattering and
modified (Compton) scattering change in opposite ways with Z and (sin �=�). In
addition, the sum of the coherent and incoherent scattering intensities is equal to the
classical scattering intensity per electron. If ie represents the intensity of incoherent
scattering in electron unit for the completely unpolarized incident X-ray beam, the
following equation can be obtained:

I0

e4

m2c4R2

�
1C cos2 2�

2

�
f 2

e C I0

e4

m2c4R2

�
1C cos2 2�

2

�
ie

D I0

e4

m2c4R2

�
1C cos2 2�

2

�
(3.10)

It is note worthy that (3.10) can be simply rewritten in the form, ie D 1 � f 2
e .

As previously mentioned, the phase of radiation attributed to the Compton scat-
tering effect has no fixed relation to that of the incident beam, because of the
variation in wavelength after collision, suggesting that interference effect cannot
be produced by the modified Compton radiation. Therefore, the incoherent scat-
tering intensity i.M/ per atom may be given by the simple sum of the incoherent
scattering intensity of the respective electrons.

i.M/ D
X

j

ien D Z �
ZX

j D1

f 2
en (3.11)

Figure 3.4 shows the calculated results of f and i.M/ for Li atom assuming
that the electron density distributions for three electrons, two of K shell and one
of L shell, are considered to be similar to that of the hydrogen atom. One clearly
recognizes the reverse relationship in variation of the intensities of coherent scat-
tering and Compton scattering with respect to (sin �=�). As readily obtained from
(3.9), the atomic scattering factor f of Li atom, corresponding to the coherent
scattering intensity is represented by fLi D 2feK C feL, whereas the incoherent
scattering intensity i.M/ in electron unit is given by the relationship of i.M/ D
3 � 2f 2

eK � f 2
eL(see (3.11)).
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Fig. 3.4 Coherent and incoherent scattering intensities of Li atom calculated based on the assump-
tion that the electron density distributions have spherical symmetry and the interference between
electrons in the atom is ignored

3.3 Diffraction from Crystals

Atoms being the constituent of a crystal generates X-rays with the same wavelength
as that of the incident X-ray beam by oscillating electrons and the generated X-rays
are likely to be the spherical waves centering on respective atoms. This situation is
similar to that a wave rolling from one side to the piles lined up on the same line at
equal intervals in a pond and propagating to the other side. That is, the diffraction
phenomena of X-rays by crystals is attributed to certain phase relations between
two or more waves, such as differences in phase produced from the differences in
path length of waves and a change in amplitude related to the phase difference. In
addition, the most important point to know is that two waves are completely in phase
if the difference in path lengths is zero or an integer multiple of wavelength. Some
additional details are given below.

The phase of any two waves generally shows deviation of 
, corresponding to
their path difference. Since the phase of two waves is completely coincident (in
phase) if the value of 
 is given by an integer multiple of wavelength �, two waves
will combine to form one synthesized wave just like the original one, and its ampli-
tude will be double. The path difference depends on direction of X-ray with respect
to the crystal. When the value of
 is �=2, the two waves cancel each other and they
are completely out of phase, resulting from the fact that the waves have the same
magnitude but opposite amplitude at any point along its path. Situations between
these two extreme cases (
 D � and �=2) are also encountered depending on path
difference.

The main target of X-ray diffraction by crystals is to know the particular con-
dition in which the scattered X-rays from atoms and the incident X-rays are
completely in phase and reinforce each other to produce a detectable diffraction
beam. In other words, we have to find the common relationship that the differences
in path length between X-rays scattered from crystals and that of the incident X-rays
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Fig. 3.5 Schematic diagram of diffraction of X-rays by a crystal (Bragg condition)

is an integer multiple of wavelength �. For this purpose, the most important and
familiar method is given by Bragg law which incorporates Bragg angle. In order
to facilitate the understanding of Bragg law, Fig. 3.5 is useful. It is also required to
remember the following two geometric relationships:

1. The angle between the incident X-ray beam and the normal to the reflection plane
is equal to that between the normal and the diffracted X-ray beam. The inci-
dent X-ray beam, the plane normal, and the diffracted X-ray beam are always
coplanar.

2. The angle between the diffracted X-ray beam and the transmitted one is always
2� , and this angle is called “the diffraction angle.”

If the incident X-rays of wavelength (�) strike a crystal where all atoms are
placed in a regular periodic array with interplanar spacing d 0, diffraction beam of
sufficient intensity is detected only when the “Bragg condition” or “Bragg law” is
satisfied

2d 0 sin � D n� (3.12)

where n is called the order of reflection and is equal to the number of wavelengths
in the path difference between diffracted X-rays from adjacent crystal planes (see
Fig. 3.5).

For fixed values of both � and d 0, the diffraction occurs at several angles of
incidence such as �1, �2, �3; : : : ; corresponding to n D 1; 2; 3; : : : : In the first-order
reflection (n D 1), the path difference between two scattered X-rays denoted by
1’ and 2’ in Fig. 3.5 is one wavelength. The path difference between X-rays 1’ and
3’ is two wavelengths, etc. The diffracted X-rays from all atoms in all the planes
are considered completely in phase so as to produce the diffracted X-ray beam with
appreciable intensity in a particular direction which satisfies the Bragg law. Equation
(3.12) may be rewritten as

2d sin � D � (3.13)

where d D d 0=n. This form of Bragg law is frequently used.
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Table 3.1 Information of plane spacing for seven crystal systems

Cubic 1
d2

D h2Ck2Cl2

a2

Tetragonal 1
d2

D h2Ck2

a2
C l2

c2

Hexagonal 1
d2

D 4
3

�
h2ChkCk2

a2

�
C l2

c2

Trigonal 1
d2

D .h2Ck2Cl2 / sin2 ˛C2.hkCklChl/.cos2 ˛�cos˛/
a2.1�3 cos2 ˛C2 cos3 ˛/

Orthorhombic 1
d2

D h2

a2
C k2

b2
C l2

c2

Monoclinic 1
d2

D 1

sin2 ˇ

�
h2

a2
C k2 sin2 ˇ

b2
C l2

c2
� 2hl cosˇ

ac

�
Triclinic 1

d2
D 1

V 2
.S11h

2 C S22k
2 C S23k

2 C 2S12hk C 2S23kl C 2S13hl/

On the triclinic system, V is the volume of a unit cell and the coefficients are given below.

S11 D b2c2 sin2 ˛; S12 D abc2.cos ˛ cosˇ � cos �/;

S22 D a2c2 sin2 ˇ; S23 D a2bc.cosˇ cos � � cos ˛/;

S33 D a2b2 sin2 �; S13 D ab2c.cos � cos ˛ � cosˇ/

In general, the nth order reflection from a certain crystal plane (h k l) with the
interplanar spacing of d could be considered the first-order reflection from a plane
(nh nk nl). Since the (nh nk nl) plane is parallel to the (h k l) plane, reflection
from (nh nk nl) plane is equivalent to the first order reflection from planes spaced
at the distance (d D d 0=n). From such a point of view, 2� is called the diffraction
angle in many cases.

The diffraction angle 2� of any set of planes (h k l) can be computed by com-
bining (3.13) with the plane-spacing equations (see Table 3.1) which relate distance
between providing the relationship among the distance of adjacent planes to Miller
indices and lattice parameters for each crystal system. For example, if the crystal
is cubic with the lattice parameter a, the interplanar spacing d and Miller indices
(h k l) are given by

1

d 2
D .h2 C k2 C l2/

a2
(3.14)

By combining the Bragg law with (3.14), one obtains for experiments using the
wavelength of � the following equation.

sin2 � D �2

4a2
.h2 C k2 C l2/ (3.15)

Equation (3.15) suggests that the diffraction angle, corresponding to diffraction
directions, can be determined from the shape and size of the unit cell. This is an
important point for structural analysis of substances. The converse is also very valu-
able, since one can possibly determine an unknown crystal structure by measuring
the diffraction angles. In other words, the particular directions of diffracted X-ray
beams given by the diffraction angles are related directly to the positions of atoms
in the unit cell.
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3.4 Scattering by a Unit Cell

As shown in Chap. 2, a crystal is defined as a solid consisting of atoms arranged in a
periodic pattern defined by the unit cell. Therefore, when considering the scattering
intensity from crystals, it is important to get information of phase differences based
on the relationships between the scattering intensity and the atomic positions in
one unit cell. Only some essential points are given below. Readers who want to
have a deeper knowledge about this field should consult textbooks on structural
determination by X-ray crystallography.

The phase difference of X-rays whose path difference is one whole wavelength
is 2� radians (360ı). Let us consider an atom A is placed at the origin of (000) and
atom B at actual coordinates (x y z) which can be expressed by fractional coordi-
nates (u v w) where u D x=a, v D y=b, and w D z=c, where a, b, and c are the
lattice parameters along each axis. Under these conditions, the phase difference �
between the X-rays scattered by atom B and that scattered by atom A at the origin
is given by the following equation for the (h k l) reflection.

� D 2�.hu C kv C lw/ (3.16)

This relationship is applicable to a unit cell of any shape. If atoms A and B are of
different elements, there will be differences not only in phase but also in amplitude.
By adding waves scattered by all atoms in a unit cell including the atom at the ori-
gin, the resultant wave can be obtained. Each wave can be described by a vector
whose length is equal to the amplitude and this vector is inclined to the horizontal-
axis at the phase angle. Then, the amplitude and phase of the resultant wave are
obtained simply by adding two vectors using the parallelogram law. Such a geomet-
rical solution may be simplified if we use complex numbers to represent the vectors.
Complex exponential function can also be employed. The variation in electric field
intensity E with time t is frequently expressed in the form

E D A exp.2� i � t/ (3.17)

D A cos.2� � t/C iA sin.2� � t/ (3.18)

where A is the amplitude and � is frequency. Equation (3.17) is called a complex
exponential function and this is also convenient for discussion of wave behavior.
The key points are displayed in Figs. 3.6 and 3.7.

A complex number is represented in the form (a C ib), where a and b are real
numbers, whereas i D p�1 is imaginary. A complex number is usually represented
in the complex plane and as shown in Fig. 3.6, the real number is plotted as abscissa
and the imaginary number as ordinate. Amplitude of the wave is given by A, the
length of the vector, and phase by �, the angle between the vector and the horizontal
axis. With reference to (3.18) taken together with Fig. 3.6, the wave is now treated
by the complex number,A cos � C iA sin �. Note that these two terms correspond
to the horizontal component OM and the vertical one ON of the vector.
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Fig. 3.6 Wave behavior represented by complex numbers

A

sin(2πiυt)

λ

φ

λ

cos(2πiυ
t)

t
t

Fig. 3.7 Cosine component is obtained by projecting the wave vector on the real-axis and sine
component on the imaginary-axis

In the complex plane, multiplication of a vector by i is equivalent to the rotation
of the vector counterclockwise by 90ı. Multiplication twice by i , (i2 D �1), rotates
the vector through 180ı, equivalent to reversing the direction. In other words, when
multiplying the horizontal vector 2 in Fig. 3.6 by i converts it into the vertical vector
2i along abscissa. Multiplication twice by i converts the horizontal vector 2 into the
horizontal vector �2 along the ordinate, pointed in the opposite direction.
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Using the power-series expansions of eix , cos x and sin x, it can be shown that

Aei� D A cos� C iA sin � (3.19)

The left hand side of (3.19) is called a complex exponential function. The wave
intensity is proportional to the square of the amplitude, so that we have to obtain the
square of the absolute value of the wave vector, (A2). When the wave is described
by the complex form, the A2 value can be obtained by multiplying the complex
function by its complex conjugate, (i being replaced by �i). The complex conjugate
of Aei� is Ae�i� , so that jAei� j2 D Aei�Ae�i� D A2.

Some useful relations, such as en� i D .�1/n, en� i D e�n� i, where n is any
integer, eix Ce�ix D 2 cosx and eix �e�ix D 2i sinx are very useful. The amplitude
of the scattered wave from each atom in a unit cell is given by the atomic scattering
factor of the atom f , and the value of (sin �=�) relevant to diffraction. Since the
phase of each wave is given by (3.16) for the (h k l) reflection using fractional
coordinates (u v w) of the atom, any scattered wave may be expressed in the complex
exponential form.

Aei� D f e2� i.huCkvClw/ (3.20)

Based on this relationship, the sum of the scattered waves from atoms in a unit cell
can be computed using the generalized equation.

Fhkl D
NX

j D1

fj e2�i.huj Ckvj Clwj / (3.21)

whereN is the total number of atoms involved in the unit cell; for example, it is 2 for
bcc and 4 for fcc. F defined by (3.21) is called the structure factor or geometrical
structure factor and one can obtain the value of F , only if the position and the
type of atoms in the unit cell are given. For this reason, (3.21) as well as Bragg
condition given by (3.13) are considered very important relationships for analyzing
the structure of crystals by X-ray diffraction.

The structure factor F is generally given by a complex number and represents
both the amplitude and the phase of the scattered wave obtained from the summation
over all atoms in the unit cell. In addition, the absolute value of F represents the
amplitude of the resultant scattered wave by adding together waves scattered by
individual atoms in the unit cell, based on that of the wave scattered by a single
electron. Therefore, the intensity of the resultant wave scattered from all atoms in
the unit cell in the direction which satisfies the Bragg law, is simply proportional to
jF j2. The value of jF j2 can be obtained by multiplying F of (3.21) by its complex
conjugate F �.

Although there is no theoretical difficulty in calculation of the structure factor
given by (3.21), the usefulness and application of (3.21) can be fully appreciated
only by working out some actual cases. For example, in the case of the body-
centered cell containing two atoms of the same kind, (position of 000 and 1

2
; 1

2
; 1

2
)

in unit cell, the structure factor is given as follows:
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Table 3.2 Relationship between Bravais lattice and reflections

Crystal type Bravais Lattice type Reflections possible
present

Reflections necessarily
absent

Simple Primitive Any h; k; l None
Body-centered Body-centered hC k C l even hC k C l odd
Face-centered Face-centered h; k and l unmixed h; k and l unmixed
Diamond cubic Face-centered cubic As fcc, but if all even

and hC kC l ¤ 4N ;
then absent

h; k and l mixed and if all
even and
hC k C l ¤ 4N

Base-centered Base-centered h and k both even or
both odd�
hC 2k D 3N with l
even

h and k mixed�

Hexagonal close-
packed

Hexagonal hC 2k D 3N ˙ 1 with
l odd
hC 2k D 3N ˙ 1

with l even

hC 2k D 3N with l odd

� These relationships apply to a cell centered on the C face. If reflections are present only when
h and k are unmixed, or when k and l are unmixed, then the cell is centered on the B or A face,
respectively.

uvw D 000;
1

2

1

2

1

2

F D f e2�i�0 C f e2�i.h
2 C k

2 C l
2 / D f Œ1C f e�i.hCkCl/�

When the number of .hC k C l/ is evenW F D 2f; F 2 D 4f 2

When the number of .hC k C l/ is oddW F D 0; F 2 D 0

The results show that the reflections will be observed for planes such as (110), (200),
and (211) whose indices satisfy the condition (h C k C l) is even, but not for the
planes (111), (210), (300), etc., because the waves cancel each other being out of
phase.

In calculation of the structure factor, information on crystal systems is not
required. In the previous example, the given information is only the body-centered
cell containing two atoms. No information about the shape of the unit cell, such
as cubic, tetragonal, and orthorhombic (see Bravais lattices in Fig. 2.4) was used.
The structure factor is completely independent of the shape and size of the unit cell.
This also illustrates an important point; any body-centered cell provides the missing
reflections when (hCkC l) is an odd number without reference to the specific crys-
tal system. In other words, information about missing reflections provides a clue
about the actual atomic arrangement in crystals. The relationship between Bravais
lattice and diffraction behavior is summarized in Table 3.2.

The two or more kinds of atoms are included in a unit cell, it is necessary to take
into consideration the atomic scattering factor of each atom in calculations using
(3.21). They will be further illustrated in Questions 3.12 and 3.13.
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3.5 Solved Problems (13 Examples)

Question 3.1 The differential cross-section of the coherent scattering intensity
for a free electron is expressed by the following equation with respect to per
unit plane angle (radian), if the classical electron radius is set to re

d
e

d�
D r2

e

2
.1C cos2 �/ � 2� sin� .m2=rad/

(1) Estimate 
e which is called the Thomson classical scattering coefficient
by the integration about angle.

(2) Express the Thomson classical scattering coefficient in barn unit.
(1barn D 1 � 10�28 m2).

(3) When X-rays penetrate an aluminum foil of thickness 1 mm, calculate the
probability of the coherent scattering induced from free electrons. The
density of aluminum is 2:70 � 106 g=m3.

Answer 3.1 Figure 1 shows the schematic diagram of the process by which coher-
ent scattering is produced per unit solid angle (steradian) in direction denoted by
angle �, when photon strikes a free electron. The relationship of d˝ D dA=r2 D
2� sin �d� is readily established about area .A/ denoted by a part of a coaxial cone
which is specified by the angle between � and � C d� on the surface of a sphere of
radius r .

Fig. 1 Gemometric feature found in the cone of diffraction from a free electron

(1) Integration is made from zero to � with respect to the angle �


e D
Z �

0

r2
e

2
.1C cos2 �/2� sin�d� D �r2

e

Z �

0

.sin � C cos2 � sin�/d�

D �r2
e

�
� cos� � cos3 �

3

��

0

D �r2
e

�
4

3
C 4

3

�
D 8

3
�r2

e
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where the following relationship is used.

t D cos� ! dt D � sin�d�

Z
cos2 � sin �d� D

Z
t2dt D t3

3
D cos3 �

3

Reference: In D
Z

sinn xdx D �1
n
.sinn�1 x cos x/C n � 1

n
In�2

Il D
Z

sinxdx D � cosx; I0 D
Z

dx D x

(2) The value of the classical electron radius re is defined by the following equation
using the permittivity of free space �0 D 107=.4�c2/ in electromagnetism.

re D e2

4��0c2me
D e2

me � 107
D .1:602 � 10�19/2

9:109 � 10�31 � 107
D 2:8719�10�15 .m/

where me and e are electron rest mass and electron charge respectively. It may
be noted for the dielectric constant of vacuum �0 D 8:854 � 10�12 .Fm�1/ is
also employed as electric capacity per unit length. The important point for 
e

obtained by question (1) is that the coherent scattering intensity is proportional
to r2

e . Because of an extremely large mass of the nucleus relative to the electron
case, about 1,800 times that of the electron mass, the net effect on the coherent
scattering intensity by the nucleus is very small. This is the reason why the
scattering caused only by electrons in the atom is considered. The value of 
e is
estimated as follows, using the relation of 1b D 1 � 10�28 m2.


e D 8

3
�r2

e D 8

3
� � .2:8179� 10�15/2 D 66:52 � 10�30 .m2/

D 66:52 � 10�30

1 � 10�28
D 0:6652 .b/

Note: The cross-sectional area per unit area is usually given in barn, because the
value becomes very small if SI unit is used.

(3) The mass of aluminum per mole (molar mass) is given as 26.98 g in Appendix
A.2, and the number of electrons equivalent to the atomic number 13. The num-
ber of electrons Ne contained in 1 m3 from density value is estimated in the
following way.

Ne D 0:6022� 1024

26:98 � 10�3
� 13 � 2:70 � 103 D 0:783 � 1030 .m�3/

Converting the number of electrons ofN film
e for aluminum foil with its thickness

of 1 mm into the one per unit area .m�2/, Ne D 0:783 � 1027 .m�2/. Then, the
probability P of the coherent scattering intensity due to electrons in this case is



82 3 Scattering and Diffraction

found as follows:

P D 
e �N film
e D 66:52 � 10�30 � 0:783 � 1027 D 0:052

Question 3.2 From high-precision scattering experiments, 0.002426 nm is
obtained as the wavelength of Compton scattering. Calculate the effective
mass of photon me using the so-called Einstein relation E D mc2 showing
relationship between the mass of photonm and its energy E .

Answer 3.2 X-ray is electromagnetic radiation (photon) of exactly the same nature
as visible light except that values of wavelength � or energy (D frequency �) are
different. The propagation speed of photon c is considered equal to the speed of
light in vacuum, 2:998 � 108 m=s.

The following equation is obtained from the relationship c D h� by setting
Planck constant to h.

E D h� D hc

�

To calculate the effective mass of photonme, Einstein relation can be used

mec
2 D hc

�
! me D h

c�

Using h D 6:626 � 10�34 .J � s/, c D 2:998 � 108 .m=s/, and 1 nm D 10�9 m.

me D 6:626 � 10�34

2:998 � 108 � 0:002426� 10�9
D 9:110 � 10�31 .kg/

Note: The value of 9:109 � 10�31 kg is also used as electron rest mass. If acceler-
ation voltage exceeds 100 kV, an increase (relativistic) in mass accompanying the
variation of speed of photon should be taken into account by using Einstein rela-
tion. If the mass of photon and its velocity are set to m0 and v, respectively, an
increase (relativistic) in mass may be estimated from (1.8) in Chap. 1 for the case
that acceleration voltage of 200 kV is applied to an electron.

The energy of an electron with its rest mass m0 D 9:109 � 10�31 .kg/ is
computed in the following, by coupling with 1.eV/ D 1:602 � 10�19 .J/.

E D m0c
2 D 9:109 � 10�31 � .2:998 � 108/2

1:602 � 1019
D 0:5109 � 106 .eV/

Since the energy given to an electron is equivalent to 0:2� 106 .eV/ in the case that
applied voltage is 200 kV, and the speed v of photon may be estimated as follows.

v D c �
s
1 �

�
0:5109

0:2C 0:5109

�2

D c � p
1 � 0:5165 D 0:6953c
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Because of
�

v
c

	 D 0:6953, the increase in mass of photon in this case can be obtained
in the following equation:

m D m0q
1 � �

v
c

	2 D m0p
1 � .0:6953/2 D m0

0:7187
D 1:39m0

Question 3.3 When incident X-rays collide with a free electron, a part of the
energy of incident X-rays (photons) is given to the electron as kinetic energy.
Accordingly, the energy of the photon after collision is less than the energy
before collision. That is, the wavelength of X-rays after collision becomes
slightly longer than the wavelength of the incident X-rays and it is called
the Compton shift. Answer the following questions related to such incoherent
scattering of X-rays.

(1) Obtain the Compton equation for the case where a photon with the energy
of h�0 (momentum of h�0=c) collides with an electron at rest.

(2) Compute the increment of Compton shift in wavelength produced at a
scattering angle of 30ı.

Here, h is Planck constant, c the speed of light in a vacuum, and � the
frequency.

Answer 3.3

(1) Momentum is usually given by the product mv of mass m and speed v of
a desired particle. On the other hand, the momentum of a photon may be
expressed by h�

c
or h

�
using some relationships that the kinetic energy of a pho-

ton is described by E D h�, the Einstein relation of E D mc2 and c D ��,
where � is the wavelength.

The collision between a photon and a free electron is considered an elastic
one, as shown in Fig. 1. If the photon having the momentum of h�0

c
collides

with the electron at rest, the electron is knocked aside and the direction of the
photon is deviated through an angle 2� . Since a part of energy of the incident
photon is given to the electron, the momentum of photon h�

c
after collision is

quite likely to become small in comparison with h�0

c
before collision.

Fig. 1 The elastic collision of photon and an electron (the Compton effect)
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It is thought that the law of conservation of energy is satisfied before and after
collision. Thus,

h�0 Cm0c
2 D h� Cmc2 (1)

mc2 D h.�0 � �/Cm0c
2 D AC B (2)

Taking square of both sides of (2) and re-arranging;

.mc2/2 D A2 C B2 C 2AB

D Œh.�0 � �/�2 C .m0c
2/2 C 2hm0c

2.�0 � �/ (3)

D .h�0/
2 C .h�/2 � 2h2�0� C .m0c

2/2 C 2hm0c
2.�0 � v/ (4)

The electron before collisions is at rest, v0 D 0. The momentum of the electron
before collision is also zero. Denoting the velocity of electron after collision by
v, and invoking the law of conservation of momentum, one obtains

h�0

c
D h�

c
Cmv ! mvc D h�0 � h� (5)

By applying the “law of cosines” .A2 D B2 C C2 � 2BC cos �/ to (5),

.mvc/2 D .h�0/
2 C .h�/2 � 2h2�0� cos 2� (6)

By subtracting (6) from (4);

.mc2/2 � .mvc/2 D .m0c
2/2 C 2hm0c

2.�0 � �/� 2h2�0�.1 � cos 2�/ (7)

The left hand side of (7) may be rewritten as

.mc2/2 � .mvc/2 D .mc2/2
�
1�

� v

c

�2
�

D .m0c
2/2 (8)

Here, we use the relationship with energy in case where an increase in mass of
a photon arising from change of its velocity v can be estimated in the following
way.

mc2 D m0c
2q

1 � �
v
c

	2 ) .mc2/2
�
1 �

� v

c

�2
�

D .m0c
2/2 (9)

Therefore, (7) can be summarized as;

2hm0c
2.�0 � �/ D 2h2�0�.1� cos 2�/ (10)

c.�0 � �/ D h�0�

m0c
.1 � cos 2�/ (11)
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On dividing both sides of (11) by �0� and using �0 D c
�0

and � D c
�

, we obtain
the Compton equation, as follows.

�� D � � �0 D h

m0c
.1 � cos 2�/ (12)

(2) Equation (12) suggests that the Compton shift of �� depends only on the
scattering angle and it varies from zero in the forward direction .2� D 0/

and to twice the term of h=.m0c/ in the backward direction .2� D 180ı/. It
is also noted that the incoherent scattering due to the Compton effect is not
always welcome in analyzing the structure of substances, because it increases
the background intensity.

Substituting h D 6:626� 10�34 .J � s/;m0 D me D 9:109� 10�31 .kg/; and
c D 2:998 � 108 .m=s/, in (12)

h

mec
D 60626� 10�34

9:109 � 10�31 � 2:998 � 108
D 0:2426 � 10�11 .m/

D 0:0243 � 10�8 .cm/

Next, further substitution of 2� D 30ı.cos 30ı D 0:866/ in (12) gives;


� D 0:2426� 10�11.1 � 0:866/ D 0:0325� 10�11 .m/

D 0:0033� 10�8 .cm/

Question 3.4 A stream of X-ray quanta with the energy of 200 keV strikes
a free electron and the incoherent scattering is produced in a direction 180ı
relative to the incident beam. The energies of the scattered photon and the
recoil electron were found 111.925 and 87.815 keV, respectively. Verify if this
incoherent scattering process satisfies the law of conservation of momentum.

Answer 3.4 According to the Einstein relation ofE D mc2, the energy is equivalent
to the mass and it is also noted that an increase in mass of a quantum is related
directly to the change of its speed. If rest mass of an electron 9:109 � 10�31 kg is
converted into energy, we obtain 0:5109 � 106 eV D 510:9 keV. Total energy E (it
is equivalent to mass) of the electron after collision may be given, in keV, by the
sum of the energy of the scattered photon and that of the recoil electron.

E Cm0c
2 D 87:815C 510:9 D 598:715 keV

The speed of electron v can be computed using (1.8) in the following way:

v D c

s
1 �

�
m0c2

E Cm0c2

�2

D c

s
1 �

�
510:9

598:715

�2

D 0:521 c
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The energy (equivalent to mass) of the recoil electron is quite likely to increase
because of collision and its momentum p may be given by mv and, then we obtain,

p D 598:715� 0:521 c D 311:931 c

Since the incoherent scattering is produced at a scattering angle of 180ı, corre-
sponding to the extreme backward direction to the incident X-ray beam, the sum
of momentum of the incident X-rays and the scattered photon should be compared
with the momentum of the recoil electron. For this reason, we obtain the following
equation using p D meffc D h�=c.

h�0

c
C h�

c
D .200C 111:925/c D 311:925 c

Although a very small difference of 0.006c is found between the two values, it may
be inferred that the law of conservation of momentum is almost satisfied.

Question 3.5 X-rays with energy 51.1 keV produced incoherent scattering by
impacting with an electron in the outershell of an atom in a sample. Answer
to the following questions.

(1) Estimate the angle (so-called recoil angle �) between the direction of the
recoil electron and that of the incident X-ray beam, when the scattering
angle 2� is 20ı.

(2) Compute the energy of the scattered photon in this case.

Answer 3.5

(1) In the incoherent scattering process, the recoil angle � is known to correlate with
the scattering angles 2� in the following form. For convenience, Fig. 1 shows the
schematic diagram of two angles together with the incident X-ray photon beam.

1

tan �
D
�
1C h�

m0c2

�
tan

2�

2

In other words, this equation suggests that we can obtain the scattering angle 2�
if the recoil angle � is known or vice versa. Similarly, if either the energy .h�0/

of the incident X-ray photon beam or the energy h� of the scattered photon is
given, the energy (Er) of the recoil electron can be computed. Since the energy
of the incident X-ray photon beam is given as 51.1 keV, one obtains

h�

m0c2
D 51:1 � 103

0:5109� 106
D 0:1

Here, we use the information that rest mass of an electron 9:109 � 10�31 kg is
equivalent to energy of 0:5109� 106 eV D 510:9 keV (see Question 3.4).
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Fig. 1 Schematic diagram for the incoherent scattering process where the incident X-ray photon
beam, a scattered photon, and a recoil electron are correlated

On the other hand, from the relationship of E.keV/ � 1:240=� .nm/ for the
wavelength �0 of the incidence X-ray beam, we obtain,

�0 D 1:240

51:1
D 0:0243 .nm/

The recoil angle � can be computed from the value of the scattering angle 20ı,
as follows:

1

tan�
D .1C 0:1/ tan

20

2

tan� D 5:1557 ! � D 79:0ı

The recoil electron is released in the direction of 79ı with respect to the direction
of propagation of the incident X-ray beam.

(2) Calculate the Compton shift in the case where the scattering angle is 20ı, using
(3.2). Since cos 2� D 0:9397, one obtains

�� D 0:2426� 10�11.1 � cos 2�/ D 0:2426� 10�11 � 0:0603 D 0:0001� 10�9 .m/

Therefore, the wavelength of the scattered photon is

� D �0 C�� D 0:0243C 0:0001 D 0:0244 .nm/

The energy of this photon may be estimated from E D h�,

E D h� D 1:240

0:024
D 50:8 .keV/

The energy of the recoil electron, Er, can be computed from the difference in
energy between the incident X-ray beam and the scattered photon.

Er D 51:1� 50:8 D 0:3 .keV/
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The wavelength of the incident X-ray photon beam with energy of 51.1 keV
becomes longer by 0.0001 nm after scattering and the energy of the scattered
photon decreases to 50.8 keV. The recoil electron which has the energy of
0.3 keV is released at an angle of 79ı from the direction of propagation of the
incident X-ray beam.

Question 3.6 Complex number .A cos�C iA sin �/ is widely used as an ana-
lytic expression for the wave. Using the given diagram of the complex plane,
discuss the wave vector with the amplitude and phase. Also confirm the prod-
uct of a complex number and its complex conjugate is always constant and it
is equivalent to the square of the amplitude.

Fig. A Wave vector represented by the complex number

Answer 3.6 A real number can express only one quantity, but a complex number
can represent two ingredients (e.g., amplitude and phase of a wave). This particular
feature makes the use of vectors much more convenient. A complex number is the
sum of a real and an imaginary number and it is usually described by solid dot in the
complex plane as shown in the diagram. Here, real numbers are plotted as abscissa
and imaginary numbers as ordinates and if the vector drawn from the origin to the
solid dot indicates the complex number .A D x C iy/, where x and y are real
numbers and i is an imaginary number. The length of vector from the origin denoted
by jAj corresponds to the amplitude and the phase is given by the angle � between
the vector and the axis of real number. Multiplication of a vector by i makes it rotate
counterclockwise by 90ı. Thus, multiplication by i converts a horizontal vector x
to a vertical vector ix.

From the power-series expansions of eix , cos x, and sin x, we obtain eix D
cos x C i sin x. Then, the wave vector is described analytically by either side of
the following equation with respect to the complex number A.
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Aei� D A.cos� C i sin �/ (1)

x D A cos�; y D A sin � (2)

Further, Aei� of the left hand side of (1) is called a complex exponential function.
The complex conjugate of A D x C iy is A D x � iy, or Ae�i� for Aei� ,

respectively. It is also usually described byA�. If a wave is described in the complex
form, its quantity can be obtained by multiplying the complex expression for the
wave by its complex conjugate. As shown in the given diagram of the complex
plane, A D x C iy and A� D x � iy show the so-called mirror symmetry and the
following relationship is readily obtained.

jAi� j2 D Aei�Ae�i� D A2.ei� � e�i�/ D A2 (3)

This relationship can also be found as follows.

A.cos� C i sin �/ � A.cos� � i sin�/ D A2.cos2 � C sin2 �/ D A2 (4)

A � A� D .x C iy/.x � iy/ D x2 C y2 D A2 (5)

where the relationship of i2 D �1 is utilized. The operation i in a complex number
is equivalent to the square root of �1. For example, when the operation i is addition-
ally applied to the imaginary number iy ! i.iy/ D i2y D �y. Namely, it becomes
the real number with the opposite sign by rotating by �=2 counterclockwise.

The product of a complex number and its complex conjugate becomes the square
of the amplitude of the original complex number (see (3)–(5)). This is quite a use-
ful relationship which can be used for calculating the structure factor, because the
intensity of a wave is proportional to the square of the amplitude.

Fig. 1 Addition (a) and multiplication (b) of complex numbers
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Note: The addition of two complex numbers corresponds to the sum of two vectors
on a complex plane. The multiplication of two complex numbers is explained by
the relationship of two vectors on a complex plane as follows. The rotation by �2

following the �1 rotation is equal to the rotation by .�1 C �2/. These relationships
are illustrated in Fig. 1.

Question 3.7 X-rays belong to the electromagnetic spectrum and its propaga-
tion speed is equal to the velocity of light (c). When X-ray wavelength is set
to �, the frequency � is given by � D c=�. The cyclic variation in electric field
intensityE may be expressed by the following equation, if time and phase are
set to t and ı, respectively.

E D A cos 2�.�t C ı/

Discuss the variation in electric field E and its intensity I in the following
two cases of superiomposition of two waves.

(1) Two waves with equal amplitude, but their phases are different.
(2) Two waves with difference in both amplitude and phase.

Answer 3.7 The variations in electric field intensity related to X-rays cannot be
directly observed. The meaning of intensity of X-rays may be used in two ways.
One is the energy which transits a unit area perpendicular to the direction of prop-
agation of X-rays (wave). Another is the amount proportional to the square of the
amplitude of wave obtained as a result of the interference effect of scattered X-rays.
The latter is more frequently used in X-ray diffraction crystallography and we usu-
ally discuss its relative value. For this purpose, the expression of each wave as a
complex exponential function is convenient and the cyclic variation in electric field
intensity E can be described as follows:

E D Ae2�i.�tCı/ D A cos 2�.�t C ı/C iA sin 2�.�t C ı/ (1)

where A is the amplitude.

(1) The summation of two waves with equal amplitude and different phase is given
in the following equation.

E 0 D Ae2�i.�tCı/ C Ae2�i.�tCı0/ (2)

D Ae2�i.�tCı/f1C e2�i.ı0�ı/g (3)

D Ef1C e2�i.ı0�ı/gg (4)

Since the intensity I is proportional to the square of E 0, we obtain,
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I D jE 0j2 D jEE�j D A2f1C e2�i.ı0�ı/g2 (5)

D A2 � 2f1C cos 2�.ı0 � ı/g (6)

Here, x D 2�.ı0 � ı/ and the following relationships of exponential and
trigonometric functions are utilized.

1C eix D 2 �
 

ei x
2 C e�i x

2

2

!
ei x

2 D 2 cos
x

2
� ei x

2 (7)

cos2 ˛

2
D 1

2
.1C cos˛/ (8)

.1C eix/2 D 2 cos
x

2
� ei x

2 � 2 cos
x

2
� e�i x

2 (9)

D 2.1C cosx/ei x
2 e�i x

2 D 2f1C cos 2�.ı0 � ı/g (10)

According to (6), one obtains I D 4A2 if two waves are said to be in
phase (D no phase difference) or constructive interference, but I D 0 if the
phase difference is � (corresponding to the out of phase case or destructive
interference).

(2) If two waves differ, not only in amplitude, but also in phase, the resultantE and
I are given in the following equation.

E D
X

j

Aj e2�i.�tCıj / D e2�i�t
X

j

Aj e2�iıj (11)

I D jEE�j D
0
@e2�i�t

X
j

Aj e2�iıj

1
A
0
@e�2�i�t

X
j

Aj e�2�iıj

1
A (12)

D
8<
:
X

j

A2
j C

X
j ¤k

X
AjAke2�i.ıj �ık /

9=
; (13)

Here, * indicates the complex conjugate. As shown in (11), we can bundle the
term of e2� i�t related to the frequency of X-rays out of sigma in wave synthesis,
so that the e2� i�t term makes no contribution to scattering intensity. Thus, it is
sufficient to consider only amplitude and phase for discussing intensity arising
from superposition of waves. For this reason, we can use the following equations
instead of E .

G D Ae2�iı ! I D jGG�j (14)

Equation (13) can also be expressed in the following form when using the
relationship

PP
j ¤k D PP

j >k CPP
j <k .

I D
8<
:
X

j

A2
j C 2

X
j >k

X
AjAk cos 2�.ıj � ık/

9=
; (15)
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Since sin 2�.ıj � ık/ D � sin 2�.ık � ıj /, all sine terms are zero. On the other
hand, cos 2�.ıj � ık/ D cos 2�.ık � ıj /, so that cosine terms are twice except
for j D k.

Note: As shown in Fig. 1, the phase difference between the origin and a position of
x at a certain time is considered to be 2�ı with respect to a wave which propagates
to the x-direction. The phase differences may be given in wavelength measure. Two
waves differing in path length by one whole wavelength (�) will shift in phase by
2� radians or 360ı. Therefore, the phase difference is described by the product of
the path difference and (2�=�) in the following form.

ı D x

�
(16)

When setting k to a unit vector in the direction of propagation of waves, the phase
is considered constant in all positions on a plane perpendicular to k. Therefore, the
phase difference between the origin and an arbitrary position in a space (see R of
Fig. 2) designated by vector r is may be given by

2�ı D 2�
k � r
�

(17)

Fig. 1 Phase difference of the wave which propagates to the x-direction

Fig. 2 Phase difference between the origin and an arbitrary position designated by a vector r
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For simplification, if the wave vector of K defined by K D k=� is employed, we
obtain ı D K � r and (14) will be rewritten in the following form. Note that the wave
vector of K has the length of 1=� in the direction of k.

G D Ae2�iK�r G� D Ae�2�iK�r (18)

Question 3.8 There is an atom in which the density distribution of one
electron around the nucleus at the distance of r is given by 	.r/. Answer the
following questions.

(1) Derive the scattering factor fe when X-rays irradiate this atom.
(2) Derive a generalized equation for the scattering factor of an atom

containingZ electrons.

Answer 3.8

(1) The electrons of an atom are known to be situated at different points in space
and they may be visualized as points arranged around the nucleus, as shown in
Fig. 1 for simplification. Consider the interference of two waves scattered from
the electrons at the position of A and B. The two waves scattered in the forward
direction .2� D 0/ are said to be “in phase” on a wavefront XX’, because
these two waves travel exactly the same distance (no path difference) before
and after scattering. On the contrary, the other scattered waves in Fig. 1 are not
in phase along the wavefront YY’, because the path difference (AD � CB) is
not an integer multiple of wavelength. Partial interference between the wave
scattered by electrons A and B produces the result that the net amplitude of the
scattered in this direction defined by scattering angle 2� is less than that of wave
scattered in the forward direction. In other words, the scattering amplitude of
X-rays decreases, since the phase difference increases with increasing scattering
angle 2� .

Fig. 1 Scattering of X-rays by an atom containing some electrons arranged as points around the
nucleus
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The scattered X-rays from A-electron will travel the optical path distance
given by s � r before reaching point D. On the other hand, the scattered X-rays
from B-electron will be generated just after the incident X-ray beam has trav-
eled the optical path distance s0 � r. For this reason, the phase difference 2�

(frequently called scattering phase shift) of X-rays scattered from electrons A
and B in an atom is given in the following form.

2�
 D 2�
.AD � CB/

�
D 2�.s � r � s0 � r/ D 2�.s � s0/ � r D 2�q � r (1)

where s0 and s represent the wave number vector of the incident and scattered
X-rays, respectively and the absolute value is equal to 1=� .js0j D jsj D 1=�/.
Equation (1) represents that .s� s0/ � r corresponds to the optical path difference
between the scattered wave from the electron at a distance r and that from the
electron at the origin. The following relationship is also suggested.

q D s � s0 ) jqj D q D 2 sin �

�
(2)

This vector q is referred to as the scattering vector. In other words, the scattering
vector q is a vector required to turn the incident X-ray wave to direction of 2�
and we obtain the relationship of s D s0 C q. The vector defining the relative
locations of electrons A and B is given by r. The interference effect of two scat-
tered waves, observed on a wavefront YY’ at a distance R which is considerably
larger than the distance AB, can be expressed in the following equations.

y D e2�i.�tCı/ C e2�i.�tCıC�/ D e2�i.�tCı/f1C e2�i.��ı/g (3)

D e2�i.�tCı/ � .1C e2�iq�r/ (4)

where � is frequency of the wave and t is time. The 1st term of (4) corresponds to
the common phase for a wave which propagates toward a wavefront YY’ and the
2nd term is the desired phase effect contributed by the two different scatterers.
Nevertheless, we have to note that (4) just covers the case of scattering arising
from only two electrons A and B, with A-electron set at the origin. Therefore, if
an atom contains n electrons, the interference effect of scattered waves should
be considered with respect to the vector rj showing all positional relationships
of n electrons and the generalized equation is as follows:

yn D e2�i.�tCı/ �
nX

j D1

fj e2�iq�rj (5)

where fj is equivalent to the scattering ability of the j th electron. The 2nd term
of (5) gives the scattering amplitude for the case containing n electrons with the
scattering ability of fj .
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In quantum mechanics, the electron charge is likely to be distributed in space
like a cloud and we use the distribution function 	.r/ providing the number of
electrons per unit volume as a function of distance. Then, the 2nd term of (5)
is given by the following form with respect to fx called the atomic scattering
factor.

fx D
Z

atom

e2�iq�r	.r/dV (6)

Note that
R
	.r/dV D 1 for the case of one electron only. When spherical

polar coordinates (see Fig. 2) are used for integration about q � r, the following
relationships are readily found.

q � r D qr cosˇ (7)

dV D r2 sinˇdˇd�dr (8)

Fig. 2 Variables described by the spherical polar coordinates

By using (7) and (8), we obtain the scattering factor fe for one electron as
follows. It may be worthy of note that fe given here is defined as a ratio of
amplitudes; the ratio of amplitude of the wave scattered by one electron with
the distribution function 	.r/ to amplitude of the wave scattered by one electron
classically localized at the origin (delta function).

fe D
Z 1

rD0

Z �

ˇD0

Z 2�

�D0

e2�iqr cos ˇ	.r/r2 sinˇdˇd�dr (9)

D 2�

Z 1

rD0

	.r/r2

Z l

!D�1

e2�iqr!d!dr .! D cosˇ/ (10)

D 2�

Z 1

rD0

	.r/r2dr

�
e2�iqr � e�2�iqr

2�iqr

�
(11)

D 2�

Z 1

rD0

	.r/r2dr � 2i sin.2�qr/

i2�qr
(12)

D 4�

Z 1

rD0

	.r/r2 sin 2�qr

2�qr
dr (13)
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The following relationships as well as d! D � sinˇdˇ are also used in this
calculation.

By considering the relationships t D 2�iqr and
R

etxdx D etx

t
, we obtain

the following equation.

Z 1

�1

etxdx D
"

etx

t

#1

�1

D et � e�t

t

Note that eix � e�ix D 2i sinx can readily found from eix D cosxC i sin x and
e�ix D cosx � i sin x.

(2) With respect to the scattering factor of an atom containing Z electrons, equiv-
alent to the atomic number, we use the approach similar to the fe case in the
following form, if only the electron distributions depend on the distance r.

fx D
ZX

j D1

fe;j D
ZX

j D1

4�

Z 1

rD0

	j .r/r
2 sin 2�qr

2�qr
dr (14)

ZX
j D1

4�

Z 1

rD0

	j .r/r
2dr D Z (15)

At the condition of q ! 0,

sin 2�qr

2�qr
! 1 (16)

Therefore, fx converges onZ, if the wave vector approaches zero (q ! 0), cor-
responding to scattering in the forward direction (the scattering angle is zero).
In other words, the value of fx is equal to Z times the amplitude of the wave
scattered from one electron. The quantity 2�q found in (13) and (14) is called
“wave vector” and the following expressions are also used in many cases.

2�q D 2� � 2 sin �

�
D 4�

sin �

�
D Q (17)

fx D
ZX

j D1

Z 1

rD0

4�r2	j .r/
sinQr

Qr
dr (18)

Question 3.9 Hydrogen contains one electron (usually referred to as 1s) in
K-shell and its distribution is given by the function of distance r only, as
shown in Fig. A. Wave function  1s.r/ of 1s electron is expressed in the
following form in terms of the atomic numberZ and Bohr radius r0.

j 1s.r/j2 D 1

�

�
Z

r0

�3

e�2 Z
r0

r
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Obtain the Fourier transformF.Q/ for calculating the atomic scattering factor
fH for a hydrogen atom. Note that wave function 1s.r/ satisfies the following
relationship. Z 1

0

4�r j 1s.r/j2dr D 1

r

r2
|ψ

ls
(r
)|

2

Fig. A Schematic diagram for the radial distribution function of 1s electron of hydrogen

Answer 3.9 We use (3.9) in this calculation.

fx D
ZX

j D1

Z 1

0

4�r2	j .r/
sinQ � r
Q � r dr (1)

The essential scheme for calculation is to put the given condition, 	1.r/ D
j 1s.r/j2, into the integrand of (1) and the integration is simply done. Nevertheless,
some key points are shown below, because the integration of (1) is equivalent to
the following Fourier transformation. Fourier transform of a function f .r/ and its
inverse Fourier transform F.r/ are given in the generalized form as follows:

F.Q/ D R
f .r/eiQ�r dr

f .r/ D R
F.Q/e�iQ�r dQ

)
(2)

where Q corresponds to a vector of reciprocal space (details of Fourier transform
are given in other books; for example, An Introduction to X-ray Crystallography,
second edition, by M.M.Woolfson, Cambridge University Press, (1997)). Since the
integral with respect to angle can be independently treated, if f .r/ depends only on
distance and directional components are negligible (well considered to be isotropic),
we may use the following simplified form.

F.Q/ D 4�

Z 1

0

f .r/r2 sinQ � r
Q � r dr (3)
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With respect to the sphere with radius R, which may be expressed by f .r/ D 1 in
the condition of r < R, the following equation is obtained.

F.Q/ D 4�

Z R

0

r2 sinQ � r
Q � r dr D 4�

Q

Z R

0

r sinQrdr (4)

D 4�

Q3
.sinQR �QR cosQR/ (5)

Here, the following partial integration is used.

Z
x sin kxdx D x � � coskx

k
�
Z
1 �
�� coskx

k

�
dx

D �x cos kx

k
C 1

k

�
sin kx

k

�

D 1

k2
.sin kx � kx coskx/

Let us recall the integration of (3) by using Z=r0 D 1=t for the wave function.

	ls.r/ D f .r/ D 1

�

�
Z

r0

�3

e�2 Z
r0 D 1

�

�
1

t

�3

e� 2
t

r (6)

The following equation is obtained by substituting (6) for (3) and re-arranging:

F.Q/ D 4� � 1
�

�
1

t

�3 �
1

Q

�Z 1

0

r � e� 2
t

r � sinQrdr (7)

Equation (7) corresponds to the procedure for estimating the integral value of the
following equation.

I1 D
Z 1

0

xe�˛x sinˇxdx

�
˛ D 2

t
; ˇ D Q

�
(8)

For this purpose, consider the following integrand except for the component x.

I0 D
Z 1

0

e�˛x sinˇxdx .˛ > 0/ (9)

D
�

e�˛x

�˛ sinˇx

�1

0

�
Z 1

0

e�˛x

�˛ ˇ cosˇxdx

D � 1
˛
.0 � 0/C ˇ

˛


�
e�˛x

�˛ cosˇx

�1

0

�
Z

e�˛x

�˛ .�ˇ sinˇx/dx

�

D � ˇ

˛2
.0 � 1/� ˇ2

˛2
I0 !

�
1C ˇ2

˛2

�
I0 D ˇ

˛2
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Therefore, the value of (9) is obtained as follows.

I0 D
Z 1

0

e�˛x sinˇxdx D ˇ

˛2 C ˇ2
(10)

Here, we use the relationship, lim
x!1 e�˛x sinˇx D 0 because e�˛x D 0.˛ > 0/ if

x D 1.
If I0 is integrated with respect to ˛, the desired integrand will be �xe�˛x sinˇx

and it is found close to the form of I1 in (8). Using this relationship, the value of (8)
can be easily calculated.

I1 D � d

d˛
I0 D � d

d˛

�
ˇ

˛2 C ˇ2

�
D 2˛ˇ

.˛2 C ˇ2/2
(11)

Here, we also use that the derivatives of ˛2 C ˇ2 D u and ˇ D k (constant) are
given in the following equation.

�
k

u

�
D �ku0

u2
! � ˇ � 2˛

.˛2 C ˇ2/2

Then, the Fourier transform of the wave function of 1s electron in K-shell is
expressed as:

Fls.Q/ D 4� � 1
�

�
�
1

t

�3

� 1
Q

� 2 � � 2
t

	 �Qn�
2
t

	2 CQ2
o2

(12)

D 42
�

1
t

	4
˚�

2
t

	CQ2
�2

D
42
�

Z
r0

�4


�
2Z
r0

�2 CQ2

�2
(13)

Equation (13) provides the scattering factor of a hydrogen atom as a function of Q.
It may be noted that calculations for the scattering factor of various elements have

been made in the past as a function of q D sin �=�. In this case, (13) is rewritten in
the following form by substituting 2�q forQ.

Fls.q/ D
�

Z
r0

�4


�
2Z
r0

�2 C .�q/2
� 2

(14)

Question 3.10 A hexagonal close-packed cell is known to contain two atoms
of the same type located at the positions of (000) and (1/3, 2/3, 1/2). Compute
the structure factor Fhkl .
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Answer 3.10 Fundamentals of the hcp structure are shown in Fig. 1.

Fhkl D
2X

j D1

fj e2�i.hunCkvnClwn/

Fhkl D f e2�i.0C0C0/ C f e2�i.h
3 C 2k

3 C l
2 / D f

�
1C e2�i

�
hC2k

3
C l

2

��

Set q D hC 2k

3
C l

2
for further calculation.

Fhkl D f .1C e2�iq/

The intensity of scattered waves from the (h k l) plane is simply proportional
to the square of the absolute value of the structure factor and it is obtained by
multiplying the F value by its complex conjugate.

jFhkl j2 D f .1C e2�iq/ � f .1C e�2�iq/ D f 2.2C e2�iq C e�2�iq/

Here, we use the relationships, eix C e�ix D 2 cosx and cos 2A D 2 cos2A � 1

(double angle of the cosine formula).

jFhkl j2 D f 2.2C 2 cos 2�q/ D f 2Œ2C 2.2 cos2 �q � 1/� D f 2.4 cos2 �q/

Then, the following equation can be obtained.

jFhkl j2 D 4f 2 cos2 �

�
hC 2k

3
C l

2

�

According to the characteristic variation of trigonometric function, cosx is found
to be zero if x is 1

2
� , 3

2
�; : : : ; whereas cos x is ˙1 if x is 0; �; 2�; : : : (see Fig. 2).

Therefore, cos2 �n D 1 (n is an integer).
When .h C 2k/ is described by a multiple of 3, while l is an odd number such

as (001) and (111), the term of
�

hC2k
3

C l
2

�
gives 1

2
� and 3

2
� . In these cases, the

scattering intensity is not detected. When l is an even number, while .hC 2k/ is a

multiple of 3 such as (002) and (112), the value of q D
�

hC2k
3

C l
2

�
is an integer

and cos�q D ˙1, ) jF j2 D 4f 2. This implies that the scattering intensity is
observed in these cases. Nevertheless, it should be kept in mind that all structure
factors of such planes have not always the same value as in the following examples.

jF101j2 D 4f 2 cos2 �

�
1

3
C 1

2

�
D 4f 2 cos2

�
5

6
�

�
! 3f 2

jF102j2 D 4f 2 cos2 �

�
1

3
C 2

2

�
D 4f 2 cos2

�
4

3
�

�
! f 2
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The results for the structure factor of a hexagonal close-packed cell are summarized
in Table 1.

Fig. 1 Fundamentals of the hexagonal close-packed structure

Fig. 2 Variation of cosine function

Table 1 Summary of structure factor of a hexagonal close-packed cell
hC 2k l jF j2 Examples

3m Odd number 0 001 111 221
3m Even number 4f 2 002 110 112

3m˙ 1 Odd number 3f 2 101 103 201
3m˙ 1 Even number f 2 100 102 200
m : integer

Question 3.11 A unit cell of diamond structure belongs to the cubic crystal
system and contains eight atoms of the same type and their positions are as
follows.

.000/

�
1

2

1

2
0

� �
1

2
0
1

2

� �
0
1

2

1

2

�
�
1

4

1

4

1

4

� �
3

4

3

4

1

4

� �
3

4

1

4

3

4

� �
1

4

3

4

3

4

�

Compute the structure factors Fhkl and jF j2.
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Answer 3.11

F D f
h
e2�i.0C0C0/ C e2�i.

h
2C k

2C0/ C e2�i.
h
2C0C l

2 / C e2�i.0C
k
2C l

2 /
i

Cf
h
e2�i.

h
4C k

4C l
4 / C e2�i.

3h
4 C 3k

4 C l
4 / C e2�i.

3h
4 C k

4C 3l
4 / C e2�i.

h
4C 3k

4 C 3l
4 /
i

D f
h
1C e�i.hCk/ C e�i.hCl/ C e�i.kCl/

i

Cf
h
e�i

.hCkCl/
2 C e�i

.3hC3kCl/
2 C e�i

.3hCkC3l/
2 C e�i

.hC3kC3l/
2

i

D f
h
1C e�i.hCk/ C e�i.hCl/ C e�i.kCl/

i

Cf e�i
�
hCkCl

2

� h
1C e�i.hCk/ C e�i.hCl/ C e�i.kCl/

i

D f
h
1C e�i

.hCkCl/
2

i h
1C e�i.hCk/ C e�i.hCl/ C e�i.kCl/

i

At first, let us consider the 2nd term. We find the 2nd term will be zero, if h k
l is a mixture of odd and even numbers and the relationship en�i D .�1/n, n
being any integer is taken into account. The relationships e�i D �1, e2�i D 1, and
en�i D .�1/n, where n is any integer, are also useful for calculating the structure
factor. For example, the following results are obtained with respect to planes of
(100), (110), and (211), respectively.

1C e�i.1C0/ C e�i.1C0/ C e�i.0C0/ D 1 � 1 � 1C 1 D 0

1C e�i.1C1/ C e�i.1C0/ C e�i.1C0/ D 1C 1 � 1 � 1 D 0

1C e�i.2C0/ C e�i.1C0/ C e�i.1C1/ D 1 � 1 � 1C 1 D 0

On the other hand, the 2nd term is found to be 4 when h k l is not a mixture of odd
and even numbers and then, the structure factor F can be expressed in the following
form.

F D 4f
h
1C e�i hCkCl

2

i

jF j2 D 16f 2
h
1C e�i hCkCl

2

i h
1C e��i hCkCl

2

i

D 16f 2
h
1C 1C 2 cos

�

2
.hC k C l/

i
D 32f 2

h
1C cos

�

2
.hC k C l/

i

Here, we use the relationships, e0 D 1 and eix C e�ix D 2 cosx. It is noted
that cosine function shows the results: �1 for the condition of an odd multiple of
�;C1 for a even multiple of � , and zero for an odd multiple of �=2, respectively.
Therefore, the following results are obtained for planes of unmixed h k l .
If .hC k C l/ is odd integers, such as (111), (311),

cos x D 0 ! jF j2 D 32f 2
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If .hC k C l/ is given by the number of an odd multiple of 2 such as (110), (200)

cos x D �1 ! jF j2 D 0

If .hC k C l/ is given by the number of a even multiple of 2 such as (220), (400),

cos x D C1 ! jF j2 D 64f 2

Of course, jF j2 D 0 when h k l is a mixture of odd and even numbers.

Question 3.12 Sodium chloride (NaCl) has a cubic lattice with four NaC ions
and four Cl� ions per unit cell. In addition, NaC ions occupy the corner of a
unit cell as well as the center of the plane, whereas Cl� ions occupy the center
of a cube as well as the midpoint of each edge-line.

This structure can also be produced in the following way; NaC ions form
fcc lattice and the face-centering translations can reproduce all positions of
Cl� ions, when applied to Cl� ions located at (1/2, 1/2, 1/2). As a result, any
of the NaC ions is surrounded by six Cl� ions and the reverse relationship is
recognized. Eight ions in the unit cell of NaCl are given as follows.

NaC .000/

�
1

2

1

2
0

� �
1

2
0
1

2

� �
0
1

2

1

2

�

Cl�
�
0
1

2
0

� �
1

2
00

� �
00
1

2

� �
1

2

1

2

1

2

�

(1) Compute the structure factor Fhkl , assuming that the scattering factors of
Na and Cl are expressed by fNa and fCl, respectively.

(2) Compute the structure factors of planes (111) and (200).

Answer 3.12

.1/ Fhkl D fNa

h
e2�i.0C0C0/ C e2�i.h

2 C k
2 C0/ C e2�i.h

2 C0C l
2 / C e2�i.0C k

2 C l
2 /
i

CfCl

h
e2�i.0C k

2
C0/ C e2�i.h

2
C0C0/ C e2�i.0C0C l

2 / C e2�i.h
2

C k
2

C l
2 /
i

D fNa

h
1C e�i.hCk/ C e�i.hCl/ C e�i.kCl/

i

CfCl

h
e�ik C e�ih C e�il C e�i.hCkCl/

i

D fNa

h
1C e�i.hCk/ C e�i.hCl/ C e�i.kCl/

i

CfCle�i.hCkCl/
h
1C e�i.�h�k/ C e�i.�h�l/ C e�i.�k�l/

i

D
h
fNa C fCle�i.hCkCl/

i h
1C e�i.hCk/ C e�i.hCl/ C e�i.kCl/

i

Here, we use the relationships, e0 D 1 and en�i D e�n�i (n is an integer).
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The 1st term shows the basis of the unit cell, Na at (0 0 0) and Cl at (1/2, 1/2,
1/2), respectively and the 2nd term indicates that this structure can be reproduced
by the face-centering translations. Note that the term for translation is the same as
the description of F for a fcc lattice. Since the sums (hC k), (hC l), and (k C l)
are even integers if h, k, and l are all even or all odd (unmixed), the value of the
three exponentials has the value 1. Conversely, the sum of the three exponentials
will be �1 for mixed indices. Specifically, the intensity scattered from planes (111)
and (200) are observed but the intensity of planes (100) and (210) are not observed.
However, even if h, k, and l are unmixed, we have to include the atomic scattering
factors for different atoms in the present case. The results of a fcc lattice cannot
applied directly to this case.

(2) (111) plane: When h, k, and l are unmixed and (hC k C l) is odd number.

F D 4.fNa � fCl/ ) jF j2 D 16.fNa � fCl/
2

F111 D 16.fNa � fCl/ decrease in intensity due to .fNa � fCl/

(200) plane: when h, k, and l are unmixed and (hC k C l) is even number

F D 4.fNa C fCl/ ) jF j2 D 16.fNa C fCl/
2

F200 D 16.fNa C fCl/ increase in intensity due to .fNa C fCl/

Note: For computing the structure factor F of ionic crystals, one should use the
scattering factor of ions instead of atoms. However, it makes little difference because
the scattering factors for atoms are found almost identical to those of ions at higher
angle, larger than (sin �=�/ D 3:0. Only slight difference is found at small angles.

Question 3.13 Structural similarity between an element and a compound is
frequently found, as shown by the case of diamond and zinc blende (ˇ� ZnS)
as an example.

(1) Show some points in these two structures, when the atomic positions of
Zn and S in the unit cell of ˇ � ZnS are given in the following.

Zn .000/

�
0
1

2

1

2

� �
1

2
0
1

2

� �
1

2

1

2
0

�

S

�
1

4

1

4

1

4

� �
1

4

3

4

3

4

� �
3

4

1

4

3

4

� �
3

4

3

4

1

4

�

(2) Determine the structure factor of ˇ � ZnS and indicate the cases where
intensity can be observed.
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Answer 3.13

(1) The unit cell of both diamond and ˇ � ZnS is expressed by a face-centered
cubic lattice as shown in Fig. 1. In diamond, eight atoms per unit cell occupy,
(000),

�
1
4

1
4

1
4

	
, and the translational positions of their face center. Such structural

fundamentals are unchanged in ZnS, but Zn occupies the .000/ and the trans-
lation position of its face center, whereas S occupies

�
1
4

1
4

1
4

	
and the translation

position of its face center (or the converse).
The structure of zinc blende may be characterized as follows. One of the two

elements (e.g., Zn) occupies the corner of unit cell as well as the position of
face center and another element (e.g., S) occupies the tetrahedral positions as in
diamond. This structural features can also be expressed as superposition of the
fcc lattice of Zn with the fcc lattice of S after translating the position by 1

4
1
4

1
4

from the Zn lattice.

Fig. 1 Relationship between diamond structure and ZnS structure

(2) The structure factor of ˇ � ZnS is calculated as follows:

F D fZn

h
e2�i.0C0C0/ C e2�i.0C

k
2C l

2 / C e2�i.
h
2C0C l

2 / C e2�i.
h
2C k

2C0/
i

CfS

�
e2�i.

h
4C k

4C l
4 /Ce2�i

�
j
4 C 3k

4 C 3l
4

�
Ce2�i.

3h
4 C k

4C 3l
4 / C e2�i.

3h
4 C 3k

4 C l
4 /
�

D fZn

h
1C e�i.kCl/ C e�i.hCl/ C e�i.hCk/

i

CfS

�
e�i

�
hCkCl

2

�
C e�i

�
hC3kC3l

2

�
C e�i

�
3hCkC3l

2

�
C e�i

�
3hC3kCl

2

��

F D fZn

h
1C e�i.hCl/ C e�i.hCl/ C e�i.hCk/

i

CfS � e�i
�
hCkCl

2

�
Œ1C e�i.kCl/ C e�i.hCl/ C e�i.hCk/�

D
h
1C e�i.kCl/ C e�i.hCl/ C e�i.hCk/

i �
fZn C fSe�i

�
hCkCl

2

��
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The 2nd term represents the basis of the unit cell where Zn is located at (000)
and S at

�
1
4

1
4

1
4

	
, respectively. On the other hand, the 1st term is a relationship

observed in the description of the structure factor for a fcc lattice. That is, if h
k l is a mixture of odd and even numbers, the 1st term will be zero, whereas it
becomes 4 for unmixed indices. Thus, we can examine the case where h k l is
unmixed using the following equation.

F D 4

�
fZn C fSe�i

�
hCkCl

2

��

jF j2 , which is proportional to the intensity, can be computed using the complex
conjugate as follows:

jF j2 D 4

�
fZn C fSe�i

�
hCkCl

2

��
� 4
�
fZn C fSe��i

�
hCkCl

2

��

D 16

�
f 2

Zn C f 2
S C 2fZnfS

�
e�i

�
hCkCl

2

�
C e��i

�
hCkCl

2

���

D 16
h
f 2

Zn C f 2
S C 2fZnfS cos

�

2
.hC k C l/

i

Here, we use the relationships of e0 D 1 and eix C e�ix D 2 cosx.

When it is a even multiple of � , cosine function is +1; when it is an odd mul-
tiple of � , -1; and when it is an odd multiple of �=2, zero. Considering these
characteristic features, the following results are obtained for unmixed indices.

hC k C l is odd numbers, cosx D 0 ! jF j2 D 16.f 2
Zn C f 2

S /

hC k C l is a even multiple of 2, cosx D C1 ! jF j2 D 16.fZn C fS/
2

hC k C l is an odd multiple of 2, cosx D �1 ! jF j2 D 16.fZn � fS/
2

When h, k, and l are mixed, some are odd and some are even numbers, the
intensity is not observed because jF j2 D 0.



Chapter 4
Diffraction from Polycrystalline Samples
and Determination of Crystal Structure

There are various methods for measuring the intensity of a scattered X-ray beam
(hereafter referred to as diffracted X-ray beam in this chapter) from crystalline mate-
rials, and each method has the respective advantage. The most common method is to
measure the X-ray diffraction intensity from a powder sample as a function of scat-
tering angle (it is also called diffraction angle) by using a diffractometer. For this
reason, several key points of structural analysis will be given with some selected
examples on how to obtain structural information of powder samples of interest
from measured intensity data using a diffractometer.

4.1 X-ray Diffractometer Essentials

A diffractometer is a precision instrument with two axes (! and 2�) of independent
rotation. This equipment enables us to obtain the intensity data of a diffracted X-ray
beam, as a function of angle, so as to satisfy Bragg’s law under the condition of
X-rays of known wavelength. The basic design of the diffractometer is illustrated in
Fig. 4.1. Three components, X-ray source (F), sample holder (S), and detector (G),
lie on the circumference of a circle, as known as the focusing circle. When the posi-
tion of X-ray source is fixed and the detector is attached on the 2�-axis, a powder
sample in the flat-plate form is usually set on the !-axis corresponding to the center
of the diffractometer. The line focal spot on the target of the X-ray tube is set to be
parallel to the diffractometer!-axis. The main reason for using a flat plate sample is
to take advantage of the focusing geometry for effectively collecting the intensity of
weak diffracted beams. During the course of measurements, the 2�-axis rotates two
times as much as the !-axis, and therefore we frequently call it theta two-theta scan.
This is to maintain the experimental condition that the angle between the plane of the
sample and direction of the incident X-ray beam is equal to that of direction of the
diffracted beam, with reference to the direction of propagation of the incident X-ray
beam. In other words, the direction of normal to the sample plane should be fit to
the direction of the scattering vector q D s � s0 defined by the difference between
vector s0 of the incident X-ray beam and vectors of the diffracted X-ray beam s. In
addition, a circle through the points F (focal spot on the target), S (the center of the

107
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Fig. 4.1 Para-focusing geometry and some essential points of an X-ray diffractometer

diffractometer), and G (the focal point of the diffracted beam) in Fig. 4.1 is named
as focusing circle or Rowland circle.

To minimize angular dispersion and to improve spatial resolution for the incident
X-ray beam, as well as the diffracted X-ray beam, some slit systems are inserted into
the X-ray path. We also use a soller slit, which consists of a set of closely spaced,
thin metal plates parallel to the plane of the diffractometer circle and this soller slit is
to restrict the perpendicular dispersion of both the incident and the diffracted X-ray
beams. As shown in Fig. 4.1, the divergent slits (DS) and the scattering slits (SS) are
set to restrict each horizontal dispersion of both incident and diffracted X-ray beams,
and the receiving slit (RS) in front of the detector is set to determine the spatial
resolution. The important feature of a diffractometer is not only the restriction of
dispersion by the DS and SS, but also the focusing of the diffracted X-ray beam
from powder samples by the RS. This collimating and focusing principle is called
para-focusing. As is seen from Fig. 4.1, the position of RS in front of the detector
always matches with a para-focusing spot in the diffractometer, and this makes the
intensity measurement effective and the spatial resolution better.

4.2 Estimation of X-ray Diffraction Intensity
from a Polycrystalline Sample

Let us consider that the number of atoms is set to be N , the scattering amplitude
is A, and the scattered X-rays, which satisfy the so-called Bragg condition, are said
to be completely in phase. In this case, the amplitude of diffracted X-rays will be
given byNA, so that the total diffraction intensity is .NA/2. That is, the intensity of
diffracted X-rays being in phase by satisfying the Bragg condition will be N times
the diffraction intensity given by .NA2/, corresponding to the case, where the Bragg
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condition is not satisfied and no interference is recognized. The value of N is said
to be about 1022 per gram even in a very small crystal, so that the diffracted X-rays
from a powder (crystalline) sample can be measured with sufficient reliability. How-
ever, note that the intensity of diffracted X-rays is considerably weak in comparison
with the intensity of incident X-rays.

Some selected examples for the “structure factor” required in estimating the
intensity of diffracted X-rays are described in Chap. 3. This structure factor F or
jF j2 is one way of knowing the relationship between crystal structure and the inten-
sity of the diffracted X-rays from each crystal plane possibly measured. Besides
the structure factor, the measured intensity of diffracted X-rays from powder sam-
ples contains various components, such as, polarization factor, multiplicity factor,
Lorentz factor, absorption factor, and temperature factor. These factors are described
in more detail below.

4.2.1 Structure Factor (see also Chap. 3)

The structure factor for the (hkl) reflection is given by the following equation:

Fhkl D
NX

j D1

fj e2� i.huj Ckvj Clwj /: (4.1)

Here,N represents the total number of atoms in a unit cell, fj represents the atomic
scattering factor of the j�th atom, and uj vj wj are the fractional coordinates for the
position of the j � th atom in the corresponding unit cell. Since reflections where
F D 0 will be zero intensity, we will not observe the diffraction peak and these
reflections are called forbidden.

4.2.2 Polarization Factor

Thomson’s equation described in Chap. 3 (see (3.1)) is estimated from the assump-
tion of a completely unpolarized incident X-ray beam, such as that issuing from
an X-ray tube. However, a part of X-rays diffracted from crystals is impossible to
have no connection with polarization property. The polarization factor, P, is given
in the following form as a function of diffraction angle 2� for three typical X-ray
diffraction experiments with characteristic X-rays being of constant wavelength:

(i) Using a filter only:

P D 1C cos2 2�

2
: (4.2)

(ii) Using a crystal monochromator in the incident X-ray path:

P D 1C x cos2 2�

1C x
: (4.3)
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(iii) Using a crystal monochromator in the diffracted X-ray path:

P D 1C x cos2 2�

2
: (4.4)

With respect to x in both cases of (ii) and (iii), we use x D cos2 2�M for an
ideally mosaic monochromator crystal or x D cos 2�M for an ideally perfect mono-
chromator crystal if 2�M is twice the Bragg angle of the monochromator crystal.

4.2.3 Multiplicity Factor

Multiplicity factor represents the number of the crystal planes, which have the same
spacing and structure factors, but different orientation. For example, in the case of
f100g planes for cubic crystal, it is six denoted by (100), (010), (001), (1̄00), (01̄0),
and (001̄) and in the case of f111g planes, it is eight. Multiplicity factors in various
crystal systems are summarized in Table 2.2 in Chap. 2. When crystal orientations
in powder samples are completely random, the probability of crystal orientations,
which satisfy the so-called Bragg condition is given by the ratio of multiplicity
factors, for example, 8–6 for the condition of f111g to f100g.

4.2.4 Lorentz Factor

As mentioned above, a sample usually rotates during measurement with a diffrac-
tometer. The intensity of diffracted X-rays is known to be greatest at the exact
diffraction angle satisfying the Bragg law. However, the intensity of diffracted
X-rays is usually appreciable at angles deviating slightly from the Bragg angle,
so that the measured intensity curve as a function of 2� is given in the form of
Fig. 4.2. When all diffracted X-ray beams produced from a crystal sample, as it
rotates through the diffraction angle, are caught by a detector, the total energy of the
diffracted X-ray beams can be measured. We call this energy the integrated inten-
sity of the corresponding peak, and it is also obtained from the area under the curve
of the corresponding peak. That is, the intensity measurement of diffracted X-ray
beam from a crystal sample means the measurement of the integrated values of the
diffracted intensities produced from volumes with a certain limited size. The volume
attributed to the integrated intensity is known to depend on the diffraction angle, so
this should be taken into consideration when comparing the intensities diffracted
from different crystal planes. Such effects are represented by the so-called Lorentz
factor. For example, the Lorentz factor for powder samples is given by the following
equation as a function of diffraction angle.

ŒLorentz factor� � 1

sin2 � cos �
: (4.5)
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Fig. 4.2 Intensity diffracted
from a crystalline sample
rotated through the Bragg
angle
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The Lorentz factor is not only used independently, but also used in many cases as
the Lorentz polarization factor by coupling with polarization factor, which is also a
function of diffraction angle.

4.2.5 Absorption Factor

Absorption described in Chap. 1 is mainly related to the reduction of X-ray inten-
sity after penetrating a uniform substance. On the contrary, powder samples finely
ground are filled up in a sample holder for making a flat plate form to measure the
diffracted X-ray beams using a diffractometer. Let us consider the case in which the
incident X-ray beam with its intensity I0 per unit cross-sectional area encounters
the powder sample with the angle of � from the sample surface, and we measure the
intensity dI diffracted by an infinitesimally thin layer characterized by the thickness
dx located at a depth x below the top surface of the sample at the angle of ˇ from
the sample surface. The resultant integrated intensity diffracted from such a small
volume is given in the following equation.

dI D I0

sin �
e��x

�
1

sin �
C 1

sin ˇ

�
dx; (4.6)

where � is the linear absorption coefficient of sample materials.
The total intensity is, therefore, obtained by integrating (4.6) over an infinitely

thick sample, and we obtain the following simple form because the relationships of
� D ˇ D � is also allowed in the measurements using a diffractometer.

ID D I0

sin �

Z t

0

e� 2�x
sin � dx D I0

2�

�
1 � e� 2�t

sin �

�
: (4.7)
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That is, the absorption factor is represented by
�
1 � e� 2�t

sin �

� ı
2�. Since a sample is

usually considered of infinite thickness, it becomes t ! 1, and then we conclude
the absorption factor is simply set to (1=2�). Therefore, the absorption factor for
the measurements with a diffractometer normally used can be negligible as far as
handling the relative amounts of intensities, because the absorption factor in cases
where the sample of the flat plate form shows infinite thickness is considered to be
constant and independent of the diffraction angle. The criterion of judgment that a
sample shows infinite thickness can be computed using the following method.

In the diffractometer with the condition of � D ˇ D � , the ratio of the intensity
of diffracted X-ray beam for the sample with its thickness t and that of the sample
for the semi-infinite plate is given by the following equation with reference to (4.6).

Gt D
R t

0
I0

sin �
e� 2�x

sin �
dx

R1
0

I0

sin �
e� 2�t

sin �
dx

D 1 � e� 2�t
sin �

t D � sin �

2�
ln.1 �Gt /: (4.8)

The value of Gt provides the correlation illustrated in Fig. 4.3 as a function of sam-
ple thickness t . For example, as long as the sample thickness is beyond the value of
evaluated thickness t when the Gt value is 95%, it may be considered that a sample
is of infinite thickness. In the case of silicon powder, if the sample thickness is about
0.5 mm, this criterion is accepted for Cu-K˛ radiation.

4.2.6 Temperature Factor

As is well known, atoms in a crystal is not kept at fixed points, they are rather
moving around their mean positions by thermal vibration and the amplitude of such

Fig. 4.3 The fraction of the
diffracted intensity
contributed from a surface
layer of depth t to the total
diffracted intensity of a
sample of semi-infinite
thickness
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vibration increases with increasing temperature. For example, about 5–6% displace-
ment of an atom from its mean position is estimated at room temperature. Because of
this thermal vibration effect of atoms, the reduction in intensity of diffracted X-rays
from a crystal sample is detected. The effect of atomic vibrations on the intensity
of diffracted X-rays is commonly taken into consideration as a Debye–Waller fac-
tor. In practice, for the temperature effect represented as e�2MT on the intensity of
diffracted X-rays, the quantity of M is calculated in the following equations with
the atomic scattering factor f .

f D f0e�MT

MT D 8�2hu2i
�

sin �

�

�2

D BT

�
sin �

�

�2

: (4.9)

Here, hu2i is the mean square displacement of the atom in a direction normal to the
diffraction planes. It should be kept in mind that the exact calculation of MT as a
function of temperature is extremely difficult. For this reason, the coefficient BT in
(4.9) is estimated from the measured intensity data at different temperatures and the
results are applied to another case.

4.2.7 General Formula of the Intensity of Diffracted X-rays
for Powder Crystalline Samples

With respect to the intensity of diffracted X-rays for powder crystalline samples,
a general formula can be obtained by considering together the factors above men-
tioned. For example, the intensity I measured by a diffractometer with characteristic
radiation monochromated by a filter is given in the following equation.

I D jF j2p
�
1C cos2 2�

2 sin2 � cos �

�
1

2�

�
1 � e� 2�t

sin �

�
e�2MT : (4.10)

Here, F represents structure factor, p is multiplicity factor, and the parenthesis in
the 3rd term corresponds to the Lorentz-polarization factor (LP). With respect to the
LP, note that another expression without the numerical value 2, which appears in the
denominator is also frequently used. This difference is considered negligible in the
intensity calculation, because it is an angular independent constant. If a sample is
considered of infinite thickness, the absorption factor is independent of the diffrac-
tion angle, being a constant with the value (1=2�). Although the temperature factor
e�2MT affects the atomic scattering factor f , it is usually omitted in calculation of
the desired intensities, as far as handling the relative amounts of intensities.
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4.3 Crystal Structure Determination: Cubic Systems

Analysis of diffraction data is to say “indexing pattern analysis.” The crystal struc-
ture of metallic elements, which account for about 70% of the periodic table shows
the “cubic systems” characterized by the relatively simple atomic arrangement, such
as fcc, bcc, hcp, and diamond. Therefore, analysis of diffraction data of metallic ele-
ments is not such a difficult task. This is also supported by the following reasons.
The first step of structural analysis for the measured X-ray diffraction data is to cal-
culate the position of the scattering angle 2� , corresponding to the location of the
diffraction peaks. Since the current X-ray diffraction experiments are made under
computer control, the results are usually examplified by Fig. 4.4, which automati-
cally gives the values of 2� , d, and (I=I1). Here, d and (I=I1) are the plane spacing
calculated from Bragg condition using the given wavelength (�) of X-rays and the
relative intensity ratio of the detected peaks with reference to the first peak intensity
I1, respectively.

By combining the Bragg condition (see (3.13)) with the plane spacing for a cubic
system, the diffraction peaks with the sin2 � values satisfy the following equation:

sin2 �

.h2 C k2 C l2/
D sin2 �

S
D �2

4a2
; (4.11)

where S D h2 C k2 C l2. Figure 4.4 shows six peaks and their diffraction angles
together with the values of plane spacing d are readily obtained. As is clear from
(4.11), the sum of the square of plane indices, corresponding to the measured
diffraction peaks is always an integer and �2

4a2 is found a constant for any X-ray
diffraction pattern.

There are only four possibilities in cubic systems including diamond lattice and
the Miller indices are given as shown in Fig. 4.5. Therefore, the simplest way is by

Fig. 4.4 X-ray diffraction
pattern of a metal sample
with cubic structure obtained
by Cu-K˛ radiation
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Fig. 4.5 Characteristic sequence of diffraction peaks of four common cubic lattice types together
with a hexagonal close-packed lattice

trial and error, as follows. A crystal lattice is assumed to estimate the sum of the
square of plane indices (S ). Then, the value of sin2 �

S
in (4.11) is calculated. When

the values are found constant, it can be safely said that the assumed crystal lattice
is well accepted. In addition, the lattice parameter (a) can be estimated from �2

4a2 ,
by applying the wavelength (�) of the used X-rays. Of course, when a constant
value is not obtained, another crystal lattice is assumed and the same calculation is
carried out.

As is clear from Fig. 4.5, certain integers such as 7, 15, and 23, will never
appear as the value of S D h2 C k2 C l2. In other words, when a number such
as 7 or 15 appears that means there is an error in analysis. On the contrary, another
method using the following equation is also frequently used for analyzing the
diffraction data of cubic systems, although the essential points related to (4.11) are
unchanged.

4 sin2 �

�2
D 1

d 2
D h2 C k2 C l2

a2
: (4.12)
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4.4 Crystal Structure Determination:
Tetragonal and Hexagonal Systems

Indexing pattern analysis of noncubic systems becomes more difficult because the
number of unknown parameters increases. With respect to tetragonal systems or
hexagonal systems whose plane spacing can be represented by the axial ratios (c=a),
a special graphical method called “Hull–Davey chart” has been proposed and it was
widely used in the past. For example, the relationship between plane spacing of
tetragonal systems and the Bragg condition is given in the following form with two
unknown parameters, a and c.

1

d 2
D 4 sin2 �

�2
D h2 C k2

a2
C l2

c2
: (4.13)

We obtain the following equations when taking the logarithm of both sides and
slightly rewriting.

2 logd D 2 loga � log

�
.h2 C k2/C l2

.c=a/2

�
(4.14)

log sin2 � D log
�2

4a2
C log

�
.h2 C k2/C l2

.c=a/2

�
D �2 logd C log

�2

4
:

(4.15)

Since the log a term is canceled out, when taking the difference of the logarithm
of d1 and d2 assessed with (4.14), to two planes of .h1k1l1/ and .h2k2l2/, the
following equation may be obtained.

2 logd1 � 2 logd2 D � log

�
.h2

1 C k2
1/C l21

.c=a/2

�

C log

�
.h2

2 C k2
2/C l22

.c=a/2

�
: (4.16)

This equation suggests that the difference between the 2 logd values for any two
planes depends only upon the axial ratio .c=a/ and the indices hkl . Using this fact,
Hull and Davey developed in 1921 a devised graphical method (A.H. Hull and W.P.
Davey: Phys.Rev., 17 (1921), 549) by constructing the variation of the quantity ofn
.h2 C k2/C l2

.c=a/2

o
with c=a. This method was frequently employed when we

had no electronic calculator and handbooks of mathematical tables were only avail-
able. On the contrary, numerical calculations are easily carried out in recent years,
so that an analytical method will be described below using the case of a hexagonal
system as an example.

Relationship between plane spacing of hexagonal system and Bragg condition is
given by the following form.
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4 sin2 �

�2
D 1

d 2
D 4

3

h2 C hk C k2

a2
C l2

c2
: (4.17)

Equation (4.17) can be rewritten as follows:

sin2 � D �2

4a2

�
4

3
.h2 C hk C k2/

�
C �2

4c2
l2: (4.18)

Lattice parameter a and the axial ratio .c=a/ are unique values for a substance of
interest. Therefore, whenX D �2

3a2 and Y D �2

4c2 , (4.18) can be rewritten as follows:

sin2 � D X.h2 C hk C k2/C Y l2: (4.19)

Since hkl is always integer, the value of .h2 C hkC k2/ should be 0, 1, 3, 4, 7, etc.
and the value of l2 is 0, 1, 4, 9, etc. Keeping these features in mind, we divide the
sin2 � values for measured diffraction peaks by the integers, 3, 4, 7, etc. and tabu-
late the results. Then, we examine the numerical results and look for the common
quotient, which is equal to one another or that which is equal to one of the measured
sin2 � values. We tentatively get the possible value of X by finding the diffraction
peaks corresponding to .hk0/ with l D 0. The value of X obtained in this process
satisfies the following relationship for general indices h, k, and l .

Y l2 D sin2 � � X.h2 C hk C k2/: (4.20)

To obtain the value of Y , we make again the tabulated results by subtracting the
value of X , 3X , and 4X from each sin2 � and look for reminders that are in the
ratio of 1, 4, 9, etc. because the peaks from the .00l/will have l2 D 1; 4; 9; : : : only.
Note that the remaining peaks which are neither .hk0/ nor .00l/ should be assigned
as peaks belonging to hexagonal system.

According to this procedure, temporary indexing can be set for several peaks
including the values of X and Y . Once these results are obtained, all the measured
diffraction peaks can be recalculated and a comparison is made between the cal-
culated sin2 � values and the experimental data. When no inconsistent points can
be found, analysis is said “completed”. At the same time, the lattice parameters are
computed from the relationships of X D �2

3a2 and Y D �2

4c2 . This analytical method
may be best explained by means of a specific example such as Mg and Zn (see
Question 4.5).

4.5 Identification of an Unknown Sample
by X-ray Diffraction (Hanawalt Method)

There are rather few case, where structural analysis for completely unknown
substances are needed, because we usually have some preliminary information,
such as possible constituent elements and their volume in a sample. In addition,
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acomparison of the measured diffraction data with those of a large number of stan-
dard substances can be made without any difficulty in a short time by the recent
developments of computer and database search software. The powder diffraction
database compiles for about 50,000 substances, named by JCPDS cards (Joint Com-
mittee on Powder Diffraction Standards) with the cooperation of many societies in
U.S.A. Canada, United Kingdom, and France. Then, we may identify an unknown
substance of interest by searching the diffraction data so as to find one, which
exactly matches the pattern of the unknown substance compiled in the database.
This procedure was originally proposed by Hanawalt et al. (J.D. Hanawalt, H.W.
Rinn and L.K. Frevel: Ind. Eng. Chem. Anal. Ed., 8 (1936)244.; 10(1938)457.)
using the concept that the powder diffraction pattern of a substance is characteristic
of that substance, like a fingerprint and the measured powder diffraction pattern
is quite likely to be reproduced by the simple sum of those of pure substances if
a sample contains two components or more. In the Hanawalt method, each sub-
stance is characterized by the d -values of the three strongest diffraction peaks.
The essential points of this method [referred to as Hanawalt method] are described
below.

The values of d1, d2, and d3 for three strongest diffraction peaks coupled with
their relative intensities (I=I1) are used to search the corresponding pattern in the
database. Analysis is completed if we find the exact match between the diffrac-
tion data of interest and those of the standard materials. Of course, when applying
the Hanawalt method, it is also important to acquire information in advance about
type of elements contained in a sample and the composition ratio of the elements
contained, for example, by fluorescent X-ray analysis.

A comparison was manually carried out using the index tables called “Search
Manual,” where substances are listed in order of d -values of the three strongest
peaks, d -spacings and intensities are given for a total eight peaks of each substance.
Another manual where substances are listed alphabetically by name is also available.
However, the automatic search by computer is now widely employed instead of
manual searching. When the automatic search by applying the Hanawalt method is
made by computer together with the automatic calculation of d values as output of
an automatic diffractometer, it should be kept in mind “what work should be carried
out” or “what you are going to do”.

The d values and their relative intensities are known to be affected by several
factors, for example, in cases where a sample includes some water molecules, a
sample may react with oxygen, water vapor, carbon dioxide, etc. in the atmosphere
or a sample may be received with preferred orientation. Such situation sometimes
leads to the erroneous identification of a desired sample by accidentally matching
with the reference data in the automatic search operation, so that attention is again
strongly suggested.

When using the Hanawalt method, we have to keep in mind that a certain exper-
imental uncertainty is included and some reference data are not so reliable even if
it is compiled very recently. Do not forget that some materials show a very similar
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diffraction profile, as exemplified by Au and Ag, Si, and ZnS or a ferrite and a
spinel compound, etc. In other words, identification of an unknown substance by
the Hanawalt method is very effective, but it is also important to know this method
within the relative comparison only.

If the unknown is a single component, the search procedure is relatively straight-
forward, whereas the analysis of mixture becomes more difficult, since a d -value
from one component is superimposed on a d -value from another and the three
strongest peaks in the pattern of unknown substance consist of such mixed d -values.
It may be safely said that the maximum components contained in one sample is lim-
ited to three to analyze using the Hanawalt method. This limitation may be solved
in the near future by the development of the next generation-type software, which
enables us to show an almost identical performance of the search procedure by
human eyes.

Details of the JCPDS cards have been described in several monographs (e.g.,
B.D. Cullity, Elements of X-ray Diffraction, 2nd edition, Addison-Wesley, Reading
Massachusetts, (1978)) and are not duplicated here. Nevertheless, Questions 4:4 �
4:9 in this chapter facilitate to readers understanding of “how to use the Hanawalt
method for determining the structure of unknown samples.” Of course, careful
sample preparation and good experimental arrangement will eliminate unrelated
diffraction data. Some points which should be taken into account when analyzing
data using the Hanawalt method are summarized as follows:

(1) If the particle size of a powder crystalline sample is larger than several 10�m,
good reproducibility of the intensity pattern is not always confirmed and
one can frequently find a difference more than several 10% for every mea-
surement.

(2) Keep in mind the used wavelength of X-rays for measurement (for exam-
ple: Cu-K˛ or Mo-K˛), because some differences may be found in the rela-
tive intensities, depending upon the wavelength due to anomalous dispersion
factors.

(3) The reverse order of the relative intensities may be found in a sample, which is
easily received under the preferred orientation, like clay minerals.

(4) When impurities are included in a sample, a certain shift toward the lower
angle in the peak positions is quite likely to appear. (Such shift usually becomes
distinct in the peak detected at higher angles.)

(5) If the goniometer center or its zero point is found to be eccentric, the position
of the diffraction peaks is readily deviated from the JSPDS reference values.
Badly aligned slits may also be an origin to produce similar deviation.

(6) When the diffraction peak, which is not identified by the JCPDS data, is
observed, careful judgment should be given by considering some factors, such
as impurity contamination and presence of a solid solution phase or an ordered
phase (super-lattice).
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4.6 Determination of Lattice Parameter
of a Polycrystalline Sample

The structure of a sample becomes clear by obtaining information of the shape and
size of a unit cell from the angular positions of the measured diffraction data, and
the correct Miller indices are also assigned to respective peak called “indexing the
diffraction pattern.” Then, we can estimate the lattice parameters. Since the lattice
parameters are structure sensitive, it is known that many substances show volume
change of about 0.001% with variation of one degree in temperature.

There is no complicated procedure in determining the lattice parameters. The
sufficiently reliable parameter values are obtainable from the measurements, as pre-
cisely as possible, with respect to the d�values of any particular set of lattice planes
whose index is proved. In this case, we use the Bragg law to determine the d�value.
On the contrary, for example, the lattice parameter a of a cubic substance is simply
proportional to the d � values. Then, the accuracy in determining the d � value
(or lattice parameter a) depends on precision in sin � , which is a derived quantity,
not on precision in � , which is a measured quantity. The value of sin � changes very
slowly with � in the close vicinity of 90ı from which it may be suggested that the
uncertainty in measurement of sin � decreases with increasing the value of � .

The following equation can be obtained by differentiating the Bragg law with
respect to � .

	d

d
D 	�

�
D �	� cot �: (4.21)

Equation (4.21) suggests that when � is brought as much as possible close to 180ı,
the fractional error in d as denoted by 	d=d , equivalent to resolution, approaches
zero, so that we should use the diffraction peaks as close to the value of 2� D
180ı, as possible to calculate the best precision and the true value of the lattice
parameter. Namely, the value of highly precise d can be obtained. However, note
that the diffraction peaks detected at the higher angle side are affected more or
less by a temperature factor. In addition, since measurement of a diffraction peak at
2� D 180ı is physically impossible, the extrapolation of the lattice parameter versus
certain functions of � , as producing a straight line, is generally employed. Various
methods for such extrapolation are proposed. For example, the method of Cohen
using cos 2� or the method of Nelson–Riley, which utilizes the function given by
1
2

n
cos2 �
sin �

C cos2 �
�

o
is widely used with respect to a cubic system. Figure 4.6 shows

the results using the method of Nelson–Riley, as an example.
Precise lattice parameter measurements of a powder crystalline sample is affected

by various factors such as misalignment of the diffractometer parts, displacement
of the flat sample from the diffractometer axis, vertical divergence of the incident
X-ray beam, etc. One simple way for checking the deviation from an ideal case
is to use the “internal standard method”, where the uncertainty being determined,
is compared with the diffraction data from a standard substance, mixed with the
sample of interest. High-purity silicon powder or tungsten powder, whose lattice
parameter is already measured precisely, is widely used as the standard substance.
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Fig. 4.6 Extrapolation of
measured lattice parameters
using the Nelson–Riley
method

Nevertheless, considering many factors, it may be safely said to readily determine
the lattice parameter within the range of ˙0:1% of an error, whereas it is very dif-
ficult to determine the value within the error range of ˙0:01%. For later purpose, it
is required to utilize the particular equipment only for the precision measurements
of the lattice parameter equipped with four crystal monochromators.

4.7 Quantitative Analysis of Powder Mixtures
and Determination of Crystalline Size
and Lattice Strain

X-ray diffraction analysis is used not only to identify the phase of unknown sub-
stance, as well as the estimation of the lattice parameters, but also to determine the
concentration of that phase in the mixture. The peak profile is also employed to esti-
mate the particle size of very small crystals called “crystallites” in a powder sample.
The essential points of these applications are described below.

4.7.1 Quantitative Determination of a Crystalline Substance
in a Mixture

Quantitative X-ray diffraction analysis is based on the fact that the intensity of the
diffraction pattern of a desired crystalline substance depends on the concentration
of that phase in a mixture. The relationship between intensity and concentration
is not always linear, but it is found to be possible when we focus on a particular
peak of the desired substance with reference to the case of that substance alone.
Therefore, the diffraction peak corresponding to the specific plane of the desired
crystalline substance should be observed at the fully separated angle from those of
other ingredients and its integrated intensity enables us to provide an index of the
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amount. Of course, it is desirable to determine the concentration from the integrated
intensity for one peak and more.

When carrying out the diffraction intensity measurements using a diffractometer
under the � � 2� operation, the integrated intensity Iij , of the specific diffrac-
tion peak i of the desired crystalline substance j to be determined, is given by
the following equation.

Iij D K

"
PijF

2
ij .LP /

V 2
cj

#
Vj

2�
: (4.22)

The meaning of each symbol is as follows. K: constant independent of the quan-
tity and type of sample, Vcj : volume of a unit cell of the crystalline substance j ,
Pij and Fij : multiplicity factor and the structure factor of the diffraction peak i
of the substance j , respectively, (LP): Lorentz polarization factor and Vj : volume
ratio of crystalline substance j , and �: the average linear absorption coefficient of a
sample. If the used wavelength of X-rays and the specific diffraction peak employed
for quantification are set and the portion employed as a constant is collectively
stipulated with Rij , (4.22) can be simplified in the following form.

Iij D RijVj

�
: (4.23)

Let us set the density of the crystalline substance j to 
j and that of other sub-
stance to 
M, while the volume ratio and average linear absorption coefficients of
a substance other than the desired crystalline substance j are set to VM and �M,
respectively. Then, by using the weight fraction (or weight ratio) wj , (4.23) is
rewritten in the following form.

Iij D Rij wj


j

,�
wj

�
�j


j

� �M


M

�
C �M


M

	
: (4.24)

If the average mass absorption coefficient of a sample is given by .��=
/, (4.24)
becomes

Iij D Rij wj


j

,�
��




�
: (4.25)

As a result, the integrated intensity Iij of the specific diffraction peak i of the desired
crystalline substance j can be subject to information, proportional to the weight
fraction wj or in inverse proportion to the average mass absorption coefficients
.��=
/ of a sample.

If the chemical composition and the average mass absorption coefficient of the
desired sample are available, by applying other techniques such as fluorescent X-ray
analysis, a calibration curve can be prepared from the measurements on a set of
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synthetic samples containing known concentrations of the crystalline substance of
interest, so that the integrated intensity of the specified diffraction peak of the
crystal substance j, is given as a function of concentration, in advance. When the
chemical compositions and the average mass absorption coefficient of the desired
sample are unavailable, we can solve such difficulty by using the so-called “inter-
nal standard method” by adding a known reference substance such as NaCl and
CaF2 to the sample at a certain known weight fraction. Examples are shown in
Questions 4:14 � 4:17.

4.7.2 Measurement of the Size of Crystal Grains
and Heterogeneous Distortion

The term “particle size” or “grain size” is used when the size of individual crystals
is less than about 0.1�m (100 nm), because a particle of a real crystalline powder
sample generally consists of many fine units called “crystallites,” which can be con-
sidered as a single crystal, as illustrated in Fig. 4.7. Here, it should be suggested
not to confuse the grain size of a crystalline powder sample and the size of crystal-
lites. Although the size of crystallites may be the same as that of grain size in some
cases, they are essentially different physical quantities. When saying “the size of a
crystal” in X-ray diffraction analysis, it usually refers to the “size of crystallites”
concerning a factor, which makes a diffraction peak broad. If the size of crystallites
in a crystalline powder sample becomes small less than 0.005�m (5 nm), the mea-
sured diffraction peak profile clearly deviates from that of the same sample with the
standard size of 0.5–10�m in diameter.

Uniform distribution in all directions of crystallites in a sample is also required to
provide the diffraction peak profile to enable us to give sufficiently reliable results.
However, if the diameter of crystallites in a sample becomes small, for example,
less than 0.1�m, the measured diffraction profiles broaden out so as to say “peak
broadening.” This is attributed to the fact that the periodic region in the atomic

Fig. 4.7 Schematic diagram
for grain size and crystallite
of a crystalline powder
sample
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arrangements producing the same diffraction peak profile is limited. Peak broaden-
ing is also detected if the sample is deformed plastically and then the lattice planes
become distorted so as to change the spacing of any particular set from one grain to
another or from one portion of a grain to another. Such nonuniform strain is intro-
duced, for example, by mechanical grinding. Therefore, it is necessary to take these
two factors into consideration in the X-ray structural analysis, using the measured
diffraction peak profile for a sample consisting of fine particles.

Setting the wavelength of the incident X-rays to �, plane spacing to d and Bragg
angle to �B, we obtain the generalized equation called “Bragg law.”

� D 2d sin �B: (4.26)

Usually, so-called destructive interference is not perfect if the incident X-rays cover
the Bragg condition only slightly different from �B. This is particularly true when
the number of planes completely satisfying the Bragg condition is not sufficient
to be involved by reducing the particle size of a crystalline powder sample. That
is, the phase difference, being slightly out of harmony with Bragg law for waves
scattered by the spacing of any particular plane set, is correlated with the grain
size of crystallites. The details should be referred to other monographs on X-ray
diffraction, the certain width Br of a diffraction peak is generally observed in the
angular region near 2�B as shown in Fig. 4.8. Note that the X-ray scattering intensity,
in the angular region between a slightly smaller angle 2�1 near 2�B and a slightly
larger angle 2�2, is not zero, as the size of crystallites decreases. Such peak profile
is characterized by the distribution with values intermediate between zero and the
maximum at 2�B as illustrated in Fig. 4.8.

Since �1 and �2 are very close to �B, the relationship of �1 C �2 D 2�B is rec-
ognized so that the approximation of sinf.�1 � �2/=2g D f.�1 � �2/=2g is also well
accepted. The peak width Br is usually defined in radians at the intensity equal to
half the maximum intensity called the integral width for a peak. Nevertheless, we
may use an angular widthB in terms of 2� as a measure of a peak widthBr. Namely,
if Br D .2�1 � 2�2/=2 D �1 � �2 is taken into consideration, as the peak width (see
Fig. 4.9), the following equation will be obtained.

Fig. 4.8 Schematic diagram
for X-ray diffraction peak
profile of a fine crystalline
sample
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Fig. 4.9 Change in peak
profile, peak position, and its
width arising from lattice
strain d

One crystallite

(a) No strain

(b) Non-uniform strain

(c) Non-uniform strain
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cos �B D � (4.27)

t D �

Br cos �B
: (4.28)

Here, we use path-difference equations at the Bragg condition together with the
entire thickness of the crystalline sample, t , in comparison with the distance between
adjacent planes. On the contrary, by using B1=2 of FWHM (full width at half its
maximum intensity) instead of the integral width for the corresponding peak, the
following equation called “Scherrer’s equation” is widely used for estimating the
size of crystallites from measured diffraction peak profile.

t D 0:9�

B1=2 cos �B
: (4.29)

The value of t in (4.28) and (4.29) represents the diameter of crystallites, perpen-
dicular to the plane, which corresponds to the measured diffraction peak. If the
diameter of crystallites becomes small, for example, down to about t D 0:05 �m
(50 nm), the peak broadening can be appreciable by making the Br value the order
of 4 � 10�3 radians (0.2 degrees). However, we have to mention that all diffraction
peaks have a measureable width arising from some factors such as the divergence of
the incident beam and width of the X-ray source (not an infinitesimal thin line spot),
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even if adjustments of optical alignment for diffractometer are carried out perfectly.
In other words, the width given in (4.28) and (4.29) refers to the extra peak broaden-
ing due to the particle size effect alone. For this reason, when calculating the mean
value of the size of crystallites from the measured width Bobs, it is desirable, in
advance, to determine the value of width .Bi/ of peak broadening caused by factors
except for the particle size effect, frequently called instrumental broadening factor.

Specifically, the shape of a diffraction peak is approximated by Gaussian distri-
bution, and the value of the width Br related only to change in size of crystallites
may be calculated using the following equation.

B2
r D B2

obs � B2
i : (4.30)

For this purpose, we frequently use ˛ � quartz crystalline particles with 25�m in
diameter as a standard sample. In this case, ˛ � quartz crystalline particles are fully
annealed at 1,073 K and slowly cooled down to room temperature to remove any
distortion and strain in crystallites.

On the contrary, when a polycrystalline sample, which consists of many crystal
grains, is plastically deformed, slip is known to occur in each grain and the crys-
tal grain varies its shape, such as being flattened and elongated in the direction of
rolling. The variation in shape of any one crystal grain should be related not only
to the forces applied to the sample as a whole, but also to the fact that each crys-
tal grain retains contact on its boundary surfaces with all neighbors. As a result of
the restraint by neighbors, a plastically deformed crystal grain in a solid substance
usually has regions of the lattice left in an elastically bent or twisted. Then, the
diffraction peak profile of such polycrystalline sample should be affected, more or
less, by some residual strain. This makes the diffraction peak broad.

When all crystal grains receive a uniform strain, a plane spacing changes uni-
formly and then a certain shift in the position of the diffraction peak is observed.
However, when applying a non-uniform strain, the different size of distortion
depending on the place, to crystal grains, the plane spacing varies at random and
then the resultant diffraction peak shows a certain width. Such situation is illustrated
in Fig. 4.9. In order to estimate the peak broadening due to the effect of particle
size, as well as the effect of nonuniform (inhomogeneous) strain, the Hall method
as described in the following equation is commonly used.

Br cos � D �

"
C 2� sin �; (4.31)

where Br is the peak width (integral width) resulting from the size of crystallites ."/
and 2� is the amount equivalent to inhomogeneous strain.

Specifically, the integral width (see Fig. 4.9) showing the width of rectangular
which is the same as peak heights and has same area is computed for more than
two diffraction peaks and then the graphic relation between Br cos � and sin � is
drawn. Analysis is often carried out using B1=2 of FWHM instead of the integral
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width. Since a linear correlation is usually observed between these two quantities, a
slope of the line gives the .2�/ value for inhomogeneous strain and an intersection
with the Br cos � axis corresponds to the reciprocal of the size of crystallites ."/, as
easily seen from (4.31). It is also suggested for this approach to use the measured
diffraction data of the planes belonging to the same set, such as (111) and (222)
or (200) and (400) as much as possible, because the size of crystallites frequently
appears to depend on the planes to be used.

Under the present experimental conditions, the size of the crystallites can be com-
puted within the error of about ˙several percent when using the Scherrer method
or the Hall method. This is true for the cases where the size of crystallites in a sam-
ple of interest lies in the range about 0.005�m .5 nm/ below 0.05�m. However, it
should also be kept in mind that the value of particle size obtained from the diffrac-
tion peak profile is not always in agreement with those found by other techniques,
such as electron microscopy and a laser particle size analyzer.

4.8 Solved Problems (18 Examples)

Question 4.1 If an X-ray diffraction pattern for a powder sample of Cr (crystal
system: body-centered cubic and lattice parameter a D 0:2884 nm) is mea-
sured using a conventional diffractometer, we will obtain six diffraction peaks
corresponding to (110), (200), (211), (220), (310), and (222) planes. Compute
the Lorentz-polarization factor using Cu-K˛ radiation � D 0:1542 nm.

Answer 4.1 By combining the Bragg law with the plane spacing equation for the
cubic system, the following relation is readily obtained

sin � D �

2a

p
h2 C k2 C l2: (1)

On the contrary, the Lorentz-polarization factor (LP) is given in the following form.

LP D 1C cos2 2�

2 sin2 � cos �
: (2)

Note that another expression without the numerical value 2, which appears in the
denominator of (2), is also frequently utilized. By applying (110), (200), (211),
(220), (310), and (222) to .hkl/ in (1) together with � D 0:1542 nm, we obtain sin �
and � from which the Lorentz-polarization factor (LP) can be computed using (2).
The results are summarized in Tables 1 and 2.
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Table 1 Calculated results of (1) for sin � and �

hkl h2 C k2 C l2
p
h2 C k2 C l2 sin � � 2�

1 110 2 1.4142 0.3781 22.22 44.44
2 200 4 2 0.5347 32.32 64.64
3 211 6 2.4495 0.6548 40.90 81.80
4 220 8 2.8284 0.7561 49.12 98.24
5 310 10 3.1623 0.8454 57.71 115.42
6 222 12 3.4641 0.9254 67.73 135.46

Table 2 Calculated results of (2) for the LP factor
sin � sin2 � cos � cos 2� cos2 2� 1C cos2 2� 2 sin2 � cos � LP

1 0.3781 0.1430 0.9257 0.7140 0.5098 1.5098 0.2648 5.70
2 0.5347 0.2859 0.8451 0.4283 0.1834 1.1834 0.4832 2.45
3 0.6548 0.4288 0.7559 0.1426 0.0203 1.0203 0.6483 1.57
4 0.7561 0.5717 0.6545 �0.1433 0.0205 1.0205 0.7484 1.36
5 0.8454 0.7147 0.5342 �0.4293 0.1843 1.1843 0.7636 1.55
6 0.9254 0.8564 0.3790 �0.7128 0.5081 1.5081 0.6492 2.32

Question 4.2 With respect to a powder sample of Cr, compute the temperature
factor at room temperatures (293 K) as a function of sin �

�
by applying the

Debye approximation to the evaluation for the effect of thermal vibration.

Answer 4.2 The effect of thermal vibration of atoms on the intensity of diffracted
X-rays is commonly taken into consideration as a Debye–Waller factor and such
effect, in practice, represented by e�2MT is introduced in the following equation
through the atomic scattering factor f .

f D f0e�MT; (1)

where f0 corresponds to the atomic scattering factor without thermal vibration. It
may be noteworthy that the temperature effect responds to multiply the intensity
computed from f 2

0 by e�2MT, since the intensity is proportional to f 2.
MT involves the amplitude u of thermal vibration, as well as the diffraction angle

2� in the following form.

MT D 8�2 < u2 >

�
sin �

�

�2

D BT

�
sin �

�

�2

: (2)

Here, < u2 > is the mean-square of the displacement to a direction perpendicular
to the diffracted plane. Although it is difficult to calculate the absolute values of
< u2 > as a function of temperature, the following simple equation is proposed and
widely used to evaluate the thermal vibration effect of atoms by using the Debye
approximation.
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BT D 6h2

mkB

T

�2

n

.x/C x

4

o
: (3)

Here, T is the absolute temperature, m is the mass of the vibrating atom, h and
kB are Planck constant and Boltzmann constant, respectively, and � the so-called
Debye characteristic temperature of substance given by the absolute temperature.

In addition, 
.x/ in case of x D �
T

is tabulated in some textbooks (e.g., B.D.
Cullity, Elements of X-ray Diffraction, 2nd Edition, Addison-Wesley, (1978); see
also Appendix A.6). We are likely to obtain from (3) that the reduction in peak
intensity due to the temperature factor will be certainly detected for substances,
such as Pb and Bi whose characteristic Debye temperature is relatively low. This is
particularly true for the peaks observed at higher angles.

The value of m in (3) is equivalent to the quotient when the atomic weight M of
the substance divided by Avogadro’s numberNA. At this time, the atomic scattering
factors compiled, for example in the International Tables for X-ray Crystallography,
are given as a function of sin �

�
in unit of Angstrom, so that (3) can be rewritten as

follows:

6h2

mkB
D 6NAh

2

MkB
D 6 � .0:6022� 1024/ � 103 � .6:626 � 10�34/2

M � .1:3806 � 10�23/ � 10�20

D 1:15 � 104

M
: (4)

Since kg is used for the Planck constant and Boltzmann constant given by SI unit,
we have to take molar mass of substance per kg and 1A D 10�8cm D 10�10 m into
consideration. Note that angstrom denoted by Å is also used in comparison with the
electric current A.

The Debye characteristic temperature of Cr is found to be 485 K from
Appendix A.2 and then the value of x is estimated as follows:

x D 485

293
D 1:66: (5)

From Appendix A.6, we obtain 
.x/ D 0:660 at x D 1:66 and put these values
to (3) together with 51.996 g for the atomic weight of Cr per mole (see Appendix
A.2).

BT D 1:15 � 104

51:996
� 293

.485/2
�
�
0:660C 1:66

4

�
D 0:296: (6)

Consequently, we obtain the relationship of e�2MT D e�0:592. sin �
� /

2

with respect to
the temperature factor of a powder sample of Cr. The results are listed in Table 1,
and they are also illustrated in Fig. 1.
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Table 1 Calculated results of temperature factor of Cr
sin �
�

0 0:1 0:2 0:3 0:4 0:5 0:6

sin �
�

�2
0 0:01 0:04 0:09 0:16 0:25 0:36

e�2MT 1 0:99 0:98 0:95 0:91 0:86 0:81

Fig. 1 Variation of temperature factor of Cr as a function of sin �=�

Question 4.3 With respect to a powder samples of Cr (crystal system: body-
centered cubic, lattice parameter a D 0:2884 nm), compute the intensities of
several peaks possibly detected when Cu-K˛ radiation (� D 0:1542 nm) is
used.

Answer 4.3 The general formula of the intensity of diffracted X-rays for a powder
crystalline sample is given in the following.

I D jF j2p
�
1C cos2 2�

2 sin2 � cos �

�
1

2�

�
1 � e� 2�t

sin �

�
e�2MT : (1)

Here, F is structure factor, p multiplicity factor, the parenthesis in the 3rd term
Lorentz- polarization factor (LP), and e�2MT the temperature factor. The values
of LP and e�2MT have been obtained in the results of Questions 4.1 and 4.2.
With respect to the absorption factor, it supposes that the usual case with a sample
thickness is considered of infinite thickness and it is omitted in this calculation.

The atomic scattering factor fCr is taken from the compiled data in Appendix
A.3 by considering the sin �=� values, whereas the multiplicity factor p is read-
ily obtained from the results of Table 2.2 in Chap. 2. In addition, we also take
the relationship of jF j2 D 16f 2 for a body-centered cubic into consideration (see
Chap. 3.4). The results are summarized in Table 1.

However, the temperature factor has been included using the results of Ques-
tion 4.2 and the results are summarized in Table 2. In the column at the right end
of Table 2, the experimental values of the intensity ratio of peaks are also given for
comparison.
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Table 1 Calculated results of the peak intensities for powder sample of Cr possibly detected using
Cu-K˛ radiation (without the temperature factor)

hkl S sin � sin �
�
.A�1/ fCr jF j2 p LP Ical Ical=I1

1 110 2 0.3781 0.245 15.8 999 12 5.70 6:83 � 104 100

2 200 4 0.5347 0.347 13.2 697 6 2.45 1:02 � 104 15

3 211 6 0.6548 0.425 11.7 548 24 1.57 2:06 � 104 30

4 220 8 0.7561 0.490 10.6 449 12 1.36 0:73 � 104 11

5 310 10 0.8454 0.548 9.8 382 24 1.55 1:43 � 104 21

6 222 12 0.9254 0.606 9.2 339 8 2.32 0:63 � 104 9

S D h2 C k2 C l2

Table 2 Calculated results of the peak intensities for powder sample of Cr possibly detected when
the temperature factor is included

e�2MT I 0
cal I 0

cal=I1 Exp.

1 0.97 6:63 � 104 100 100

2 0.93 0:95 � 104 14 16

3 0.90 1:85 � 104 28 30

4 0.87 0:64 � 104 10 18

5 0.84 1:20 � 104 18 20

6 0.81 0:51 � 104 8 6

Question 4.4 X-ray measurements using Cu-K˛ radiation .� D 0:1542 nm/
provide the diffraction patterns of Figs. A, B, and C for three metallic samples,
which are known cubic system. The relevant numerical data for three cases
are summarized in Tables. By applying the fundamental equation obtained by
combining the Bragg law with the plane spacing equation for the cubic system
to three cases, index the pattern and compute the lattice parameter.

Fig. A Diffraction pattern of sample A

Table A Diffraction data of sample A

2� d (A) I=I0

1 28.41 3.142 100

2 47.33 1.921 57

3 56.11 1.639 28

4 69.08 1.360 7

5 76.34 1.248 11

6 88.03 1.110 13

7 94.95 1.046 5
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Fig. B Diffraction pattern of sample B

Table B Diffraction data of sample B

2� d (A) I=I0

1 44.51 2.036 100

2 51.90 1.762 43

3 76.45 1.246 22

4 93.02 1.063 19

5 98.50 1.018 7

Fig. C Diffraction pattern of sample C

Table C Diffraction data of sample C

2� d (A) I=I0

1 44.40 2.041 100

2 64.59 1.443 20

3 81.76 1.178 26

4 98.31 1.019 7

Answer 4.4 The following equation can be given for a cubic system.

sin2 �

.h2 C k2 C l2/
D sin2 �

S
D �

4a2
: (1)

Here, � is the wavelength of used X-rays, a is a lattice parameter, and hkl is Miller
indices. The sum of the square of plane indices .S D h2 C k2 C l2/ corresponds
to the measured diffraction peak is always an integer and �2

4a2 is also a constant for
any X-ray diffraction pattern. Therefore, the process of indexing the pattern is to
find a set of integers, which yields a constant quotient when divided one by one
into the measured sin2 � values. In these trial computations, the plane indices of
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.111/; .200/; .220/ etc. are input if a face-centered cubic lattice is assumed, next

.110/; .200/; .211/, etc. are input if a body-centered cubic lattice is assumed. For
this reason, to minimize the trial computation, you are suggested to watch carefully
the measured X-ray diffraction pattern of three samples.

With reference to the guideline of Fig. 4.5, as for the pattern of Sample C, the
diffraction peaks have appeared at equal intervals and has the characteristics features
of body-centered cubic. From such point of view, we could recognize the character-
istic feature of face-centered cubic in Sample B, where two diffraction peaks are first
observed at relatively near angles and another diffraction peak appears in a slightly
isolated angle position. However, the peak positions observed in Sample A appear
to differ from the features of Samples B and C. Therefore, we may be sure that our
trial calculation is done by assuming fcc for Sample B and bcc for Sample C.

Table 1 (Sample B) Example of trial calculation on the assumption of fcc

2� sin � 4 sin2 �=�2 � h2 C k2 C l2 hkl a (nm)

1 44.51 0.3787 24.1258 1 3 (1.00) 111 0.3526

2 51.9 0.4376 32.2141 1.34 4 (1.33) 200 0.3524

3 76.45 0.6188 64.4157 2.67 8 (2.67) 220 0.3524

4 93.02 0.7255 88.5454 3.67 11 (3.67) 311 0.3525

5 98.50 0.7576 96.5542 4 12 (4.00) 222 0.3525

�The value in the column of 4� sin2 �=�2 divided by 24.1258.

Table 2 (Sample C) Example of trial calculation on the assumption of bcc

2� sin � 4 sin2 �=�2 � h2 C k2 C l2 hkl a (nm)

1 44.40 0.3778 24.0113 1 2 (1.00) 110 0.2886

2 64.59 0.5343 48.0244 2 4 (2.00) 200 0.2886

3 81.76 0.6545 72.0627 3 6 (3.00) 211 0.2885

4 98.31 0.7565 96.2740 4 8 (4.00) 220 0.2883

�The value in the column of 4� sin2 �=�2 divided by 24.0113.

From these results of Tables 1 and 2, Sample B has an fcc structure and its lattice
parameter is 0.3525 nm and Sample C has a bcc structure and its lattice parameter
is 0.2885 nm. It may be mentioned Ni, fcc; a D 0:35238 nm and Cr, bcc; a D
0:28839 nm compiled in Appendix A.9 for reference.

Next, the trial calculations on the assumption of fcc or bcc were made for Sam-
ple A, but we could not obtain good results of indexing the pattern, as shown in the
column of Table 3 marked by �. Then, a trial calculation was further carried out,
when assuming diamond structure for Sample A. The results are summarized in the
right-hand side columns of Table 3.
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When assuming diamond structure for Sample A, the coincidence with the values
marked by �. and the square of plane indices h2Ck2Cl2 has been confirmed as seen
in Table 3. The resultant lattice parameter is 0.5437 nm, which is in good agreement
with the value of Si, a D 0:54309 nm cited in Appendix A.9.

Table 3 (Sample A) Example of trial calculation on the assumption of diamond structure

2� sin � 4 sin2 �=�2 � h2 C k2 C l2 hkl a (nm)

1 28.41 0.2454 10.1307 1 3 (1.00) 111 0.5442
2 47.33 0.4014 27.1048 2.68 8 (2.67) 220 0.5433
3 56.11 0.4703 37.2084 3.67 11 (3.67) 311 0.5437
4 69.08 0.5670 54.0826 5.34 16 (5.33) 400 0.5439
5 76.34 0.6180 64.2493 6.34 19 (6.33) 331 0.5438
6 88.03 0.6948 81.2102 8.02 24 (8.00) 422 0.5436
7 94.95 0.7370 91.3748 9.02 27 (9.00) 511 0.5436
�The value in the column of 4� sin2 �=�2 divided by 10.1307.

Question 4.5 X-ray measurement using Cu-K˛ radiation .� D 0:1542 nm/
provides the diffraction pattern (see Fig. A) for a certain metallic sample and
the relevant numerical data are summarized in Table A. With reference to the
guideline of Fig. 4.5, the characteristic features of fcc, bcc, and diamond struc-
tures are not found in the diffraction pattern presently measured. Therefore,
let us perform the procedure of indexing the pattern by assuming a hexago-
nal system as another typical structure of metallic elements and compute the
lattice parameter.

Fig. A Diffraction pattern of a sample

Table A Diffraction data of a sample

2� d (A) I=I0

1 32.16 2.7836 26
2 34.37 2.6695 40
3 36.61 2.4548 100
4 47.80 1.9030 18
5 57.38 1.6060 10
6 63.07 1.4741 15
7 67.36 1.3903 2
8 68.64 1.3675 12
9 70.02 1.3439 8

10 72.53 1.3034 2
11 77.85 1.2271 2
12 81.50 1.1811 2

Answer 4.5 The hexagonal unit cell is known to be characterized by lattice param-
eters a and c, and the plane spacing equation coupled with the Bragg law is given as
follows.
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4 sin2 �

�2
D 1

d 2
D 4

3

h2 C hk C k2

a2
C l2

c2
: (1)

We also obtain the following simple form, when setting with X D �2=3a2 and
Y D �2=4c2,

sin2 � D X.h2 C hk C k2/C Y l2: (2)

Note that permissible values of .h2 C hk C k2/ are 1, 3, 4, 7, 9, etc. At first, we
will try to look for the .hk0/-type reflections .l D 0/ and a constant value X are
tentatively obtained. Once the value of X is known, we can estimate the value of Y
in the following equation by rewriting the terms in (2).

Y l2 D sin2 � � X.h2 C hk C k2/: (3)

Next, we subtract from each sin2 � value the values of X , 3X , and 4X and 7X , etc,
and look for remindersY l2, which are in the ratio of 1, 4, 9, etc. because l is integers.
They are likely to be the .00l/-type reflections and then we can find the value of Y .
Finally, all the peaks may be indexed from a combination of X and Y values.

The results obtained by applying this procedure to the measured 12 diffraction
peaks are summarized in Table 1.

Table 1 Trial calculation on the assumption of hexagonal structure

2� sin � sin2 � sin2 �
3

sin2 �
4

sin2 �
7

sin2 � �X sin2 � � 3X sin2 � � 4X

1 32.16 0.277 0.0767 0.0256 0.0192 0.0110 0
2 34.37 0.2955 0.0873 0.0291 0.0218 0.0125 0.0105
3 36.61 0.3141 0.0987 0.0329 0.0247 0.0141 0.0219
4 47.80 0.4051 0.1641 0.0547 0.041 0.0234 (0.0873)

5 57.38 0.4801 0.2305 0.0768 0.0576 0.0329 0.1537 0
6 63.07 0.5230 0.2735 0.0912 0.0684 0.0391 0.1967 0.0431

7 67.36 0.5542 0.3071 0.1024 0.0768 0.0439 0.2303 0.0767 0
8 68.64 0.5638 0.3179 0.106 0.0795 0.0454 0.2411 (0.0875) 0.0107
9 70.02 0.5737 0.3291 0.1097 0.0823 0.0470 0.2523 0.0987 0.0219

10 72.53 0.5915 0.3499 0.1166 0.0875 0.0500 0.2731 0.1195 0.0427
11 77.85 0.6283 0.3948 0.1316 0.0987 0.0564 0.3180 0.1644 (0.0876)
12 81.50 0.6528 0.4261 0.1420 0.1065 0.0609 0.3493 0.1957 0.1189

X D 0:0768

When watching the columns of sin2 � , sin2 �
3

, and sin2 �
4

in Table 1, the value of
0.0768 will be a possible common quotient denoted by a box. This result implies that
the 5th peak and the 7th peak correspond to h2ChkCk2 D 3 and h2ChkCk2 D 4,
i.e., (110) and (200), respectively. Then, we can estimate the lattice parameter as
follows:

X D 0:0768 D �2

3a2
! a D 0:3212 nm:
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It may be added that the value of 0.0768 is not found in the column sin2 �
7

, but
the diffraction pattern shows a peak at 2� D 94:31ı. Therefore when a similar
calculation is done, sin2 � D 0:5377 ! sin2 �=7 D 0:0768 is obtained.

Next, sin2 � �X , sin2 � �3X , and sin2 � �4X are calculated usingX D 0:0768

and the results are listed in the column at the right end of Table 1. The values of
0:0873 � 0:0876 denoted by parentheses are considered as a common term and it
may be applicable to the results in the column of sin2 � .

Since a diffraction peak of (001) plane does not appear in a hexagonal system by
the extinction rule, the 2nd peak is assumed to be as (002), l D 2. Therefore, we
can estimate the values of Y and the lattice parameter c using Y l2 D 4Y .

4Y D 0:0875 ! Y D 0:0219

Y D �2

4c2
D 0:0219 ! c D 0:5210 nm:

In addition, l D 4 ! .004/ corresponds to 0:0219 � 16 D 0:3504 D sin2 � . It
may safely be said that the 10th peak .sin2 � D 0:3499/ corresponds to the case of
l D 4 ! .004/, although there is difference in detail of the present calculations.
Thus, four diffraction peaks are temporarily indexed. Final check on their reliability
will be made in the usual manner by comparing the measured and calculated sin2 �

values and in this process the indices are assigned to all peaks. Recalculated results
are summarized in Table 2.

Table 2 Recalculated results of the present sample by considering a hexagonal structure with
X D 0:0768, Y D 0:0219

2� sin � sin2 � X C Y sin2 �cal h2 C hk C k2 h and k l

1 32.16 0.2770 0.0767 XC0Y 0.0768 1 1, 0 0 100
2 34.37 0.2955 (0.0873) 0XC4Y 0.0876 0 0, 0 2 (002)
3 36.61 0.3141 0.0987 XCY 0.0987 1 1, 0 1 101
4 47.80 0.4051 0.1641 XC4Y 0.1644 1 1, 0 2 102

5 57.38 0.4801 0.2305 3XC0Y 0.2304 3 1, 1 0 110

6 63.07 0.5230 0.2735 XC9Y 0.2739 1 1, 1 3 103

7 67.36 0.5542 0.3071 4XC0Y 0.3072 4 2, 0 0 200

8 68.64 0.5638 0.3179 3XC4Y 0.3180 3 1, 1 2 112
9 70.02 0.5737 0.3291 4XCY 0.3291 4 2, 0 1 201

10 72.53 0.5915 (0.3499) 0XC16Y 0.3504 0 0, 0 4 (004)
11 77.85 0.6283 0.3948 4XC4Y 0.3948 4 2, 0 2 202
12 81.50 0.6528 0.4261 XC16Y 0.4272 1 1, 1 4 104
13 90.43 0.7098 0.5038 4XC9Y 0.5043 4 2, 0 3 203
14 94.31 0.7333 0.5377 7XC0Y 0.5376 7 2, 1 0 210
15 96.85 0.7481 0.5597 7XCY 0.5595 7 2, 1 1 211
16 99.24 0.7618 0.5803 3XC16Y 0.5808 3 1, 1 4 114
Summary: a D 0:3212 nm, c D 0:5210 nm, and c=a D 1:622.
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For indexing the pattern, it may be again mentioned that it is important to pre-
dict a possible crystal structure to some extent from features of the measured X-ray
diffraction pattern, for example with reference to the guideline of Fig. 4.5. In the
X-ray diffraction pattern of a hexagonal system, you may find the feature charac-
terized by three peaks at equal intervals in a relatively low angle region and some
other peaks appear in a higher angle region. However, the relative intensity ratio of
the first three peaks depends on materials of interest. That is, no common relation
exists in the hexagonal system.

The substance presently analyzed is considered to be Mg from the lattice parame-
ters and their ratio of c=a, which agree well with the results of Mg: a D 0:32095 nm,
and c=a D 1:6235 compiled in the Appendix A.9.

Question 4.6 When measuring the X-ray diffraction pattern of magnesium
oxide (MgO) powder sample by Cu-K˛ radiation .� D 0:1542 nm/, ten
diffraction peaks were obtained in the scattering angle .2�/ as shown below.
Index the pattern and compute the lattice parameter by referring to MgO
having the NaCl-type structure.
2�(degree): 36.93, 42.91, 62.30, 74.64, 78.64, 94.06, 105.75, 109.78,

127.29 and 143.77.

Answer 4.6 Since NaCl structure is also classified into a cubic system, the following
equation can be used.

a D d �
p
h2 C k2 C l2: (1)

On the contrary, the following particular relationships are given for the structure
factor of NaCl structure. (See Question 3.12.)

(1) When the Miller indices hkl are unmixed and .h C k C l/ is odd: Example
(111) plane,

jF j2 D 16.fNa � fCl/
2 ) 16.fMg � fO/

2:

Table 1 The diffraction data and the result of indexing for MgO powder sample

2� d (nm) hkl h2 C k2 C l2
p
h2 C k2 C l2 a.nm/

1 36.95 0.2433 111 3 1.732 0.4214
2 42.91 0.2108 200 4 2 0.4216
3 62.30 0.1490 220 8 2.828 0.4214
4 74.64 0.1272 311 11 3.317 0.4219
5 78.64 0.1217 222 12 3.464 0.4216
6 94.06 0.1054 400 16 4 0.4216
7 105.75 0.0967 331 19 4.359 0.4215
8 109.78 0.0942 420 20 4.472 0.4213
9 127.29 0.0860 422 24 4.899 0.4213

10 143.77 0.0811 511 27 5.196 0.4214

d D �
2 sin � .� D 0:1542 nm/
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(2) When the Miller indices hkl are unmixed and .h C k C l/ is even: Example
(200) plane,

jF j2 D 16.fNa C fCl/
2 ) 16.fMg C fO/

2:

(3) When the Miller indices hkl are mixed (for example (100) (210) etc.), the
intensity is not observed due to the extinction rule.

The results of indexing are summarized in Table 1 and the mean value of the
lattice parameter is estimated to a D 0:4215 nm.

Question 4.7 When measuring the X-ray diffraction pattern of potassium
chloride (KCl) powder sample by Cu-K˛ radiation .� D 0:1542 nm/, twelve
diffraction peaks were obtained with the scattering angle .2�/ as shown below.
Index the pattern and compute the lattice parameter by referring to KCl having
NaCl-type structure.
2�(degree): 24.48, 28.35, 40.50, 47.92, 50.18, 58.66, 66.39, 73.54, 87.68,

94.58, 101.51, and 108.65.

Answer 4.7 We can attempt the procedure, similar to the previous MgO case, with-
out any difficulty. Nevertheless, the following point should be taken into account.
The atomic number of the components are K D 19 and Cl D 17, respectively, so that
the value of .fK �fCl/

2 becomes small. Then, if the Miller indices hkl are unmixed
and .hC kC l/ is odd, such as (111), the extinction rule definitely suggests that the
diffraction intensity should be observed, but only quite weak intensity is expected.
In other words, since some of these weak diffraction peaks are not always observed,
depending on the experimental condition, careful analysis for indexing the pattern
should be made (refer to Question 3.12). Note that the Miller indices of (111), (311),
(331), (511), (531), (533), etc. are included in this category.

Table 1 The diffraction data and the result of indexing for KCl powder sample

2� d.nm/ hkl h2 C k2 C l2
p
h2 C k2 C l2 a.nm/

1 24.48 0.3637 111 3 1.732 0.6299
2 28.35 0.3148 200 4 2 0.6296
3 40.50 0.2228 220 8 2.828 0.6300
4 47.92 0.1899 311 11 3.317 0.6299
5 50.18 0.1818 322 12 3.464 0.6298
6 58.66 0.1574 400 16 4 0.6296
7 66.39 0.1408 420 20 4.472 0.6297
8 73.54 0.1288 422 24 4.899 0.6271
9 87.68 0.1113 440 32 5.657 0.6296

10 94.58 0.1049 600 36 6 0.6294
11 101.51 0.0996 620 40 6.325 0.6300
12 108.65 0.0949 622 44 6.633 0.6295
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Using these fundamental information, the result of indexing is summarized in
Table 1. a D 0:6298 nm is obtained, as mean value of the lattice parameter. As
a result, we found that the diffraction peaks corresponding to (331), (511), and
(531) were not detected. The reason is shown below using the (331) plane as an
example.

The value of .h2 C k2 C l2/ corresponding to the (331) plane is estimated to 19
and it may be assigned to a peak observed at 2� D 66:39ı, denoted by the (420)
plane in Table 1. However, it gives

p
h2 C k2 C l2 D 4:359 and a D 0:6137 nm.

The difference from those of other calculations is found rather significant. While, if
assuming that a peak observed at 2� D 66:39ı is assigned to the (420) plane, we
obtain the reasonable results by finding h2 C k2 C l2 D 20 and

p
h2 C k2 C l2 D

4:472 ! a D 0:6297 nm. For this reason, it may safely be concluded that the
diffraction peak corresponding to the (331) plane does not appear in the present
measurements of KCl powder sample.

Question 4.8 When measuring the X-ray diffraction pattern of an unknown
powder sample possibly consisting of a single phase by Cu-K˛ radiation
.� D 0:1542 nm/, the diffraction pattern (see Fig. A) and the relevant numer-
ical peaks were obtained as listed in Table A. Identify this unknown sample
and compute the lattice parameter by applying the Hanawalt Search manual.

Fig. A Diffraction pattern of an unknown sample

Table A Diffraction data of
unknown sample

2� d (A) I=I1

1 27.44 3.251 15

2 31.73 2.820 100

3 45.54 1.992 60

4 53.67 1.708 5

5 56.46 1.630 25

6 65.56 1.424 10

7 75.87 1.253 20

8 84.01 1.152 10

9 91.98 1.072 5

Answer 4.8 The Hanawalt method is to search a well-matched pair between the
measured diffraction pattern with that of a standard substance compiled in the
database using the d � values of three strongest diffraction peaks together with
their relative intensity ratios .I=I1/ as an indicator.

In the experimental results of Table A, the 2nd peak with d D 2:820A is found
the strongest and taking this peak as basis, the 3rd and the 5th peaks will serve as a
set of three strongest diffraction peaks as listed in Table 1.
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Table 1 A set of three strongest diffraction peaks

2� (degree) d (A) I=I1

31.7 2.820 100
45.5 1.992 60
56.5 1.630 25

When investigating this combination of three d � values of 2.82, 1.99, and 1.63
using the Hanawalt Search Manual, we can find the information given in Table 2.

Table 2 Data taken from the Hanawalt Search Manual
Spacing and intensity Substances File Fish

number number
2:829 1:999 2:26x 1:619 1:519 1:499 3:578 2:668 .ErSe2/Q 19-443 1-106-F6
2:82x 1:996 1:632 3:261 1:261 1:151 1:411 0:891 NaCl 5-0628 1-18-F8
2:824 1:994 1:54x 1:204 1:194 2:443 5:622 4:892 .NH4/2WO2Cl4 22-65 1-145-D12
2:82x 1:998 1:263 1:632 1:152 0:941 0:891 1:411 .BePd/2C 18-225 1-90-D1
x: strongest peak and the number of subscript is the intensity ratio (Ex. 9 ! 90% and 4 ! 40%).

As for the combination of the three d � values of 2.82, 1.99, and 1.63, good
agreement with the NaCl case is deemed and further the compiled reference data
suggest that the d � values of 3.26 (as 4th peak in Table 2) and 1.26 (as 5th peak in
Table 2) are not badly assigned to the experimental d � values of 3.251 and 1.253,
corresponding to the 1st and 7th peaks, respectively, although we find an inversion
of their relative intensity ratios. Thus, the present unknown sample is quite likely to
be sodium chloride (NaCl). Then, if we pick up the JCPDS card of the file number
5-0628 from database, information displayed in Fig. 1 is acquired. The value of
d D 3:26 cited in the 4th column of I=I1 at the upper left of the JCPDS card shows
the largest d �value observed in this substance, i.e., the diffraction peak observed at
lowest angle. With respect to this point, good agreement with the measured d�value
of 3.25 is also recognized. Accordingly, the sample has been judged to be NaCl
through this process.

Since NaCl is a cubic system, the lattice parameter is estimated using the plane
spacing equation of 1

d 2 D h2Ck2Cl2

a2 , as shown in Table 3.
On the contrary, there are also points to note. Intensity ratios of X-ray diffrac-

tion pattern change easily depending on the experimental conditions of the sample

Table 3 Example of sample which hypothesized NaCl
d (nm) hkl h2 C k2 C l2 a (nm)
0.3251 111 3 0.5631
0.2820 200 4 0.5640
0.1992 220 8 0.5634
0.1708 311 11 0.5665
0.1630 222 12 0.5646 a D 0:5643 nm
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Fig. 1 JCPDS card of NaCl

preparation of a powder sample, scanning speed of diffractometer and others. In fact,
a diffraction peak with a relatively low intensity, which appears near d D 1:294 )
73:1ı, is registered in the JCPDS card, but it is not detected in the present measure-
ment. This suggests strong requirements of preliminary information such as types
of the elements contained and their fractions before identifying an unknown sample
as well as indexing the pattern.

Question 4.9 When measuring the X-ray diffraction pattern of an unknown
powder sample by Cu-K˛ radiation .� D 0:1542 nm/, the diffraction pattern
(Fig. A) and the relevant numerical peaks were obtained as listed in Table A.
Identify this unknown sample and compute the lattice parameter by applying
the Hanawalt Search manual.

Fig. A Diffraction pattern of an unknown
sample

Table A Diffraction data of unknown sample

2� d (A) I=I1 2� d (A) I=I1

1 29.63 3.015 5 8 74.01 1.281 20
2 36.38 2.470 75 9 77.71 1.229 6
3 42.38 2.133 30 10 90.25 1.088 20
4 43.36 2.087 100 11 95.21 1.044 3
5 50.42 1.810 55 12 103.61 0.981 5
6 61.77 1.502 25 13 116.64 0.906 4
7 72.30 1.307 10 14 136.18 0.831 8
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Answer 4.9 In the experimental results of Table A, the 4th peak with d D 2:087 A
is found the strongest and taking this peak as basis, the 2nd and the 5th peaks will
serve as a set of three strongest diffraction peaks as listed in Table 1.

Table 1 A tentative set of three strongest diffraction peaks

2� d (A) I=I1

43.36 2.087 100

36.38 2.470 75

50.42 1.810 54

When investigating this combination of three d � values of 2.09, 2.47, and 1.81
using the Hanawalt Search Manual, we can find the combination of 2.09 and 2.47
in the compiled database which regards d1 D 2:09 as the strongest one and the 2nd
strongest peak with d2 D 2:47. However, the combination of the 3rd strongest peak
corresponding to d3 D 1:81 is not found. This implies a potential that the present
unknown sample contains more than one substance.

For this reason, the diffraction peak of d1 D 2:087 and that of d2 D 2:470 should
be assigned to the strongest diffraction peak of a different substance, respectively,
and further consideration is made by combining the d � values of d3 D 1:810

or d4 D 2:133, d5 D 1:502, etc. For example, the identification is examined in the
combination of 2.09-1.81 or 2.09-2.13. As a result, good agreement with the Cu case
(File number 4-0836) is deemed by finding the combination of 2.09-1.81-1.28 (see
Table 2). For readers convenience, information of the JCPDS card number 4-0836
is given in Fig. 1.

Table 2 Data (I) taken from the Hanawalt Search Manual
Spacing and intensity Substances File

number

2:09x 1:815 3:622 1:282 1:091 2:561 1:621 1:051 .AlNi3C0�5/4:5C 29-58
2:09x 1:814 1:282 1:091 1:041 0:831 0:811 0:001 .Co2GeC0�25/4:25C 29-475
2:09x 1:815 1:282 1:092 0:831 0:811 1:041 0:901 Cu 4-0836
2:07x 1:815 1:994 4:443 3:192 2:84x 2:712 1:582 NaSn2F5 15-619
2:07x 1:816 1:773 1:27x 1:283 1:273 3:222 3:821 .Ni2V/6P 17-715

A peak with d D 2:09 is to be observed at the lowest angle and the 4th strongest
peak with the d�values of 1.09 compiled in the JSPDS card is reasonably equivalent
to the 10th peak (d D 1:088) in Table A. Based on these results, further indexing
of the pattern should be made for residual peaks by excluding the diffraction peaks
assigned to Cu (the JCPDS card number 4-0836 ) from the measured 14 diffraction
peaks. The resultant seven peaks are listed as in Table 3. Note that it is necessary to
recalculate the intensity ratios of I=I1 with respect to a new set of three strongest
peaks and the results are summarized in Table 4.
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Fig. 1 JCPDS card of Cu

Table 3 New diffraction data set of an unknown sample
2� d (A) I=I1 2� d (A) I=I1

1 29.63 3.015 5!7 7 72.30 1.307 10!13
2 36.38 2.470 75!100 9 77.71 1.229 6!8
3 42.38 2.133 30!40 12 103.61 0.981 5!7
6 61.77 1.502 25!33

Table 4 A new set of three strongest diffraction peaks

2� d (A) I=I1

36.38 2.470 100
42.38 2.133 40
61.77 1.502 33

When investigating this combination of d � values of 2.47, 2.13, and 1.50 using
the Hanawalt Search Manual, we can find information given in Table 5.

According to the data of Table 5, a possible candidate is (CaN)8F or Cu2O
showing the 4th strongest peak with d4 D 1:29. However, we find the appreciable
difference in the 5th peak; d5 D 0:98 for (CaN)8F and d5 D 3:02 for cuprous oxide
(Cu2O), respectively. The intensity ratios of the measured peaks with d � values of
3.02, 1.23, and 0.98 show almost the same magnitude, so that the order of the inten-
sity ratio is considered not necessarily a key factor in a comparison with those of the
reference data. Thus, it may safely be concluded on the present case that the mea-
sured d � values of 3.02, 1.23, and 0.98 are rather attributed to Cu2O. To make sure
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Table 5 Data (II) taken from the Hanawalt Search Manual
Spacing and intensity Substances Files

No./number

2:48x 2:144 1:514 1:292 0:981 1:241 0:001 0:001 (CaN)8F 16-116
2:47x 2:144 1:512 1:292 3:021 1:231 0:981 0:961 Cu2O 5-0667
2:46x 2:145 2:246 1:23x 1:37a 2:096 1:426 1:356 (Ta, Co)13R 21-270
2:515 2:135 2:23x 2:090 2:983 2:475 1:335 0:805 .Ru0�23W0�22B0�55/8O 24-994
2:516 2:136 2:21x 1:270 2:297 1:335 4:854 1:814 .Re2P/12O 17-391

Fig. 2 JCPDS card of Cu2O (information from CD-ROM)

this conclusion, the JCPDS card number 5-667 illustrated in Fig. 2 is checked. As
a result, the peaks with weak intensity corresponding to d D 1:74, 1.35, and 1.07
are not observed, but all seven diffraction peaks listed in Table 3 can be reasonably
assigned to the reference data of Cu2O.

Summarizing the present results, the unknown sample is identified as a mixture
of Cu and Cu2O from the given experimental data. As shown in this example, if
knowing in advance that the sample includes copper and oxygen by applying fluo-
rescent X-ray analysis, the existence of Cu, CuO, Cu2O, etc. should be taken into
account. Or if getting to know that Cu is contained in a sample, it is desirable to
keep in mind as a potential that copper oxide or copper sulfide may coexist.
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Question 4.10 Explain the conditions for the precise lattice parameter mea-
surements of a powder crystalline sample using the diffractometer with
characteristic X-ray radiation.

Answer 4.10 In the Bragg law of 2d sin � D �, where � is a constant when utilizing
characteristic X-ray radiation. We can estimate the lattice parameter from the spac-
ing d if we measure the Bragg angle. Note that it is related to sin � , not � . Thus,
the precision in d or the lattice parameter depends on precision in � , not on the
measured quantity, which is precision in � . This situation is fortunate because the
sin � value changes very slowly with � in the close vicinity of 90 degrees. Namely,
the variation of sin � becomes very small in high angle region, as shown in Fig. 1.
A comparison is demonstrated in two cases, where � is near 80ı and near 10ı,
respectively. This result clearly suggests that to obtain the precise lattice parameter,
we should utilize the diffraction peaks measured in the high angle region such as �
near 90ı or the scattering angle 2� near 180ı.

A similar guideline is readily obtained as follows, when differentiating the Bragg
law 2d sin � D � with respect to angle � .

sin � D �

2d
) cos � �	� D � �

2d 2
	d D � sin �

	d

d
: (1)

It follows
	d

d
D � cot � �	�

�
* cot � D cos �

sin �

�
: (2)

With respect to the relationship between the plane spacing d and the lattice param-
eter a, the following equation is given in the cubic system.

a D d
p
h2 C k2 C l2 ) 	a

a
D 	d

d
: (3)

From (2) and (3), we obtain

	a

a
D 	d

d
D � cot �	�: (4)

As for (4), to reduce the fractional error of the lattice parameter .	a=a/ as much
as possible, it is desirable for the value of cot � to become small down to zero.
That is, if � approaches 90ı (the diffraction angle 2� approaches 180ı), the value
of cot � will also approach zero. The key factor of the precise lattice parameter
measurements is again recognized to use the diffraction peaks having 2� values as
near to 180 as possible. In addition, when using the diffraction peak in the high
angle region, it is important to minmize the error related to the angle measurement,
	� (or	2�), as much as possible (see Fig. 2).
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Fig. 1 Variation of sin � with �

Fig. 2 Relationship between the error in the measured diffraction angle 2� and the error in d -value

Question 4.11 Four typical characteristic X-rays commonly are utilized for
X-ray diffraction analysis and their wavelengths are summarized in Table A.

Table A The wavelength of typical characteristic X-ray (unit: nm)

Elements K˛ K˛2 K˛1 Kˇ1
(weighted average) � Strong. Very strong. Weak.

Fe 0.1937355 0.193998 0.1936042 0.175661
Co 0.1790260 0.179285 0.1788965 0.162079
Cu 0.1541838 0.154439 0.1540562 0.1392218
Mo 0.0710730 0.071359 0.0709300 0.0632288
� K˛1 was averaged with K˛2, weighing twice of K˛2.
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When an X-ray diffraction pattern for a powder sample of tungsten (crys-
tal system: body-centered cubic and lattice parameter a D 0:31648nm) is
measured using these four characteristic radiations, compute the angles of the
possibly detected diffraction peaks corresponding to (220), (310), and (222)
planes.

Answer 4.11 From the plane spacing equation of a cubic system coupled with the
Bragg condition, the following equation is given.

sin � D �

2a

p
h2 C k2 C l2: (1)

For the (220) plane,
p
h2 C k2 C l2 D p

8 D 2:8284. Then, the given values of
the wavelengths listed in Table A and the lattice parameter a D 0:31648nm are put
into (1), the diffraction angles 2� can be obtained as shown in Table 1.

Table 1 Possible diffraction angles for a peak corresponding to the (220) plane of tungsten

Elements K˛ K˛2 K˛1 Kˇ1
Fe 119.93 120.20 119.79 103.43
Co 106.26 106.48 106.15 92.81
Cu 87.10 87.28 87.01 76.94
Mo 37.03 37.19 36.96 32.82

Similarly, we can estimate the diffraction angles 2� with respect to the (310)
plane as shown in Table 2 and those for the (222) plane as shown in Table 3,
respectively.

Table 2 Possible diffraction angles for a peak corresponding to the (310) plane of tungsten

Elements K˛ K˛2 K˛1 Kˇ1
Fe 150.89 151.81 150.59 122.71
Co 126.87 127.2 126.7 108.14
Cu 100.76 100.99 100.65 88.14
Mo 41.6 41.77 41.51 36.83

For (310) plane,
p
h2 C k2 C l2 D p

10 D 3:1623.

Table 3 Possible diffraction angles for a peak corresponding to the (222) plane of tungsten

Elements K˛ K˛2 K˛1 Kˇ1
Fe * * * 148.04
Co 156.92 157.75 156.52 125.01
Cu 115.09 115.39 114.94 99.27
Mo 45.78 45.98 45.68 40.49

For (222) plane,
p
h2 C k2 C l2 D 3:4641. �: Since it does not match with the conditions of (1),

no diffraction peak can be observed.
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It may be safely suggest that the experimental uncertainty of the angle mea-
surements is the order of ˙0:02ı and the repeated-reproducibility of angle is the
order of ˙0:005ı at most for a commercial diffractometer. Considering these exper-
imental uncertainties together with the results of Tables 1–3, we can appreciable
difference in angle of a peak detected in the high angle region when the combina-
tion of K˛1 with not only Kˇ1 but also K˛2. In other words, the measurements of
the diffraction peaks appeared in the high angle region using the characteristic X-ray
radiations of different wavelengths are effective to obtain the lattice parameter with
sufficient reliability. For readers’ convenience, we estimate the possible differences
in the diffraction angle for the (321) and (400) planes of tungsten, if the charac-
teristic radiations of copper are employed, the results are summarized in Table 4.

Table 4 The possible diffraction angles for the peaks corresponding to the (321) and (400) planes
of tungsten using the characteristic radiation of copperp

h2 C k2 C l2 K˛ K˛2 K˛1 Kˇ1
321 3.7417 131.41 131.83 131.20 110.77
400 4 154.00 154.83 153.59 123.24

Question 4.12 The so-called K˛ doublet of characteristic X-ray radiation is
often used for the precise measurements of a lattice parameter. The effect of
this K˛ doublet on the diffraction angle becomes more prominent in a peak
detected in the high angle region. Explain the reason and its separation (K˛1

and K˛2).

Answer 4.12 There are several radiations in the K-set, but usually only the three
strongest radiations are used in normal diffraction work. They are K˛1, K˛2, and
Kˇ1. In addition, the K˛1 and K˛2 components are known to have wavelengths so
close together and they are not always resolved as separate radiations. However, if
resolved, we call it the K˛ doublet.

As shown in Fig. 1 of the X-ray spectrum for Mo, the K˛ radiation consists of a
mixture of K˛1 and K˛2, where 0.07093 nm for K˛1 and 0.07136 for K˛2, respec-
tively (see Question 4.11). With respect to Cu � K˛ radiation, there is about 0.0004
nm difference between K˛1(wavelength of 0.154056 nm) and K˛2(0.154439 nm).

As easily understood from the Bragg condition, 2d sin � D �, for a peak with the
relatively large d � value (at the small scattering angles 2�), the difference between
K˛1 and K˛2 is difficult to detect. Such situation is as follows, using the case where
the d � value is 0.3 nm or 0.1 nm.

sin �1 � sin �2 D 1

2d
.�1 � �2/: (1)
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In case of d D 0:3 nm

sin �1 � sin �2 D 0:0004

2 � 0:3 D 6:7 � 10�4 �1 � �2 Š 0:038ı: (2)

In case of d D 0:1 nm

sin �1 � sin �2 D 0:0004

2 � 0:1 D 0:02 �1 � �2 Š 1:15ı: (3)

In other words, with respect to the diffraction peaks measured in the scattering
angles 2� from 90ı to 160ı, corresponding to the planes with small d � values, the
effect attributed to the difference between K˛1 and K˛2 is clearly observed.

Nevertheless, the K˛1 and K˛2 components are not always resolved as separate
peaks completely. In many cases, it is observed as a peak having partial overlap,
which is separated to some degree. We have to use an additional method for estimat-
ing the scattering angles and the essential points of such method are given below,
although recent X-ray diffraction equipment includes computer software for this
purpose.

Figure 2 shows a diffraction peak as partially separated with relatively good res-
olution and in this case, the estimation of the scattering angles is not a difficult task.
Considering that a diffraction peak is attributed to each wavelength and two com-
ponents by K˛1 and K˛2 can reasonably be separated and then the middle-point of
full width of half maximum intensity is used as a scattering angle.

With respect to a devised method for applying to an example of Fig. 3, where the
resolution of two components is not sufficient, the Rachinger method is frequently
employed (for details, see other textbooks, e.g., H.P. Klug and L.E. Alexander:
X-ray Diffraction Procedures, 2nd Edition, John-Wiley & Sons, New York, (1973)).
The Rachinger method is based on the fact that the intensity ratio of K˛1 and K˛2

is described by 2 : 1, as well as the difference 	� of these two wavelengths is
constant. That is, the diffraction peak profile by K˛2 is considered the same as
the K˛1 case, and its intensity is 1

2
and its diffraction angle is shifted only by

	2�r D 2 tan � � ��
�K˛1

. Then, we may obtain the following equation.

I.2�/ D I˛1.2�/C 1

2
I˛1.2� C	2�r/; (4)

where I.2�/ is the diffraction peak profile by K˛1 and I.2�/ is the measured diffrac-
tion peak profile. In practice, the profile fitting the measured diffraction peak profile
is carried out by a computer software using the relationship of (4) to estimate the
values of the scattering angles by K˛1 and K˛2.
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Fig. 1 Spectrum of X-rays produced from
Mo target with resolved doublet

Fig. 2 Separation for a peak partially sepa-
rated with relatively good resolution

Fig. 3 Separation for a peak partial overlapped with two components using the Rachinger method

Question 4.13 In the diffraction experiments for magnesium oxide (MgO:
NaCl type structure) utilizing two characteristic X-rays, the diffraction peaks
corresponding to four lattice planes in the high angle region were obtained
and they are summarized in Table A. Compute the lattice parameter using the
extrapolation methods.

Table A Diffraction data of magnesium oxide sample (2� /degrees)

Characteristic X-ray �(nm) hkl

400 420 422 511

Cu-K˛ 0:154184 94.17 109.9 127.44 144.04
Cu-Kˇ1 0:139222 82.85 95.37 108.12 118.44



4.8 Solved Problems 151

Answer 4.13 The lattice parameter a for a cubic system can be computed from
the measured diffraction data using the following equation. To use the extrapolation
method, the value of sin2 � is simultaneously calculated and the results are given in
Table 1.

a D �

2 sin �

p
h2 C k2 C l2: (1)

Table 1 Calculated results using (1)

hkl
p
h2 C k2 C l2 � a(nm) sin � sin2 � sin2 � 0 sin � 0 a0(nm)

1 400 4 47:085 0.4210 0.7324 0.5364
2 400 4 41:425 0.4209 0.6616 0.4377 (0.5369) (0.7327) (0.4209)
3 420 4.4721 54.95 0.4211 0.8187 0.6703
4 420 4.4721 47:685 0.4209 0.7395 0.5469 (0.6707) (0.8190) (0.4210)
5 422 4.8990 63.72 0.4212 0.8966 0.8039
6 422 4.8990 54.06 0.4212 0.8096 0.6555 (0.8039) (0.8966) (0.4212)
7 511 5.1962 72.02 0.4211 0.9512 0.9048
8 511 5.1962 59.22 0.4210 0.8591 0.7381 (0.9052) (0.9514) (0.4210)

Until the 1970s, one of the main tools for X-ray diffraction analysis was the film
method using a Debye–Scherrer camera. In this method, only the back-reflection
region is suitable for precise lattice parameter measurement and its schematic dia-
gram is given in Fig. 1. For a Debye–Scherrer camera, film shrinkage .	S 0/,
incorrect camera radius .	R/, and off-centering .	x/ of a sample in the camera
are considered as possible sources of error in the measured values related to � and
the following equations have been proposed for these factors.

	d

d
D � cot � �	� (2)

	d

d
D � sin �

cos �
�	� D sin 


cos

�	
 (3)

	d

d
D sin �

cos �

��
	S 0

S 0 � 	R

R

�

 C 	x

R
sin 
 cos


	
: (4)

Here, the relationships of 
 D 90ı � � , 	
 D �	� , sin
 D cos � , and
cos
 D sin � are utilized. In the back-reflection region, we usually choose small
value of 
, so that the approximation of sin
 � 
 and cos
 � 1 is well accepted.
For this reason, the first term of (4) may be replaced by sin
 cos
. The following
simplification can be made.

	d

d
D
�
	S 0

S 0 � 	R

R
C 	x

R

�
sin2 
: (5)

The quantities contained within parentheses of (5) are constant which will be deter-
mined by the experimental condition. Therefore, the fractional error of the d�value
is found to be directly proportional to sin2 
 or cos2 � , where K is a constant.
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	d

d
D K sin2 
 D K cos2 � .* sin 
 D cot �/: (6)

Therefore, the following equation is established for a cubic system as an example.

	d

d
D 	a

a
D a � a0

a0

D K cos2 �: (7)

The values of lattice parameter a computed from one set of the diffraction data
are plotted as a function of cos2 � and a straight line will be obtained. The true
value of the lattice parameter, a0, can be calculated by extrapolating this straight
line to cos2 � ! 0. In addition, by considering the relationship of sin2 � D 1 �
cos2 � , various a � values computed from the measured diffraction data may be
plotted against sin2 � and a straight line will be extrapolated to sin2 � ! 1. This
extrapolation method is also widely used.

Figure 2 shows the results of magnesium oxide in Table 1, plotted as a function
of sin2 � using the calculation result in Table 1, from which the lattice parameter of
a0 D 0:4212 nm is obtained.

The diffraction peaks by K˛ and Kˇ radiations are produced from one d �value,
so that the technique of converting the value of sin � , is frequently employed. This
is simply corresponding to the angle by K˛ (or Kˇ ) and calculated for the other by
Kˇ (or K˛). For this purpose, we use the following equation readily obtained by the
Bragg law.

sin2 � 0 D sin2 �ˇ � �2
K˛

�2
Kˇ

: (8)

For the convenience of readers, the examples of recalculated results by using (8) are
included in the column on the right-hand side of Table 1.

Fig. 1 Schematic diagram of the back-
reflection region in Debye–Scherrer camera

Fig. 2 The computation of true value of the
lattice parameter a0 by extrapolation to sin2 �



4.8 Solved Problems 153

Question 4.14 Some methods are known to be proposed for quantitative anal-
ysis of powder mixtures using the integrated intensity of a specific diffraction
peak and the relative merit and demerit of each method have already been
discussed. The so-called “direct comparison method” is widely used to deter-
mine phase proportions in a mixture of phases, because the reference peak
is from another phase in the mixture. Namely, this method does not require
a sample of the pure phase. For example, this method is employed to deter-
mine the amount of retained austenite phase in a quenched steel sample and
its usefulness and validity has been confirmed. Obtain fundamental equations
for the direct comparison method with respect to a case, where two crystalline
substances are mixed. (Reference: The original paper of a direct comparison
method is given as follows. B.L. Averbach and M. Cohen: Trans. AIME, Vol.
176 (1948), p.401.)

Answer 4.14 Integrated intensity I of the diffracted peak from a single phase pow-
der sample measured by a diffractometer (usually : joule-sec�1 and m�1) is given in
the following form if a sample of the flat plate form keeps the condition of infinite
thickness.

I D K0 �
�
jF j2 � p �

�
1C cos2 2�

2 sin2 � � cos �

�	
1

˝2

e�2MT

2�
: (1)

Here, F represents structure factor, p multiplicity factor, the term within paren-
theses Lorentz polarization factor (LP), � a linear absorption coefficient, and ˝
the volume of unit cell of the constituent crystalline substance in a sample. On the
contrary, K0 covers the whole factors, such as Thomson scattering, cross-sectional
area of the incident X-ray beam, scattering angle 2� determined by diffractometer
radius, etc. It also includes the amount independent of the absorption coefficient of
the sample. Although the temperature factor e�2MT affects on the atomic scatter-
ing factors f , it is usually omitted in calculation of the desired intensities, as far as
handling the relative amounts of intensities.

Let us consider a binary system containing two phases of ˛ and ˇ. If w represents
the weight fraction of each component and its density is 
, the mass absorption
coefficient of the mixture is described as follows.

�m


m
D w˛

�
�˛


˛

�
C wˇ

�
�ˇ


ˇ

�
: (2)

The weight of a unit volume of a binary system is 
m, and then, for example, the
weight of ˛ � component in the mixture can be expressed by w˛
m. The volume
fraction c˛ of ˛�component in the mixture may be given by the following equation.

c˛ D w˛


˛


m: (3)
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A similar expression is given for cˇ . In addition, let us consider that a specific
diffraction peak attributed to ˛ � component is found completely resolved as a sep-
arate peak from any diffraction peak produced by ˇ � component. In such case, the
intensity of (1) can be simply expressed as I˛. However, we have to take the volume
fraction c˛ in the mixture into account, as well as the value of �m related to absorp-
tion of the mixture. That is, the intensity of ˛ � component in the mixture can be
handled by an independent constant K1 with two values c˛ and �m, as described in
the following form.

I˛ D K1

c˛

�m
: (4)

The constant K1 can be estimated from the experimental condition, similar to K0 in
(1). However, the determination of its absolute value is certainly difficult and it is
usually unknown. When obtaining the intensity ratio of I˛ with respect to the inten-
sity of a specific diffraction peak of another component, the K-value cancels out and
disappears. By using this particular feature, we can determine the concentration of
˛ � component.

The intensity I can be rewritten in a very simple equation, if terms other than K0

of (1) are expressed by R in the following form.

R D
�
jF j2 � p �

�
1C cos2 2�

2 sin2 � � cos �

�	
e�2MT

˝2
(5)

I D K0R

2�
: (6)

Only R is a value which depends on the scattering angle 2� and hkl or jF j2. From
the relationships of (4) and (6), the intensity of the specific diffraction peak for each
component is given by the following form, respectively.

I˛ D K0
0R˛c˛

2�m
; Iˇ D K0

0Rˇ cˇ

2�m
: (7)

If the ratio between I˛ and Iˇ is obtained, both K0
0 and 2�m will be cancelled.

Iˇ

I˛

D Rˇcˇ

R˛c˛

: (8)

Since the ratio of Rˇ=R˛ can be computed from (5), if I˛ and Iˇ are measured
with reasonable reliability, the ratio of cˇ=c˛ is readily obtained. Once the ratio of
cˇ=c˛ is obtained, the value of c˛ (or cˇ ) can be estimated from the well-known
relationship of c˛ C cˇ D 1 in a binary system.

This method is convenient because of no standard substance. However, it should
be kept in mind that we have to measure the integrated intensity of a peak attributed
to ˛� component is found completely resolved as a separate peak from any diffrac-
tion peak produced by ˇ � component. In other words, if the desired peaks of two
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components are so close together and they are not resolved, the direct comparison
method is no longer an effective tool for quantitative analysis of crystalline powder
mixtures.

Question 4.15 When the diffraction experiment with a diffractometer and
Cu-K˛ radiation .� D 0:1542 nm/was made on a mixed sample of Al powder
including Si, four clearly separated diffraction peaks were obtained as shown
in Fig. A. Preliminary analysis suggests that they are assigned as diffraction
peaks corresponding to (111) and (220) planes of Al and (111) and (200)
planes of Si. Then, the integrated intensities of these four peaks were care-
fully measured. The results are summarized in Table A. Calculate the volume
fraction of Al and Si using the direct comparison method.

Fig. A Diffraction pattern of Al powder sample con-
taining Si

Table A Four peaks measured for Al
powder sample containing Si

2� (degree) Integrated hkl

intensity I

1 28.41 180.3 Si (111)

2 38.46 216.2 Al (111)

3 44.73 93.1 Al (200)

4 47.33 118.4 Si (220)

Answer 4.15 In the direct comparison method, the integrated intensity and the
volume fraction of each component, Al and Si in the present case, are as follows.

ISi

IAl
D RSicSi

RAlcAl
(1)

R D
�
jF j2 � p �

�
1C cos2 2�

2 sin2 � � cos �

�	
e�2MT

˝2
; (2)

where F is structure factor, p multiplicity factor and˝ the volume of unit cell. The
value of RAl or RSi can be calculated from (2).

(i) Component of Al
Fundamental information of aluminum is as follows: face-centered cubic (a D
0:4049 nm), density 2:70 � 106 g=m3, molar mass 26.982 g, and Debye character-
istic temperature � D 428 K. Let consider the measurements at room temperature
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293K.20ıC/, and then we compute the temperature factor as listed in Table 1 (refer
to Question 4.2). Here, we use the results of x D �

T
D 428

293
D 1:46 ! 
.x/ D

0:693.

BT D 1:15 � 104

M
� T

�2
�
n

.x/ � x

4

o

D 1:15 � 104

26:982
� 293

.428/2
�
�
0:693C 1:46

4

�
D 0:721 : (3)

e�2MT D e�2BT . sin �
� /

2

: (4)

On the contrary, the Lorentz polarization factor (LP) is computed using (5) and
the results are listed in Table 2.

LP D 1C cos2 2�

2 sin2 � cos �
: (5)

Table 1 Temperature factor for diffraction peaks of Al

2� (degree) sin �
�



sin �
�

�2 �2BT 
 sin �
�

�2
e�2MT

Al(111) 38.46 0.214 0.0458 �0.0660 0.936

Al(200) 44.73 0.247 0.0610 �0.0880 0.916

Table 2 Lorentz polarization factor for diffraction peaks of Al

2� (degree) sin � sin2 � cos � cos 2� cos2 2� 1C cos2 2� 2 sin2 � cos � LP

Al(111) 38.46 0.3294 0.1085 0.9442 0.7830 0.6130 1.6130 0.2049 7.9
Al(200) 44.73 0.3805 0.1448 0.9248 0.7104 0.5047 1.5047 0.2678 5.6

The volume of unit cell, ˝ of Al with fcc structure is given by the cube of the
lattice parameter a. Namely, ˝ D a3 D .0:4049 nm/3 D 0:06638 nm3. Then,
substitute these calculated values for corresponding variables in (2) for estimating
RAl and the results are summarized in Table 3. When considering that four atoms
(n D 4) per unit cell being included in fcc, the following point may also be worthy
of note with respect to the volume of unit cell ˝ .

Table 3 Calculated results of RAl for two peaks of Al
sin �
�

fAl jF j2 p LP e�2MT RAl

Al(111) 0.214 8.85 16f 2
Al D 1253 8 7.9 0.936 16:82 � 106

Al(200) 0.247 8.35 16f 2
Al D 1116 6 5.6 0.916 7:80 � 106

˝ D M � n

NA

D 26:982 � 4
2:70 � 106 � 0:6022 � 1024

D 0:06638� 10�27m3 D 0:06638 nm3

M : Molar mass, 
: density, NA: Avogadro’s number.
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In Table 3, f is the atomic scattering factor which is taken from Appendix A.3
and the multiple factor p are referred to Table 2.2 in Chap. 2. It may also be noted
for the unit of RAl that the value(0.06638) of ˝ is expressed in the unit of nm3 and
then we use it as it stands. For this reason, the factor of 10�27 is excluded.

(ii) The component of Si
Similar calculation is made for Si on the basis of fundamental information of silicon
in the following. Silicon has diamond structure (a D 0:5431 nm), density 2:33 �
106 g=m3, molar atomic mass 28.086 g, and Debye temperature � is 645 K. The
results are summarized in Tables 4 and 5.

x D �

T
D 645

293
D 2:20 ! 
.x/ D 0:578

BT D 1:15 � 104

M
� 293

.645/2
�
�
0:578C 2:20

4

�
D 0:325 :

Table 4 Temperature factor for diffraction peak of Si

2� (degree) sin �
�



sin �
�

�2 �2BT



sin �
�

�2
e�2MT

Si(111) 28.41 0.159 0.0253 �0.0164 0.984
Si(220) 47.33 0.260 0.0676 �0.0439 0.951

Table 5 Lorentz polarization factor for diffraction peaks of Si

2� (degree) sin � sin2 � cos � cos 2� cos2 2� 1C cos2 2� 2 sin2 � cos � LP

Si(111) 28.41 0.2454 0.0602 0.9694 0.8796 0.7737 1.7737 0.1167 15.2
Si(220) 47.33 0.4014 0.1611 0.9159 0.6718 0.4594 1.4594 0.2951 4.9

For calculating RSi, we also take into consideration that the structure factors
are 32f 2 for the (111) plane and 64f 2 for (220) plane, respectively, (see Question
3.11).˝ D a3 D .0:5431 nm/3 D 0:16019 nm3. The results are given in Table 6.

Table 6 Calculated results of RSi for two peaks of Si
sin �
�

fSi jF j2 p LP e�2MT RSi

Si(111) 0.159 10.16 32f 2
Si D 3303 8 15.2 0.984 15:42 � 106

Si(220) 0.260 8.68 64f 2
Si D 4822 12 4.9 0.915 10:52 � 106

(iii) Calculation of the volume fraction cAl and cSi

With respect to the ratio of volume fraction of each component, (1) can be rewritten
in the following form.

ISi

IAl
D RSicSi

RAlcAl
! cAl

cSi
D IAlRSi

ISiRAl
: (6)
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First, substitute the integrated intensity values of Al (111) and Si (111) planes for
IAl and ISi, respectively and then we obtain.

cAl

cSi
D 216:2

180:3
� 15:42 � 106

16:82 � 106
D 1:099:

From the relationship of cAl C cSi D 1, cSi D 0:476 is found.
Next, the similar computation is made for the integrated intensity values of A1

(200) and Si (220) planes.

cSi

cAl
D 93:1

118:4
� 10:52 � 106

7:80 � 106
D 1:061:

In this case, cSi D 0:485. The average of these two results is given by cSi D 0:48.
Therefore, it can lead to the result that the volume fraction of Si in mixed sample of
Al powder containing Si is 0.48 (and 0.52 for Al).

Question 4.16 Obtain basic equations required for the principle and analysis
of the “internal standard method” by coupling standard substances, such as
NaCl and CaF2.

Answer 4.16 In the internal standard method, the intensity of a specific peak of
substance being determined is compared with a peak from a standard substance
mixed with the sample in known proportions. The problem associated with mean
absorption coefficient of the object sample can be eliminated by obtaining the cali-
bration curve, from the measurements for test samples, where a known amount of a
standard substance is mixed with a known amount of original sample. For standard
substances, NaCl, CaF2, ZnO, etc. are often used, but the standard sample should
be selected so as to be of good crystallinity and have diffraction peak well sep-
arated from the specific peak of substance being determined. Suppose we wish to
determine the amount of ˛�component in a mixture containing two or more compo-
nents. (Two or three components are preferred, otherwise we face serious problems,
such as the peak overlap between two components.)

The integrated intensity I˛ of a diffraction peak of ˛ � component to be deter-
mined in a mixed sample is given by the following equation if setting the volume
fraction of ˛ � component to c˛ and the linear absorption coefficient of a sample
to �m.

I˛ D K1

c˛

�m

; (1)

where K1 is a constant.

We mix a known amount of a standard substance denoted by s to a known amount
of the original sample to form a new composite sample. Let us set c˛ and c 0̨ to
the volume fractions of ˛ � component in the original and composite samples,
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respectively. In addition, cs is the volume fraction of s in the composite sample.
For the convenience of discussion, two component system containing ˛ and ˇ are
considered here. Then, (1) is rewritten as follows:

I˛ D K2

c 0̨

�m

: (2)

Similarly, the intensity of a particular peak from the standard substance s is given as

Is D K3s

cs

�m

: (3)

When dividing (2) by (3), we obtain the following equation

I˛

Is

D K2

K3s

� c
0̨

cs

: (4)

The absorption coefficient of a sample �m is canceled out in this division process.
The volume fraction c 0̨ of ˛� component in the new composite sample prepared

by adding the standard substance is given by the following equation.

c 0̨ D
w0

˛

�˛

w0
ˇ

�ˇ
C w0

ˇ

�ˇ
C ws

�s

; (5)

where w and 
 represent weight fraction and density of each component, respec-
tively. A similar equation holds for cs of the volume fraction of the standard
substance.

cs D
ws

�s

w0
˛

�˛
C w0

ˇ

�ˇ
C ws

�s

: (6)

Then, the following simple equation can be derived from (5) and (6).

c 0̨

cs

D w0̨

ws

� 
s


˛

: (7)

By combining (7) with (4),

I˛

Is

D K2

K3s

� 
s


˛ws

� w0̨ ; (8)

where not only K2 and K3s but also 
s and 
˛ are all constants. Therefore, if the
weight fraction ws of the standard substance is kept constant in all the composite
samples, (8) can be rewritten in the following simple form.
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I˛

Is

D K9w0̨ ; (9)

where K9 is another constant. The weight fraction of ˛�component, w˛ in the orig-
inal sample is related to the weight fraction, w0̨ in the composite sample together
with the value of ws for the standard substance in the following.

w0̨ D w˛.1 � ws/: (10)

Since ws is a constant, (9) can be replaced by the following equation.

I˛

Is

D K11w˛ : (11)

Therefore, the intensity ratio of a peak from ˛ � component to be determined to the
intensity of a specific peak of the standard substance is found to change linearly with
the weight fraction w˛ of ˛� component in the original sample. The relationship of
(9) can also be explained as follows.

In a binary system, preparing the new composite sample by the addition of
the standard substance z.g/ to the original sample y.g/, the weight fraction of
˛ � component in the standard substance s in the new composite sample and in

the original sample are given by
�

z
yCz

�
and

�
yw˛

yCz

�
, respectively. As a result, the

integrated intensities of a peak from ˛ � component to be determined and a spe-
cific peak of the standard substance can be expressed in the following equations,
respectively.

I˛ D K12

�
yw˛

yCz

�
�

�m

�

� (12)

Is D K13s

�
z

yCz

�
�

�m

�

� : (13)

If the ratio of (12) and (13) is taken, the average absorption coefficient term of a
sample vanishes and we obtain

I˛

Is

D K˛

K13s

� y
z

� w˛ : (14)

Equation (14) clearly shows that a linear relationship is well recognized between
the intensity ratio of diffraction peaks and the weight fraction w˛ of ˛� component
in the original sample, when keeping the ratio of y to z a constant.

Specifically, the composite samples are prepared by adding the amount of a ref-
erence substance in the range between 0.1 and 0.8 g to the original sample whose
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weight is the order of 1 � 3g and the integrated intensities are measured with
respect to the specific diffraction peaks attributed to both the original sample to
be determined and the standard substance, to obtain the calibration line. Once the
calibration curve is obtained and in case where the same X-ray diffraction equipment
is employed, it can be used as it stands for quantitative analysis of ˛ � component,
only by adding the same amount of the reference substance to the desired sample.

Question 4.17 According to some preliminary measurements, an original
sample of interest is found to include magnesium oxide (MgO) and calcium
oxide (CaO) and the positions detected for the diffraction peaks correspond-
ing to the (200) plane of MgO and the (111) plane of CaO are not so close
together and they are relatively easy to measure their intensities as separate
peaks. On the contrary, a specific peak assigned to the (200) plane of CaO
is clearly detected at angles near 37 degree as easily seen from the results of
Fig. A, but this peak overlaps with the diffraction peak of the (111) plane of
MgO. Accordingly, we cannot use the diffraction peaks of both the (111) plane
of MgO and the (200) plane of CaO for quantitative analysis of these compo-
nents. Based on these results, we carried out the intensity measurements using
Cu � K˛1 radiation .� D 0:15406 nm/ for quantitatively determining the
amounts of both MgO and CaO by the internal standard method with KCl as a
standard substance and the results summarized in Tables A-C were obtained.
Calculate the content of CaO and MgO in the sample of interest.

Fig. 1 Typical X ray diffraction pattern of a sample containing MgO and CaO with KCl as
the internal standard substance

Some amounts of powder sample of interest are rapidly quenched so as to
avoid precipitation of any crystalline phase and it is referred to as G0. Then,
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the reagent (99.9% of purity) of MgO or CaO and the sample ofG0 are mixed
at a rate given by G�

0 in the column of Tables A and B for obtaining the
calibration curves of MgO and CaO components. Specifically, 0.2 g of the
standard substance of KCl powder was added to 2 g of the mixed sample of
(MgO reagent CG0), and the ratio of the integrated intensities of specific
peaks attributed to the MgO or KCl component were measured. The results
are summarized in the right-hand side column of Table A. Similar experiments
were made and the results are summarized in Table B.

Table A Diffraction data of MgO for
calibration

MgO
G�
0

IMgO.200/

IKCl.200/

IMgO.200/

IKCl.220/Reagent

M0 0 g 100 g
M1 3 g 97 g 0.149 0.147
M2 8 g 92 g 0.370 0.373
M3 12 g 88 g 0.552 0.566
M4 15 g 85 g 0.713 0.704

Table B Diffraction data of CaO for
calibration

CaO
G�
0

ICaO.111/

IKCl.200/

ICaO.111/

IKCl.220/Reagent

C0 0 g 100 g
C1 3 g 97 g 0.403 0.389
C2 8 g 92 g 0.984 0.958
C3 12 g 88 g 1.403 1.430
C4 15 g 85 g 1.802 1.785

On the contrary, the integrated intensities of diffraction peaks were measured
for the composite sample prepared by mixing the original sample (it is not
G0) with 0.2 g of KCl powder. The results are given in Table C.

Table C Diffraction data of the composite sample prepared by the original sample
with KCl

2� (degree) Integrated 2� (degree) Integrated
intensity intensity

28.35 245.7 KCl(200) 32.18 253.2 CaO(111)
40.51 236.0 KCl(220) 42.90 171.8 MgO(200)

Answer 4.17 At first, the calibration curves should be obtained from the experi-
mental data of Tables A and B regarding the integrated intensities of specific peaks
attributed to MgO and CaO as well as KCl as a standard substance. In these cases,
the amount of MgO or CaO added to the sample of G0 is known. In both cases,
good linearity is found as shown in Fig. 1. For further convenience, we compute
an analytical equation representing the calibration curve for respective component
using the least-squares method, so that the relevant numerical data are summarized
in Tables 1 and 2. Some essential points of the least-squares method for applying to
a correlation of y D aC bx are described in Appendix A.7.



4.8 Solved Problems 163

Table 1 Basic data for
calibration curve of MgO

MgO
y x xy x2

1 0.149 3 0.447 9
2 0.370 8 2.960 64
3 0.552 12 6.624 144
4 0.713 15 10.695 225
5 0.147 3 0.441 9
6 0.373 8 2.984 64
7 0.566 12 6.792 144
8 0.704 15 10.560 225P

3.574 76 41.503 884

Table 2 Basic data for
calibration curve of CaO

CaO
y x xy x2

1 0.389 3 1.167 9
2 0.958 8 7.664 64
3 1.430 12 17.160 144
4 1.785 15 26.775 225
5 0.403 3 1.209 9
6 0.984 8 7.986 64
7 1.403 12 16.836 144
8 1.802 15 27.030 225P

9.154 76 105.737 884

The normal equations of the least-squares method for MgO and the results are as
follows.

3:574 D 8aC 76b

41:503 D 76aC 884b

�
)
�
a D 0:0040

b D 0:0466

y D 0:0040C 0:0466x: (1)

The results for the CaO case are given in the following.

9:154 D 8aC 76b

105:737 D 76aC 884b

�
)
�
a D 0:0433

b D 0:1159

y D 0:0433C 0:1159x: (2)

The amount of each component can be calculated from (1) or (2), when coupling
with the measured ratio of the integrated intensities of peaks corresponding to the
(200) plane of MgO or the (111) plane of CaO for the composite sample prepared
by mixing the original sample (it is not G0) with the standard substance KCl.

(i) With respect to the content of MgO

IMgO.200/

IKCl.200/
D 171:8

245:7
D 0:699 ! x D 14:9

IMgO.200/

IKCl.220/
D 171:8

236:0
D 0:728 ! x D 15:5:

From these two results, 15.2 mass% of MgO content is obtained as a mean
value.

(ii) With respect to the content of CaO

ICaO.111/

IKCl.200/
D 253:2

245:7
D 1:031 ! x D 8:5
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ICaO.111/

IKCl.220/
D 253:2

236:0
D 1:073 ! x D 8:9:

These two results give 8.7 mass% of CaO content, as a mean value.

Fig. 1 Calibration curves of MgO and CaO components with KCl as the internal standard
substance

Question 4.18 Magnesium oxide (MgO) powder was ground by the ball
milling process to produce a fine powdered sample. With respect to this
fine powdered sample, X-ray diffraction experiments using Cu-K˛ radiation
(� D 0:15406 nm) with a crystal monochromator were carried out and we
found the decrease in peak height as well as the peak broadening. The values
of full width of half maximum intensity (FWHM) of peaks corresponding to
(200), (220), (311), (222), and (400) planes are summarized in Table A. Nev-
ertheless, similar X-ray diffraction measurements were made for magnesium
oxide powder sample which were fully annealed so as to remove the lattice
strain for comparison. The resultant FWHM values of five peaks are given in
Table B. Compute the average size of crystallites in a sample prepared by ball
milling processing.

Table A Diffraction data of ball mill
processing sample

hkl 2� (degree) FWHM(degree)

1 200 42.90 0.183
2 220 62.31 0.205
3 311 74.71 0.243
4 222 78.63 0.274
5 400 94.06 0.309

Table B Diffraction data of annealed
sample

hkl 2� (degree) FWHM(degree)

1 200 42.91 0.093
2 220 62.30 0.072
3 311 74.68 0.068
4 222 78.60 0.090
5 400 94.04 0.087
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Answer 4.18 At first, the so-called instrumental broadening factor, Bi, is calculated
from the sample fully annealed. Note that the FWHM values should be converted
from degree to radian as shown in Table 1.

Table 1 The values of peak broadening of five peaks for the fully annealed sample

hkl 2� (degree) FWHM(degree) Bi D FWHM(radian) B2
i

1 200 42.91 0.093 1:62 � 10�3 2:624 � 10�6

2 220 62.30 0.072 1:26 � 10�3 1:588 � 10�6

3 311 74.68 0.068 1:19 � 10�3 1:416 � 10�6

4 222 78.60 0.090 1:57 � 10�3 2:465 � 10�6

5 400 94.04 0.087 1:52 � 10�3 2:310 � 10�6

(� radian D 180 degrees)

To subtract the instrumental broadening factor from the measured width value
Bobs, we use the following relationship derived when assuming the shape of a
diffraction peak is approximated by Gaussian distribution.

B2
r D B2

obs � B2
i ; (1)

where Br is the value of peak broadening related only to the change in size of
crystallites. The relevant results are summarized in Tables 2 and 3.

Table 2 The values of peak broadening of five peaks for a sample prepared by the ball-milling
process

hkl 2� (degree) FWHM(degree) Bobs(radian) B2
obs

1 200 42.90 0.183 3:19 � 10�3 10:176 � 10�6

2 220 62.31 0.205 3:58 � 10�3 12:816 � 10�6

3 311 74.71 0.243 4:24� 10�3 17:978 � 10�6

4 222 78.63 0.274 4:78� 10�3 22:848 � 10�6

5 400 94.06 0.309 5:39 � 10�3 29:052 � 10�6

Table 3 Some fundamental data for estimating the change in size of crystallites

hkl Br D
q
B2

obs � B2
i cos � Br cos � sin �

1 200 2:75 � 10�3 0.9307 2:56� 10�3 0.3657
2 220 3:35� 10�3 0.8558 2:87� 10�3 0.5174
3 311 4:07 � 10�3 0.7944 3:24 � 10�3 0.6068
4 222 4:51 � 10�3 0.7737 3:49 � 10�3 0.6336
5 400 5:17� 10�3 0.6816 3:52 � 10�3 0.7317

The peak broadening of the sample prepared by the ball milling process is quite
likely to be influenced by inhomogeneous (heterogeneous) strain, so that the Hall
method is considered to be useful for the present analysis.

Br cos � D 2� sin � C �

"
; (2)
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where � is the wavelength, " is the average value of the size of crystallites, and
2� corresponds to the amount of inhomogeneous strain. Note that a linear relation-
ship is obtained when plotting Br cos � as a function of sin � , the gradient of this
straight line is equivalent to 2�, and the intercept 	y with the Br cos � axis gives
the value of �

"
. Although the peak width in the Hall method is originally derived

using the integral width, the FWHM values are used here. It may be safely said that
this approximation is insignificant.

Correlation between Br cos � and sin � is obtained as illustrated in Fig. 1 and the
following value of ", the size of crystallites, can be obtained using the graphical
analysis together with the value .2�/ corresponding to inhomogeneous strain of
2:75 � 10�3 radian.

" D �

	y
D 0:15406� 10�9

1:55 � 10�3
D 99 � 10�9m ; 100 nm:

However, for applying the least-squares method to draw a straight line of y D
a C bx, the data set of Table 4 was prepared. (Refer to the Appendix A.7 for the
general procedure of least-squares method).

Table 4 Data set for the least-squares method

y D Br cos � x D sin � xy x2

1 2:56� 10�3 0.3657 0:936 � 10�3 0.1337
2 2:87� 10�3 0.5174 1:485 � 10�3 0.2677
3 3:24 � 10�3 0.6068 1:966 � 10�3 0.3682
4 3:49 � 10�3 0.6336 2:211 � 10�3 0.4014
5 3:52 � 10�3 0.7317 2:596 � 10�3 0.5354P

15:68 � 10�3 2.8552 9:174 � 10�3 1.7064

P
y D P

a C b
P
x ! 15:62 � 10�3 D 5a C 2:8552bP

xy D a
P
x C b

P
s2 ! 9:174 � 10�3 D 2:8552aC 1:7064b

)
: (3)

Finding a and b satisfying simultaneously two relational expressions given by (3)

a D 1:48 � 10�3 ! �

"

b D 2:90 � 10�3 ! 2�:

Since the value of a is equivalent to the intercept	y,

" D �

a
D 0:15406� 10�9

1:48 � 10�3
D 104 � 10�9m ; 100 nm:



4.8 Solved Problems 167

Although the agreement between the two results presently obtained is acceptable,
it may be suggested here that analysis by the least-squares method is preferable for
minimizing random error.

Fig. 1 Correlation between Br cos � and sin �





Chapter 5
Reciprocal Lattice and Integrated Intensities
of Crystals

The Bragg law enables us to explain all the diffraction phenomena of X-rays by
a crystal described in the previous chapters. However, there are some diffraction
phenomena that may not be explained by the Bragg law. The diffuse scattering at
non-Bragg angles is a particular example. For this purpose, we need a more gener-
alized theory of diffraction using the vector representation. Particularly, the concept
“reciprocal lattice” is extremely effective for handling all the diffraction phenom-
ena. In other words, the reciprocal-lattice theory of diffraction, being general, is
applicable to all diffraction phenomena of X-rays by a crystal from the simplest one
to the most complex case. It may be added that the usual set of three-dimensional
atomic coordinates is called the crystal lattice or real-space lattice, as opposed to the
reciprocal lattice.

5.1 Mathematical Definition of Reciprocal Lattice

At first, let us consider the crystal lattice having a unit cell defined by the vectors
a1, a2, and a3 (sometime called the primitive vectors of the crystal lattice or the
primitive crystal-lattice vectors), and we obtain the corresponding reciprocal lattice
having a unit cell defined by the vectors b1, b2 and b3 in the following form.

b1 D a2 � a3

V
; b2 D a3 � a1

V
; b3 D a1 � a2

V
V D a1 � .a2 � a3/

)
(5.1)

where, V is the volume of the unit cell. In solid-state physics, the factor of 2� is
usually included in the form of (5.1), such as b1 D .2�/.a2 � a3/=V , but it is
commonly omitted in crystallography. It is also worth mentioning that the reverse
of the reciprocal-lattice vector is the crystal-lattice vector and that the reciprocal of
the volume of the unit cell, which is described by the triple-scalar product of the
three vectors as a1 � .a2 � a3/, corresponds to the volume V �of the unit cell of the
reciprocal lattice. They are represented as follows.

169
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a1 D b2 � b3

V � D .b2 � b3/ � V
a2 D b3 � b1

V � D .b3 � b1/ � V
a3 D b1 � b2

V � D .b1 � b2/ � V
V � D b1 � .b2 � b3/ D a2 � a3

V
� a1

V
D 1

V

9>>>>>>>>=
>>>>>>>>;

(5.2)

For example, it is shown in (5.1) that the reciprocal-lattice axis b1 is found to
be perpendicular to the plane of the crystal-lattice vectors a2 and a3, and its length
is equal to the reciprocal of spacing of the (100) plane. The same relationship is
confirmed with respect to other reciprocal-lattice vectors b2 and b3. Namely, the
reciprocal-lattice axes b2 and b3 are normal to the (010) and (001) planes of the
crystal lattice, respectively, and their lengths are equal to the reciprocals of the spac-
ing of these planes. In other words, the point at the end of the b1 vector is labeled
(100), that at the end of the b2 vector is labeled (010), and that at the end of the b3

vector is labeled (001), and then an array of points each of which is labeled with
its coordinates by the basic vectors. Similar relationships are confirmed for all the
planes with an arbitrary Miller indices .h k l/ of the crystal lattice. Of course, h k l
are three integers.

Considering these results, a vector Hhkl perpendicular to the .h k l/ plane is
given by the following equation with the reciprocal-lattice vectors, b1, b2, and b3.

Hhkl D hb1 C kb2 C lb3 (5.3)

The length of this reciprocal-lattice vector Hhkl is equal to the reciprocal of a
spacing d of the .h k l/ plane, as follows.

jHhkl j D 1

dhkl

(5.4)

Every crystal structure has two lattices, the real-space lattice in the dimensions of
(length), and the reciprocal lattice in the dimensions of (1/length) and a diffraction
pattern produced by a crystal is a map of the reciprocal lattice of the crystal. It may
also be noted that the reciprocal lattice is a lattice in the Fourier space associated
with the crystal.

Each point of reciprocal lattice can represent the spacing as well as the direction
of a related crystal plane. That is, the wave diffracted by the crystal planes with a
certain periodicity of atoms in the real-space lattice appears as a diffracted spot in
reciprocal space, as seen in the Laue photographs. Such spots also produce a certain
regular sequence to form the reciprocal lattice. Fourier transform that is widely uti-
lized in crystallography corresponds to an exchange operation from the real space
to the inverse space or from the inverse space to the real space.

According to (5.1), we have following relationships between a reciprocal-lattice
vector bj and the real-space-lattice vector ak .
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bj � ak D ıjk I ıjk D 0.j ¤ k/; ıjk D 1.j D k/ (5.5)

The complete set of relationships is as follows.

b1 � a2 D b1 � a3 D b2 � a1 D b2 � a3 D b3 � a1 D b3 � a2 D 0

b1 � a1 D b2 � a2 D b3 � a3 D 1

The reciprocal-lattice vector K may be expressed by bj and integers kj as follows.

K D k1b1 C k2b2 C k3b3 (5.6)

Similarly, the real-lattice vector R may be given by aj and integers nj in the
following form.

R D n1a1 C n2a2 C n3a3 (5.7)

Since the scalar product of the reciprocal-lattice vector and the real-space-lattice
vector can be expressed in the following equation, the product of K with R is found
to be integers.

K � R D k1n1 C k2n2 C k3n3 (5.8)

As the scalar product of K � R is an integer, the relationship of ei2�K�R D 1 is estab-
lished. Therefore, it may safely be said that the reciprocal lattice, K, corresponds to
one set of the wave vector 2�K that satisfies the relationship of ei2�K�R D 1 with
respect to all the real-space vectors R.

When the real-space lattice is primitive (simple), the reciprocal lattice becomes
primitive, and similarly, if the real-space lattice is classified into the complex
(nonprimitive) lattice, the reciprocal lattice is also a complex one. Such general
properties that take on a very simple relationship for any crystal whose unit cell is
based on mutually perpendicular vectors (are checked by (5.1)). Some examples for
explaining the relationship between the real-space lattice and the reciprocal lattice
are illustrated in Fig. 5.1 using two cases of cubic and hexagonal crystals. Hhkl is
found to be normal to the .hkl/ plane, and its length is equal to the reciprocal of the
spacing dhkl. We recall that if the volume of Bravais lattices is set to V , then the
volume of the reciprocal lattice is 1=V .

5.2 Intensity from Scattering by Electrons and Atoms

X-rays are characterized by the wave–particle duality. An X-ray beam is known to
be an electromagnetic wave characterized by an electric field that exerts its force
on an electron. For this reason, an electron is continuously accelerated and decel-
erated by the field of X-rays. In other words, an electron as set into oscillation by
an electric field of X-rays is continuously accelerating and decelerating during its
motion so that the corresponding electron emits a new electromagnetic wave. In
this case, an electron is said to scatter X-rays. The scattered beam has the exactly
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Fig. 5.1 The relationships
between the reciprocal lattice
and the real crystal lattice in
two cases. A cubic crystal
with lattice parameter
a1 D 0:4 nm .4 Å/ and a
hexagonal crystal with lattice
parameter a1 D 0:25 nm
.2:5 Å/. The axes of a3 and b3
in both cases are normal to
the drawing

same wavelength and frequency as the incident X-ray beam. This is called coherent
scattering or unmodified scattering.

On the contrary, the interaction of the X-ray beam with electrons may also
involve the exchange of energy and momentum. This is frequently represented by
an elastic collision like that of two billiard balls. In this process, a loosely bound
electron is knocked out by an incident X-ray photon (or quantum), and some of
the energy of the incident X-ray photon is consumed by giving kinetic energy to
the electron. Such scattering is called incoherent scattering, modified scattering, or
Compton scattering.

In addition, there is another way in which the X-ray beam interacts with an elec-
tron. When the incident X-ray photon has sufficient energy to knock out an inner
shell electron to produce a photo electron that is emitted, the atom will be left in
the excited state with a hole in the inner electron shell. This is called photoelectron
effect by X-rays. Usually, the resultant hole is quickly filled by an electron located in
the outer electron shell, and we obtain an X-ray photon with an energy equal to the
difference in the relevant electron energy levels. This corresponds to the production
process for characteristic radiation.

Taking these interactions between X-rays and electron into account, some funda-
mental points for the scattering intensity from an atom and a crystal are summarized
below.
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When an unpolarized X-ray beam, such as that irradiated from an X-ray tube,
encounters a single electron located at the origin, the scattering intensity Ie at the
distance R from the origin is given by the following equation, which is frequently
called Thomson equation.

Ie D I0

e4

m2c4R2

�
1C cos2 2�

2

�
(5.9)

where, I0 is intensity of the incident X-ray beam, e is an elementary charge, m is
a rest mass of electron, c is the speed of light in vacuum, and 2� is the scattering
angle. The last term within parentheses in (5.9) is called polarization factor, and an
alternative expression of this factor is needed when using a crystal monochromator.
The constant term .e2=mc2/2 of (5.9) is equivalent to the square of the classical
electron radius re given as .2:8179 � 10�15/2 m2 in SI units.

The amplitude, f , of the coherent scattering per atom including more than one
electron is given by the sum of the amplitude fej per one electron (refer to Chap. 3),
and it is as follows.

f D
X

j

fej D
X

j

Z 1

0

4�r2�j .r/
sinQr

Qr
dr (5.10)

The atomic scattering factor f is a function of Q or .sin �=�/ and is equiv-
alent to the efficiency of scattering of a given atom in a given electron. Since
the number of electrons in the atom is equal to the atomic number Z, we obtainP

j

R1
0
4�r2�j .r/dr D Z. Then, it is clear that f is close to the atomic number

Z for any atom if the value of Q or .sin �=�/ becomes very small (scattering in the
forward direction).

The atomic scattering factors mentioned here satisfy the following two
assumptions:

(1) The distribution of electrons around the nucleus in atom can be well approxi-
mated by spherical symmetry.

(2) The wavelength of the incident X-ray beam is much shorter than, or far from,
that of an absorption edge of the scattering atom.

There are not many cases, but apparent deviation from the perfect spherical sym-
metry is found in the electron distribution around the nucleus in a carbon atom with
diamond structure, and this is one example where the assumption of (1) is not satis-
fied. The wavelength of the incident X-ray beam is close to the absorption edge of
the scattering atom, the assumption of (2) is no longer accepted, and a correction of
the atomic scattering factor in the following complex form is required.

f D f0 C f 0 C if 00 (5.11)

where f 0 and f 00 are the real and imaginary components of the anomalous disper-
sion, and both components depend on the incident X-ray energy (wavelength). f0 in
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(5.11) corresponds to the normal atomic scattering factor whose numerical values
are given in Table (see Appendix A.3). On the contrary, f 0 and f 00 are related only
to inner-shell electrons, such as K or L. Since the spatial distribution of inner elec-
trons is considerably smaller than the magnitude of the X-ray wavelength, the dipole
approximation Œexp.�iQ � r/ ; 1� is well accepted. Thus, the Q-dependence of the
anomalous dispersion components can usually be ignored. Normal X-ray diffrac-
tion measurements are carried out using wavelengths away from the absorption edge
region without correction of the anomalous dispersion effect.

The main mechanism of X-ray diffraction by crystals is coherent scattering,
but incoherent scattering also occurs. The incoherent scattering intensity i.M/ per
atom can be described by the simple sum of the incoherent scattering intensity of
respective electrons as follows (refer to Chap. 3.2):

i.M/ D
X

j

iej D Z �
ZX

j D1

f 2
ej (5.12)

5.3 Intensity from Scattering by a Small Crystal

When setting the origin of a certain unit cell in a crystal to a position O, a position
vector of another unit cell from the origin of O may be expressed in the formm1a1C
m2a2 C m3a3. Here, a1, a2, and a3 are the basis vectors of the unit cell, whereas
m1, m2, and m3 are integers and the coordinates. When setting the position vector
of j -atom with respect to the origin in a unit cell to the vector rj , the positions of
j -atoms in the crystal can be described by Rmj D m1a1 Cm2a2 Cm3a3 C rj .

Let us consider the case where the monochromatic X-ray beam with the wave-
length � and its intensity denoted by I0 encounters a very small single crystal. The
incident and diffracted X-rays are usually represented by the wave vectors s0 and s,
respectively, and Rmj , s0, and s are, in general, not coplanar (js0j and jsj D 1=�

where � is wavelength). This crystal is assumed to be so small, relative to the dis-
tance between the X-ray source and the corresponding crystal, and therefore, the
incident X-ray beam can be treated by the plane wave approximation. Suppose the
plane waves are passing through the origin O and are scattered by j -atoms located
at the position vectors Rmj and we wish to detect the scattered intensity I from a
j -atom at P at a distance R from the origin O, I is given as follows.

I D IeFF
� sin2

˚�
�
�

�
.s � s0/ �N1a1

�
sin2

˚�
�
�

�
.s � s0/ � a1

� �

sin2
˚�

�
�

�
.s � s0/ �N2a2

�
sin2

˚�
�
�

�
.s � s0/ � a2

� � sin2
˚�

�
�

�
.s � s0/ �N3a3

�
sin2

˚�
�
�

�
.s � s0/ � a3

� (5.13)

Ie D I0

�
e2

mc2R

�2

(5.14)
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Here, F is a structure factor. The scattering intensity by a single electron
(Thomson’s scattering equation (5.9)) is also used here. In addition, since (5.13) is
obtained under the condition that the incident X-ray beam is polarized vertically to
the plane of the drawing, the polarization factor becomes unity. When the incident
X-ray beam is not polarized at all, it is necessary to use the polarization factor
described by .1C cos2 2�/=2.

It is also noted that a function of .sin2.Nk/= sin2 k/ that appears in (5.13) is
called “Laue function.” When k is integer multiple (n) of � , both denominator and
numerator of the Laue function are zero. This condition of k D n� (n: integer) is
equivalent to the so-called “diffraction by a crystal” whose lattice is characterized
by the atomic array in a line at the regular interval, and then the phase difference of
waves generated from such structure is given by integer multiples of the wavelength.
It may also be added that if k ! n� , the value of the limit of the Laue function is
given by N 2. Accordingly, when the scattering intensity is represented by the Laue
function normalized by N 2, a peak at the position of k D n� is found to be sharper
with increasing n. Since n is considerably large in a crystal lattice, a peak is usually
approximated by the delta function at the position of k D n� . On the contrary, let us
consider that the value of a changes in the form of k D .s�s0/�a, at constant n. If the
absolute value, jaj becomes triple, the frequency of Laue function shows the reverse,
as 1/3. That is, the length of the real-space lattice can be described as 1/(length) in
the reciprocal space lattice, and their relationships are vice versa (see Question 5.8).

5.4 Integrated Intensity from Small Single Crystals

Since the incident X-ray beam is usually not completely parallel and strictly a
monochromatic radiation, this produces variation in its direction vector s0. For
example, the usual monochromatic beam is simply said to be one strong K˛ com-
ponent, but it has a width of about 0.0004 nm. For this reason, we have to check the
effect on diffraction phenomena by a crystal by considering some deviation from the
ideal case. As already shown in Chap. 4.7 (2), the so-called destructive interference
is not perfect so that we will detect a certain diffracted intensity in the close vicinity
of the Bragg angle region near 2�B. This is particularly true when the number of
planes completely satisfying the Bragg condition is not sufficient, for example, by
reducing the particle size of a crystalline powder sample, even one consisting of per-
fect single crystals. Accordingly a measured diffracted peak has some width in 2� .
In other words, if the crystal is perfect, we have to consider the small size alone a
crystal imperfection.

A single crystal is often found to have a periodic array of defects such as dislo-
cation if its structure is examined in detail. Such a single crystal is said to have a
kind of crystal imperfection that affects, more or less, the diffraction phenomena.
This is a kind of substructure into which a single crystal is broken up as shown
in the schematic diagram in Fig. 5.2, and this is called “mosaic structure.” In other
words, a crystal with mosaic structure does not have its atomic arrangement with a
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Fig. 5.2 Schematic diagram of mosaic structure of a real crystal and geometric arrangement for
calculating the integrated intensity from a crystal plate with mosaic structure

completely regular crystal lattice extending from one side of the crystal to the other
side. The crystal lattice is rather broken up into a number of tiny crystal blocks
in the order of 100 nm in length, and each block is slightly disorientated from one
another disturbing the coherency in their crystal planes. These tiny blocks are quite
likely to be identical with subgrains, and the region between the blocks are consid-
ered the dislocation wall. In addition, the maximum angle of disorientation between
tiny crystal blocks changes from a very small value to as much as 1ı. In this case,
the incident X-ray beam changes its direction, little by little, at each mosaic crys-
tal structure so as to form a relatively sharp diffraction peak with a certain range
in width. As a result, the integrated intensity of the diffracted beam from a crystal
with mosaic structure increases, relative to that computed theoretically for an ide-
ally perfect single crystal. As shown in the schematic diagram in Fig. 5.3, a large
number of atoms arranged with a perfectly three-dimensional periodic array to form
a crystal scatter X-rays in relatively few directions because the structural periodicity
causes the so-called destructive interference of the scattered X-rays in all directions
except only those predicted by the Bragg law in which constructive interference
takes place. It may be added that a single atom scatters the incident X-ray beam in
all directions in space.

Although the scattering intensity from a small single crystal is expressed by
(5.13), we have to use the integrated intensity for comparing with the measured
intensity data. Here, let us consider the scattering intensity in the angular region
between a slightly smaller angle near 2�B and a slightly larger angle when rotating
the crystal with its angular speed of !. Here, 2�B is the Bragg angle. The integrated
intensity P from the .h k l/ plane may be given by the following equation.

P D I0

!

 
e4

m2c4

!
�NucF

2
hkl

va

 
1C cos2 2�

2 sin 2�

!
(5.15)

where va is the volume of a unit cell andNuc is the number of unit cell included in a
crystal. The factor given in the second parenthesis to the right-hand side of (5.15) is
called the Lorentz polarization factor with respect to the measurement for a single
crystal using an unpolarized incident X-ray beam. Equation (5.15) clearly suggests
that the experimental results can provide the structure factor Fhkl, from which the
unknown crystal structure is able to be determined if the integrated intensity P
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Fig. 5.3 Schematic diagrams for scattering by a crystal (a) and by a single atom (b) together with
their scattering patterns for comparison. The vertical scales are not equal

from a .hkl/ plane and the intensity I0 of the incident X-ray beam can be quanti-
tatively obtained. If the Fhkl value for a pure substance with simple structure can
be estimated from the measured intensity data with sufficient reliability, the atomic
scattering factor f may also be computed.

5.5 Integrated Intensity from Mosaic Crystals
and Polycrystalline Samples

The integrated intensity of a single crystal with mosaic structure can be represented
as follows. Each mosaic block in the single crystal is considered a perfect crystal,
but a slight difference in direction of adjoining mosaic blocks is recognized so as
not to interfere with each other. This is called “ideal mosaic single crystal.” A real
single crystal is usually described by the intermediate state between perfect single
crystal and ideal single mosaic crystal. If a desired crystal is regarded as an ideal
mosaic single crystal, the integrated intensity can be computed by assuming that
(5.15) is allowed to be used in each mosaic block.

Let us consider the intensity of the incident X-ray beam I0 and its cross-section
A0 and that the average volume of mosaic blocks is set to ıv (see Fig. 5.2). If the
intensity I0 of the incident X-ray beam reaches the mosaic block located in a portion
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between z and z C dz deep from the crystal surface, its intensity will be given by
the form of I0 exp.�2z�= sin �/, where � is the linear absorption coefficient for
a substance of mosaic block. Considering the intensity P0 D I0A0 of the incident
X-ray beam, the integrated intensity from an ideal mosaic single crystal can be given
by the following equation.

P D P0

!

 
e4

m2c4

!
�3F 2

hkl

2�v2
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1C cos2 2�

2 sin 2�

!
(5.16)

A crystalline powder sample is approximated by a very small poly-crystalline
aggregate, and each grain is found to have a crystallographic orientation different
from that of its neighbors. When considered as a whole, the orientations of all the
grains are randomly distributed. Let us consider that a monochromatic X-ray beam
with the wavelength � hits a powder crystalline sample where a tiny single crystal
in a small part of this sample shows its direction so as to satisfy the Bragg law with
respect to the .h k l/ plane. In this case, the plane-normal vector Hhkl of the .h k l/
plane of a tiny single crystal coincides with the direction of the scattering vector
.s � s0/, which is defined by the vector s0 of incident X-ray beam and the vector s
of diffracted X-ray beam. It is also noteworthy that the concepts of the reciprocal
lattice and the Ewald sphere as well as the limiting sphere are very convenient for
understanding the relationships between the incident and diffracted beam vectors
and crystal plane. The details of such information are available in Question 5.7.

When the total number of small single crystals in a powder sample is set to Nsc

and multiplicity factor phkl , which indicates the number of the equivalent .h k l/
plane with the same spacing and structure factor, the total number of the plane-
normal vector Hhkl in the powder sample is given by Nscphkl . Here, we take into
account the distribution of the scattering vector from a powder crystalline sample
satisfying the Bragg law, if the incident angle is in the region between .� C ˛/ and
.� C ˛ C d˛/. Then, the diffracted intensity from the .h k l/ plane can be obtained
by integrating all directions and the cross-sectional area followed by multiplying
the scattered intensity I of one tiny single crystal given by (5.13), the number of
crystals dNsc in d˛ of a sample and the area element dA in the cross-section.

The intensity P computed in this procedure is equivalent to the total diffraction
intensity uniformly distributed on the Debye ring so as to form a cone of half apex
angle 2� , as is seen in Fig. 5.4. Accordingly, the intensity that can be measured using
a diffractometer corresponds to the intensity per unit length of this Debye ring. That
is, it is equivalent to the intensity P 0, which is divided P by the circumference of
the Debye ring .2�R sin 2�/. Therefore, when the unpolarized X-ray beam with its
intensity of I0 is employed, the integrated intensity measured at a distance R from
the crystalline powder sample is given by the following equation:

P 0 D I0

16�R

�
e4

m2c4

�
V �3mhklF

2
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v2
a

�
1C cos2 2�

sin � sin 2�

�
(5.17)
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Fig. 5.4 The relationships between the reciprocal lattice and the Ewald sphere (formation of a
cone of diffracted X-rays) in the Debye–Scherrer method

where V is the irradiated volume. It is worth mentioning that the last term to the
right-hand side of (5.17) is the Lorentz polarization factor for a crystalline powder
sample.

Equation (5.17) shows that the integrated intensity for the .h k l/ plane of the
crystalline powder sample is proportional to three factors: multiplicity factor phkl ,
structure factor Fhkl , and Lorentz polarization factor. The most common X-ray
diffraction measurement for crystalline powder samples is known to be the method
using a diffractometer. In this case, the conditions are adjusted so as to satisfy the
sample being a flat plate with infinite thickness. In this experimental condition, the
irradiated volume of (5.17) may be replaced by V D A0=2�.

5.6 Solved Problems (18 Examples)

Question 5.1 The reciprocal lattice corresponding to a unit cell described by
the primitive crystal-lattice vectors a1, a2, and a3 has a unit cell defined by
the vectors b1, b2, and b3 given by the following equations, when the volume
of the crystal unit cell is set to V .

b1 D a2 � a3

V
; b2 D a3 � a1

V
; b3 D a1 � a2

V

This corresponds to the definition of the reciprocal lattice as a function
of the crystal lattice. Show the crystal lattice as a function of the reciprocal
lattice.



180 5 Reciprocal Lattice and Integrated Intensities of Crystals

Answer 5.1 Recall a few fundamentals of vector algebra.

(1) Product of two vectors A and B (it is called cross product or vector product)

.A � B/ D �.B � A/

(2) Product of three vectors A, B , and C (it is called triple-scalar product)

A � .B � C/ D B � .C � A/ D C � .A � B/

D �A � .C � B/ D �B � .A � C/ D �C � .B � A/

When three vectors A, B, and C correspond to the sides of parallelepiped as
shown in Fig. 1, .B � C/ is an equivalent vector to the area of parallelogram that
constitutes the base of parallelepiped. Note that the vector product of two vectors
A and B written by A � B is corresponding to a vector C normal to the plane of A
and B. The magnitude of C is equal to the area of the parallelogram constituted of A
and B, whereas the direction of C is along the direction of movement forward of the
right-hand screw if rotated in such a way so as to bring A to B. Therefore, the direc-
tion is found to be perpendicular to the plane made by B and C. Consequently, the
triple-scalar product of three vectors, A � .B�C/, may be described by the projection
of the vector A onto .B � C/ This is equivalent to the volume V of parallelepiped.

Reference: The scalar product of two vectors A and B or the inner product (or dot
product) is expressed as A � B. It is also noted that A � B D B � A due to a scalar
quantity.

Fig. 1 Graphical representation of A � .B � C/

Next, obtain the cross product of the reciprocal-lattice vectors b2 and b3, i.e.,
(b2 � b3)

b2 � b3 D a3 � a1

V
� a1 � a2

V
D 1

V 2
f.a3 � a1/ � .a1 � a2/g (1)

When u D .a3 �a1/ is set and the known formula u�.v�w/ D v.u �w/�w.u �v/ for
vector products is simultaneously employed, the following equations may be readily
obtained.

u � .a1 � a2/ D a1.u � a2/� a2.u � a1/

D a1f.a3 � a1/ � a2g � a2f.a3 � a1/ � a1g (2)
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The second term of (2) contains the same vector a1 twice so that it vanishes as one
of the characteristic features of vectors includes u � .u � w/ D 0. In addition, if the
relationship of .a3 � a1/ � a2 D V is taken into account, (1) may be rearranged in a
simplest form as follows.

b2 � b3 D a1

V
(3)

On the contrary, the volume V � of reciprocal lattices is given by the following
equation.

V � D b1 � .b2 � b3/ D .a2 � a3/ � a1

V 2
D 1

V
(4)

Therefore, the following relationship can be obtained by combining (3) and (4).

a1 D b2 � b3

V � ; a2 D b3 � b1

V � ; b3 D b1 � b2

V � (5)

When comparing the given equation in question with (5), it turns out that similarity
between two formulas is well recognized, and only right-hand side and left-hand
side are changed. Namely, the reverse of the reciprocal-lattice vectors is equal to
the crystal-lattice vectors, and the reciprocal of the volume of the crystal lattice is
equivalent to the volume of the reciprocal lattice.

Question 5.2 Demonstrate that the reciprocal-lattice vector Hhkl D hb1 C
kb2 C lb3 is perpendicular to the .hkl/ plane, regardless of crystal sys-
tems, and that the magnitude of this reciprocal-lattice vector is equal to the
reciprocal of the spacing .dhkl/.

Answer 5.2 The relationship between the crystal-lattice vectors a1, a2, and a3 with
respect to the .hkl/ plane and the reciprocal lattice Hhkl is shown in Fig. 1 from
which the target is given in the following. If the scalar product (inner product) of
two vectors included in the .hkl/ plane and the reciprocal-lattice vector is obtained,
and its value is found to be zero and then the two kinds of vectors are said to show
the perpendicular relationship. In Fig. 1, two non parallel vectors in the .hkl/ plane
are found,

� a1

h
� a2

k

�
and

� a2

k
� a3

l

�
.

Hhkl �
�a1

h
� a2

k

�
D .hb1 C kb2 C lb3/ �

�a1

h
� a2

k

�

D
�
hb1 � a1

h
C 0C 0

�
�
�
0C kb2 � a2

k
C 0

�
D 1 � 1 D 0

(1)

Here, we use the characteristic properties of real and reciprocal-lattice vectors, such
as bj � ak D 1 if j D k and bj � ak D 0 if j ¤ k. In other words, this is based on the
useful relationship that since b3, for example, is perpendicular to both a1 and a2,
the scalar product with either one of the crystal and reciprocal vectors is zero. The
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Fig. 1 The relation of vector and unit vector n of normal direction that is in (h k l) plane

same result is readily confirmed in the combination of Hhkl � � a1

h
� a2

k

�
. Therefore,

Hhkl is said to be perpendicular to the .h k l/ plane.
If the unit vector on the normal that goes to the .h k l/ plane is set as n, the

following equation is obtained.

n D Hhkl

jHhkl j (2)

The spacing dhkl corresponds to the projection to the direction of normal vector n
that goes to the target plane from the origin 0 in Fig. 1. Therefore, the following

relationship is proved with respect to the vector
a1

h
.

dhkl D a1

h
� n D a1

h
� Hhkl

jHhkl j D 1

jHhkl j
a1

h
� .hb1 C kb2 C lb3/

D 1

jHhkl j
h

h
.a1 � b1 C 0C 0/ D 1

jHhkl j (3)

Reference: Let us confirm some fundamental points for vector, area, volume, and
the relevant matrices and determinants.

Using any orthogonal set of unit vectors, e1, e2, and e3, whose direction is the
same as a coordinate axis, three vectors A, B, and C situated on a plane are expressed
by the following equation.

A D a1e1 C a2e2 C a3e3

B D b1e1 C b2e2 C b3e3

C D c1e1 C c2e2 C c3e3

9=
; (4)

In this case, the vector product of A and B is given as follows.

A � B D .a2b3 � a3b2/e1 C .a3b1 � a1b3/e2 C .a1b2 � a2b1/e3 (5)
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The area (S ) spanned by two vectors A and B situated on a plane corresponds to
the case where the coefficients a3 and b3 for e3 of a unit vector perpendicular to the
plane of the drawing are zero. Therefore, the following relationship may be obtained
from (5).

A � B D .a1b2 � a2b1/e3 D Se3 (6)

Equation (6) shows that the area of the parallelogram formed by two vectors A and B
on a plane is expressed by .a1b2 � a2b1/, and if the direction of A!B corresponds
to that of e1 ! e2, it becomes positive sign, and if reverse, it becomes negative
sign. It is also helpful to use a determinant for expressing these relationships. For
example, in the case of (6), one obtains as follows:

ˇ̌
ˇ̌a1 a2

b1 b2

ˇ̌
ˇ̌ D a1b2 � a2b1 (7)

On the contrary, the volume (V ) may be expressed in the following relation if three
vectors A, B, and C are in the space.

B � C D .b2c3 � b3c2/e1 C .b3c1 � b1c3/e2 C .b1c2 � b2c1/e3 (8)

A � .B � C/ D a1.b2c3 � b3c2/C a2.b3c1 � b1c3/C a3.b1c2 � b2c1/ D V (9)

Here, the relationships of e1 � e1 D e2 � e2 D e3 � e3 D 1 and e1 � e2 D e2 � e3 D
e3 � e1 D 0 for unit vectors are utilized.

ˇ̌
ˇ̌̌
ˇ
a1 a2 a3

b1 b2 b3

c1 c2 c3

ˇ̌
ˇ̌̌
ˇ D a1.b2c3 � b3c2/ � a2.b1c3 � b3c1/C a3.b1c2 � b2c1/ (10)

D a1b2c3 C a2b3c1 C a3b1c2 � a1b3c2 � a2b1c3 � a3b2c1 (11)

Equation (9) shows that the direction of vector A, on the basis of a plane made
by A and B, has positive sign if the vector A is situated at the same side of a plane
made by vectors .B � C/. If it is on the opposite side, the sign becomes negative. As
mentioned previously, A � .B � C/ corresponds to a volume, and it is expressed by a
determinant given by (10).

Question 5.3 The direction of the nodal line of two planes, .hkl/ and .h0k0l 0/,
which are not parallel to each other, is called a zone axis and is usually
expressed as Œuvw�.

(1) Obtain a relationship with uvw, hkl , and h0k0l 0.
(2) Check the Weiss zone law, hu C kv C lw D 0, using the fact that

a reciprocal-lattice vector is perpendicular to the corresponding crystal
plane.
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Answer 5.3

(1) If the reciprocal-lattice vectors of the .hkl/ and .h0k0l 0/ planes are Hhkl and
Hh0k0l 0 , respectively, a zone axis Œuvw� may be expressed by the vector Zuvw

whose direction is parallel to the vector product of two reciprocal-lattice vectors
Hhkl and Hh0k0l 0 . Such relationships are easily seen in Fig. 1.

Hhkl � Hh0k0l 0 D .hb1 C kb2 C lb3/ � .h0b1 C k0b2 C l 0b3/ (1)

D .hk0 � h0k/b1 � b2 C .kl 0 � k0l/b2 � b3 C .lh0 � l 0h/b3 � b1 (2)

Here, we use the relationship that the vector product of the same vector (exam-
ple: b1 � b1) is zero. In addition, when using the relationships a1 D b2�b3

V � ,

a2 D b3�b1

V � , a3 D b1�b2

V � , and V � D 1
V

, (2) can be rewritten as follows.

Hhkl � Hh0k0l 0 D .hk0 � h0k/
a3

V
C .kl 0 � k0l/

a1

V
C .lh0 � l 0h/

a2

V
(3)

D 1

V

ˇ̌̌
ˇ̌
ˇ
a1 a2 a3

h k l

h0 k0 l 0

ˇ̌̌
ˇ̌
ˇ (4)

The vector Zuvw may be expressed in the following form, when the unit cell is
defined by a1, a2, and a3, called the primitive crystal-lattice vectors.

Zuvw D ua1 C va2 C wa3 (5)

Therefore, the following relationship is obtained from (3) and (5).

ˇ̌
ˇ̌̌
ˇ

u
v
w

ˇ̌
ˇ̌̌
ˇ D

0
@ kl 0 � k0l
lh0 � l 0h
hk0 � h0k

1
A

Zuvw

hklh'k'l'

Hh'k'l'Hhkl

Fig. 1 The correlation between two reciprocal-lattice vectors and a zone axis
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(2) On the contrary, since a normal vector of a plane is perpendicular to any vector
included in that plane and if the .hkl/ plane belongs to the zone axis Œuvw�, the
scalar product of the reciprocal-lattice vector Hhkl , corresponding to the plane,
and the vector Zuvw showing the direction of the zone axis Œuvw� should be zero
i.e., Hhkl � Zuvw D 0.

Hhkl � Zuvw D .hb1 C kb2 C lb3/ � .ua1 C va2 C wa3/ (6)

D hub1 � a1 C hvb1 � a2 C hwb1 � a3

C kub2 � a1 C kvb2 � a2 C kwb2 � a3

C lub3 � a1 C lvb3 � a2 C lwb3 � a3 (7)

From the definition of the reciprocal-lattice vectors b1, b2, and b3, the primi-
tive crystal-lattice vectors a1, a2, and a3, the following useful relationships are
obtained, since b1, for example, is known to be perpendicular to both the vectors
a2 and a3.

bj � ak D 1 .j D k/

bj � ak D 0 .j ¤ k/

	
(8)

By applying these relationships to Hhkl � Zuvw, the Weiss zone law may be
readily obtained.

hu C kv C lw D 0 (9)

Question 5.4 When two crystallographic directions are expressed by two vec-
tors, Au D u1a1 C u2a2 C u3a3 and Av D v1a1 C v2a2 C v3a3, the angle �
formed by two vectors Au and Av may be given by cos� D Au�AvjAuj�jAvj .

Obtain an equation for providing cos� in two cases, (1) orthorhombic
system and (2) cubic system.

Answer 5.4

(1) Orthorhombic system ja1j ¤ ja2j ¤ ja3j a1 ? a2 ? a3

jAuj D
p

Au � Au D
p

ju1a1j2 C ju2a2j2 C ju3a3j2
jAvj D

p
Av � Av D

p
jv1a1j2 C jv2a2j2 C jv3a3j2

Au � Av D u1v1ja1j2 C u2v2ja2j2 C u3v3ja3j2

cos� D u1v1ja1j2 C u2v2ja2j2 C u3v3ja3j2pju1a1j2 C ju2a2j2 C ju3a3j2pjv1a1j2 C jv2a2j2 C jv3a3j2

(2) Cubic systems ja1j D ja2j D ja3j D a a1 ? a2 ? a3

jAuj D
q

u2
1 C u2

2 C u2
3 � a jAvj D

q
v2

1 C v2
2 C v2

3 � a
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Au � Av D .u1v1 C u2v2 C u3v3/a
2

cos� D u1v1 C u2v2 C u3v3q
u2

1 C u2
2 C u2

3

q
v2

1 C v2
2 C v2

3

Question 5.5 If the orthogonal vectors of unit length are set to ex , ey and ez,
the primitive translation vectors of the hexagonal close-packed (hcp) structure
may be given as follows.

a1 D
p
3

2
aex C a

2
ey ; a2 D �

p
3

2
aex C a

2
ey ; a3 D cez

(1) Obtain the unit vectors of reciprocal lattices b1, b2, and b3.
(2) Show the first Brillouin zone of the hcp lattice.

Answer 5.5

(1) For example, the definition of reciprocal-lattice vector b1 is as follows.

b1 D a1 � a3

V
D a2 � a3

a1 � .a2 � a3/

Therefore, when calculating a1 � .a2 � a3/ called the triple-scalar product using
matrices, we obtain the following results.

.a2 � a3/ D

ˇ̌
ˇ̌̌
ˇ̌
ˇ

ex ey ez

�
p
3

2
a
a

2
0

0 0 c

ˇ̌
ˇ̌̌
ˇ̌
ˇ

D ex

ˇ̌̌
ˇ̌
a

2
0

0 c

ˇ̌̌
ˇ̌� ey

ˇ̌̌
ˇ̌
ˇ
�

p
3

2
a 0

0 c

ˇ̌̌
ˇ̌
ˇC ez

ˇ̌̌
ˇ̌
ˇ
�

p
3

2
a
a

2
0 0

ˇ̌̌
ˇ̌
ˇ

D ac

2
ex C

p
3

2
acey (1)

a1 � .a2 � a3/ D
 p

3

2
aex C a

2
ey

!
�
 
ac

2
ex C

p
3

2
acey

!

D
p
3

4
a2cex � ex C

p
3

4
a2cey � ey .* ex � ey is zero/

D
p
3

2
a2c .* ex � ex D ey � ey D 1/ (2)
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The vector products of .a3 � a1/ and .a1 � a2/ are also calculated as follows.

.a3 � a1/ D �ac
2

ex C
p
3

2
acey (3)

.a1 � a2/ D
p
3a2

2
ez (4)

From (1) to (4), the unit vectors of the reciprocal lattice b1, b2, and b3 can be
obtained as follows.

b1 D a2 � a3

a1 � .a2 � a3/
D
ac

2
ex C

p
3

2
acey

p
3

2
a2c

D 1

a

�
1p
3

ex C ey

�

b2 D a3 � a1

a1 � .a2 � a3/
D 1

a

�
� 1p

3
ex C ey

�

b3 D a1 � a2

a1 � .a2 � a3/
D 1

c
ez

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

(5)

(2) In solid-state physics, the polyhedron called Wigner–Seitz cell is widely used.
We take the central (Winger–Seitz) cell of the reciprocal lattice as the first Bril-
louin zone. Each such cell involves one reciprocal lattice point at the center of
the cell. It may be suggested that the construction of the Wigner–Seitz type unit
cell in crystal lattice is the same as that of the first Brillouin zone in reciprocal
lattice.

We may recall some fundamental points about the first Brillouin zone. In this
unit cell, one reciprocal lattice point is set to the origin and connects with all
points that are adjacent to the origin by a straight line. Next, normal planes
perpendicular to the lines are constructed at their middle points, and we choose
a polyhedron that has a minimum volume from the set of polyhedra enclosed
by these planes. It is known that if the first Brillouin zone of the body-centered
cubic lattice is bounded by the planes normal to the twelve vectors at their
midpoints, then the resultant zone becomes a regular rhombic dodecahedron.
With respect to the face-centered cubic lattice, the boundaries of the central cell
are determined for the most part by eight planes normal to these vectors at their
midpoints to form an octahedron. However, the corners of this octahedron are
cut by planes that are the perpendicular bisectors of six other reciprocal-lattice
vectors.

The first Brillouin zone of the hcp lattice can be obtained by the follow-
ing procedure. From (5), the arbitrary reciprocal-lattice vector Hpqr may be
provided in the following form.
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Hpqr D .pb1 C qb2 C rb3/ (6)

D 1p
3a
.p � q/ex C 1

a
.p C q/ey C r

c
ez (7)

The shortest nonzero vectors may be given when the values of prq are any of
the combinations of 100 or 010. All these results are summarized as follows.

H100 D 1

a

�
1p
3

ex C ey

�
; HN100 D 1

a

��1p
3

ex C ey

�

H010 D 1

a

��1p
3

ex C ey

�
; H0N10 D 1

a

�
1p
3

ex � ey

�

H1N10 D 1

a

�
2p
3

ex

�
; HN110 D 1

a

��2p
3

ex

�

9>>>>>>>>>>=
>>>>>>>>>>;

(8)

H001 D 1

c
ez; H00N1 D �1

c
ez (9)

The first Brillouin zone of the hcp lattice can be obtained from the perpen-
dicular bisector planes of these eight reciprocal-lattice vectors given by (8) and
(9). The results are shown in Fig. 1a. Namely, the first six reciprocal-lattice
vectors make six side planes of the regular hexagonal prism and the two remain-
ing reciprocal-lattice vectors provide both top and bottom planes. As shown in
Fig. 1b, the first Brillouin zone of the hcp lattice is described, in another way, by
the hexagonal prism with its height given by jb3j D 1=c. Here, the hexagonal
base is formed by lines that are obtained by drawing six vectors (solid lines)
in the reciprocal-lattice space and further drawing the perpendicular bisector
(broken lines) of each vector.

Fig. 1 The first Brillouin zone of the hcp lattice

Note: In the real hcp crystals, since the position of
�

2
3

1
3

1
2

�
is occupied by an

atom with the c/a value deviated from the ideal case .c=a D p
8=3 D 1:633/,

the Brillouin zone shows a more complicated form. Such information is avail-
able in other monographs on Solid-State Physics, see for example “Introduction to
the Electron Theory of Metals” by Uichiro Mizutani, Cambridge University Press,
(2001) Chap. 5.
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Question 5.6 Explain that the constructive interference is observed when the
scattering vector corresponds to a reciprocal-lattice vector.

Answer 5.6 Let us consider the case where the incident X-ray beam with a wave
vector s0 encounters the scatterer located at point B, which is defined by vector r
in the real space, and produces the coherent scattering (see Fig. 1) by coupling the
scatterer located at point A. It is also assumed here that the scattered waves in the
direction of s are measured at the position P with a sufficiently long distanceR from
points A and B.

Fig. 1 The waves scattered from two points A and B and the scattering vector

The scattering vector q is given by q D s � s0, and the optical path difference	
produced from the scatterers at points A and B is 	 D r � q. Therefore, the scat-
tered wave detected at the position of P is represented as superposition of the waves
produced at points A and B, and it may be expressed in the following form.


 D 
A C 
B D e2� i.qR�vt/ C e2� if.qRC�/�vtg (1)

D e2� i.qR�vt/Œ1C e2� iq�r� (2)

The first term to the right-hand side of (2) is equivalent to a common wave phase fac-
tor for all waves, and the second term corresponds to the amplitude of the scattered
wave. Therefore, the interference effect proves only if the exponent portion of the
second term is integer multiples of 2�i. Namely, when the optical path difference	
is integer multiples of the wavelength, the scattered wave becomes in phase.

In order to extend the result for two points A and B to a general case con-
taining many scatterers, the scattering power of n-th scatterer is set to fn. Then,
a generalized form of the amplitude of the scattered waves may be expressed as
follows.


 D
X

n


n D e2� i.qR�vt/G.q/ (3)

G.q/ D
X

n

fne2� iq�rn (4)



190 5 Reciprocal Lattice and Integrated Intensities of Crystals

With respect to the amplitude of the scattered waves, (4) shows that the maximum
value is obtained when all the exponent portions are integer multiples of 2�i. This
is because the scattered waves by all the scatterers located at rn are in phase and
reinforce one another (so-called constructive interference) to form a diffracted beam
in the direction of q. Note that in all other directions of space, the scattered waves
are out of phase and cancel one another. That is, rn is characterized by a certain
periodicity (with a regular interval) so that q � rn is expressed by integers.

It may be helpful to recall the relationships between the crystal-lattice vector
Rpqr showing arbitrary lattice points and the reciprocal-lattice vector Hhkl .

Rpqr D pa1 C qa2 C ra3 (5)

Hhkl D hb1 C kb2 C lb3 (6)

Here, a1, a2, and a3 are the primitive vectors of the crystal lattice, and b1, b2,
and b3 are those of the reciprocal lattice, pqr and hkl are integers. If the scalar
product between these two vectors is calculated, the following relationship may be
confirmed.

Rpqr � Hhkl D .pa1 C qa2 C ra3/.hb1 C kb2 C lb3/ (7)

D phC qk C rl D integer (8)

Here, we use the vector property that bj � ak is unity when j D k and that it is zero
in the j ¤ k case. Equation (8) is one of the important relationships that always
holds in a crystal. Accordingly, since the crystal-lattice vector Rpqr can be set to rn,
the condition, for which all exponents of the exponential functions in (4) are integer
multiples of 2�i, may be given by the following equation.

q D Hhkl (9)

This means that the so-called constructive interference can be obtained only when
the scattering vector corresponds to a reciprocal-lattice vector. Schematic diagram
for this relationship is given in Fig. 2.

Fig. 2 Correlation between scattering vector and reciprocal-lattice vector
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Note: This is equivalent to the Bragg law. Further information is available in other
monographs, see for example “Structure Determination by X-ray Crystallogra-
phy” by Mark Ladd and Rex Palmer, Fourth Edition, Kluwer Academic/Plenum
Publishers, London, (2003).

Question 5.7 With respect to X-ray diffraction from a crystal, explain the
relationships between the incident beam, the scattered beam, and the direction
of a crystal for detecting the scattering intensity using the sphere of reflection
(Ewald sphere) or the limiting sphere.

Answer 5.7 The present requirement is to consider the following point under the
q D Hhkl condition. When the starting point of the scattering vector is set to the
origin of the reciprocal-lattice vector, the wave vector s0 of the incident beam cor-
responds to the vector of .1=�/, which points in the direction of q(D equivalent to
the origin of the reciprocal-lattice vector). Here, � is the wavelength of the incident
beam. The scattered beam wave vector s turns into the vector orientated from the
starting point of s0 to the terminal point of q, and the length of s0 and s is given
by .1=�/, and it may be simplified by q D Hhkl D .s � s0/=�. These relationships
may be expressed as shown in Fig. 1, explaining the conditions for diffraction graph-
ically. The sphere of radius .1=�/ in this figure is the Ewald sphere (it is also called
Ewald reflection sphere). Constructive interference will be obtained if the condition
of q D Hhkl is satisfied. This corresponds to the case where a reciprocal-lattice
point hkl touches the surface of the Ewald sphere drawn around the origin. Accord-
ingly, we can detect the diffracted intensity, when a detector is set to the terminal
point of q. When any reciprocal lattice point of hkl does not touch the surface of
the Ewald sphere, it is difficult to measure the diffraction intensity related to the hkl
plane. Figure 1 shows the case where a crystal (real lattice) sample slightly rotates
and also shows its relevance to the reciprocal-lattice points. However, it should also
be kept in mind that even when a crystal sample is rotated, not all reciprocal-lattice
points necessarily touch the surface of the Ewald sphere. This is also supported by
the fact that only the reciprocal-lattice points, which are located at inside the diame-
ter .2=�/ of the Ewald sphere drawn around a point of (000), satisfy the condition of
q D Hhkl as easily seen in Fig. 2 so that the detection of diffraction intensity is not
always possible. In other words, the diffraction intensities for the reciprocal-lattice
points can be observed when satisfying the following condition (see also Fig. 3)
using the incident beam with the wavelength of �. This sphere is called limiting
sphere.

1

dhkl

� 2

�
or dhkl � �

2
(1)

When there are many small crystal grains and the direction of their crystal planes
is distributed at random, the corresponding reciprocal-lattice points will be smeared
out onto spheres around the point (000). As a result, with respect to the reciprocal-
lattice points touching the surface of the Ewald sphere drawn by the radius of
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.1=dhkl/ around the origin, the higher the probability we obtain, the more frequently
we will be able to detect the diffraction intensity (see Fig. 3). This is a fundamental
principle for measuring the diffraction intensity using a goniometer for crystalline
powder samples.

Fig. 1 Rotation of a crystal sample and its relevance to the reciprocal-lattice points

Fig. 2 Graphical representation for the relationship between the rotation of a crystal sample and
the limiting sphere

Note: Considering the terminal point of the incident beam vector being the initial
point of the reciprocal-lattice vector, Fig. 4 shows the relationships between the
wavelength of the incident X-ray beam and the limiting sphere using the case of
�1 and �2. In this case, at the reciprocal-lattice points overlapped by the Ewald
sphere with radius of 1=�1 or 1=�2, the diffraction intensity will be detectable in the
direction oriented from the center of the Ewald sphere to the respective reciprocal-
lattice points. If the wavelength of the incident beam continuously changes from
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Fig. 3 Relationships between the wavelength of the incident beam and the limiting sphere for a
polycrystalline powder sample

Fig. 4 Relationships between the terminal point of the incident beam and the initial point of
the reciprocal-lattice vector when two beams with wavelengths of �1 and �2 are simultaneously
incident on a sample

�min to �max, we will be able to detect the diffraction intensity with sufficiently high
probability, since there are many Ewald spheres with various radii (Laue method).

Question 5.8 Explain Huygens principle for a typical optical phenomenon
where light passes through a small hole (or slit) and the relevant Kirchhoff
theory of diffraction that handles it mathematically using wave equation.

Answer 5.8 As shown in Fig. 1a, when a plane wave perpendicularly encounters a
plate with a small hole (or slit), a spherical wave is produced from the hole as a
central point and propagates. Two or more spherical waves are produced from each
hole if the plate has several small holes so that the interference of waves is observed
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at a position apart from the plate (see Fig. 2b). Such interference behavior is known
to depend on the periodicity of small holes. It may be suggested that Huygens prin-
ciple is the generalized method for covering various wave phenomena including a
relatively big hole. In such a case, a big hole is assumed to be the adjoined and
connected small holes.

Let us consider the optical phenomena with respect to a small hole located at a
distance l0 from a light source P0. This small hole is assumed to be a small lattice
with dx and dy, and produces the spherical wave and its behavior is observed at a
position P located at a distance l from the hole. For convenience of discussion by
the Kirchhoff theory of diffraction, we set up the condition as shown in Fig. 2. Here,
it is supposed that the plate is in the x � y plane and that a small hole is located at
the position characterized by the vector r from the origin.

The incident wave hits a plate from the negative side of z-axis of Fig. 2, and
only the wave encounters a small area characterized dr D dx � dy will receive
modulation. Here, dr is defined by the position with g.r/ D g.x; y; z D 0/ as a
function of r. For example, considering that if a hole is open, it may be described as
g.r/ D 1 and conversely, g.r/ D 0 for a closed hole. Then, we may express the case
where a spherical wave is produced from a small hole dr by satisfying the condition
g.r/ D 1. Next, let us consider that such a spherical wave is observed at the point P
which is denoted by the vector l from dr, as well as the distance jl´j from the origin.

Point P is characterized by the position using axes x, y, and z and angles ˛, ˇ,
and � , as shown in Fig. 2. According to the Kirchhoff theory of diffraction, if the
wave 
0.l0/ from the light source is incident on a small hole dr and passes through
it, and further reaches the point P, the contribution d
 (P) corresponding to that wave
may be given by the following equations.

d
.P/ D is0˚ � e�2� is0jlj

jlj g.r/ � 
0.l0/dr (1)

˚ D cos.n; l0/� cos.n; l/
2

(2)

Fig. 1 (a) The incident (plane) wave encounters one small hole and produces a spherical wave,
(b) the interference effect found in two small holes and the related intensity distribution and
(c) image of the interference effect found in a big hole
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As shown in Fig. 3, n in the small area defined by (dx�dy) is a normal vector
whose direction is oriented to the observation point P, and .n; l0/ and .n; l/ are the
angles formed by the corresponding two vectors. It may be added, as readily seen
in Fig. 3, that ˚ D 1 is well accepted when the light source P0, the hole dr, and the
observation point are located near a straight line.

Fig. 2 Spatial relationship between the small area dr in the x�y plane and an observation point P

Fig. 3 Positional relationships between the normal vector and a light source, a hole and an
observation point

Since the phase of the incident wave 
0.l0/ emitted from the light source is quite
likely to be equal in a small area (dx � dy) of the scatterer set in the x � y plane, it
is referred to as 
0.l0/ D 1. In addition, considering the relation of l D r � l´ (see
Fig. 2), the integration of (1), i.e., the amplitude of the wave observed at point P is
given by the following equation.


.P/ D is0

Z
e�2� is0jlj

jr � l´j � ˚g.r/dr (3)

jlj D jr � l´j corresponds to a change in the location of the scatterer (plate) in
which a small area (dx � dy) is set up, and it varies significantly in comparison with
the wavelength �. Therefore, the term given by an exponential function in (3) is
expected to show considerably large variation, whereas it is thought that 1=jr� l´j, a
denominator part of (3), shows monotonic change only. In addition,˚ is considered



196 5 Reciprocal Lattice and Integrated Intensities of Crystals

to be constant under the given condition of the scatterers. If these points are taken
into account, (3) may be simplified in the following form:


.P/ D is0˚

jlj
Z

e�2� is0jljg.r/dr (4)

The coordinates of the observation point P are set to .xp; yp; zp/. As previously
mentioned, the coordinates of the small area dr, i.e., a scattered object, can be
expressed by (x, y, 0) so that we obtain the following equations (see to Fig. 2).

jlj2 D .xp � x/2 C .yp � y/2 C z2
p

jl´j2 D x2
p C y2

p C z2
p

)
(5)

jlj2 D jl´j2 � 2.xpx C yyp/C x2 C y2

D jl´j2


1 � 2

xpx C yyp

jl´j2 C x2 C y2

jl´j2
	
9=
; (6)

jlj D jl´j �
s
1 � 2xpx C yyp

jl´j2 C x2 C y2

jl´j2 (7)

jl´j is sufficiently large in comparison with the absolute values of x and y. That is,
since the relationships of jl´j � x and jl´j � y hold, the following approximation
is obtained.

jlj D jl´j � x xp

jl´j � y
yp

jl´j
D jl´j � x � cos˛ � y � cosˇ

9=
; (8)

Considering that g.r/dr is expressed by g.x; y/dx � dy, the relationships of (8)
can be rearranged by coupling (4) in the following form.


.P/ D is0˚

jl´j e�2� is0jl´j
Z
g.x; y/e2� is0.x cos ˛Cy cos ˇ/dx � dy (9)

The term, which can be excluded from the integration of (9), is set to a constant C,
and the components of x-axis and y-axis are described in the following equations
when using the unit vector s0 of the incident wave.

sx D s0 cos˛ D cos˛

�

sy D s0 cosˇ D cosˇ

�

9=
; (10)

Therefore, (9) is given in the following form.


.sx; sy/ D C
Z
g.x; y/e2� i.x�sxCy�sy/dx � dy (11)
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Here, 
.sx; sy/ corresponds to the two-dimensional Fourier transform of g.x; y/.
Equation (11) may also be expressed as follows.


.sx; sy/ D C
Z
g.x; y/e2� i.x� cos ˛

�
Cy� cos ˇ

�
/dx � dy (12)

Question 5.9 Calculate the diffraction intensity produced from the case where
m slits with aperture width L are aligned at an interval d on a line (one-
dimensional array).

Answer 5.9 A schematic diagram of the given condition is illustrated in Fig. 1.
Considering that if a hole is open, it may be described as g.r/ D 1 and in reverse
g.r/ D 0 for a closed hole. Similar to this idea, a mathematical representation of
slits is given by the following equations.

g.x/ D
8<
:
1 .j � 1/d � x � .j � 1/d C L

0 .j � 1/d C L < x < jd

.j D 1; 2; : : : m/

9=
; (1)

wherem slits are aligned at an interval d along the x-axis. We also use the scattering
amplitude 
 given by the Kirchhoff theory of diffraction.


.P/ D C

Z
g.x; y/e2� is0.x�cos ˛Cy�cos ˇ/dx � dy (2)

In the present case, the constant C in (2) is omitted, and because of the one-
dimensional arrangement, g.x; y/ is replaced by g.x/ as well as ˛Cˇ D �

2
. Then,

one obtains the following equations.


.P/ D C

Z 1

�1
g.x/e2� is0x�cos ˛dx (3)

D
Z L

0

1 � e2� is0x�cos ˛dx C
Z dCL

d

1 � e2� is0x�cos ˛dx

C
Z 2dCL

2d

1 � e2� is0x�cos ˛dx C � � � C
Z .m�1/dCL

.m�1/d

1 � e2� is0x�cos ˛dx (4)

Equation (4) can be rewritten as follows.


.P/ D
mX

j D1

Z .j �1/dCL

.j �1/d

e2� ix�cos ˛dx (5)
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Here, we use again ˛ C ˇ D �
2

and s0 cos˛ D cos ˛
�

D sin �
�

(see Question 5.7 and
Fig. 2).


.P/ D
mX

j D1

Z .j �1/dCL

.j �1/d

e2� ix sin �
� dx (6)

Using that a wave vector of s0 is equal to 1=� and setting as t D 2�s0 sin �
simultaneously, (6) can be arranged in the following form.


.P/ D
mX

j D1

Z .j �1/dCL

.j �1/d

eitxdx (7)

Fig. 1 Schematic diagram of diffraction in one-dimensional slit system

This problem is related to the integration using
R

ekxdx D ekx

k
, but the sum of

the definite integral of (7) can be estimated by the following method.

T D
mX

j D1

 Z .j �1/dCL

.j �1/d

eitxdx

!
D
�

eitx

it

�L

0

C
�

eitx

it

�dCL

d

C
�

eitx

it

�2dCL

2d

C � � � C
�

eitx

it

�.j �1/dCL

.j �1/d

(8)

itT1 D eitL C eit.dCL/ C eit.2dCL/ C � � � C eitf.j �1/dCLg (9)

D eitLf1C eitd C e2itd C e3itd C � � � C e.j �1/itd g (10)

itT2 D 1C eitd C e2itd C e3itd C � � � e.j �1/itd (11)

We find that the right-hand side of f g of (10) and (11) corresponds to geometric
progression expressed by the first term D 1 and the common ratio D eitd . In the
geometric progression famg D a0 C a0r C a0r2 C � � � arm�1, the partial sum Sn up
to the nth term is given by the following equation so that we also obtain the sum
of (11).
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Sn D a0.1 � rm/

1 � r
D itT2 D 1 � .1� eitdm/

1 � eitd
(12)

The integrated value is given by T D 1

it
.T1 � T2/, and then the following equation

is proved.

T D 1

it
.eitLT2 � T2/ D 1

it
T2.e

itL � 1/ (13)

Substituting (13) for (12), the integrated value becomes as follows.

T D
�

eitL � 1
it

� 
1 � eitdm

1 � eitd

!
(14)

We use eix � e�ix D 2i sinx, which is one of the relationships between exponential
functions and trigonometric functions.

eix � 1 D 2

 
ei x

2 � e�i x
2

2

!
ei x

2 D 2i sin
�x
2

�
� ei x

2 (15)

tdm

2
D m�d � s0 sin �;

td

2
D �d � s0 sin �;

tL

2
D �L � s0 sin � (16)

Rearranging (14) using (15) and (16), we will get the solution of (7) in the following
equations.


.P/ D 2i sin.�L � s0 sin �/

i2�s0 sin �
ei tL

2 � �2i sin.m�d � s0 sin �/ � ei tdm
2

�2i sin.�d � s0 sin �/ � ei td
2

(17)

D L sin.�L � s0 sin �/

�Ls0 sin �
� sin.m�d � s0 sin �/

sin.�d � s0 sin �/
� ei tL

2 � ei.m�1/ td
2 (18)

The 1st term of (18) is equivalent to the contribution of one slit, and the 2nd
term corresponds to the contribution from the arrangementm slits being aligned at
an interval d . Note that L in the 1st term is introduced into both denominator and
numerator for getting unity of description with that of a sine function. Diffraction
intensity is known to be the square of amplitude, and it can be obtained by multiply-
ing the expression given for the amplitude by its complex conjugate. Then, it will
be given as follows.

I D j
.P/j2 D
ˇ̌
ˇ̌L sin.�L � s0 sin �/

�Ls0 sin �

ˇ̌
ˇ̌2 �

ˇ̌
ˇ̌ sin.m�d � s0 sin �/

sin.�d � s0 sin �/

ˇ̌
ˇ̌2 (19)

The 2nd term of (19) is called the Laue function, and in the present case, this term
shows the effect ofm slits aligned at an interval d on the diffraction intensity. There-
fore, it also leads to the case where atoms form a three-dimensional array with
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regular periodicity, that is, crystal. For example, if setting as k D �d � s0 sin �
and setting the 2nd term of (19) to FL.k;m/ again, we obtain the following simple
equation as a function of k andm.

jFL.k;m/j2 D sin2.mk/

sin2 k
(20)

When k is an integer multiple (m) of � , both denominator and numerator turn out
to be zero. That is, the condition k D m� (m: integer) turns out to be d �sin � D m��,
recalling �d � s0 sin � D m� and s0 D 1=�. When the phase difference of waves
generated from slits aligned on the line at the regular interval is integer multiples
of the wavelength, the so-called constructive interference forms a diffracted beam.
This is equivalent to the diffraction condition in a crystal. By applying mathematical
procedures, the limit value is found to become m2 if k ! m� in (20). Using this
relationship and normalizing the Laue function by m2 to represent the diffraction
intensity, we obtain the results as shown in Fig. 2.

When increasing the number of slits m, the peak at k D m� will be sharp. On
the contrary, if the value of d changes under the fixed m value, a different behavior
is found. For example, when doubling the value of d , we find the frequency of the
Laue function reduced to one half (1/2). (Suggestion: Try to check such a behavior
by yourself. For example, for fixedm D 10, the value of d is varied as 0.1, 0.2, and
0.4 mm).

Fig. 2 Examples of the normalized Laue function

Question 5.10 X-rays are known to be electromagnetic waves, so that their
periodic oscillations of both the electric and magnetic fields are polarized.
Explain the polarization of an electromagnetic wave.
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Answer 5.10 In order to facilitate the understanding of the nature of electromagnetic
waves, a schematic diagram is given in Fig. 1, which represents the oscillatory com-
ponents vibrating in the x � y plane. The x-axis is the direction of propagation of
the wave. It is also noted that electromagnetic waves including X-rays are assumed
to be plane-polarized so that we can draw the electric field vector (E) always in
the y-plane only and the magnetic field vector .H/ perpendicular to E as shown in
Fig. 1. That is, the electric field and magnetic field vectors perpendicularly intersect
to form the so-called orthogonal set.

The electric field intensity � of the plane-polarized waves shows cyclic variations
with time t , and it is represented in the following form as a function of the distance
x in the direction of the x-axis.

� D A cos 2�.�t C ı/ (1)

Where A is amplitude, � is frequency, and ı is phase. Wavelength (�) and fre-
quency (�) are correlated in the form of � D c=� using the speed of light c. The
wavelength .�/ is equivalent to one cycle unit in variation of the electric field E
against x with the fixed time t . This periodicity is a key point for handling waves.

Using angular frequency (or angular vibration), the variation of the electric field
intensity �.y; t/ as a function of time t is also represented in the following form.

�1.x; t/ D eyAy � ei.!t�kxCıy/ (2)

where ey is a unit vector in the direction of y-axis, ! is angular frequency given
by ! D 2��, and k is wave number given by k D .2�/=�. Note that s D 1=� is
frequently used as wave number so that careful treatment is required for discussing
equations of waves.

Fig. 1 Schematic diagram for propagation of X-rays

Equation (2) describes the case where the direction of wave oscillation is
restricted to the x � y plane only. For discussing a more generalized case, it is
necessary to handle the state where a wave with the common angular frequency
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! and wave vector k propagates along the x-direction and vibrates in both x � y

and y � z planes. These two planes perpendicularly intersect to form the so-called
orthogonal set. Therefore, the z-axis component should be included as is expressed
by the following equation.

�2.x; y/ D ezAzei.!�kxCız/ (3)

ıy and ız of (2) and (3) are the initial phases of the y- and z-components of each
wave. When two waves are synthesized, the variation in the electric field intensity
�.y; t/ of the resultant wave may be given as follows.

�.x; t/ D .eyAyeiıy C ezAzeiız/ei.!t�kx/ (4)

Setting phase to ı D ız � ıy , the wave of �2 is shifted to the positive side by a
value of ı, when compared with the wave of �1. Since the variation in the electric
field intensity is expressed by a real part of the complex number representation, each
component may be given by the following equations.

�y D Ay cos.!t � kx C ıy/

�z D Az cos.!t � kx C ız/

	
(5)

It is noted that a wave front is a surface perpendicular to the direction of wave
propagation. Let us consider that the wave propagates with vibration in both x � y

and y � z planes under the condition of fixed time t . The locus of a wave front
of the electric field vector for this wave may be illustrated as shown in Fig. 2. The
locus turns out to be a spiral of a right-hand screw in the direction of propagation
of the wave in the region of 0 < ı < � , and its cycle is expressed by �. Looking
at this locus with its relevance to the y � z plane, it will be observed as an oval
(ellipse). The electromagnetic wave exhibiting this behavior is called “clockwise
elliptic polarization of light.” This oval nature is connected with the components
given by (5) in the following equation.

�
�y

Ay

�2

C
�
�z

Az

�2

� 2

�
�y

Ay

��
�z

Az

�
cos ı D sin2 ı (6)

Fig. 2 Propagation of the elliptic polarized wave



5.6 Solved Problems 203

Fig. 3 Variation in polarization: counterclockwise (a left-handed screw), which is looked from an
observer

Fig. 4 Description for the elliptic polarization

If phase ı is set to the region � < ı < 2� , the electromagnetic wave becomes
“counterclockwise elliptic polarization of light”. The shape of the ellipse depends
on tan˛ D Ay=Az and ı. For convenience, Fig. 3 shows the form of the ellipse
polarization when ı changes from 0 to 2� under the condition of tan˛ D 1:3. (The
details are given in other monographs, for example, Masao Tsuruta : Applied Optics,
Baifukan, Tokyo, (1990)).

Reference: The relationships describing elliptic polarization of light are given
below, for the case where the angle � formed by a long axis and the z-axis shows
the variation of 0 � � � � . a and b are the long radius and the short radius of the
ellipse, respectively (see also Fig. 4).
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a2 C b2 D A2
y C A2

z

tan˛ D Ay

Az

�
0 � ˛ � �

2

�
9=
; (7)

tan 2� D tan 2˛ � cos ı .ı D ız � ıy/

sin 2
 D sin 2˛ � sin ı .ı D ız � ıy/

	
(8)

tan 
 D ˙b

a

�
��
4

� 
 � �

4

�
(9)

Note: clockwise rotation: positive sign, counterclockwise rotation : negative sign,
and tan 
 is called ellipticity.

Question 5.11 Derive an equation for providing the diffraction intensity of a
diatomic molecular gas.

Answer 5.11 At first, let us consider a monatomic gas where each atom is moving
at random without any correlation. In such a case, since X-rays scattered from each
atom do not mutually interfere, the resultant diffraction intensity I can be computed
as the simple sum of scattering power f .q/ of each atom.

I D
NX
l

jf .q/j2 D N jf .q/j2 (1)

Where N is the total number of atoms in the system.
On the contrary, let rmn be the coordinate of n-th atom located at a distance from

the position of m-th atom, and then if all the sum of N number of atoms is taken,
we obtain the following equation.

I D
X

n

X
m

jf .q/j2e�2� iq�rmn (2)

D N jf .q/j2
0
@1C

X
n¤m

e�2� iq�rmn

1
A (3)

In (3), if there is no correlation between atoms, the exponential term is zero, and
(3) is readily found to be equal to (1).

Supposing the case where diatomic molecules are arranged along a straight line
with a distance d and molecules do not move at all. In addition, we find the rela-
tionship displayed in the central part of Fig. 1. Here, d is a vector representing the
positional interrelation (Dspatial correlation) of atoms and R is equivalent to a vec-
tor directed to the center of molecule from the origin. Let q be the scattering vector.
In this case, it can be treated along the way similar to the scattering amplitude
of diffraction by the slit aperture of d: (see Question 5.9) That is, the scattering
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amplitude F.q/ is the Fourier transform of the distribution function given by the
delta function in the region between �d=2 and d=2.

F.q/ D
Z 1

�1
e�2� iqx



ı

�
x � d

2

�
C ı

�
x C d

2

�	
dx (4)

D ei�qd C e�i�qd D 2 cos.�qd/ (5)

Therefore, the scattering amplitude G.q/ of diatomic molecules with its scattering
power f .q/ is given by the following equation.

G.q/ D f .q/ � 2 cos.�q � d/ (6)

Note that if the distribution for the direction of vector q is calculated with respect to
the scattering amplitude, the term of e�2� iq�R, equivalent to the phase, will appear.
However, it appears to be unrelated to molecular orientation, so we ignore this term.

The direction of vectors d and q affects the value G.q/. For example, the value
of G.q/ depends on whether the direction of d is parallel or perpendicular to q.
However, molecules are considered to be very actively moving in the gaseous state,
so the actual diffraction intensity may be obtained by averaging jG.q/j2 over time.
If the time-averaging operation is expressed by hi, we obtain the following equation.

I.q/ D N hjG.q/j2i D N jf .q/j2 � 4hcos2.�q � d/i (7)

It is supposed that the direction of the molecules is completely random, and every
direction is distributed at equal probability for the scattering vector called isotropic
distribution. This corresponds to the condition that the terminal point of vector d
expressing the mutual spatial correlation of two atoms exists on the sphere surface
of radius dS at equal probability (see Fig. 2). Therefore, the time-averaging (7) can
be expressed by the following equations.

hcos2.�q � d/i D 1

4�dS
2

Z 2�

0

dSd�
Z �

0

.�q � d/dS sin �d� (8)

D 2�dS � dS

4�dS
2

Z �

0

cos2.�qd cos �/ sin �d� (9)

D 1

2



1C sin.2�qd/

2�qd

	
(10)

With respect to the scalar product of two vectors in Fig. 2, we use q � d D qd cos �
by using polar coordinates. Applying (10)–(7), we obtain a formula for calculating
the diffraction intensity of a diatomic molecular gas as follows.

I.q/ D N jf .q/j2 � 2


1C sin.2�qd/

2�qd

	
(11)
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Fig. 1 Model of diatomic molecular gas

Fig. 2 Relationship between d and q � d in the isotropic distribution

Note:
cos � D x ! � sin �d� D dx

cos.�/ D �1; cos.0/ D 1Z b

a

f .x/dx D �
Z a

b

f .x/dx

cos2 ˛

2
D 1

2
.1C cos˛/

Z �

0

cos2.�qd cos �/ sin �d� D �
Z �1

1

cos2.�qdx/dx D
Z 1

�1

�
2�qdx

2

�
dx

D 2

Z 1

0

1

2
f1C cos.2�qdx/gdx D

�
x C sin.2�qdx/

2�qdx

�1

0

D 1C sin 2�qd

2�qd

Question 5.12 Derive the Debye formula in the following form providing the
diffraction intensity for a polyatomic molecular gas.

I.q/ D
X

m

2
4f 2

m C
X
n¤m

fmfn

sin.2�q � rmn/

2�q � rmn

3
5

Answer 5.12 As found in computation for the diffraction intensity of a diatomic
molecular gas, the diffraction intensity from a set of scattering objects consisting of
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some atoms may be given by the square of the sum of scattering amplitude of each
scatterer. Representing the vector showing the position of n-th atom as rn and the
scattering amplitude as fn.q/, we may obtain a generalized form of the diffraction
intensity I.q/ in the following equations.

I.q/ D G.q/�G.q/ (1)

D
X

m

e2� iq�rmnf �
m.q/ �

X
n

e�2� iq�rmnfn.q/ (2)

D
X

m

X
n

f �
m.q/fn.q/e�2� iq�.rn�rm/ (3)

D
X

m

X
n

f �
m.q/fn.q/e�2� iq�rmn .* rmn D rn � rm/ (4)

The exponential term of (4) including the vector rmn and the scattering vector q
shows correlations of the scattering object formed by some atoms. The time-
averaging process is applied along the way similar to the case of a diatomic
molecular gas. The results are as follows.

he�2� iq�rmni D 1

4�

Z 2�

0

d�
Z �

0

e�2� iq�rmn�cos � sin �d� (5)

D 1

2

Z 1

�1

e�2� iq�rmnxdx (6)

D sin.2�qrmn/

2�qrmn

(7)

where setting t D 2�qrmn and the following relationship is used.

Z 1

�1

e�itxdx D
�

e�itx

�it

�1

�1

D eit � e�it

it
D 2i sin t

it
D 2 sin t

t

By coupling (4) with (7) and doing the sum ofm�n D N 2, the diffraction intensity
can be obtained in the following equation.

I.q/ D
NX
m

NX
n

fmfn

sin.2�qrmn/

2�qrmn

(8)

Equation (8) is called Debye formula. Since (8) includes the term reflecting intra-
molecular correlations, the following formula is also widely used.

I.q/ D
X

m

2
4f 2

m C
X
n¤m

fmfn

sin.2�q � rmn/

2�q � rmn

3
5 (9)
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It is noted that the parenthesis of (9) is called the interference function of molecules.
For example, suppose a diatomic molecular gas consists of one kind of atom and the
distance of two atoms is characterized by d only, the diffraction intensity is given as
follows when setting the total number of atoms to N (namely, number of molecules
is N=2).

I.q/ D Nf 2



1C .N � 1/ sin.2�qd/

2�qd

	
(10)

Question 5.13 In an X-ray diffraction measurement, one has the option of
placing a crystal monochromator in the incident beam generated from an X-
ray tube. In this experimental condition, the polarization factor may be given
in the following equation.

P D 1C cos2 2�M cos2 2�

1C cos2 2�M

where 2�M is the diffraction angle of a monochromator. Derive this equation.

Answer 5.13 Let us consider the measurement using a diffractometer with a crystal
monochromator placed in the incident beam as illustrated in Fig. 1. In this exper-
imental condition, the characteristic X-ray beam generated from an X-ray tube is
first diffracted at a monochromator and then further diffracted by a sample. Let 2�
and 2�M be the diffraction angle of a sample and that of a monochromator, respec-
tively. Note that the X-ray source, usually having the line focal spot on the target, is
perpendicular to the plane of the drawing and it is also parallel to the diffractometer
axis.

Let us set the y-direction to the direction contained in a plane perpendicular to
the direction of propagation of the X-ray beam and parallel to the diffractometer
axis, whereas the x-direction is perpendicular to that plane (see Fig. 1).

Using two components of the amplitude, Eox and Eoy, for the variations in
electric field intensity of the incident X-ray beam, two components of the amplitudes
Ex0 and Ey0 of X-rays diffracted by the crystal monochromator may be expressed
in the following equations.

Ex0 D Eox

Ey0 D Eoy cos 2�M

hE 02i D hEx02i C hEy02i D hEox2i C hEoy2i cos2 2�M

9=
; (1)

Since the characteristic X-ray beam generated from an X-ray tube is not polarized,
the following relationship holds.

1

2
hEo2i D hEox2i D hEoy2i (2)
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By taking account of the relationship of (2), hEox2i and hEoy2i terms are
expressed by hEo2i, and the diffraction intensity is known to be proportional
to the square of the amplitude for the variations in the electric field intensity. Then,
we obtain the intensity formula as follows.

I 0 D KI0

.1C cos2 2�M/

2
(3)

where K is a constant and I0 is the intensity of the incident X-ray beam.
Similarly, the amplitudes of X-rays diffracted by the crystalline sample are in the

following equations.

Ex00 D Ex0 D Eox

Ey00 D Ey0 cos 2� D Eoy cos 2� cos 2�M

hE 002i D hEx002i C hEy002i
D hEox2i C hEoy2i cos2 2� cos2 2�M

9>>=
>>;

(4)

In this case, we obtain the intensity formula as follows.

I 00 D KI0

�
1C cos2 2� cos2 2�M

2

�
(5)

If I0 is expressed by I 0 based on (3) and substituted into (5), the following equation
is obtained.

I 00 D I 0
�
1C cos2 2�M cos2 2�

1C cos2 2�M

�
(6)

Fig. 1 Schematic diagram of geometry for a diffractometer when placing a crystal monochromator
in the incident beam
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Question 5.14 Answer the following questions concerning the effect of an
anomalous dispersion term on the structure factor of zinc blende (ZnS). Let
set X ray atomic scattering factors of Zn and S be fZn and fS, and the real part
and imaginary part of anomalous dispersion terms are f 0

Zn, f 00
Zn and f 0

S , f 00
S ,

respectively. The positions of Zn in zinc blende are (0 0 0), (0 1/2 1/2), (1/2 0
1/2), (1/2 1/2 0), and those of S are (1/4 1/4 1/4), (1/4 3/4 3/4), (3/4 1/4 3/4),
(3/4 3/4 1/4).

(1) Obtain the structure factor Fhkl and jFhkl j2 including the anomalous
dispersion terms.

(2) Obtain the structure factors for two diffraction peaks 111 and N1N1N1.
(3) The values of the anomalous dispersion terms for Cu-K˛ radiation are

known to be f 0
Zn D �1:6, f 00

Zn D 0:68, f 0
S D 0:32, and f 00

S D 0:56.
Compute the jFhkl j2 values for two cases, hkl D 111 and N1N1N1.

(4) Compute the possible % difference detected in the diffraction intensity
between 111 and N1N1N1.

Answer 5.14

(1) The structure factor of zinc blende is as follows (see Question 3.13).

Fhkl D


fZn C f 0

Zn C if 00
Zn C .fS C f 0

S C if 00
S /e

i�
�

hCkCl
2

�	

.1C ei�.hCk/ C ei�.kCl/ C ei�.lCh//

jFhkl j2 D


fZn C f 0

Zn C if 00
Zn C .fS C f 0

S � if 00
S /e

i�
�

hCkCl
2

�	

.1C ei�.hCk/ C ei�.kCl/ C ei�.lCh//

�


fZn C f 0

Zn � if 00
Zn C .fS C f 0

S � if 00
S /e

�i�
�

hCkCl
2

�	

.1C e�i�.hCk/ C e�i�.kCl/ C e�i�.lCh//

(2) The structure factors of 111 and N1N1N1 are described in the following equations.
In the case of hkl D 111,

F111 D 4f.fZn C f 0
Zn C f 00

S /� i.fS C f 0
S � f 00

Zn/g

jF111j2 D 16f.fZn C f 0
Zn C f 00

S /
2 C .fS C f 0

S � f 00
Zn/

2g
In the case of hkl D N1N1N1,

FN1N1N1 D 4f.fZn C f 0
Zn � f 00

S /C i.fS C f 0
S C f 00

Zn/g

jFN1N1N1j2 D 16f.fZn C f 0
Zn � f 00

S /
2 C .fS C f 0

S C f 00
Zn/

2g
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(3) We can find
�

sin �
�

�
D

p
3

2a
in both cases of 111 and N1N1N1 by using the relation-

ship of
�

sin �
�

�2 D h2Ck2Cl2

4a2 . Then, it turns out to be
�

sin �
�

�
D

p
3

2�5:4109
D

0:16Å
�1

. We also obtain fZn D 24:16 and fS D 11:86 for the atomic scatter-
ing factors based on the numerical data compiled in Appendix A.3. Substitute
these numerical values for the corresponding terms in the equations acquired in
question (2). Including the given values for the anomalous dispersion terms, we
obtain the following results.

jF111j2 D 16f.24:16� 1:6C 0:56/2 C .11:86C 0:22� 0:68/2g D 10669

jFN1 N1 N1j2 D 16f.24:16� 1:6 � 0:56/2 C .11:86C 0:32C 0:68/2g D 10390

(4) jF111j2 � jFN1N1N1j2
jF111j2 D 279

10699
D 0:026

Therefore, this result implies that 2.6% of difference can be detected. It is also
noteworthy that such difference in the intensities of two planes is observed
because of the noncentrosymmetric nature of the zinc blende structure.

Question 5.15 Cu3Au is known to have a cubic lattice, and below the critical
temperature 663 K, the Cu and Au atoms in Cu3Au are arranged to form a
perfectly ordered phase in which each unit cell contains one Au atom and
three Cu atoms. Their positions are characterized as follows. The position of
Au is 000, and the positions of Cu are 1

2
1
2
0, 1

2
0 1

2
, and 0 1

2
1
2

. On the contrary, in
disordered phase, Cu and Au atoms are arranged at random on the atomic sites
so that the probability that a particular site is occupied by a specific element
is simply proportional to the atomic fraction. That is, each site is occupied by
a statistical average of 1

4
Au and 3

4
Cu:

(1) Derive the expression of F for the ordered phase.
(2) Derive the expression of F for the disordered phase.
(3) For what reflections will the F value be the same in both the ordered and

disordered phases? Obtain also the reflections for not-equal case.
(4) Derive the expression of F 2 for the ordered phase by introducing the

anomalous dispersion terms f 0 and f 00 of both Cu and Au atoms.

Answer 5.15

(1) In the ordered phase, each unit cell contains the following particular atomic
arrangement (see Fig. 1a).
Au : One site 000
Cu : Three sites 1

2
1
2
0, 1

2
0 1

2
, 0 1

2
1
2

F D fAu C fCuŒe� i.hCk/ C e� i.kCl/ C e� i.lCh/�



212 5 Reciprocal Lattice and Integrated Intensities of Crystals

Fig. 1 Unit cells of Cu3Au. (a) ordered phase and (b) disordered phase

(i) h; k; l : even/odd unmixed

cos ! C1; sin ! 0 .whenhC k; k C l; l C h W All are even/

F D fAu C 3fCu

(ii) h; k; l : even/odd mixed

cos ! �1; sin ! 0 .hC k; k C l; l C h W Any of two is odd/

F D fAu � fCu

(2) In the disordered phase (see Fig. 1b), the atomic scattering factor of the average
Cu-Au atom is as follows.

fav D 1

4
fAu C 3

4
fCu

) F D fav

�
1C e2� i

�
hCk

2

�
C e2� i

�
kCl

2

�
C e2� i

�
lCh

2

��

(i) h; k; l : even/odd unmixed

cos ! 1; sin ! 0 .hC k; k C l; l C h W All are even/

F D fAu C 3fCu D 4fav

(ii) h; k; l : even/odd mixed

cos ! �1; sin ! 0 .hC k; k C l; l C h W Any of two is odd/:

F D 0

Note that no reflections of mixed indices are observed.

(3) If h; k; l are not even/odd unmixed, the F value of the ordered phase is found
to be equal to that of the disordered phase. On the contrary, the difference is
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found when h; k; l are even/odd number mixed. For this reason, the Bravais
lattice of the ordered phase is simple cubic and that of the disordered phase is
face-centered cubic.

(4) F 2 of the ordered phase
(i) even/odd unmixed

F 2 D .f 0
Au C f 0

Au/
2 C .f 00

Au/
2 C 6Œ.f 0

Au C f 0
Au/ � .f 0

Cu C f 0
Cu/C f 00

Au � f 00
Cu�

C9Œ.f 0
Cu C f 0

Cu/
2 C .f 00

Cu/
2�

(ii) even/odd mixed

F 2 D .f 0
Au C f 0

Au/
2 C .f 00

Au/
2 � 2Œ.f 0

Au C f 0
Au/ � .f 0

Cu C f 0
Cu/C f 00

Au � f 00
Cu�

C.f 0
Cu C f 0

Cu/
2 C .f 00

Cu/
2

Question 5.16 Answer the following questions concerning a Laue function in

the form of sin2.�NQd/

sin2.�Qd/
, using the case of d D 0:3 nm as an example.

(1) Explain the conditions where the Laue function gives a peak, its maxi-
mum value, and the reason why some small peaks appear in the region
around the main peak.

(2) Compute the height of the second peak in close vicinity of the main peak
using the case of N D 20 as an example.

Answer 5.16

(1) In the Laue function, N is the number of unit cells, d is a lattice spacing, and
Q is a wave vector. If we set x D �Qd , both the denominator and the numera-
tor of the Laue function will be zero for x D n� (n is integer). The value of the
Laue function for this limit can be found as follows.

lim
x!n�

(
sin2.Nx/

sin2 x

)
D lim

x!n�



2N sin.Nx/ � cos.Nx/

2 sin x � cos x

	
(1)

D lim
x!n�

2N � 1

2
fsin.2Nx/g

2 � 1

2
fsin.2x/g

(2)

D lim
x!n�

N sin.N � 2x/
sin 2x

D N 2 (3)

where the following relationships are used.
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sin.at/ � cos.bt/ D 1

2
fsin.a C b/t C sin.a � b/tg

lim
t!0

sin t

t
D lim

t!0

t

sin t
D 1

lim
t!0

sin bt

sin at
D lim

t!0

sin bt

bt
� at

sin at
� b
a

D 1 � 1 � b
a

D b

a

Therefore, the Laue function has the limit ofN 2, corresponding to its maximum
value, if x is zero, � , 2� , and 3� etc. For this reason, the Laue function is
frequently represented in the normalized form by N 2.

The value of N itself stipulates the full peak width, i.e., it is deeply corre-
lated with the peak sharpness in the vicinity of a reciprocal-lattice point. The
larger the value of N is, the sharper the full peak width becomes. In other
words, the peak width is inversely proportional to the number of unit cell found
in the corresponding direction. Suppose d D 0:3 nm, peaks will be observed at
the interval of Q D 3:33 nm�1 in the reciprocal lattice. Since Q and d

correspond to variables in reciprocal space and real space, respectively, they
exhibit mutually reciprocal relationships. For example, for peaks at a relatively
small interval of Q, the d -value is large and, inversely, we find peaks at a
relatively large interval of Q if the d -value becomes small.

Concerning the reason why a small peak appears in the region around the
main peak, let us consider an extreme case where a sample consists only of
three unit cells .N D 3/. As shown in Fig. 1, a small peak observed in the
middle of the two peaks may be called the partial interference result, which is
characterized by the phase difference of � between the wave generated from a
central unit cell and those of two unit cells of both ends.

0 1

si
n2  

N
x

si
n2  

x

2

d = 0.3nm
N 2

3 nm–1

Q1
Q1

Q2

Q2

1 2 3 1 2 3

Fig. 1 Peak structure and its relevant factor appeared in the Laue function (N D 3)

(2) If the Laue function is calculated for the case of N D 20, we get the results
illustrated in Fig. 2. The global maximum is found to beN 2 D 400. As a result,
the local maximum of the 2nd peak is 18.7, that is about 4:7% of the global
maximum.
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Fig. 2 Variations of the Laue function (N D 20)

Question 5.17 The function y D sin2 Nx

sin2 x
can be approximated by y D

N 2 sin2 �

�2 in the close vicinity of x D 0, where � D Nx.

(1) Derive an equation for providing the full peak width at half maximum
ordinate given by this function.

(2) Derive an equation for providing the area under the peak given by this
function.

(3) Discuss “what is the dependence of N ,” with respect to the maximum
ordinate, of the full peak width at half maximum ordinate and of the area
under the peak.

Answer 5.17

(1) Referring to the schematic diagram of Fig. 1, we compute the full width at half
maximum ordinate of the following function

y D N 2 sin2 �

�2

The purpose is to find �, which gives y D N 2 and y D N 2=2 when x D 0.

N 2 sin2 �

�2
D N 2

2

sin2 � � �2

2
D 0�

sin � C �p
2

��
sin � � �p

2

�
D 0

Since � is also close to zero in the vicinity of x D 0, sin � and � are the same
signs and we find sin � C �

2
¤ 0.
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Therefore, sin �� �p
2

D 0 so that we may use the approximation of sin � D
x � x3

3Š

� � �3

6
� �

2
D 0

�2

6
�
 p

2 � 1p
2

!
D 0

�2 D 3
p
2.

p
2 � 1/ D 6 � 3p2

� D ˙
q
6 � 3p2

Therefore, it will be x D ˙
p

6�3
p

2
N

, and the corresponding peak width �x

can be obtained as follows.�x D 2
p

6�3
p

2

N
.

(2) Referring to the schematic diagram of Fig. 2, the area under the peak is esti-
mated as follows. In the present case, the purpose is to find x, which gives
y D N 2 sin2 Nx

sin2 x
D 0.

From the condition .sin2Nx/=x2 D 0, we find sinNx D 0.

x D m�

N
.m is integer/

It will be x D ˙ �
N

as m D ˙1 in the close vicinity of x D 0. It is also found
in this case that � D ˙� .

On the contrary, since dx D d�=N from the definition � D Nx, we obtain
the area under the peak in the following equation.

Fig. 1 Schematic diagram of a diffraction peak
and its half width

Fig. 2 Schematic diagram of a diffraction peak
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Z �=N

��=N

N 2 sin2Nx

N 2x2
dx D

Z �

��

N 2 sin2 �

�2

d�

N
D 2N

Z �

0

sin2 �

�2
d�

Note:
R �

0
sin2 �

�2 d� is a constant that is independent on N .

(3) According to the above-mentioned results, the area under the peak is propor-
tional to N , whereas the full peak width at half maximum ordinate is found to
be proportional toN�1. In addition, the maximum of the peak can be computed
at the condition x D 0 .� D 0/, and it is given in the following equation.

lim
�!0

N 2 sin2 �

�2
D N 2 lim

�!0

 
sin �

�

!2

D N 2

Therefore, the maximum of the peak is dependent on N 2.

Question 5.18 Answer the following questions concerning the measurement
of the diffraction intensity in the symmetrical transmission mode for a thin
slab of crystalline powder sample of mass per unit areaM 0. Suppose the inci-
dent beam and diffracted beams form equal angles with the surface of the slab
sample, and the incident beam intensity is expressed by I0A0 D P0.

(1) Derive an equation providing the integrated intensity P 0 per unit length
of the diffraction circle at a distance R from the thin slab sample.

(2) Discuss what value ofM 0 will maximize P 0.

Note: The integrated intensity P from the effective irradiated volume V is
given by the following equation.

P D I0

�
e4

m2
ec

4

�
V �3pF 2

4v2
a

�
1C cos2 2�

2 sin 2�

�

where � is the wavelength, p is the multiplicity factor, F is the structure
factor, and va is the volume of unit cell. The term given in parenthesis is the
Lorentz polarization factor of a crystalline powder sample for an unpolarized
incident X-ray beam I0.

Answer 5.18

(1) The circumference of the Debye ring so as to form a cone of half apex angle �
located at distance R from a sample is 2�R sin � . Therefore, we find the
following equation for the integrated intensity (see Fig. 5.4).

P 0 D P

2�R sin �
D I0

16�R

�
e4

m2
ec

4

�
V �3pF 2

v2
a

 
1C cos2 2�

sin � sin 2�

!
(1)
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Here, V is the effective irradiated volume of a thin slab. By considering the
geometrical relationship shown in Fig. 1 for the symmetrical transmission mode
and setting the cross-sectional area to A0, it can be replaced by the following
equation.

V D
Z t

tD1

e.��t sec �/A0 sec �dx D A0t sec �e.��t sec �/ (2)

From (1) and (2), we obtain.

P 0 D I0A0

16�R

�
e4

m2
ec

4

�
�3pF 2

v2
a

�
1C cos2 2�

cos � sin2 �

�
te.��t sec �/ (3)

Fig. 1 Geometry for the symmetrical transmission mode

Since t corresponds to the thickness of the slab the sample is replaced with
t D M 0=�0, where M 0 is mass and �0 is density per unit area of the sample,

P 0 D I0A0

16�R

�
e4

m2
ec

4

�
�3pF 2

v2
a

�
1C cos2 2�

cos � sin2 �

�
m

�0

e� �m
�0

sec � (4)

(2) Setting g D M 0

	0
e� �m

�0
sec � , P 0 has its maximum if g is maximized, so we need

to find the condition where the derivative of g is zero.

g0 D 1

�0

e� �M 0

�0
sec � � �M 0

�0

sec �e� �M 0

�0
sec �

D 1

�0

�
1 � �M 0

�0

sec �

�
e� �M 0

�0
sec � (5)

Based on this relationship, the maximum value of P 0 will be obtained at M 0 D
�0=.� sec �/. However, keep in mind that it is actually not so easy to control
M 0 using this relationship.



Chapter 6
Symmetry Analysis for Crystals and the Use
of the International Tables

6.1 Symmetry Analysis

A crystal may be defined as a solid composed of atoms arranged on a regular three-
dimensional lattice and such periodicity in the atomic distribution features their
structure. The geometry of atomic distributions in crystals is known to be character-
ized by the repetition, such as lattice translation (see Chap. 2). In addition to lattice
translations, we find reflection and rotation. In these cases, an object is brought into
coincidence with itself by reflection in a certain plane; rotation upon around a cer-
tain axis; or reflection in a certain plane. The repetition of a pattern by specific rules
characterizes all symmetry operations and their fundamental points are given below.

If a symmetry operation leaves a locus, such as a point, a line, or a plane
unchanged (i.e., same atomic position), this locus is referred to as the symmetry
element. For any operation excluding lattice translation for space group, the sym-
metry operation belongs to one of four cases: inversion (i ) expressed by a change
from (x; y; z) to (�x;�y;�z); rotatory-inversion (n̄); reflection (m: a mirror plane)
expressed by a change from (x; y; z) to (�x; y; z); and rotation (n, a rotation axis)
expressed by a change (360ı=n) about an axis. In crystals, we may conclude that
only one-, two-, three-, four-, and sixfold rotation axes can be accepted. Of course,
the symmetry operations may be linked with one another. The symmetry operation
called inversion relates a pairs of objects which are equidistant from and on opposite
sides of a central point (called inversion center). That is, only a single point remains
unchanged. Whereas, rotatory-inversion is one of the compound symmetry opera-
tions and it is frequently called roto-inversion. This operation is produced by the
combination of a rotation of (360ı=n) around a certain axis followed by inversion
through a point on the axis as a symmetry center.

As shown in Fig. 6.1, the rotatory-inversion operation provides five cases denoted
by symbols 1̄, 2̄, 3̄, 4̄, and 6̄. However, the following three points are noteworthy.
(1) Since the rotatory-inversion operation of 1̄ is a rotation of 360ı followed by
inversion through a point on the onefold roto-inversion axis, it is identical to
inversion (i ), simply called center of symmetry or inversion center. (2) The rotatory-
inversion operation of 2̄ is represented by rotation through an angle of 180ı followed
by inversion to take one point into an equivalent one. However, these two points are

219
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1 42=m 3=3+1 6=3+m

Fig. 6.1 Examples of rotatory-inversion operation

also related to one another by reflection in a plane normal to the axis, so that the
rotatory-inversion of 2̄ is identical to a mirror reflection (m). (3) As easily seen
in Fig. 6.1, successive applications of the rotation-inversion operation of 3̄ alter a
point into altogether six equivalent positions. This variation can be reproduced by
combining operations with a threefold rotation axis and inversion (i ). Similarly, the
rotation-inversion operation of 6̄ is also represented by combining operations with
a threefold rotation axis and a twofold roto-inversion axis, or mirror plane perpen-
dicular to the axis. These three points suggest that the rotatory-inversion operations
except for 4̄ result in no new operation, so that 1̄, 2̄, 3̄, and 6̄ are not included in the
independent symmetry operations.

For convenience, some additional details are given for understanding the
rotatory-inversion operation of 4̄, using two different cases as an example. In
Fig. 6.2a, we easily find the results obtained by symmetry operations of fourfold
rotation and inversion, because successive operations about the fourfold axis move
a point from 1 to 2, 3, 4, and back to 1. On the other hand, the inversion center
alters it from each of those positions to 7, 8, 5, and 6, respectively. This combination
of symmetry operations results in a mirror plane normal to the axis. In this case,
two individual symmetry operations are found to be linked which are themselves
symmetry operations. Whereas, in Fig. 6.2b illustrating the results obtained by sym-
metry operation of fourfold rotation about an axis followed by inversion through
a point on its axis. Successive applications of these operations move a point at 1
to 2, 3, 4, and back to 1. In this case, we can find neither the inversion center nor
the fourfold rotation axis (see auxiliary points denoted by open circles in Fig. 6.2b.
Namely, two symmetry operations in this case are made in sequence as a single mat-
ter referred to as a new symmetry operation, which is called compound symmetry
operation.
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1

2

4

3

5

a b

6
7

8

1
3

4

2

Fig. 6.2 Applications of the fourfold rotation and inversion. (a) Combination of independent
symmetry operation, (b) Compound operation (roto-inversion)

In conclusion, the independent symmetry operations for discussing the symme-
try of the three-dimensional atomic arrangement are eight: inversion (i ), reflection
(m), rotation (1, 2, 3, 4, 6), and rotatory-inversion of 4̄. This means that the whole
periodic array observed in crystals can be covered by repeating the parallel trans-
lation (translational operation) of the structure derived from these eight kinds of
symmetry element. In other words, as already mentioned in Chap. 2, there are seven
crystal systems for classification, which consist of 14 kinds of Bravais lattices and
a crystal is known to be classified into 32 point groups on the basis of eight kinds
of symmetry element. In addition, when it is extended to include space groups, by
adding point groups, Bravais lattices, screw axis, and glide reflection plane, it will
be classified into 230 in total. For this analysis, we have to include two compound
symmetry operations; rotation and translation (screw axis) and reflection and trans-
lation (glide plane). A brief description for screw axes and glide reflection planes is
given below.

The symmetry operation of the so-called “screw rotation” consists of a rotation
of 360ı=n where n is 2, 3, 4, and 6 and a translation by a vector parallel to the
axis. The screw axis is expressed by nm and its operation is to translate by (m=n)
times the length of a unit lattice vector along the direction of a rotation axis every
one operation with respect to n-axis of rotation. All of the screw rotation axes are
shown in Fig. 6.3 (see also Question 6.1). Although the direction of rotation itself is
not so important in the screw rotation, the definition is illustrated in Fig. 6.4 using
a right-handed axial system as an example. This case shows an operation which is
a rotation around a c-axis from the a-axis toward the b-axis by an angle � followed
by a positive translation along a c-axis, called the motion of a right-handed screw.

The compound symmetry operation of a glide reflection consists of a reflection
and a translation by the vector qg parallel to the plane of reflection. For convenience,
Fig. 6.5 shows a comparison of the operation of a glide plane with that of a mirror
plane on a point lying off the planes.
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2 21 31

4 41 42 43

6 61 62 63 64 65

323

Fig. 6.3 Examples of possible screw axes

Fig. 6.4 A right-handed
screw system

The description of this symmetry element may also be simplified by reference to
the unit lattice vectors a, b, and c. For example, with respect to a-glide plane perpen-
dicular to the b-direction, the reflection operation is made through the glide plane
and then displaced by the vector, corresponding to one-half of a lattice translation�

1
2

a
�
, parallel to the glide plane. Similarly, we may obtain b- and c-glide planes per-

pendicular to one of the other directions. There is also a diagonal glide plane n by
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Fig. 6.5 Comparison of the
operation of (a) a glide plane
and (b) a mirror plane

translation of the diagonal direction. That is, the n-glide plane, if it is perpendicular
to c, gives a glide component of

�
1
2

a C 1
2

b
�
. Furthermore, we have one additional

case; the diamond glide plane denoted by d which can be featured by one quarter
(1=4) of a lattice translation along the line parallel to the body-centered direction.
Then, there are five kinds of glide reflection planes in all.

As mentioned previously, all crystal structures can be classified into seven crystal
systems using parameters of three vectors a, b, and c (or those lengths a, b, and c)
and the interaxial angles between them, ˛, ˇ, and � . The relationships between
crystal systems and symmetry elements are summarized in Table 6.1.

The atomic distribution in crystals is characterized by its periodicity in a regular
three-dimensional lattice and it is known to be classified into 32 point groups using
eight symmetry elements (see Fig. 2.1). In addition, the periodicity in regular three-
dimensional lattice can be analyzed by the concept of symmetry. Particularly, if
we use eight kinds of symmetry element; “reflection (m),” “rotation (1, 2, 3, 4 and
6),” “inversion (i ),” and “rotatory-inversion (4̄)” together with eleven “screw axes”
and five “glide planes,” all the possible geometric arrangement of atoms in three-
dimensional lattice space can be classified into 230 in all, called “space groups.”
This implies that the number of geometric arrangements with periodicity is limited
in three-dimensional lattice space. In other words, any crystal can be described only
by one of the 230 space groups. In addition, the real crystal structures are not evenly
distributed over these 230 space groups. It is rather unevenly distributed, so that
there are many space groups that do not represent any real crystal structure. The
relationships of crystal systems with point group and space groups are summarized
in Table 6.2.
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Table 6.1 Seven crystal systems, symmetry elements, and relevant data

Crystal Subunit Minimum Point Number of Number
systems symmetry groups rotation of mirror

elements axes 2346 plane

Triclinic a ¤ b ¤ c None 1, N1 0000 0
˛ ¤ ˇ ¤ � ¤ 90ı

Monoclinic a ¤ b ¤ c One diad axis 2, m, 2/m 1000 1
˛ D � D 90ıˇ ¤ 90ı or mirror plane

Orthorhombic a ¤ b ¤ c Three orthogonal 222;mm2, 3000 3
diad or inverse mmm

diad axis
Tetragonal a D b ¤ c One tetrad or 4; N4; 4=m; 4010 5

˛ D ˇ D � D 90ı inverse tetrad 422; 4mm;

axis N42m; 4=mmm
Cubic a D b D c Form triad axes 23;m3; 432; 6430 9

˛ D ˇ D � D 90ı N43m m3m
Trigonal a D b ¤ c One triad or 3; N3; 32; 3m; N3m 3100 3

˛ D ˇ D 90ı � D 120ı inverse triad
or axis
a D b D c

˛ D ˇ D � ¤ 90ı

Hexagonal a D b ¤ c One hexad or 6; N6; 6=m622; 6001 7
˛ D ˇ D 90ı inverse hexad 6mm; N6m2;
� D 120ı axis 6=mmm

6.2 International Tables

It is not necessary to know all (230) the space groups individually, because we
can easily get many of the most important information of the space groups from
“International Tables for Crystallography Vol. A, Fifth Edition (2002)” published
by the International Union of Crystallography (referred to as IUCr). Although
two methods, Schönflies symbols and Hermann–Mauguin symbols have been used
for describing the 32 point groups (see Question 6.2), the IUCr suggests the use
of Hermann–Mauguin symbols. Note that Schönflies symbols are widely used in
respect to spectroscopy, especially of organic molecules. This handbook is quite
useful for determining or interpreting the structure of crystals of interest. Although
the contents cover only 24 space groups frequently found in real crystals, a textbook
is also available for beginners titled on Brief Teaching Edition of Volume A Space-
group Symmetry, International Tables for Crystallography, Fifth Revised Edition,
edited by T. Hahn, Kluwer Academic Publishers, Dordrecht, and Holland (2002).
International Tables for Crystallography (often referred to as International Tables)
provides the following information:

(1) Short space group symbol, Schönflies symbol, point group, crystal system,
number of the space group, full space group symbol, and Patterson symmetry
symbol.
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Table 6.2 Crystal systems and relations to point groups and space groups

Crystal system Point Space groups

Triclinic 1 P1
N1 P N1

Monoclinic 2 P2; P21; C2

m Pm, Pc,Cm, Cc
2/m P2/m ,P21=m, C2/m, P2/c, P21=c ,C2/c

Orthorhombic 222 P222, P2221;P21212;P212121;C2221;C222;F222; I222; I212121
mm2 Pmm2;Pmc21;Pcc2;Pma21;Pca21;Pnc21;Pmn21;Pba2;Pna21;

Pnn2;Cmm2;Cmc21;Ccc2;Amm2;Abm2;Ama2;Aba2;Fmm2;
Fdd2, Imm2, Iba2, Ima2, Aba2, Fmm2, Fdd2, Imm2, Iba2, Ima2

mmm Pmmm, Pnnn, Pccm, Pban, Pmma, Pnna,
Pmna, Pcca, Pbam, Pccn, Pbcm, Pnnm, Pmmn, Pbcn, Pbca, Pnma,
Cmcm, Cmca, Cmmm, Cccm, Cmma, Ccca, Fmmm, Fddd,
Immm, Ibam, Ibca, Imma

Tetragonal 4 P4; P41; P 42; P 43; I 4; I 41N4 P N4; I N4
4=m P4=m; P42=m; P4=n; P 42=n; I 4=m; I41=a

422 P422; P 4212; P 4122; P41212; P 4222; P42212
P4322; P 43212; I 422; I 4122

4mm P4mm; P 4bm; P 42cm; P 42nm; P 4cc; P 4nc,
P42mc; P 42bc; I 4mn; I 4cm; I 41md; I 4cd

N42m P N42m; P N42c; P N421m; P N421c; P N4m2; P N4c2,
P N4b2; P N4n2; I N4m2; I N4c2; I N42m; I N42d

4/mmm P4=mmm; P 4=mcc; P 4=nbm; P 4=nnc; P 4=mbm,
P4=mnc; P 4=nmm; P 4=ncc; P 42=mmc; P 42=mcm,
P42=nbc; P 42=nnm; P 42=mbc; P 42=mnm; P 42=nmc,
P42=ncm; I 4=mmm; I 4=mcm; I 41=amd; I 41=acd

Trigonal–hexagonal 3 P3; P31; P 32; R3N3 P N3; RN3
32 P312; P 321; P 3112; P 3121; P 3212; P 3221; R32

3m P3m1; P31m; P3c1; P 31c; R3m; R3c
N3m P N31m; P N31c; P N3m1; P N3c1; RN3m; RN3c
6 P6; P61; P 65; P 63; P 62; P 64N6 P N6
6=m P6=m; P63=m

622 P622; P 6122; P 6522; P 6222; P 6422; P 6322

6mm P6mm; P 6cc; P 63cm; P 63mc
N6 m P N62m; P N6c2; P N62m; P N62c,
6/mmm P6=mmm; P 6=mcc; P 63=mcm; P 63=mmc

Cubic 23 P23; F 23; I 23; P 213; I 213

m N3 PmN3; PnN3; FmN3; FdN3; ImN3; PaN3; IaN3
432 P432; P 4232; F 432; F 4132; I 432; P 4332; P 4132; I 4132N43m P N43m; F N43m; I N43m; P N43n; F N43c; I N43d
mN3m PmN3m; PnN3n; PmN3n; PnN3m; FmN3m; FmN3c,

FdN3m; FdN3c; ImN3m; IaN3d
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(2) Projection of the symmetry elements of the space group along special axes (high
symmetry). The origin is in the upper left corner.

(3) Projection of a general position.
(4) Information for the selection of the origin.
(5) Asymmetric unit.
(6) Symmetry operations of the space group.
(7) General and special positions, multiplicity Wyckoff letter, site symmetry, and

coordinates of equivalent positions.

Patterson symmetry is the symmetry of the Patterson function for Fourier trans-
formation and Wyckoff letter provides the equivalent positions in a unit cell. More
details are obtained from the International Tables for Crystallography.

The first alphabetical capital letter is to show the lattice symbol of the Bravais
lattices (P, F, I, A, B, C, and R) as summarized in Table 6.3 and next three char-
acters indicate symmetry elements related to the particular orientation in crystal
systems as summarized in Table 6.4. For example, we find Cmm2 (orthorhombic)
in the International Tables, Vol.A, p.238. This Cmm2 shows that space lattice is
base-centered (C) and next three characters of mm2 inform us the symmetry ele-
ments with respect to directions of [100], [010], and [001], respectively. That is,
this orthorhombic space lattice shows mirror plane m, perpendicular to both a- and
b-axes and a twofold rotation axis along the c-axis. For another example, P121/c1
(monoclinic) found in the International Tables, Vol.A, p.184 shows that space lattice
is primitive (simple) and it has the 21 screw axis parallel to b-axis and the c-glide
plane which is perpendicular to the 21 screw axis. Since the description of space
groups is generally used in a simplified form as much as possible, so-called short
space group symbol, for example, P121=c1 ! P21=c and F 4=mN3 2=m ! FmN3m

(see Vol. A, p. 688). Then, the users are requested to get familiar with the relation-
ships between symbols and crystal systems including image of atomic positions.
Practice makes perfect (see Questions 6.1–6.6).

Table 6.3 Number and coordinates of the lattice points in the unit cells of Bravais lattices

Lattice symbols No. of lattice points Coordinates of lattice
in a unit cell points in a unit cell

P 1 0,0,0

A 2 0,0,0 ; 0,
1

2
,
1

2

B 2 0,0,0 ;
1

2
,0,
1

2

C 2 0,0,0 ;
1

2
,
1

2
,0

I 2 0,0,0 ;
1

2
,
1

2
,
1

2

R 3 0,0,0 ;
2

3
,
1

3
,
1

3
;
1

3
,
2

3
,
2

3

F 4 0,0,0 ;
1

2
,
1

2
,0 ;

1

2
,0,
1

2
; 0,

1

2
,
1

2
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Table 6.4 The order of Hermann–Mauguin symbols and their relation to directions in a crystal

Crystal systems 1st index 2nd index 3rd index

Triclinic None

Monoclinic [010](b-axis)*

[001](c-axis)*

Orthorhombic [100] [010] [001]

Tetrogonal [001]

Trigonal Referred
to hexagonal axes

[001]

Trigonal Referred
to rhombohedral
axes

[111]

Hexagonal [001]

Cubic

� Orthogonal axis D Unique axis.

The International Tables do not cover only Vol.A focusing on symmetry of space
groups, but also Vol.B published in 2001 covering information about the reciprocal
lattice, structure factor, Fourier transform, and others including structural analy-
sis by diffuse scattering, dynamical theory, and its applications. One can also find
Vol.C, Third Edition in 2004 providing mathematical, physical, and chemical tables
including absorption coefficients and X-ray atomic scattering factors. This volume
includes sample preparation techniques, methods for the determination of lattice
parameters, refining techniques for the structure determination. Further, Vol. D
published in 2003 Physical Properties of Crystals, Vol.E in 2002, Sub-periodic
Groups, Vol. F in 2001 Crystallography of Biological Macromolecules, and Vol.G
in 2005, Definition and Exchange of Crystallographic Data. There is also A1, “Sym-
metry relations between space groups” published in 2004. It should be suitably
selected, depending on the purpose.
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6.3 Solved Problems (8 Examples)

Question 6.1 Explain screw axes and glide planes which are important for
analyzing the three-dimensional regular array in crystal lattice.

Answer 6.1 A three-dimensional periodic array in crystals is known to be repro-
duced by the infinite repetition of identical structural units, but we find the following
problem.

When supposing an operation around a point brings it to self-coincidence, it is
difficult to distinguish between the result obtained by the one cycle operation and
that where it returns to the original position from another lattice point separated with
several cycles. For this purpose, the operations of rotation and translation may be
linked with one another. This is particularly true for the space groups of centered
lattices. That is, it is necessary to introduce screw rotation and glide reflection.

The screw axis may be denoted by nm and its operation is to translate by (m=n)
times the length of a unit lattice vector along the direction of a rotation axis every
one operation about the n-axis of rotation. As a specific example, a comparison is
made in Fig. 1 using the relationships between twofold rotation axis and twofold
screw rotation axis. In the operation of twofold screw rotation axis (21), the point
alters from A to B due to a translation operation applied by half of a unit lattice
translation along the direction parallel to the long-axis after the 180ı rotation as
similar to the twofold rotation axis case and if the same operation is repeated, the
point A does not return to its starting point. This operation does not come into
coincidence with itself. The point A moves the point corresponding to the position
applied by a unit lattice translation along the direction parallel to the long axis.

A

A

ba

O
ne

 c
yc

le

B
B

π

π

λ/2

Fig. 1 Twofold rotation axis (a) and twofold screw rotation axis (b)
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Fig. 2 Threefold screw axes

Fig. 3 Example of a glide reflection operation denoted by “a-glide plane”

In the operation of threefold screw rotation axis, a translation operation is made
by 1/3 of a unit lattice translation along the direction of a rotation axis after every
120ı rotation. However, as shown in Fig. 2, keep in mind that there are two ways
like the treads of a spiral staircase, clockwise and counterclockwise. In order to
distinguish these two cases, the threefold screw rotation axis describes clockwise
(31) and counterclockwise (32). It may be added that there are three fourfold screw
rotation axes and five sixfold screw rotation axes (see Fig. 6.3) and screw rotation
axes are only allowed in crystals parallel to those directions possibly accepted for
rotation axes in the corresponding point group.

Glide plane is divided into three categories; axial glide plane and diagonal and
diamond glide plane. Reflection across the so-called mirror plane is followed by
translation parallel to the plane by one-half of the length of a unit lattice translation
vector. For example, “a-glide plane” is the case where it projects on a mirror surface
in pairs and a translation operation by ( 1

2
a) is made along the direction parallel to the

mirror surface (see Fig. 3). Similarly, there are axial b-glide plane and c-glide plane.
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In other words, glide planes are designated by symbols suggesting the relationships
of their glide components to the unit lattice vectors.

The n-glide plane is characterized by a translation operation along the diagonal
direction. In addition, the diamond glide plane denoted by d -glide plane features
one-quarter (1/4) of a lattice translation along the line parallel to the body-centered
direction. Symbols and relevant information of these glide planes including a mirror
plane are summarized in Table 1.

Table 1 Symbols and their relevance for glide planes including a mirror plane

Question 6.2 A crystal structure is known to be characterized by points in
an infinite three-dimensional regular array. Explain the geometry of crystals
using symmetry elements. Keep in mind the viewpoint of symmetry given in
a crystal structure, not the mathematical issue.
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Answer 6.2 In crystals, a three-dimensional periodic arrangement of atoms is
always present and such nature is represented by points. The concept of a lattice
corresponding to a three-dimensional periodic arrangement of points is a purely
mathematical subject, but it is well accepted as the space lattice. In this case, we
use lattice translation for the repetition operation. However, we find other repetition
methods called symmetry operations. For example, it is relatively easy to understand
the rotation operation as illustrated in Figs. 1 and 2. An operation is required to bring
a point into coincidence with itself, such as rotation about an axis and reflection in a
plane. When a symmetry operation gives a locus, such as a point, a line, or a plane
which is left unchanged by this operation, the locus is referred to as the symmetry
element. Note that symmetry may be defined as that spatial property of a pattern or
body by which the pattern or body can be brought from a starting state to another
indistinguishable state by a certain operation. A symmetry element is also consid-
ered to a geometrical entity (point, line, or plane) in a pattern or body, A point is a
dimensionless entity in space with coordinates that specify its position. An axis is a
line joining two points and a plane is formed by two intersecting lines.

Fig. 1 Point groups having only rotation as symmetry element

Seven crystal systems, each related to the type of unit cell, are combined with
32 point groups which are associated with elements of symmetry in the unit cell
itself. Note that the symmetry elements enable us to represent all the possible point
arrangements, although a real crystal is a single, unrepeated object. Anyway, with
respect to the components of symmetry element, we may suggest a center of sym-
metry, 1̄, (or a roto-inversion center), a mirror plane, glide planes, rotation axes,
screw axes, and inversion axes. For example, the point which does not move in the
inversion operation is called “inversion center.” The operation-related mirror plane
is given as follows. Any point on one side of a mirror plane is matched with an
equivalent point on the other side at the same distance from the plane along a line
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Fig. 2 Fourfold rotation axis (a) and its notation (b)

normal to it. In other words, the mirror reflection is to match any point or any object
with the case where it is reversed after rotating 180ı about a twofold axis perpen-
dicular to the target plane. Similarly, the inversion operation can be combined with
other axes of rotation called “rotatory-inversion”and this case is also called “onefold
rotatory-inversion.”

Considering all these factors, we may conclude for symmetry in the following.
For the symmetry elements allowed in a three-dimensional periodic arrangement
of points, we find ten different ways of “rotation and rotatory inversion” without
translation; namely, the rotation axes of one, two, three, four, and sixfold rotation
axes, as expressed by n and the rotatory inversion (roto-inversion) axes of 2̄, 3̄, 4̄, 6̄
denoted by Nn. However, it is rather stressed here that there are only EIGHT inde-
pendent symmetry elements by excluding threefold rotatory-inversion axis (3̄) and
sixfold rotatory-inversion axis (6̄).

In other words, it is found out that there are 32 point groups for covering a
three-dimensional periodic arrangement of points in space lattice using these eight
symmetry elements and their combinations. Some key points for point groups are
summarized as follows.

(1) Point groups where only rotation is recognized as a symmetry element (five
cases: 1, 2, 3, 4, and 6).

(2) Point groups where only axis of rotatory-inversion is recognized as symmetry
element (five cases: 1̄, 2̄ D m, 3̄, 4̄, and 6̄D 3=m ).

(3) Point groups where n-fold rotation axis is perpendicular to twofold rotation axis
(four cases: 222, 32, 422, and 622).

(4) Point groups which have a mirror plane perpendicular to the n-fold rotation axis
(three cases: 2=m, 4=m, and 6=m).

(5) Point groups which have a mirror plane parallel to the n-fold rotation axis (four
cases: 2mm, 3m, 4mm, and 6mm).

(6) Point groups of 222, 32, 422 and 622 (corresponding to the No.3 cases), when
further considering a mirror plane perpendicular to the n-fold rotation axis (four
cases: mmm, 6̄m2, 4=mmm and 6=mmm).

(7) Point groups of 222 and 32 (corresponding to the No.3 case), when further con-
sidering a mirror planes so as to bisect an angle formed by twofold rotation axes
parallel to the plane of drawing (two cases: 4̄2m and 3̄m).
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(8) Point group where four threefold rotation axes mutually intersect to make the
tetrahedral angle of 109:471ı (one case only: 23). Similarly, point group where
four threefold rotation axes mutually intersect to make the octahedral angle of
70:529ı (one case only: 432).

(9) Point groups of 23 and 432 (corresponding to the No.8 case), when further
considering several mirror planes (three cases: m3, 4̄3m, and m3m).

In order to represent the 32 point groups, we find two methods, Schöenflies and
Hermann–Mauguin symbols. Although Schönflies symbols are widely used in the
field of spectroscopy, especially of organic molecules, the use of Hermann–Mauguin
symbols become popular in crystallography, because of the IUCr suggestion. If
need, we can use the results summarized in Table 1. It may also be noteworthy
that the abbreviation form is generally used in cases possibly described by com-
bination of higher symmetry. For example, in the point group of 43̄2 for a cube
described by a combination of symmetry operations of fourfold, threefold, and
twofold axes, the best description for symmetry is given by two mirror planes;
one is 4=m perpendicular to fourfold axis and another is 2=m perpendicular both
to threefold rotatory-inversion axis 3̄ and twofold axis. In this case, the original
full-notation is 4

m 3̄ 2
m , but the abbreviation form of m3̄m is widely employed. Some

helpful information can be obtained from the results of Table 2.
The following information may be convenient in the symmetry operations for

crystallography. When including translation, it is necessary to consider “screw axes”
with translation to the direction of rotation and its axis and a mirror plane and a
“glide plane” with translation parallel to it. Keeping these factors in mind, it is nec-
essary to stipulate the direction of an axis as well as the direction of the translational
operation, so that the combination of eleven screw axes and five glide planes as listed
in Table 3 may be linked with one another.

Table 1 Hermann–Mauguin and Schöenflies symbols for the 32 crystallographic point groups

Harmann– Schöenflies Harmann– Schöenflies Harmann– Schöenflies
Mauguin symbols Mauguin symbols Mauguin symbols
symbols symbols symbols

1 C1 4 2 2 D4 6=m C6h

1 Ci 4mm C4v 6 2 2 D6

2 C2 N4 2 m D2˛ 6 m m C6v

m Cs 4=mmm D4h N6 m 2 D3h

2=m C2h 3 C3 6=mmm D6h

2 2 2 D2 3 C3i 2 3 T
mm 2 C2v 3 2 D3 Nm 3 Th

mmm D2k 3 m C3v 432 O
4 C4 3 m D3˛ 4 3 m T˛
4 S4 6 C6 m 3 m Oh

4=m C4h 6 D3h
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Table 2 The 32 point groups and their relation to the crystal systems

Crystal system Point groups

Triclinic N1 1
Monoclinic 2=m m,2
Orthorhombic 2=m 2=m 2=m mm2; 222

(mmm)
Tetragonal 4=m 2=m 2=m N42m, 4mm, 422

(4=mmm) 4=m, N4, 4
Trigonal N32=m 3m, 32, N3, 3

(N3m)
Hexagonal 6=m 2=m 2=m N6m2, 6mm, 622

(6=mmm) 6=m, N6, 6
Cubic 4=m, N3 2=m N43m, 432, 2=m N3, 23

(mN3m) (mN3)
( ): abbreviated symbols.

Table 3 Symbols and their relevance of symmetry elements including translation

Symbol Symmetry elements Graphical symbol Translation

21 2-fold screw c=2; a=2 or b=2

31 3-fold screw c=3

32 2c=3

41 4-fold screw c=4

42 2c=4

43 3c=4

61 6-fold screw c=6

62 2c=6

63 3c=6

64 4c=6

65 5c=6

a; b Glide plane Translation parallel to the plane
of paper (a=2; b=2 etc.)

c Translation perpendicular to the
plane of paper (c=2 etc.)

n Diagonal glide plane .a C b/=2 etc.

d Diamond glide plane .a C b/=4 etc.

Question 6.3 The mathematical concept of space groups is used for structural
analysis of crystals. Explain the space groups using a monoclinic system as
an example.
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Answer 6.3 Usually more than one symmetry element is present in crystals. For
crystals, only the rotational values n D 1; 2; 3; 4; and 6 are permitted and 32
crystallographic point groups are generated. Point groups are the symmetry groups
of a finite body, but space groups should be described as an infinite set of symmetry
elements. That is, space groups provide the symmetry not only of crystal lattices but
also of crystal structures.

When 32 point groups are analyzed and arranged on the basis of degrees of
rotation axis, all crystals are known to be classified into one of the seven crystal
systems. Furthermore, the periodic sequence found in crystals has been systemati-
cally analyzed using all symmetry operations possible; four symmetry operations of
mirror reflection, rotation, inversion and rotatory-inversion and eleven screw axes
and five translational operations of glide planes and their combinations and then we
obtain the 230 space groups. Combinations of these 230 space groups are proved
from purely mathematical point of view. In other words, any periodic arrangement
found in crystals can be expressed by one of the 230 space groups.

In the monoclinic system, the lattices are characterized by two unit cell descrip-
tions; simple lattice (P ) which has only one lattice point in a unit cell and one
centered lattice (C ) which has a lattice point at the center of the ab-plane. Point
groups are 2, m, and 2/m. For example, let us consider the case of P and C with
a point group of 2, we obtain four combinations such as P2, C2, P21, and C21.
However, C2 is equivalent to C21, as readily seen from the results of Fig. 1, so that
this combination provides three space groups denoted by P2, C2, and P21.

+

+ +

+

+

+

a

c
C 2 +

+

+

+

1
2

+1
2

1
2

+ 1
2

Fig. 1 The operation of the space group C2

Since one screw axis and one glide-plane (c-glide plane in this case) will be taken
into consideration, we have to check the following five cases of 21, c, 21=m, 2=c,
and 21=c. Taking all these factors, the 13 combinations are found to be possible as
the space lattices P and C of the monoclinic system. The results are summarized
in Table 1 together with subgroups of P2/m and C2/m. Note that we also find the
relationships of C21 D C2=m, C21=c D C2=c, and C21 D C2.

All possible space groups of the monoclinic system can be derived in a slightly
different way. Starting from the two monoclinic space groups of highest symmetry
of P2=m and C2=m. In C2=m, there are a-glide planes at (x, 1=4, z) and (x, 3=4, z)
and 21-axes at (1=4, y, 0), (1=4, y, 1=2), (3=4, y ,0), and (3=4, y, 1=2).
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The monoclinic subgroups for the point group 2=m are m and 2. Then, the
replacement of point symmetry elements of 2 and m can be done by using 21 and
a-glide plane, respectively. Since m is parallel to the plane denoted by (010), only
a-, c-, and n-glide planes are possible. However, a different selection of the a- and
c-axes will convert either a-glide or n-glide into c-glide plane. For this reason we
need to take only the c-glide plane into account. Accordingly, the replacement of
2 and m by 21 and c results in the 13 monoclinic space groups as summarized in
Table 1.

Table 1 Space and point groups for the monoclinic crystal system

Point groups Space groups

2=m P2=m C2=m

P21=m C21=m
� � C2=m

P2=c C2=c

P21=c C21=c
� � C2=c

m Pm Cm

Pc Cc

2 P2 C2

P21 C21� � C2

When the point symmetry elements 2 and m is replaced by 21, a screw axis
always appears between the twofold rotation axes, so that the symmetry element
of 21 has been excluded in the centered-lattice (C ) case. In other words, a- and n-
glide planes occur in the C -centered space group case, so that the pairs of symbols
C21=m D C2=m, C21=c D C2=c, and C21 D C2 give only a single space
group each. Similarly, the same combination may be considered about other crystal
systems and it is quite complicated as actual work. Since this point is purely handled
as mathematical issue and the answer (restricted to 230 cases) has already come
out, we should use the result. Detailed information of these 230 space groups are
available in the International Tables, Volume A with the chart showing an equivalent
positions in a unit cell.

For convenience, Table 2 shows the space group symbols for the 14 Bravais
lattices.

Table 2 The space group symbols for the 14 Bravais lattices

P C I F

Triclinic P N1
Monoclinic P2=m C2=m

Orthorhombic P2=m 2=m 2=m C2=m 2=m 2=m I2=m 2=m 2=m F2=m 2=m 2=m

Tetragonal P4=m 2=m 2=m I4=m 2=m 2=m

Trigonal P6=m 2=m 2=m RN32=m
Hexagonal

Cubic P4=mN32=m I4=mN32=m F4=mN32=m
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Question 6.4 Explain the Laue groups which are important as an indicator,
when determining the space group of the structure of a desired substance.

Answer 6.4 The periodicity in regular three-dimensional lattice can be analyzed by
the concept of symmetry, but one of our main interests in X-ray crystallography
is to reveal the structure of the desired substances. This suggests “how to obtain
information that the atomic distribution in a crystal of interest is described by one of
the 230 space groups and by one of the 32 point groups with sufficient reliability.”

Since the measured X-ray diffraction data enable us to provide information of
the reciprocal lattices, the symmetry of reciprocal lattices is examined first and then
the symmetry of crystals are extracted. The use of centrosymmetric point groups
called “Laue groups” is known to be quite useful for this purpose. Figure 1 shows
the experimental set-up for taking a Laue photograph on a flat-plate film using a
white X-ray source. The crystal is stationary with respect to the X-ray beam, so
that the crystal acts as a kind of filter for selecting the correct wavelength for each
reflection under the Bragg law. The resultant spots lie on ellipses and all of which
have one end of their major axis at the center of the photographic film. All spots on
one ellipse arise through reflections from planes that lie in one and the same zone.
A diffraction pattern formed by spots is centrosymmetric.

Film

Crystal

Zone axis

f

Fig. 1 Schematic diagram for the experimental condition for taking a Laue photograph on a flat-
plane film (Transmission type)

Laue photographs using a white X-ray source providing information about sym-
metry of the weighted reciprocal lattice will reveal the presence of all the symmetry
elements associated with the various point groups, but will add a center of sym-
metry (for noncentrosymmetric point groups). Namely, the arrangement of spots
obtained on the Laue photograph exhibits only the symmetry that would be found
from a crystal having the corresponding centrosymmetric point groups. There are
only eleven possible symmetries and they are called “Laue groups.” It may be added
that the Laue group assigned to a crystal of interest gives the symmetry of the com-
plete diffraction pattern from that crystal. Thus, the classification of the 32 point
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groups is possible by means of the Laue diffraction symmetry as shown in Table 1,
where the symmetry of the Laue photographs on a flat-plate film can be described
for directions of the incident X-ray beam normal to the crystallographic forms as
listed. Note that point group projection symmetry corresponds to the symmetry of
the projection of the general form of a point group on to a plane.

Table 1 Crystal systems, Laue groups, and Laue projection symmetry

aReferred to hexagonal axis.

A rotation axis of crystal lattice becomes that of the corresponding reciprocal
lattice and the distribution of the weighted reciprocal lattice points usually has a
symmetry center. Therefore, a point group appeared in the reciprocal lattice points
can be attributed to one of the Laue groups. In this respect, symmetry elements
and equivalent positions of the Laue groups are very important fundamental infor-
mation for structural analysis of crystals by X-ray diffraction. Such information is
summarized in Fig. 2a using the method of projection.

These results are obtained in the following procedure. Let us consider the spher-
ical surface passing through a symmetry center and mark the position where a
symmetry element and this spherical surface intersect. Then, as shown in Fig. 2b,
project the marked positions from right above on the equatorial plane of the sphere.
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Fig. 2 Symmetry elements and equivalent positions of the Laue group (a). Example of projection
using the 2=m case (b)
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The equivalent positions are displayed by a huge comma, and its top surface is
colored in white and its bottom in black. If the mirror plane is situated on the equa-
torial plane, two marks overlap each other upside down on the plane as they are
projected. Such overlap is illustrated by black and white overlaid in the figure. Note
that the circumference of a circle drawn by thick line indicates that a mirror plane
is on the paper surface, the lines other than the circumference show the crossing
section between the mirror plane and the sphere by projection.

Question 6.5 Show the variation of Hermann–Mauguin symbol, when the
axes of the space group of Pnma (orthorhombic) are altered within a unit
cell. In the same way, show the results of the space group given by Pna21

(orthorhombic).

Answer 6.5 Let us consider the variation expressed by abc ! bNac ! cab !
Ncba ! bca ! aNcb, when the starting axis is set to abc. In this case, keep in
mind that the origin, O, should be positioned at the top-left corner and further
set b-axis to abscissa (horizontal direction), a-axis to ordinate (vertical direction),
and c-axis to perpendicular direction to the plane of the drawing in the right-
handed system. As shown in Fig. 1, this corresponds to the case of watching a
crystal from the right-hand side. While keeping this condition and if every rotat-

Rotate the diagram
above-mentioned in a
clockwise direction by
90° and determine
the axes.

Watch a crystal
from the right-hand
side.

abc

abc
O

O
a’b’c’

a

a

b

a’

b’b -a c

b
 -

a 
c

b

Fig. 1 Fundamentals for changing axes with respect to the orthorhombic system
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ing the drawing clockwise by a quarter turn (90ı) as shown in Fig. 1, decide
axes of a0, b0, c0. Such processes are summarized in Fig. 2. For convenience,
Fig. 3 also shows the results using the conversion relationships between Pnma
and Pbnm when changing the axes from abc in Pnma to cab in Pbnm, as an
example.

Fig. 2 Variations due to abc ! b Nac ! cab ! Ncba ! bca ! a Ncb

Fig. 3 The relationships between Pnma and Pbnm due to the change in axes of abc ! cab
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The results are summarized as follows.

abc ! bNac ! cab ! Ncba ! bca ! aNcb

Pnma;Pbnm;Pmcn;Pnam;Pmnb;Pcmn

Pna21;P21nb;Pc21n;Pn21a;Pbn21;P21cn

When the crystal axes are altered, we find changes for not only atomic coordi-
nates .x; y; z/ but also the basis vectors of reciprocal space .a�; b�; c�/ as well as the
reflection indices .hkl/ and lattice points .u; v;w/. Since information about the axial
transformation in each crystal system is provided using matrices in the International
Tables, Volume A (see pp.77–89), some additional details are given below.

The general transformation of the coordinate system consists of two parts; a
linear part and a shift of origin. The linear part suggests a variation of orienta-
tion or length or both of the basis vectors a; b; c. Note that the shift vector is
zero for a purely linear transformation. The 3 rows � 3 columns matrices P of
the transformation from a; b; c to a0; b0; c0 is given using row matrices .a; b; c/ as
follows.

.a0; b0; c0/ D .a; b; c/P (1)

D .a; b; c/

0
BB@
P11 P12 P13

P21 P22 P23

P31 P32 P33

1
CCA (2)

Miller indices of a plane .h k l/ are also given in the same way.

.h0; k0; l 0/ D .h; k; l/P (3)

Note that the Miller indices are usually made relative prime before and after the
transformation.

If using the inverse matrices of P to Q.D P�1/, the transformation of reciprocal
lattice axes, atomic coordinates, and lattice points will be given by the following
equation using row matrices, .a�=b�=c�/, .x=y=z/, and .u=v=w/.

0
BB@

a�0

b�0

c�0

1
CCA D Q

0
BB@

a�

b�

c�

1
CCA (4)

D

0
BB@
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

1
CCA
0
BB@

a�

b�

c�

1
CCA (5)

.x0=y0=z0/ D Q.x=y=z/

.u0=v0=w0/ D Q.u=v=w/

9=
; (6)
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For convenience, a general comment is supplemented with respect to the case
where the axes of a space group are changed within a unit cell. A space group
symbol is usually described by four symbols such as Pnma and Cmca, and they
provide the relationship of each symmetry element with respect to the direction
of a crystal axis. In other words, a space group symbol such as monoclinic and
orthorhombic crystal systems is found to depend on the choice of a crystal axis.
However, for crystal systems of relatively high symmetry the selection of a crystal
axis does only a small variation in the space group symbol, because the selection of
an axis is rather limited. In addition, since the triclinic crystal system has no axial
symmetry element, the space group symbol is limited to only P1 and PN1.

If b-axis is fixed in a monoclinic crystal system, the selection of other two axes is
limited to a two-dimensional plane. Thus, it is relatively easy to understand that
three kinds of notations given by P21=c;P21=a, and P21=n are the same space
groups. Whereas, it is not optional how to select an axis as for the orthorhom-
bic crystal system characterized by the three axes which are at right angles to one
another (mutually perpendicular). Nevertheless, there are 3 ways of selecting a-axis
and 2 ways for b-axis after fixing a-axis, which results in six combinations even if
the selection is limited to the right-handed system. Note that the space group sym-
bols related to the axis are just three and the first being the notation to represent
centered lattices, the second being the order of appearance of the axis symbol or
plane one, and the third being the forward direction of a glide plane. This is applica-
ble to the unit cell transformations. For example, when the directions of three axes
in space are numbered as 1, 2, and 3 and each direction is named by a, b, and c,
respectively, one can obtain six combinations as summarized in Table 1.

Table 1 Transformations of the crystal axes in the orthorhombic system

1 2 3 3m31

(1) a b c Cmca

(2) a c �b Bmab

(3) b c a Abma

(4) b a �c Ccmb

(5) c a b Bbcm

(6) c �b a Acam

Some additional details for this combinations are given. Let us temporarily
assume that the case (1) of Table 1 is given by Cmca which represents the sym-
bol of space lattice, the first symmetry element, the second symmetry element, and
third symmetry element. The symbol of Cmca is, of course, a temporary one, so that
it depends on the method “how to give name an axis.” For this reason, 3m31 related
to the directions of three fixed axes 1, 2, and 3 is provided in the top right end of
Table 1. As setting is made in this way, six variations will be decided in turn and
the resultant symbols will be obtained as shown in the right-end column of Table 1.
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For example, since the axis of 3 is given as a for the case (3), its symbol will be
Abma with A for the space lattice, b for the first symmetry element which is the
direction of the glide plane for a-axis, m for the second symmetry element as b-axis
matches the axis of 1 and then no change, and a for the third symmetry element
which corresponds to the direction of the glide plane for c-axis.

More information can be obtained from the International Tables for Crystallo-
graphy.

Question 6.6 Obtain the structure factor of Fhkl and jFhkl j2 and show the
condition where the diffraction intensity can be observed in the following
three cases:

(1) The fourfold rotation axis along the a3-axis in a unit cell.
(2) The 41 screw axis along the a3-axis in a unit cell.
(3) The 42 screw axis along the a3-axis in a unit cell.

Answer 6.6

(1) The atomic positions in a unit cell with the fourfold rotation axis are given by
x; y; zI Ny; x; zI Nx; Ny; z; and y; Nx; z. Then, the structure factors Fhkl and jFhkl j2
in this case are computed in the following equations.

Fhkl D f e2� ilz
n
e2� i.hxCky/ C e2� i.kx�hy/ C e�2� i.hxCky/ C e�2� i.kx�hy/

o

D 2f e2� ilz fcos 2�.hx C ky/C cos 2�.kx � hy/g
D 4f e2� ilz cos�f.hC k/x � .h � k/yg cos�f.h� k/x C .hC k/yg

jFhkl j2 D 16f 2 cos2 �f.hC k/x � .h� k/yg cos2 �f.h � k/x C .hC k/yg
Therefore, there is no condition where the diffraction intensity cannot be
detected with respect to the atoms in a unit cell with the fourfold rotation axis.

(2) The atomic positions in a unit cell with the 41-screw axis are given by x; y; zI
Ny; x; z C 1

4
I Nx; Ny; z C 1

2
; and y; Nx; z C 3

4
. The structure factors for this case are

computed as follows.

Fhkl D f e2� ilzfe2� i.hxCky/ C ei�l=2e2� i.kx�hy/

C ei�le�2� i.hxCky/ C ei3�l=2e�2� i.kx�hy/g

Here, let us consider the case of l D 4n,

Fhkl D f e2� ilz
n
e2� i.hxCky/ C e2� i.kx�hy/ C e�2� i.hxCky/ C e�2� i.kx�hy/

o

jFhkl j2 D 16f 2 cos2 �f.hC k/x � .h� k/yg cos2 �f.h� k/x C .hC k/yg
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There is no condition where the diffraction intensity cannot be detected, along
the way similar to the fourfold rotation axis case.

On the other hand, let us consider the case of l D 4n ˙ 1, one obtains the
following results.

Fhkl D 2f e2� ilz fi sin 2�.hx C ky/� sin 2�.kx � hy/g
jFhkl j2 D 4f 2

˚
sin2 2�.hx C ky/C sin2 2�.kx � hy/�

In addition, the following results are obtained for the case of l D 4nC 2.

Fhkl D 4f e2� ilz sin� f.hC k/x � .h � k/yg sin� f.h� k/x C .hC k/yg
jFhkl j2 D 16f 2 sin2 � f.hC k/x � .h � k/yg sin2 � f.h� k/x C .hC k/yg

It is noteworthy from these two results that the diffraction intensity for a peak
whose Miller indices are given by (0 0 l) can be observed only under the
condition l D 4n.

(3) The structure factor Fhkl is computed from the atomic positions in a unit cell
with the 42-screw axis; x; y; zI Ny; x; z C 1

2
I Nx; Ny; zI y; Nx; z C 1

2
in the following

form.

Fhkl D 2f e2� ilz
n
cos 2�.hx C ky/C ei�l cos 2�.kx � hy/

o

When considering l D 2n,

Fhkl D 2f e2� ilz fcos 2�.hx C ky/C cos 2�.kx � hy/g

jFhkl j2 D 4f 2 fcos 2�.hx C ky/C cos 2�.kx � hy/g2

When considering l D 2nC 1,

Fhkl D 2f e2� ilz fcos 2�.hx C ky/� cos 2�.kx � hy/g

jFhkl j2 D 4f 2 fcos 2�.hx C ky/� cos 2�.kx � hy/g2

In conclusion, the diffraction intensity for a peak whose Miller indices are given
by (0 0 l) can be observed only under the condition l D 2n.

Question 6.7 Let us consider the monoclinic space group denoted by P21/c,
showing the primitive lattice with the 21-fold screw axis parallel to b-axis,
the c-glide plane being perpendicular to b-axis with glide of c

2
. Answer the

following questions.
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(1) Illustrate the symmetry of this space lattice such as a symmetry center and
show both general position and special positions.

(2) Find the extinction condition.

Answer 6.7

(1) Assuming the 21-fold screw axis and the glide plane being perpendicular to
b-axis as shown in Fig. 1. In addition, the center of point symmetry (a symmetry
center) is indicated by a solid circle at 1

4
or 3

4
along the c-axis. If the position of

.0; 1
4
; 1

4
/ is set to the symmetry center, we obtain the results of Fig. 2. Therefore,

the general positions can be given as follows.

x; y; zI Nx; Ny; NzI Nx; 1
2

C y;
1

2
� zI x; 1

2
� y;

1

2
C z

Fig. 1 Monoclinic space lattice. Solid circles indicate symmetry centers

The special positions corresponding to the symmetry center are also given as
follows (see solid circles in Fig. 2)

.0 0 0/ W
�
0

1

2

1

2

�
;

�
1

2
0 0

�
W
�
1

2

1

2

1

2

�

�
0 0

1

2

�
W
�
0

1

2
0

�
;

�
1

2
0

1

2

�
W
�
1

2

1

2
0

�

(2) In order to find the extinction condition, the following formulas for trigonomet-
ric functions were used.
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Fig. 2 Monoclinic space lattice when setting a symmetry center to
�
0; 1

4
; 1
4

�
. Solid circles

indicating a symmetry center at 0 or 1
2

along the c-axis

8̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
:̂

sinAC sinB D 2 sin
AC B

2
cos

A� B

2

cosAC cosB D 2 cos
AC B

2
cos

A � B
2

cosA � cosB D 2 sin
AC B

2
sin

A � B
2

The structure factor is computed as follows.

F

f
D e2� i.hxCkyClz/ C e2� i.�hx�ky�lz/

C e2� if�hxCk. 1
2

Cy/Cl. 1
2

�z/g C e2� ifhxC. 1
2

�y/kC. 1
2

Cz/lg

D cos 2�.hx C ky C lz/ � i sin 2�.hx C ky C lz/

C cos 2�.�hx � ky � lz/� i sin 2�.�hx � ky � lz/

C cos 2�

�
�hx C

�
1

2
C y

�
k C

�
1

2
� z

�
l

�

�i sin 2�

�
�hx C

�
1

2
C y

�
k C

�
1

2
� z

�
l

�

C cos 2�

�
hx C

�
1

2
� y

�
k C

�
1

2
C z

�
l

�

�i sin 2�

�
hx C

�
1

2
� y

�
k C

�
1

2
C z

�
l

�

D 2 cos .2�; 0/ cos 2�
2.hx C ky C lz/

2

C 2 cos 2�
k C l

2
cos 2�.hx � ky C lz/
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�i sin 2�
k C l

2
cos .hx � ky C l/

D 2 cos 2�.hx C ky C lz/C 2 cos2�
k C l

2
cos 2�.hx � ky C lz/

(i) In the case of k C l D 2n,

F

f
D 4 cos 2�.hx C lz/ cos 2�ky

The extinction does not take place.
(ii) In the case of k C l D 2nC 1,

F

f
D �4 sin 2�.hx C lz/ sin 2�ky

The extinction takes place under the condition of h D l D 0 or k D 0.

Question 6.8 Information about the space group Pnma, No.62 (orthorhombic)
can be obtained from the International Tables for Crystallography, Volume A,
page 298-299. Explain the key points.

Answer 6.8 The symbol Pnma described by a shortened form (notation) of
Hermann–Mauguin method describes that Bravais lattice is a simple lattice(P)
with three symmetry elements mnm with respect to the direction of Œ100�, Œ010�,
and Œ001� (see Table 6.4). Namely, this orthorhombic has mirror planes perpendic-
ular to these directions. The symbol of D16

2h
provides the Schöenflies’ description

and No.62 corresponds to the number allocated in the 230 space groups. Next, P
21=n=21=m=21=a is full expression of three symmetry elements and they are as
follows. 21=n shows the 21 screw axis and a diagonal plane of glide reflection
perpendicular to it for the direction of a-axis, the 21=m indicates the 21 screw axis
and a mirror plane vertical to it for the direction of b-axis, and the 21=a shows
the 21 screw axis and a mirror plane perpendicular to it for the direction of c-axis,
respectively. The space group of the Patterson function is given by Pmmm. The
Patterson function corresponds to the Fourier transform of the square of the struc-
ture factor and it is widely used to obtain a map of interatomic distances in the
unit cell. In other words, the Patterson function is a superposition of peaks derived
from all atomic pairs in the unit cell directly related to the measured diffraction
data. (Refer to other textbooks for details of the Patterson function, for example,
M.M. Woolfson, An Introduction to X-ray Crystallography, 2nd Edition, Cambridge
University Press (1997).)

Four figures are the so-called standard setting of the space group or the space-
group tables and first three figures are characterized by the Hermann–Mauguin
symbols in the headline. The space-group tables for each orthorhombic space group
is known to consist of three projections of the symmetry elements along the c-axis
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(upper left), the a-axis (lower left), and the b-axis (upper right), in addition to the
general position diagram. For example, with respect to the upper left corner as its
origin, the projection is made along the c-axis, setting a-axis and b-axis to the hor-
izontal (abscissa) and the vertical (ordinate) axes, respectively. For convenience,
diagrams for the standard setting are shown in Fig. 1 using the orthorhombic and
tetragonal space groups as an example, where G = general position diagram. Note
that all these figures are described in the right-handed coordinate system.

Fig. 1 Diagrams for the standard setting as described in the space-group tables; orthorhombic and
tetragonal space groups

For each orthorhombic space group, there are six different ways of assigning
the labels a, b, c to the three orthorhombic symmetry directions. These settings
correspond to the six conversions of the labels of the axes including identity conver-
sion. Three space group symbols written on the horizontal axes in three figures of
projection are Pmnb, Pbnm, and Pmcn which are corresponding to the axial conver-
sions of abc (fundamental axis), a Ncb, and Ncba. Similarly, Pmnb, Pbnm, and Pmcn
are related to the axial conversions of b Nac, Nc Nab, and bca in the vertical axes case.
In addition, the numerical value 1/4 placed beside the symmetry element symbols
shows the inner height of a unit cell in the projection direction.

The figure at the lower right is corresponding to the general position diagram,
which is given only in the projection along c-axis. It may also be suggested that this
figure shows the equivalent positions in the same projection as the upper left and
provides information about what arrangement of atoms in the general positions will
be possible in a unit cell. Both marks � and ,� show the equivalent positions and
� and ,� are related by a mirror plane. They are called enantiomorphs, so that �
represents the left-handed system, if ,� is given in a right-handed system.

The signs and numerical values, C;� and 1
2
C, 1

2
� placed beside � are the

coordinates to the projection direction of the equivalent positions, and the present
case suggests Cz, �z, 1

2
C z, 1

2
� z.

Some other information are summarized as follows.
Origin: The determination of crystal structures is facilitated by the selection of a
suitable origin. The line of “Origin” provides the origin selected in the space group
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table. According to the International Tables, the position of symmetry center is set
to the origin for space groups with a symmetry center and the position of the highest
site symmetry becomes the origin for space groups without a symmetry center. In
the space group Pnma, the origin is set to a symmetry center denoted by N1 on the
twofold screw axis (as given by “on 1 21 1”) which is equal to the b-axis.

Asymmetric unit: An asymmetric unit of a space group is considered to be the
smallest closed part of space from which by using all symmetry operations, the
whole space can be filled. In other words, the line of “Asymmetric unit” shows that
the independent area in a unit cell is given in the region; 0 � x � 1

2
, 0 � y � 1

4
,

and 0 � z � 1 in Pnma.

Symmetry operations: The geometric description of the symmetry operations is
given in the space-group tables under the heading “Symmetry operations.” These
information give a link between the space group diagrams and the general posi-
tions. The line of “Symmetry operations” shows the symmetry elements as well
as positions related to symmetry operations. In the space group Pnma, symmetry
operations of (1)–(8) correspond to eight equivalent positions.

Generators: The line of “Generators” provides all symmetry operations required to
generate all equivalent positions of the general positions from coordinates x; y; z.
For example, t.1; 0; 0/, t.0; 1; 0/, and t.0; 0; 1/ indicate the translational operation
that moves the coordinates x; y; z described by (1) of general positions to the direc-
tions of a,- b-, and c-axes by one unit cycle. In the space group Pnma, although
symmetry operations of (1)–(8) are cited, all equivalent positions can be generated
by operations of (1), (2), (3), and (5). Accordingly, the operations of (4), (6), (7),
and (8) are excluded.

Positions: The column of “Position” more explicitly called Wyckoff positions pro-
vide information of the equivalent positions when considering site symmetry and
are defined as a group of crystalline positions. The following information (a) to
(e) classified into general positions and special positions are provided in the space
group table.

(a) Multiplicity: This is the number of equivalent points per unit cell and keep in
mind it differs from the number of the equivalent lattice planes in one plane of a
form called multiplicity factor. The multiplicity of the general position is equal
to the order of the point group to which the space group under consideration
belongs. On the other hand, the multiplicity of the special position is given by
the divisor of multiplicity of the general position. For example, the number of
equivalent point in the special position 4c is one half of the general equivalent
position. This is attributed to the condition that one special position is formed
by overlapping two general equivalent positions.

(b) Wyckoff letter: This is simply a coding scheme for the Wyckoff positions. Usu-
ally, the notation is made due to the higher degree of site symmetry, starting with
a at the bottom column for the special position and upward in the alphabetical
order traced back to the general position. For example, the general position of
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atomic position in the space group Pnma is 8d and its special positions are 4c,
4b, 4a in order.

(c) Site symmetry: The site symmetry groups of the different points of the same
special position are symmetrically equivalent subgroups of the space group and
then all points of one special position can be described by the same site symme-
try symbol. The column of “Site symmetry” provides the symmetry which the
atomic position has. There are two ways in the space group Pnma where 4 atoms
occupy 8 symmetry center sites and the special positions 4a and 4b correspond
to them. There is the mirror symmetry (m) in the special position 4c. In addi-
tion, in order to clarify symmetry directions, the irrelevant axial directions are
shown by dots such as .m. Here this .m. indicates a mirror plane perpendicular
to the b-axis.

(d) Coordinates: The sequence of the coordinate triplets is based on the Genera-
tors. For centered space groups, the centering translations such as .0; 0; 0/C�

1
2

1
2

1
2

�C are given above the coordinate triplets. The symbol C indicates that
the components of the centering translations have to be added to the listed
coordinate triplets for obtaining a complete Wyckoff position. Coordinates cor-
responding to a-, b-, and c-axes with a parallelepiped as a unit cell are referred
to as x; y; z. The length of this unit cell is normalized as 1. When one atom
exists in the space group Pnma, we find eight atoms without exception at the
following positions in a unit cell.
.x; y; z/,

��x C 1
2
;�y; z C 1

2

�
,
��x; y C 1

2
;�z

�
,
�
x C 1

2
;�y C 1

2
;�z C 1

2

�
,

.�x;�y;�z/,
�
x C 1

2
; y;�z C 1

2

�
,
�
x;�y C 1

2
; z
�
,
��x C 1

2
; y C 1

2
; z C 1

2

�
,

where �x is Nx.
(e) Reflection conditions: Information of the extinction rule is given for the case

where atoms are located at the general positions. For example, 0kl W kCl D 2n

(n is integer) shows, with respect to the 0kl reflection, that when kC l is an odd
number, its crystal structure factor is zero and if kCl is an even number, it is not
zero. On the other hand, when atoms are located only at the special positions,
new information of the extinction rule appears in the column listed as Special for
every Wyckoff sign, in addition to the conditions given for the general positions.
For example, if an atom is only at the 4a position, the structure factor becomes
zero, when hC l or k is an odd number.
Symmetry of special projections provides information corresponding to two-
dimensional space groups and for example, this is used to project the crystal
structure with respect to the direction perpendicular to the reciprocal lattices
using the two-dimensional intensity data of a zero layer. In each space group
table, three different projections are given with respect to the direction indicated
by “Along” which is the projection to the plane perpendicular to this direc-
tion. Projections depend on crystal system and such information is as follows.
Projections are made to the directions of c-, a-, and b-axes for triclinic, mon-
oclinic, and orthorhombic systems. Similarly, the directions of c- and a-axes
and Œ110� for tetragonal system, c- and a-axes and Œ210� for hexagonal sys-
tem, Œ111�, Œ1N10�, and Œ2N1N1� for trigonal system and Œ001�, Œ111�, and Œ110� for
cubic system, respectively, are used for the projections. Following the projection
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direction, information related to the plane groups generated by the projection of
the space groups are provided as the Hermann–Mauguin symbol, p2gm, at the
present case. In the following line, the relationship with the basic axes a0, b0 and
in the line after that, the origin of plane groups, for example, .0; 0; z/ is given
using the unit cell coordinates of the space group.



Chapter 7
Supplementary Problems (100 Exercises)

Exercise 1.1 When accelerating an electron by 1 kV, compute the values of energy,
momentum and wavelength using the de Broglie relation.

Exercise 1.2 Calculate the values of mass absorption coefficient of gallium
arsenide (GaAs) and barium titanate (BaTiO3) for Cu-K˛ radiation.

Exercise 1.3 Air composition can be considered to be mostly 80mass%N2 and
20mass%O2 and its density is 1:29� 10�3Mg=m3 D g=cm3 at normal temperature
(273.15 K) and pressure (101,325 Pa). If Cu-K˛ radiation passes through 360 mm
of normal air, by what percentage is the intensity reduced. Perform a similar calcu-
lation for the Fe-K radiation.

Exercise 1.4 3:138 � 1021 atoms are found to be included in 0.5 g of a metallic
substance consisting of a single element. Calculate the atomic weight of this sub-
stance.

Exercise 1.5 What is the relationship between the wavelengths �K of absorption
edge found in each atom at the characteristic energies and the critical excitation
voltage VK for the case where the K-shell electron is removed. Estimate the exci-
tation voltage of Mo-K˛ radiation assuming that the wavelength of K-absorption
edge of molybdenum is 0.06198 nm.

Exercise 1.6 In the photoelectric absorption process where a photoelectron is
released from an atom, priority is given to inner-shell electrons; K-shell electrons
are released before L-shell electrons. The recoil of atom is necessarily produced
in the photoelectric absorption process, but its energy variation is known to be
negligibly small (see Question 1.6). In other words, photoelectric absorption by
free electrons does not occur. Explain why this is so using the law of conservation
of momentum. When a lead plate was irradiated with X-rays with an energy of
150 keV, K-shell photoelectric absorption occurred at the surface of the plate. In
this case, the speed of the photoelectrons was found to be 1:357�108 m/s. Calculate
the K-absorption edge of lead, assuming that no energy loss occurs.

253
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Exercise 1.7 When a tungsten plate was irradiated by X-rays with the energy of
150 keV, the photoelectric absorption of K-shell was made at the surface of plate
and the photoelectron was ejected. Assuming that there is no energy loss in this pho-
toelectric absorption process and the K absorption edge of tungsten is EW

K D 69:52

keV, find the velocity of photoelectron, at ejection.

Exercise 1.8 Compute the energy of K˛ radiation emitted from tungsten (atomic
number 74), under the condition that Moseley’s law is obeyed and the shielding
constant for generating the K˛ radiation is set to zero and the Rydberg constant is
1:097 � 107 (m�1).

Exercise 1.9 In the operation of X-ray tube, if setting applied voltage to V, exci-
tation voltage to VK and current to i, the number of photons of the characteristic
radiation emitted, IK, is approximated by the following equation, called “Storm
formula”.

IK D BSi.V � VK/
n

Where BS is a proportionality constant and n D 1.5 is widely used. The value of a
proportionality constant is set to 4:25� 108 (As�1 � sr�1) and the excitation voltage
of tungsten is given by 69.5 keV. When a tungsten X-ray tube is operated at 100 kV
and 1 mA, answer the following questions.

(1) Compute the number of photons of the characteristic X-rays released per unit
solid angle using the Storm formula.

(2) In this case, the average energy of the characteristic X-rays was also found to
be 60.7 keV. Compute the intensity.

Exercise 1.10 The transmission rate was found to be 0.65, when an iron plate was
irradiated by X-rays with the energy of 100 keV. The mass absorption coefficient
and density of iron for X-rays with the energy of 100 keV are 0.215 cm2=g and 7.87
g=cm3, respectively.

(1) Estimate the thickness of this iron plate.
(2) Check the amount of intensity loss in this iron plate as a function of the incident

X-rays.

Exercise 1.11 The thickness of a substance required to make intensity of the inci-
dent X-rays down to 50% is called “the half value layer”. Calculate the thickness of
a layer required to decrease the incident X-ray intensity to 10% when the half value
layer of iron to X-rays with a certain energy is known to be 0.041 mm.

Exercise 1.12 The minimum energy required to release an electron from an atom
in a solid substance is called the work function. During experiments involving
light exposure of the tungsten used for the filament of an X-ray tube, the threshold
wavelength for photoelectron emission is found to be 274.3 nm. Calculate the work
function of the metal. On the other hand, applying a reverse voltage to the filament
can prevent electron emission. Calculate the reverse voltage required to prevent
electron emission when tungsten is irradiated by light with a wavelength of 100 nm.
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Exercise 1.13 The wavelengths of K˛ and Kˇ radiation for magnesium are 0.9890
and 0.9521 nm, respectively. With reference to the K-Shell, describe the atomic core
level of the L- and M-shells in magnesium.

Exercise 2.1 Illustrate the planes of .N110/; .11N1/; .102/; .020/; .2N20/; .11N2/ and
the directions of Œ001�; Œ100�; Œ110�; Œ210�; Œ122�; Œ1N20� for a cubic lattice.

Exercise 2.2 Identify the closest packing plane for bcc and fcc structures and
estimate the atomic density on these planes.

Exercise 2.3 Graphite, sometimes called “black lead”, is known to have a layered
structure in which carbon atoms occupy the vertex positions of a regular (equilat-
eral) hexagon. Draw the unit cell in the plane of this layered structure.

Exercise 2.4 Potassium has a bcc structure with a lattice parameter of a D
0:520 nm.

(1) Compute the interatomic distances of the 1st and 2nd nearest neighbors.
(2) Estimate the coordination numbers of the 1st and 2nd nearest neighbors.
(3) Estimate the density based on the crystal structure.

Exercise 2.5 It is known that the hexagonal close-packed lattice will be material-
ized in the case of c=a D p

8=3 D 1:633, and magnesium is close to this ideal case,
because of c=a D 1:624. The values of density and molar mass of magnesium are
.1:74 � 106 g/m3/ and 24.305 g, respectively.

(1) Compute the volume of a unit cell.
(2) Estimate the lattice parameter a as well as the 1st nearest neighbor interatomic

distance.

Exercise 2.6 Typical crystal structures of metallic elements are known to be fcc,
hcp and bcc. Compute the packing fraction of these three structures. For compari-
son, compute the packing fraction of simple cubic structure.

Exercise 2.7 CaS and MgS have a NaCl-type structure. The radii of Ca2C and
Mg2C ions are 0.099 and 0.065 nm, respectively. On the other hand, the radius of
S2� ion is known to be 0.182 nm. Describe the stability of CaS and MgS crystals
using the difference in size of positive and negative ions.

Exercise 2.8 Aluminum has a fcc structure with a lattice parameter of a D
0:40497nm. Compute the interatomic distances in the planes (100) and (111).

Exercise 2.9 The coordination polyhedra can be defined as a group of the nearest
neighbor atoms surrounding a central atom. The number of such nearest neighbors
is called the coordination number. If the coordination number decreases, the volume
of the coordination polyhedra will decrease. Calculate the reduction percentage in
atomic radius when the coordination number changes from 12 to 8 or from 12 to 4.
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Exercise 2.10 Supposing that a body-centered cubic (bcc) structure is filled with
hard spheres, obtain the maximum radius of the sphere which can fit into octahedral
and tetrahedral voids.

Exercise 2.11 Iron exhibits an ˛-phase at temperatures below 1,183 K and a
ı-phase at temperatures above 1673 K. Both of these phases are characterized by
a bcc structure, whereas the � -phase found at temperatures between 1,183 and
1,673 K has a fcc structure. It is also known that only the � -phase exhibits relatively
high solubility for carbon.

(1) Explain the difference in carbon solubility of these phases from a structural
point of view.

(2) Titanium is known to have a hcp structure at room temperature. Explain the
difference in formation of titanium hydride and titanium carbide.

Exercise 2.12 Sodium chloride is known to contain four molecules in a unit cell.
The molecular weight of sodium chloride per mole and the value of density at 298 K
are 58.44 g and 2:164 � 106 g/m3, respectively.

(1) Compute the specific volume and molecular volume of sodium chloride crystal.
(2) Estimate the distance between sodium ion and chlorine ion in sodium chloride

crystal.

Exercise 2.13 With respect to caesium chloride crystal, (1) estimate the specific
volume and molecular volume. (2) Also find the distance between cesium ion and
chlorine ion. The molecular weight of causium chloride per mole and the density
value at 298 K are 168.5 g and 3:970 � 106 g/m3, respectively.

Exercise 2.14 Potassium bromide (KBr) has a NaCl-type structure. The ionic radii
of KC and Br� are 0.133 and 0.195 nm, respectively. The molecular weight of KBr
is 119.00 g.

(1) Determine the lattice parameter a and the density of a KBr crystal by assuming
the additivity of ionic radii.

(2) Find the ratio of rC=r� required to prevent the direct contact of anions.
(3) Potassium halides also have a NaCl-type structure. For the same halogen, the

lattice parameter of rubidium halide is 0.028 nm larger than that of potassium
halide. Estimate the ionic radius of RbC from this difference.

Exercise 2.15 In the zinc blende (ZnS) structure, one element occupies the corner
and the face-centered positions of a unit cell, and the other element occupies the
tetrahedral positions of the diamond structure. In addition, the ionic radii of Zn2C
and S2� are 0.074 and 0.184 nm, respectively.

(1) Find the nearest-neighbor coordination number of Zn2C and S2�.
(2) Estimate the angle formed by a S2� and consecutive nearest-neighbor Zn2C

ions.
(3) Estimate the radius ratio .rC=r�/ required to avoid direct contact between

anions .S2�/ by assuming that positive and negative ions touch each other.
(4) Give a possible reason why ZnS does not have a NaCl-type structure.
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Exercise 2.16 A unit cell of a caesium chloride (CsCl) crystal with a lattice param-
eter of a D 0:4123 nm has a Cl� ion at each vertex and CsC ion at the center of
cube. The molecular weight of CsCl is 168.36 g. Compute the distance between
CsC and Cl� ion and the density of this ionic crystal.

Exercise 2.17 The simplest crystal structure for zinc sulfide is the diamond-like
cubic structure. The diamond structure may be visualized as follows; four atoms
are added every other one to the tetrahedral site which exists at the center of eight
“octants” contained in a unit cell of fcc structure. Explain the relationships among
the face-centered cubic, diamond and zinc sulfide structures by illustrating their unit
cells and the atomic arrangements along the vertical-axis for zinc sulfide structure.
Note: An octant is the name of a small cubic unit cell.

Exercise 2.18 In annealing twins of a metallic element with fcc structure, it is
likely to find the deformation in the (111) plane so as to form twin structure in the
Œ11N2� direction. Illustrate the movement of each atom during such deformation with
twin structure.

Exercise 2.19 Draw the atomic arrangement in unit cells of fcc, hcp and bcc
lattices which are the typical crystal structures of metallic elements. Show atomic
arrangement at different distances along z-axis (vertical axis).

Exercise 2.20 Draw the layer-by-layer atomic arrangement in a unit cell along the
vertical (z-) axis for of diamond and NaCl structures.

Exercise 2.21 Draw the layer-by-layer atomic arrangement in a unit cell along the
vertical (z-) axis for zinc blende (ZnS), fluorite (CaF2) and rutile (TiO2) structures.
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Exercise 2.22 A four-index system (H K i L) is often used to identify planes in
a hexagonal lattice, in addition to the usual three-index (h k l) system. A similar
method is frequently used for describing directions.

(1) Using the three-index system, planes, (100), (010) and (001) may appear equiv-
alent to one another. However, show that (001) is not equivalent to other two
planes by the use of four indices. Further, show that (110) is equivalent to .1N20/.

(2) Show that the directions [100], [010], [001] are not equivalent by the use of
four indices. Also demonstrate that the Œ10N10� direction is perpendicular to the
.10N10/ plane.

Exercise 2.23 The lattice points having the symmetry elements characteristic of
the rhombohedral system may also be referred to a hexagonal cell. Explain the
transformation between rhombohedral axes and hexagonal axes.

Exercise 2.24 Find the geocentric angle between Sendai, Japan (38ı of north lati-
tude, 141ı of east longitude) and Seattle, U.S.A. (47ı of north latitude, 123ı of west
longitude).

Exercise 2.25 Draw the standard stereographic projection of a cubic crystal when
projected on the plane of (001) or (011).

Exercise 2.26 Show the direction equivalent to perpendicular axis (1) and hexago-
nal axis (2) in the stereographic projection.

Exercise 2.27 Show the stereographic projection of two cases; (1) tetragonal pyra-
mid and (2) tetragonal dipyramid. Also show the angular coordinates with respect
to a certain plane in the tetragonal pyramid case.

a b

Exercise 2.28 Explain how to determine the position of a rotating axis of a cube
using the Wulff net.

Exercise 3.1 Find the number of molecules and electrons contained in one cubic
meter (m3) water .H2O/ at 273 K.
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Exercise 3.2 Differential cross section d�e=d˝ of one free electron for coherent
X-ray scattering, which is generated from the area per unit solid angle in the
direction of scattering angle � , is given by the following equation.

d�e

d˝
D re

2
.1C cos2 �/ .m2=sr/

where re is the classical electron radius .2:8179� 10�15/ m and sr is steradian.

(1) Estimate the value of d�e=d˝ in the direction of scattering angle 45ı with
respect to unit solid angle and unit scattering angle.

(2) Estimate the values of d�e=d˝ in the area from scattering angle zero to � radian
(180ı) and show the results in the graphical form.

Exercise 3.3 Compute the number of photons produced per unit area by the inco-
herent scattering, when the X-ray beam with 100 keV energy and the number of
photons per unit area is given by Nx D 2 � 1012 .m2/ transmits through 20 mm
thick water layer. Note that the value per electron of the incoherent scattering cross-
section for the incident X-rays with energy of 100 keV is �e D 70:01 � 10�30 m2.

Exercise 3.4 Compute how much the scattering intensity from one electron is at
the distance of 0.01 m away from an electron, assuming that the polarization factor
is negligible. Next estimate the number of electrons per unit mass for magnesium.
The atomic number of magnesium is 12 and its molar mass is 24.305 g. In addition,
confirm the scattering intensity from 1 g of Mg, at the distance of 0.01 m.

Exercise 3.5 Let us consider that X-rays with the wavelength of 0.01 nm collide
with a free electron and produce incoherent scattering at scattering angle of 60ı.

(1) Find the wavelength of the scattered photon.
(2) Estimate the energy of the scattered photon in keV.

Exercise 3.6 The incoherent scattering was obtained at 180ı the scattering angle;
the energy of the recoil electron was found to be 30 keV. Compute the scattered
photon energy, by considering conservation law of both energy and momentum.
Note that if the momentum of an electron is set to p, the rest mass to me and the
speed of light to c, the relationship of .E=c/2 � p2 D .mec/

2 shall be approved
with respect to the total energy of an electron E .

Exercise 3.7 Calculate the so-called Compton wavelength accompanying the
Compton scattering of an electron.

Exercise 3.8 The electron density of a hydrogen atom is given as follows.

� D .e�2r=a/

�a2
a D 0:053 nm D 0:53 Å

Z
�dV D 1
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(1) Derive the atomic scattering factor f and the incoherent scattering intensity per
atom i(M) as a function of .sin �=�/.

(2) Calculate the values of f and i(M) at values of .sin �=�/ = 0.0, 0.2 and 0.4.

Exercise 3.9 Let us consider that X-rays with an energy of 100 keV collide with a
free electron and are incoherently scattered. Find the energy of the scattered photon
under the condition that the recoil angle (	) is zero.

Hint: A value can not be assigned to 1= tan	 because of the zero in the denomi-
nator, so use that 2� ! 2� as 	 ! 0, where 2� is the scattering angle.

Exercise 3.10 Cuprous chloride (CuCl) has ZnS type structure and the molecular
weight per mole is 99.00 g and the density is 4:135 � 106 g/m3 at 298 K. When the
Mo-K˛ radiation with the wavelength of � D 0:07107 nm is used, find the angle
at which a strong peak corresponding to the reflection from the (111) plane will be
observed.

Exercise 3.11 The molar mass of magnesium oxide having NaCl type structure is
40.30 g and the density is 3:58 � 106 g/m3 at 298 K.

(1) Compute the values of .sin �=�/ at which peaks corresponding to the reflection
from the planes of (100), (110) and (111) may appear.

(2) Explain the condition for detecting these three peaks by the crystallographic
structure factor.

Exercise 3.12 AgCl is known to have NaCl type structure. Which of the following
indices are allowed in the X-ray diffraction pattern? 100, 010, 001, 110, 101, 011,
111, 200, 020, 002, 120, 102, 012, 210, 201, 021, 220, 202, 022, 211, 121, 112,
221, 212, 122 and 222.

Exercise 3.13 Uranium is known to have an orthorhombic crystal lattice with four
atoms in a unit cell. When the length of the unit cell is a standard unit, the positions
of the four atoms u v w are expressed as 0y 1

4
I 0�y 3

4
I 1

2
1
2

Cy 1
4

and 1
2

1
2

�y 3
4

, where
y expresses an arbitrary location.

(1) Find the Bravais lattice of uranium in addition to the structure factor Fhkl .
(2) Determine the plane indices for which the diffracted intensity cannot be

observed.

Exercise 3.14 In the calcium fluorite .CaF2/ structure, atoms occupy the position
of 3

4
3
4

3
4

, which is not filled in the so-called zinc blende (ZnS) structure.
That is, Ca occupies the positions of 000I 1

2
1
2
0I 0 1

2
1
2
I 1

2
0 1

2
, and F occupies the

positions of 1
4

1
4

1
4
I 3

4
3
4

1
4
I 1

4
3
4

3
4
I 3

4
1
4

3
4
I 3

4
3
4

3
4
I 1

4
1
4

3
4
I 3

4
1
4

1
4
I 1

4
3
4

1
4

.

(1) Obtain the structure factor Fhkl of CaF2 and also express it using the structure
factor F.fcc/ of a face-centered cubic lattice.
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(2) Determine the plane indices for which the diffracted intensity can and cannot be
observed.

Ca

CaF2

ZnS
Fa

Exercise 3.15 Graphite has hexagonal crystal lattice which contains four atoms per
unit cell at positions of 000I 1

3
2
3
0I 00 1

2
and 2

3
1
3

1
2

. Show that the structure factor is
given by the following equations. In addition, find the condition of h k l in which
the diffracted intensity cannot be observed.

l D even W F D 4f cos2

�
�

�
hC 2k

3

��

l D odd F D i2f sin

�
2�

�
hC 2k

3

��

Exercise 3.16 Explain characteristic features of the structure of caesium chloride
(CsCl) crystal. In addition, estimate the diffracted intensity values for peaks from
the (100), (110) and (111) planes by assuming that the atomic scattering factor can
be approximated by the atomic number of each element, that is 55 for Cs and 17 for
Cl, respectively.

Exercise 4.1 Derive an equation of absorption factor for measuring the diffraction
intensity from a slab sample with thickness t by the symmetry-transmission method.

Exercise 4.2 Thermal expansion coefficient of copper is 16:6 � 10�6/K. Compute
how much the temperature control is required for a sample in order to obtain the
lattice parameter of copper within the uncertainty of ˙0:00001 nm at 293 K.

Exercise 4.3 The lattice parameter of aluminum at room temperature is a D
0:4049 nm and its Debye–Waller factor is BT D 8:825� 10�3 nm2. Let us consider
the intensity measurements of aluminum for peaks corresponding to the 111, 311
and 420 planes. What is the intensity at room temperature as a percentage of that at
absolute zero Kelvin.
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Exercise 4.4 A diffraction pattern of a powder crystalline sample with a very small
volume was recorded using a Debye–Scherrer camera with a flat-plate film posi-
tioned at a distance D from the specimen and perpendicular to the incident beam.
Find the intensity P 0 per unit length of the diffraction circle on the flat-plate film as
a function of D.

Exercise 4.5 For two metallic samples, the following numerical data (Tables
A and B) were obtained from X-ray diffraction patterns using Cu-K˛ radiation
(� D 0:1542 nm). By considering the fact that fcc or hcp-type feature is observed in
the diffraction pattern, determine the crystal structure and also estimate the lattice
parameter.

Table A
d(A)

1 43.16 2.0761 100
2 50.28 1.8148 48
3 73.97 1.2816 26
4 89.86 1.0917 24
5 95.05 1.0453 7

2q I / I0

Table B

1 36.30 2.4751 53
2 38.97 2.3114 40
3 43.22 2.0935 100
4 54.32 1.6890 37
5 70.07 1.3430 48
6 70.61 1.3341 35
7 77.04 1.2380 6
8 82.11 1.1739 26
9 83.70 1.1556 4
10 86.53 1.1249 16
11 89.90 1.0913 11
12 94.92 1.0464 6

d(A)2q I / I0

Exercise 4.6 For two unknown samples, the following numerical data (Tables A
and B) were obtained from X-ray diffraction patterns using Cu-K˛ radiation (� D
0:1542 nm). By assuming that the unknown sample is a single phase, identify each
sample using the Hanawalt method.

Table A

1 36.90 2.436 20
2 42.77 2.114 100
3 62.14 1.494 55
4 74.50 1.274
5 78.51 1.218 15
6 93.95 1.055
7 105.74 0.967

5

5
2

8 109.92 0.942 15

d(A)2q I / I0

Table B

1 35.83 2.506 85
2 41.74 2.164 100
3 60.45 1.532 60

72.33 1.307 35
5 76.05 1.252 20

90.77 1.083 10

4

6
7 101.68 0.994 15
8 105.47 0.969 25

d(A) I / I02q
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Exercise 4.7 X ray diffraction pattern (Fig. A) and the relevant numerical data
(Table A) for the unknown sample were obtained by Cu-K˛ radiation. Identify the
sample by applying the Hanawalt method.

Fig.1

Table A

Exercise 4.8 X ray diffraction pattern (Fig. A) and the relevant numerical data
(Table A) for the unknown sample were obtained by Cu-K˛ radiation. Identify the
sample by applying the Hanawalt method.

Fig. A
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Table A

1 20.80 4.271 17 13 50.25 1.816 10
2 25.59 3.482 62 14 52.54 1.742 41
3 26.66 3.344 100 15 54.88 1.673 3
4 35.16 2.553 95 16 55.31 1.661 2
5 36.56 2.458 7 57.42 1.605 80
6 37.77 2.382 36 18 59.96 1.543 8
7 39.46 2.284 9 61.32 1.512 7
8 40.27 2.240 0 64.10 1.453 2
9 42.42 2.131 1 66.51 1.406 28

10 43.36 2.087 90 22 67.71 1.384 4
11 45.78 1.982 3 68.21 1.375 40
12 46.15 1.967

7 1

5 1
1 2
6 2

2 2
2 24 68.44 1.371 3

d (A) I / I1 d (A) I / I12q 2q

Exercise 4.9 A diffraction experiment was carried out on a powder sample of sili-
con using Cu-K˛ radiation. The structure of silicon is the same as that of diamond
crystal lattice. In the high angle region, the peak splitting attributed to the difference
between K˛1 and K˛2 is clearly observed in Fig. A and the relevant angular data
are summarized in Table A for the (440), (531), (620), and (533) planes. Compute
the lattice parameter using the extrapolation method.

Table A

Fig. A

Exercise 4.10 Ultra fine particles of iron were produced by the evaporation method
and their average sizes are estimated 25, 50, 90 and 120 nm using the laser particle
analyzer. Assuming that the resultant particles are strain free and the peak broad-
ening detected in the measurement with Cu-K˛ radiation (� D 0:15406 nm) arises
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only from variation of size of the crystallites, estimate the peak width (the value of
FWHM) of the (110) plane possibly detected by using the Scherrer equation.

Exercise 4.11 The peak broadening as well as the decrease in peak height was
observed, during a diffraction experiment by Cu-K˛ (� D 0:1542 nm) radiation on
the cold worked aluminum sample. The results are summarized in Table A where the
FWHM values for peaks corresponding to the (111), (200), (220), and (311) planes.
The aluminum sample was fully annealed in order to remove the stress and strain
induced by cold-work and similar measurements were done for comparison. The
results are summarized in Table B with the corresponding FWHM values. Compute
the average size of crystallites in the cold-worked aluminum sample.

Table A
2q (degree) FWHM (degree)

1 111 38.47 0.188

2 200 44.72 0.206

3 220 65.13 0.269

4 311 78.27 0.303

hkl
Table B

1 111 38.47 0.102

2 200 44.70 0.065

3 220 65.10 0.089

4 78.26 0.091311

2q (degree) FWHM (degree)hkl

Exercise 4.12 The diffraction experiment using Cu-K˛ (� D 0:1542 nm) radia-
tion was carried out for the mixed powder sample of MgO and CaO and two or
more clearly separated diffraction peaks were obtained. According to the prelimi-
nary analysis, the diffraction peak of the (111) plane of MgO is found to overlap
with that of the (200) plane of CaO near 2� D 37ı (see Fig. A) and it is difficult
to separate. Other peaks can be identified with each component. The measured inte-
grated intensities of the corresponding peaks are summarized in Table A. Calculate
the contents of MgO and CaO. Both of MgO and CaO have NaCl type structure

Fig. A
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and the lattice parameters are 0.42112 nm for MgO and 0.48105 nm for CaO (see
Appendix A.9).

Table A

Exercise 4.13 The diffraction experiment using Cu-K˛ line (� D 0:1542 nm) radi-
ation was made for a mixed powder sample of Si containing Cu and four clearly
separated diffraction peaks were obtained. These four peaks can be attributed to
peaks of the (111) and (220) planes of Si and the (111) and (200) planes of Cu. The
integrated intensities of these four peaks are summarized in Table A. Calculate the
contents of Cu and Si using the direct method.

Table A

2� Integrated hkl

(degree) intensity I

1 28.40 162.3 Si(111)
2 43.28 359.7 Cu(111)
3 47.31 87.2 Si(220)
4 50.43 120.4 Cu(200)

Exercise 4.14 Slags used in steel-making process dissolve various elements in the
glassy phase and the melilite component is known to be frequently involved. After
griding this slag sample in a ball mill, the diffraction peak corresponding to the
(211) plane of the melilite component was observed at about 32ı scattering angle,
as shown in Fig. A. With increasing milling time, the peak broadening as well as
the decrease in peak height was observed as summarized in Table A. Compute the
variation in average size of crystallites by assuming that measured FWHM values
arise only from change of the crystallite size.
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Table A
Milling
time

(hour) 

Melilite (211)
2q 

degree
FWH

M
degree

0 31.24 0.059

1 31.25 0.105

2 31.27 0.272

4 31.30 0.319

6 31.31 0.483

6

4

2
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0
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Fig. A

Exercise 5.1 For a rectangular (or orthogonal) coordinate system XY, let us con-
sider that the unit vectors, taken from a point O along the positive directions of the
individual axes, are ex and ey . If the coordinates of two vectors from O to the points
P1 and P2 are given by P1.x1; y1/ and P2.x2; y2/, obtain the relationship for the
coordinates P.x; y/ which divides the distance between P1 and P2 with the ratio of
m : n.

Exercise 5.2 In a rectangular coordinate system XY, when the angle between
a straight line and the positive X -axis is � , the angle to the positive Y -axis is
given by f.�=2/ � �g. Accordingly, the two directional cosines are � D cos � and

 D cosf.�=2/ � �g D sin � , respectively. In this case, m D .
=�/ D .sin �=
cos �/ D tan � is called the directional coefficient of the straight line. Obtain the
relationships of the directional coefficients and directional cosines when a straight
line q1 is perpendicular to a straight line q2, where their directional coefficients are
given by m1 and m2, respectively.

Exercise 5.3 Let us consider that a two-dimensional lattice is expressed by the
basic vectors a D 2ex and b D ex C 2ey . Obtain the primitive vectors of the
reciprocal-lattices, A* and B*.

Exercise 5.4 Show that the magnitude of the reciprocal-lattice vector b1 is equal
to the reciprocal of a spacing of the (100) plane.
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Exercise 5.5 Real crystal lattice vectors a1 and a2 are parallel to the drawing plane,
whereas a3 is perpendicular to the drawing plane. When the lengths of the real
crystal-lattice vectors are ja1j D 3:0; ja2j D 2:0; ja3j D 1:0 and the angle formed
by a1 and a2 is ˛12 D 60ı, solve the following problems.

(1) Draw the real crystal-lattice vectors a1 and a2, and also the reciprocal-lattice
vectors b1 and b2 for the above conditions.

(2) Draw the (110), (210) and (310) planes in the real crystal-lattice based on the
definition of Miller indices hkl, and also show H110;H210 and H310 in the
reciprocal-lattice when Hhkl D hb1 C kb2 C lb3.

Exercise 5.6 Let us consider that a crystallographic direction may be expressed
by Auvw D ua1 C va2 C wa3 and the direction perpendicular to the .hkl/ plane by
Hhkl D hb1 C kb2 C lb3. If the angle between Auvw and Hhkl is 	, express cos	
for the orthorhombic system in terms of u; v;w; h; k; l; a1; a2 and a3.

Exercise 5.7 It is known that the trigonal (rhombohedral) lattice unit cell is the
primitive unit cell for the fcc structure. Similarly, the orthorhombic lattice unit cell
is the primitive lattice unit cell for the hexagonal structure. Find the method of
conversion for the equivalent plane between these two primitive unit cells using the
fact that only one reciprocal-lattice vector can have a real physical meaning.

Exercise 5.8 For a face-centered cubic lattice, answer the following questions.

(1) Obtain the primitive (translation) vectors of the reciprocal-lattices.
(2) Show the first Brillouin zone.

Exercise 5.9 Obtain the so-called Bragg equation or Laue equation by using the
condition that the strongest scattering amplitude from crystals is obtained when the
scattering angle is in agreement with the reciprocal-lattice vector.

Exercise 5.10 Show that a given formula for the summation of the real crystal
lattice vectors is not zero only if the vector q is equal to the reciprocal-lattice vector.

G.q/ D
X

n

e�2� iq�rn

Exercise 5.11 If the sin �=� value is very small, show that both the atomic scat-
tering factor f and the incoherent scattering intensity i.M/ are given by a parabolic
function of sin �=�.

Exercise 5.12 In the classical theory, the amplitude of vibration of atomic elec-
trons is considered to be continuously and infinitely variable. On the other hand,
from a quantum-mechanical point of view, the angular frequency is that of an X-ray
photon with just enough energy to eject the electron from the atom. This is the case
when the wavelength of the incident X-rays is close to the absorption edge and it is
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known as anomalous scattering (or resonance scattering) phenomenon. Considering
this phenomenon as the interaction between X-rays and a harmonic oscillator with
an attenuation term, explain the variation of the atomic scattering factor f.

Exercise 5.13 With respect to a diffraction phenomenon from one-dimensional slit
called the Fraunhofer diffraction which is attributed only to the aperture width L,
obtain the diffraction intensity at the point P which is at distance R sufficiently far
from the slit.

Exercise 5.14 Obtain the diffraction intensity produced from a two-dimensional
lattice described by an interval a repeated m times in the x-direction and an interval
b repeated n times in the y-direction, respectively. Here, m and n take sufficiently
large values.

Exercise 5.15 Let us consider a one-dimensional lattice in which identical scat-
tering centers are at positions rn D na (n: integer). The scattering amplitude G in
this one-dimensional lattice is proportional to G D

X
e�na�q, and the sum over

m lattice points is given by.

G D
m�1X
nD0

e�ina�q D 1 � e�im.a�q/

1 � e�i.a�q/

(1) Obtain the diffraction intensity I.
(2) In this case, the maximum value of the diffraction intensity can be obtained

when a � q is given by integer multiples of 2� . Let us consider the case of a
small change in q such that a � q D 2�h C ı.ı > 0/. Calculate the minimum
value of ı for which the intensity becomes zero.

Exercise 5.16 In the model system of carbon tetrachloride, four chlorine atoms
are located at the positions of regular tetrahedron and the carbon atom occupies the
center of the tetrahedron. By applying Debye’s equation, obtain the approximate
expression for the diffraction intensity from carbon tetrachloride molecules con-
structed with a total of five atoms with two distinct elements as the scatterer.

Exercise 5.17 Consider diffraction from a single crystal whichN1a,N2a, andN3a

primitive cubic lattices arranged along the three coordinate axis,< 100 > direction,
with the lattice parameter of a D 0:25 nm. Explain features of the reciprocal-lattices
for the following three cases with different numbers of unit cells along the three
directions.

(1) N1 D N2 D N3 D 104

(2) N1 D N2 D 104; N3 D 10 (Reciprocal-lattice of a thin film layer)
(3) N1 D 104; N2 D N3 D 10 (Reciprocal-lattice of a peace of string sample)

Exercise 5.18 Calcium fluorite (CaF2) has a face-centered cubic lattice containing
four (CaF2) per unit cell and the lattice parameter is a D 0:5463 nm. The atomic
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positions, 000 for Ca, 1
4

, 1
4

, 1
4

, 3
4

, 3
4

, 3
4

for F and other positions can be obtained by the
face-centering translations.

(1) Obtain the structure factor F.
(2) Compute the values of the squares of the scattering factor F 2 for peaks cor-

responding to the planes 111 and 222 using the numerical values of f from
Appendix A.3.

(3) Compute the F 2 values including the anomalous dispersion factors f and f 00
for Ca.

Exercise 6.1 When the axes of the orthorhombic space group Pbcn are altered
within the same unit cell, show the changes that occur to Hermann–Mauguin sym-
bols. Repeat for the orthorhombic space group Cmca.

Exercise 6.2 Show the coordinates of the equivalent positions when the symmetry
operation is made for the general positions x, y, and z expressed by C2=c (Interna-
tional Tables: No.15, c-axis is taken on a unique axis) and P212121 (International
Tables: No.19).
Exercise 6.3 If the (100) plane is set to a glide plane, explain the effect of the

glide-reflection operation of c=2, with respect to the (100) plane, on the structure
factor Fhkl and jFhkl j2. In addition show the conditions which enable us to detect
the diffraction intensity.

Exercise 6.4 Explain the method for determining the screw axis including trans-
lational operation or a plane of gliding-reflection by applying the extinction law to
diffraction peaks.

Exercise 6.5 Rutile-type titanium dioxide (TiO2) belongs to the tetragonal sys-
tem containing two TiO2 formula units per unit cell and the atomic positions are
given as;

Ti W 000 W 1

2

1

2

1

2

O W uu0 W �u � u0 W 1

2
� uu C 1

2

1

2
W u C 1

2

1

2
� u

1

2

(1) Obtain the structure factor F by considering the equivalent lattice points.
(2) Obtain the conditions for which F becomes zero without reference to the value

of u.
(3) Explain which of a simple tetragonal or body-centered tetragonal lattice is a

Bravais lattice.

Exercise 6.6 Supposing an incident beam is reflected from a plane h1k1l1, it is
possible to coincide this beam with the direction of the reflected beam from another
plane h2k2l2.
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(1) Show that the direction of the second reflection is equivalent to that due to direct
reflection from a plane h3k3l3 such that:

h3 D h1 C h2; k3 D k1 C k2; l3 D l1 C l2

(2) When double reflections from the .N1N11/ and .h2k2l2/ planes of a diamond crys-
tal with a lattice parameter of a D 0:3567 nm are produced using Cu-K˛
.� D 0:1542 nm) radiation, it is possible to obtain a so-called pseudo-reflection
from the (222) plane. Identify such .h2k2l2/ planes. In addition, show the direc-
tion of the incident beam by the directional cosine S0 along three orthogonal
axes a1; a2 and a3.

Exercise 6.7 Following data give the lattice parameters and the basis of the rutile
structure of titanium dioxide (TiO2). Draw both the perspective drawing and the
projection on the (x; y; 0) plane. In addition, show a stereographic projection.

Lattice Basic atom
position

Space
groups

Atom positions

Tetragonal P Ti W 0; 0; 0 a Ti W 0; 0; 0

a D 0:459 nm
1

2
;
1

2
;
1

2

1

2
;
1

2
;
1

2

O W 0:3; 0:3; 0 P42=mnm f O W x; x; 0

c D 0:296 nm 0:8; 0:2;
1

2

1

2
C x;

1

2
� x;

1

2 x D 0:3

0:2; 0:8;
1

2

1

2
� x; 1

2
C x;

1

2

0:7; 0:7; 0 Nx; Nx; 0

Exercise 6.8 Pyrite is known to have NaCl type structure with four FeS2 formula
units per unit cell. The lattice parameter is a D 0:5408 nm. In addition, the space
group symmetry suggests the following atomic positions;

Fe W 000 I 01
2

1

2
I 1
2
0
1

2
I 1
2

1

2
0

S W u; u; u I 1
2

C u;
1

2
� u; NuI

Nu; Nu; Nu I �1
2

� u;�1
2

C u; uI

Nu; 1
2

C u;
1

2
� u I 1

2
C u; Nu; 1

2
C u
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Nu;�1
2

� u I �1
2

C u I �1
2

C u; u;�1
2

� u;

(1) Obtain the structure factor F for the unmixed h k l by excluding the anomalous
dispersion factors.

(2) For a powder sample of pyrite, the integrated intensities of the diffraction peaks
for the (111) and (200) planes were found to be 69.2 and 277.5 in arbitrary units,
respectively. Compute the value of u from the ratio of the integrated intensities
of two peaks, when considering only the u-range between 0.30 and 0.40.

Exercise 6.9 Show the rotatory inversion operation of N5 and N10 on a general pole
of the stereographic projection.

Exercise 6.10 With respect to the space group P21=c, which is frequently found
in real crystals, information can be obtained from the International Tables for Crys-
tallography, Volume A, page 184–185. Explain the key points.

Exercise 6.11 Information on the space group Cmm2, which is frequently found
in real crystals, can be obtained from the International Tables for Crystallography,
Volume A, page 238–239. Explain the key points.



Chapter 8
Solutions to Supplementary Problems

Exercise 1.1

E D 1:602 � 10�16 J; p D 1:708 � 10�23 kg � m/s; � D 3:879 � 10�11 m

Exercise 1.2

�
�

�

�
GaAs

D 68:62 .cm2=g/;

�
�

�

�
BaTiO3

D 234:8 .cm2=g/

Exercise 1.3

32%.Cu � K˛/; 54%.Fe � K˛/

Exercise 1.4
5:95 g

Exercise 1.5

VK.kV/ D 1:240

�K.nm/
;For Mo-K˛; VK D 20:01 kV

Exercise 1.6
EPb

K D 88 keV

Exercise 1.7
1:510 � 108 m/s

Exercise 1.8
55:9 keV

Exercise 1.9

Photon numberIK W 1:28�1011ŒmAs�1 � sr�1�; IntensityI W 1:24�10�3 .J=mAs � sr/

273
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Exercise 1.10
2:55mm

Exercise 1.11
0:14mm

Exercise 1.12

Work function 4:52 eV;Reverse voltage Vi W 7:88Volt

Exercise 1.13

1290 eV .L-shell/ and 48 eV .M-shell/ higher than the K-shell energy:

Exercise 2.2
bcc W 1:06; fcc W 1:15

Exercise 2.3

Rhombuses obtained by drawing lines between the centers of regular hexagons.

Exercise 2.4

1. r1 D 0:450 nm, r2 D 0:520 nm
2. n1 D 8, n2 D 6

3. Density : 0:923 � 106 g/m3

Exercise 2.5

1. 46:39 � 10�30 m3

2. a D 0:3207 nm r1 D a

Exercise 2.6

fcc : 0.7405, hcp : 0.7405, bcc : 0.6802, simple cubic : 0.5236

Exercise 2.7

See the coordination number of 6 in Question 2.15. The sphere radius of octahedron
formed by six S2� ions is about 0.075 nm which is smaller than the ionic radius of
Mg2C ion.

Exercise 2.8

0.2864 and 0.4050 nm for (100) plane, 0.2864 nm for (111) plane.

Exercise 2.9

Reduction percentage from 12 to 8: 26.8% and from 12 to 4: 77.5%
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Exercise 2.10

Octahedral void: 0.155r , Tetrahedral void: 0.291r

Exercise 2.11

1. Tetrahedral void in fcc: 0.107 nm (0.414r), Octahedral void in fcc: 0.058 nm
(0.225r). Tetrahedral void in bcc: 0.072 nm (0.291r). Carbon atom (size:
0.14�0.15 nm) is found to be relatively easy to occupy the tetrahedral void
in fcc structure.

2. Packing condition of hcp in the ideal state is equal to the fcc case.

Exercise 2.12

1. 0:4621� 10�6 (m3/g), 27:01� 10�6 (m3/mol)
2. 0.2820 nm

Exercise 2.13

1. 0:2519� 10�6 (m3/g), 42:41 � 10�6 (m3/mol)
2. 0.3577 nm

Exercise 2.14

1. a D 0:656 nm, Density D 2:80 � 106 g/m3

2. rC=r� D 0:414

3. Ionic radius of RbC: 0.147 nm

Exercise 2.15

1. 4
2. � D 109:48ı
3. rC=r� D 0:225

4. rC=r� D 0:402 for ZnS. Since the radius of Zn2C cation is smaller than the
maximum radius fitting into the vacant space formed by NaCl structure, the direct
contact between anions of S2� is possible, so that the structure is unstable.

Exercise 2.16

Distance : 0.3571 nm, Density : 3:989 � 106 g/m3

Exercise 2.18

When applying the annealing process to metals with fcc structure after cold-
working, we can frequently observe the twin crystal growth, called “annealing
twins.” Note that “deformation twins” are also known in metals with bcc or hcp
structure. In order to explain the formation of the annealing twin structure, the
positions of about 67% (D2=3) of total atoms are unchanged and we take a uniform
shear motion of the (111) layer to the [112̄] direction into account. This enables us
to move each layer only the quantity proportional to the distance of twins.
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Exercise 2.22

Three indices $ Four indices Three indices $ Four indices
.hkl/ .HKiL/ Œuvw� ŒUV tW �

.100/ .10N10/ Œ100� Œ2N1N10�

.010/ .01N10/ Œ010� ŒN12N10�

.001/ .0001/ Œ001� Œ0001�

.0N20/ .0N210/

.110/ .11N20/

Exercise 2.23

The relationship between (hkl) for rhombohedral structure and (HKiL) for the
hexagonal case is �H CK CL D 3k (k : integer). If .�H CK CL/ is not given
by integer multiple of 3, the system is considered to be hexagonal.

Exercise 2.24

68ı

Exercise 2.28

In cubic, the zone pole and the corresponding zone circle are at right angles to one
another, so that the angle between the planes of two zone circles is equal to that
formed by two poles of the corresponding zones.

Exercise 3.1

Nm D 3:34 � 1028 molecules/m3, Ne D 3:34 � 1029 electrons/m3

Exercise 3.2

1. d�e
d˝

D 5:96 � 10�30 m2/sr. Estimate the differential cross section using the
relation of d˝ D 2� sin �d� . d�e

d˝
D 2:65� 10�30 m2/rad at (sin 45ı D 0:7071).

2. The values of differential cross section per unit solid angle are obtained as a
function of angle � . Note that the value at 90ı is found half of the 180ı case.

�
cos2�

d�e

d˝

�
cos2 �

d�e

d˝.degree/ .degree/
0 1:0 7:94 � 10�30 100 0:030 4:09 � 10�30

30 0:750 6:95 � 10�30 130 0:413 5:61 � 10�30

90 0 3:97 � 10�30 180 1:0 7:94 � 10�30
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Exercise 3.3

If the number of electrons in water layer is set to Ne, the number of photons per
unit areaNip due to the incoherent scattering is given asNip D �e �Ne �Nx D 6:95�
109m�2.

Exercise 3.4

Intensity scattered from one electron : Ie D 7:95 � 10�26I0, Intensity scattered
from electrons of 1 g Mg : I 0

e D 0:024I0, so that it is measurable.

Exercise 3.5

(1) � D 0:0112 nm, (2) E D 110:7 keV

Exercise 3.6

E D 73:815 keV

Exercise 3.7

	� D 0:002426.1� cos 2�/ nm

Exercise 3.8

1. a D 0:53 Å and k D 4� sin �=�

f D fe D 16

.a2k2 C 4/2
D 1

f1C .1:06� sin �=�/2g2

i.M/ D 1 � f 2
e D 1 � 1

f1C .1:06� sin �=�/2g4

2.
sin �=� f i.M/

0:0 1:0 0

0:2 0:48 0:77

0:4 0:13 0:98

Exercise 3.9

E D h
 D 71:7 keV

Exercise 3.10

� D 6:52ı



278 8 Solutions to Supplementary Problems

Exercise 3.11

For (100) : 0:119 � 1010 m�1, For (110) : 0:168 � 1010 m�1

and For (111) : 0:206 � 1010 m�1. Intensity is not detected if (hkl) is mixed.

Exercise 3.12

Four indices : 111, 200, 220 and 222 are allowed.

Exercise 3.13

F 2 D 4fU2

�
1C cos

�
�.hC k/

2

��
� f1C cos�.�4yk C l/g

F D 0; if .hC k/ is odd number.

Exercise 3.14

F D
h
fCa C 2fF cos

�

2
.hC k C l/

n
2 cos

�

2
.hC k C l/ � 1

oi
F.fcc/

h; k; l hC k C l F

Mixed � 0

Unmixed 4n 4.fCa C 2fF/

Unmixed 4n˙ 1 4fCa

Unmixed 4n˙ 2 4.fCa � 2fF/

Exercise 3.15

F D 0, when l D 2nC 1, h D 2k D 3n

Exercise 3.16

jF100j2 D .55� 17/2 D 382; jF111j2 D .55 � 17/2 D 382

jF110j2 D .55C 17/2 D 722

Exercise 4.1

A D sec �

e��s ts.1�sec �/

Exercise 4.2
�T D ˙1:67K
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Exercise 4.3

111 : 92.3%, 311 : 74.4%, 420 : 58.4%

Exercise 4.4

P 0 D I

2�D tan 2�
D I0

2�D
jF j2p

�
1C cos2 2�

sin2 � cos � tan 2�

�

Exercise 4.8

Note: Not only three d values, but also eight d values are used. When using the
Hanawalt method, preference of d values is suggested in comparison to those of the
relative intensity ratio.

Exercise 4.9

a D 0:54305nm (in average), a D 0:54302 nm (least-squares method).

Exercise 4.10

0:34ı for t D 25 nm, 0:17ı for t D 50 nm, 0:10ı for t D 90 nm and 0:07ı for
t D 120 nm.

Exercise 4.11

93 nm (Hall method), 110 nm (least-squares method).

Exercise 4.12

cCaO

cMgO
D ICaO

IMgO
� RMgO

RCaO
D 106:0

74:5
� 0:97 � 107

1:34 � 107
D 1:03

cMgO D 0:49 and cCaO D 0:51

Exercise 4.13

cCu

cSi
D ICu

ISi
� RSi

RCu
D 359:7

162:3
� 1:74 � 107

16:87 � 107
D 0:228

cSi D 0:81 and cCu D 0:19

Exercise 4.14

Br D 2	�.FWHM/ D 0:9�

" cos �
! " D 0:9�

Br cos �
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Milling time hour 2 � degree cos� � (
m)

1 31.25 0.9630 0.095
2 31.27 0.9630 0.031
4 31.30 0.9629 0.026
6 31.31 0.9629 0.017

Exercise 5.1

x D nx1 Cmx2

mC n
y D ny1 Cmy2

mC n

Exercise 5.2

The angle formed by the straight lines q1 and q2 is given by cos˛ D �1�2 C�1�2.
If these two lines are mutually perpendicular, we find cos˛ D 0. From the relation-
ships of �2

1 C�2
1 D 1 and sin2 ˛C cos2 ˛ D 1, one obtains sin ˛ D .�2�1 ��1�2/

and tan˛. The direction coefficients of two straight lines are expressed bym1 D �1

�1

and m2 D �2

�2
respectively, then one obtains;

tan ˛ D
�1

�1
� �2

�2

1C �1�2

�1�2

D m1 �m2

1Cm1m2

The required condition is given by 1Cm1m2 D 0.

Exercise 5.3

A� D b � c
a � .b � c/

D 2ex � ey

4
D 1

2
ex � 1

4
ey

B� D c � a
a � .b � c/

D 2ey

4
D 1

2
ey

Exercise 5.4

jb1j D
ˇ̌̌
ˇ a2 � a3

a1 � .a2 � a3/

ˇ̌̌
ˇ D a2 � a3

ja1jja2 � a3j cos �
D 1

a1 cos �
! 1

d100

Exercise 5.5

b1 D a2 � a3

a1 � a2 � a3

D 1

3
p
3

�p
3;�1; 0

�
; b2 D a3 � a1

a1 � a2 � a3

D 1

3
p
3
.0; 3; 0/
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Exercise 5.6

cos� D hu C kv C lw�
h2

a2
1

C k2

a2
2

C l2

a2
3

	 1
2

Œu2a2
1 C v2a2

2 C w2a2
3�

1
2

Exercise 5.7

For vector A, we obtain the following relations:

A D m11a Cm12b Cm13c

.m11a Cm12b Cm13c/ � .ha� C kb� C lc�/ D m11hCm12k Cm13l D H

Similarly, we obtain for vectors B and C and they are summarized as follows:

0
@HK
L

1
A D �

0
@hk
l

1
A D

0
@m11m12m13

m21m22m23

m31m32m33

1
A
0
@hk
l

1
A

Exercise 5.8

The unit vectors of reciprocal lattices b1, b2 and b3 are as follows:

b1 D a2 � a3

V
D 1

a
.ex C ey � ez/

b2 D a3 � a1

V
D 1

a
.�ex C ey C ez/

b3 D a1 � a2

V
D 1

a
.ex � ey C ez/

9>>>>>>=
>>>>>>;

The arbitrary reciprocal lattice vector Hpqr is given by the following:

Hpqr D pb1 C qb2 C rb3 D Œ.p � q C r/ex C .p C q � r/ey C .�p C q C r/ez�

Then we obtain the shortest non-zero vectors which consist of eight f111g planes
of the equilateral hexagon and six f002g planes of the square. They give the first
Brillouin zone of a face-centered cubic lattice and this result is known to correspond
to the Wigner Seitz unit cell of a body-centered cubic lattice.

Exercise 5.9

The scalar products of crystal lattice vector Rpqr and its reciprocal lattice vector
Hhkl is known to be always an integer. If atoms in a crystal are located only at the
lattice point Rpqr , a scatterer may be set with rn D Rpqr . Therefore, the condition
which enables us to detect a diffraction peak with sufficient intensity is given by
q D Hhkl . The absolute value of both sides of this equation is taken.
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jqj D jHhkl j ! 2 sin �

�
D 1

dhkl

) 2dhkl sin � D � .Bragg condition/

When considering the reciprocal lattice vectors and the scalar products of crystal lat-
tice vectors, we readily obtain a formula of Laue condition, such as a1 �.s�s0/ D h�.

Exercise 5.10

In a sufficiently large real space lattice, the summation of the given formula is
unchanged even if substituting r0

n D rn C n for rn. Such particular relation is used.

G.q/ D
X

n

e�2� iq�rn ) .1 � e�2� iq�n/G.q/ D 0

Exercise 5.11

Discussion may be possible if using Taylor’s expansion of f .x/ D 1
.1Cx2/2 and

in the very small value of sin �
�

�
sin �

�
� 1

�
, the atomic scattering factor fn can be

approximated by fn � 1 � 2
��

2�an sin �
�

�2
�

.

Exercise 5.12

The anomalous dispersion terms are given by following equations (for details, refer
to a monograph for the related subjects, such as R.W. James: Optical Principles of
the Diffraction of X-rays, G. Bell & Sons, London (1954)).

f 0.!/ D �1
2

Z �
dgoj

d!jo

�
!jo

(
!jo � !

.!jo � !/2 C �2
oj =4

C !jo C !

.!jo C !/2 C �2
oj=4

)
d!jo

f 00.!/ D 1

2

Z �
dgoj

d!jo

�
!jo

�oj =2

.!jo � !/2 C �2
oj =4

d!jo

Where ! is the photon energy and its subscript denotes the state of photon such as
the initial (o) and the j -th scattering process. �oj shows the convoluted width of
states of o and j and goj is the so-called characteristic oscillatory strength.

There are some methods of computing a function of .dgoj =d!jo/, but the pro-
cedure of Cromer and Liberman’s scheme using the relativistic wave function is
probably the best at the present time. Information of the anomalous dispersion terms
including mass absorption coefficient of various elements in the wide energy region
is available in the SCM-Database,

URL: http://res.tagen.tohoku.ac.jp/˜waseda/scm/AXS/index.html
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Exercise 5.13

Considering that � is the angle between the vector showing the direction of prop-
agation of the wave and z-axis and s0 is the unit vector of the incident wave,
respectively, the diffracted intensity IP is given as follows.

IP D L2

�
sin.�L � s0 sin �/

�L � s0 sin �

�2

Exercise 5.14

Considering the two-dimensional slit system arrayed repeatedly in a-period to
x-direction and b-period to y-direction and the diffraction intensity is estimated
if a small slit may be expressed by a wave vector sx � sy of each direction.

I D
ˇ̌
ˇ̌ sin.m�sx � a/

sin.�sx � a/

ˇ̌
ˇ̌2 �

ˇ̌
ˇ̌sin.n�sy � b/

sin.�sy � b/

ˇ̌
ˇ̌2

Exercise 5.15

1. The diffraction intensity I is obtained by multiplying the amplitude of a scattered
wave G and its complex conjugate.

I D G�G D sin2
˚

1
2
m.a � q/



sin2

˚
1
2
.a � q/




2. Setting to a � q D 2�h C ı.ı > 0/, the sine function of the numerator is taken
into account. Under the condition of ı > 0, the minimum value is obtained in the

case of
m

2
ı D � .

Exercise 5.16

I.q/ D f 2
C C 4f 2

Cl C 12f 2
Cl

sin.2�qrCl�Cl/

2�qrCl�Cl
C 8fCfCl

sin.2�qrC�Cl/

2�qrC�Cl

Exercise 5.17

The form of a diffraction peak may be discussed with Laue function, because the
scattering intensity is proportional to the square of its amplitude (see Question 5.9).

Let us to set the number of a unit cell to N and the wave vector to Q. For exam-
ple, a peak is found if Qa is given by integer multiple of 2� or if the relation of
Qa D 2�n C 2�=N (N is an integer) is satisfied, Qa becomes zero for the first
time, so that the value of Q, which the Laue function becomes zero, is given by
Q D .2�=aN/. Therefore, with respect to the case of a D 0:25 nm, we obtain
Q D 2:513 � 10�3 nm�1 for N D 104 and Q D 2:513 nm�1 for N D 10. For
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discussion, we also include that the length of the reciprocal lattice vector is equal to
the reciprocal of the spacing dhkl ; 4 nm�1 and a D 0:25 nm in the present case.

1. Each reciprocal lattice point is located at the vertices of a cube with the side of
4� nm�1 and each lattice point is very sharp of the order of 2:5 � 10�3 nm�1.

2. In this case, we may find the streaked reciprocal lattice extended to the direc-
tion of the N3 in a thin film by about 1,000 times in comparison to those of N1

and N2.
3. This case corresponds to a narrow string-like sample. We may find a very sharp

reciprocal lattice along the direction of the narrow string-like sample, whereas
the reciprocal lattice is rather spread with the order of 2.513 nm�1 in the plane
perpendicular to the string-like sample.

Exercise 5.18

1. F D
h
fCa C 2fF cos

�

2
.hC k C l/

n
2 cos2 �

2
.hC k C l/� 1

oi
� f1C cos�.hC k/C cos�.hC l/C cos�.l C h/g

2. F 2
111 D 16f 2

Ca ; F
2
222 D 16.fCa � 2fF/

2

F 2
111 D 16 � .15:43/2 D 3809:4 .fCa D 15:43/

F 2
222 D 16 � .11:24� 2 � 4:76/2 D 47:3 .fCa D 11:24; fF D 4:76/

3. If mixed, F D 0 and if unmixed, the structure factor is as follows.

F 2 D16
�n
f0Ca C f 0

CaC2fF cos
�

2
.hCkCl/

�
2 cos2 �

2
.hCkCl/� 1

�o2Cf 002
Ca

	

Exercise 6.1

Set the standard to abc, obtain the variation of Hermann–Morguin symbols when
changing cab ! bca ! ac̄b ! bac̄ ! c̄ba.

Exercise 6.3

Fhkl D f e2� i.kyClz/.e2� ihx C ei�le�2� ihx/

jFhkl j2 D 4f 2 cos2 2�hx.for l D 2n/

jFhkl j2 D 4f 2 sin2 2�hx.for l D 2nC 1/

With respect to the 0kl peaks, the intensity is detected only when l D 2n.

Exercise 6.4

For example, let us consider the case where there is the 21-screw axis parallel to
b-axis through the origin. In this case, if an atom is found in (x, y, z), there is
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necessarily an atom in

�
�x; y C 1

2
;�z

�
. In this case the structure factor is given

in the following.

F.hkl/ D
N=2X
j D1

fi

�
exp

˚
2�i.hxj C kyj C lzj /




Cexp

�
2�i

�
�hxj C kyj C lzj C k

2

��	

When considering that both h and l are zero, one obtains;

F.0k0/ D
N=2X
j D1

fi exp.2�ikyj /C f1C exp.�ik/g

The extinction conditions are given as follows.

F.0k0/ D
N=2X
j D1

fi exp.2�ikyj / k D 2n

F.0k0/ D 0 k D 2nC 1

9>>=
>>;

Thus, with respect to the 21-screw axis, we can not detect the diffraction intensity
from the 0k0 peak where k is odd number and it corresponds to the direction of a
screw axis. Discussion is possible for other screw axes, along the way similar to the
21-screw axis case.

Similarly, the extinction condition appears for a plane of glide reflection. For
example, when there is a c-glide plane perpendicular to b-axis, if there is an atom
at .x; y; z/, we always find an atom at

�
x;�y;�z C 1

2

�
.

F.h0l/ D 2

N=2X
j D1

fi exp
˚
2�i.kyj C lzj /



l D 2n

F.h0l/ D 0 l D 2nC 1

9>>=
>>;

Thus, the diffraction intensity is not detected when the index for giving the direction
perpendicular to a glide plane is zero and the index for the direction of a translation
axis is odd number.

Exercise 6.5

1. F D fTi

�
1C e2� i

�
hCkCl

2

�	
C fO

h
e2� i.uhCuk/ C e2� i.�uh�uk/

Ce2� i
�

hCkCl
2

�uhCuk
�

C e2� i
�

hCkCl
2

Cuh�uk
�	
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2. F D fTi

�
1C cos 2�

�
hC k C l

2

�
� i sin 2�

�
hC k C l

2

�	

CfO

�
2 cos2�u.hC k/C

�
cos 2�

�
hC k C l

2

�

C i sin 2�

�
hC k C l

2

��
� 2 cos2�u.hC k/

	

(i) hC k C l D 2n

F D fTi C fOŒ2 cos 2�u.hC k/C 2 cos 2�u.h� k/� 6D 0

(ii) hC k C l D 2nC 1

F D fOŒ2 cos 2�u.hC k/ � 2 cos 2�u.h� k/� 6D 0

However, it should be kept in mind that F D 0 in the case of hCkCl D 2nC1
with h or k is zero.

3. The structure factors can be estimated from the given atomic positions.

(i) hC k C l D 2n

F D 2
h
fTi C fO

n
e2� i.uhCuk/ C e2� i.�uh�uk/

oi

(ii) hC k C l D 2nC 1

F D 0

In conclusion, Bravais lattice is considered to be body-centered tetragonal.

Exercise 6.6

1. For example, Bragg equation of the plane h1k1l1 is as follows.

S1 � S0

�
D h1b1 C k1b2 C l1b3

2. According to the results obtained in (1),

2 D �1C h2; 2 D �1C k2; 2 D �1C l2 ! .h2k2l2/ D .331/

In the orthogonal-axes, a1a2 and a3, the formulas of .N1N11/, (331) and (222)
planes are given as follows. For .N1N11/ plane;

a1

�a C a2

�a C a3

a
D 1 ) a1 C a2 � a3 C a D 0

Similarly, for (331) plane; 3a1 C 3a2 C a3 � a D 0 and for (222) plane; 2a1 C
2a2 C a3 � a D 0.
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The direction cosine of S0 is set as x; y; z, the formula of S0 is given as
follows.

a1

x
C a2

y
C a3

z
; ) x2 C y2 C z2 D 1

When the angle formed by S0 and .N1N11/ plane is set as �1, the following relation
is readily obtained.

sin �1 D x C y � zp
12 C 12 C .�1/2 and 2d.N1N11/ sin �1 D �

x C y � z D 3

2a
�

For S0 and (222); 2x C 2y C 2z D 6�

a

Then one obtains; z D 3

4a
�, x C y D 9

4a
�

Using the values of a D 0:3567 nm, � D 0:1542 nm and x2 C y2 C z2 D 1,
.x; y; z/ can be estimated.

.x; y; z/ D .0:946; 0:027; 0:324/

.0:027; 0:946; 0:324/

Exercise 6.8

1. F D fFe

�
1C e2� i

�
hCk

2

�
C e2� i

�
kCl

2

�
C e2� i

�
hCl

2

�	

C 2fS

�
e2� iuŒhCkCl� C e

2� i
�

hCk
2

�
� e2� iuŒh�k�l�

C e2� i
�

kCl
2

�
� e2� iuŒ�hCk�l� C e2� i

�
hCl

2

�
� e2� iuŒ�h�kCl�

�

For the unmixed case,

F D 4Fe C 2fS f2 cos 2�ul � cos 2�u.hC k/C 2 cos 2�ul � cos 2�u.h� k/g

2. The area of a diffraction peak A is proportional to the intensity per unit length
P 0 which is given by the multiplicity factor m and the structure factor F . Then
the following relation is obtained.

A200

A111

D P 0
200

P 0
111

D
m200

�
F200

4fFeC8fS

�2

m111

�
F111

4fFeC8fS

�2
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The structure factors are given as follows,

F200 D 4fFe C 8fS cos 4�u

F111 D 4fFe C 4fS cos 2�uŒcos 4�u C 1�

For cubic systems m111 D 8 and m200 D 6. Estimate the atomic scattering
factors of f .S/ and f .Fe/ for two peaks of 200 and 111 from Appendix A.3 and
the lattice parameter.

f .Fe/111 D 20:6 f .S/111 D 12:0

f .Fe/200 D 19:8 f .S/200 D 11:6

If we use the given values of A111 D 69:2 and A200 D 277:5 as well as
m111=m200 D 1:33, we obtain u D 0:387.



Appendix A

A.1 Fundamental Units and Some Physical Constants

SI: LeSystèmac Internation d’Unitès

Seven SI base units

Derived SI units with a specific name

Time: minute and hour, Plane angle: degree, minute, second, Volume: liter and Mass: metric ton.
These units are non-SI units, but they are accepted for use with the SI units.

289
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Physical constants

aOne twelfth of mass of 12C:
bTemperature 273.15 K, Pressure 101325 Pa(1 atm).

Units frequently used with SI units

aÅ is also used in comparison to the electric current A.
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A.2 Atomic Weight, Density, Debye Temperature and Mass
Absorption Coefficients (cm2=g) for Elements

Θ (K)

Å

Θ (K)

Å

Θ (K)

Å

�: Debye temperature, Unit of density: Mg/m3:
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Θ (K)

Å

Θ (K)

Å

Θ (K)

Å

�: Debye temperature, Unit of density: Mg/m3:
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Θ (K)

Å

Θ (K)

Å

Θ (K)

Å

�: Debye temperature, Unit of density: Mg/m3:
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Θ (K)

Å

Θ (K)

(Å)

Θ (K)

Å

�: Debye temperature, Unit of density: Mg/m3:
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A.3 Atomic Scattering Factors as a Function of sin �=�

(Continued)
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(Continued)
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A.4 Quadratic Forms of Miller Indices for Cubic
and Hexagonal Systems
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A.5 Volume and Interplanar Angles of a Unit Cell

Cellvolumes
Cubic : V D a3

Tetragonal :V D a2c

Hexagonal : V D
p

3a2c
2

D 0:866a2c

Trigonal : V D a3
p
1� 3 cos2 ˛ C 2 cos3 ˛

Orthorhombic : V D abc

Monoclinic : V D abc sinˇ

Triclinic : V D abc
p
1 � cos2 ˛ � cos2 ˇ � cos2 � C 2 cos˛ cosˇ cos �

Interplanar angles
The angle � between the plane .h1k1l1/ of spacing d1 and the plane .h2k2l2/ of d2

is estimated from the following equation, where V is the volume of a unit cell:

Cubic : cos� D h1h2 C k1k2 C l1l2q
.h1

2 C k1
2 C l1

2/.h2
2 C k2

2 C l2
2/

Tetragonal : cos� D
h1h2Ck1k2

a2 C l1l2

c2r�
h1

2Ck1
2

a2 C l1
2

c2

� �
h2

2Ck2
2

a2 C l2
2

c2

�

Hexagonal : cos� D h1h2 C k1k2 C 1
2
.h1k2 C h2k1/C 3a2

4c2 l1l2q
.h1

2Ck1
2Ch1k1C 3a2

4c2 l1
2/.h2

2Ck2
2 C h2k2 C 3a2

4c2 l2
2/

Trigonal : cos� D a4d1d2

V 2
Œsin2 ˛.h1h2 C k1k2 C l1l2/

C .cos2 ˛ � cos˛/.k1l2 C k2l1 C l1h2 C l2h1 C h1k2 C h2k1/�

Orthorhombic : cos� D
h1h2

a2 C k1k2

b2 C l1l2

c2r�
h1

2

a2 C k1
2

b2 C l1
2

c2

� �
h2

2

a2 C k2
2

b2 C l2
2

c2

�

Monoclinic : cos� D d1d2

sin2 ˇ

"
h1h2

a2
Ck1k2 sin2 ˇ

b2
C l1l2

c2
� .l1h2 C l2h1/ cosˇ

ac

#

Triclinic : cos� D d1d2

V 2
ŒS11h1h2 C S22k1k2 C S33l1l2

C S23.k1l2 C k2l1/C S13.l1h2 C l2h1/C S12.h1k2 C h2k1/�

S11 D b2c2 sin2 ˛ S12 D abc2.cos˛ cosˇ � cos �/
S22 D a2c2 sin2 ˇ S23 D a2bc.cosˇ cos � � cos˛/
S33 D a2b2 sin2 � S13 D ab2c.cos � cos˛ � cosˇ/
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A.6 Numerical Values for Calculation of the Temperature
Factor

Values of �.x/ D 1

x

Z x

0

�

e� � 1
d� x D �

T
, �: Debye temperature

For x lager than 7, �.x/ values are approximated by .1:642=x/.
Debye temperatures are compiled in Appendix A.2 using the following reference:
(C.Kittel: Introduction to Solid State Physics, 6th Edition, John Wiley & Sons, New
York (1986), p.110.)
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A.7 Fundamentals of Least-Squares Analysis

Let us consider that the number of n-points have coordinates(x1; y1), (x2; y2) � � �
(xn; yn), and the x and y are related by a straight line with the form of y D a C
bx. Our problem is to find the best value of a and b which makes the sum of the
squared errors a minimum by using the least-squares method. In this case, we use
the following two normal equations:

X
y D

X
a C b

X
x; (1)X

xy D a
X

x C b
X

x2: (2)

For given n-points, the following four steps are suggested:

(i) Substitute the experimental data into y D aC bx for obtaining n-equations.

y1 D aC bx1

y2 D aC bx2
:::

yn D a C bxn

9>>>=
>>>;
: (3)

(ii) Multiply each equation by the coefficient of a (1 in the present case) and add
for obtaining the first normal equation.

y1 D aC bx1;

y2 D aC bx2;

:::

yn D a C bxn;

nX
y D

X
a C b

X
x: (4)

(iii) Multiply each equation by the coefficient b and add for obtaining the second
normal equation.

x1y1 D x1a C bx1
2;

x2y2 D x2a C bx2
2;

:::

xnyn D xna C bxn
2

nX
xy D a

X
x C b

X
x2 (5)

(iv) Simultaneous solution of the two equations of (4) and (5) yields the value of a
and b.
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A.8 Prefixes to Unit and Greek Alphabet

Greek alphabet
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A.9 Crystal Structures of Some Elements and Compounds

These data are taken from the following references.
B.D. Cullity: Elements of X-ray Diffraction (2nd Edition), Addison-Wesley (1978).
F.S. Galasso: Structure and Properties of Inorganic Solids, PergamonPress (1970).





Index

Abscissa, 76
Absorption edge, 173, 254
Absorption factor, 261
Accelerating voltage, 3
a-glide plane, 229
Air, 253
Aluminum, 155
Amplitude, 78
Angular coordinates, 62
Angular dispersion, 108
Angular width, 124
Anomalous dispersion, 173
Anomalous scattering, 269
Aperture, 204, 269
Aperture width, 197
Applied voltage, 254
Asymmetric unit, 226, 250
Atomic scattering factor, 71, 78, 95, 173, 295
Attenuation term, 269
Auxiliary points, 220
Average mass absorption coefficients, 122
Axial ratios, 116

Back-reflection, 151
Barium titanate, 59
Barn, 81
Black lead, 255
Body-centered cubic, 187
Bohr radius, 96
Bonding, 24
Bragg angle, 176
Bragg condition, 74, 116
Bragg law, 74, 78
Bravais lattice, 23, 79, 171, 226
Brillouin zone, 186, 268

Caesium chloride, 55, 256, 257

Calcium fluorite, 260, 269
Calcium oxide, 161
Calibration curve, 122, 158, 162
Carbon dioxide, 118
Carbon solubility, 256
Carbon tetrachloride, 269
Cellvolumes, 299
Centered lattices, 243
Center of symmetry, 219
Centrosymmetric, 237
Characteristic radiation, 172
Circular arcs, 33
Classical electron radius, 81, 173, 259
Clockwise, 229
Coaxial cone, 80
Coherent scattering, 70, 172
Cold-work, 265
Columns matrices, 242
Common quotient, 135
Complex conjugate, 78, 89, 199
Complex exponential function, 76, 89
Complex number, 76, 88
Complex plane, 76
Components of symmetry element, 231
Compound symmetry operation, 220
Compton equation, 85
Compton scattering, 68, 172
Compton shift, 85, 87
Compton wavelength, 69, 259
Conservation of momentum, 84
Constructive interference, 176, 189, 190
Conversion relationships, 241
Coordinates, 28, 231, 242
Coordinate triplets, 251
Coordination number, 255
Coordination polyhedra, 255
Coplanar, 74
Copper, 261
Counterclockwise, 88, 229

305
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Cristobalite, 51
Cross product, 180
Cross-sectional area, 153
Crystal imperfection, 175
Crystal lattice, 169
Crystallinity, 158
Crystallites, 121, 123, 166, 266
Crystal monochromator, 109, 208
Crystal orientation, 110
Crystallographic forms, 238
Cubic, 115, 172, 185
Cuprous chloride, 260
Cuprous oxide, 143

De Broglie relation, 1, 253
Debye approximation, 128
Debye characteristic temperature, 129
Debye formula, 207
Debye ring, 178, 217
Debye-Scherrer camera, 151, 262
Debye’s equation, 269
Debye temperature, 291
Debye-Waller factor, 113, 128
Delta function, 95, 175, 205
Denominator, 199, 213
Density, 291
Destructive interference, 91, 124, 175
Determinants, 182
d -glide plane, 230
Diagonal direction, 223
Diamond, 101, 104, 114
Diamond glide plane, 223
Dielectric constant of vacuum, 81
Diffraction angle, 74
Diffractometer, 107, 208
Dihedral angle, 33
Dimensionless entity, 231
Dipole approximation, 174
Direct comparison method, 153
Direct contact, 256
Directional coefficient, 267
Directional cosine, 267, 271
Directions of a form, 28
Disordered phase, 211
Distortion, 126
Divergent slit, 108
Double angle of the cosine formula, 100

Eccentric, 119
Edge-line, 103
Effective element number, 18
Eight symmetry elements, 223, 232

Einstein relation, 82, 83, 85
Electric capacity, 81
Electric field, 90
Electron charge, 81
Electron radius, 68
Electron rest mass, 81
Electron unit, 70, 72
Electron wave functions, 71
Eleven screw axes, 235
Ellipses, 237
Elliptic polarization, 202
Elliptic polarized wave, 202
Ellipticity, 204
Equatorial circle, 32
Equatorial plane, 32, 238
Equivalent positions, 236, 238, 270
Ewald sphere, 178, 191
Excitation voltage, 4, 253
Exponent portion, 189
Exponential functions, 199
Extinction law, 270
Extrapolation, 120

Face center, 105
Face-centered cubic, 187
Face-centering translations, 104
Film shrinkage, 151
Filter, 109
First Brillouin zone, 187
First-order reflection, 74
Five translational operations, 235
Fluorescent, 118
Focusing geometry, 107
Forbidden, 109
Form factor, 71
Forward direction, 243
Four-index system, 258
Fourier transform, 97
Fractional coordinates, 76, 78
Fractional error, 145, 151
Fraunhofer diffraction, 269
Free electron, 259
Full space group symbol, 224
FWHM, 165

gamma-phase, 256
General position, 226, 246, 270
Generators, 250
Geocentric angle, 64, 258
Geometrical entity, 231
Geometric progression, 198
Glide plane, 221, 228
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Glide-reflection, 270
Global maximum, 214
Gold, 41
Goniometer center, 119
Grain size, 123
Great circles, 33
Grid net, 62

Half apex angle, 178
Half maximum ordinate, 215
Half value layer, 254
Hall method, 126, 166
Hanawalt method, 118, 139
Harmonic oscillator, 269
Hematite, 17
Hermann-Mauguin symbols, 224, 233
Hexagonal, 116, 134, 172, 255, 258, 261
Hexagonal close-packed, 99, 186
Hexagonal prism, 188
Highest symmetry, 235
Horizontal dispersion, 108
Huge comma, 240
Huygens principle, 193
Hydrogen, 97, 259

Ice, 57
Ideally mosaic, 110
Ideally perfect, 110
Ideal mosaic single crystal, 178
Imaginary number, 88
In phase, 73, 93, 108
Incoherent scattering, 69, 172, 259
Incoherent scattering intensity, 72
Indexing, 120
Individual symmetry operations, 220
Infinitesimally thin layer, 111
Infinite thickness, 111, 179
Inhomogeneous strain, 126, 166
Inner shell electron, 172
Instrumental broadening factor, 126, 165
Integer multiple, 73, 175, 189, 200
Integral width, 124, 126
Integrand, 97, 98
Integrated intensity, 110, 153, 176, 272
Inter-axial angles, 21, 223
Interference effect, 94
Intermediate state, 177
Intermetallic compounds, 58
Internal standard method, 120, 158
International Tables, 227, 272
Interplanar angles, 299
Interplanar spacing, 75

Interstitial, 46
Intra-molecular correlations, 207
Inverse Fourier transform, 97
Inverse matrices, 242
Inversion, 23, 219
Inversion center, 219
Ionic crystals, 25
Isotropic distribution, 205
IUCr, 224, 233

JCPDS cards, 118, 140

K˛ doublet, 148
Kirchhoff theory, 193, 197

Latitude circles, 33
Latitude lines, 33
Lattice parameters, 120
Lattice plane, 26
Lattice strain, 164
Lattice symbol, 226
Lattice translation, 219
Laue equation, 268
Laue function, 175, 199, 213
Laue groups, 237
Laue photographs, 170, 237
Law of conservation of energy, 84
Law of conservation of momentum, 253
Law of cosines, 84
Least-squares method, 162, 301
Limiting sphere, 178, 191
Limit value, 200
Linear absorption coefficient, 5, 111
Linearity, 162
Lithium niobate, 16
Locus, 231
Longitude lines, 33
Lorentz factor, 110
Lorentz-polarization factor, 113, 127
Lorentz transformation, 2

Magnesium, 255, 259
Magnesium oxide, 137, 150, 161, 164, 260
Mass absorption coefficient, 5, 153, 291
Mean square displacement, 113
Mechanical grinding, 124
Melilite, 266
Meridian circles, 33
Method of Nelson-Riley, 120
Middle-point of full width, 149
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Miller-Bravais indices, 28, 48
Miller indices, 26, 170, 242
Mirror plane, 220, 221
Missing reflections, 79
Modified scattering, 172
Modulation, 194
Momentum of a photon, 83
Monoclinic, 234, 243, 245
Monoclinic sub-groups, 236
Mosaic structure, 175
Moseley’s law, 3, 12, 254
Multiplicity factor, 27, 110, 250

Nearest-neighbor, 40, 255
n-glide plane, 223, 230
Nodal line, 183
Non-centrosymmetric, 211
Non-parallel planes, 65
Nonprimitive, 171
Non-uniform strain, 126
Normal equations, 301
Normal planes, 187
Normal vector, 182
Numerator, 199, 213

Octahedral void, 43
Octants, 257
Odd multiple, 106
Off-centering, 151
One-dimensional lattice, 269
One unit cycle, 250
Optical path difference, 70, 189
Optical path distance, 94
Ordered phase, 211
Ordinate, 76
Organic molecules, 224
Origin, 249
Orthogonal, 201, 267, 271
Orthorhombic, 185, 240, 268, 270
Outer electron shell, 172
Out of phase, 91
Oval, 202

Packing fraction, 35, 255
Para-focussing, 108
Parallelepiped, 180
Parallelogram, 180, 183
Parallelogram law, 76
Parallel translation, 221
Partial integration, 98
Partial interference, 214

Particle size, 119, 123, 126
Particular orientation, 226
Path difference, 74, 76, 92
Path length, 73
Patterson symmetry symbol, 224
Peak broadening, 123
Peak splitting, 264
Peak width, 124, 215
Perfect crystal, 177
Periodic sequence, 235
Permittivity of free space, 81
Perovskite, 58
ı-phase, 256
Phase, 78
Phase difference, 73, 76, 91, 92, 175, 214
Photoelectric absorption, 5, 253
Photoelectron, 11, 254
Plane angle, 80
Plane groups, 252
Plane-polarized, 201
Planes of a zone, 30
Plane spacing, 114, 126
Plane spacing equation, 131
Plane wave approximation, 174
Point group, 221, 223
Polar coordinates, 205
Polar net, 33
Polarization factor, 68, 111
Poles, 31
Porosity, 35
Position vector, 174
Potassium chloride, 138
Potassium halide, 256
Power-series expansions, 78, 88
Precision measurements, 121
Preferred orientation, 118
Primitive, 171, 226
Projection direction, 249
Projection sphere, 31
Pseudo-reflection, 271
Pyrite, 271

Quantitative analysis, 153
Quarter turn, 241
Quotient, 129

Rachinger method, 149
Real number, 88
Real space lattice, 169
Receiving slit, 108
Reciprocal lattice, 169, 238
Reciprocal of a spacing, 267
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Reciprocal of the volume, 181
Reciprocal space, 97, 242
Recoil angle, 86, 260
Recoil electron, 85, 86
Recoil of atom, 11
Recoil phenomenon, 68
Rectangular, 267
Reference sphere, 31
Reference substance, 123
Reflection, 23, 219
Regular tetrahedron, 50
Relative intensity ratio, 114
Relativistic, 82
Repeated-reproducibility, 148
Rhombic dodecahedron, 187
Rhombohedral, 258, 268
Right-handed coordinate, 249
Right-handed screw, 221
Rotation, 23, 219
Rotatory inversion, 22, 219
Roto-inversion, 22, 219
Rowland circle, 108
Rubidium halide, 256
Rydberg constant, 4, 13

Scalar product, 180
Scattering amplitude, 70
Scattering coefficient, 14
Scattering phase shift, 94
Scattering slit, 108
Scattering vector, 70, 94, 107, 207
Scherrer’s equation, 125
Schönflies symbols, 224, 233
Screw axis, 221, 228
Screw rotation, 221
Search manual, 118
Self-coincidence, 228
Semi-infinite, 112
Shortest non-zero vectors, 188
Shortest wavelength limit, 8
Short space group symbol, 224
Silicon, 264
Site symmetry, 250
Small circles, 33
Solid angle, 80
Space groups, 223, 234
Space group symbols, 236
Space-group tables, 248
Space lattice, 232
Spatial resolution, 108
Special positions, 226, 246
Speed of light, 82
Spherical polar coordinates, 95

Spherical symmetry, 70, 173
Spherical wave, 193
Square of the amplitude, 89
Standard projection, 34
Standard substance, 162
Starting point, 191
Stereographic projection, 31, 258
Storm formula, 254
Strain, 126
Structure factor, 78
Sub-grains, 176
Substitutional, 46
Substructure, 175
Super-lattice, 47
Superposition of waves, 91
Symmetry element, 219, 223, 231, 238
Symmetry operation, 219
Symmetry-transmission method, 218, 261

Temperature factor, 129
Terminal point, 191
Terrestrial globe, 31
Tetragonal, 116
Tetragonal dipyramid, 258
Tetragonal pyramid, 258
Tetrahedral void, 43
Theorem of conformal mapping, 34
Theorem of corresponding circle to circle, 34
Thermal expansion coefficient, 261
Thermal vibration, 113, 128
Thomson equation, 69, 173
Titanium carbide, 256
Titanium dioxide, 270
Titanium hydride, 256
Total diffraction intensity, 108
Translational operation, 221, 270
Translational positions, 105
Transmission rate, 254
Transmittivity, 6
Trigonal, 268
Trigonometric function, 91, 100, 199, 246
Triple-scalar product, 169, 180
Tungsten, 147, 254
Twin, 257
Two-dimensional lattice, 267, 269
Two-dimensional space groups, 251

Ultra fine particles, 264
Uncertainty, 120
Unit lattice translation, 228
Unmodified scattering, 172
Unpolarized incident X-ray beam, 72
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Uranium, 260

Vector product, 180, 187
Volume fraction, 153
Volume of unit cell, 156

Wave function, 98
Wave number vector, 94
Wave-particle duality, 171
Wave vector, 70, 96, 191
Weight fraction, 122, 160
Weight ratio, 122
Weiss rule, 65

Weiss zone law, 183
Wigner-Seitz cell, 187
Work function, 254
Wulff net, 33
Wyckoff letter, 226
Wyckoff position, 251

X-ray analysis, 118

Zinc blende, 104, 210, 256, 260
Zinc sulfide, 257
Zone axis, 30, 66, 183
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