

Excel@
for Scientists
and Engineers

Numerical Methods

E. Joseph Bill0

B I C E N T E N N I A L

B I C E N T E N N I A L

WILEY-INTERSCIENCE
A John Wiley & Sons, Inc., Publication

This Page Intentionally Left Blank

Excel@
for Scientists
and Engineers

Numerical Methods

THE W I L E Y BICENTENNIAL-KNOWLEDGE FOR GENERATIONS

G a c h generation has its unique needs and aspirations. When Charles Wiley first
opened his small printing shop in lower Manhattan in 1807, it was a generation
of boundless potential searching for an identity. And we were there, helping to
define a new American literary tradition. Over half a century later, in the midst
of the Second Industrial Revolution, it was a generation focused on building the
future. Once again, we were there, supplying the critical scientific, technical, and
engineering knowledge that helped frame the world. Throughout the 20th
Century, and into the new millennium, nations began to reach out beyond their
own borders and a new international community was born. Wiley was there,
expanding its operations around the world to enable a global exchange of ideas,
opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation’s journey,
enabling the flow of information and understanding necessary to meet their needs
and filfill their aspirations. Today, bold new technologies are changing the way
we live and learn. Wiley will be there, providing you the must-have knowledge
you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the
knowledge you need, when and where you need it!

L 4 4 ! ! - . f . @- Ek-&Ti%
WILLIAM J. PESCE PETER BOOTH W l L E V

PRESIDENT AND CHIEF EXECUTIVE PmCER CHAIRMAN OF THE BOARD

Excel@
for Scientists
and Engineers

Numerical Methods

E. Joseph Bill0

B I C E N T E N N I A L

B I C E N T E N N I A L

WILEY-INTERSCIENCE
A John Wiley & Sons, Inc., Publication

Copyright 0 2007 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 11 1 River Street, Hoboken, NJ 07030, (201)
748-601 1, fax (201) 748-6008, or online at http://www.wiley.comgo/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this
book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book
and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be
created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not
be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author
shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental,
consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic format. For information about Wiley products, visit our web site at www.wiley.com.

Wiley Bicentennial Logo: Richard J . Pacific0

Library of Congress Cataloging-in-Publication Data is available.

ISBN: 978-0-47 1-38734-3

Printed in the United States of America.

1 0 9 8 7 6 5 4 3 2 1

Summary of Contents
..

Detailed Table of Contents .. v11
Preface .. xv
Acknowledgments ... xix
About the Author ... xix

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10

Chapter 11

Chapter 12
Chapter 13
Chapter 14
Chapter 15

Introducing Visual Basic for Applications 1
Fundamentals of Programming with VBA 15
Worksheet Functions for Working with Matrices 57
Number Series ... 69
Interpolation .. 77
Differentiation ... 99
Integration ... 127
Roots of Equations .. 147

Numerical Integration of Ordinary Differential Equations
Part I: Initial Conditions .. 217
Numerical Integration of Ordinary Differential Equations
Part 11: Boundary Conditions ... 245
Partial Differential Equations .. 263

Nonlinear Regression Using the Solver 313
Random Numbers and the Monte Carlo Method 341

Systems of Simultaneous Equations .. 189

Linear Regression and Curve Fitting ... 287

APPENDICES

Appendix 2 Shortcut Keys for VBA ... 387
.. 389

Appendix 4 Some Equations for Curve Fitting ... 409
Appendix 5 Engineering and Other Functions .. 423
Appendix 6 ASCII Codes .. 427
Appendix 7 Bibliography .. 429
Appendix 8 Answers and Comments for End-of-Chapter Problems 431

Appendix 1 Selected VBA Keywords ... 365

Appendix 3 Custom Functions Help File

INDEX ... 443

V

This Page Intentionally Left Blank

Contents
Preface: .. xv
Acknowledgments ... xix
About the Author ... xix

The Visual Basic Editor ... 1
Visual Basic Procedures ... 4

There Are Two Kinds of Macros ... 4
The Structure of a Sub Procedure .. 4
The Structure of a Function Procedure .. 5
Using the Recorder to Create a Sub Procedure .. 5
The Personal Macro Workbook ... 7
Running a Sub Procedure .. 8
Assigning a Shortcut Key to a Sub Procedure ... 8

Entering VBA Code ... 9
Creating a Simple Custom Function .. 10
Using a Function Macro .. 10
A Shortcut to Enter a Function .. 12

Some FAQs .. 13

Chapter 2 Fundamentals of Programming with VBA 15
Components of Visual Basic Statements .. 15

Operators .. 16
Variables .. 16
Objects, Properties, and Methods .. 17
Objects ... 17
Properties ... 17
Using Properties ... 19
Functions .. 20
Using Worksheet Functions with VBA ... 22
Some Useful Methods .. 22
Other Keywords ... 23

Program Control ... 23
Branching ... 23
Logical Operators .. 24
Select Case ... 24
Looping .. 24
For ... Next Loop .. 25
Do While ... Loop ... 25

Chapter 1 Introducing Visual Basic for Applications 1

vii

...
Vlll EXCEL: NUMERICAL METHODS

For Each ... Next Loop ... 25
Nested Loops ... 26
Exiting from a Loop or from a Procedure .. 26

VBA Data Types .. 27
The Variant Data Type .. 28

Subroutines ... 28

VBA Code for Command Macros .. 29
Objects and Collections of Objects .. 29
"Objects" That Are Really Properties .. 30
You Can Define Your Own Objects .. 30
Methods ... 31
Some Useful Methods .. 31
Two Ways to Specify Arguments of Methods ... 32
Arguments with or without Parentheses .. 33

A Reference to the Active Cell or a Selected Range 33
A Reference to a Cell Other than the Active Cell .. 34

Scoping a Subroutine ... 29

Making a Reference to a Cell or a Range ... 33

References Using the Union or Intersect Method .. 35
Examples of Expressions to Refer to a Cell or Range 35
Getting Values from a Worksheet ... 36
Sending Values to a Worksheet ... 37

Interacting with the User .. 37
MsgBox .. 37
MsgBox Return Values .. 39
lnputBox ... 39

Visual Basic Arrays .. 41
Dimensioning an Array .. 41
Use the Name of the Array Variable to Specify the Whole Array 42
Multidimensional Arrays ... 42
Declaring the Variable Type of an Array .. 42
Returning the Size of an Array .. 42

Preserving Values in Dynamic Arrays ... 43

Passing Values from Worksheet to VBA Module 44

Create an Array Automatically ... 45

Create an Array Automatically ... 45
An Array of Object Variables .. 45

Dynamic Arrays ... 43

Working with Arrays in Sub Procedures:

A Range Specified in a Sub Procedure Can Be Used as an Array 44
Some Worksheet Functions Used Within VBA

Some Worksheet Functions Used Within VBA

CONTENTS ix

Working with Arrays in Sub Procedures:

A One-Dimensional Array Assigned to a Worksheet Range
Passing Values from a VBA Module to a Worksheet 45

Can Cause Problems ... 46
Custom Functions ... 47

Specifying the Data Type Returned by a Function Procedure 47
Specifying the Data Type of an Argument .. 47

Returning an Error Value from a Function Procedure 48
A Custom Function that Takes an Optional Argument 48

Arrays in Function Procedures ... 48
A Range Passed to a Function Procedure Can Be Used as an Array 48
Passing an Indefinite Number of Arguments:

Using the ParamArray Keyword .. 49
Returning an Array of Values as a Result .. 49

Creating Add-In Function Macros ... 50
How to Create an Add-In Macro ... 51

Testing and Debugging .. 51
Tracing Execution .. 52
Stepping Through Code ... 52
Adding a Breakpoint .. 52

Examining the Values of Variables During Execution 54

Chapter 3 Worksheet Functions for Working with Matrices 57
Arrays, Matrices and Determinants .. 57

Some Types of Matrices .. 57

Excel's Built-in Matrix Functions .. 60
Some Additional Matrix Functions .. 63
Problems ... 66

Chapter 4 Number Series 69
Evaluating Series Formulas .. 70

Using Array Constants to Create Series Formulas .. 70
Using the ROW Worksheet Function to Create Series Formulas 71

Examining the Values of Variables While in Break Mode 53

An Introduction to Matrix Mathematics ... 58

The INDIRECT Worksheet Function .. 71
Using the INDIRECT Worksheet Function

with the ROW Worksheet Function to Create Series Formulas 72

The Taylor Series: An Example ... 73
Problems ... 75

The Taylor Series ... 72

X EXCEL: NUMERICAL METHODS

Chapter 5 Interpolation 77

Using Excel's Lookup Functions to Obtain Values from a Table 77

Using the LOOKUP Function to Obtain Values from a Table 79
Creating a Custom Lookup Formula to Obtain Values from a Table 80

Interpolation ... 83
Linear Interpolation in a Table by Means of Worksheet Formulas 83

Linear Interpolation in a Table by Means of a Custom Function 86

Cubic Interpolation in a Table by Using the TREND Worksheet Function ... 89

Obtaining Values from a Table .. 77

Using VLOOKUP to Obtain Values from a Table .. 78

Using Excel's Lookup Functions
to Obtain Values from a Two-way Table .. 81

Linear Interpolation in a Table by Using the TREND Worksheet Function .. 85

Cubic Interpolation .. 87

Linear Interpolation in a Two-way Table

Cubic Interpolation in a Two-way Table

Cubic Interpolation in a Two-way Table

by Means of Worksheet Formulas .. 90

by Means of Worksheet Formulas .. 91

Problems ... 96

Chapter 6 Differentiation 99

Calculating First and Second Derivatives .. 100

by Means of a Custom Function ... 93

First and Second Derivatives of Data in a Table .. 99

Using LINEST as a Fitting Function .. 105
Derivatives of a Worksheet Formula .. 109

Derivatives of a Worksheet Formula Calculated by Using
a VBA Function Procedure .. 109

First Derivative of a Worksheet Formula Calculated by Using
the Finite-Difference Method ... 110

The Newton Quotient ... 110
Derivative of a Worksheet Formula Calculated by Using

the Finite-Difference Method ... 111
First Derivative of a Worksheet Formula Calculated by Using

a VBA Sub Procedure Using the Finite-Difference Method 112
First Derivative of a Worksheet Formula Calculated by Using

a VBA Function Procedure Using the Finite-Difference Method 115
Improving the VBA Function Procedure ... 118
Second Derivative of a Worksheet Formula .. 120
Concerning the Choice of Ax for the Finite-Difference Method 123

Problems ... 124

CONTENTS xi

Chapter 7 Integration 127
Area under a Curve .. 127

Calculating the Area under a Curve Defined by a Table of Data Points 129

by Means of a VBA Function Procedure .. 130
Calculating the Area under a Curve Defined by a Table of Data Points

Calculating the Area under a Curve Defined by a Formula 131
Area between Two Curves ... 132

Integrating a Function .. 133
Integrating a Function Defined by a Worksheet Formula

Gaussian Quadrature .. 137
by Means of a VBA Function Procedure .. 133

Integration with an Upper or Lower Limit of Infinity 140
Distance Traveled Along a Curved Path .. 141
Problems ... 143

Chapter 8 Roots of Equations 147
A Graphical Method .. 147

The Interval Method with Linear Interpolation
The Interval-Halving or Bisection Method .. 149

The Regula Fulsi Method with Correction for Slow Convergence 153
The Newton-Raphson Method ... 154

The Secant Method .. 160
The Newton-Raphson Method Using Circular Reference and Iteration 161
A Newton-Raphson Custom Function ... 163

Using Goal Seek ... to Find the Point of Intersection of Two Curves 174

(the Regula Fulsi Method) .. 151

Using Goal Seek .. 156

Bairstow's Method to Find All Roots of a Regular Polynomial 166
Finding Values Other than Zeroes of a Function .. 174

Using the Newton-Raphson Method
to Find the Point of Intersection of Two Lines ... 176

Using the Newton-Raphson Method to Find Multiple Intersections
of a Straight Line and a Curve .. 178

A Goal Seek Custom Function .. 180
Problems ... 185

Chapter 9 Systems of Simultaneous Equations 189
Cramer's Rule ... 190
Solving Simultaneous Equations by Matrix Inversion 191
Solving Simultaneous Equations by Gaussian Elimination 191
The Gauss-Jordan Method ... 196

Solving Linear Systems by Iteration .. 200
The Jacobi Method Implemented on a Worksheet 200

xii EXCEL: NUMERICAL METHODS

The Gauss-Seidel Method Implemented on a Worksheet 203
The Gauss-Seidel Method Implemented on a Worksheet

Using Circular References .. 204
A Custom Function Procedure for the Gauss-Seidel Method 205

Solving Nonlinear Systems by Iteration ... 207
Newton's Iteration Method .. 207

... Problems 213

Chapter 10 Numerical Integration of Ordinary Differential Equations
Part I: Initial Conditions 217

Solving a Single First-Order Differential Equation .. 218
Euler's Method ... 218
The Fourth-Order Runge-Kutta Method ... 220
Fourth-Order Runge-Kutta Method Implemented on a Worksheet 220
Runge-Kutta Method Applied to a Differential Equation

Fourth-Order Runge-Kutta Custom Function
Involving Both x and y ... 223

for a Single Differential Equation with the Derivative Expression
Coded in the Procedure .. 224

for a Single Differential Equation with the Derivative Expression
Fourth-Order Runge-Kutta Custom Function

Passed as an Argument ... 225
Systems of First-Order Differential Equations ... 228

for Systems of Differential Equations .. 229
Predictor-Corrector Methods., .. 235

A Simple Predictor-Corrector Method ... 235

Higher-Order Differential Equations ... 238

Fourth-Order Runge-Kutta Custom Function

A Simple Predictor-Corrector Method
Utilizing an Intentional Circular Reference .. 236

Problems ... 241

Part II: Boundary Conditions 245
Chapter 11 Numerical Integration of Ordinary Differential Equations

The Shooting Method ... 245
An Example: Deflection ofa Simply Supported Beam 246
Solving a Second-Order Ordinary Differential Equation

Solving a Second-Order Ordinary Differential Equation
by the Shooting Method and Euler's Method ... 249

by the Shooting Method and the RK Method ... 251
Finite-Difference Methods ... 254

by the Finite-Difference Method .. 254
Solving a Second-Order Ordinary Differential Equation

... CONTENTS X l l l

Another Example ... 258
A Limitation on the Finite-Difference Method .. 261

Problems ... 262

263
Elliptic. Parabolic and Hyperbolic Partial Differential Equations 263
Elliptic Partial Differential Equations .. 264

Replacing Derivatives with Finite Differences ... 265
An Example: Temperature Distribution in a Heated Metal Plate 267

Parabolic Partial Differential Equations ... 269
Solving Parabolic Partial Differential Equations: The Explicit Method 270
An Example: Heat Conduction in a Brass Rod .. 272

The Crank-Nicholson or Implicit Method .. 274
An Example: Vapor Diffusion in a Tube ... 275
Vapor Diffusion in a Tube Revisited ... 277
Vapor Diffusion in a Tube (Again) .. 279
A Crank-Nicholson Custom Function ... 280
Vapor Diffusion in a Tube Solved by Using a Custom Function 282

Hyperbolic Partial Differential Equations .. 282

Replacing Derivatives with Finite Differences ... 282
An Example: Vibration of a String .. 283

Problems ... 286

Chapter 13 Linear Regression and Curve Fitting 287
Linear Regression ... 287

Least-Squares Fit to a Straight Line .. 288
Least-Squares Fit to a Straight Line Using the Worksheet Functions

SLOPE, INTERCEPT and RSQ .. 289

Least-Squares Fit to a Straight Line Using LINEST .. 292
Multiple Linear Regression Using LINEST .. 293
Handling Noncontiguous Ranges of known-x's in LINEST 297
A LINEST Shortcut .. 297
LINEST's Regression Statistics .. 297
Linear Regression Using Trendline ... 298
Limitations of Trendline .. 301
Importing Trendline Coefficients into a Spreadsheet

by Using Worksheet Formulas ... 302
Using the Regression Tool in Analysis Tools .. 303
Limitations of the Regression Tool ... 305

Chapter 12 Partial Differential Equations

Solving Elliptic Partial Differential Equations:

Solving Parabolic Partial Differential Equations:

Solving Hyperbolic Partial Differential Equations:

Multiple Linear Regression .. 291

xiv EXCEL: NUMERICAL METHODS

Importing the Trendline Equation from a Chart into a Worksheet 305
Problems ... 309

Chapter 14 Nonlinear Regression Using the Solver 313
Nonlinear Least-Squares Curve Fitting .. 314

Introducing the Solver ... 316
How the Solver Works ... 316
Loading the Solver Add-In .. 317
Why Use the Solver for Nonlinear Regression? .. 317
Nonlinear Regression Using the Solver: An Example 318
Some Notes on Using the Solver ... 323

Some Notes on the Solver Options Dialog Box ... 324
When to Use Manual Scaling .. 326

Statistics of Nonlinear Regression ... 327
The Solver Statistics Macro ... 328

Problems ... 332

Chapter 15 Random Numbers and the Monte Cario Method 341
Random Numbers in Excel ... 341

How Excel Generates Random Numbers .. 341

Adding "Noise" to a Signal Generated by a Formula 344

Some Notes on the Solver Parameters Dialog Box 323

Be Cautious When Using Linearized Forms of Nonlinear Equations 329

Using Random Numbers in Excel ... 342

Selecting Items Randomly from a List .. 345
Random Sampling by Using Analysis Tools ... 347
Simulating a Normal Random Distribution of a Variable 349

Monte Carlo Simulation ... 350
Monte Carlo Integration ... 354

The Area of an Irregular Polygon .. 354
Problems ... 362

APPENDICES 363
Appendix 1 Selected VBA Keywords ... 365
Appendix 2 Shortcut Keys for VBA ... 387
Appendix 3 Custom Functions Help File .. 389
Appendix 4 Some Equations for Curve Fitting ... 409

Engineering and Other Functions .. 423
Appendix 6 ASCII Codes .. 427
Appendix 7 Bibliography .. 429
Appendix 8 Answers and Comments for End-of-Chapter Problems 431

Appendix 5

INDEX .. 443

Preface

The solutions to mathematical problems in science and engineering can be
obtained by using either analytical or numerical methods. Analytical (or direct)
methods involve the use of closed-form equations to obtain an exact solution, in a
nonrepetitive fashion; obtaining the roots of a quadratic equation by application
of the quadratic formula is an example of an analytical solution. Numerical (or
indirect) methods involve the use of an algorithm to obtain an approximate
solution; results of a high level of accuracy can usually be obtained by applying
the algorithm in a series of successive approximations.

As the complexity of a scientific problem increases, it may no longer be
possible to obtain an exact mathematical expression as a solution to the problem.
Such problems can usually be solved by numerical methods.

The Objective of This Book
Numerical methods require extensive calculation, which is easily

accomplished using today's desktop computers. A number of books have been
written in which numerical methods are implemented using a specific
programming language, such as FORTRAN or C++. Most scientists and
engineers received some training in computer programming in their college days,
but they (or their computer) may no longer have the capability to write or run
programs in, for example, FORTRAN. This book shows how to implement
numerical methods using Microsoft Excel@, the most widely used spreadsheet
software package. Excel@ provides at least three ways for the scientist or
engineer to apply numerical methods to problems:

by implementing the methods on a worksheet, using worksheet formulas

by using the built-in tools that are provided within Excel

by writing programs, sometimes loosely referred to as macros, in Excel's
Visual Basic for Applications (VBA) programming language.

All of these approaches are illustrated in this book.

This is a book about numerical methods. I have emphasized the methods and
have kept the mathematical theory behind the methods to a minimum. In many
cases, formulas are introduced with little or no description of the underlying
theory. (I assume that the reader will be familiar with linear interpolation, simple
calculus, regression, etc.) Other topics, such as cubic interpolation, methods for
solving differential equations, and so on, are covered in more detail, and a few

xv

xvi EXCEL: NUMERICAL METHODS

topics, such as Bairstow's method for obtaining the roots of a regular polynomial,
are discussed in detail.

In this book I have provided a wide range of Excel solutions to problems. In
many cases I provide a series of examples that progress from a very simple
implementation of the problem (useful for understanding the logic and
construction of the spreadsheet or VBA code) to a more sophisticated one that is
more general. Some of the VBA macros are simple "starting points" and I
encourage the reader to modify them; others are (or at least I intended them to
be) "finished products" that I hope users can employ on a regular basis.

Nearly 100% of the material in this book applies equally to the PC or
Macintosh versions of Excel. In a few cases I have pointed out the different
keystrokes requires for the Macintosh version.

A Note About Visual Basic Programming
Visual Basic for Applications, or VBA, is a "dialect" of Microsoft's Visual

Basic programming language. VBA has keywords that allow the programmer to
work with Excel's workbooks, worksheets, cells, charts, etc.

I expect that although many readers of this book will be proficient VBA
programmers, others may not be familiar with VBA but would like to learn to
program in VBA. The first two chapters of this book provide an introduction to
VBA programming - not enough to become proficient, but enough to understand
and perhaps modify the VBA code in this book. For readers who have no
familiarity with VBA, and who do not wish to learn it, do not despair. Much of
the book (perhaps 50%) does not involve VBA. In addition, you can still use the
VBA custom functions that have been provided.

Appendix 1 provides a list of VBA keywords that are used in this book. The
appendix provides a description of the keyword, its syntax, one or more examples
of its use, and reference to related keywords. The information is similar to what
can be found in Excel's On-Line Help, but readers may find it helpful at those
times when they are reading the book without simultaneous access to a PC.

A Note About Typographic Conventions
The typographic conventions used in this book are the following:

Menu Commands. Excel's menu commands appear in bold, as in the
following examples: 'lchoose Add Trendline ... from the Chart menu.. .,'I or
"Insert-Function.. .'I

PREFACE xvii

Excel's Worksheet Functions and Their Arguments. Worksheet
functions are in Arial font; the arguments are italicized. Following Microsoft's
convention, required arguments are in bold font, while optional arguments are in
nonbold, as in the following:

VLOOKUP(/ookup-value, fab/e-array, column-index-num, range-lookup)
The syntax of custom functions follows the same convention.

Excel Formulas.
example,

Excel formulas usually appear in a separate line, for

=I +1/FACT(1)+1/FACT(2)+1/FACT(3)+1IFACT(4)+1/FACT(5)

Named ranges used in formulas or in the text are not italicized, to distinguish
them from Excel's argument names, for example,

=VLOOKU P(Temp,Table, MATCH(Percent, P-Row, 1)+I, 1)

VBA Procedures. Visual Basic code is in Arial font. Complete VBA
procedures are displayed in a box, as in the following. For ease in understanding
the code, VBA keywords are in bold.

Private Function Derivl (x)
'User codes the expression for the derivative here.
Derivl = 9 * x 2 + 10 * x - 5
End Function

Problems and Solutions
There are over 100 end-of-chapter problems. Spreadsheet solutions for the

Answers and problems are on the CD-ROM that accompanies this book.
explanatory notes for most of the problems are provided in Appendix 8.

The Contents of the CD
The CD-ROM that accompanies this book contains a number of folders or

The Examples folder contains a folder for each
chapter, e.g., 'Ch. 05 (Interpolation) Examples.' The examples folder for
each chapter contains all of the examples discussed in that chapter:
spreadsheets, charts and VBA code. The location of the Excel file pertinent
to each example is specified in the chapter text, usually in the caption of a
figure, e.g.,

other documents:

an "Examples" folder.

Figure 5-5. Using VLOOKUP and MATCH to obtain a value from a two-way table.
(folder 'Chapter 05 Interpolation,' workbook 'Interpolation I,' sheet 'Viscosity')

xviii EXCEL: NUMERICAL METHODS

a "Problems" folder. The Problems folder contains a folder for each chapter,
e.g., 'Ch. 06 (Differentiation) problems.' The problems folder for each
chapter contains solutions to (almost) all of the end-of-chapter problems in
that chapter. VBA code required for the solution of any of the problems is
provided in each workbook that requires it; the VBA code will be identical to
the code found in the 'Examples' folder.

an Excel workbook, "Numerical Methods Toolbox," that contains all of the
important custom functions in this book.

a copy of "Numerical Methods Toolbox'' saved as an Add-In workbook (an
.xla file). If you open this Add-In, the custom functions will be available for
use in any Excel workbook.

Two Excel workbooks containing the utilities Solver Statistics and Trendline
to Cell.

Comments Are Welcomed
I welcome comments and suggestions from readers. I can be contacted at

numerical-methods.biIlo@verizon.net.

E. Joseph Billo

PREFACE xix

Acknowledgments
Dr. Richard N. Fell, Department of Physics, Brandeis University, Waltham,

MA; Prof. Michele Mandrioli, Department of Chemistry and Biochemistry,
University of Massachusetts-Dartmouth, North Dartmouth, MA; and Prof.
Christopher King, Department of Chemistry, Troy University, Troy, AL, who
read the complete manuscript and provided valuable comments and corrections.

Prof. Lev Zompa, University of Massachusetts-Boston, and Dr. Peter Gans,
Protonic Software, for UV-vis spectral data.

Edwin Straver and Nicole Steidel, Frontline Systems Inc., for information
about the inner workings of the Solver.

The Dow Chemical Company for permission to use tables of physical
properties of heat transfer fluids.

About the Author
E. Joseph Billo retired in 2006 as Associate Professor of Chemistry at Boston

College, Chestnut Hill, Massachusetts. He is the author of Excel for Chemists: A
Comprehensive Guide, 2nd edition, Wiley-VCH, New York, 2001. He has
presented the 2-day short courses "Advanced Excel for Scientists and Engineers"
and "Excel Visual Basic Macros for Scientists and Engineers" to over 2000
scientists at corporate clients in the United States, Canada and Europe.

This Page Intentionally Left Blank

Chapter 1

Introducing
Visual Basic for Applications

In addition to Excel's extensive list of worksheet functions and array of
calculation tools for scientific and engineering calculations, Excel contains a
programming language that allows users to create procedures, sometimes
referred to as macros, that can perform even more advanced calculations or that
can automate repetitive calculations.

Excel's first programming language, Excel 4 Macro Language (XLM) was
introduced with version 4 of Excel. It was a rather cumbersome language, but it
did provide most of the capabilities of a programming language, such as looping,
branching and so on. This first programming language was quickly superseded
by Excel's current programming language, Visual Basic for Applications,
introduced with version 5 of Excel. Visual Basic for Applications, or VBA, is a
"dialect" of Microsoft's Visual Basic programming language, a dialect that has
keywords to allow the programmer to work with Excel's workbooks, worksheets,
cells, charts, etc. At the same time, Microsoft introduced a version of Visual
Basic for Word; it was called WordBasic and had keywords for characters,
paragraphs, line breaks, etc. But even at the beginning, Microsoft's stated
intention was to have one version of Visual Basic that could work with all its
applications: Excel, Word, Access and PowerPoint. Each version of Microsoft
Office has moved closer to this goal.

The Visual Basic Editor
To create VBA code, or to examine existing code, you will need to use the

Visual Basic Editor. To access the Visual Basic Editor, choose Macro from the
Tools menu and then Visual Basic Editor from the submenu.

The Visual Basic Editor screen usually contains three important windows:
the Project Explorer window, the Properties window and the Code window, as
shown in Figure 1-1. (What you see may not look exactly like this.)

The Code window displays the active module sheet; each module sheet can
contain one or several VBA procedures. If the workbook you are using does not

1

2 EXCEL: NUMERICAL METHODS

Figure 1-1. The Visual Basic Editor window.

contain any module sheets, the Code window will be empty. To insert a module
sheet, choose Module from the Insert menu. A folder icon labeled Modules
will be inserted; if you click on this icon, the module sheet Module1 will
bedisplayed. Excel gives these module sheets the default names Modulel,
Module2 and so on.

Use the Project window to select a particular code module from all the
available modules in open workbooks. These are displayed in the Project
window (Figure 1-2), which is usually located on the left side of the screen. If
the Project window is not visible, choose Project Explorer from the View
menu, or click on the Project Explorer toolbutton $& to display it. The Project

Explorer toolbutton is the fifth button from the right in the VBA toolbar.
In the Project Explorer window you will see a hierarchy tree with a node for

each open workbook. In the example illustrated in Figure 1-2, a new workbook,
Bookl, has been opened. The node for Bookl has a node (a folder icon) labeled
Microsoft Excel Objects; click on the folder icon to display the nodes it contains-
an icon for each sheet in the workbook and an additional one labeled
Thisworkbook. If you double-click on any one of these nodes you will display the
code sheet for it. These code sheets are for special types of procedures called
automatic procedures or event-handler procedures, which are not covered in this

CHAPTER 1 INTRODUCING VISUAL BASIC FOR APPLICATIONS 3

Figure 1-2. The VBE Project Explorer window.

book. Do not use any of these sheets to create the VBA procedures described in
this book. The hierarchy tree in Figure 1-2 also shows a Modules folder,
containing one module sheet, Module1 .

The Properties window will be discussed later. Right now, you can press the
Close button to get rid of it if you wish.

Figure 1-3. The Properties window.

4 EXCEL: NUMERICAL METHODS

Visual Basic Procedures
VBA macros are usually referred to as procedures. They are written or

A single module sheet can contain many recorded on a module sheet.
procedures.

There Are Two Kinds of Macros
There are two different kinds of procedures: Sub procedures, called

command macros in the older XLM macro language, and Function procedures,
called function macros in the XLM macro language and often referred to as
custom functions or user-defined functions.

Although these procedures can use many of the same set of VBA commands,
they are distinctly different. Sub procedures can automate any Excel action. For
example, a Sub procedure might be used to create a report by opening a new
worksheet, copying selected ranges of cells from other worksheets and pasting
them into the new worksheet, formatting the data in the new worksheet,
providing headings, and printing the new worksheet. Sub procedures are usually
"run" by selecting Macro from the Tools menu. They can also be run by means
of an assigned shortcut key, by being called from another procedure, or in
several other ways.

Function procedures augment Excel's library of built-in functions by adding
user-defined functions. A custom or user-defined function is used in a
worksheet in the same way as a built-in function like, for example, Excel's SQRT
function. It is entered in a formula in a worksheet cell, performs a calculation,
and returns a result to the cell in which it is located. For example, a custom
function named FtoC could be used to convert Fahrenheit temperatures to
Celsius.

Custom functions can't incorporate any of VBA's "action" commands. No
experienced user of Excel would try to use the SQRT function in a worksheet
cell to calculate the square root of a number and also open a new workbook and
insert the result there; custom functions are no different.

However, both kinds of macro can incorporate decision-making, branching,
looping, subroutines and many other aspects of programming languages.

The Structure of a Sub Procedure
The structure of a Sub procedure is shown in Figure 1-4. The procedure

begins with the keyword Sub and ends with End Sub. It has a ProcedureName, a
unique identifier that you assign to it. The name should indicate the purpose of
the function. The name can be long, since after you type it once you will
probably not have to type it again. A Sub procedure has the possibility of using
one or more arguments, Argumentl, etc, but for now we will not create Sub

CHAPTER 1 INTRODUCING VISUAL BASIC FOR APPLICATIONS 5

procedures with arguments. Empty parentheses are still required even if a Sub
procedure uses no arguments.

Sub ProcedureName(Argument1, ...)

End Sub
VBA statements

Figure 1- 4. Structure of a Sub procedure.

The Structure of a Function Procedure
The structure of a Function procedure is shown in Figure 1-5. The

procedure begins with the keyword Function and ends with End Function. It
has a FunctionName, a unique identifier that you assign to it. The name should be
long enough to indicate the purpose of the function, but not too long, since you
will probably be typing it in your worksheet formulas. A Function procedure
usually takes one or more arguments; the names of the arguments should also be
descriptive. Empty parentheses are required even if a Function procedure takes
no arguments.

Function FunctionName(Argument1, ...)
VBA statements
FunctionName = result

End Function

Figure 1-5. Structure of a user-defined function.

The function's return statement directs the procedure to return the result to
the caller (usually the cell in which the function was entered). The return
statement consists of an assignment statement in which the name of the function
is equated to a value, for example,

FunctionName = result

Using the Recorder to Create a Sub Procedure
Excel provides the Recorder, a useful tool for creating command macros.

When you choose Macro from the Tools menu and Record New Macro.. . from
the submenu, all subsequent menu and keyboard actions will be recorded until
you press the Stop Macro button or choose Stop Recording from the Macro
submenu. The Recorder is convenient for creating simple macros that involve
only the use of menu or keyboard commands, but you can't use it to incorporate
logic, branching or looping.

You don't have to know
anything about Visual Basic to record a command macro in Visual Basic. This
provides a good way to gain some familiarity with Visual Basic.

The Recorder creates Visual Basic commands.

6 EXCEL: NUMERICAL METHODS

To illustrate the use of the Recorder, let's record the action of applying
scientific number formatting to a number in a cell. First, select a cell in a
worksheet and enter a number. Now choose Macro from the Tools menu, then
Record New Macro ... from the submenu. The Record Macro dialog box
(Figure 1-6) will be displayed.

The Record Macro dialog box displays the default name that Excel has
assigned to this macro: Macrol, Macro2, etc. Change the name in the Macro
Name box to ScientificFormat (no spaces are allowed in a name). The "Store
Macro In" box should display This Workbook (the default location); if not,
choose This Workbook. Enter "e" in the box for the shortcut key, then press OK.

Figure 1-6. The Record Macro dialog box.

The Stop Recording toolbar will appear (Figure 1-7), indicating that a macro is
being recorded. If the Stop Recording toolbar doesn't appear, you can always
stop recording by using the Tools menu (in the Macro submenu the Record New
Macro.. . command will be replaced by Stop Recording).

Figure 1-7. The Stop Recording toolbar.

Now choose Cells ... from the Format menu, choose the Number tab and
choose Scientific number format, then press OK. Finally, press the Stop
Recording button.

To examine the macro code that you have just recorded, choose Macro from
the Tools menu and Visual Basic Editor from the submenu. Click on the node
for the module in the active workbook. This will display the code module sheet
containing the Visual Basic code. The macro should look like the example
shown in Figure 1-8.

CHAPTER 1 INTRODUCING VISUAL BASIC FOR APPLICATIONS 7

Sub ScientificForrnat()

' ScientificForrnat Macro
' Macro recorded 6/22/2004 by Boston College

' Keyboard Shortcut: Ctrl+e

End Sub

,

Selection.Num berFormat = "O.OOE+OO"

Figure 1-8. Macro for scientific number-formatting, recorded in VBA.

This macro consists of a single line of VBA code. You'll learn about Visual
Basic code in the chapters that follow.

To run the macro, enter a number in a cell, select the cell, then choose
Macro from the Tools menu, choose Macros ... from the submenu, select the
ScientificForrnat macro from the Macro Name list box, and press Run. Or you can
simply press the shortcut key combination that you designated when you
recorded the macro (CONTROL+e in the example above). The number should be
displayed in the cell in scientific format.

The Personal Macro Workbook
The Record Macro dialog box allows you to choose where the recorded

macro will be stored. There are three possibilities in the "Store Macro In" list
box: This Workbook, New Workbook and Personal Macro Workbook. The
Personal Macro Workbook (PERS0NAL.XL.S in Excel for Windows, or Personal
Macro Workbook in Excel for the Macintosh) is a workbook that is automatically
opened when you start Excel. Since only macros in open workbooks are
available for use, the Personal Macro Workbook is the ideal location for macros
that you want to have available all the time.

Normally the Personal Macro Workbook is hidden (choose Unhide.. . from
the Window menu to view it). If you don't yet have a Personal Macro
Workbook, you can create one by recording a macro as described earlier,
choosing Personal Macro Workbook from the "Store Macro In" list box.

As you begin to create more advanced Sub procedures, you'll find that the
Recorder is a useful tool to create fragments of macro code for incorporation into
your procedure. Instead of poring through a VBA reference, or searching
through the On-Line VBA Help, looking for the correct command syntax, simply
turn on the Recorder, perform the action, and look at the code produced. You
may find that the Recorder doesn't always produce exactly what you want, or
perhaps the most elegant code, but it is almost always useful.

Note that, since the Recorder only records actions, and Function procedures
can't perform actions, the Recorder won't be useful for creating Function
procedures.

8 EXCEL: NUMERICAL METHODS

Running a Sub Procedure
In the preceding example, the macro was run by using a shortcut key. There

are a number of other ways to run a macro. One way is to use the Macro dialog
box. Again, enter a number in a cell, select the cell, then choose Macro from the
Tools menu and Macros.. from the submenu. The Macro dialog box will be
displayed (Figure 1-9). This dialog box lists all macros in open workbooks
(right now we only have one macro available). To run the macro, select it from
the list, then press the Run button.

Assigning a Shortcut Key to a Sub Procedure
If you didn't assign a shortcut key to the macro when you recorded it, but

would like to do so "affer the fact," choose Macro from the Tools menu and
Macros ... from the submenu. Highlight the name of the macro in the Macro
Name list box, and press the Options ... button. You can now enter a letter for
the shortcut key: CONTROL+<key> or SHIFT+CONTROL+<key> in Excel for

Figure 1-9. The Macro dialog box.

Windows, OPTION+COMMAND+<key> or SHIFT+OPTION+COMMAND+<key>
in Excel for the Macintosh.

CHAPTER 1 INTRODUCING VISUAL BASIC FOR APPLICATIONS 9

Entering VBA Code
Of course, most of the VBA code you create will not be recorded, but

instead entered at the keyboard. As you type your VBA code, the Visual Basic
Editor checks each line for syntax errors. A line that contains one or more errors
will be displayed in red, the default color for errors. Variables usually appear in
black. Other colors are also used; comments (see later) are usually green and
some VBA keywords (Function, Range, etc.) usually appear in blue. (These
default colors can be changed if you wish.)

I f you type a long line of code, it will not automatically wrap to the next line
but will simply disappear off the screen. You need to insert a line-continuation
character (the underscore character, but you must type a space followed by the
underscore character followed by ENTER) to cause a line break in a line of VBA
code, as in the following example:

Worksheets("Sheet1 ").Range("A2:67").Copy -
(Worksheets("Sheet2").Range("C2"))

The line-continuation character can't be used within a string, i.e., within
quotes.

I recommend that you type the module-level declaration Option Explicit at the
top of each module sheet, before any procedures. Option Explicit forces you to
declare all variables using Dim statements; undeclared variables produce an error
at compile time.

When you type VBA code in a module, it's good programming practice to
use TAB to indent related lines for easier reading, as shown in the following
procedure.

Sub Initialize0
F o r J = l TON

Next J
End Sub

P(J) = 0

Figure 1-10. A simple VBA Sub procedure.

In order to produce a more compact display of a procedure, several lines of
code can be combined in one line by separating them with colons. For example,
the procedure in Figure 1-10 can be replaced by the more compact one in Figure
1 - 1 1 or even by the one in Figure 1 - 12.

Sub Initialize0
For J = 1 To N: P(J) = 0: Next J
End Sub

Figure 1-11. A Sub procedure with several statements combined.

10 EXCEL: NUMERICAL METHODS

lSub Initialize(): For J = 1 To N: P(J) = 0: Next J: End Sub J
Figure 1-12. A Sub procedure in one line.

Creating a Simple Custom Function
As a simple first example of a Function procedure, we'll create a custom

function to convert temperatures in degrees Fahrenheit to degrees Celsius.
Function procedures can't be recorded; you must type them on a module

sheet. You can have several macros on the same module sheet, so if you
recorded the ScientificForrnat macro earlier in this chapter, you can type this
custom function procedure on the same module sheet. If you do not have a
module sheet available, insert one by choosing Module from the Insert menu.

Type the macro as shown in Figure 1-13. DegF is the argument passed by the
function from the worksheet to the module (the Fahrenheit temperature); the
single line of VBA code evaluates the Celsius temperature and returns the result
to the caller (in this case, the worksheet cell in which the function is entered).

Function FtoC(DegF)
FtoC = (DegF - 32) * 5 / 9

I End Function
Figure 1-13. Fahrenheit to Celsius custom function.

A note about naming functions and arguments: function names should be
short, since you will be typing them in Excel formulas (that's why Excel's square-
root worksheet function is SQRT) but long enough to convey information about
what the function does. In contrast, command macro names can be long, since
command macros are run by choosing the name of the macro from the list of
macros in the Macro Run dialog box, for example.

Argument names can be long, since you don't type them. Longer names can
convey more information, and thus provide a bit of self-documentation. (If you
look at the arguments used in Excel's worksheet functions, you'll see that single
letters are usually not used as argument names.)

Using a Function Macro
A custom function is used in a worksheet formula in exactly the same way as

any of Excells built-in functions. The workbook containing the custom function
must be open.

Figure 1-14 shows how the FtoC custom function is used. Cell A2 contains
212, the argument that the custom function will use. Cell 82 contains the
formula with the custom function. You can enter the function in cell B2 by

CHAPTER 1 INTRODUCING VISUAL BASIC FOR APPLICATIONS 11

typing it (Figure 1-14). When you press enter, the result calculated by the
function appears in the cell (Figure 1 - 15).

Figure 1-14. Entering the custom function.

Figure 1-15. The function result.

You can also enter a function by using the Insert Function dialog box. Select
the worksheet cell or the point in a worksheet formula where you want to enter
the function, in this example cell B2. Choose Function.. . from the Insert menu
or press the Insert Function toolbutton to display the Insert Function dialog
box. Scroll through the Function Category list and select the User Defined
category. The FtoC function will appear in the Insert Function list box (Figure
1-16).

Figure 1-16. The Paste Function dialog box.

When you press OK, the Function Arguments dialog box (Figure 1-17) will be
displayed. Enter the argument, or click on the cell containing the argument to
enter the reference (cell A2 in Figure 1-14), then press the OK button.

12 EXCEL: NUMERICAL METHODS

Figure 1-17. The Function Arguments dialog box.

A Shortcut to Enter a Function
You can enter a function without using Insert Function, but still receive the

benefit provided by the Function Arguments screen. This is useful if the
function takes several (perhaps unfamiliar) arguments. Simply type "="

followed by the function name, with or without the opening parenthesis, and then
press CONTROL+A to bypass the Insert Function dialog box and go directly to
the Function Arguments dialog box.

If you press CONTROL+SHIFT+A, you bypass both the Insert Function dialog
box and the Function Arguments. The function will be displayed with its
placeholder argument(s). The first argument is highlighted so that you can enter
a value or reference (Figure 1-1 8).

Figure 1-18. Entering a custom function by using CONTROL+SHIFT+A.

Unfortunately, if you're entering the custom function in a different
workbook than the one that contains the custom function, the function name
must be entered as an external reference (e.g., Bookl.XLS!FtoC). This can make
typing the function rather cumbersome, and it means that you'll probably enter
the function by using Excel's Insert Function. But, see "Creating Add-In
Function Macros" in Chapter 2.

CHAPTER 1 INTRODUCING VISUAL BASIC FOR APPLICATIONS 13

Some FAQs
Here are answers to some Frequently Asked Questions about macros.

I Recorded a Command Macro. Where Did It Go? If you have
trouble locating the code module containing your macro, here's what to do "when
all else fails": choose Macro from the Tools menu and Macros ... from the
submenu. Highlight the name of the macro in the Macro Name list box, and
press the Edit button. This will display the code module sheet containing the
Visual Basic code.

I Can't Find My Function Macro. Where Did It Go? If you're
looking in the list of macros in the Macro Name list box, you won't find it
there. Only command macros (macros that can be Run) are listed. Function
macros are found in a different place: in the list of user-defined functions in the
Insert Function dialog box. (Choose Function ... from the Insert menu and
scroll through the Function Category list and select the User Defined category.)

How Do I Rename a Macro? To rename a Sub or Function procedure,
access the Visual Basic Editor and click on the module containing the procedure.
The name of the macro is in the first line of code, immediately following the Sub
or Function keyword. Simply edit the name. Again, no spaces are allowed in the
name.

How Do I Rename a Module Sheet? You use the Properties window to
change the name of a module. The module sheet whose name you want to
change must be the active sheet. If the Properties window is not visible, choose
Properties Window from the View menu, or click on the Properties Window

to display it. The Properties Window toolbutton is the fourth

button from the right in the VBA toolbar.

Figure 1-19. Changing the name of a module by using the Properties window.

14 EXCEL: NUMERICAL METHODS

When you display the Properties window, you will see the single property of
a module sheet, namely its name, displayed in the window. Simply double-click
on the name (here, Modulel), edit the name, and press Enter. No spaces are
allowed in the name.
How Do I Add a Shortcut Key? If you decide to add a shortcut key to a
command macro "after the fact," choose Tools+Macro+Macros.. . . In the
Macro Name list box, click on the name of the macro to which you want to add a
shortcut key, then press the Options button. In the Shortcut Key box, enter a
letter, either lower- or uppercase. To run the macro, use CTRL+<letter> for a
lowercase shortcut key, or CTRL+SHIFT+<letter> for uppercase.

Warning: The shortcut key will override a built-in shortcut key that uses the
same letter. For example, if you use CTRL+s for the ScientificFormat macro,
you won't be able to use CTRL+s for "Save." This will be in effect as long as the
workbook that contains the macro is open.

How Do I Save a Macro? A macro is part of a workbook, just like a
worksheet or a chart. To save the macro, you simply Save the workbook.

Are There Some Shortcut Keys for VBA? Yes, there are several. Here's
a useful one: you can toggle between the Excel spreadsheet and the VBA Editor
by pressing ALT+Fl 1 . A list of shortcut keys for VBA programming is found in
Appendix 2.

Chapter 2

Fundamentals of
Programming with VBA

This chapter provides an overview of Excel's VBA programming language.
Because of the specialized nature of the programming in this book, the material
is organized in a way that is different from other books on the subject. This
book deals almost exclusively with creating custom or user-defined functions,
and a significant fraction of VBA's keywords cannot be used in custom
functions. (For example, custom functions can't open or close workbooks, print
documents, sort lists on worksheets, etc. -these are actions that are performed
by command macros.) Therefore, that portion of the VBA language that can be
used in custom functions is introduced in the first part of this chapter, and
programming concepts that are applicable in command macros appear in the
latter part of the chapter.

If you are familiar with programming in other versions of BASIC or in
FORTRAN, many of the programming techniques described in this chapter will
be familiar.

Components of Visual Basic Statements
VBA macro code consists of statements. Statements are constructed by

using VBA commands, operators, variables, functions, objects, properties,
methods, or other VBA keywords. (VBA Help refers to keywords such as Loop
or Exit as statements, but here they'll be referred to as commands, and we'll use
"statement" in a general way to refer to a line of VBA code.)

Much of the VBA code that you will create will consist of assignment
statements. An assignment statement assigns the result of an expression to a
variable or object; the form of an assignment statement is

variable = expression

for example,

increment = 0.00000001*XValue

or

15

16 EXCEL: NUMERICAL METHODS

K = K + 1

which, in the second example, says "Store, in the memory location to which the
user has assigned the label 'K, the value corresponding to the expression K + 1 .I'

Operators
VBA operators include the arithmetic operators (+, -, *, /, "), the text

concatenation operator (a), the comparison operators (=, c, >, c=, >=, c>) and
the logical operators (And, Or, Not)

Variables
Variables are the names you create to indicate the storage locations of values

You can't use any of the VBA reserved words, such as Formula,
Function, Range or Value.
The first character must be a letter.
A name cannot contain a space or a period.

The characters %, $, #, !, & cannot be embedded in a name. If one of
these characters is the last character of a variable name, the character
serves as a type-declaration character (see later).
You can use upper- and lowercase letters. If you declare a variable type
by using the Dim statement (see "VBA Data Types'' later in this chapter),
the capitalization of the variable name will be "fixed" - no matter how
you type it in the procedure, the variable name will revert to the
capitalization as originally declared. In contrast, if you have not declared
a variable by using Dim, changing the case of a variable name in any line
of code (e.g., from formulastring to Formulastring) will cause all instances
of the old form of the variable to change to the new form.

You should make variable names as descriptive as possible, but avoid overly
long names which are tedious to type. You can use the underscore character to
indicate a space between words (e.g., formula-string). You can't use a period to
indicate a space, since VBA reserves the period character for use with objects.
The most popular form for variable names uses upper- and lowercase letters
(e.g., FormulaString).

Long variable names like Formulastring provide valuable self-
documentation; months later, if you examine your code in order to make
changes, you'll probably be more able to understand it if you used (for example)
Formulastring as a variable name instead of F. But typing long variable names is
time-consuming and prone to errors. I like to use short names like F when I'm
developing the code. Once I'm done, I use the Visual Basic Editor's Replace ...
menu command to convert all those F's to Formulastring.

or references. There are a few rules for naming variables or arguments:

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 17

To avoid inadvertently using a VBA keyword as a variable name (there are
hundreds of VBA keywords, so this is easy to do), I suggest that you type the
variable name in all lowercase letters. If the variable name becomes capitalized,
this indicates that it is a reserved word. For example, you may decide to use FV
as a variable name. If you type the variable name "fv" in a VBA statement, then
press Enter, you will see the variable become "FV," a sign to you that FV is a
reserved word in VBA (the FV function calculates the future value of an annuity
based on periodic, fixed payments and a fixed interest rate.)

In fact, it's also a good idea to type words that you know are reserved words
in VBA in lowercase also. If you type "activecell," the word will become
"ActiveCell" when you press the Enter key. If it doesn't, you have typed it
incorrectly.

Objects, Properties and Methods
VBA is an object-oriented programming language. Objects in Microsoft

Excel are the familiar components of Excel, such as a worksheet, a chart, a
toolbar, or a range. Objects have properties and methods associated with them.
Objects are the nouns of the VBA language, properties are the adjectives that
modify the nouns and methods are the verbs (the action words). Objects are
used almost exclusively in Sub procedures, while properties and some methods
can be used in Function procedures. A discussion of objects and methods can
be found in the section "VBA Code for Command Macros" later in this chapter.

Objects
Some examples of VBA objects are the Workbook object, the Worksheet

object, the Chart object and the Range object. It's very unlikely that a custom
function would include any of these keywords. But if a custom function takes as
an argument a cell or range of cells, the argument is a Range object and has all
of the properties of a Range object.

Properties
Objects have properties that can be set or read. Some properties of the

Range object are the ColumnWidth property, the NumberFormat property, the
Font property and the Value property. A property is connected to the object it
modifies by a period, for example

CelFmt = Range("E5").NumberFormat

returns the number format of cell E5 and assigns it to the variable CelFmt, and

Range("ES').NumberForrnat = "0.000"

sets the number formatting of cell E5.

18 EXCEL: NUMERICAL METHODS

Some properties, such as Column or Count, are read-only. The Column
property of a Range object is the column number of the leftmost cell in the
specified range; it should be clear that this property can be read, but not changed.
The Count property of a Range object is the number of cells in the range; again,
it can be read, but not changed.

Properties can also modify properties. The following example

Range("Al").Font.Bold = True

makes the contents of cell A1 bold.

object.
pertaining to the Range object contains 93 entries:

There is a large and confusing number of properties, a different list for each
For example, as of this writing (Excel 2003), the list of properties

Addlndent
Address
AddressLocal
AllowEdit
Application
Areas
Borders
Cells
Characters
Column
Columns
ColumnWidth
Comment
Count
Creator
CurrentArray
CurrentRegion
Dependents
DirectDependents
Directprecedents
End
Entirecolumn
EntireRow
Errors

Font
FormatConditions
Formula
FormulaArray
FormulaHidden
FormulaLabel
FormulaLocal
FormulaRlCl
FormulaRlCl Local
HasArray
HasFormula
Height
Hidden
HorizontalAlignment
Hyperlinks
ID
I ndentLevel
Interior
Item
Left
ListHeaderRows
Listobject
LocationlnTable
Locked

MergeArea Row
Mergecells RowHeight
Name Rows
Next ShowDetail
NumberFormat ShrinkToFit
NumberFormatLocal SmartTags
Offset SoundNote
Orientation Style
OutlineLevel Summary
PageBreak Text
Parent TOP
Phonetic UseStandardHeight
Phonetics UseStandardWidth
Pivotcell Validation
PivotField Value
Pivotltem Value2
PivotTable VerticalAlignment
Precedents Width
PrefixC haracter Worksheet
Previous WrapText
QueryTable XPath
Range
Reading Order
Resize

This large number of properties, just for the Range object, is what makes
VBA so difficult for the beginner. You must find out what properties are
associated with a particular object, and what you can do with them. For our
purposes (creating custom functions), only a limited number of these properties
of the Range object can be used. Some of the properties of the Range object
that can be used in a custom function are listed in Table 2-1. Note that, when
used in a custom function, these properties can only be read, not set.

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 19

Table 2-1. Some Properties of the Range Object

Column

ColumnWidth

Count

Font

Formula

Name

NumberFormat

Row

RowHeight

Text

Value

Returns a number corresponding to the first column
in the range.

Returns or sets the width of all columns in the range.

Returns the number of items in the range.

Returns or sets the font of the range.

Returns or sets the formula.

Returns or sets the name of the range.

Returns or sets the format code for the range.

Returns a number corresponding to the first row in
the range.

Returns or sets the height of all rows in the range.

Returns or sets the text displayed by the cell.

Returns or sets the contents of the cell or range.

Using Properties
In a Sub procedure, properties can be set or read. In a Function procedure,

properties can only be read, not changed. To return an object's property, use the
following syntax:

VariableName = ObjectName. ProperfyName

For example, to obtain the number of cells in a range of cells passed to a
function procedure as the argument rng, and store it in the variable NCells, use
the following:

NCells = rng.Count

Properties can have values that are numeric, string, or logical.

Functions
Many of the functions available in VBA are similar to the functions

available in Excel itself. There are 187 VBA functions listed in Excel 2003
VBA Help. Tables 2-2 through 2-4 list some of the more useful ones for
mathematical or scientific calculations.

If you are reasonably familiar with Excel's worksheet functions, you will
have little trouble using VBA's functions. The names of many VBA functions,
such as Abs, Exp, Int, Len, Left, Mid and Right, are identical to the

20 EXCEL: NUMERICAL METHODS

corresponding worksheet functions (ABS, EXP, INT, LEN, LEFT, MID AND
RIGHT, respectively). Others, such as Asc, Chr and Sqr, are spelled a little
differently (the corresponding worksheet functions are CODE, CHAR and SQRT,
respectively) or completely differently (LCase and UCase correspond to
LOWER and UPPER). These VBA functions are used in exactly the same way
that they are used in worksheet formulas; they take the same type of arguments
and return the same type of values.

Note that although Excel has three worksheet functions that return
logarithms (LN returns the natural or base-e logarithm, LOG10 returns the base-
10 logarithm, and LOG returns a logarithm to a specified base), VBA has only
one logarithmic function, Log, that returns the base-e logarithm. If you need to
work with base-10 logarithms in your VBA code, use the relationship loglo(a) =
loG(a)/ lo&(10).

VBA does not provide a function to evaluate n, but you can calculate it in a
function by using the expression 4*Atn(l). Or, you can use the worksheet
function PI(), in the manner described in the following section.

Table 2-2. Some VBA Mathematical Functions
Abs
Atn

cos
EXP
Int

Log
Rnd

Sin

Sqr
Tan

Returns the absolute value of a number.
Returns the arctangent of a number. The result is an angle
in radians.
Returns the cosine of an angle in radians.
Returns e raised to a power.
Returns the integer part of a number (rounds down).
Returns the natural (base-e) logarithm of a number.
Returns a random number equal to or greater than 0 and
less than 1.
Returns the sine of an angle in radians.
Returns the square root of a number.
Returns the tangent of an angle in radians.

The above mathematical functions, except for Rnd, have the syntax
FuncfionName(argument). Rnd takes no argument, but requires the empty
parentheses.

VBA provides functions for working with text; some of the more useful ones
are listed in Table 2-3. Most of these are identical to Excel's text worksheet
functions. If you are unfamiliar with the use of text functions, see the syntax and
examples in Appendix 1.

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 21

Table 2-3. Some VBA Text Functions
Asc
Chr
Format

lnstr

Len
Left
Right
Mid
LTrim
RTrim
Trim
Str

Returns the ASCII character code of a character.
Returns the character corresponding to an ASCII code.
Formats a number according to a built-in or user-defined
number format expression. The result is a string.
Returns the first occurrence of a substring within a string.
Similar to Excel's FIND worksheet function.
Returns the length (number of characters) in a string.
Returns the leftmost characters of a string.
Returns the rightmost characters of a string.
Returns a specified number of characters from a string.
Returns a string without leading spaces.
Returns a string without trailing spaces.
Returns a string without leading or trailing spaces.
Converts a number to a string. A leading space is reserved
for the sign of the number; if the number is positive, the
string will contain a leading space.
Converts a string into lowercase letters.
Converts a string into uppercase letters.

LCase
UCase

VBA also provides a number of information functions, including eight "Is"
functions, shown in Table 2-4.

Table 2-4. VBA Information Functions
IsArray
IsDate
IsEmpty
IsError
IsMissing

IsNull

IsNumeric

Isobject
LBound
UBound

Returns True if the variable is an array.
Returns True if the expression is a date.
Returns True if the variable is uninitialized.
Returns True if the expression returns an error.
Returns True if an optional value has not been passed to a
Function procedure.
Returns True if the expression is null (i.e., contains no
valid data).
Returns True if the expression can be evaluated to a
number.
Returns True if the expression references a valid object.
Returns the lower limit of an array dimension.
Returns the upper limit of an array dimension.

All the above Is functions have the syntax FunctionName(argument) and
return either True or False.

22 EXCEL: NUMERICAL METHODS

Using Worksheet Functions with VBA

worksheet functions in your VBA code.
functions, simply use the syntax

In addition to the 187 VBA functions, you can make use of any of Excel's
To use one of Excel's worksheet

Application. WorksheetFunctionName(argumenf~, . . .)

and supply arguments for the function just as you would in a worksheet. For
example, to use the SUBSTITUTE function in VBA, use the code

FormulaString = Application.Substitute(FormulaString, XRef, NewX)

to replace all occurrences, in the string contained in the variable FormulaString,
of the variable XRef with the variable NewX.

Some Useful Methods
Although most methods can only be used within Sub procedures, there are a

few methods that can be used within Function procedures. Only methods that
do not "change the appearance of the screen" can be used in Function
procedures; it should be obvious that methods like Cut, Paste, Open, Close etc.,
cannot be used in a custom function.

Table 2-5. Some Methods Applicable to the Range Object
That Can Be Used in a Function Procedure

Address

Columns

ConvertFormula

Evaluate

Intersect

Rows

Volatile

Returns the reference of a cell or range, as text.

Returns a Range object that represents a single
column or multiple columns.

Converts cell references in a formula between Al-
and R1 C l-style, and between relative and absolute.

Converts a formula to a value.

Returns the reference that is the intersection of two
ranges.

Returns a Range object that represents a single row
or multiple rows.

Marks a user-defined function as volatile. The
function recalculates whenever calculation occurs in
any cell of the worksheet.

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 23

Other Keywords
In addition to VBA's objects, properties, methods and functions, there are

additional keywords that deal with program control: looping, branching and so
on. These keywords are described in detail in the following sections.

VBA keywords that will not be discussed in this book include objects such
as menu bars, menus and menu commands, toolbars and toolbuttons and the
many properties and methods pertaining to them.

Program Control
If you are familiar with computer languages such as BASIC or FORTRAN,

you will find yourself quite comfortable with most of the material in this section.

Branching
VBA supports If ... Then statements very similar to the Excel worksheet

If LogicaExpression Then statement? Else statement2

The If ... Then statement can be a Simple If statement, for example:

function IF. The syntax of If ... Then is

If (x PO) Then numerator = 10 ,-, x

If LogicaExpression (in this example x > 0) is True, statement? is carried
out; if LogicaExpression is False, nothing is done (program execution moves to
the next line).

If ... Then. ..Else structures are also possible. For example:

If Err.Number = 13 Then Resume pt l Else End

In a Block If statement, If LogicaExpression Then is followed by multiple
statement lines and is terminated by End If, as in Figure 2-1.

If Err.Number = 13 Then
On Error GoTo 0
Resume pt l 'and continue execution.

'Disable the error handler.

End If

Figure 2-1. Example of VBA Block If structure.

You can also create a Block-If-type structure in a single line, as in the

If LogicaExpfession Then statement? : statement2 Else statement3

If ... Then ... Elself structures are also possible, as illustrated in Figure 2-2.

following statement.

24 EXCEL: NUMERICAL METHODS

If reference.Rows.Count > 1 Then

Elself reference.Columns.Count > 1 Then

End If

R = equation.Row

C = equation.Column

Figure 2-2. Example of the VBA If ... Elself ... End If structure.

Logical Operators
The logical operators And, Or and Not can be used in LogicalExpression, as

If C >= 0 And C <= 9 Then
in the following example.

Select Case
VBA also provides the Select Case decision structure, similar to the ON

value GOT0 statement in BASIC. The Select Case statement provides an
efficient alternative to the series of Elself conditionN statements when conditionN
is a single expression that can take various values. The syntax of the Select
Case statement is illustrated in Figure 2-3.

Select Case TestExpression
Case ExpressionListl

statements
Case ExpressionList2

statements
Case ExpressionList3

statements
Case Else

statements
End Select

Figure 2-3. The VBA Select Case structure.

TestExpression is evaluated and used to direct program flow to the
appropriate Case. ExpressionListN can be a single value (e.g., Case 0), a list of
values separated by commas (e.g., Case 1, 3, 5), or a range of values using the
To keyword (e.g., Case 6 To 9). The optional Case Else statement is executed
if TestExpression doesn't match any of the values in any of ExpressionListN.

Looping
Loop structures in VBA are similar to those available in other programming

languages.

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 25

For...Next Loop
The syntax of the For ... Next loop is given in Figure 2-4.

For Counter = Start To End Step lncrement

Next Counter
statements

Figure 2-4. The VBA For ... Next structure.

For example,

For J = 1 To 100

Next J
statements

Figure 2-5. Example of a For ... Next loop.

The Step lncrement part of the For statement is optional. If lncrement is
lncrement can be negative or nonintegral, for omitted, it is set equal to 1.

example
For J = 100 To 0 Step -1

Do While... Loop
The Do ... Loop is used when you don't know beforehand how many times the

loop will need to be executed. You can loop While a condition is True or Until a
condition becomes True. The two possibilities are shown in Figures 2-6 and 2-7.

Do While LogicalExpression

Loop
statements

Figure 2-6. The Do While ... Loop structure.

Do

Loop While LogicalExpression
statements

Figure 2-7. Alternate form of the DO ... Loop While structure.

Note that this second form of the Do While structure executes the loop at
least once.

For Each...Next Loop
The For Each ... Next loop is a loop structure peculiar to an object-oriented

26 EXCEL: NUMERICAL METHODS

language. The For Each ... Next loop executes the statements within the loop for
each object in a group of objects. Figure 2-8 illustrates the syntax of the
statement.

For Each Element In Group

Next Element
statements

Figure 2-8. The VBA For Each ... Next structure.

The For Each ... Next loop returns an object variable in each pass through the
loop. You can access or use all of the properties or methods that apply to
Element. For example, in a loop such as the one shown in Figure 2-9, the
variable cel is an object that has all the properties of a cell (a Range object):
Value, Formula, NumberFormat, etc.

For Each cel In Selection
FormulaText = cel.Value
statements

Next cel

Figure 2-9. Example of a For Each ... Next loop.

Note that there is no integer loop counter, as in the For Counter = Start To
End type of loop structure. If an integer counter is needed, you will have to
initialize one outside the loop, and increment it inside the loop.

Nested Loops
Often one loop must be nested inside another, as illustrated in the following

example.

F o r I = l TONI
statements
For J = 1 To N2

Next J
statements

Next I

Figure 2-10. Example of nested loops.

Exiting from a Loop or from a Procedure
Often you use a loop structure to search through an array or collection of

objects, looking for a certain value or property. Once you find a match, you
don't need to cycle through the rest of the loops. You can exit from the loop

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 27

using the Exit For (from a For ... Next loop or For Each ... Next loop) or Exit Do
(from a Do While ... loop). The Exit statement will normally be located within an
If statement. For example,

If CellContenkValue c= 0 Then Exit For
Use the Exit Sub or Exit Function to exit from a procedure. Again, the Exit

Exit statements can appear as many times as needed within a procedure.
statement will normally be located within an If statement.

VBA Data Types
VBA uses a range of different data types. Table 2-6 lists the built-in data

types. Unless you declare a variable's type, VBA will use the Variant type. You
can save memory space if your procedure deals only with integers, for example,
by declaring the variable as Integer. The keyword Dim is used to declare a
variable's data type, as will be described in a following section.

Table 2-6. VBA's Built-in Data Types
Data Type Storage Required Range of Values

Boolean (Logical)

Integer

Long integer
Single precision

Double precision

Currency

Date
Object

String

Variant

2 bytes
2 bytes
4 bytes
4 bytes

8 bytes

8 bytes

8 bytes
4 bytes

1 bytekharacter
16 bytes

True or False

-32,768 to 32,767
-2,147,483,648 to 2,147,483,647
-3.402823E+38 to -1.401298E-45
for negative values; 1.401298E-45
to 3.402823E+38 for positive
values

-4.9406564584 1247E-324 for
negative values;

1.797693 13486232E+308 for
positive values

922,337,203,685,477.5807

-1.797693 13486232E+308 to

4.94065645841247E-324 to

-922,337,203,685,477.5808 to

Any Object reference

Any numeric value up to the
+ 1 bvte/character range of a Double or anv text

28 EXCEL: NUMERICAL METHODS

The Variant Data Type
The Variant data type is the default data type in VBA. Like Excel itself, the

Variant data type handles and interconverts between many different kinds of
data: integer, floating point, string, etc. The Variant data type automatically
chooses the most compact representation. But if your procedure deals with only
one kind of data, it will be more efficient and usually faster to declare the
variables as, for example, Integer.

Subroutines
By "subroutine" we mean a Sub procedure that is kalled" by another VBA

program. In writing a VBA procedure, it may be necessary to repeat the same
instructions several times within the procedure. Instead of repeating the same
lines of code over and over in your procedure, you can place this code in a
separate Sub program; this subroutine or subprogram is then executed by the
main program each time it is required.

There are several ways to execute a subroutine within a main program. The
two most common are by using the Call command, or by using the name of the
subroutine. These are illustrated in Figure 2-1 1. Mainprogram calls subroutines
Taskl and Task2, each of which requires arguments that are passed from the
main program to the subroutine and/or are returned from the subroutine to the
main program.

Sub Mainprogram()

Call Taskl (argument1 ,argument2)

Task2 argurnent3,argurnent4

End Sub

etc.

e tc

efc

Sub Taskl (ArgNamel ,ArgName2)

End Sub

Sub Task2(ArgName3,ArgName4)

End Sub

efc

etc

Figure 2-11. A main program illustrating the different syntax of subroutine calls.

The two methods use different syntax if the subroutine requires arguments.
If the Call command is used, the arguments must be enclosed in parentheses. If
only the subroutine name is used, the parentheses must be omitted. Note that the

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 29

variable names of the arguments in the calling statement and in the subroutine do
not have to be the same.

There are several advantages to using subroutines: you eliminate the
repetition of code, and you make the programming clearer by adopting a modular
approach. Perhaps most important, a subroutine that is of general usefulness can
be called by several different procedures.

Scoping a Subroutine
A Sub procedure can be Public or Private. Public subroutines can be called

by any subroutine in any module. The default for any Sub procedure is Public.
A Private subroutine can be called only by other subroutines in the same
module. To declare the subroutine Task3 as a private subroutine, use the
statement

Private Sub Task30
A Sub procedure that is declared Private will not appear in the list of

macros that can be run in the Macro dialog box. The name of a Sub procedure
that takes arguments (i.e., a subroutine), will also not appear in the Macro dialog
box; only Sub procedures without arguments, that is, with empty parentheses
following the procedure name, appear in the Macro dialog box.

VBA Code for Command Macros
Command macros (Sub procedures) are "action" macros: they can enter or

modify data on a spreadsheet, create a report, display a dialog box and so on.
The CD that accompanies this book includes some examples of Sub procedures,
so the material in the following sections will be useful in understanding the VBA
code in these procedures.

Objects and Collections of Objects
Some examples of VBA objects are the Workbook object, the Worksheet

object, the Chart object and the Range object. Note that the Range object can
specify a single cell, such as E5 in the preceding example, or a range of cells, for
example, Range("A1:ElOl"). There is no "cell" keyword in VBA to refer to a
single cell; that would be redundant.

You can also refer to collections of objects. A collection is a group of
objects of the same kind. A collection has the plural form of the object's name
(e.g., Worksheets instead of Worksheet). Worksheets refers to all worksheets
in a particular workbook.

To reference a particular worksheet in a collection, you can use either
Worksheets(NameText) or Worksheets(index), For example, you can refer to

30 EXCEL: NUMERICAL METHODS

a specific worksheet by using either Worksheets("Book1") or Worksheets(3).
The latter form is useful, for example, if you want to examine all the worksheets
in a workbook, without having to know what text is on each sheet tab.

A Range object is contained within a
Worksheet object, which is contained within a Workbook object. You specify
an object by specifying its location in a hierarchy, separated by periods, for
example,

There is a hierarchy of objects.

Workbooks("Book1 ").Worksheets("Sheet3").Range("E5")

In the above example, if you don't specify a workbook, but just use

Works heets("S hee t3"). Range("E5")

you are referring to the active workbook. If you don't specify either workbook or
worksheet, e.g.,

Range("E5")

you are referring to cell E5 in the active sheet.
Instead of the keyword Worksheets, you may sometimes need to use the

keyword Sheets. Sheets is the collection that includes all sheets in a workbook,
both worksheets and chart sheets.

A complete list of objects in Microsoft Excel is listed in Excel's On-line
Help. You can also use the Object Browser to see the complete list of objects.
To display the Object Browser dialog box, choose Object Browser from the
View menu in the VBE.

"Objects" That Are Really Properties
Although Activecell and Selection are properties, not objects, you can treat

them like objects. (Activecell is a property of the Application object, or the
Activewindow property of the Application object.) The Application object has
the following properties that you can treat just as though they were objects: the
Activewindow, ActiveWorkbook, Activesheet, Activecell, Selection and
Thisworkbook properties. Since there is only one Application object, you can
omit the reference to Application and simply use Activecell.

You Can Define Your Own Objects
The Set keyword lets you define a variable as an object, so that you can use

the variable name in your code, rather than the expression for the object. Most
often this is done simply for convenience; it's easier to type or remember a
variable name rather than the (perhaps) long expression for the object. The
variable will have all of the properties of the object type.

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 3 1

Note the difference between identical expressions with and without the use

XValues = Workbooks("Book1 ").Worksheets("Sheet3").Range("E2:E32")

of the Set keyword. In the expression

the variable XValues contains only the values in cells E2:E32, while the
expression

Set MyRange = Workbooks("Book1 ").Worksheets("Sheet3").Range("E2: E32")

creates an object variable MyRange, a Range object that allows you to read (or
set) any of the properties of this object. For example, in addition to the value of
any cell in the range E2:E32, you can obtain its number format, column width,
row height, font and so on.

Remember, VBA will allow you to equate a variable to an object in an
assignment statement, but the variable does not automatically become an object.
If you then attempt to use the variable in an expression that requires an object,
you'll get an "Object required" error message. You must use the Set keyword in
order to create an object variable.

Methods
Objects also have methods. The Excel 2003 VBA Help lists 71 methods,

listed below, that apply to the Range object. Many of these methods correspond
to familiar menu commands.

Activate
Addcomment
AdvancedFilter
ApplyNarnes
ApplyOutlineStyles
AutoComplete
AutoFill
AutoFilter
AutoFit
AutoFormat
Autooutline
BorderAround
Calculate
Checks pelling
Clear
ClearComments
Clearcontents
ClearFormats

ClearNotes
ClearOutline
ColumnDifferences
Consolidate

CopyFrom Recordset
CopyPicture
CreateNames
cut
Dataseries
Delete
Dialog Box
Dirty
FillDown
FillLeft
FillRight
FillUp
Find

COPY

FindNext
Find Previous
Functionwizard
GoalSee k
Group
Insert
lnsertlndent
Justify
ListNames
Merge
NavigateArrow
NoteText
Parse
Pastespecial
Printout
Printpreview
RemoveSu btotal
Replace

RowDifferences
Run
Select
Setphonetic
Show
ShowDependents
ShowErrors
S howprecedents
sort
Sortspecial
Speak
SpecialCelts
Subtotal
Table
TextToColumns
Ungroup
UnMerge

Some Useful Methods
Methods can operate on an object or on a property of an object. Some

methods that can be applied to the Range object are the Copy method, the Cut
method, the FillDown method or the Sort method. Statements involving

32 - EXCEL: NUMERICAL METHODS

methods usually do not appear in an assignment statement (that is, no equal sign
is required). For example,

Range("A1 :El").Clear

clears the formulas and formatting in the range A1 :El .

Some useful VBA methods are listed in Table 2-7.

Table 2-7. Some Useful VBA Methods
Activate
Clear Clears an entire range.
Close Closes an object.
COPY
cut
FillDown
Select Selects an obiect.

Activates an object (sheet, etc.).

Copies an object to a specified range or to the Clipboard.
Cuts an object to a specified range or to the Clipboard.
Copies the cell(s) in the top row into the rest of the range.

Two Ways to Specify Arguments of Methods
VBA methods usually take one or more arguments. The Sort method, for

object.Sort(key7, orderl, key2, order2, key3, Order3, header, ordercustom,
match Case, orientation)

The object argument is required; all other arguments are optional.
You can specify the arguments of a method in two ways. One way is to list

the arguments in order as they are specified in the preceding syntax, i.e.,

Range("A1 :E l 50").Sort "Last Name", xlAscending

example, takes 10 arguments. The syntax of the Sort method is

which sorts the data contained in the range A1 :El 50 in ascending order, using as
the sortkey the values in the column headed by the label Last Name.
xlAscending is one of many built-in constants. You can look them up in the On-
line Help or use the Recorder to provide the correct one.

In the preceding example, only the arguments key7 and Order7 were
specified; the remaining arguments are optional and are not required.

The second way is to use the name of the argument as it appears in the
preceding syntax, with the := operator, to specify the value of the argument, as in
the following:

Selection.Sort Key1 :=Range("A2"), Order1 :=xlAscending, -
Key2:=Range("B2"), Order2:=xlAscending, Key3:=Range("C2"), -
Order3:=xlDescending, Header:=xlGuess, OrderCustom:=l , -
MatchCase:=False, Orientation:=xlTopToBottom

CHAPTER 2 FUNDAMENTALS OF PROGRAMMMG WITH VBA 33

When using this method, the arguments can appear in any order, and
optional ones can be omitted if you do not need to specify a value.

Arguments with or without Parentheses
The arguments of a method sometimes appear within parentheses, sometimes

without parentheses (see the examples immediately preceding). Sometimes
either syntax will work, sometimes one or the other fails. Why is this?

As well as performing an action, methods create a return value. The return
value can be either True or False: True means the method worked, False means
that it failed. Even the Chartwizard method creates a return value: True if the
chart was created successfully, False if the method failed. Usually you aren't
interested in these return values; if your procedure executed successfully, you
are happy. But occasionally the return value is important.

An example of a method that creates a useful return value is the
Checkspelling method. The Checkspelling method has the following syntax:

Application.CheckSpeIling(word)

If you use this method, you'll need the return value (either True or False) to
determine whether the word is spelled correctly.

If you want to use the return value of a method, you must enclose the
arguments of the method in parentheses. If the arguments are not enclosed in
parentheses, then the return value will not be available for use. Put another way,
the expression

result = Application.CheckSpeIling(ActiveCell.Value)

does not produce a syntax error, while the expression

result = Application.CheckSpelling ActiveCell.Value

does give a syntax error.

Making a Reference to a Cell or a Range
One of the most important skills you'll need in order to create Sub

procedures that manipulate data in workbooks is the ability to make a reference
to a cell or range of cells. You'll need to be able to send values from a worksheet
to a module sheet so that you can perform operations on the worksheet data, and
you'll need to be able to send the results back from the module sheet to the
worksheet.

A Reference to the Active Cell or a Selected Range
Often a macro will be designed to operate on a user-selected cell or range.

34 EXCEL: NUMERICAL METHODS

To refer to the active cell or a selected range of cells, use the ActiveCell or
Selection keywords. The ActiveCell keyword is usually used when the user has
selected a single cell, whereas the Selection keyword is used when the user has
selected a range of cells. However, Selection can refer to a single cell or a
range.

A Reference to a Cell Other than the Active Cell
Sometime a macro will be designed to operate on values from specified rows

and columns in a worksheet, independent of where the cursor has been "parked"
by the user. To refer to a cell or range other than the selection, use either the
Range keyword or the Cells keyword. The syntax of the latter is
Cells(Rowlndex, Colurnnlndex) .

The following references both refer to cell B3:

Range("B3")

Cells(3,2)

The preceding are "absolute" references, since they always refer to, in this
example, cell B3. You can also use what could be called a "computed"
reference, in which the reference depends on the value of a variable. The Cells
keyword is conveniently used in this way. For example, the expression

Cells(x,2)

allows you to select any cell in column B, depending on the value assigned to the
variable x. The Range keyword can be used in a similar way by using the
concatenation operator, e.g.,

Range("B" & x)

It's usually good programming practice not to use the Select keyword unless
you actually need to select cells in a worksheet. For example, to copy a range of
cells from one worksheet to another, you could use the statements shown in
Figure 2-12, and in fact this is exactly the code you would generate using the
Recorder. But you can do the same thing much more efficiently, and without
switching from one worksheet to another, by using the code shown in Figure 2-
13.

Range("D1: D2O").Select
Selection.Copy
Sheets("Sheetl5").Select
Range("Al").Select
ActiveSheet.Paste

Figure 2-12. VBA code fragment by the Recorder.

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 35

Range("D1: D20").Copy (Sheets("Sheet1 5").Range("Al")) I
Figure 2-13. A more efficient way to accomplish the same thing, without selecting cells.

References Using the Union or Intersect Method
VBA can create references by using methods that are the equivalents of the

union operator (the comma) or the intersection operator (the space character)
that can be used in worksheet formulas. The worksheet union operator creates a
reference that includes multiple selections, for example, SUM(A1 ,B2,C3,D4,E5).
The syntax of the corresponding VBA Union method is Union(range1,
range2,. . .). The worksheet intersection operator creates a reference that is
common to two references (e.g., the expression F4:F6 E5:E returns the reference
F5). The syntax of the corresponding VBA Intersect method is
Intersect(range7, range2). Both range1 and range2 must be range objects.

Examples of Expressions to Refer to a Cell or Range

1. Using the Range keyword with an address

Range("B1:DlO")

2. Using the Cells keyword with row and column numbers

Cells(15, 5)

This expression refers to cell El 5.

3. Using the Range keyword with a range name

Range("addr1")

The range name addrl was assigned previously using Insert+Name-+
Define. This method is useful if the user can possibly modify the spreadsheet so
that the addresses of cells needed by the procedure are changed.

4. Using the Cells keyword with variables
Cells(RowN urn, COIN urn)

5. Using the Range keyword with a variable

Range(addr2)

The variable addr2 was previously defined by means of a statement such as

addr2 = Selection.Address

36 EXCEL: NUMERICAL METHODS

6. Using the Range keyword with ampersand

TopRow = 2: BtmRow = 12

Range("F" & TopRow & ":G" & BtmRow)

The Range argument evaluates to "F2:G12")

7. Using the Range keyword with two Cells expressions

Range(Cells(1, I) , Cells(5, 5))

This expression refers to the range A1 :E5. This method is useful when both
row and column numbers of the reference must be "computed."

8. Using the Range keyword with Cells(index)

Range("A5:Al2").Cells(3)

This expression refers to cell A7; it provides a way to select individual cells
within a specified range.)

Range("A1: J 1 O').Cells(13)

Accesses first across rows, then by columns; this example selects cell C2.

9. Using the Range keyword with Offset

Range("Al").Offset(3, 1)

This example selects cell B4.

Range("A1 :Al2").0ffset(3, 1)

This example selects the range B4:B15.

10. Using the Range keyword with Offset and Resize

Range("A1 :Al2").0ffset(3, I).Resize(l , 1)

Use the Resize keyword to select a single cell offset from a range. This
example selects cell B4.

Getting Values from a Worksheet
To transfer values from worksheet cells to a procedure, use a reference to a

variablename = ActiveCell.Value

variablename = Worksheets("Sheet1 ").Range("AS").VaIue

The Value keyword can usually be omitted:

worksheet range in an assignment statement like the following.

CHAPTER 2 FUNDAMENTALS OF PROGRJPMMING WITH VBA 37

variablename = Range("A' & x)

variablename = Cells(StartRow+x,StartCol)

The corresponding Formula properly is used to obtain the formula in a cell,
rather than its value.

Sending Values to a Worksheet
To send values from a module sheet back to a worksheet, simply use an

assignment statement like the ones shown in the following examples. You can
send a label

Range("EI").Value = "Jan.-Mar.''

a constant

Cells(1, 2).Value = 5

the value of a variable

Worksheets("Sheetl").Range("Al") = variable2

or even a worksheet formula

Cells(1, 3).Formula = "=sum(Fl:FlO)"

to a cell in a worksheet. Again, the .Value keyword can usually be omitted.

Interacting with the User
VBA provides two built-in dialog boxes for display of messages or for input,

MsgBox and InputBox. These are often incorporated in Sub procedures; they
should never be used in Function procedures.

MsgBox
The MsgBox dialog box allows you to display a message, such as "Please

wait.. .I' or "Access denied." The box can display one of four message icons, and
there are many possibilities in the number and function of buttons that can be
displayed.

The syntax of the MsgBox function is

MsgBox (prompt-text, buttons, title-text, helpfile, context)

where prompt-text is the message displayed within the box, buttons specifies the
buttons to be displayed, and title-text is the title to be displayed in the Title Bar
of the box. For information about helpfile and context, refer to Microsoft Excel
Visual Basic Reference. The value of buttons determines the type of message

38 EXCEL: NUMERICAL METHODS

icon and the number and type of response buttons; it also determines which
button is the default button. The possible values are listed in Table 2-8. The
values 0-5 specify the number and type of buttons, values 16-64 specify the type
of message icon and values 0, 256, 512 specify which button is the default
button. You add together one number from each group to form a value for
buttons. For example, to specify a dialog box with a Warning Query icon, with
Yes, No and Cancel buttons, and with the No button as default, the values 32 + 3
+ 256 = 291.

Table 2-8. Values for the buttons Parameter of MsgBox

buttons Equivalent
Value Constant Description

0 vbOKOnly Display OK button only.
1 vbOKCancel Display OK and Cancel buttons.
2 vbAbortRetrylgnore Display Abort, Retry and Ignore buttons.
3 vbYesNoCancel Display Yes, No and Cancel buttons.
4
5

v bY es N o
v b Ret ry Cancel

Display Yes and No buttons.
Display Retry and Cancel buttons.

0 No icon.
16 vbCritical Display Critical Message icon.
32 vbQuestion Display Warning Query icon.
48 vbExclamation Display Warning Message icon.
64 vblnformation Display Information Message icon.

0 vbDefaultButton1 First button is default.
256 vbDefaultButton2 Second button is default.
512 vbDefaultButton3 Third button is default.

For example, the VBA expression,

MsgBox "You entered " & incr & "_" & Chr(13) & Chr(13) & -
"That value is too large." & Chr(13) & Chr(13) & "Please try again.", 48

where the VBA variable incr has the value 50, produces the message box shown
in Figure 2-14.

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 39

Figure 2-14. A Msgbox display.

The values of buttons are built-in constants-for example, the value 64 for
buttons can be replaced by the variable name vblnformation. The same result, a
dialog box with a Warning Query icon, with Yes, No and Cancel buttons and
with the No button as default, can be obtained by using the expression

vblnformation + vbYesNoCancel + vbDefaultButton2

in the MsgBox function instead of the value 323.

MsgBox Return Values
MsgBox can return a value that indicates which button was pressed. This

allows you to take different actions depending on whether the user pressed the
Yes, No or Cancel buttons, for example. To get the return value of the message
box, use an expression like

Buttonvalue = Msg Box (prompt-text, buttons, title-text, helpfile, context)

(Note that the arguments of MsgBox must be enclosed in parentheses in order
for it to return a value.)

The return values of the buttons are as follows: OK, 1; Cancel, 2; Abort, 3;
Retry, 4; Ignore, 5 ; Yes, 6; No, 7 .

InputBox
The InputBox allows you to pause a macro and request input from the user.

The syntax of the InputBox function is

Input Box (prompt_ text, title- tex t, default, x-position, y-position, help file,
context)

There are both an InputBox function and an InputBox method.

where prompt_text and title-text are as in MsgBox. Default is the expression
displayed in the input box, as a string. The horizontal distance of the left edge of
the box from the left edge of the screen, and the vertical distance of the top edge
from the top of the screen are specified by xjosi t ion and y-position,

40 EXCEL: NUMERICAL METHODS

respectively. For information about helpfile and context, refer to Microsoft Excel
Visual Basic Reference.

If the user presses the OK button or the RETURN key, the InputBox function
returns as a value whatever is in the text box. If the Cancel button is pressed, the
function returns a null string. The following example produces the input box
shown in Figure 2- 15.

ReturnValu = InputBox("Enter validation code number", -
"Validation of this copy of SOLVER.STATS")

Figure 2-15. An InputBox display.

The syntax of the InputBox method is

Object.lnputBox(prompt_text, title-text, default, x-position, y-position,
helpfile, context, type-num)

The differences between the InputBox function and the InputBox method
are the following: (i) default can be any data type and (ii) the additional
argument type-num specifies the data type of the return value. The values of
type-num and the corresponding data types are listed in Table 2-9. Values of
type-num can be added together. For example, to specify an input dialog box
that would accept number or string values as input, use the value 1 + 2 = 3 for
type-num.

Table 2-9. InputBox Data Type Values
type-n um Data Type

0 Formula
1 Number
2 String
4 Logical
8
16 Error value
64 Array

Reference (as a Range object)

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 41

The following example causes the InputBox method to return a Range
object (so that you can use its Address property in addition to its Value
property, for example):

Set known-Ys = ApplicationhputBox -
("Select the range of Y values", "STEP 1 OF 2", , , , , , 8)

Visual Basic Arrays
If you're familiar with other programming languages you are probably

familiar with the concept of an array. An array is a collection of related
variables denoted by a single name, such as Sample. You can then specify any
element in the array by using an index number: Sample(l), Sample(7), etc.

Many scientists make extensive use of arrays in their calculations. Because
some aspects of arrays in VBA can be confusing, this chapter provides detailed
coverage of this important topic.

Dimensioning an Array
The Dim (short for Dimension) statement is used to declare the size of an

array. Unless specified otherwise, VBA arrays begin with an index of 0. Thus
the statement

Dim Sample(10)

establishes array storage for 1 1 elements, Sample(0) through Sarnple(l0).
However, you can specify that the arrays in your procedure begin with an array
index of 1. Since worksheet ranges, worksheet functions and worksheet arrays
use (or assume) a lower array index of 1, always specifying VBA arrays with
lower array index of 1 can eliminate a lot of confusion.

There are two ways to specify the lower array index. You can specify the
lower bound of an array in the Dim statement. For example,

Dim Sample (1 To 10)

sets the lower array index = 1 for the array Sample. It's considered good
programming practice to put the Dim statements at the beginning of the
procedure.

Alternatively, you can use the Option Base 1 statement, which specifies that
all arrays in the procedure begin with a lower index of 1. The Option Base 1
statement is used at the module level: that is, it must appear in a module sheet
before any procedures.

42 EXCEL: NUMERICAL METHODS

Use the Name of the Array Variable
to Specify the Whole Array

You can refer to the complete array by using the array variable name in your
code. The array name can be used with or without parentheses.

Multidimensional Arrays
Arrays can be multidimensional. Two-dimensional arrays are common; to

create a 2-D array called Spectrum, with dimensions 500 rows x 2 columns, use
the statement

Dim Spectrum (500,2)

Declaring the Variable Type of an Array
Since multidimensional arrays such as the one above can use up significant

amounts of memory, it's a good idea to define the data type of the variable. The
complete syntax of the Dim statement is

Dim VariableName(Lower To Upper) As Type

The optional Lower To can be omitted. Type can be Integer, Single,
Double, Variant, etc. See the complete list of data types in "VBA Data Types"
earlier in this chapter.) A Variant array can hold values of different data types,
such as integer and string, in the same array.

Several variables can be dimensioned in a single Dim statement, but there
must be a separate As Type for each variable. Thus

Dim J As Integer, K As Integer

is OK but Dim J, K As Integer declares only the variable J as integer.

Returning the Size of an Array
Use the LBound and UBound functions to obtain the size of an array during

execution of your procedure. The LBound function returns the lower index of
an array. For example, for the array Sample described previously,
LBound(Samp1e) returns 1 and UBound(Samp1e) returns 10.

The complete syntax of LBound and UBound is LBound(arrayname,
dimension). For the array Spectrum dimensioned thus:

Dim Spectrum (500,2)
the statement UBound(Spectrum, 1) returns 500 and UBound(Spectrum,2)
returns 2.

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 43

Dynamic Arrays
If you don't know what array size you will need to handle a particular

problem, you can create a dynamic array. This will allow you to declare a
variable as an array but set its size later. Dimension the array using the Dim
command, using empty parentheses, and use the ReDim command later to
specify the array size, as, for example, in Figure 2-16.

Dim MeanX(), Meany()

'Get number of cells to use in calculation
Ncells = XValues.Count
ReDim MeanX(Ncells), MeanY(Ncel1s)

Figure 2-16. Re-dimensioning an array.

You can also use the ReDim command to change the number of dimensions
of an array.

The ReDim command can appear more than once in a procedure. If you use
the ReDim command to change the size of an array after it has been "populated"
with values, the values will be erased.

Preserving Values in Dynamic Arrays
You can preserve the values in an existing array by using the Preserve

keyword, e.g.,

Dim MeanX(), Meany()

ReDim Preserve MeanX(Ncel1s / 2), MeanY(Ncel1s / 2)

But, there's a limitation. Only the upper bound of the last dimension of a
multidimensional array can be changed. Thus, the following code is valid:

Dim MeanXandY(2, 1000)

ReDim Preserve MeanXandY (2,Ncells / 2)

but the following code will generate a run-time error:

Dim MeanXandY(1000, 2)

ReDim Preserve MeanXandY (Ncells / 2,2)

44 EXCEL: NUMERICAL METHODS

If you use Preserve, you can't use the ReDim command to change the
number of dimensions of an array.

Working with Arrays in Sub Procedures:
Passing Values from Worksheet to VBA Module

There are two ways to get values from a worksheet into a VBA array. You
can either set up a loop to read the value of each worksheet cell and store the
value in the appropriate element of an array, or you can assign the VBA array to
a worksheet range. The former method is straightforward; the latter method is
described in the following section.

Depending on which of these two methods you use, there can be a definite
difference with respect to execution speed that could become important if you
are working with extremely large arrays. An appreciable time is required to read
values from a range of worksheet cells and store them in an internal array, while
calculation using values in an internal array is much faster. Thus, if you need to
access array elements a number of times, it will probably be more time-efficient
to store the values in an internal array.

A Range Specified in a Sub Procedure
Can Be Used as an Array

If a variable in a VBA Sub procedure is set equal to a range of cells in a
worksheet, that variable can be used as an array. No Dim statement is necessary.
Thus the following expression creates a variable called TestArray that can be
treated as an array:

TestArray = Range("A2:AlO")

The worksheet array can be a range reference or a name that refers to a
reference. Thus, if the name XRange had been assigned to the range "A2:A10,"
then the following expression would also create a worksheet array called
TestArray :

TestArray = Range("XRange")

A one-row or one-column reference becomes a one-dimensional array; a
rectangular range becomes a two-dimensional array of dimensions array(rows,
columns).

The lower index of these arrays is always 1. Although arrays created within
VBA have a lower array index of zero unless specified otherwise (by means of
the Option Base 1 statement, for example), when you assign a variable name to
a range of worksheet cells, an array is created with lower array index of 1.

Note that the values in the range of cells have not been transferred to an
internal VBA array; the VBA variable simply "points" to the range on the

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 45

worksheet. However, the values in the range can be accessed in the same way
that elements in a true array are accessed; for example, XRange(3) returns the
third element in the "array."

Some Worksheet Functions Used Within VBA
Create an Array Automatically

If you use a worksheet function within VBA that returns an array, the lower
array index will be 1. Such worksheet functions include: LINEST, TRANSPOSE,
MINVERSE and MMULT. That's why it's important to use Option Base 1;
otherwise, you will have some arrays with lower array index of zero and others
with lower array index of one.

An Array of Object Variables
There is an important difference between equating a range of cells in a

ar = Range("A2:BS")

worksheet to a simple variable in VBA, e.g.,

or equating a range of cells in a worksheet an object variable by using the Set
command, e.g.,

Set ar = Range("A2: B9")
Equating a variable in VBA to a worksheet range creates an array in VBA in

which each array element contains the value stored in the cell. Using the Set
command to equate an object variable in VBA to a worksheet range creates a
Range object.

For an array of object variables, you must use a different approach to obtain
the upper or lower bounds of the array indices, e.g.,

ar.Rows.Count

or

ar.Columns.Count.

Working with Arrays in Sub Procedures:
Passing Values from a VBA Module to a Worksheet

There are at least two ways to send values from a VBA array to a worksheet.
You can set up a loop and write the value of each array element to a worksheet
cell, or you can assign the value of the VBA array to the value of a worksheet
range. The latter method can cause a problem when you use this method with a
l-D range, as described next.

46 EXCEL: NUMERICAL METHODS

A One-Dimensional Array
Assigned to a Worksheet Range
Can Cause Problems

Arrays can cause some confusion when you write the array back to a
worksheet by assigning the value of the array to a worksheet range.

VBA considers a one-dimensional array to have the elements of the array in
a row. This can cause problems when you select a range of cells in a column and
assign an array to it, as in the following:

Range("E1 :EIO").Value = TestArray

The preceding statement causes the same value, the first element of the
array, to be entered in all cells in the column. However, if you write the array to
a row of cells instead of a column, e.g.,

Range("E1 :NI").Value = TestArray

each cell of the range will receive the correct array value.
There are at least three ways to "work around" this problem caused by a

"horizontal" array and a "vertical" destination range. One obvious way is to use
a loop to write the elements of the array to individual worksheet cells in a
column.

A second way is to specify both the row and the column dimensions of the
array, so as to make it an array in a column, as illustrated in the Sub procedure
shown in Figure 2- 16.

Sub ArrayDemol()
'Second method to "work around" the row-column problem:
'specify the row and column dimensions.

Dim TestArray(10, 1)
statements to populate the array

'Then writes the array elements to cells E l :El 0.
Range("E1 :El O").Value = TestArray
End Sub

Figure 2-16. A "work around" for the row-column problem.

A third way is to use the TRANSPOSE worksheet function (Figure 2-17):

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 47

Sub ArrayDemo20
'Another method to "work around" the row-column problem: use
Transpose.
'Note that Transpose creates a 1 -base array.

Dim TestArray(10)

Range("E1 :El O").Value = Application.Transpose(TestArray)
End Sub

statements to populate the array

Figure 2-17. Another "work around" for the row-column problem.

Custom Functions
Chapter 1 provided an introduction to Sub procedures and Function

procedures. By now it should be clear that a Sub procedure (a command macro)
is a computer program that you "run"; it can perform actions such as formatting,
opening or closing documents and so on. A Function procedure (a user-defined
function) is a computer program that calculates a value and returns it to the cell
in which it is typed. A Function procedure cannot change the worksheet
environment (e.g., it can't make a cell Bold).

The following sections provide some examples of more advanced features of
custom functions.

Specifying the Data Type of an Argument
You can specify the data type of an argument passed to a Function

procedure by using the As keyword in the Function statement. For example,
the Function procedure MolWt takes two arguments: formula (a string) and
decimals (an integer). The statement

Function MolWt (formula As String, decimals As Integer)

declares the type of each variable.
supplied to the function, a #VALUE! error message will be displayed.

If an argument of an incorrect type is

Specifying the Data Type
Returned by a Function Procedure

You can also specify the data type of the return value. If none is specified,
the Variant data type will be returned. In the example of the preceding section,
MolWt returns a floating-point result. The Variant data type is satisfactory;
however, if you wanted to specify double precision floating point, use an
additional As Type expression in the statement, for example,

Function MolWt (formula As String, decimals As Integer) As Double

48 EXCEL: NUMERICAL METHODS

Returning an Error Value from a Function Procedure
If, during execution, a function procedure detects an incorrect value or an

incipient error such as a potential divide-by-zero error, we need to return an error
value. You could specify a text message as the return value of the function
procedure, like this:

but this is not the best way to handle an error. Use the CVErr(errorvalue)
keyword to return one of Excel's worksheet error values that Excel can handle
appropriately. For example, if a result cannot be calculated by the function, then
a #N/A error message should be returned. This is accomplished by means of the
following:

If (error found) Then FunctionName = "error message": Exit Function

If (error found) Then FunctionName = CVErr(x1ErrNA): Exit Function
The error values are listed in Appendix 1.

A Custom Function that Takes an Optional Argument
A custom function can have optional arguments. Use the Optional keyword

in the list of arguments to declare an optional argument. The optional argument
or arguments must be last in the list of arguments.

Within the procedure, you will need to determine the presence or absence of
optional arguments by using the IsMissing keyword. As well, you will usually
need to provide a default value if an argument is omitted.

Arrays in Function Procedures
You can create Function procedures that use arrays as arguments, or return

an array of results.

A Range Passed to a Function Procedure
Can Be Used as an Array

If a range argument is passed in a function macro, the range can be treated as
Thus the an array in the VBA procedure. No Dim statement is necessary.

expression

Function MyLINEST(known-ys, known-xs)

passes the worksheet ranges known-ys and known-xs to the VBA procedure
where they can be used as arrays. A one-row or one-column reference becomes
a one-dimensional array; a rectangular range becomes a two-dimensional array
of dimensions array(rows, columns).

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 49

Passing an Indefinite Number of Arguments
Using the ParamArray Keyword

Occasionally a Function procedure needs to accept an indefinite number of
arguments. The SUM worksheet function is an example of such a function; its
syntax is =SUM(numberl ,number2,. . .). To enable a Function procedure to
accept an indefinite number of arguments, use the ParamArray keyword in the
argument list of the function, as in the following expression

Function ArrayMaker(ParamArray rng())

Only one argument can follow the ParamArray keyword, and it must be the
last one in the function's list of arguments. The argument declared by the
ParamArray keyword is an array of Variant elements. Empty parentheses are
required.

The lower bound of the array is zero, even if you have used the Option Base
I statement. Use UBound(rng) to find the upper array index.

Elements in the array of arguments passed using the ParamArray keyword
can themselves be arrays. The following code illustrates how to access
individual elements of each array in an array of elements passed using
ParamArray.

Function ArrayMaker(ParamArray rng())

For J = 0 To UBound(rng)
YSize = rng(J).Columns.Count
For K = 1 To YSize

statements
Next K

Next J

Figure 2-18. Handling an array of array arguments passed by using ParamArray.

Returning an Array of Values as a Result
The most obvious way to enable a Function procedure to return an array of

values is to assemble the values in an array and return the array. The procedure
shown in Figure 2-19 illustrates a function that returns an array of three values.
To use the function, the user must select a horizontal range of three cells, enter
the function and press CONTROL+SHIFT+ENTER.

50 EXCEL: NUMERICAL METHODS

Function MyLINEST(known-ys, known-xs)
Dim Results(3)

Results(1) = MySlope
Results(2) = Mylntercept
Results(3) = MyRSq
MyLlNEST = Results
End Function

code to calculate slope, intercept and R-squared

Figure 2-19. A Function procedure that returns an array of results.

A second approach is to use the Array keyword. The Array function returns
a variant that contains an array.

Function MyLINEST(known-ys, known-xs)

MyLINEST = Array(MySlope,My Intercept, MyRSq)
End Function

code to calculate slope, intercept and R-squared

Figure 2-20. Using the Array keyword in a Function procedure.

The Array keyword can accommodate only a one-dimensional array. To use
this approach to return a two-dimensional array of results, you must create an
array of arrays, as illustrated i n Figure 2-2 1. Both arrays must contain the same
number of values.

code to calculate slope, intercept, R-squared,
std dev of slope, std dev of intercept, std error of y values.

MyLINEST2 = Array(Array(MySlope, Mylntercept, MyRSq), -
Array(stdev-m, - stdev-b, SE-y))
End Function

Figure 2-21. Using the Array keyword to return a 2-D array.

Creating Add-In Function Macros
Saving a custom function as an Add-In is by far the most convenient way to

use it. Here are some of the advantages:
An Add-In custom function is listed in the Paste Function list box
without the workbook name preceding the name of the function,
making it virtually indistinguishable from Excel's built-in functions.
If the Add-In workbook is placed i n the AddIns folder, the Add-In will
be available every time you start Excel.

CHAPTER 2 FUNDAMENTALS .OLPROGRAMMING WITH VBA 51

How to Create an Add-In Macro
To save a workbook as an Add-In, choose Save As.. . from the File menu.

Choose Microsoft Excel Add-In from the Save File As Type drop-down list box,
then press OK. In Excel for Windows, Add-In workbooks are automatically
given the filename extension .xla.

When you save a workbook as an Add-In, the default location is the AddIns
folder.

Command macros can also be saved as Add-Ins.

Testing and Debugging
When an error occurs during execution of a procedure, VBA will stop

execution and display a run-time error message. There are a large number (over
50) of these run-time error messages. Some (but not all) of these error messages
are self-explanatory. Here are some examples:
Subscript out of range Attempted to access an element of an

array outside its specified dimensions.
Property or method not found Object does not have the specified

property or method.

Argument not optional A required argument was not provided.

The line of code i n which the error occurred, or the first line of the
procedure (containing the Sub or Function keyword) will be highlighted,
usually in yellow (see Figure 2-22). After you have corrected the error in your
VBA code, the line will still be highlighted. Press F5 to continue execution.

Figure 2-22. VBA code with a highlighted line.

52 EXCEL: NUMERICAL METHODS

Tracing Execution
When your program produces an error during execution, or executes but

doesn't produce the correct answer, it is often helpful to execute the code one
statement at a time and examine the values of selected variables during
execution. If your procedure contains logical constructions (If or Select Case,
for example), simply stepping through code will allow you to verify the logic.

Stepping Through Code
There are two ways to begin the process of stepping through the code of a

Select the name of the procedure in the Macro Name list box and press the
Step Into button. This will display the code module containing the
procedure; the first line of the procedure will be highlighted in yellow, as in
Figure 2-22).
Add a breakpoint as described in the following section, then run the Sub
procedure in the usual way.
When the code window is displayed, with a line of code highlighted, you can

step through the code by pressing F8 or by using the Step Into toolbutton % .
The Step Into toolbutton is on the Debug toolbar; choose Toolbars from the
View menu and Debug from the submenu to display the Debug toolbar (Figure

Sub procedure:

2-23).
The highlighted line of code is the statement to be executed next.

Figure 2-23. The VBA Debug toolbar.

Adding a Breakpoint
A breakpoint allows you to halt execution at a specified line of code, rather

than having to step through the code from the beginning. There are several ways
to add a breakpoint:

Opposite the line of code where you want to set the breakpoint, click
in the gray bar on the left side of the VBA module sheet. The line of
code will be highlighted (usually in red-brown) and a breakpoint
indicator, a large dot of the same color, will be placed in the margin
(see Figure 2-24).
Place the cursor in the line of code where you want to set a breakpoint.

Press the Toggle Breakpoint button a on the Debug toolbar.

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 53

Insert a Stop statement in the VBA code.

Enter a break expression in the Add Watch dialog box (see
"Examining the Values of Variables" later in this chapter).

Figure 2-24. VBA code with a breakpoint.

When you run the macro, the code will execute until the breakpoint is
reached, at which point execution will stop. You can now step through the code
one statement at a time or examine the values of selected variables, as described
in the following sections.

Since you can't "run" a Function procedure, the only way to step through a
Function procedure is to add a breakpoint, then recalculate a formula containing
the custom function.

To remove a breakpoint, click on the breakpoint indicator, or place the
cursor on the highlighted line and press the Toggle Breakpoint button, or delete a
Stop statement.

Examining the Values of Variables
While in Break Mode

You can examine the values of selected variables while in Break Mode. You
get to be in Break Mode by one of the following:

Your procedure generated a run-time error and halted.

Your procedure reached a line with a breakpoint or a Stop statement

To see the current value of a variable, highlight the variable by double-
clicking on it, or simply place the cursor over the variable. The current value of
the variable will be displayed in a yellow "InfoBox" next to the cursor, as
illustrated in Figure 2-25.

54 EXCEL: NUMERICAL METHODS

Figure 2-25. Displaying the value of a variable while in break mode.

Examining the Values of Variables During Execution
You can also display the values of selected variables as the code is executed.

There are several ways to select variables or expressions to be displayed:

Highlight the variable or expression and then choose Quick Watch ...
from the Debug menu or press the Quick Watch button on the
Debug toolbar, to display the Quick Watch dialog box (Figure 2-26).
Highlight the variable or expression and then choose Add Watch ...
from the Debug menu to display the Add Watch dialog box (Figure 2-
27).

Figure 2-26. The VBA Quick Watch dialog box.

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 55

Figure 2-27. The VBA Add Watch dialog box.

To see the values of the selected variables or expressions, you must be in
Step mode. The variables will be listed in the Watches pane (Figure 2-28),
which is usually located below the Code window. The current values of the
variables will be displayed as you step through the code.

Figure 2-28. The VBA Watches pane.

To remove a variable or expression from the Watches window, select it in
the Watches window, choose Edit Watch from the Debug menu and press the
Delete button. Or you can simply select it in the Watches window and press the
Delete key.

Watch expressions are not saved with your code.

This Page Intentionally Left Blank

Chapter 3

Worksheet Functions
for Working with Matrices

Arrays, Matrices and Determinants
Spreadsheet calculations lend themselves almost automatically to the use of

arrays of values. Arrays in Excel can be either one- or two-dimensional. For the
solution of many types of problem, it is convenient to manipulate an entire
rectangular array of values as a unit. Such an array is termed a matrix. (In Excel,
the terms "range," "array" and ''matrix'' are virtually interchangeable.) An rn x n
matrix (m rows and n columns) of values is illustrated below:

The values comprising the array are called matrix elements. Mathematical
operations on matrices have their own special rules, to be discussed in the
following sections.

Some Types of Matrices
A matrix which contains a single column of m rows or a single row of n

columns is called a vector.
A square matrix has the same number of rows and columns. The set of

elements aij for which i = j (all, a22, ..., a,,,,) is called the main diagonal or
principal diagonal.

If all the elements of a square matrix are zero except those on the main
diagonal, the matrix is termed a diagonal matrix. A diagonal matrix whose
diagonal elements are all 1 is a unit matrix.

57

58 EXCEL: NUMERICAL METHODS

Addition of a constant: A + q =

An upper triangular matrix has values on the main diagonal and above, but
the values of all elements below the main diagonal are zero; similarly, a lower
triangular matrix has zero values for all elements above the main diagonal.

A tridiagonal matrix contains all zeros except on the main diagonal and the
two adjacent diagonals.

A symmetric matrix is a square matrix in which aij = aji.
A determinant is a property of a square matrix; there is a procedure for the

numerical evaluation of a determinant, so that an N x N matrix can be reduced to
a single numerical value. The value of the determinant has properties that make
it useful in certain tests and equations. (See, for example, Tramer's Rule" in
Chapter 9.)

1 a + q b + q c + q

d + q e + q f + q
. g + q h + q i + q

An Introduction to Matrix Mathematics
Matrix algebra provides a powerful method for the manipulation of sets of

numbers. Many mathematical operations, such as addition, subtraction,
multiplication and division, have their counterparts in matrix algebra. Our
discussion will be limited to the manipulations of square matrices. For purposes
of illustration, two 3 x 3 matrices will be defined, namely

and

a b c S a + r b+s c + t

A + B = d e f + u v

[g h] [I y I]=[::: (I:]

CHAPTER 3 MATRICES 59

Multiplication or Division. Multiplication or division by a constant:

Multiplication of two matrices can be either scalar or matrix multiplication.
Scalar multiplication of two matrices consists of multiplying the elements of a
matrix by a constant, as shown above, or multiplying corresponding elements of
two matrices:

[l h [: !]=[::: iii
b c a x r b x s c x t

A x B = d e f x u v

Thus it's clear that both matrices must have the same dimensions m x n.
Scalar multiplication is commutative, that is, A x B = B x A.

Matrix Multiplication. The matrix multiplication of two matrices is
somewhat more complicated. The individual matrix elements of the matrix
product C of two matrices A and B are

n

c, = z A i k B b
k=l

where i is the row number a n d j is the column number. Thus, for example,

ar+bu+cx as+bv+cy at+bw+cz
dr+eu+fjc ds+ev+fL d t + e w + f i
gr + hu + ix gs + hv + iy gt + hw + iz

Matrix multiplication is not generally commutative, that is A.B # B.A.

Transposition. The transpose of matrix A, most commonly written as AT, is
the matrix obtained by exchanging the rows and columns of A; that is, the matrix
element aij becomes the element aji in the transposed matrix. The transpose of a
matrix of N rows and Mcolumns is a matrix of M rows and N columns.

Matrix Inversion. The process of matrix inversion is analogous to obtaining
the reciprocal of a number a. The matrix relationship that corresponds to the
algebraic relationship a x (l / a) = 1 is

A A - ' = I

60 EXCEL: NUMERICAL METHODS

where A-' is the inverse matrix and I is the unit matrix. The process for manual
calculation of the inverse of a matrix is complicated and need not be described
here, since matrix inversion can be done conveniently using Excel's worksheet
function MINVERSE.

Evaluation of the Determinant. A determinant is a mathematical value
that can be calculated for a square matrix. Determinants are useful for the
solution of systems of simultaneous equations, as will be discussed in chapter 9.
The "pencil-and-paper" evaluation of the determinant of a matrix of N rows x N
columns is tedious, but it can be done simply by using Excel's worksheet
function MDETERM.

Excel's Built-in Matrix Functions
Performing matrix mathematics with Excel is very simple. Let's begin by

assuming that the matrices A and B have been defined by selecting the 3R x 3C
arrays of cells containing the values shown in Figure 3-1 and naming them by
using Define Name. Remember, we're simply assigning a range name to a range
of cells. We usually refer to it as a range or an array; the fact that we are calling
it a matrix simply indicates what we intend to do with it.

Figure 3-1. Ranges of cells defined as A and B.
(folder 'Chapter 03 (Matrices) Examples, workbook 'Matrix Math', sheet 'Sheet 1')

Addition or Subtraction. To add a constant (e.g., 3) to matrix A, simply
select a range of cells the same size as the matrix, enter the formula =A+3, then
press COMMAND+RETURN or CONTROL+SHIFT+FETURN (Macintosh) or
CONTROL+SHIFT+ENTER (Windows). When you "array-enter" a formula by
pressing e.g., CONTROL+SHIFT+ENTER, Excel puts braces around the formula, as
shown below:

{=A+3}

CHAPTER 3 MATRICES 61

Do not type the braces; if you do, the result will not be recognized by Excel
as a formula.

Figure 3-2. Result matrix {A + 3) .
(folder 'Chapter 03 (Matrices) Examples, workbook 'Matrix Math', sheet 'Sheet 1')

Subtraction of a constant, multiplication or division by a constant, or addition
of two matrices is performed in the same way by using standard Excel algebraic
operators.

Scalar Multiplication. Scalar multiplication can be either multiplication of
the elements of a matrix by a constant, e.g., a formula such as {=3*A}, or
multiplication of corresponding elements of two matrices, e.g., {=A*B}. The
result of the latter formula is shown in Figure 3-3.

Figure 3-3. Result matrix {A x B} .
(folder 'Chapter 03 (Matrices) Examples, workbook 'Matrix Math', sheet 'Sheet 1 ')

Matrix multiplication can be accomplished easily by the use of Excel's
worksheet function MMULT(mafrix7, mafrix2). For the matrices A and B
defined above, entering the formula =MMULT(A,B) yields the result shown in
Figure 3-4 while the formula =MMULT(B,A) yields the result shown in Figure
3-5.

Figure 3-4. Result matrix A.B.
(folder 'Chapter 03 (Matrices) Examples, workbook 'Matrix Math', sheet 'Sheet 1 ')

62 EXCEL: NUMERICAL METHODS

Figure 3-5. Result matrix B.A.
(folder 'Chapter 03 (Matrices) Examples, workbook 'Matrix Math', sheet 'Sheet 1')

Matrix multiplication of two matrices is possible only if the matrices are
conformable, that is, if the number of columns of A is equal to the number of
rows of B. The opposite condition, if the number of rows of A is equal to the
number of columns of B, is not equivalent. The following examples, involving
multiplication of a matrix and a vector, illustrate the possibilities:

MMULT (4 x 3 matrix, 3 x 1 vector) = 3 x 1 result vector

MMULT (4 x 3 matrix, 1 x 4 vector) =#VALUE!

MMULT (1 x 4 vector, 4 x 3 matrix) = 1 x 4 result vector

In other words, the two inner indices must be the same.

Transposition. The transpose of a matrix may be calculated by using the
worksheet function TRANSPOSE(array) or obtained manually by using the
Transpose option in the Paste Special.. . menu command.

The size of the array that can be transposed is limited only by the size of the
Excel spreadsheet; the number of rows or columns cannot be greater than 256.

Matrix Inversion. The process for inverting a matrix "manually" (i.e., using
pencil, paper and calculator) is complicated, but the operation can be carried out
readily by using Excel's worksheet function MINVERSE(array). The inverse of
the matrix B above is shown in Figure 3-6.

Figure 3-6. Result matrix B-'.
(folder 'Chapter 03 (Matrices) Examples, workbook 'Matrix Math', sheet 'Sheet1 ')

The size of the matrix must not exceed 52 rows by 52 columns.

Evaluation of the Determinant. The determinant of a matrix of Nrows x

N columns can be obtained by using the worksheet function MDETERM(array).

CHAPTER 3 MATRICES 63

The function returns a single numerical value, not an array, and thus you do not
have to use CONTROL+SHIFT+ENTER. The value of the determinant of B,
represented by IBI, is 12.

Some Additional Matrix Functions
Some additional functions useful for working with arrays or matrices are

provided on the CD that accompanies this book. The additional functions are as
follows:

Identity Matrix. The function MIDENT(size) returns an identity matrix of a
specified size. The size argument is optional. Use size when you want to use an
identity matrix in a formula. Omit size when you want to fill a range of cells on
a worksheet with an identity matrix; the size of the matrix is then determined by
the size of the selection. If the selection is not a square matrix, the function
returns the #REF! error value.

The maximum allowable size is 63 x 63 (larger gives #VALUE! error).

The expression MIDENT(3) returns (1 ,O,O;O, 1 ,O;O,O, 1).
The formula =MIDENT() entered in the range Al:E5 returns

The formula =MIDENT() entered in the range Al:E6 returns #REF! in the

Examples:

{1,0,0,0,0;0,1,0,0,0;0,0,1,0,0;0,0,0,1,0;0,0,0,0,1}.

cells (the selection has five rows and six columns).

Finding the Position of a Value in an Array. The function
Mlndex(/ookup-value, array, match-type) returns a horizontal 2-element array
containing the row and column numbers of a specified value in an array. The
argument lookup-value is the value you use to find the value you want in array-.
The argument array- is a contiguous range of cells containing possible lookup
values. The argument match-type is a number (-1, 0, or 1) that specifies the
value found in array-. If match-type is 0 or omitted, the function returns the
position of the value that is exactly equal to lookup-value, or #N/A. If
match-type is 1, the function returns the position of the largest value that is less
than or equal to lookup-value. If match-type is -1, the function returns the
position of the smallest value that is greater than or equal to lookup-value.
Unlike Excel's INDEX worksheet function, if match-type is -1 or 1 , the values do
not have to be sorted in descending or ascending order, respectively.

The array must contain only numbers. If any cells contain text or error
values, Mlndex returns the #VALUE! error value. Empty cells are treated as zero.

64 EXCEL: NUMERICAL METHODS

Examples:

1;5,12,22;-5,0,1}, was assigned the name A.
In the following example the range B13:D15, containing the values {13,0,-

The expression Mlndex(MAX(A),A) returns the array of values {2,3}.
The expression Mlndex(7,A) returns the array of values {#N/A,#N/A}.
The expression Mlndex(l5,A,I) returns the array of values {I ,I}.

Scaling Arrays. The function MSCALE(array, sca/e-facfor-/ogicaf) calculates
and applies scale factors for a N x M matrix and returns a N x M scaled matrix.
All values in a row are scaled by dividing by the largest element in that row. The
function also creates a column vector of N elements, containing the scale factors.

If the optional argument scale-factor-logical = False or omitted, the function
returns the scaled matrix; if sca/e-factor_/ogical= True, returns the scale factor
vector.

Examples:

the values {3,20,1000;-0.1,3,100;5,10,-5).
In the following examples the range A5:C7, assigned the name B, contains

The formula =MSCALE(B) returns the array {0.003,0.02,1;-

The formula =MSCALE(B,TRUE) returns the array {0.001;0.01;0.1}.
0.001,0.03,1~0.5,1,-0.5).

Combining Separate Ranges into a Single Array. An array in Excel
must be a contiguous range of cells. It sometimes happens that one would like to
combine noncontiguous ranges into a single array. The function Arr(rangel,
range2 ...) combines individual 1-D or 2-D arrays into a 2-D array. All individual
arrays must be vertical and must have the same number of rows. The VBA code
for the function is shown in Figure 3-7.

This custom function makes use of the ParamArray keyword, which allows
the function to accept an arbitrary number of ranges.

Some uses for this custom function include the following:
In the solution of a system of simultaneous equations by the Gaussian

Elimination method (see Chapter 9), an augmented matrix of N rows x N + 1
columns is created by combining the N x N matrix of coefficients with the N
rows x 1 column vector of constants. This can conveniently be done by using the
custom function.

The LINEST worksheet function for multiple linear regression (see Chapter
13) requires that the argument known-x's be a contiguous selection of cells. The
custom function can be used to convert a series of noncontiguous ranges into an
array that can be used as the argument known-x's in LINEST.

CHAPTER 3 MATRICES 65

Option Explicit
Option Base I
Function Arr(ParamArray rng())
'Combines individual I -D or 2-D arrays into a final 2-D array.
'In this version all individual arrays must be "vertical".
'All individual arrays must have same number of rows.
Dim Result()
Dim I As Integer, J As Integer, K As Integer
Dim TempX As Integer, TempY As Integer, XDim As Integer, YDim As Integer
Dim YStart As Integer, YSize As Integer

'First, get sizes of individual arrays, check to make sure all are same size.
For J = 0 To UBound(rng)
'Handles either range, name or array constant arguments
If IsObject(rng(J)) = True Then 'reference is to a range or a name

TempX = rng(J).Rows.Count
TempY = rng(J).Columns.Count

TempX = UBound(rng(J), 1)
TempY = UBound(rng(J), 2)

Elself IsArray(rng(J)) Then

End If
If J = 0 Then XDim = TempX
If XDim <> TempX Then Arr = CVErr(x1ErrRef): Exit Function
YDim = YDim + TempY
Next J

'Now combine each individual array into final array.
'I index is used to select within array of arrays.
'K and J are column & row indices of individual arrays.
ReDim Result(XDim, YDim)
YStart = 0
For I = 0 To UBound(rng)

YSize = rng(l).Columns.Count
For K = 1 To YSize
For J = 1 To XDim

Next J, K
YStart = YStart + YSize

Result(J. YStart -t K) = Application.lndex(rng(l), J, K)

Next I
Arr = Result()
End Function

Figure 3-7. VBA function procedure to combine separate ranges into a single array.
(folder 'Chapter 03 (Matrices) Examples, workbook 'ArrayMaker', module 'Module 1')

66 EXCEL: NUMERICAL METHODS

Problems

Answers to the following problems are found in the folder "Ch. 03 (Matrices)" in the
"Problems & Solutions" folder on the CD.

1. Find the inverse and the determinant of the following matrices:

0.75 0.5 0.25

0.5 1 0.5
10.25 0.5 0.75

2. Find the value of the determinant of each of the following.

2 -1 1

1 3 2

3 2 3
(b) [

MATRICES 67 CHAPTER 3

This Page Intentionally Left Blank

Chapter 4

Number Series

Number series, such as

are important in many areas of mathematics, such as the evaluation of
transcendental functions, integrals or differential equations. Often, the sum of a
number series is used as an approximation to a function that can't be evaluated
directly. The approximation becomes more and more accurate as more terms are
added to the sum; for example, the value of e, the base of natural logarithms, can
be evaluated by means of the sum of an infinite series:

If the sum of a series approaches a finite value as the number of terms
approaches infinity, the series is said to be convergent. A series is divergent if
the sum approaches infinity (or does not converge to a definite value) when the
number of terms approaches infinity. Only convergent series will be discussed in
this chapter.

An alternating series in one in which the sign of each successive term is the
opposite of the preceding one. Such a series will always converge if the absolute
value of the nth term approaches zero.

Instead of a series of constant terms, a series may consist of variables, as
exemplified by the series

a o + a 1 x + a 2 x 2 + a * * +a&"+ ... (4-2)

A series of the form shown above, in which the terms are multiples of non-
negative integral powers of x , is called a power series.

Functions such as ex, sin x, cos x and others can be expressed in terms of the
sum of an infinite series. Of course, Excel already provides worksheet functions
to evaluate ex, sin x or cos x, but the ability to use number series in Excel
formulas increases the scope of calculations that you can perform.

69

70 EXCEL: NUMERICAL METHODS

Evaluating Series Formulas
The obvious way to evaluate a series formula is to evaluate individual terms

in the series formula in separate rows of the spreadsheet, and then sum the terms.
Figure 4-1 illustrates the evaluation of e by using equation 4-1, summing terms
until the contribution from the next term in the series is less than 1E-15.

Figure 4-1. Evaluation of the terms of a series row-by-row.
The spreadsheet calculates the value of e by using equation (4-1).

Note that some rows of calculation have been hidden.

A more compact way to evaluate the sum of a series is by summing terms in
a single worksheet formula. For example, a value for e can be calculated from
equation 4-1 by using the following worksheet formula

=I +1/FACT(1)+1/FACT(2)+1/FACT(3)+1/FACT(4)+1/FACT(5)

where we sum the first 5 terms of the series. The true value of e to 15 decimal
places) is 2.718 281 828 459 045. The formula returns 2.717 (0.06% error).
Unfortunately, most power series converge much more slowly than this, and
many more terms are required. Hence this is not a practical way to evaluate a
series in a single cell - apart from the fact that it requires a lot of typing, a
worksheet formula is limited to 1024 characters. Fortunately there are other
ways to evaluate the sum of a series in a single worksheet formula.

Using Array Constants to Create Series Formulas
An array constant is an array of values, separated by commas and enclosed in

braces, used as an argument of a function. An example of an array constant,
sometimes referred to as an array literal, is {40,21,300,10}.

CHAPTER 4 NUMBER SERIES 71

You can use an array constant to make the evaluation of a series formula
much more compact and accurate. For example, to evaluate equation 4-1, the
formula

returns the value 2.718 281 801 146 38 (1 x lo6 % error).

= 1 +SUM(1 /FACT({ 1,2,3,4,5,6,7,8,9,10}))

Using the ROW Worksheet Function
to Create Series Formulas

The ROW worksheet function provides a convenient way to generate a series

=ROW(1 : 100)
of integers. To illustrate the use of this function in a formula, enter the formula

in a worksheet cell. Now highlight the formula in the formula bar or in the cell
and press F9 (Windows) or COMMAND+= (Macintosh) to display the result of the
formula. You will see the array of integers from 1 to 100, as shown below.
{I ;2;3;4;5;6;7;8;9;10;1 I ; 12; 13;14;15;16; 17;18;19;20;21;22;23;24;25;26;27;28;29;
30; 3 1 ;32;33; 34; 35;36; 37; 38; 39;40;4 1 ;42;43;44;45;46;47;48;49; 503 1 323334; 55
;56;57;58;59;60;61;62;63;64;65;66;67;68;69;70;71;72;73;74;75;76;77;78;79;80;8
1 ;82; 83; 84; 85; 86; 87; 88; 89; 90;9 1 ; 92; 93; 94; 95;96;97;98; 99; 1 00)

Using this method you can evaluate series formulas conveniently.
example, the formula for e becomes

{=I +SUM(l/FACT(ROW(l : I 00))))

and returns a value for e of 2.718 281 828 459 05, identical to the value returned
by Excel's built-in function.

This formula is an array formula, so after typing the formula in the cell, you
must enter it by pressing CTRL+SHIFT+ENTER. Excel indicates that the formula is
an array formula by enclosing it in braces. Don't type the braces as part of the
formula; they are added automatically by Excel.

One problem associated with using the ROW function in a formula is that the
row numbers will be adjusted if you insert or delete rows. For example, if you
insert a row above the row in which the expression ROW(1:IOO) is entered, the
expression will become ROW(2:lOl). You can avoid this problem by using the
INDIRECT worksheet function, described in the next section.

For

The INDIRECT Worksheet Function
The INDIRECT worksheet function creates a reference specified by a text

= I N D I R ECT("A 1 ")

string. Thus, for example, the formula

72 EXCEL: NUMERICAL METHODS

entered in a cell (other than cell Al , of course) creates a reference to cell A1 and
returns the value contained in cell A l . Since the reference is text, it will not
change to A2 if a row is inserted above. The INDIRECT function can be used to
create powerful and versatile worksheet formulas. Some examples will serve to
illustrate.

The formula

=INDIRECT(BI)

(notice the absence of quotation marks) returns the value in cell A27 if cell B1
contains the text value A27.

Since the argument of INDIRECT is a text string, the use of the concatenation
operator (the "&" character) is common. For example, the formula

=INDIRECT("A' & 61)

returns the value in cell A27 if cell B1 contains the value 27.

Using the INDIRECT Worksheet Function
with the ROW Worksheet Function
to Create Series Formulas

The INDIRECT function can be used with the ROW function to create
formulas to evaluate number series. The series formula for e that was shown
previously becomes the formula

(=1+SUM(1/FACT(ROW(INDIRECT("1:20"))))}

if you wish to evaluate the first 20 terms, or

{=I +SUM(1 /FACT(ROW(INDIRECT("l :"&BI))))}

where the value in cell B1 specifies the number of terms to be evaluated. For
some, but not all, series you can evaluate 65536 (216) terms conveniently in this
way.

Again, you must enter the array formula by pressing CTRL+SHIFT+ENTER.

The Taylor Series
A series known as the Taylor series is frequently used in the evaluation of

functions by numerical methods. The Taylor series for the evaluation of a
function F at the point x + h, given the value of the function and its derivatives at
the point x, is

F k (x)hk
F (x + h) = F (x) + C + 5

k = l k!
(4-3)

CHAPTER 4 NUMBER SERIES 73

where Fk(x) is the kth derivative of the function at the point x, and < is the
remainder or error term. As has been illustrated by examples we have seen
earlier, the magnitude of (decreases as k (the number of terms) increases.

To obtain a result that closely approximates the true value of a function, we
need to sum a number of terms. Clearly, we will not have available to us
(without a lot of work) values of a large number of derivatives of the function F,
up to the kth derivative. Fortunately, we will usually need only the first
derivative, the first and second derivatives, or the first, second and third
derivatives to obtain results of sufficient accuracy. We will use the Taylor series
expansion of a function in several of the subsequent chapters.

The order of the approximation is determined by the highest-derivative term
that is included in the approximation; thus the first-order Taylor series
approximation is

F(x + h) = F(x) + hF'(x) (4-4)

the second-order approximation is

h2
2

F (x + h) = F (x) + hF'(x) + -F"(x)

and the third-order approximation is

h2 h3

2 6
F (x + h) x F (x) + hF'(x) + - F"(x) + -F" ' (x)

(4-5)

(4-6)

Obviously, the accuracy of the approximation increases as the number of
terms is increased. It is also obvious that the accuracy of the approximation will
increase as h is made smaller. Higher-order terms will become more important
as h is increased, or if the function is nonlinear.

The Taylor Series: An Example
The following example will illustrate the use of the Taylor series to evaluate

a function. Consider the polynomial ax3 + bx2 + cx + d, with a = 1.25, b = 9, c =
-5 and d = 11. At x = 1, F(x) = 16.25. We wish to evaluate the function at x =

1.6. (Since we are dealing with a known function, we could just evaluate it at x =
1.6, but here we use a known function for purposes of illustration. In subsequent
chapters Taylor series will be used to evaluate functions whose value is known at
a certain point but whose form is unknown.)

From simple calculus, F'(x) = 3ux2 + 2bx + c = 3 . 7 5 ~ ~ + 18x - 5, F"(x) = 6ax
+ 2b = 7 . 5 ~ + 18 and F"'(x) = 6a = 7.5. At x = 1, F'(x) = 16.75, Ff'(x) = 25.5 and
F"'(x) = 7.5. Substituting these values, along with h = 0.6, into equations 4-4, 4-
5 and 4-6 yields the results shown in Figure 4-2. As expected, the third-order
approximation provides the highest accuracy.

74 EXCEL: NUMERICAL METHODS

Figure 4-2. Evaluation of Taylor series.

CHAPTER 4 NUMBER SERIES 75

Problems

Answers to the following problems are found in the folder "Ch. 04 (Number Series)"
in the "Problems & Solutions" folder on the CD.

1. Evaluate the following infinite series:
(a) 1/2" (b) l/n2 (c) lln!

2. Evaluate the following:

S = 1/1! - 1/2! + 1/3! - 1/4!

3. Evaluate the following infinite series:

Em", where a > 1, x < 1

4. Evaluate the following:
S = 1/2" + 1/3"

5. Evaluate the following:
S = 1/2" - 1/3"

6. Evaluate Wallis' series for 7c:

over the first 100 terms of the series.

7. Evaluate Wallis' series for n, summing over 65,536 terms. Use a worksheet
formula that uses ROW and INDIRECT to create the series of integers.

8. A simple yet surprisingly efficient method to calculate the square root of a
number is variously called Heron's method, Newton's method, or the divide-
and-average method. To find the square root of the number a:

1. Begin with an initial estimate x.
2. Divide the number by the estimate (i.e., evaluate dx), to get a new

3. Average the original estimate and the new estimate (i.e., (x + dx)/2)
estimate

to get a new estimate

76 EXCEL: NUMERICAL METHODS

4. Return to step 2 .
Use this method to calculate the square root of a number. The value of the
initial estimate x must be greater than zero.

9. In the divide-and-average method, the better the initial estimate, the faster the
convergence. Devise an Excel formula to provide an effective initial
estimate.

10. The series

16(-lk+') 4(-Ik+') -5 (2k - 1)2392k-'

proposed by Machin in 1706, converges quickly. Determine the value of x to
15 digits by using this series

Chapter 5

Interpolation

Given a table of x, y data points, it is often necessary to determine the value
of y at a value of x that lies between the tabulated values. This process of
interpolation involves the approximation of an unknown function. It will be up
to the user to choose a suitable function to approximate the unknown one. The
degree to which the approximation will be "correct" depends on the function that
is chosen for the interpolation. A large number of methods have been developed
for interpolation; this chapter illustrates some of the most useful ones, either in
the form of spreadsheet formulas or as custom functions. Although some
interpolation formulas require uniformly spaced x values, all of the methods
described in this chapter are applicable to non-uniformly spaced values.

Obtaining Values from a Table
Since interpolation usually involves the use of values obtained from a table,

we begin by examining methods for looking up values in a table.

Using Excel's Lookup Functions
to Obtain Values from a Table

Excel provides three worksheet functions for obtaining values from a table:
VLOOKUP for vertical lookup in a table, HLOOKUP for horizontal lookup and
LOOKUP. The first two functions are similar and have virtually identical syntax.
The LOOKUP function is less versatile than the others but can sometimes be used
in situations where the others fail.

The function VLOOKUP(lookup-value, fable-array, column-index-num,
range-lookup) looks for a match between lookup-value and values in the
leftmost column of fable-array and returns the value in a specified column in the
row in which the match was found. The argument column-index-num specifies
the column from which the value is to be obtained. The column number is
relative; for example, a column-index-num of 7 returns a value from the seventh
column of table-array.

The optional argument range-lookup (I would have called this argument
match-type-logical) allows you to specify the type of match to be found. If

77

78 EXCEL: NUMERICAL METHODS

range-lookup is TRUE or omitted, VLOOKUP finds the largest value that is less
than or equal to lookup-value; the values in the first column of table-array must
be in ascending order. If range-lookup is FALSE, VLOOKUP returns an exact
match or, if one is not found, the #N/A! error value; in this case, the values in
fable-array can be in any order. You can use 0 and 1 to represent FALSE and
TRUE, respectively.

Using VLOOKUP to Obtain Values from a Table
The spreadsheet in Figure 5-1 (see folder 'Chapter 05 Interpolation',

workbook 'Interpolation 1', sheet 'Freezing Point') lists the freezing point, boiling
point and refractive index of aqueous solutions of ethylene glycol; the complete
table, on the CD-ROM, contains data for concentrations up to 95% and extends
to row 54.

Figure 5-1. Portion of a data table.
(folder 'Chapter 05 Interpolation', workbook 'Interpolation 1', sheet 'Freezing Point')

CHAPTER 5 INTERPOLATION 79

Using VLOOKUP to find the freezing point of a 33% solution is illustrated in

=VLOOKUP(F3,A3:D54,2,0)

Figure 5-2. The formula

was entered in cell G3 and the lookup value, 33, in cell F3.

Figure 5-2. Using VLOOKUP to obtain a value from a table.
(folder 'Chapter 05 Interpolation', workbook 'Interpolation I', sheet 'Freezing Point')

The third argument, column-index-num, is 2 since we want to return
freezing point values from relative column 2 of the database. If we wanted to
return the refractive index of the solution we would use column-index-num = 4.

The fourth argument, range-lookup, is set to FALSE because in this case we
want to find an exact match. The formula returns the value 2.9.

HLOOKU P(/ookup-value, table-array, row-index-num, range-lookup) is
similar to VLOOKUP, except that it "looks up" in the first row of the array and
returns a value from a specified row in the same column.

Using the LOOKUP Function
to Obtain Values from a Table

When you use VLOOKUP, you must always "look up" in the first column of
the table, and retrieve associated information from columns to the right in the
same row; you cannot use VLOOKUP to look up to the left. If it is necessary to
look to the left in a table (maybe it's not convenient or possible to rearrange the
data table so as to put the columns in the proper order to use VLOOKUP), you can
sometimes accomplish this by using the LOOKUP function.

LOOKUP(/ookup-va/ue,/ookup-vector,resu/t-vecfor) has two syntax
forms: vector and array. The vector form of LOOKUP looks in a one-row or one-
column range (known as a vector) for a value and returns a value from the same
position in another one-row or one-column range. The values in lookup-vector
must be sorted in ascending order. If LOOKUP can't find lookup-value, it returns
the largest value in lookup-vector that is less than or equal to lookup-value.

80 EXCEL: NUMERICAL METHODS

Creating a Custom Lookup Formula
to Obtain Values from a Table

A second way to "lookup" to the left in a table is to construct your own
lookup formula using Excel's MATCH and INDEX worksheet functions. The
MATCH and INDEX functions are almost mirror images of one another: MATCH
looks up a value in an array and returns its numerical position, INDEX looks in an
array and returns a value from a specified numerical position.

The following example illustrates how to use INDEX and MATCH to lookup
to the left in a table. In the table of production figures for phosphoric acid shown
in Figure 5-3 (see folder 'Chapter 05 Interpolation', workbook 'Interpolation 1',
sheet 'VLOOKUP to left'), it is desired to find the month with the largest
production.

Figure 5-3. A table requiring "lookup" to the left.
(folder 'Chapter 05 Interpolation', workbook 'Interpolation I', sheet 'VLOOKUP to left')

Use Excel's MAX worksheet function to find the maximum value in the range

=MAX(BS:BlG)

returns the value 83 1 19. Now we want to return the month value in the column
to the left in the same row. We do this in two steps, as follows. First, use the
MATCH function to find the position of the maximum value in the range.

The syntax of MATCH is similar to that of VLOOKUP:
M A T C H (/ o o ~ ~ ~ - v ~ / ~ e , / o o ~ ~ ~ - ~ ~ ~ ~ y , match-type-num). If match-type-num =
0, MATCH returns the position of the first value that is equal to lookup-value.
The expression

of production figures. The expression

CHAPTER 5 INTERPOLATION 81

=MATCH(83119,B5:B16,0)

returns 4, the maximum value is the fourth value in the range. Second, use the
INDEX function to return the value in the same position in the array of months:

= I N DEX(A5:A16,4)

The specific values 83 119 and 4 can now be replaced by the formulas that

=INDEX(A5:A16, MATCH(MAX(B5: B16), B5:B16,0))

This example could not be handled using LOOKUP, since LOOKUP requires
that the lookup values (in this case in column B) be in ascending order.

produced them, to yield the following "megaformula."

Using Excel's Lookup Functions
to Obtain Values from a Two-way Table

A two-way table is a table with two ranges of independent variables, usually
in the leftmost column (x values) and in the top row 0, values) of the table; a two-
dimensional array of z values forms the body of the table. Figure 5-4 shows an
example of such a two-way table (see folder 'Chapter 05 Interpolation', workbook
'Interpolation 1', sheet 'Viscosity'), containing the viscosity of solutions of
ethylene glycol of various concentrations at temperatures from 0 to 250°F. The
table can also be found on the CD; the data extends down to row 32.

The desired z value from a two way table is found at the intersection of the
row and column where the x and y lookup values, respectively, are located.
Unlike in the preceding example showing the application of VLOOKUP, where
column-index-num was the value 2 (a value was always returned from column 2
of the array), we must calculate the value of column-index-num based on the y
lookup value. There are several ways this can be done. A convenient formula is
the following, where names have been used for references. Temp and Percent
are the lookup values, P-Row is the range B3:K3 that contains the y
independent variable and Table is the table A4:K32, containing the x
independent variable in column 1 . The following formula was entered in cell M2
of Figure 5-5.

=VLOOKU P(Tem p,Table, MATCH(Percent, P-Row, 1)+ 1, l)

The corresponding expression using references instead of names is

=VLOOKUP(M2, A4:$1$32, MATCH(N2, B3:K3,1)+I, 1)

82 EXCEL: NUMERICAL METHODS

Figure 5-4. Portion of a two-way data table.
(folder 'Chapter 05 Interpolation', workbook 'Interpolation I', sheet 'Viscosity')

Figure 5-5. Using VLOOKUP and MATCH to obtain a value !?om a two-way table.
(folder 'Chapter 05 Interpolation', workbook 'Interpolation 1', sheet 'Viscosity')

CHAPTER 5 INTERPOLATION 83

Interpolation
Often it's necessary to interpolate between values in a table. You can use

simple linear interpolation, which uses a straight line relationship between two
adjacent values. Linear interpolation can be adequate if the table values are close
together, as in Figure 5-6. Most often, though, an interpolation formula that fits a
curve through several data points is necessary; cubic interpolation, in which four
data points are used for interpolation, is common. The following sections
describe methods for performing linear interpolation or cubic interpolation.

Linear Interpolation in a Table
by Means of Worksheet Formulas

To find the value of y at a point x that is intermediate between the table
values xo, yo and XI, y1, use the equation for simple linear interpolation (equation
5-1).

40

20

L

ti- r O
0
Q
CI) r
a

L

0

.-

'ij -20

f!

-40

-60
0 10 20 30 40 50 60

Wt% Ethylene Glycol

Figure 5-6. Freezing point of ethylene glycol solutions (data fkom Figure 5-1).
(folder 'Chapter 05 Interpolation', workbook 'Interpolation 1', sheet 'Linear Interpolation')

84 EXCEL: NUMERICAL METHODS

In the following example, we'll assume that values of the independent
variable x in the table are in ascending order, as in Figure 5-1, where the
independent variable is wt% ethylene glycol. We want to find the freezing point
for certain wt% values. Figure 5-2 shows the data (see folder 'Chapter 05
Interpolation', workbook 'Interpolation 1', sheet 'Linear Interpolation'); it's clear
that, since most of the points are close together, we can use linear interpolation
without introducing too much error.

You can create a linear interpolation formula using Excel's MATCH and
INDEX functions. If match-type-num = 1, MATCH returns the position of the
largest array value that is less than or equal to lookup-value. The array must be
in ascending order. Use this value in the INDEX function to return the values of
XO, yo, XI and y ~ , as shown in the following:

position =MATCH(lookup-value, known-x's, 1)

XO =INDEX(known-x's, position)

XI =INDEX(known-x-s,position+l)

Yo =INDEX(known-y 's,position)

YI =IN DEX(known-y's, position+l)

The preceding formulas were applied to the data shown in Figure 5-1 to find
the freezing point of a 33.3 wt% solution of ethylene glycol. The following
named ranges were used in the calculations: known-x's (A3:A47), known-y's
(B3:B47), lookup-value (F6), position (G6). The intermediate
calculations and the final interpolated value are shown in Figure 5-7.

Figure 5-7. Linear interpolation: intermediate calculations.
(folder 'Chapter 05 Interpolation', workbook 'Interpolation 1', sheet 'Linear Interpolation')

CHAPTER 5 INTERPOLATION 85

The formulas in cells G6:Gll can be combined into a single "megaformula"
for linear interpolation, shown below and used in cell G I 5.

=INDEX(Walues,MATCH(LookupValue,XValues, 1))+(F15-1NDEX(XValues,
MATCH(LookupValue,XValues, 1)))*(INDEX(Walues, MATCH(LookupValue,
XValues, 1)+I)-INDEX(Walues,MATCH(LookupValue,XValues, 1)))/
(INDEX(XValues,MATCH (LookupValue,XValues, 1)+1)-INDEX(XValues,
MATCH (Looku pValue, XVal ues, 1)))

Figure 5-8. Linear interpolation: final interpolated value.
(folder 'Chapter 05 Interpolation', workbook 'Interpolation I', sheet 'Linear Interpolation')

If you use the megaformula, the formulas in cells G6:Gl l are no longer
required.

Linear Interpolation in a Table
by Using the TREND Worksheet Function

Excel provides the TREND worksheet function to perform linear
interpolation in a table of data by means of a linear least-squares fit to all the data
points in the table. But TREND can be used to perform linear interpolation
between two adjacent data points.

The syntax of the TREND function is

TREND(knownj's, known-x's, new-x 's, consf)

where known-y's and known-x's are one-row or one-column ranges of known
values. The argument new-x's is a range of cells containing x values for which
you want the interpolated value. Use the argument consf to specify whether the
linear relationship y = mx + b has an intercept value; if const is set to FALSE or
zero, b is set equal to zero.

The TREND worksheet function provides a way to perform linear
interpolation between two points without the necessity of creating a worksheet
formula. Using the TREND function to perform the linear interpolation
calculation that was illustrated in Figure 5-7 is shown in Figure 5-9. Cell GI8
contains the formula

=TREND(620: 62 I ,A20:A21, F18,l)

86 EXCEL: NUMERICAL METHODS

Figure 5-9. Using the TREND worksheet function for linear interpolation.
(folder 'Chapter 05 Interpolation', workbook 'Interpolation I', sheet 'Linear Interpolation')

Note that although TREND can be used to find the least-squares straight line
through a whole set of data points, to perform linear interpolation you must select
only two bracketing points, in this example in rows 20 and 21. It should be clear
from Figure 5-6 that the least-squares straight line through all the data points will
not provide the correct interpolated value.

You can also use TREND for polynomial (e.g., cubic) interpolation by
regressing against the same variable raised to different powers (see "Cubic
Interpolation in a Table by Using the TREND Worksheet Function" later in this
chapter.)

Linear Interpolation in a Table
by Means of a Custom Function

The linear interpolation formula can also be easily coded as a custom
function, as shown in Figure 5-10.

Function InterpL(1ookup-value, known-x's, known-y's)

Dim pointer As Integer
Dim XO As Double, YO As Double, X I As Double, Y1 As Double

pointer = Application.Match(lookup-value, known-x's, 1)
XO = known-x's(pointer)
YO = known-y's(pointer)
X I = known-x's(pointer + 1)
Y1 = known_y's(pointer + 1)
InterpL = YO + (lookup-value - XO) * (Y l - YO) / (XI - XO)
End Function

Figure 5-10. Function procedure for linear interpolation.
(folder 'Chapter 05 Interpolation', workbook 'Interpolation 1', module 'Linearhterpolation')

The syntax of the function is
In terpL(lookup- value, known-x 's, known-y 's).

CHAPTER 5 INTERPOLATION 87

The argument lookup-value is the value of the independent variable for
which you want the interpolated y value; known-x's and known-y's are the
arrays of independent and dependent variables, respectively, that comprise the
table. The table must be sorted in ascending order of known-XIS. Figure 5-11
illustrates the use of the custom function to interpolate values in the table shown
in Figure 5- 1 ; cell G24 contains the formula

=InterpL(F22,A3:A54,B3:B54)

Figure 5-11. Using the InterpL function for linear interpolation.
(folder 'Chapter 05 Interpolation', workbook 'Interpolation 1', sheet 'Linear Interpolation')

The custom function can be applied to tables in either vertical or horizontal
format.

Cubic Interpolation
Often, values in a table change in such a way that linear interpolation is not

suitable. Cubic interpolation uses the values of four adjacent table entries (e.g.,
at xo, XI, x2 and x3) to obtain the coefficients of the cubic equation y = a + bx + cx2
+ dx3 to use as an interpolating function between XI and x2. For example, to find
the freezing point for a 33.3 wt% solution of ethylene glycol using cubic
interpolation requires the four table values in Figure 5-12 whose x values are
highlighted.

A convenient way to perform cubic interpolation is by means of the
Lagrange fourth-order polynomial

(x - x 2 > (x - x 3 - x 4 (x x 3 >(x - x 4)
Yx = Yl + Y2

- '2)('1 - x 3 - x 4 (x 2) (x 2 - x 3 - x4

Y4 (5-2)
(x - >(x - x2 - x 4) (x - >(x - x2 - x 3) +

(x3 - x1)(x3 - x2)(x3 - x4 1 y 3 (x4 -)(x4 - x2 >(x4 - x3

88 EXCEL: NUMERICAL METHODS

Figure 5-12. Four bracketing x values required
to perform cubic interpolation at x = 33.3%.

(folder 'Chapter 05 Interpolation', workbook 'Interpolation I', sheet Cubic Interpolation')

The Lagrange fourth-order polynomial is cumbersome to use in a worksheet
function, but convenient to use in the form of a custom function. A compact and
elegant implementation of cubic interpolation in the form of an Excel 4.0 Macro
Language custom function was provided by Orvis'. A slightly modified version,
in VBA, is provided here (Figure 5-13). The syntax of the custom function is
InterpC(/ookup-value, known-x's, knownj 's) . The argument lookup-value is
the value of the independent variable for which you want the interpolated y
value; known-x's and known-y's are the arrays of independent and dependent
variables, respectively, that comprise the table. The table must be sorted in
ascending order of known-x 8.

* William J. Orvis, Excel 4 fo r Scientists and Engineers, Sybex Inc., Alameda, CA, 1993.

CHAPTER 5 INTERPOLATION 89

Function InterpC(1ookup-value, known-x's, known-y's)
'
'
'
'

Performs cubic interpolation, using an array of known-x's, known-y's.
The known-x's must be in ascending order.
Based on XLM code from Excel for Chemists", page 239,
which was based on W. J. Orvis' code.

Dim row As Integer
Dim i As Integer, j As Integer
Dim Q As Double, Y As Double

row = Application.Match(lookup-value, known-x's, 1)
If row c 2 Then row = 2
If row > known-x's.Count - 2 Then row = known-fs.Count - 2

For i = row - 1 To row + 2

Forj = row- 1 To row + 2

known-x's(j))
Next j

Next i
InterpC = Y
End Function

Figure 5-13. Cubic interpolation function procedure.
(folder 'Chapter 05 Interpolation', workbook 'Interpolation 1', module 'Cubichterpolation':

Q = l

If i <> j Then Q = Q * (lookup-value - known-x's(j)) / (known-x's(i) - -

Y = Y + Q * known-y's(i)

Figure 5-14 illustrates the use of the custom function to interpolate values in

=I nterpC(G22, A3: A47, B3: B47)

the table shown in Figure 5-12; cell H22 contains the formula

Figure 5-14. Using the InterpC function procedure for cubic interpolation.
(folder 'Chapter 05 Interpolation', workbook 'Interpolation I', sheet 'Linear Interpolation')

Cubic Interpolation in a Table
by Using the TREND Worksheet Function

In the TREND function, the array known-x's can include one or more sets of
independent variables. For example, suppose column A contains x values. You
can enter x2 values in column B and x3 in column C and then regress columns A
through C against the y values in column D to obtain a cubic interpolation

90 EXCEL: NUMERICAL METHODS

function. But instead of actually entering values of the square and the cube of the
x values, you can use an array constant in an array formula, thus

{=TREND(C19:C22,AI 9:A22/\{ 1 ,2,3),FgA{ 1,2,3}, I)}

This example of using the TREND function is found in folder 'Chapter 05
Interpolation', workbook 'Interpolation 1', sheet Cubic Interpolation').

Linear Interpolation in a Two-way Table
by Means of Worksheet Formulas

To perform linear interpolation in a two-way table (a table with two ranges of
independent variables, x and y and a two-dimensional array of z values forming
the body of the table), we can use the same linear interpolation formula that was
employed earlier. Consider the example shown in Figure 5-15; we want to find
the viscosity value in the table for x = 76"F, y = 56.3 wt% ethylene glycol. The
shaded cells are the values that bracket the desired x and y values.

Figure 5-15. Linear interpolation in a two-way table.
The shaded cells are the ones used in the interpolation.

(folder 'Chapter 05 Interpolation', workbook 'Interpolation 11', module ' Linear Interpolation 2-Way')

We must perform three linear interpolations. First, as shown in Figure 5-16,
for the two bracketing values of x we calculate the value of z at y = 56.3. The
formula used in cell 832 is

=lnterpL(0.563,E3:F3, E l 1 :F11)

CHAPTER 5 INTERPOLATION 91

Figure 5-16. First steps in linear interpolation in a two-way table.
(folder 'Chapter 05 Interpolation', workbook 'Interpolation II', module ' Linear Interpolation 2-Way')

Then, in this one-way table (A32:833), we use these two interpolated values
of z to interpolate at x = 76"F, as illustrated in Figure 5-17. The formula in cell
836 is

=lnterpL(A36,A32:A33,B32: B33)

Figure 5-17. Final step in linear interpolation in a two-way table.
(folder 'Chapter 05 Interpolation', workbook 'Interpolation II', module ' Linear Interpolation 2-Way')

The resulting interpolated value suffers from the usual errors expected from
linear interpolation (and in this example may be in error by as much as 3%). A
more accurate value can be obtained by performing cubic interpolation, using
four bracketing values to obtain the coefficients of the interpolating cubic. There
are at least two ways to obtain these coefficients: by using LINEST (the multiple
linear regression worksheet function, described in detail in Chapter 13), or by
using the cubic interpolation function. The latter will be described here, in the
following sections.

Cubic Interpolation in a Two-way Table
by Means of Worksheet Formulas

To perform cubic interpolation between data points in a two-way table, we
use a procedure similar to the one for linear interpolation. Figure 5-1 8 shows the
table of viscosities that was used earlier. In this example we want to obtain the
viscosity of a 63% solution at 55'F. The shaded cells are the values that bracket
the desired x and y values.

92 EXCEL: NUMERICAL METHODS

Figure 5-18. Cubic interpolation in a two-way table.
The shaded cells are the ones used in the interpolation.

(folder 'Chapter 05 Interpolation', workbook 'Interpolation 11', module ' Cubic Interpolation 2-Way')

We'll use the InterpC function to perform the interpolation. Figure 5-19
shows the z values, interpolated at y = 63% using the four bracketing y values, for
the four bracketing x values. The formula in cell M 8 is

=InterpC(63%,E3:H3,E8:H8)

Figure 5-19. First steps in cubic interpolation in a two-way table.
(folder 'Chapter 05 Interpolation', workbook 'Interpolation II', module ' Cubic Interpolation 2-Way')

Then, in this one-way table, we use the formula

=InterpC(L15,L8:LIl ,M8:M11)

in cell M I 5 to obtain the final interpolated result, as shown in Figure 5-20.

CHAPTER 5 INTERPOLATION 93

Figure 5-20. Final step in cubic interpolation in a two-way table.
(folder 'Chapter 05 Interpolation', workbook 'Interpolation II', module ' Cubic Interpolation 2-Way')

Cubic Interpolation in a Two-way Table
by Means of a Custom Function

The cubic interpolation macro was adapted to perform cubic interpolation in
a two-way table. The calculation steps were similar to those described in the
preceding section. The cubic interpolation function shown in Figure 5-13 was
converted into a subroutine CI; the main program is similar to the Lagrange
fourth-order interpolation program of Figure 5- 12.

The VBA code is shown in Figure 5-2 1. The syntax of the function is

I n terpC2(x-/ookup,y-/ookup, kno wn-x 's,kno w n j 's,kno wn-z 's)

The arguments x-lookup and y-lookup are the lookup values. The arguments
known-x's and knownq/& are the one-dimensional ranges of the x and y
independent variables (in Figure 5-20, the column of temperature values and the
row of volume percent values). The argument known-z's is the table of
dependent variables (the two-dimensional body of the table).

Option Explicit
Option Base 1
'++~i++ii+iiiiiii++++++i

Function InterpC2(x-lookup, y-lookup, known-x's, knownj's, - known-z's)

' known-x's are in a column, known-y's are in a row, or vice versa.
' In this version, known-x's and knownj 's must be in ascending order.
' In first call to Sub, XX is array of four known-y's
'

' This call is made 4 times in a loop,
'

' In second call to Sub, XX is array of four known-x's
' and W is the array of interpolated Z values, pointer is x-lookup.

Dim M As Integer, N As Integer
Dim R As Integer, C As Integer
Dim XX(4) As Double, W(4) As Double, ZZ(4) As Double, Zlnterp(4) As -
Double

R = Application.Match(x-lookup, known-x's, 1)
C = Application.Match(y-lookup, knownj 's, I)
If R < 2 Then R = 2
If R > known-x.s.Count - 2 Then R = known-x-s.Count - 2

and W is array of corresponding Z values, pointer is y-lookup.

obtaining 4 interpolated Z values, ZZ

94 EXCEL: NUMERICAL METHODS

If C c 2 Then C = 2
If C > known-y's.Count - 2 Then C = knownj's.Count - 2

F o r N = l To4
Create array of four knownj's, four known-z's, four known-x's
Check values to see whether ascending or descending,
and transfer input data to arrays in ascending order always.
XX(N) = known-x's(R + N - 2)
If known-y's(C + 2) > knownj's(C - 1) Then

F o r M = l TO4
W(M) = knownj's(C + M - 2)
If known-z's(R + N - 2, C + M - 2) = "" Then InterpC2 = -
ZZ(M) = known-z's(R + N - 2, C + M - 2)

CVErr(x1ErrNA): Exit Function

Next M

F o r M = l T o 4
Else

W(M) = known-y's(C - M + 3)
If known-z's(R + N - 2, C - M + 3) = "" Then InterpC2 = -

ZZ(M) = known-z's(R + N - 2, C - M + 3)
CVErr(x1ErrNA): Exit Function

Next M
End If
Zlnterp(N) = Cl(y-lookup, W, ZZ)
'This is array of interpolated Z values at y-lookup
Next N

InterpC2 = Cl(x-lookup, XX, Zlnterp)
End Function
.
Private Function Cl(lookup-value, known-x's, known-y's)
' Performs cubic interpolation, using an array of known-x's, knownj 's (four
values of each)
' This is a modified version of the function InterpC.

Dim i As Integer, j As Integer
Dim Q As Double, Y As Double

For i = 1 To 4

F o r j = I T o 4
Q = l

If i c> j Then Q = Q (lookup-value - known-x*s(j)) I (known-x's(i) - -
known-x's(j))

Next j

Next i
CI = Y
End Function

Y = Y + Q * known-y's(i)

Figure 5-21. Cubic interpolation function procedure for use with a two-way table.
(folder 'Chapter 05 Interpolation', workbook 'Interpolation II', module 'CubicZWay')

CHAPTER 5 INTERPOLATION 95

The function InterpC2 was used to obtain the viscosity of a 74.5% weight
percent solution of ethylene glycol at 195"F, as illustrated in Figure 5-22. The
formula in cell M7 was

=I nterpC2(K7, L7, A4:A29, B3:$1$3,$8$4:$1$29)

This custom function provides a convenient way to perform interpolation in a
two-way table.

Figure 5-22. Result returned by the cubic interpolation function.
(folder 'Chapter 05 Interpolation', workbook 'Interpolation II', sheet 'Cubic lnterp 2-Way by Custom Fn')

96 EXCEL: NUMERICAL METHODS

Problems

Data for, and answers, to the following problems are found in the folder "Ch. 05
(Interpolation)" in the "Problems & Solutions" folder on the CD.

1.

3.

3.

Using the table "Freezing and Boiling Points of Heat Transfer Fluid" shown
in Figure 5-1 (also found on the CD-ROM), obtain the freezing point of
30.5% and 34.5% solutions of ethylene glycol.

Using the table "Freezing and Boiling Points of Heat Transfer Fluid," find
the wt% ethylene glycol that has a freezing point of 0°F.

Using the following table (also found on the CD-ROM)

obtain an interpolated value for z at the following values of x and y by cubic
interpolation: x = 1 1/3, y = 1 2/3; x = 1 . 5 5 , ~ = 1.425.

4.

5.

Using the table "Viscosity of Heat Transfer Fluid" shown in Figure 5.4 (also
found on the CD-ROM), obtain the viscosity of a 30.5% solution of ethylene
glycol at 95"C, and the viscosity of a 74.5% solution of ethylene glycol at
195°C.

Using the following table (also found on the CD-ROM), obtain a value for
the refractive index of benzene at the following pressure and wavelength
values: 1 atm, 5000 A; 1 atm, 6600 A; 500 atm, 5000 A; 900 atm, 5000 A; 1
atm, 4600 A.

CHAPTER 5 INTERPOLATION 97

6. Using the following table (also found on the CD-ROM)

Tab1 ation

obtain an interpolated value for y at the following values of x by cubic
interpolation: 1.81, 3.11, 5.2, 5.4.

This Page Intentionally Left Blank

Chapter 6

Differentiation

The analysis of scientific or engineering data often requires the calculation of
the first (or higher) derivative of a function or of a curve defined by a table of
data points. These derivative values may be needed to solve problems involving
the slope of a curve, the velocity or acceleration of an object, or for other
calculations.

Students in calculus courses learn mathematical expressions for the
derivatives of many types of functions. But there are many other functions for
which it is difficult to obtain an expression for the derivative, or indeed the
function may not be differentiable. Fortunately, the derivative can always be
obtained by numerical methods, which can be implemented easily on a
spreadsheet. This chapter provides methods for calculation of derivatives of
worksheet formulas or of tabular data.

First and Second Derivatives
of Data in a Table

The simplest method to obtain the first derivative of a function represented
by a table of x, y data points is to calculate Ax and Ay, the differences between
adjacent data points, and use Ay/Ax as an approximation to dy/dx. The first
derivative or slope of the curve at a given data point x,, y, can be calculated using
either of the following forward, backward, or central difference formulas,
respectively (equations 6-1, 6-2, and 6-3).

- dY N- - AY - Y,+l - Yl

dx Ax x,+~ - x,
(forward difference)

(backward difference)

(central difference)

The second derivative, dy/dx2, of a data set can be calculated in a similar
manner, namely by calculating A(Ay/Ax)/Ax.

99

100 EXCEL: NUMERICAL METHODS

Calculation of the first or second derivative of a data set tends to emphasize
the llnoise" in the data set; that is, small errors in the measurements become
relatively much more important. The central difference formula tends to reduce
noise resulting from experimental error.

Points on a curve of x, y values for which the first derivative is a maximum, a
minimum, or zero are often of particular importance and are termed critical
points, that is, points where the curvature (the second derivative) changes sign
are termed inflection points. For example, in the analysis of data from an acid-
base titration, the inflection point is used to determine the equivalence point.

Calculating First and Second Derivatives
A pH titration (measured volumes of a base solution are added to a solution

of an acid and the pH measured after each addition) is shown in Figure 6- 1, and a
portion of the spreadsheet containing the titration data in Figure 6-2. The end-
point of the titration corresponds to the point on the curve with maximum slope,
and this point can be estimated visually in Figure 6-1. The first and second
derivatives of the data are commonly used to determine the inflection point of the
curve mathematically.

14.0

12.0

10.0

8.0
I
P

6.0

0.0 1 .o 2.0 3.0 4.0

Volume of 0.1000 M NaOH

Figure 6-1. Chart of titration data.
(folder 'Chapter 06 Examples', workbook 'Derivs of Titration Data', worksheet 'Derivs')

CHAPTER 6 DIFFERENTIATION 101

Figure 6-2. First derivative of titration data, near the endpoint.
(folder 'Chapter 06 Examples', workbook 'Derivs of Titration Data', worksheet 'Derivs')

Columns A through F of the spreadsheet shown in Figure 6-2 are used to
calculate the first derivative, ApWAV. Since the derivative has been calculated
over the finite volume A V = K+, - V,, the most suitable volume to use when
plotting the ApWAVvalues, as shown in column E of Figure 6-2, is

The maximum in ApWAV indicates the location of the inflection point of the
titration (Figure 6-3).

70.0

60.0

50.0

>a 40.0
2 30.0

20.0

1 i
Figure 6-3. First derivative of titration data, near the endpoint.

(folder 'Chapter 06 Examples', workbook 'Derivs of Titration Data', worksheet 'Derivs')

102 EXCEL: NUMERICAL METHODS

The maximum in the first derivative curve must still be estimated visually.
The second derivative, A[ApWAV)/AV, calculated by means of columns E
through J of the spreadsheet (shown in Figure 6-4) can be used to locate the
inflection point more precisely. The second derivative, shown in Figure 6-5,
passes through zero at the inflection point. Linear interpolation can be used to
calculate the point at which the second derivative is zero.

Figure 6-4. Second derivative of titration data, near the endpoint.
(folder 'Chapter 06 Examples', workbook 'Derivs of Titration Data', worksheet 'Derivs')

I I

1.50 1.70 1.90 2.10 2.30 2.50

V, rnL

Figure 6-5. Second derivative of titration data, near the endpoint.
(folder 'Chapter 06 Examples', workbook 'Derivs of Titration Data', worksheet 'Derivs')

CHAPTER 6 DIFFERENTIATION 103

There are other equations for numerical differentiation that use three or more
points instead of two points to calculate the derivative. Since these equations
usually require equal intervals between points, they are of less generality. Again,
their main advantage is that they minimize the effect of "noise." Table 6-1 lists
equations for the first, second and third derivatives, for data from a table at
equally spaced interval h.

These difference formulas can be derived from Taylor series. Recall from
Chapter 4 that the first-order approximation is

or, in the notation used in Table 6-1

F (x + h) N F (x) + hF'(x)

YI+1 = YI + hY',

(6-5)

(6-6)

which, upon rearranging, becomes

admittedly, an obvious result.

The second derivative can be written as

When each of the y' terms is expanded according to the preceding expression
for y', the expression for the second derivative becomes

or

(6-10)

The same result can be obtained from the second-order Taylor series
expansion

h2
2!

F (x + h) is F (x) + hF'(x) + -FF"(x) (6-1 1)

which is written in Table 6-1 as
I h2 ,,

Yl+1 = Y , + hY1 + Z Y I (6-12)

by substituting the backward-difference formula for F from Table 6-1.
Expressions for higher derivatives or for derivatives using more terms can be
obtained in a similar fashion.

104 EXCEL: NUMERICAL METHODS

Table 6-1. Some Formulas for Computing Derivatives
(For tables with equally spaced entries)

First derivative, using two points:

Forward difference

Central difference

' Yi+l -Y;
h Yi =

* Yi - Yi-1 y . =
h Backward difference

First derivative, using three points:

Forward difference

First derivative, using four points:

Central difference

Second derivative, using three points:
Forward difference

Central difference

Backward difference

9 - y,+2 + 8Y,+, - 8Y,-I + YI-2
12h Y , =

,, y;+1 - 2Yi + Yi-I
h2 Yi =

I, yi - 2Yj-I + Yi-2
h2 Yi =

Second derivative, using four points:
'1 2 ~ , - %+I + - x + 3

h2 Forward difference Y , =

Second derivative, usingjbe points:

Central difference
,, y . =

- yi+2 + l 6 ~ , + ~ - 3 0 ~ ; + 16Yi-l - Yi-2
12h2

Third derivative, using four points
~~~ ~ j + 3  - 3 ~ ; + 2  + 3 ~ i + l  - Yi y .  = 

h 3  
Forward difference 



CHAPTER 6 DIFFERENTIATION 105 

Using LINEST as a Fitting Function 
Instead of calculating a derivative at an x value corresponding to a table 

entry, it may be necessary to obtain the derivative at an intermediate x value. 
This problem is related to the process of interpolation, and indeed some of the 
techniques from the preceding chapter can be applied here (see "Cubic 
Interpolation" in Chapter 5). For example, we can obtain a piecewise fitting 
function that applies to a localized region of the data set, and use the parameters 
of the fitting function to calculate the derivative. In this section and the 
following one, we will use a cubic equation 

F(x) = ax3 + bx2 + cx +d (6- 13) 

as the fitting function, using four data points to obtain the four coefficients of the 
cubic. (The fitted curve will pass exactly through all four points and R2 will be 
exactly 1 .) Once we have obtained the coefficients, the derivatives are calculated 
from them; the first derivative is 

F'(x) = 3ax2 + 2bx + c (6-14) 

and the second derivative is 
F"(x) = 6ax + 2b (6-15) 

We can use the LINEST worksheet function (the multiple linear regression 
worksheet function, described in detail in Chapter 13) to obtain the coefficients a, 
b, c and d, then use the coefficients a, b, and c in equation 6-14 or 6-15 to 
calculate the first or second derivatives. 

The LINEST method will be illustrated using a table of absorbance data taken 
at 5-nm increments, part of which is shown in Figures 6-6 and 6-7; the complete 
range of x values is in $A$5:$A$85 and they values in $B$5:$B$85. We wish to 
obtain the first derivative of this data set at 2-nm increments over the range 390- 
415 nm. 

Figure 6-6. Data used to calculate first and second derivatives. 
(folder 'Chapter 06 Examples', workbook 'Derivs Using LINEST'. sheet 'Using megaformula') 



106 EXCEL: NUMERICAL METHODS 

Original data points 
o.610 r 

I 1 -  0.550 
390 395 400 405 410 415 420 

Wavelength, nm 

Figure 6-7. Chart of some data used to calculate first and second derivatives. 
(folder 'Chapter 06 Examples', workbook 'Derivs Using LINEST', sheet 'Using megaformula') 

The steps required in the calculation of the first or second derivative at a 
specified value of x are as follows: 

(i) Use the MATCH function to find the position of the lookup value x in the 
table of x values. The lookup value is in cell D5 in Figure 6-8. 

=MATCH(D5, $A$5:$A$85,1) 

(ii) Use the OFFSET function to select the four bracketing x values: 

=OFFSET($A$S:$A$85,D5-2,0,4,1) 

(iii)Use a similar formula to obtain the four bracketingy values: 

=oFFSET($B$5:$B$85,D5-2,0,4,1) 

(iv) Use these two arrays in the LINEST formula, raising the range of x values to 
an array of powers; the LINEST formula must be entered in a horizontal 
range of three cells, and you must press CONTROL+SHIFT+ENTER: 

=LINEST(OFFSET(known-ys,MATCH(DG, known-xs, 1 )-2,0,4,1), 
0 F FS ET( known-xs, MATCH ( D6, known-xs, 1 )-2,0,4,1 )A{ 1 ,2,3}, 1 , 0) 

(v) Use the INDEX function to obtain each of the regression coefficients a, b and 
c from the LINEST array. (To simplify the formula, the cells containing the 
preceding LINEST formula have been given the name LINEST-array.) The 
following equation returns the coefficient a: 

=INDEX( LI NEST-array , I  ) 



CHAPTER 6 DIFFERENTIATION 107 

(vi) Use the coefficients a, b, and c to calculate the first or second derivative: 

cell E5 in Figure 6-8) is 
If these formulas are combined into one "megaformula", the result (entered in 

=3*INDEX(LINEST(OFFSET(known~ys,MATCH(D5,x_values, 1)-2,0,4, I ) ,  
OFFSET(x-values, MATCH( D5,x_values, 1 )-2,0,4,1 )A{ 1,2,3}, 1 ,O)n 1 )*xA2 
+2*INDEX(LINEST(OFFSET(known~ys,MATCH(D5,x~values, 1)-2,0,4, I ) ,  
OFFSET(x~values,MATCH(D5,x~values, 1)-2,0,4,1)A{1 ,2,3}, 1,0),2)*x 
+INDEX(LINEST(OFFSET(known~ys,MATCH(D5,x~values,1)-2,0,4, I ) ,  
0 FFS ET( x-val ues, MATCH (D5, x-va I ues, 1 )-2,0,4,1 )A{ 1 ,2,3}, 1 , O), 3) 

which is rather confusing. A better approach is to use named formulas. The 
following table lists the named formulas and ranges used to calculate the first 
derivative shown in Figure 6-7. 

x-values =Sheet2!$A$5:$A$85 
y-values =Sheet2!$8$5:$B$85 
lookup-value =Sheet2!$D$5:$D$17 
pointer 
known-xs =OFFSET(x~values,pointer-2,0,4,1) 
known-ys =OFFSET(y-values,pointer-2,0,4,1) 
LI N-array 
aa =INDEX(LINEST-array,l) 
bb =INDEX(LINEST_array,2) 
cc =INDEX( LINEST_array,3) 

=MATCH(INDIRECT(ROW()&":"&ROW()) lookup-value ,x-values, 1 ) 

=LI N EST( Sheet2! known_ys,Sheet2! known-xsA{ 1 ,2,3}, 1 ,O) 

Using these named formulas, the formula for the first derivative becomes 

=3*aa*xA2+2*bb*x+cc 

Note the formula used for pointer. It incorporates an "implicit intersection" 

=MATCH(lookup-value ,x-values, 1) 

expression. Since both lookup-value and x-values are arrays, the formula 

returns an array of values instead of a single value. The formula using the 
expression INDIRECT(ROW()&':"&ROW()) lookup-value returns a single value, 
the value in the array lookup-value that is in the same row as the formula. 



108 EXCEL: NUMERICAL METHODS 

Figure 6-8. First derivative calculated using LI NEST function. 
They values indicate the known experimental points. 

(folder 'Chapter 06 Examples', workbook 'Derivs Using LINEST', sheet 'Using named formulas') 

0.61 

0.60 

0.59 

C 
0 
0.58 

3 
LL 

0.57 

0.56 

390 395 400 405 410 415 
x 

0.01 0 

0.005 
-c 

X 

$ $  
% =  

!?a 

> m  
0.000 *$ $ 

q 2 -  

-0.005 v, 

Q) 

-0.010 

Figure 6-9. Chart of values of first and second derivative 
calculated using LINEST. 

(folder 'Chapter 06 Examples', workbook 'Derivs Using LWEST', sheet 'Using named formulas') 



109 CHAPTER 6 DIFFERENTIATION -- 

Part of the table of calculated first derivative values is shown in Figure 6-8, 
The formula used in cell F5, for and the values are charted in Figure 6-9. 

example, is 

=3*aa*xA2+2*bb*x+cc 

One could use the x value where F(x) = 0 to locate the maximum in the 
spectrum. 

Depending on the data table being differentiated, the errors in the values 
returned by this method may be as great as several percent. 

Derivatives of a Worksheet Formula 
Instead of calculating the first or second derivative of a curve represented by 

data points, we may wish to find the derivative of a function (a worksheet 
formula). In the following, two different methods are illustrated to calculate the 
first or second derivative of a worksheet formula by using a user-defined 
function. The calculation of the first derivative of the function y = 3x3 + 5x2 - 5x 
+ 11 is used as the example for each method 

Derivatives of a Worksheet Formula 
Calculated by Using a VBA Function Procedure 

The first example is a Function procedure that returns the first derivative of a 
specific worksheet formula. The expression for the derivative is "hard-coded" in 
the VBA procedure. The user must be able to provide the expression for the 
derivative and must modify the VBA code to apply it to a different formula. The 
function's only argument is the value of x ,  the independent variable for which the 
derivative is to be calculated. The main advantage of this approach is that the 
returned value of the derivative is exact. This approach will execute the fastest 
and would be suitable if the same formula is to be used many times in a 
worksheet. 

Function Derivl (x) 
'User codes the expression for the derivative here. 
Derivl = 9 * x A 2 + 1 0 * x - 5  
End Function 

Figure 6-10. Function procedure to demonstrate calculation of a first derivative. 
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part l)', module 'Modulel') 



110 EXCEL: NUMERICAL METHODS 

First Derivative of a Worksheet Formula 
Calculated by Using the Finite-Difference Method 

The second example is a Function procedure that uses the finite-difference 
method. The first derivative of a formula in a worksheet cell can be obtained with 
a high degree of accuracy by evaluating the formula at x and at x + Ax. Since 
Excel carries 15 significant figures, Ax can be made very small. Under these 
conditions AyIAx approximates dyldx very well. 

The user must "hard-code" the worksheet formula in VBA, in a suitable 
form; the derivative is calculated by numerical differentiation. Again, the 
function's only argument is the value of x, the independent variable. This 
approach would be useful if the user is unable to provide an expression for 
derivative. 

Function Deriv2(x) 
OldY = fn(x) 
xx = (1.00000001) * x 
NewY = fn(xx) 
Deriv2 = (NewY - OldY) / (xx - x) 
End Function 

Function fn(x) 
'User codes the expression for the function here. 
fn = 3 * x A 3 + 5 * x  A 2 - 5 * x + 11 
End Function 

the 

Figure 6-1 1. Function procedure to demonstrate calculation of first derivative. 
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part l)', module 'Modulel') 

The Newton Quotient 
In the previous section, the finite-difference method was shown to provide an 

excellent estimate of the first derivative of a function expressed as a worksheet 
formula. The multiplier used in the preceding user-defined function was 
1.00000001. What is the optimum value of this multiplier, so that the Newton 
quotient AylAx gives the best approximation to dyldx? 

There are two sources of error in this finite-difference method of computing 
dyldx: the approximation error, inherent in using a finite value of Ax, and the 
roundoff error, due to the limited precision of the numbers stored in the 
computer. We want to find the value of Ax that strikes the best balance between 
these two errors. If hx is made too large, then the approximation error is large, 
since dy/& -+ AyIAx only when Ax + 0. If Ax is made too small, then the 
roundoff error is large, since we are obtaining Ay by subtracting two large and 
nearly equal numbers, F(x) and F(x + Ax). 



CHAPTER 6 DIFFERENTIATION 111 

Excel carries 15 digits in its calculations, and it turns out that multiplying x 
by a factor of 1.00000001 (a change in the 8th place) produces the minimum 
error, before round-off error begins to have an effect. Figure 6- 12 illustrates this, 
using a quadratic equation as an example; other functions give similar results. 
The values in Figure 6-12 show that we can expect accuracy up to approximately 
the tenth digit. 

Figure 6-12. Newton quotient AyIAx as a function of the magnitude of Ax 
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part l)', sheet 'Newton Quotient') 

Derivative of a Worksheet Formula 
Calculated by Using the Finite-Difference Method 

The spreadsheet shown in Figure 6-13 (see folder 'Chapter 06 Examples', 
workbook 'Derivs by Sub Procedure') illustrates the calculation of the first 
derivative of a function y = x3 - 3x2 - 130x + 150 by evaluating the function at x 
and at x + Ax. Here a value of Ax of 1 x was used. For comparison, the first 
derivative was calculated from the exact expression from differential calculus: 
F(x) = 3x2 - 6x - 130. 

The Excel formulas in cells B l l ,  C11, D11, E l l ,  F11, G11 and H I 1  
(columns C-F are hidden) are 

B11 = t*xA3+u*xA2+v*x + w F(x) 

C11 =All*(l+delta) X + A x  

D11 = t*C1 IA3+u*C1 IA2+v*C1 1 + w 

E l  1 =A1 l*delta Ax 

F(x + Ax) 

F11 =D11-B11 AY 

G I 1  = F I I / E I I  AJ?h  

H I  1 =3*t*A1IA2+2*u*A1 1 +v dyldx from calculus 



112 EXCEL: NUMERICAL METHODS 

Figure 6-13. First derivative calculated on a worksheet by using Ax. 
(folder 'Chapter 06 Examples', workbook 'Derivs by Sub Procedure', sheet 'Deriv') 

The value in cell G21 illustrates that, using this technique, an x value of zero 
will have to be handled differently, since multiplying zero by 1.00000001 does 
not produce a change in x.  This problem will be dealt with in a subsequent 
section. 

First Derivative of a Worksheet Formula 
Calculated by Using a VBA Sub Procedure 
Using the Finite-Difference Method 

The approach used in the preceding section can be performed by using a 
VBA Sub procedure. The VBA code is shown in Figure 6-14. By means of an 
input box the user identifies the range of cells containing the formulas for which 
the derivative is to be calculated, with a second input box, the corresponding 
cells containing the independent variable x,  and with a third input box, the range 
of cells to receive the first derivative. 



CHAPTER 6 DIFFERENTIATION 113 

Option Explicit 
Option Base 1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Sub Derivs() 
Dim z As Integer, N As Integer 
Dim Old-Ys() As Double, New-Ys() As Double, Old-Xs() As Double, 
Dim Derivs() As Double, increment As Double 
Dim known-& As Object, known-Ys As Object, cel As Object 

increment = 0.00000001 

'Use the Set keyword to create an object variable 
Set known-Ys = Application.lnputBox - 
("Select the range of Y values", "STEP 1 OF 3 ,  , , , , , 8) 
N = known-Ys.Count 
ReDim Old-Ys(N), New-Ys(N), Old-Xs(N), Derivs(N) 
z = l  
For Each cel In known-Ys 
Old-Ys(z) = cel.Value 
z = z + 1  

Next cel 

Set known-Xs = ApplicationhputBox - 
("Select the range of X values", "STEP 2 OF 3, , , , , , 8) 
z = l  
For Each cel In known-Xs 
Old-Xs(z) = cel.Value 
cel.Value = Old-Xs(z) * (1 + increment) 
z = z + 1  

Next cel 
z = l  
For Each cel In knownYs 
New-Ys(z) = cel.Value 
z = z + I  

Next cel 
z = l  
For Each cel In known-Xs 
cel.Value = Old-Xs(z) 
z = z + l  

Next cel 

Application.lnputBox("Select the destination for derivatives", - 
"STEP 3 OF 3 ,  , , , , , 8)Select 
For z = 1 To N 
Derivs(z) = (New-Ys(z) - Old-Ys(z)) / (increment * Old-Xs(z)) 
ActiveCell.Offset(z - 1, O).Value = Derivs(z) 

Next 

End Sub 

Figure 6-14. Sub procedure to calculate first derivative. 
(folder 'Chapter 06 Examples', workbook 'Derivs by Sub Procedure', module 'Derivs') 



114 EXCEL: NUMERICAL METHODS 

Figure 6-15. Calculating the first derivative of a formula. 
(folder 'Chapter 06 Examples', workbook 'Derivs by Sub Procedure', sheet 'Deriv') 

The Sub procedure saves the values of x and y from the worksheet (OldX and 
OldY), then writes the incremented value of x (NewX) to the worksheet cell. This 
causes the worksheet to recalculate and display the corresponding value of y + Ay 
(NewY). The derivative is calculated and written to the destination cell. Finally, 
the original value of x is restored. Figure 6-15 illustrates the spreadsheet of 
Figure 6-13 after the Sub procedure has been run. The errors produced by this 
method are much smaller than those produced by the function based on LINEST. 

The code in Figure 6-14 can easily be modified to calculate the partial 
derivatives of a function with respect to one or several parameters of the function 
(e.g., dy/da, dy/db, etc.) for a cubic equation. Similar code is used in the SolvStat 
macro (see Chapter 14, "The Solver Statistics Add-In") and a similar approach is 
used in the Solver itself (see "How the Solver Works" in Chapter 14). 



CHAPTER 6 DIFFERENTIATION 115 

Figure 6-16. A chart of a function and its first derivative. 
(folder 'Chapter 06 Examples', workbook 'Derivs by Sub Procedure', sheet 'Deriv') 

The advantage of using a Sub procedure is that the derivative can be 
obtained easily, even for the most complicated worksheet formulas. All of the 
difficult calculations are done when the spreadsheet updates after the new value 
of x is entered in, for example, cell A9. The disadvantage of a Sub procedure is 
that if changes are made to precedent cells in the worksheet, the Sub procedure 
must be run in order to update the calculations. 

First Derivative of a Worksheet Formula 
Calculated by Using a VBA Function Procedure 
Using the Finite-Difference Method 

Unlike the Sub procedure described in the preceding section, a Function 
procedure automatically recalculates each time changes are made to precedent 
cells. A Function procedure to calculate the first derivative of a formula in a cell 
would be very useful. However, a function procedure can't use the approach of 
the preceding section (i.e., changing the value of the cell containing the x value), 
since a function procedure can't change the contents of other cells. A different 
approach will have to be found. 

The following VBA code illustrates a simple Function procedure to 
calculate the first derivative dy/& of a formula in cell, using the same approach 
that was used in the preceding section: the procedure calculates OldX, OldY, 



116 EXCEL: NUMERICAL METHODS 

NewX and NewY in order to calculate AxlAy. But in this function procedure, both 
the worksheet formula and the independent variable are passed to the function as 
arguments. The procedure is shown simply to illustrate the method; a number of 
modifications, to be described later, will be necessary in order to produce a 
"bulletproof" procedure. 

(i) The two arguments of the function are references to the independent 
variable x and the cell containing the formula to be differentiated, F(x). 

(ii) Use the Value property to obtain the values of the arguments; these are 
OldX and OldY. 

(iii) Use the Formula property of the cell to get the worksheet formula to be 
differentiated as the text variable FormulaText. 

(iv) Use the SUBSTITUTE worksheet function to replace references to the x 
variable in FormulaText by the incremented x value, NewX. 

(v) Use the Evaluate method to get the new value of the formula. This is 
NewY. 

The basic principle used in this Function procedure is the following: 

Since other procedures in this chapter and in subsequent chapters will use the 
same method for modifying and evaluating a formula, it will be worthwhile to 
examine the VBA code shown in Figure 6-17. The syntax of the function is 
FirstDerivDemo(expression,variab/e). The nine lines of code in this procedure 
perform the following actions: 

Get Formulastring, the worksheet formula (as text) by using the Formula 
property of expression. 
Get OldY, the value of the worksheet formula, by using the Value property 
of expression. 
Get XRef, the reference to the independent variable x,  by using the Address 
property of variable. The address will be an Al-style absolute reference 
Get OldX, the value of the independent variable x,  by using the Value 
property of variable. 
Calculate NewX, the incremented value of the independent variable, by 
multiplying OldX by 1.000000001. 
Convert all references in Formulastring to absolute by using the 
ConvertFormula method. 
Replace all instances of XRef in Formulastring by the value of the new 
variable NewX. This is done by using the SUBSTITUTE worksheet 
function. For example, the formula string 

when cell $6$3 contains the value 2, is converted to 
=3*$B$3"3+5*$B$3"2-5*$B$3+11 

=3*2.00000002"3+5*2.00000002"2-5*~+11. 



CHAPTER 6 DIFFERENTIATION 117 

(8) Calculate NewY, the new value of the function, by applying the Evaluate 
method to the new formula string. 

(9) Calculate and return the first derivative. 

Function FirstDerivDemo(expression, variable) As Double 
'Custom function to return the first derivative of a formula in a cell. 

Dim OldX As Double, OldY As Double, NewX As Double, NewY As Double 
Dim Formulastring As String, XAddress As String 

Formulastring = expression.Formula 
OldY = expression.Value 
XAddress = variable.Address 'Default is absolute reference 
OldX = variable.Value 
NewX = OldX * 1.00000001 
Formulastring = Application.ConvertFormula(FormulaString, x lAl  , x lA l  , - 
xlAbsol Ute) 
Formulastring = Application.Substitute(FormulaString, XAddress, NewX) 
NewY = Evaluate(Formu1aString) 
FirstDerivDemo = (NewY - OldY) / (NewX - OldX) 
End Function 

Figure 6-17. Function procedure to demonstrate calculation of first derivative. 
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 2)', module 'Demo') 

'Convert all references in formula to absolute 

Examples of the first derivative of some worksheet formulas calculated by 

= FirstDerivDemo (C3,B3) 

The formulas labeled "exact" in column E are the appropriate formulas from 
For 

the custom function are shown in Figure 6-18. The formula in cell D3 is 

differential calculus for the first derivative of the respective functions. 
example, the formula in cell E3 is 

=9*B3"2+ 10*B3-5 

Figure 6-18. Using a simple Function procedure to calculate some first derivatives. 
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 2)', sheet 'Demo Function') 



118 EXCEL: NUMERICAL METHODS 

Improving the VBA Function Procedure 
The simple procedure shown in Figure 6-17 requires some modification. 
First, the simple procedure replaces all instances of XRef, the reference to the 

independent variable x, in Formulastring with a number value. For example, a 
cell reference such as A2 will be replaced with a number value such as 0.05. But 
there are cases where the substring A2 should not be replaced. Our procedure 
needs to handle the following possibilities, all of which contain the substring A2 
within Formulastring: 

(i) the reference XRef and references in Formulastring may be relative, 
absolute or mixed, 

(ii) FormulaString contains a name such as BETA2, 
(iii) Formulastring contains a reference such as AA2, or 
(iv) FormulaString contains a reference such as A25. 

By using the Address property to obtain an absolute reference (e.g., $A$2) 
and using the ConvertFormula method to convert all references in 
FormulaString to absolute, we have already eliminated problems arising from 
cases (i), (ii), and (iii). Only case (iv) poses a problem: the substring $A$2 in 
$A$25 will be substituted by 0.05, yielding 0.055. And so, as is often the case 
with computer programming, a project that initially appeared to be simple 
requires some additional programming. 

We could write a formula parser that would break Formulastring into its 
component parts and inspect each one. Not impossible, but that would require 
extensive programming. A much simpler solution turns out to be the following: 
by means of a loop, we replace each instance of, for example, A2 individually, 
and, instead of replacing the reference with a number (e.g., 0.05), we replace the 
reference with the number concatenated with the space character (e.g., 0.05 0). 
We then evaluate the resulting string after each substitution. The reference 
$A$25 yields the string 0.05 5. When evaluated, this gives rise to an error, and 
an On Error GoTo statement is used so that the faulty substitution is not 
incorporated into the FormulaString to be evaluated. Inspection of the code in the 
latter half of the procedure in Figure 6-21 should make the process clear. 

A second problem with the simple procedure of Figure 6-17 is that when x = 
0, NewX = OldX, NewY = OldY and the procedure returns a #VALUE! error. The 
error produced by a zero value for the independent variable x is handled by 
adding an additional optional argument scale-factor. The syntax of the function 
is dydx(expression, reference, Optional scale-factoq. If x is zero, a value for 
scale-factor must be entered by the user. Scale-factor is used to calculate the Ax 
for numerical differentiation. Scale-factor should be the same order of 
magnitude as typical x values used in the formula. 

The Function procedure is shown in Figure 6-19. 



CHAPTER 6 DIFFERENTIATION 119 

Option Explicit 
Function dydx(expression, variable, Optional scale-factor) As Double 
'Custom function to return the first derivative of a formula in a cell. 
'expression is F(x), variable is x. 
'scale-factor is used to handle case where x = 0. 
'Workbook can be set to either R1 C1- or Al-style. 

Dim OldX As Double, NewX As Double, OldY As Double, NewY As Double 
Dim delta As Double 
Dim NRepl As Integer, J As Integer 
Dim Formulastring As String, XRef As String, dummy as String 
Dim T As String, temp As String 

'Get formula and value of cell formula (y). 
Formulastring = expression.Forrnula 
absolute. 
OldY = expression.Value 
'Get reference and value of argument (x). 
OldX = variable.Value 
XRef = variable.Address 

'Handle the case where x = 0. 
'Use optional scale-factor to provide magnitude of x. 
'If not provided, returns #DIVO! 
If OldX <> 0 Then 
NewX = OldX (1 + delta) 

Else 
If IsMissing(sca1e-factor) Or scale-factor = 0 Then - 
dydx = CVErr(xlErrDiv0): Exit Function 
NewX = scale-factor delta 

I delta = 0.00000001 

'Returns A1 -style formula; default is 

'Default is A1 -style absolute reference. 

End If 

'Convert all references to absolute 
'so that only text that is a reference will be replaced. 
T = Application.ConvertFormula(FormulaString, xlAl , xlA1, xlAbsolute) 

'Do substitution of all instances of x reference with value. 
'Substitute reference, e.g., $A$2, 
'with a number value, e.g., 0.2, followed by a space 
'so that $A$25 becomes 0.2 5, which results in an error. 
'Must replace from last to first. 
NRepl = ( L e n 0  - Len(Application.Substitute(T, XRef, "'I))) / Len(XRef) 
For J = NRepl To 1 Step -1 

temp = Application.Substitute(T, XRef, NewX & " 'I, J) 
If IsError(Evaluate(temp)) Then GoTo ptl  
T = temp 

ptl: Next J 
NewY = Evaluate0 
dydx = (NewY - OldY) / (NewX - OldX) 
End Function 

Figure 6-19. Improved Function procedure to calculate first derivative. 
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 2)', module 'FirstDeriv') 



120 EXCEL: NUMERICAL METHODS 

Figure 6-20. Using the improved function procedure to calculate some first derivatives. 
The optional argument scale-factor is used in row 9 to eliminate the #VALUE! error seen in row 8. 

(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 2)', sheet Better Function') 

The examples in Table 6-20 illustrate the values of the first derivative 

The worksheet formulas in column C and the corresponding functions in 

C4 =3*B4"3+5*B4"2-5*B4+11 D4 =dydx($C$4,$B$4) 

C5 =SIN($B5) 05  =dydx(CS,B5) 

C6 =EXP($B$6) D6 =dydx(CG,BG) 

C7 =aAB7 D7 =dydx(C7,B7) 

C8 =3*88"3+5*88"2-5*B8+1 1 D8 =dydx(C8,B8) 

C9 =3*B9"3+5*B9"2-5*B9+11 D9 =dydx(C9,B9,1) 

Rows 4-6 illustrate that relative, absolute or mixed references can be used in 
the worksheet formula or in the arguments of the custom function. Row 9 
illustrates the use of the optional argument scale-factor when the x value is zero. 

calculated by using the function dydx, compared with the "exact" values. 

column D are: 

Second Derivative of a Worksheet Formula 
The VBA code for the Function procedure shown in Figure 6-21 requires 

only slight modification to provide a function that returns the second derivative 
of a function as a cell formula. The syntax of the d2xdy2 function is identical to 
that of the function dydx. 

The function calculates the central 
derivative uing three points (see the formula in Table 6-1). Note that the 
multiplier used to calculate Ax is 1E-4 instead of 1E-8. 

The code is shown in Figure 6-21. 



CHAPTER 6 DIFFERENTIATION 121 

Option Explicit 
Function d2ydx2(expression, variable, Optional scale-factor) As Double 
'Custom function to return the second derivative of a formula in a cell. 
'expression is F(x), variable is x. 
'Uses central difference formula. 
'scale-factor is used to handle case where x = 0. 
'Workbook can be set to either RICI -  or Al-style. 

Dim OldX As Double, OldY As Double 
Dim NewXl As Double, NewX2 As Double 
Dim NewYl As Double, NewY2 As Double 
Dim XRef As String 
Dim delta As Double 
Dim Formulastring As String, T As String 
Dim temp As String 
Dim NRepl As Integer, J As Integer 

delta = 0.0001 

'Get formula and value of cell formula (y). 
Formulastring = expression.Formula 
OldY = expression.Value 
'Get reference and value of argument (x). 
OldX = variable.Value 
XRef = variable.Address 'Default is A1 -style absolute reference 

'Handle the case where x = 0. 
'Use optional scale-factor to provide magnitude of x. 
'If not provided, returns #DIVO! 
If OldX e> 0 Then 
NewXl = OldX * (1 + delta) 
NewX2 = OldX * (1 - delta) 

If IsMissing(sca1e-factor) Or scale-factor = 0 Then - 
d2ydx2 = CVErr(xlErrDiv0): Exit Function 
NewXl = scale-factor delta 
NewX2 = -scale-factor delta 

'Returns Al-style formula 

Else 

End If 

'Convert all references to absolute 
'so that only text that is a reference will be replaced. 
Formulastring = Application.ConvertFormula(FormulaString, xlAl, x lA l  , - 
xlAbsolute) 

T = Formulastring 
NRepl = (Len(T) - Len(Application.Substitute(T, XRef, "'I))) I Len(XRef) 
'Do substitution of all instances of x reference with incremented x value 
For J = NRepl To 1 Step -1 

temp = Application.Substitute(T, XRef, NewXl & " ", J) 
If IsError(Evaluate(temp)) Then GoTo ptl  
T = temp 

ptl :  Next J 
'Evaluate the expression. 
NewYl = Evaluate(T) 



122 EXCEL: NUMERICAL METHODS 

T = Formulastring 
'Now do substitution of all instances of x reference with decremented x value 
For J = NRepl To 1 Step -1 

temp = Application.Substitute(T, XRef, NewX2 & " 'I, J) 
If IsError(EvaIuate(temp)) Then GoTo pt2 
T = temp 

pt2: Next J 
NewY2 = Evaluate0 
d2ydx2 = (NewY1 + NewY2 - 2 * OldY) / Abs((NewX1 - OldX) * (NewX2 - OldX)) 

EndFunction 

Figure 6-21. Function procedure to calculate second derivative. 
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 2)', module 'SecondDeriv') 

Figure 6-22 illustrates the use of the dydx and d2ydx2 custom functions. The 

=aa*A4"3+ bb*A4"2+cc*A4+dd 

formula in cell 84 is 

(aa, bb, cc, dd are named ranges. The formula in cell C4 is 

=dydx(B4,A4,1) 

Figure 6-22. Using Function procedures to calculate 
first and second derivatives of a function. 

(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 2)', sheet 'First and Second Derivs') 

Note the use of the optional argument scale-factor that prevents an error in 
cells C9 and F9 when the value of the independent variable in cell A9 is zero. 



CHAPTER 6 DIFFERENTIATION I23 

Concerning the Choice of Ax 
for the Finite-Difference Method 

In preceding sections, the x + Ax used for the calculation of the derivatives 
was calculated by multiplying x by 1.00000001. Thus Ax is a "scaled" increment. 
An alternative approach would have been to use a constant Ax of, e.g., 
0.0000000 1. Either approach has its advantages and disadvantages. 

The constant-increment method eliminates the need to handle the case of x = 0 
separately. However, the method fails when x is very large, e.g., 10'. The 
scaled-increment method handles a wide range of x values, but fails in some 
special cases, such as for sin x when x = 1000. 

You should be aware of these limitations when using the dydx and d2ydx2 
custom functions. 



124 EXCEL: NUMERICAL METHODS 

Problems 

Answers to the following problems are found in the folder "Ch. 06 (Differentiation)" 
in the "Problems & Solutions" folder on the CD. 

1. Using the data file "Titration Curve", obtain the first and second derivative. 
The "endpoint1' of a titration is considered to be the volume at the %flexion 
point": that is, where the curve y = F(x) has maximum slope, or where the 
first derivative reaches a maximum, or where the second derivative passes 
through zero; the last is the easiest to determine graphically or 
mathematically. 

2. Using the data file "Student Potentiometric Data", obtain the first and second 
derivative. 

3 .  Using Excel's SIN function, create a table of sine, in one degree increments of 
0 (remember that Excells trigonometric functions require angles in radians). 
Now calculate d sine, using one of the formulas in Table 6-1. Compare your 
answer with the exact: d sine = cose. Experiment with different formulas 
from Table 6-1 to compare the errors. 

4. Determine the first and second derivatives of the function 
y = 2 x 3  -20x2 + l l x + 3 0  overtherangex=-5 t o x =  10. 

5. Determine the first derivative of the function y = x 2  - 1 x 1 0-6 x + 1 x 1 0-15 

over the range x = 0 to x = 2 x 

6. Determine the first derivative of the following functions over suitable ranges 
of x: 



CHAPTER 6 DIFFERENTIATION 125 

X 

( 1  + x)& 

04% 

Y =  

exp[(x - p)2 / 2 0 2 ]  
Y =  

7.  Show that the slope of the logistic equation 

1 y=- 
1 + e-" 

at its midpoint (the Hall slope) is equal to a/4. 

8.  The van der Waals equation is an equation of state that applies to real gases. 
For 1 mole of a gas, the van der Waals equation is 

P + -  (V-b)=RT ( v r )  
where R is the gas constant (0.0821 L atm K-' mol-') and T is the Kelvin 
temperature. The constants a and b are constants particular to a given gas, 
and correct for the attractive forces between gas molecules, and for the 
volume occupied by the gas molecules, respectively. For methane (CK),  the 
constants are a = 2.253 L2 atm and b = 4.278 x L. Using the rearranged 
form of the van der Waals equation 

calculate the pressure of 1 mole of methane as a function of container volume 
at 0°C (273 K) at suitable volumes from 22.4 L to 0.05 L. Use one of the 
custom functions described in this chapter to calculate the first and second 
derivatives of the P-V relationship. Compare with the exact expressions 

RT 2a dP 
dV (V-b)2 V 3  

+- - 

d 2 P  2RT 6a 

d V 2  (V-b)3 V 4  
-- -- - 



This Page Intentionally Left Blank



Chapter 7 

Integration 

The solution of scientific and engineering problems sometimes requires 
integration of an expression. Symbolic integration involves the use of the 
methods of calculus to yield a closed-form analytical expression: the indefinite 
integral, or mathematical function F(x) whose derivative dy/dx is given. We will 
not attempt to find the indefinite integral -Excel is not equipped to do symbolic 
algebra - but instead find the area under the curve bounded by a function F(x) 
and the x-axis. This area is the definite integral. 

It may be difficult or even impossible to obtain an expression for the integral 
of a particular function. But by using numerical methods we can always obtain a 
value for the definite integral. The result of numeric integration is the area under 
the curve, between specified limits, from x = a to x = b.  The calculation will 
involve a curve described either by a table of experimental x, y values or by a 
function y = F(x). 

This chapter provides methods for calculating the area under a curve that is 
described by a table of x, y values on a worksheet or by a worksheet formula. 
Some methods require evenly spaced x values, while for others the x values can 
be irregularly spaced. 

Area under a Curve 
By "area under a curve" we mean the area bounded by a curve and the x-axis 

(the line y = 0), between specified limits. The area can be positive if the curve 
lies above the x-axis or negative if it is below. 

Calculation of the area under a curve is sometimes referred to as quadrature, 
since it involves subdividing the area under the curve into a number of "panels" 
whose areas can be calculated. The sum of the areas of the panels will be an 
approximation to the area under the curve. The three most common approaches 
are the rectangle method, in which the panels are rectangles, the trapezoid 
method, in which the panels are trapezoids and Simpson's method, which 
approximates the curvature of the function. These methods require that we have 

127 



128 EXCEL: NUMERICAL METHODS 

a table of values of the function; the three methods are illustrated in Figure 7-1. 
Only Simpson's method requires panels of equal width. 

The simplest approach is to approximate the area of the panel by a rectangle 
whose height is equal to the value of one of the two data points, illustrated in 
Figure 7-1. If we have a table of n data points, we will have n-1 panels. 

As the x increment (the interval between the data points) decreases, this 
rather crude approach becomes a better approximation to the area. The area 
under the curve bounded by the limits xjnitial and XJnar is the sum of the n 
individual rectangles, as given by equation 7-1. 

(7- 1) 

A better approximation is to use the average of the two y values as the height 
of the rectangle. This is equivalent to approximating the area by a trapezoid 
rather than a rectangle. The area under the curve is given by equation 7-2. 

n-1 

area A = ~ y i ( x j + l  - xi) 
i=l 

10 

9 

a 
7 

- 0 6  
i= 
C 

.- a 5  
2 4  

3 

2 

1 

0 
1.5 2 

Axis Title 
2.5 

Figure 7-1. Graphical illustration of methods of calculating the area under a curve. 

Simpson's 1/3 rule approximates the curvature of the function by means of a 
quadratic interpolating polynomial. The 1/3 rule, calculated by means of 
equation 7-3, requires two intervals of equal width h; thus each element of area is 
evaluated by using three data points. 



CHAPTER 7 INTEGRATION 129 

(7-3) 

The 1/3 rule requires an even number of panels; thus the number of data 
points n must be an odd number. If n is even, the area of the first or last panel 
can be calculated using the trapezoid formula. The end panel to be so calculated 
should be the one in which the function is more linear. 

Simpson's 3/8 rule (equation 7-4) approximates the area by a cubic 
interpolating polynomial, evaluates the area of three panels of equal width, and 
requires four data points for each element of area. 

(7-4) 

The 3/8 rule is often used when evaluating the area under a curve described 
by an odd number of panels: the first or last three panels are evaluated using the 
3/8 rule, and the remainder by the 1/3 rule. 

Calculating the Area under a Curve 
Defined by a Table of Data Points 

In the fields of toxicology and pharmacology, the area under the curve of a 
plot of plasma concentration of a drug versus elapsed time after administration of 
the drug has a number of important uses. The area can used to calculate the total 
body clearance and the apparent volume of distribution. 

Blood 
samples were taken at intervals of time, plasma was separated from each blood 
sample, and the plasma samples were analyzed for drug concentration. The data 
are shown in Figure 7-2. The dashed line indicate extrapolation of the data. 

In a study, a drug was administered intravenously to a patient. 

100 

80 

-1 
E 

g- 60 

s 40 
2 8 20 

0 
0 2 4 6 8 10 

Time after administration, hr 

Figure 7-2. Plot of drug concentration versus time. 
(folder 'Chapter 07 Examples', workbook 'Area under Curve', worksheet 'Curve1 by worksheet') 



130 EXCEL: NUMERICAL METHODS 

Figure 7-3. Calculating the area under a curve. 
(folder 'Chapter 07 Examples', workbook 'Area under Curve', worksheet 'Curve1 by worksheet') 

The formula in cell C3, used to calculate the area increment by the 
trapezoidal approximation, is 

=( 62+63)/2*(A3-A2) 

The area increments were summed to obtain the area under the curve. 

Calculating the Area under a Curve 
Defined by a Table of Data Points 
by Means of a VBA Function Procedure 

A simple VBA custom function to find the area under a curve defined by a 
table of x, y data points, using the trapezoidal approximation, is shown in Figure 
7-4. The syntax of the function is CurvArea(x-values, y-values). 

Function CurvArea(x-values, y-values) 
'Simple trapezoidal area integration 

N1 = y-values.Count 
For J = 2 To N1 
area = area + (x-values(J) - x-values(J - 1)) (y-values(J) + y-values(J - 1)) I 2  
Next J 
CurvArea = area 
End Function 

Figure 7-4. Simple VBA function CurvArea to calculate the area under a curve. 
(folder 'Chapter 07 Examples', workbook 'Area under Curve', module 'CurvArea') 



CHAPTER 7 INTEGRATION 13 1 

Calculating the Area under a Curve 
Defined by a Formula 

Instead of determining the area under a curve defined by a table of data 
points, you may need to determine the area under a curve defined by a formula. 
For example, you may need to determine the area under the curve defined by 
equation 7-6 

x3 y=- 
ex - 1  

(7-6) 

which is shown in Figure 7-5. It is clear from the figure that summing areas of 
panels from x = 0 to x = 15 will provide an accurate determination of the area. In 
the calculation of the area, you are not limited by a table of values, as in the 
previous section, but instead you can create your own table by calculating values 
of the function for a range of suitable x values. Nor are you limited to using 
Panels of equal width. You can increase the accuracy obtained from the simple 
trapezoidal function by choosing panels of smaller width in regions where the 
curvature is greater. A chart of the function will show where the x increments 
should be made smaller; this should be evident from Figure 7-5. 

0 5 10 15 

Figure 7-5. Graph of the function y = x3/(ex-I). 
(folder 'Chapter 07 Examples', workbook 'Area under Curve', worksheet 'Curve2 by worksheet') 

Part of the data table is shown in Figure 7-6, along with the area under the 
curve calculated by the trapezoidal approximation. The result returned by the 
custom function 

=curvarea($B$4:$B$39,$A$4:$A$39) 



132 EXCEL: NUMERICAL METHODS 

is 6.514. The exact value for the area under the curve is n4/15 = 6.494; the error 
in the value returned by the custom function is 0.3%. 

Figure 7-6. Portion of data table for calculation of area under a curve. 
Note that rows 13-37 have been hidden. 

(folder 'Chapter 07 Examples', workbook 'Area under Curve', worksheet 'Curve2 by worksheet') 

Area between Two Curves 
The area between two curves can be determined by using any of the 

The area is determined by the calculation methods described previously. 
absolute value of the difference between the two curves, as in equation 7-7. 

There are several possibilities for the "area between two curves": the area can 
either be bounded by the curves f(x) and g(x) between specified limits (for 
example, the vertical lines x = a1 and x = bl in Figure 7-7) or by the two curves 
f(x) and g(x) between two points where they cross (the points x = a2 and x = b2 in 
Figure 7-7). 



CHAPTER 7 INTEGRATION 133 

Figure 7-7. Areas bounded by two curves (between al and q or between b, and b2). 
(folder 'Chapter 07 Examples', workbook 'Area between two curves', worksheet 'Sheetl') 

For the first case (area bounded by two curves between specified limits) the 
calculation is straightforward. In the second case, it is necessary to find the two 
values of x where the curves intersect. This can be done "manually," by 
inspecting the table of values forf(x) and g($, or by methods described later in 
this book (see "Finding Values Other Than Zeroes of a Function'' in Chapter 8). 

Integrating a Function 
Instead of finding the area under a curve defined by a set of data points, you 

may wish to integrate a function F(x). You could simply create a table of 
function values and use one of the methods described in earlier sections to 
calculate the area. But a more convenient solution would be to create a custom 
function that uses the Formula property of the cell to get the worksheet formula 
to be integrated, in the same way that was used in the preceding chapter, and uses 
the formula to find the area under the curve. This approach will be described in 
subsequent sections. 

Integrating a Function 
Defined by a Worksheet Formula 
by Means of a VBA Function Procedure 

In this section, the trapezoidal and Simpson's rule methods are implemented 
as VBA custom functions, using an approach similar to that used in the 



134 EXCEL: NUMERICAL METHODS 

differentiation functions of the previous chapter. The Formula property of the 
cell is used to get the worksheet formula to be differentiated into the VBA code 
as text. Then the SUBSTITUTE worksheet function is used to replace the 
variable of interest by an incremented value, and the Evaluate method used to get 
the new value of the formula. These values are used to calculate the area of each 
panel, and the areas of the panels are summed to obtain the area under the curve. 

This function procedure can be used to integrate an expression F(x) defined 
by a worksheet formula, between specified lower and upper limits a and b 
respectively. A table of function values is not required. 

b 

A =  [F(x)dx (7-8) 
a 

The syntax of the function is Integrate(expression, variable, from-lower, 
to-upper). The argument expression is the integrand, the expression to be 
integrated. The argument variable is the variable of integration, and the 
arguments from-lower and to-upper are the lower and upper limits of integration, 
respectively. The VBA code is shown in Figure 7-8. Function procedures for 
both trapezoidal (IntegrateT) and Simpson's rule (Integrates) methods are shown. 

The range of x values over which the integration is to be performed 
(to-upper - from-lower) is divided into N panels. The user can adjust the 
accuracy of the integration by changing the value of N in the procedure, with a 
concomitant increase in calculation time. 

Option Explicit 
Function IntegrateT(expression, variable, from-lower, to-upper) 
'Simple trapezoidal area integration 

Dim Formulastring As String, T As String, Xref As String 
Dim H As Double, area As Double, X As Double 
Dim N As Integer, K As Integer, J As Integer 
Dim NRepl As Integer 
Dim temp As String 
Dim F1 As Double, F2 As Double 

FormulaString = expression.Formula 
T = Application.ConvertFormula(FormulaString, xlAl , xlAl , xlAbsolute) 
XRef = variable.Address 

N = 1000 
H = (to-upper - from-lower) / N 
area = 0 
X = from-lower 
NRepl = (Len(T) - Len(Application.Substitute(T, XRef, "'I))) / Len(XRef) 

For K = 1 To N 



CHAPTER 7 INTEGRATION 135 

For J = NRepl To 1 Step -1 
temp = Application.Substitute(T, XRef, X & " ", J) 
If IsError(Evaluate(temp)) Then GoTo ptl  
T = temp 

ptl :  Next J 
F1 = Evaluate0 
T = Application.ConvertFormula(FormulaString, xlAl, xlA , xlAbsolute) 
For J = NRepl To 1 Step -1 

temp = Application.Substitute(T, XRef, X + H & " '0 J) 
If IsError(Evaluate(temp)) Then GoTo pt2 
T = temp 

pt2: Next J 
F2 = Evaluate0 

area = area + H * (FI + F2) 
X = X + H  
Next K 
IntearateT = area 

2 

I EndcFunction 

Figure 7-8. VBA Function procedure to integrate a worksheet formula 
by the trapezoidal approximation method. 

(folder 'Chapter 07 Examples,' workbook 'Integration,' module 'Simplehtegration') 

Function IntegrateS(expression, variable, from-lower, to-upper) 
'Simpson's 113 rule area integration 

Dim Formulastring As String, T As String, Xref As String 
Dim H As Double, area As Double, X As Double 
Dim N As Integer, K As Integer, J As Integer 
Dim NRepl As Integer 
Dim temp As String 
Dim YO As Double, Y1 As Double, Y2 As Double 

Formulastring = expression.Formula 
XRef = variable.Address 

N = 1000 
H = (to-upper - from-lower) / N / 2 

For K = 0 To N - 1 
X = 2 * K * H  
T = Application.ConvertFormula(FormulaString, x lAl  , x lA l  , xlAbsolute) 
NRepl = ( L e n 0  - Len(Application.Substitute(T, XRef, "'I))) / Len(XRef) 
For J = NRepl To 1 Step -1 

temp = Application.Substitute(T, XRef, from-lower + X & " ", J) 
If IsError(Evaluate(temp)) Then GoTo pt l  
T = temp 

ptl :  Next J 
YO = Evaluate(T) 



136 EXCEL: NUMERICAL METHODS 

T = Application.ConvertForrnula(FormulaString, xlAl I xlAl , xlAbsolute) 
For J = NRepl To 1 Step -1 

temp = Application.Substitute(T, XRef, from-lower + X + H & " 'I, J) 
If IsError(Evaluate(temp)) Then GoTo pt2 
T = temp 

pt2: Next J 
Y1 = Evaluatefl) 
T = Application.ConvertFormula(FormulaString, xlAl , xlAl, xlAbsolute) 
For J = NRepl To 1 Step -1 

temp = Application.Substitutefl, XRef, from-lower + X + 2 * H & " ", J) 
If IsError(Evaluate(temp)) Then GoTo pt3 
T = temp 

pt3: Next J 
Y2 = Evaluatefl) 
area = area + H * (YO + 4 * Y1 + Y2) I 3  
Next K 
Integrates = area 
End Function 

Figure 7-9. VBA function procedure to integrate a worksheet formula 
by Simpson's method. 

(folder 'Chapter 07 Examples', workbook 'Integration', module 'Simplehtegration') 

Some results returned by the IntegrateT and Integrates functions are shown 
in Figures 7-10 and 7-1 1, respectively. In general, results are more accurate 
when using the Simpson's method function. 

Figure 7-10. Some results returned by the IntegrateT custom function. 
(folder 'Chapter 07 Examples', workbook 'Integration', sheet 'Trapezoidal Integration Fn') 



CHAPTER 7 INTEGRATION 137 

Figure 7-11. Some results returned by the Integrates custom function. 
(folder 'Chapter 07 Examples', workbook 'Integration', sheet Simpson Integration Fn') 

Because some functions may require a large number of iterations, there may 
be a noticeable delay in calculation. 

Gaussian Quadrature 
The preceding methods for numerical integration employ evenly spaced 

values of x at which the function is evaluated. Other formulas have been 
developed whereby the function is evaluated at specially selected values of x. 
These Gaussian quadrature formulas are significantly more efficient, in terms of 
the accuracy of the evaluation. 

Gaussian quadrature formulas involve the evaluation of the function at a set 
of x, values (nodes), with the use of a corresponding set of weights w,, in the 
following formula 

1 N 
1. 

A = IF(x)dx = c W i F ( X i )  (7-9) 
-1 i=l 

The nodes and weights can be derived from certain kinds of polynomials. 
The Legendre polynomials will be used here to determine the values of xi and wi. 
The Legendre polynomials are a set of polynomials of degree N .  Increasing N 
provides an increase in accuracy of evaluation but requires a concomitant 
increase in computation time. Values of Legendre polynomials for N up to 100 
have been published. 

The integration need not be limited solely to the interval -1 to 1. By 
employing a change of variable 

2~ - ( a  + b)  
(b - a )  

Z =  (7-10) 

the integral expression is 



138 EXCEL: NUMERICAL METHODS 

1 

b - u  j F ( ( b - a ) z + ( b + U )  2 (7-1 1) 
-1 

2 

and equation 7-9 becomes 

(7-12) 
(b  - U)Z ,  + (b  + U) 

2 

which permits integration over any range. 

7-12 and a tenth-order Legendre polynomial. 
function are shown in Figure 7- 13. 

The code shown in Figure 7-12 performs Gaussian quadrature using equation 
Some results returned by the 

3ption Explicit 

Function Integrate(expression, variable, from-lower, to-upper, Optional - 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

tolerance) 

3 m  Formulastring As String, XAddress As String 
3 m  result As Double 

-ormulaString = expression.Formula 
Wddress = variable.Address 
'ormulaString = Application.ConvertFormula(FormulaString, xlAl, xlAl , - 
Call GaussLeGendrel O(FormulaString, XAddress, from-lower, to-upper, - 

Integrate = result 
End Function 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Sub GaussLeGendrel O(expression, XRef, from-lower, to-upper, tolerance, 

'Uses ten-point Gauss-Legendre quadrature formula. 
Adapted from Shoup, p.203 

Dim XJ As Variant, AJ As Variant 
Dim TotalArea As Double, OldArea As Double, area As Double 

'Default is absolute 

xl Absolute) 

tolerance, result) 

result) 

Dim T As String, temp As String 
Dim I As Integer, J As Integer, K As Integer, JJ As Integer 
Dim N As Integer, NRepl As Integer 
Dim A As Double, 6 As Double, C As Double, D As Double, F As Double 
Dim H As Double 

XJ = Array(-0.97390652851 71 72, -0.865063366688984, -0.679409568299024, - 
0.433395394129247, -0.148874338981631,0.973906528517172, 



CHAPTER 7 INTEGRATION 139 

0.865063366688984,0.679409568299024,0.433395394129247. 
0.148874338981 631) 

0.26926671 9309996,0.295524224714753,0.066671344308688, 
0.149451349915058,0.219086362515982,0.269266719309996, 
0.29552422471 4753) 

AJ = Array(0.066671344308688,0.149451349915058,0.219086362515982, 

If IsMissing(to1erance) Then tolerance = 0.0000000001 
OldArea = 0 
N = l  
For K = 1 To 10 'increments divided by 1,2,4,8,16,32,64,128,256,512 
area = 0 
H = (to-upper - from-lower) / N 

For I = 1 To N 
A = from-lower + (I - 1) H 
B = A + H  
C = (B + A) / 2 

For J = 1 To 10 
T = expression 
NRepl = (Lenv) - Len(Application.Substitute(T, XRef, "'I))) I Len(XRef) 
For JJ = NRepl To 1 Step -1 

D = (B - A) / 2 

temp = Application.Substitute(T, XRef, C + D * XJ(J) & " 'I, JJ) 
If IsError( Evaluate(temp)) Then GoTo ptl  
T = temp 

ptl: Next JJ 
F = Evaluatev) 

Next J 
Next I 
area = area * D 
If Abs((area - OldArea) / area) < tolerance Then GoTo AllDone 
OldArea = area 
N = 2 * N  
Next K 
AIIDone: 
result = area 
End Sub 

area = area + AJ(J) * F 

Figure 7-12. Integrate custom function. 
(folder 'Chapter 07 Examples', workbook 'Integration', module 'Legendrehtegration') 



140 EXCEL: NUMERICAL METHODS 

Figure 7-13. Some results returned by the Integrate custom function. 
(folder 'Chapter 07 Examples', workbook 'Integration', sheet 'GaussLegendre Integration Fn') 

Early versions of this program returned inaccurate results when the range b - a 
was large. The function Integrate illustrates one approach to overcoming this 
problem. First, the integral is evaluated over the total range b - a. Then the 
interval is divided into two halves and each "panel" is integrated separately. The 
sum of the two panels is compared to the previous value. If the difference is 
larger than a tolerance value, the interval is divided into quarters, the areas 
summed and so on. The process is continued for 10 cycles of iteration (512 
panels) or until the area difference is less than a specified tolerance. 

Because some functions may require a large number of iterations, there may 
be a noticeable delay in calculation. Increasing the value of tolerance should 
speed up calculation, but only at the expense of accuracy. 

Integration with an Upper or Lower Limit of Infinity 
Integrals such as 

m 

A =  [F(x)dx (7-13) 
a 

can be evaluated by summing the areas of a number of panels covering the range 
from x = a to x = a suitably large value. It is to be expected that as x+ cr3 the area 
of panel(x) + zero. Thus the integral can be evaluated by summing the integrals 
of a series of panels of increasing width (e.g., from 0-1, 1-10, 10-100, etc), 
ending the summation when the area of the last panel is suitably small. Manual 
adjustment of the panel widths is easily done by inspection of the results. Figure 
7-14 shows a typical result. 



CHAPTER 7 INTEGRATION 141 

Figure 7-14. Integrating from a lower limit to an upper limit of infinity. 
Results returned by the Integrate custom function. 

(folder 'Chapter 07 Examples', workbook 'Integration', sheet 'Integrating to infinity by sum') 

Distance Traveled Along a Curved Path 
The length of a plane curve can be estimated by dividing the curve into 

segments, as in Figure 7-1 5, and approximating the length of the curve segment 

by the straight line AB. The length of AB = d m .  The distance along 
the curve is found by summing the lengths of the segments. 

Figure 7-15. Approximating the distance along a curve AB 
by the length of the straight line segment AB. 

(folder 'Chapter 07 Examples', workbook 'Curve Distance', sheet 'Curve Distance (Circle)') 



142 EXCEL: NUMERICAL METHODS 

Figure 7-16. Approximating the circumference of a circle of radius 1. 
Note that the rows between 9 and 5 1 are hidden. 

(folder 'Chapter 07 Examples', workbook 'Curve Distance', sheet 'Curve Distance (Circle)') 

The procedure is illustrated by estimating the length of one quarter of a circle 
of radius r = 1. The equation of the circle is x2 + y2 = 1 , or y =m . As shown 
in Figure 7-16, the value of y and the distance d between successive points was 
calculated from x = 0 to x = 1 , using an x increment of 0.025. Near the end of the 
range of x values, where y changes more rapidly, the x increment was decreased. 
The formula in cell C6 is 

=SQRT((A8-A5)"2+( B8-B5)"2) 

The sum of the distances x 2, in cell C59 is a reasonable estimate of x. 



CHAPTER 7 INTEGRATION 143 

Problems 

Answers to the following problems are found in the folder "Ch. 07 (Integration)" in 
the "Problems & Solutions" folder on the CD. 

1. Find the area under the curve of the function 

method. 

2. Integrate the following expressions, using one of the custom functions for 
integration. 

a 2  

a x  by Simpson's 
0 !ex - 1  

1 

Ixndx 
0 

1 

Je-1' G!x 

0 

n 

1s in xdx 
0 

1 

0 I S X  

0 I* 
1 

1 

[(In x)3dx 
0 

3. Evaluate the elliptic integral 

rd-dx 
0 



144 EXCEL: NUMERICAL METHODS 

4. An ellipse is a plane figure described by the locus of a point P(x, y )  that 
moves such that the sum of its distances from two fixed points (foci) is a 
constant. If the ellipse has foci located at A (-c, 0) and B (c, 0) and the 

distance ACB is 2a, then by setting b = J n ,  the equation of the ellipse 
is simplified to 

x 2  y 2  -+-=1 
a2 b2  

(a and b are termed the semiaxes of the ellipse). 

1 T  

I I 

-1.5 1.5 

Figure 7-17. Approximating the circumference of an ellipse. 

For the ellipse shown in Figure 7-17, with foci at x = -0.5, y = 0 and x = 0.5, 
y = 0 and a = 1, determine the circumference of the ellipse. 

5 .  Determine the area of the ellipse of problem 7-4. 

6. Find the area between the curve y = 2x - x2 and the line y = -3. 

7. Find the area between the curve y = 2x - x2 and the line y = 2 . 5 ~  - 2.3 

8. Find the area enclosed between the two curves shown in Figure 7-7: y1 = x3 - 
20x2 - lOOx + 2000 andy2 = 2x3 - 5x2 - 300x + 1000. The curves intersect in 
the region between x = -5 and x = 15. 

9. The area between the curve y = x2 and the horizontal line y = 4 is divided into 
two equal areas by the horizontal line y = c. Find c. 



CHAPTER 7 INTEGRATION 145 

10. The area between the curve y = x2 + 3 and the line y = 12 is divided into two 
equal areas by the h e y  = c. Find c. 

1 1. Integrate the following expression. 
m 7  

12. Integrate the following expressions, using the custom function for 
integration. 



This Page Intentionally Left Blank



Chapter 8 

Roots of Equations 
Many problems in science and engineering can be expressed in the form of 

an equation in a single unknown, i.e., y = F(x). A value of x that makes y = 0 is 
called a root of the function; often the solution to a scientific problem is a root of 
a function. If the function to be solved is a quadratic equation, there is a familiar 
formula to find the two roots of the expression. But for almost all other 
functions, similar formulas aren't available; the roots must be obtained by 
successive approximations, beginning with an initial estimate and then refining it. 
This chapter presents a number of methods for obtaining the roots or zeroes of a 
function. 

A Graphical Method 
As a preliminary step in finding the roots of a complicated or unfamiliar 

function, it is helpful to make a chart of the function, in order to get preliminary 
estimates of the roots, and indeed to find out how many roots there are. A cubic 
equation such as the one shown in equation 8- 1 and Figure 8- 1, 

(8-1) 

always has three roots, either three real roots as in Figure 8-1, or one real and two 
imaginary roots. Figure 8-27 later in this chapter shows an example of the latter 
case. 

y = x3 + 0. 13x2 - 0.0005~ - 0.0009 

0.0004 - 

0.0002 - 

> 
-0.0002 - 

-0.0004 L I  
I 4 

-0.0006 ' 
-0.20 -0.10 0.00 0.10 

X 

Figure 8-1. A regular polynomial with three real roots. 

147 



148 EXCEL: NUMERICAL METHODS 

But the number of roots of other functions, such as 

y = -1.04 In x - 1.26 cos x + 0.0307 ex (8-2) 

may not be obvious. A chart of the function is useful to show the number and 
approximate value of the roots of the function. The chart in Figure 8-2 shows 
that the function shown in equation 8-2 has two real roots. 

3 

2 

> I  

0 
c 

-1 
X 

Figure 8-2. A function with two real roots. 

Figure 8-3. Portion of data table of x and y values 
showing the pair of values that bracket a root of the function shown in Figure 8-2. 

(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet 'Graphical Method') 



CHAPTER 8 ROOTS OF EOUATIONS 149 

Once a chart has been created, it is very easy to expand the scales of the axes 
to examine the crossing region at higher and higher magnification. Figure 8-3 
shows part of the data table used to create Figure 8-2; the formula in column B is 
the function shown in equation 8-1. The two values that bracket one of the roots 
of the function are highlighted. 

0.0004 

0.0003 

0.0002 

0.0001 

0 

-0.0001 

-0.0002 

-0.0003 

-0.0004 

Figure 8-4. Expanded chart of a function, for graphical estimation of a root. 
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet 'Graphical Method') 

The expanded portion of the chart, shown in Figure 8-4, was created by 
selecting the four cells A20:B21, creating a chart and changing the x- and y-axis 
scales. From the figure, one can estimate that the root that lies between x = 1.9 
and x = 2.0 has the value 1.96446. This is probably adequate for most purposes. 
Remember to choose the Smoothed Lines option in the Chartwizard. 

The Interval-Halving or Bisection Method 
This method and the one that follows make use of the fact that, as can be 

seen for example in Figure 8-3, a real root of a function lies between two 
adjacent x values for which y exhibits a change in sign. In order to obtain a root 
of a function by this method, you need to create a table of x values and the 
corresponding y values of the function, and identify two adjacent y values, one 
positive and the other negative. These and the corresponding x values will be the 
starting values for a binary search. 

Once you have obtained the two starting x values, xI and x2, the midpoint of 
the interval between them, x3, is an approximation to the root. Now choose the 
pair of x values with opposite signs, either x1 and x3 or x2 and x3 and bisect the 



150 EXCEL: NUMERICAL METHODS 

interval between them to get a further improvement. Repeat the process until a 
desired level of accuracy is attained. Figure 8-5 illustrates the application of this 
method, using equation 8-2. Only a portion of the table is shown; 34 rows were 
required to reach convergence at the 1E-10 level, at which point x = 
1.96445854473859. 

Figure 8-5. Using the binary search method to find a real root of a function. 
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet 'Binary Search Method') 

To construct the worksheet of Figure 8-5, the initial values xl and x2 were 
entered in cells A3 and C3, respectively, and the formula for the function in cells 
83 and D3. Next, the formulas that perform the binary search were entered in 
row 4; the formula in cell A4 calculates the midpoint value between the x values 
in the previous row 

=( C3+A3)/2 

and the formula in cell C4 selects the y value that has the opposite sign to the 
value in the previous row. 

=IF(SlGN(B4)<X3lGN(B3),A3,C3), 

Cells 84 and D4 contain the formula for the function. Finally, the formulas 
Each row constitutes an in A4:D4 were filled down into subsequent rows. 

iteration cycle; convergence was observed visually. 
Although unsophisticated, this method will always find a root. 



CHAPTER 8 ROOTS OF EQUATIONS I51 

The Interval Method with Linear Interpolation 
(the Regula Falsi Method) 

The interval-halving method can be made much more efficient in the 
following way. Instead of simply bisecting the difference between the two 
estimates of the root, you can obtain a better estimate of the root by using linear 
interpolation, as illustrated in Figure 8-6. 

or 

X 1 

Figure 8-6. The binary search method with linear interpolation 
(the Regzila Falsi method) 

The equation for linear interpolation is either 

Again, two starting 
opposite signs. 

x 2  - X I  x g  = X I  + y 1  ___ 
Y 2  -Y1 

(8-3) 

values of x must be obtained, for which the y values have 

When applied to the same hnction as in the preceding example, this method 
converges efficiently to a root, as illustrated in Figure 8-7. 

Again, cells A3 and C3 contain the initial values for XI and x 2 ,  respectively, 
and cells 83 and 0 3  contain the formula for the function. Cell A4 contains the 
linear interpolation formula: 



152 EXCEL: NUMERICAL METHODS 

=C3-D3*(C3-A3)/( D3-B3) 

and cell C4 contains the same formula as used in the previous example to select 
they value that has the opposite sign to the value in the previous row: 

Figure 8-7. Using the Regula Falsi method to find a real root of a function. 
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet 'Regula Falsi Method') 

In general this method converges more efficiently to the root than does the 
binary search method, although unfavorable situations can occur, as illustrated in 
Figure 8-8. In this example, one end of the interval is ''stuck," and even after 19 
cycles of iteration, convergence has only reached the 1E-03 level. 



CHAPTER 8 ROOTS OF EOUATIONS 153 

Figure 8-8. A case with slow convergence of the Regula Falsi method. 
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet 'Regula Falsi (2)') 

The Regu/a Falsi Method 
with Correction for Slow Convergence 

The preceding example shows that an unlucky choice of starting values can 
lead to slow convergence. By examination of the example in Figure 8-7, it can 
be seen that the ideal situation for rapid convergence occurs when, in almost 
every cycle, there is a change in the value of both XI and x2, y1 and y2 or in the 
sign of y1  or y2 .  Any one of these can be used to test for slow convergence. 

The slow-convergence situation in Figure 8-8 was remedied by changing the 
interpolation calculation so that if the value of x2 does not change from one cycle 
to the next, the value of yz used in the interpolation is halved. The performance 
of the modified formula is illustrated in Figure 8-9. The only change is the 
formula in cell D4 

=IF(C4=C3,D3/2,-1.04*LN(C4)-1.26*COS(C4)+0.0307*EXP(C4)) 



154 EXCEL: NUMERICAL METHODS 

This formula divides the value of y2 by 2 if there has been no change in x2 in the 
preceding two iteration cycles (this has occurred in rows 5 , 6  and 7, for example). 
Otherwise the function is calculated by means of the usual formula. 

A nested IF could be used to handle the case where either x1 or x2 is "stuck." 

Figure 8-9. Modifying the Regula FaIsi method to handle slow convergence. 
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet 'Regula Falsi (3)') 

The Newton-Raphson Method 
The preceding methods require manual selection of a pair of starting values 

with opposite signs. The Newton-Raphson method (sometimes referred to 
simply as Newton's method) requires only a single function value as the starting 
value, and is therefore self-starting. The Newton-Raphson method is a classic 
exercise from freshman calculus-it uses the first derivative of the function (the 
slope of the curve) at the initial estimate, X I ,  and extrapolates this tangent line to 
the x axis to obtain an improved value, x2. The process is repeated to obtain 
further approximations to the root, as illustrated in Figure 8-10, until the desired 
convergence level is reached. 



CHAPTER 8 ROOTS OF EOUATIONS 155 

1 2 ;  3 ;  4 5 6 

)t3 %? Xl 

X 
-100 

Figure 8-10. The Newton-Raphson method for obtaining a root of a function. 

The slope of the curve at x1 is the first derivative of the function, dyldx. The 
improved estimate can be calculated by rearranging the expression for the slope, 
m = 0 / 2  -yl)/(x2 -XI), and settingy2 = 0. This results in the equation 

x2 = - y J m  (8 -5)  

x2 = x1 - (yl/m) (8-6) 

or the equivalent 

sometimes written as 

x2 = XI - yl/yI ' (8-6a) 

In pencil-and-paper calculations the slope would be obtained by calculating 
the first derivative using calculus, but in spreadsheet calculations you can use 
numerical differentiation (see Chapter 6, "Differentiation"). Increase x by a small 
amount Ax, which increases the y value by a small amount Ay. If you make Ax 
small enough, Ay /h will be a good approximation to the first derivative dy/dx. 
In the following example, x + Ax was obtained by multiplying x by 1.00000001. 
(See "The Newton Quotient'' in Chapter 6.) 

The calculations of the Newton-Raphson method are illustrated in Figure 8- 
1 1. The function for which a root is sought is the regular polynomial 

(8-7)  y =  3x3 + 2.5~2-  5x- 11 



156 EXCEL: NUMERICAL METHODS 

Figure 8-11. Calculation of a root of a function by the Newton-Raphson method. 
The formulas in row 6 were filled down until convergence was observed. 

(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet Wewton-Raphson Method') 

The starting value, in this case 5 ,  was entered in cell 84. The formulas in 

C4: =3*B4"3+2.5*B4"2-5*B4-11 (the function y )  

D4: =B4+0.0000001 *B4 (increment x by a small amount Ax) 

E4: =3*D4"3+2.5*D4"2-5*D4-11 (this is y + Ay) 

cells C4, D4, E4, F4 and G4 are, respectively, 

F4: =( E4-C4)/( D4-B4) (m = A d  Ay) 

G4: =( F4*B4-C4)/F4 (Xnew = (m Xold-Yold)/m) 

Then the formula =G4 was entered in cell B6, so as to use the improved x 
value as the starting value in the next row (row 5 was left empty for purposes of 
illustration only). The formulas in C4:G4 were copied and pasted into the 
corresponding cells in row 6 .  Finally, the formulas in cells B6:G6 were Filled 
Down into succeeding rows until convergence was observed in column G or a 
sufficiently small value o f y  was obtained in column C. 

Using Goal Seek ... 
Excel provides a built-in way to find a real root of a function. The Goal 

Seek.. . command in the Tools menu can be used to perform what is sometimes 
called "backsolving"; that is, it varies x in order to make y reach a specified 
value. Thus you can use Goal Seek ... to find a value of x that makes the value 



CHAPTER 8 ROOTS OF EQUATIONS 157 

of the function y become zero, or at least very close to zero. The computer code 
that performs the Goal Seek function probably involves the Newton-Raphson 
method.; 

As an example to illustrate the use of Goal Seek ..., we'll return to the cubic 
equation 8-1,y = x3 + 0 . 1 3 ~ ~  - 0.0005~ - 0.0009. Figure 8-12 shows a part of the 
data table that was used to produce the chart shown in Figure 8-1. 

Figure 8-12. Part of a data table. 
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet 'Using Goal Seek') 

It can be seen that one of the roots of this function must lie between x = -0.13 
and x = -0.12, since there is a change in sign of the function somewhere in this 
interval. To use Goal Seek.. ., enter a trial value of x in a cell and the function in 
another cell, as illustrated in Figure 8-13. The cell containing the value of x is 
referred to as the changing cell, the cell containing the function as the target cell 
or the objective. 

Figure 8-13. Target Cell and Changing Cell for Goal Seek. 
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet 'Using Goal Seek') 

Now choose Goal Seek ... from the Tools menu to display the Goal Seek 
dialog box (Figure 8-14). (Although not necessary, it's convenient to select the 
target cell before beginning.) 

* According to Microsoft, "Goal Seek uses an iterative process in which the source cell is 
incremented or decremented at varying rates until the target value is reached." 



158 EXCEL: NUMERICAL METHODS 

Enter a reference to the target cell in the Set Cell box (the cell reference will 
appear there if you selected that cell before choosing Goal Seek...). Enter 0 in 
the To Value box and a reference to the changing cell in the By Changing Cell 
box, and press OK. 

Figure 8-14. The Goal Seek dialog box. 

After a few iteration cycles the Goal Seek Status dialog box (Figure 8-15) 
will be displayed. When you press OK the final values of the changing cell and 
target cell will be displayed in the worksheet cells, as shown in Figure 8-16. 

Figure 8-15. The Goal Seek Status dialog box. 

Figure 8-16. Obtaining a root of a function by using Goal Seek. 
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet 'Using Goal Seek') 

For scientific and engineering problems, it's critical that you set the 
convergence limit (the stopping parameter) of Goal Seek to suit your problem. 
Choose Options ... from the Tools menu and choose the Calculation tab (see 



CHAPTER 8 ROOTS OF EQUATIONS 159 

Figure 8- 17). The Maximum Change parameter sets the convergence limit; when 
the value of the target cell becomes less than this value, iteration ceases. The 
default value for Maximum Change is 0.001, which is suitable for this problem, 
but will not be suitable for many other problems. For a problem where the 
magnitude of the result (the changing cell value) is a very small number, you can 
set Maximum Change to a value such as 1E-15. Alternatively, you can set it to 
zero, which will usually result in Goal Seek completing 100 iteration cycles 
before quitting. 

Figure 8-17. The Calculation Options dialog box. 

Since Goal Seek ... almost certainly uses something like the Newton- 
Raphson method to find a root, it should be clear from Figure 8-1 that the trial 
value that you use will determine the root that is found. The cubic equation that 
we used in our example, shown in Figure 8-1, has three real roots. It is clear that 
if 0.01 is used as initial estimate, the largest of the three roots will be calculated, 
while using -0.2 as an initial estimate will result in the smallest of the three roots. 
Thus, to obtain a particular root, some guidance must be provided by the user. 



160 EXCEL: NUMERICAL METHODS 

Figure 8-18 illustrates the three roots of the function obtained by using different 
initial estimates. 

Figure 8-18. Different starting values lead to different roots. 
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet 'Using Goal Seek') 

The Secant Method 
The secant method is similar to the Newton-Raphson method, except that it is 

not necessary to calculate the slope of the curve. Instead, the slope is 
approximated by using two values of x,  as illustrated in Figure 8-19. Although 
this may be a poor approximation to the tangent to the curve, it becomes more 
and more accurate as the iterations approach the root. This method is not self- 
starting, since values of the function at two adjacent x values must be provided to 
begin the calculation. The calculations are illustrated in Figure 8-20, applied to 
the function shown in equation 8-1. 

I x2 

X 

X1 

Figure 8-19. The secant method for obtaining a root of a function. 



CHAPTER 8 ROOTS OF EOUATIONS 161 

Figure 8-20. Using the secant method to obtain a root of a function. 
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet 'Secant Method') 

The formulas in row 3 are identical to those in Figure 8-10, except that cell 
C3 contains a value rather than a formula. 

The Newton-Raphson Method 
Using Circular Reference and Iteration 

The Newton-Raphson method discussed in a previous section requires the 
user to fi l l  down formulas until convergence is observed visually. One can create 
a Newton-Raphson calculation that runs automatically by using an intentional 
circular reference. 

A circular reference is created when a formula refers to itself, either directly 
or indirectly. If a circular reference occurs, Excel issues a "Cannot resolve 
circular references" message and displays a zero value in the cell. Usually, 
circular references occur because the user entered an incorrect cell reference in 
an equation. But occasionally a problem can be solved by intentionally creating 
a circular reference. 

The calculation is illustrated in Figure 8-21. A single change was made to 
the worksheet in Figure 8- 1 1 .  After entering the formulas in row 4, the initial 
value 5 in cell 84 was replaced by the formula =G4. In this way the improved 
estimate of x was entered as the start value of the process. 



162 EXCEL: NUMERICAL METHODS 

Figure 8-21. Calculation of a root of a function by the Newton-Raphson method 
(before creating intentional circular reference). 

(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet 'Newton-Raphson circular') 

When you press ENTER after typing the formula in cell G4, the "Cannot 
resolve circular references" message is displayed, and Excel displays a zero in 
the cell to indicate a circular reference, as shown in Figure 8-22. 

Figure 8-22. Creating an intentional circular reference. 
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet 'Newton-Raphson circular') 

To force Excel to evaluate the circular reference, using the results of the 
previous calculation cycle as start values for the next cycle, choose Options ... 
from the Tools menu and choose the Calculation tab. Check the Iteration box 
and enter 0 in the Maximum Change box. (The default settings are Maximum 
Iterations = 100 and Maximum Change = 0.001.) When you press the OK button 
the circular reference will be evaluated. The results of the calculations are shown 
in Figure 8-23. 

Figure 8-23. Finding a root by the Newton-Raphson method and circular reference. 
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet 'Newton-Raphson circular') 



CHAPTER 8 ROOTS OF EQUATIONS 163 

A Newton-Raphson Custom Function 
The Newton-Raphson method can also be used in the form of a custom 

function. The VBA code is shown in Figure 8-24. 

Option Explicit 
Function NewtRaph(expression, variable, Optional initial-value) 
'Finds a root of a function by Newton-Raphson method. 
'Expression must be a reference to a cell containing a formula. 
'Variable must be a cell reference (cannot be a name). 
'Initial-value can be a number, reference or omitted. 
'Reference style can be either Al-style or R1 C1-style. 

Dim Formulastring As String, XRef As String 
Dim delta-x As Double, tolerance As Double 
Dim X I  As Double, X2 As Double, X3 As Double 
Dim Y1 As Double, Y2 As Double 
Dim m As Double 
Dim I As Integer, J As Integer, NRepl As Integer 
Dim temp As String, T As String, dummy As String 

'Get F(x) and x. 
Formulastring = expression.Formula 
If Left(FormulaString, 1) <Z "=" 

XRef = variable.Address 
Then NewtRaph = CVErr(xkrNA): Exit Function 

'Convert all references to absolute 
'so that only text that is a reference will be replaced. 
FormulaString = Application.ConvertFormula(FormulaString, xlAl, x lA l  , - 
xl Absolute) 

'Handle initial values that cause problems 
If IsMissing(initia1-value) Then initial-value = variable 
If initial-value = "" Then initial-value = variable 

'Set delta-x for numerical differentiation, stopping tolerance 
delta-x = 0.00000001 
tolerance = 0.0000000001 

'Perform the Newton-Raphson procedure 
X I  = initial-value 
For I = 1 To 100 
T = Formulastring 
'Do substitution of all instances of x reference with value. 
'Substitute reference, e.g., $A$2, 
'with a number value, e.g., 0.2, followed by a space 
'so that $A$25 becomes 0.2 5, which results in an error. 
NRepl = (Len(T) - Len(Application.Substitute(T, XRef, ""))) I Len(XRef) 
For J = NRepl To 1 Step -1 

'100 iterations maximum 
'Start with original formula each time thru loop 

temp = Application.Substitute(T, XRef, X I  & " ", J) 



164 EXCEL: NUMERICAL METHODS 

If IsError(EvaIuate(temp)) Then GoTo pt l  
T = temp 

pt l :  Next J 
Y1 = Evaluate(T) 

T = Formulastring 
If X I  = 0 Then X I  = delta-x 
X2 = X I  + X I  * delta-x 
For J = NRepl To 1 Step -1 

'Begin with original formula again. 

temp = Application.Substitute(T, XRef, X2 & " 'I, J) 
If IsError(Evaluate(temp)) Then GoTo pt2 
T = temp 

pt2: Next J 
Y2 = Evaluate(T) 
m = (Y2 - Y1) I (XI * delta-x) 
X3=X1 -Y1 I m  
'Exit here if a root is found 
If Abs(X3 - XI )  c tolerance Then NewtRaph = X3: Exit Function 
X I  = x 3  
Next I 
'Exit here with error value if no root found 
NewtRaph = CVErr(x1ErrNA) 
End Function 

Figure 8-24. VBA code for the Newton-Raphson custom function. 
(folder 'Chapter 08 Examples', workbook Wewton-Raphson Function', module 'Module 1 ') 

The syntax of the custom function is 

Newt Ra p h (expression, variable, initial_ value) 

Expression is a reference to a cell that contains the formula of the function, 
Variable is the cell reference of the argument to be varied (the x value of F(x) or 
Goal Seek's changing cell) and initiaLvalue is an optional argument that can be 
used to determine which root will be found. 

To illustrate the use of the custom function, we will use it to find a root of the 
cubic equation y= -2x3 + 16x2 + 60x -300. A chart of the function is shown in 
Figure 8-25. A portion of the data table to generate the chart is shown in 
columns A and B of Figure 8-26. The formula in cell B7 is 

=aa*A7A3+ bb*A7"2+cc*A7+dd 

where aa, bb, cc and dd are the coefficients of the cubic. 



CHAPTER 8 ROOTS OF EOUATIONS 165 

X 

Figure 8-25. Root of a function returned by the Newton-Raphson custom function. 
(folder 'Chapter 08 Examples', workbook 'Newton-Raphson Function', sheet 'Newton-Raphson') 

To use the custom function, enter the function in cell C7 by typing it 
following the syntax above, or choose Insert-+Function.. ., choose the User 
Defined category and choose the function from the list box. For the expression 
argument, enter a reference to a cell containing the worksheet function (e.g., cell 
87 in Figure 8-26). For the variable argument, enter A7, the cell reference of the 
independent variable in the formula expression. If you do not enter a value for 
the optional inifial_value argument, the value of the independent variable will be 
used as the starting value. When you press ENTER, a root of the function is 
returned, as shown in Figure 8-26. 

Figure 8-26. Root of a function returned by the Newton-Raphson custom function. 
(folder 'Chapter 08 Examples', workbook 'Newton-Raphson Function', sheet 'Newton-Raphson') 

The root that is returned depends on the initial or trial value used by the 
Newton-Raphson procedure. In this example, if a relatively large negative value 
is used (e.g., -7), the root near -5 will be obtained. (See Figure 8-10 if this is not 
clear.) Some caution must be exercised in choosing a trial value to direct the 



166 EXCEL: NUMERICAL METHODS 

procedure towards a particular root, as illustrated by the results for the same 
polynomial shown in Figure 8-27. 

Figure 8-27. The root that is returned can be very sensitive to the choice of trial value. 
(folder 'Chapter 08 Examples', workbook 'Newton-Raphson Function', sheet 'Newton-Raphson') 

If no root is found after 100 cycles of iteration, the function returns the #N/A 
error value. 

The advantage of this custom function compared to Goal Seek ... is, of 
course, that if the coefficients aa, bb, cc, or dd are changed, the value of the root 
is automatically updated. 

Bairstow's Method 
to Find All Roots of a Regular Polynomial 

A regular polynomial is one that contains only integer powers of x .  The 
Bairstow (or Bairstow-Lin) method finds all roots, both real and imaginary, of a 
regular polynomial with real coefficients. The method involves the successive 
extraction of quadratic factors from the original polynomial of degree N and 
subsequent reduced polynomials of degree N-2, N-4 and so on. The quadratic 
formula is then used to obtain pairs of roots, either real or complex, from the 
quadratic factors. If the degree of the polynomial is odd, then the remainder, 
after extracting quadratic factors, will be a linear factor, yielding the final root 
directly. 

The calculation proceeds as follows. For the polynomial 

y = + U,,-lX"-l + . . . + U l X  + uo (8-8) 

performing synthetic division by a trial quadratic 

x2 + p x  + q (8-9) 

yields a quotient and a remainder. 

y = (x* +PX + 4) (b , ,~" -~  + b,,-l~n-3 + . . . + b2)  + (RX + S) (8-10) 

If (x2 + p x  + q )  is an exact divisor, then the remainder (Rx + S) will be zero. 
Our task therefore is to find the values of p and q that make (Rx + S ,  equal to 
zero. This will make (x2 + YX + s )  a quadratic factor of the polynomial. 



CHAPTER 8 ROOTS OF EQUATIONS I67 

Examination of the process of synthetic division reveals that there is a 
correspondence between the coefficients of the two preceding forms of the 
polynomial : 

bn = an (8-1 1) 

bn-1 = an-1 -pbn (8-12) 

(8-13) bn-2 = ~ - 2  Fpbn-1 - qbn 

bn-k = Un-k -pbn-k+l - qb,+k+2 ( k  = 2, 3 ,  . . . , n-1) 

R = al -pb2 - qb3 

S = a0 - qb2 

(8-14) 

(8-15) 

(8-16) 

If the polynomial has been normalized so that an = 1 ,  then the equations are 

The trial quadratic will be a factor of the polynomial if the remainder is zero, 
simplified somewhat. 

that is, R = S = 0. Since R and S are functions o f p  and q: 

(8-17) 

s = S@, 4 )  (8-18) 

we need to find the values of p and q that make R and S equal to zero. We will 
do this by means of a two-dimensional analog of the Newton-Raphson method. 
If p* and q* are the desired solution, then the solution can be expressed as a 
Taylor series 

and 

where 

and 

(8-19) 

(8-20) 

(8-2 18) 

(8-22) 

ignoring terms other that the first, since as we approach the correct answer the 
higher terms become negligible. The preceding result in two equations in two 
unknowns, which can be solved to obtain 



168 EXCEL: NUMERICAL METHODS 

as aR R--S-  
84 34 

aR as as aR 
aP 84 aP a4 

Aq = 

(8-23) 

(8-24) 

To find the partial derivatives 6R/6p, etc, we could follow the usual 
procedure of making a small change in p to find the corresponding change in b. 
Instead, we will calculate the partial derivatives using analytical expressions. 
Differentiating the expressions 8-11 to 8-14 with respect to p yields the 
following: 

abn 
aP 

cn =- (8-25) 

(8-26) 

(8-27) 

(8-28) 

(8-29) 



CHAPTER 8 ROOTS OF EQUATIONS 169 

Equations 8-25 to 8-29 can be written in the form 

cn  = o  

cn-1 = b,, - PCn 

cn-k = bn-k - Pcn-k+l - qcn-k+2 

co = -4c2 

The simultaneous equations to be solved are 

C ~ A P  + C3Aq = -b, 

C ~ A P  + CZAq = -bo 

Using Cramer's rule, we obtain 

(8-30) 

(8-3 1)  

(8-32) 

(8-33) 

(8-34) 

(8-35) 

(8-36) 

(8-3 7) 

(8-38) 

The procedure for calculating the roots therefore is as follows: with initial 
estimates of p and q (zero or one can be used), calculate the values of b, and c,. 
Use these values to calculate Ap and Aq, and correct the initial values. Continue 
until convergence is reached. Obtain the two roots by use of the quadratic 
formula. Use the result of synthetic division of the polynomial as the new 
polynomial, and repeat the process. Continue until the polynomial is of order 
one or zero. 

The VBA code is shown in Figure 8-28. The portion of the code that 
performs the Bairstow calculation is based on code found in Shoup, T. E., 
Numerical Methods for  the Personal Computer, Prentice-Hall, 1983. 



170 EXCEL: NUMERICAL METHODS 

Option Explicit 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Function Bairstow(equation, reference) 
'Obtains the coefficients of a regular polynomial (maximum order = 6). 
'Polynomial is a cell formula. 
'Polynomial can contain cell references or names. 
'Poynomial can be text. 
'Reference can be a cell reference or a name. 

Dim A() As Double, Root() As Double 
Dim J As Integer, N As Integer 
Dim p l  As Integer, p2 As Integer, p3 As Integer 
Dim expnumber As Integer, ParenFlag As Integer 
Dim R As Integer, C As Integer 
Dim FormulaText As String, Reffext As String, NameText As String 
Dim char As String, term As String 
ReDim A(6) 

' GET equation EITHER AS CELL FORMULA OR AS TEXT. 
If Application.lsText(equation) Then 

FormulaText = equation 
'If in quotes, remove them. 
If Asc(Left(FormulaText, 1)) = 34 Then - 
FormulaText = Mid(FormulaText, 2, Len(Formu1aText) - 1) 

Else 
FormulaText = equation.Formula 

End If 
If Left(FormulaText, 1) = "=" Then FormulaText = Mid(FormulaText, 2, 1024) 
FormulaText = Application.ConvertFormula(FormulaText, x lAl  , xlAl , - 
FormulaText = Application.Substitute(FormulaText, " 'I, "") 'remove all spaces 

'GET THE NAME CORRESPONDING TO reference 
NameText = "" 
On Error Resume Next 'Handles case where no name has been assigned 
NameText = reference.Name.Name 
On Error GoTo 0 
NameText = Mid(NameText, InStr(1, NameText, "!") + 1) 

'HANDLE CASE WHERE reference IS A RANGE 
'by finding cell in same row or column as cell containing function. 
If reference.Rows.Count > 1 Then 

' xlAbsolute) 

R = equation.Row 
Set reference = Intersect(reference, Range(R & ":" & R)) 

C = equation.Column 
Set reference = Intersect(reference, Range(C & ":" & C)) 

Elself reference.Columns.Count > 1 Then 

This procedure contains code, not found in other procedures in this book, that 
allows the macro to accept a polynomial equation as a reference to a cell that 
contains a formula or as a reference to a cell that contains a formula as text. The 
procedure also handles an implicit reference. 



CHAPTER 8 ROOTS OF EOUATIONS 171 

End If 
Reffext = reference.Address 

'PARSE THE FORMULA INTO TERMS 
'pointers: p l ,  beginning; p2, end of string. 
FormulaText = FormulaText & " I' 'add extra character for parsing 

ParenFlag = 0 'Keep track of left and right parentheses 
For J = 1 To Len(Formu1aText) 
char = Mid(FormulaText, J, 1) 
If char = "(" Then ParenFlag = ParenFlag + 1 
If char = ")" Then ParenFlag = ParenFlag - 1 
If ((char = "+" Or char = "-") And ParenFlag = 0) Or J = Len(Formu1aText) - 

p l  = 1 

Then 
-term = Mid(FormulaText, p l  , J - p l )  
term = Application.Substitute(term, NameText, Reffext) 
p2 = J: p l  = p2 

'GET THE EXPONENT AND COEFFICIENT FOR EACH TERM 
'p3: location of reference in term. 
If InStr(1, term, Reffext & 'IA") Then 'function returns zero if not found 
'These are the x"2 and higher terms 

p3 = InStr(1, term, Reffext & """) 
expnumber = Mid(term, p3 + Len(Reffext) + 1, 1) 
term = Left(term, p3 - 1) 'term is now the coefficient part 

Elself InStr(1, term, Reffext) Then 
'This is the x term 

p3 = InStr(1, term, Reffext) 
expnumber = 1 
term = Left(term, p3 - 1) 'term is now the coefficient part 

Else 
'This is the constant term 

End If 

If term = I"' Then term = "=I" 'If missing, Evaluate will require a string. 
If term = "+" Or term = "-" Then term = term & "1" 
If Right(term, 1) = "*" Then term = Left(term, Len(term) - 1) 
A(expnumber) = Evaluate(term) 
End If 
Next J 

'RESIZE THE ARRAY 
For J = 6 To 0 Step -1 
If A(J) <> 0 Then N = J: Exit For 
Next 
ReDim Preserve A(N) 
ReDim Root(1 To N, 1) 

'REDUCE POLYNOMIAL SO THAT FIRST COEFF = 1 
For J = 0 To N: A(J) = A(J) / A(N): Next 

'SCALE THE POLYNOMIAL, IF NECESSARY 
'<code to be added later> 

expnumber = 0 



172 EXCEL: NUMERICAL METHODS 

Call EvaluateByBairstowMethod(N, A, Root) 
Bairstow = Root() 

End Function 

Sub EvaluateByBairstowMethod(N, A, Root) 
Code adapted from Shoup, "Numerical Methods for the Personal Computer". 

Dim B() As Double, C() As Double 
Dim M As Integer, I As Integer, J As Integer, IT As Integer 
Dim P As Double, Q As Double, delP As Double, delQ As Double 
Dim denom As Double, S1 As Double 
Dim tolerance As Double 

ReDirn B(N + 2), C(N + 2) 
tolerance = 0.000000000000001 
M = N  

While M > 0 
If M = 1 Then Root(M, 0) = -A(O): Call Sort(Root, N): Exit Sub 
P = 0: Q = 0: delP = 1 : delQ = 1 
For I = 0 To N: B(I) = 0: C(I) = 0: Next 
For IT = 1 To 20 
If Abs(delP) < tolerance And Abs(delQ) < tolerance Then Exit For 
For J = 0 To M 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

B(M - J) =A(M - J) + P * B(M - J + 1) + Q * B(M- J + 2) 
C(M - J) = B(M - J) + P * C(M - J + 1) + Q * C(M - J + 2) 

Next J 
denom = C(2) A 2 - C( l )  * C(3) 
delP = (-B(l) * C(2) + B(0) * C(3)) / denom 
delQ = (-C(2) * B(0) + C(l) * B(1)) I denom 
P = P + delP 
Q = Q + delQ 

Next IT 

S1 = P A 2 + 4 * Q  
If S1 i 0 Then 
'Handle imaginary roots 
Root(M, 0) = P / 2: Root(M, 1) = Sqr(-S1) / 2 
Root(M - 1, 0) = P I 2 :  Root(M - 1, 1) = -Sqr(-S1) / 2 

'Handle real roots 
Root(M, 0) = (P + Sqr(S1)) / 2 
Root(M - 1, 0) = (P - Sqr(S1)) / 2 

Else 

End If 
For I = M To 0 Step -1: A(I) = B(I + 2): Next 

Wend 
End Sub 
'+++++++++i+++++++++++i+++++i+++i~++++++++i+++i++++i+++i+++ 

Sub Sort(Root, N) 
'SORT ROOTS IN ASCENDING ORDER 
Dim I As Integer, J As Integer 

M = M - 2  



CHAPTER 8 ROOTS OF EOUATIONS 173 

Dim tempo As Double, templ As Double 

For I = 1 To N 
For J = I To N 

If Root(l, 0) > Root(J, 0) Then 
tempo = Root(l, 0): temp1 = Root(l, 1) 
Root(l, 0) = Root(J, 0): Root(l, 1) = Root(J, 1) 
Root(J, 0) =tempo: Root(J, 1) = templ 

End If 
Next J 

Next I 
End Sub 

Figure 8-28. VBA code for the Bairstow custom function. 
(folder 'Chapter 08 Examples', workbook 'Bairstow', module 'BairstowFn') 

The syntax of the Bairstow function is 

Bairstow( equation, reference) 

Equation is a reference to a cell that contains the formula of the function, 
reference is the cell reference of the argument to be varied (the x value of F(x)). 

To return the roots of a 
polynomial of order N, you must select a range of cells 2 columns by N rows, 
enter the function and then press CONTROL+SHIFT+ENTER. 

The Bairstow function is an array function. 

Figure 8-29 shows a chart of the polynomial 

y=x3-0.0031x2+2.3 x 10-*x+5 x lo-' 

6.OE-09 T 

5.OE-0 A 
f:: //J 

1.OE-09 -- 

f 

- 
-0.002 0.002 0.004 

-1 .OE-09 

-2.OE-09 I 
Figure 8-29. A regular polynomial with one real root and two imaginary roots. 

(folder 'Chapter 08 Examples', workbook 'Bairstow', sheet 'Example') 



174 EXCEL: NUMERICAL METHODS 

The function has one real root and a pair of imaginary roots. Figure 8-30 
shows a portion of the spreadsheet in which the Bairstow custom function is used 
to obtain the roots of the function. 

Figure 8-30. Calculation of all roots (real and imaginary) of a regular polynomial 
by the Bairstow custom function. 

(folder 'Chapter 08 Examples', workbook 'Bairstow', sheet 'Example 2') 

The formula 

=A2"3-0.0031 *A2"2+0.000000023*A2+0.000000005 

was entered in cell B2 and the Bairstow custom function 

{=Bairstow(B2,A2)} 

in cells A27:B29. The real part of the root is in the left cell and the imaginary 
part in the right cell. Note that, since the custom function handles only 
polynomials with real coefficients, the complex roots (if any) occur in conjugate 
pairs. 

Finding Values Other than Zeroes 
of a Function 

Many of the preceding methods can be modified so as to find the x of a 
function for a y value other than zero. In this way you can find, for example, the 
point of intersection of two curves (the x value where the y value of one function 
equals they value of another function). Some examples follow. 

Using Goal Seek ... 
to Find the Point of Intersection of Two Lines 

It is a simple matter to use Goal Seek ... to find the intersection of two lines, 
as illustrated in Figure 8-3 1 



CHAPTER 8 ROOTS OF EQUATIONS 175 

120 

100 

80 

60 

40 

20 

0 

-20 

I 

20 

Figure 8-31. Finding the intersection of two lines in a chart. 
(folder 'Chapter 08 Examples', workbook 'Intersecting Lines', sheet 'Two Straight Lines') 

In the spreadsheet cells shown in Figure 8-32, the formula in cell 824 is 

=slope 1 *A24+ i n t 1 

and the formula in cell C24 is 

=slope2*A24+int2 

Both formulas use A24 as input. The formula in cell D24 (the target cell) is 

=B24-C24 

Now use Goal Seek ... to vary A24 to make the target cell, D24, equal to 
zero. The result is shown in Figure 8-32. 

Figure 8-32. Using Goal Seek t o  find the intersection of two lines. 
(folder 'Chapter 08 Examples', workbook 'Intersecting Lines', sheet 'Two Straight Lines') 



176 EXCEL: NUMERICAL METHODS 

This approach is very simple, but it has one major drawback-you must run 
Goal Seek.. . each time you want to find the point of intersection. A much more 
satisfactory approach is to use the Newton-Raphson technique to find the 
intersection point, as illustrated in the following section. 

The "drop line" in Figure 8-31 was added to the chart to emphasize the 
intersection point. The line was added to the chart in the following way: cell A25 
contains the formula =A24 and cell B25 contains the value 0. The highlighted 
cells A24:B25 were copied and pasted in the chart to create a new series, as 
follows: Copy A24:B25, activate the chart, choose Paste Special from the Edit 
menu, check the boxes for Add Cells As New Series and X Values In First 
Column, press OK. Figure 8-33 shows the portion of the worksheet where the 
drop line is specified. 

Figure 8-33. Adding a "drop line" from the intersection of two lines. 
(folder 'Chapter 08 Examples', workbook 'Intersecting Lines', sheet 'Two Straight Lines') 

Using the Newton-Raphson Method 
to Find the Point of Intersection of Two Curves 

The Newton-Raphson method can be modified to find the x value that makes 
a function have a specified value, instead of the zero value that was used in a 
previous section. Equation 8-5 becomes 

x2 = (mxl -y1 +y2)/m (8-38) 

You can set up the calculation in the same way that was used for the Newton- 
Raphson method with intentional circular reference. In the following example 
we will find the intersection of a straight line and a curve (Figure 8-34). 



CHAPTER 8 ROOTS OF EQUATIONS 177 

300 

250 

200 

150 

100 

50 

0 
5 10 15 20 

-50 

Figure 8-34. Finding the intersection of two lines in a chart. 
(folder 'Chapter 08 Examples', workbook 'Intersecting Lines', sheet 'Using Circular Reference') 

A portion of the data table that generated the two lines is shown in Figure 8- 
35. 

Figure 8-35. Portion of the data table for Figure 8-32. 
(folder 'Chapter 08 Examples', workbook 'Intersecting Lines', sheet 'Using Circular Reference') 

The formula in cell B5 is 

=slope*AS+int 

and in cell C5 

=aa*A5"2+ bb*A5+cc 

Using the same method as in the preceding section, y1 is the function for 
which the slope is calculated, and y2 is the value used as the "constant." Of 
course, both yl and y2 change as the value of x changes. 



178 EXCEL: NUMERICAL METHODS 

Figure 8-36. Using the Newton-Raphson method to find the intersection of two lines. 
(folder 'Chapter 08 Examples', workbook 'Intersecting Lines', sheet 'Using Circular Reference') 

Figure 8-36 shows the cells where the Newton-Raphson calculation is 
performed, using an intentional circular reference (refer to the section "The 
Newton-Raphson Method Using Circular Reference and Iteration" earlier in this 
chapter if the method of calculation is not apparent). The formula in cell G38 is 

=(C38+F38*A38-B38)/F38 

The advantage of using the Newton-Raphson method with circular 
references, compared to using Goal Seek ..., is that calculation of the x, y 
coordinates of the intersection occurs automatically, "in the background." If you 
change one or more of the parameters (for example, if you change the slope of 
the straight line), the new intersection point and new drop line will be calculated 
and displayed on the chart. 

Using the Newton-Raphson Method 
to Find Multiple Intersections 
of a Straight Line and a Curve 

The preceding technique can be easily extended to find multiple intersections 
of two curves. The following figure illustrates how to find the two intersections 
of a horizontal straight line with a parabola, but many other types of curve can be 
handled. 



CHAPTER 8 ROOTS OF EQUATIONS 179 

600 - 

500 - 

400 - 

300 - 

200 ' 

100 

I 

-30 -20 -10 0 10 20 30 

Figure 8-37. Two intersections of a straight line and a curve, calculated by using the 
Newton-Raphson method with intentional circular references. 

(folder 'Chapter 08 Examples', workbook 'Intersecting Lines', sheet 'Using Circular Reference (2)') 

It is merely necessary to use two identical Newton-Raphson formulas and 
provide two different start values that will result in convergence to the two 
different "roots." Figure 8-38 illustrates the set-up of the table. Cells C66 and 
C67 contain the formula 

=$1$5 

(pointing to the cell that contains a constant). Guided by Figure 8-37, initial x 
values of 10 and -10 were chosen. Figure 8-38 shows the cell values before the 
intentional circular references have been created. 

Figure 8-38. Calculating two intersections of a line and a curve 
by the Newton-Raphson method (before creating intentional circular references). 

(folder 'Chapter 08 Examples', workbook 'Intersecting Lines', sheet 'Using Circular Reference (2)') 

Once the formulas have been entered, replace the initial x values in cells A66 
and A67 by the formulas =G66 and =G67, respectively, to create the two circular 
references. The "Cannot resolve circular references" message will be displayed 



180 EXCEL: NUMERICAL METHODS 

and the two cells will display zero values. Now choose Options ... from the 
Tools menu and choose the Calculation tab. Check the Iteration box and press 
OK. Figure 8-39 shows the final values in the table, after circular reference 
iteration is complete. 

Figure 8-39. Calculating two intersections of a line and a curve 
by the Newton-Raphson method (after creating intentional circular references). 

(folder 'Chapter 08 Examples', workbook 'Intersecting Lines', sheet 'Using Circular Reference (2)') 

A Goal Seek Custom Function 
The Newton-Raphson custom function described in a previous section was 

modified to create a custom function that performs goal seeking. This custom 
function can be used in the same way as Excel's built-in Goal Seek tool - to 
find the value of x (the changing cell) that makes the function y (the target cell) 
have a specified value. The VBA code is shown in Figure 8-40. 

Option Explicit 
Function GoalSeek(target-cell, changing-cell, objective-value, Optional - 
initial-value) As Double 
'Finds value of X to make Y have a desired value 
'This is a modified version of NewtRaph 

Dim tolerance As Double, incr As Double 
Dim XRef As String, Formulastring As String 
Dim I As Integer 
Dim X I  As Double, Y1 As Double, X2 As Double, Y2 As Double 
Dim m As Double 

If IsMissing(initia1-value) Then initial-value = changing-cell 
If initial-value = I"' Then initial-value = changing-cell 

tolerance = 0.0000000001 
incr = 0.00000001 

XRef = changing-celI.Address 
Formulastring = target-cell.Formula 
Formulastring = Application.ConvertFormula(FormulaString, x lAl  , x lA l  , - 
xl Absolute) 



CHAPTER 8 ROOTS OF EQUATIONS 181 

X I  = initial-value 
For I = 1 To 100 
Y1 = Evaluate(Application.Substitute(FormulaString, XRef, XI))  
If X I  = 0 Then X I  = incr 
X2 = X I  + X I  * incr 
Y2 = Evaluate(Application.Substitute(FormulaString, XRef, X2)) 
m = (Y2 - Y1) I (X2 - X I )  
X2 = (m * X I  - Y1 + objective-value) I m 
'Exit here if a root is found 
If Abs((X2 - X I )  I X2) c tolerance Then GoalSeek = X2: Exit Function 
X I  = x 2  
Next I 
'Exit here with error value if no root found 
GoalSeek = CVErr(x1ErrNA): Exit Function 
End Function 
End Sub 

Figure 8-40. VBA code for the GoalSeek custom function. 
(folder 'Chapter 08 Examples', workbook 'GoalSeek Fn', module 'Module 1') 

This custom function can be used in the same way as Excel's built-in Goal 
Seek.. . tool to find the value of x (the changing cell) that makes the function y 
(the target cell) have a specified value. 

The syntax of the function is 
GoaISeek(target-cel/, changing-cell, objective-value, initial_value) 

The argument targetcell is a reference to a cell containing a formula F(x). 
The argument changing-cell is a cell reference corresponding to x, the 
independent variable. (The formula in fargef-cell must depend on 
changing-cell.) These two arguments correspond exactly to the Goal Seek tool's 
inputs Set Cell and By Changing Cell. The argument objective-value (Goal 
Seek's To Value input) is the value you want fargef-cell to attain. The optional 
argument inifial_value is used, in cases where more that one value of x can result 
in the function F(x) having the desired value, to control the value of x that is 
returned. 

Note that when using the Goal Seek tool, To Value can only be a fixed 
value, not a cell reference, whereas when using the GoalSeek custom function, 
the argument can be a cell reference. Thus, when objecfive-value is changed, the 
GoalSeek return value updates automatically. 

As an illustration, we will use the GoalSeek custom function to find the 
value of x that makes the function y = x2 + 6x -10 have a specified value, namely 
y = 210. In the spreadsheet shown in Figure 8-41 the table in $A$5:$B20 
provides the x, y values of the function that are plotted in Figure 8-42. The 
adjustable parameters of the function are in $E$5:$E$7. The adjustable value of 
the intersection point H is in cell E10. Cell D14 contains the formula 



182 EXCEL: NUMERICAL METHODS 

=goalseek(B5,A5,ElO) 

Note that the GoalSeek function does not modify the value of the changing 
cell (in this example cell A5) nor does it result in a change in the cell containing 
the function (in this example cell 85). These values are merely copied and used 
as inputs for the VBA code. The final value of the changing cell is returned by 
the GoalSeek function (in this example in cell D14). As a check, the target cell 
formula was entered in cell El4  so as to calculate F(x) using the value of x 
returned by Goalseek. 

Some functions have more than one value of x that can satisfy the 
relationship F(x) = objective-value; in these cases the user must use the optional 
argument initial_va/ue to control the value of x that is returned. 

Figure 8-41. Using the GoalSeek custom function to find the value ofx 
that makes the function y = x2 + 6x - 10 have a specified value (here, y = 2 10). 

(folder 'Chapter 08 Examples', workbook 'Goalseek Fn', sheet 'Intersection of line with h (2)') 

If you change the values of aa, bb, cc, or H, the function value will update to 
find the new intersection value. In contrast, if you use the Goal Seek.. . tool, you 



CHAPTER 8 ROOTS OF EQUATIONS 183 

must repeat the action of goal-seeking each time you change any of the 
parameters. 

A limitation of the GoalSeek custom function is that fargetcell must contain 
the complete expression dependent on changing-cell. Only the instances of 
changing-cell that appear in the formula in targef-cell will be used in the 
Newton-Raphson calculation. 

300 

250 

200 

> 150 
100 

50 

0 

-50 1 5 10 
X 

15 

Figure 8-42. The value of x that makes the function y = x2 + 6x - 10 have the value 210. 
(folder 'Chapter 08 Examples', workbook 'Goalseek Fn'. sheet 'Intersection of line with h (2)') 

The CD contains an example of the use of the GoalSeek function to find 
approximately 180 intersection points of lines with a curve in a chart (see folder 
'Chapter 08 Examples', workbook 'Diatomic Molecule', sheet 'Vibrational Energy 
Levels'). The resulting chart is shown in Figure 8-43. The chart contains two 
data series. The first data series shows the continuous function of energy as a 
function of distance r. The second data series shows the approximately 90 
horizontal vibrational energy levels. 



184 EXCEL: NUMERICAL METHODS 

200 

180 

160 

140 

120 

7 
Y 

s 
Q 100 
Q) c 
w 

80 

60 

40 

20 

0 

t 

2 4 6 
lnternuclear distance, A 

Figure 8-43. Using the GoalSeek custom function 
to find multiple intersections of lines in a chart. 

(folder 'Chapter 08 Examples', workbook 'Diatomic Molecule', sheet 'Sheetl') 

8 



CHAPTER 8 ROOTS OF EQUATIONS 185 

Problems 

Answers to the following problems are found in the folder "Ch. 08 (Roots of 
Equations)" in the "Problems & Solutions" folder on the CD. 

1. A circuit consisting of a source, a resistor and a load, has a current i that 
oscillates as a function of time t according to the following: 

7T 7T i = 2.5 sin(-)e-2.5' + 2.5 sin(2.5t - -) 
4 4 

Find the first time after t = 0 when the current reaches zero.) 

2. In pipe flow problems the relationship 

is encountered. Solve for D, if a = 700, b = -2.9, c = -300. 
aD3 + bD + c = 0 

3 .  When the sparingly soluble salt BaC03 is dissolved in water, the following 
simultaneous equilibria apply: 

BaC03 e Ba2++ C03'- Ksp = [Ba2'][C032-] = 5.1 x lo-' 

C0:- + H 2 0  + HCO< + OH- Kb = [OH-][ HCO<]/[ C032-] = 2.1 x lo4 
Employing mass- and charge-balance equations, the following relationship 
can be obtained for a saturated solution of BaC03 in water: 

[Ba2+I2 - JKbKsp [Ba2+]1'2 - Ksp = 0 

Find the concentration of free Ba2' in the saturated solution. 

4. A solution of 0.10 M nitric acid (HNO3) is saturated with silver acetate 
(AgAc), a sparingly soluble salt. The system of mass- and charge-balance 
equations describing the system is 

 NO^-] = 0.1 o (mass balance) 
[Ag'] = S (mass balance) 
[Ac-] + [HAc] = S (mass balance) 

[Ag'] + [W] = [Ac-] + [NOS-] (charge balance) 

[Ag'][Ac-] = 4.0 x K S p  

[H'][Ac-]/[HAc] =1.8 x K O  



186 EXCEL: NUMERICAL METHODS 

5 .  

6. 

7. 

8. 

where S is the mol/L of silver acetate that dissolve. Using the preceding 
relationships, the following expression is obtained for the solubility S of 
silver acetate: 

K O [  - 1) + S = 7 K ,  + 0.10 

Find the solubility S. 

Find the two sets of coordinates of the intersection of the straight line y = mx 
+ b, where m = 5 and b = 50, with the parabola y = ax2 + bx + c, where a = 
1.1, b = -2.3 and c = -30.5. Make a chart of the two series to show the 
intersections. 

Find the two sets of coordinates of the intersection of the straight line with y 
= h and the circle of radius r (the equation of a circle is x2 + y2 = r; thus 

y = 4 3  ). For example, use r = 1 and h = some value between 0 and 1. 
The intersections will be at x ,  y = h and -x, y = h. Make a chart to show the 
circle (values of x from -1 to 1 and calculated values of y ,  also same values 
of x and -y). 

Having solved problem #8, and having created the chart, use the values of the 
intersections to create a chart series that shows the circumscribed rectangle 
(four sets of coordinates: x, y = h; -x, y = h; x, y = -h; -x, y = -h). Use any 
suitable method to find the coordinates of the circumscribed square. 

For the chemical reaction 

2 A = B + 2 C  
the equilibrium constant expression is 

For this reaction, the value of the equilibrium constant K at a certain 
temperature is 0.288 mol L-I. 
A reaction mixture is prepared in which the initial concentrations are [A] = 1, 
[B] = 0, [C] = 0 mol L-I. From mass balance and stoichiometry, the 
concentrations at equilibrium are [A] = 1 - 2x, [B] = x,  [C] = 2x mol L-', 

from which the expression for K is . Find the value of x that 
4x3 

1 - 4~ - 4x2 



CHAPTER 8 ROOTS OF EOUATIONS 187 

makes the expression have a value of 0.288, and calculate the concentrations 
of A, B and C at equilibrium. 

9. For the gas-phase chemical reaction 

the equilibrium constant expression for reaction is 
A + B + C + 2 D  

K =  [c1[D12 = 15.9 atm at 400°C. 
[A1 [Bl 

A reaction mixture is prepared in which the initial concentrations are [A] = 1 
atm, [B] = 2 atm, [C] = 0, [Dl = 0. From mass balance and stoichiometry, 
the concentrations at equilibrium are [A] = 1 - x, [B] = 2 - x, [C] = x, [D] = 

4x 3 

X’ - 3 x i - 2  
2x, from which the expression for K is . Find the value of x that 

makes the expression have a value of 15.9, and calculate the partial pressures 
of A, B, C and D at equilibrium. 

10. The Reynolds number is a dimensionless quantity used in calculations of 
fluid flow in pipes. The Reynolds number is defined as 

where Di is the inside diameter of the pipe, V is the average velocity of the 
fluid in the pipe, p is the fluid density and p is the absolute viscosity of the 
fluid. For flow in pipes, a Reynolds number of less than 2000 indicates that 
the flow is laminar, while a value of greater than 10,000 indicates that the 
flow is turbulent. For a pipe diameter of 5 cm, and fluid of density 1 g/cm3 
and viscosity of 1 centipoise, find the minimum velocity that results in 
turbulent flow. 

1 1. Find the value of the (1,l) element of the following matrix that gives a 
determinant value of zero. 

0.75 0.5 0.25 [ 0.5 1 0 .51  

0.25 0.5 0.75 

Which elements in the matrix cannot be changed in order to give a 
determinant of zero? 

12. Use the Bairstow custom function to find all of the roots of the polynomial 



188 EXCEL: NUMERICAL METHODS 

X5-  1oX4+30X3-20X2-31X+30 

13. Use the Bairstow custom function to find all of the roots of the polynomial 

16200000~~ - 64800000~~ + 97 199996~~  - 64800000~ + 16200000 



Chapter 9 

Systems of 
Simultaneous Equations 

Sometimes a scientific or engineering problem can be represented by a set of 
n linear equations in n unknowns, for example 

x + 2 y =  15 
3 x +  8y= 57 

or, in the general case 

allxl + a12x2 + a13x3 + “ ’  + al&,x,, = c1 

~~21x1 + ~22x2 + ~23x3 + + ~ 2 , & , ,  = ~2 

a17lX1 + a m  + a , 4 3  + * * + a,,,&,, = c, 
where xl, x2, x3, ..., x ,  are the experimental unknowns, c is the experimentally 
measured quantity, and the aii are known coefficients. The equations must be 
linearly independent; in other words, no equation is simply a multiple of another 
equation, or the sum of other equations. 

A familiar example is the spectrophotometric determination of the 
concentrations of a mixture of n components by absorbance measurements at n 
different wavelengths. The coefficients ay are the E, the molar absorptivities of 
the components at different wavelengths (for simplicity, the cell path length, 
usually 1.00 cm, has been omitted from these equations). For example, for a 
mixture of three species P, Q and R, where absorbance measurements are made 
at hl,h2 and h3, the equations are 

E 1, [PI + E?, [QI + E:, [RI =An, 

E:~ [PI + E:, [QI + &f2 [RI =A,,  

&I, [PI + &?? [QI + ~ n ” ,  [RI =A, ,  

This chapter describes direct methods (involving the use of matrices) and 
indirect (iterative) methods for the solution of such systems. The chapter begins 

189 



190 EXCEL: NUMERICAL METHODS 

D =  

by describing methods for the solution of systems of linear equations, and 
concludes by describing a method for handling nonlinear systems of equations. 

2 1 -1 
1 -1 1 
1 2 1  

Cramer's Rule 
According to Cramer's rule, a system of simultaneous linear equations has a 

unique solution if the determinant D of the coefficients is nonzero. To obtain the 
solution, each unknown is expressed as a quotient of two determinants: the 
denominator is D and the numerator is obtained from D by replacing the column 
in the determinant corresponding to the desired unknown with the column of 
constants. 

Thus, for example, for the set of equations 
2x + y - z = 0 
x - y + z = 6  

x + 2y + z = 3 

The coefficients and constants lend themselves readily to spreadsheet 
solution, as illustrated in Figure 9-1. Using the formula =MDETERM(AZ:C4), the 
value of the determinant is found to be -9, indicating that the system is soluble. 

Figure 9-1. Spreadsheet data for three equations in three unknowns. 
(folder 'Chapter 09 Simultaneous Equations', workbook 'Simult Eqns 1', sheet 'Cramer's Rule') 

Figure 9-2. The determinant for obtaining x. 
(folder 'Chapter 09 Simultaneous Equations', workbook 'Simult Eqns I', sheet 'Cramer's Rule') 



CHAPTER 9 SYSTEMS OF SIMULTANEOUS EOUATIONS 191 

The x values that comprise the solution of the set of equations can be 
calculated in the following manner: xk is given by a quotient in which the 
denominator is D and the numerator is obtained from D by replacing the gh 
column of coefficients by the constants c,, cz. .... The unknowns are obtained 
readily by copying the coefficients and constants to appropriate columns in 
another location in the sheet. For example, to obtain x, the determinant is shown 
in Figure 9-2, and x = 2 is obtained from the formula 

=MDETERM(A8:CI O)/MDETERM(A2:C4) 

y = -1 and z = 3 are obtained from appropriate forms of the same formula. 

only a few equations. 
Cramer's method is very inefficient and should be used only for systems of 

Solving Simultaneous Equations 
by Matrix Inversion 

Simultaneous equations can be represented in matrix notation by 

A x = C  (9- 1 ) 

X = A-'C (9-2) 

where A is the matrix of coefficients, B the matrix of unknowns, and C the 
matrix of constants. Multiplying both sides of equation 9-1 by A-' yields 

In other words, the solution matrix is obtained by multiplying the matrix of 
constants by the inverse matrix of the coefficients. To return the solution values 
shown in Figure 9-3, the array formula 

{=MMULT(MINVERSE(A2:C4),D2:D4)} 

was entered in cells E2:E4. 

Figure 9-3. Solving a set of simultaneous equations by means of matrix methods. 
(folder 'Chapter 09 Simultaneous Equations', workbook 'Simult Eqns 1', sheet 'Matrix Inversion') 

Solving Simultaneous Equations 
by Gaussian Elimination 

A system of linear equations such as 

x + 2 y =  15 
3 x + S y = 5 7  



192 EXCEL: NUMERICAL METHODS 

can be solved by successive substitution and elimination of variables. For 
example, you can multiply the first equation by 3, so that the coefficient of x is 
the same as in the second equation, and then subtract it from the second equation, 
thus 

3 x + S y = 5 7  
-3x + 6 ~ 4 5  

2 y =  12 
to produce a single equation in one unknown from which y = 6 .  Using the value 
of y, you can now calculate x.  

To extend this procedure to a system of n equations in n unknowns requires 
that one work in a systematic fashion. The solution process is equivalent to 
converting the n x n matrix above into a triangular matrix, such as the upper 
triangular matrix 

allxi + ~12x2 + a193 + ... + = bl 

a22x2 + a23x3 + . . + a2$" = b2 

a33x3 + ... + a3dn = b3 

a n d n  = bn 
which corresponds to a system of equations in which one of the equations 
contains only one unknown, and successive equations contain only one additional 
unknown. A similar solution process can be carried out using a lower triangular 
matrix. 

There are several methods for the solution of systems of equations that 
involve a triangular matrix. The Gaussian elimination process reduces a system 
of linear equations to an upper triangular matrix. In the example at the beginning 
of this chapter, we used the first equation to eliminate x1 from the other equation. 
To eliminate x1 in a system of n equations: 

allxl + a12x2 f 013x3 + ... + al$n = bl 

~21x1 + ~ 2 2 x 2  + a293 + . * .  + a2dn = b2 

a31x1 + ~ 3 2 x 2  + ~ 3 3 x 3  + ... + a3dn = b3 
etc. 

we multiply equation 1 by the factors azl/all, a31/a11, ..., a,l/all and subtract from 
equations 2, 3, ..., n.  This eliminates x1 from equations 2...n. Equation 1 is 
termed the pivot equation, and the coefficient of x1 the pivot. 

We then use equation 2 as the pivot equation, the coefficient of x2 as the 
pivot, and eliminate x2 from equations 3 ,  . . . , n. 



- 
1 0.2 0.2 0.2 137 

2 -1 -1 1 165 

3 -1 2 - 2  256 

5 -4  3 - 2  361 - : 

CHAPTER 9 SYSTEMS OF SIMULTANEOUS EOUATIONS 193 

If the pivot equation is normalized by dividing it by the coefficient of xJ, the 

It will be instructive to show the progress of the calculations with a simple 
coefficient of x, is 1 and the calculations are simplified somewhat. 

example, such as the following: 

The Gaussian elimination method operates on an n x n matrix of coefficients, 
augmented by the vector of constants. In our example this matrix will be a 4 x 5 
matrix, as shown: 

First, row 1 is normalized: 

The x1 terms are eliminated from column 1 of rows 2 ,3  and 4 by subtracting: 

Row 2 is normalized: 

The x2 terms are eliminated from column 2 of rows 3 and 4: 



194 EXCEL: NUMERICAL METHODS 

1 0.2 0.2 0.2 

0 1 1 -0.4286 77.::;] 

0 0 3 -3.2857 -30.429 I 0 0 7 -5.1429 65.286 

Row 3 is normalized and the x3 terms are eliminated from column 3 of row 4: 

1 0.2 0.2 0.2 137 

0 1 1 -0.4286 77.857 

0 0 1 -1.0952 -10.143 

0 0 0 2.5238 136.29 

1 0.2 0.2 0.2 

o 1 1 -0.4286 7 7 , K I  

I 
1 0 0 0  1 54 

Row 4 is normalized: 

0 0 1 -1.0952 -10.143 

As you can see, the coefficients matrix is now an upper triangular matrix, 
with the diagonal elements equal to one. The results are obtained by successive 
substitution, beginning with the last row. The last row corresponds to x4 = 154, 
the third row corresponds to x3 - 0.272727~4 = 107, from which x3 = 149, and so 
on. The results, XI, x2, x3 and x4 are 106, 52, 49, 54, respectively. You can see 
the steps in Gaussian elimination calculation by using the demo program 
provided on the CD (folder 'Chapter 09 Simultaneous Equations', workbook 
'Simult Lin Eqns', sheet 'Gaussian Elimination Demo'). 

The Gaussian elimination method can also be performed by using the VBA 
custom function GaussElim. The VBA code is shown in Figure 9-4. 

The syntax of the function is GaussElim(coeff-rnatrix,const-vector). The 
function returns the results vector; since the function is an array function, you 
must select an appropriately sized range of cells and press CTRL+SHIFT+ENTER 
(Windows) or COMMAND+RETURN or CTRL+SHIFT+RETURN (Macintosh). 



CHAPTER 9 SYSTEMS OF SIMULTANEOUS EQUATIONS 195 

Option Base 1 
Option Explicit 
Function GaussElim(coeff-matrix, const-vector) 

Dim AugMatrixO As Double, ResultVector() As Double 
Dim NormFactor As Double 
Dim temp As Double, term As Double, ElimFactor As Double 
Dim I As Integer, J As Integer, K As Integer 
Dim C As Integer, R As Integer 
Dim N As Integer 

N = coeff-matrix.Rows.Count 
ReDim AugMatrix(N, N + I),  ResultVector(N) 

'Create augmented matrix with dimensions N x (N+I) 
For I = 1 To N 
F o r J = l  TON 

Next J, I 
ForJ = 1 To N 

Next 

AugMatrix(1, J) = coeff-matrix(1, J) 

AugMatrix(J, N + 1) = const-vector(J) 

ForK= 1 To N 
'Normalize each row, from column K to right. 
'If normalization factor zero, swap rows 
NormFactor = AugMatrix(K, K) 
If NormFactor = 0 Then 
F o r J = I T o N + l  
temp = AugMatrix(K, J) 
AugMatrix(K, J) = AugMatrix(K + 1, J) 
AugMatrix(K + 1, J) = temp 

NormFactor = AugMatrix(K, K) 
End If 
For C = K T o  N + 1 

Next C 

Next J 

AugMatrix(K, C) = AugMatrix(K, C) / NormFactor 

'Eliminate 
For R = K + 1 To N 
ElimFactor = AugMatrix(R, K) 
For C = K To N + 1 

Next C 
AugMatrix(R, C) = AugMatrix(R, C) - AugMatrix(K, C) * ElimFactor 

Next R 

Next K 

'Calculate and return the coefficients. 
'Selected range can be either horizontal or vertical. 
For K = N To 1 Step -1 



196 EXCEL: NUMERICAL METHODS 

ResultVector(K) = AugMatrix(K, N + 1) 
term = 0 
For C = N To K + 1 Step -1 

Next C 
ResultVector(K) = AugMatrix(K, N + 1) - term 

term = term + AugMatrix(K, C) * ResultVector(C) 

Next K 
If Range(Application.Caller.Address).Rows.Count > 1 Then 

Else 

End If 
End Function 

GaussElim = Application.Transpose(ResultVector) 

GaussElim = ResultVector 

Figure 9-4. VBA code for the Gaussian Elimination custom function. 
(folder 'Chapter 09 Simultaneous Equations', workbook 'Simult Eqns II', module 'GaussianElimFunction') 

The calculation proceeds essentially as described in the example. First, the 
elements of the working matrix AugMatrix are populated by reading in the values 
from the coef-matrix and consf-vector arguments. Then, in a loop, each row is 
normalized by dividing by the appropriate diagonal element, and Gaussian 
elimination is performed on the following rows. When all rows have been done, 
the results are calculated, beginning with the last row of the upper diagonal 
matrix. 

The custom function GaussElim contains some features not discussed in the 
worked-out example. As you can see from the example, the diagonal elements of 
the coefficients matrix are the pivots and are used to normalize the matrix. If the 
process of elimination results in a zero diagonal element, subsequent 
normalization using that pivot value will result in a divide-by-zero error. Thus it 
is necessary to check that the pivot value is not zero before normalizing. If the 
pivot is zero, one can swap this row with one below it before normalizing and 
proceeding with the elimination step. However, if we have reached the last row 
of the matrix, we swap the last and first rows, but in this case we must swap rows 
in the original matrix and start over from the beginning. 

The Gauss-Jordan Method 
The Gauss-Jordan method utilizes the same augmented matrix [AIC] as was 

used in the Gaussian elimination method. In the Gaussian elimination method, 
only matrix elements below the pivot row were eliminated; in the Gauss-Jordan 
method, elements both above and below the pivot row are eliminated, resulting in 
a unit coefficient matrix: 



CHAPTER 9 SYSTEMS OF SIMULTANEOUS EQUATIONS 197 

1 : : : Ij:; 
0 0 1 0 149 

0 0 0 1 154 

The advantage of this method is that the calculation of the vector of results is 
simplified. 

The VBA custom function GaussJordanl, shown in Figure 9-5 incorporates 
partial pivoting. Two versions are provided on the CD that accompanies this 
book: the first version, GaussJordanl, has the syntax 
GaussJordan 1 (coeff-matrix, const-vector, value-index). The value-index 
argument specifies the element of the results vector to be returned. The second 
version, GaussJordan2, has the syntax GaussJordan2(coeff-matrix, 
const-vector), and returns the vector of results. You must select an 
appropriately sized range of cells and press CTRL+SHIFT+ENTER (Windows) or 
COMMAND+RETURN or CTRL+SHIFT+RETURN (Macintosh). 

Option Base 1 
Option Explicit 
'Solving systems of linear equations by the Gauss-Jordan elimination method 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Function GaussJordanl (coeff-matrix, const-vector, value-index) 
' This version returns a single element of the solution vector, 
' specified by value-index. 

Dim X() As Double, AugMatrix() As Double, PivotRow() As Integer 
Dim PivotLogical() As Boolean 
Dim I As Integer, J As Integer 
Dim R As Integer, C As Integer, P As Integer 
Dim N As Integer 
Dim TempMax As Double, factor As Double 

N = coeff-matrix.Rows.Count 
ReDim X(N), AugMatrix(N, N + I), PivotRow(N), PivotLogical(N) 

'Create augmented matrix (AIB) with dimensions N x (N+I) 
For I = 1 To N 
ForJ = 1 To N 

Next J, I 
F o r J = l  TON 

Next J 

AugMatrix(1, J) = coeff-matrix(1, J) 

AugMatrix(J, N + 1) = const-vector(J) 

'Initialize pivot elements for each row 
For J = 1 To N: PivotLogical(J) = False: Next 



198 EXCEL: NUMERICAL METHODS 

Do the elimination by columns. 
F o r C = l  TON 

Find maximum value in column 
TempMax = 0 
For R = 1 To N 
If Abs(AugMatrix(R, C)) <= TempMax Then GoTo LoopEnd 
If PivotLogical(R) = True Then GoTo LoopEnd 
PivotRow(C) = R 
TempMax = Abs(AugMatrix(R, C)) 
LoopEnd: Next R 

Test the coefficient matrix for singularity. 
If TempMax < 1 E-100 Then 
GaussJordanl = CVErr(xlErrDiv0) 
Exit Function 
End If 

'Matrix element(P,C) is pivot element. 
P = PivotRow(C) 
PivotLogical(P) = True 
F o r J = I T o N  

If J <> P Then 
factor = AugMatrix(J, C) I AugMatrix(P, C) 
For R = C + 1 To N + 1 
AugMatrix(J, R) = AugMatrix(J, R) - factor * AugMatrix(P, R) 
Next R 

End If 
Next J 
Next C 

'Calculate the solution vector and return the specified element. 
ForC = 1 T O N  

P = PivotRow(C) 
X(C) = AugMatrix(P, N + 1) I AugMatrix(P, C) 

Next C 
GaussJordanl = X(va1ue-index) 
End Function 

Figure 9-5. VBA code for the Gauss-Jordan custom function. 
(folder 'Chapter 09 Simultaneous Equations', workbook 'Simult Eqns II', module 'GaussJordanFunction') 

Figures 9-6 and 9-7 illustrate the use of the GaussElim and GaussJordan 
functions to solve systems of simultaneous equations, in this case the 
spectrophotometric determination of the concentrations of a mixture of n 
components by absorbance measurements at iz different wavelengths, as 
described in the beginning of this chapter. The absorbance of a six-component 
mixture was measured at six wavelengths; in Figure 9-3 the sample absorbances 
are in column H and the known molar absorptivities of the six components are in 
B5:GlO. 



CHAPTER 9 SYSTEMS OF SIMULTANEOUS EOUATIONS 199 

Figure 9-6. Data table for use with the GaussElim or GaussJordan functions. 
(folder 'Chapter 09 Simultaneous Equations', workbook 'Simult Eqns II', sheet 'Elimination Fns') 

Figure 9-7 shows the results returned by the GaussElirn and GaussJordan2 
functions. The results vector is the vector of concentrations of the six 
components in the mixture. The percentage error figures in columns L and N are 
the errors between the known concentrations and the concentrations returned by 
the functions. 

As the number of simultaneous equations becomes larger, the errors can 
increase drastically. In this system of equations, the values of the first through 
fifth variables can be obtained with good precision, since each has a maximum 
where the other species do not absorb strongly. The concentration of the sixth 
species is subject to significant error. And if the absorbance measurements are 
changed randomly by just -tl in the last figure (Figure 9-S), the errors increase 
significantly. 

Figure 9-7. Results from the GaussElim or GaussJordan functions. 
(folder 'Chapter 09 Simultaneous Equations', workbook 'Simult Eqns II', sheet 'Elimination Fns') 



200 EXCEL: NUMERICAL METHODS 

Figure 9-8. Results from the GaussElim or GaussJordan functions 
when small changes are made in the coefficients (compare Figure 9-7), 

(folder 'Chapter 09 Simultaneous Equations', workbook 'Simult Eqns 11', sheet 'Elimination Fns') 

Solving Linear Systems by Iteration 
The equations shown at the beginning of this chapter for a system of n 

equations in n unknowns can be rearranged so as to give a set of equations for the 
n variables 

x1 = (c1 - al2x2 - a13x3 . . . - al&n)/all 
x2 = (c2 - a23x3 . . .- a21& - a21Xl)/a22 

and so on. 
The variables can be evaluated by means of an iterative procedure: with 

initial guesses of the xl . . . x, values, new values of the variables are calculated, 
using the above equations. These values are used in successive cycles of 
iteration until the value of each of the variables has converged, based on a 
specified tolerance. 

Compared to the direct methods that have been described, iterative methods 
are particularly efficient for the solution of sparse matrices. Sparse matrices are 
ones in which most of the elements are zero. Physical systems in which the 
equations involve only a few of the variables are described by sparse matrices. 

The following sections describe two iterative methods: the Jacobi method 
and the Gauss-Seidel method. 

The Jacobi Method 
Implemented on a Worksheet 

In the Jacobi method, new values for all the n variables are calculated in each 
iteration cycle, and these values replace the previous values only when the 
iteration cycle is complete. The Jacobi method is sometimes called the method of 



CHAPTER 9 SYSTEMS OF SIMULTANEOUS EOUATIONS 20 1 

simultaneous replacement. Improvement in one of the variables does not have an 
effect until the next cycle of iteration. For this reason it does not converge as 
rapidly as the Gauss-Seidel method, to be described in the following section. 

To illustrate, consider a system of order 3, 

allxl + al2x2 + a13x3 = cl 

a21xI a22x2 + a2@3 = c2 

a31x1 + a32x2 + a33x3 = c3 
These equations can be rearranged to give 

c 1  - a12X2 - a 1 3 x 3  x1 = 
a1 1 

‘ 2  - a21X1 - a 2 3 x 3  
x2 = 

a22 

c3  - a 3 1 x l  - a32x2  
x3 = 

a33 

Begin with initial estimates for X I ,  x2 and x3; in the following example, initial 
estimates of zero were used. Then solve for each unknown value; thus 

x1 = 
c 1 - 0 - 0  

a1 1 

c2 - 0 - 0  
x2 = 

a22 

c3 - 0 - 0  

a33 
x3 = 

In the second iteration, 

‘ 1  - a12x2 - a13x3 x1 = 
a1 1 

and so on. 

The Jacobi method is shown implemented on a spreadsheet. Figure 9-9 
shows the table of coefficients and constants. 



202 EXCEL: NUMERICAL METHODS 

Figure 9-9. Data table for use with the Jacobi method. 
(folder 'Chapter 09 Simultaneous Equations', workbook 'Simult Eqns II', sheet 'Jacobi Method') 

Figure 9-10 illustrates the portion of the spreadsheet where the Jacobi 
method is implemented. Row 9 contains suitable initial values. 

Figure 9-10. Satisfactory convergence is reached with the Jacobi method 
after 23 iteration cycles. 

(folder 'Chapter 09 Simultaneous Equations', workbook 'Simult Eqns II', sheet 'Jacobi Method') 



CHAPTER 9 SYSTEMS OF SIMULTANEOUS EOUATIONS 203 

Cells BIO, C10 and DIO contain, respectively, the formulas 

=( $E$4-$C$4*Cg-$D$4*Dg)/$B$4 

=($E$5-$8$5*89-$D$S*D9)/$C$5 

=($E$6-$B$6*Bg-$C$6*Cg)/$D$6 

When these formulas are filled down into successive rows, as shown in 
Figure 9-10, the values of the variables X I ,  x2 and x3 converge. Convergence to a 
suitable level is observed visually. In this particular example, twenty-three 
iteration cycles were required to get below the lo6 percent error level (here, the 
percentage error in the variable x l  is shown). 

The Gauss-Seidel Method 
Implemented on a Worksheet 

In the Gauss-Seidel method, an improved value of one of the variables is 
used in the iteration cycle as soon as it has been calculated. The Gauss-Seidel 
method is sometimes called the method of successive replacement. 

To illustrate, consider the same system of order 3 that was used previously to 
illustrate the Jacobi method. Again, begin with initial estimates of zero for x I ,  x2  
and x3. Now solve for each unknown value in turn, using the latest values of the 
variables as they are calculated; thus 

c1 - 0 - 0  
x1 = 

a1 1 

c2  - aZlxl - 0 

a22 
x2 = 

c3  - a31X1 - a 3 2 x 2  x3 = 
a3 3 

In the second iteration, 

c l  - a12x2 - a13x3 
XI = 

a1 1 

and so on. 
Using the same constants and coefficients that were used in the preceding 

example (Figure 9-10), the spreadsheet formulas in Figure 9-1 1 can be modified 
to implement the Gauss-Seidel method, in which the value of a variable is used 
as soon as it is calculated. The formulas in cells B14, C14 and D14 are, 
respectively, 



204 EXCEL: NUMERICAL METHODS 

=($E$8-$C$8*C13-$D$8*D13)/$B$8 

=($E$9-$B$9*B14-$D$9*D13)/$C$9 

=($E$l O-$B$1 O*B14-$C$1 O*C14)/$D$IO 

and, as can be seen in Figure 9-1 1, the formulas converge more rapidly to the 
specified level of precision. 

Figure 9-1 1. Satisfactory convergence is reached with the Gauss-Seidel method 
after 15 iteration cycles. 

(folder 'Chapter 09 Simultaneous Equations', workbook 'Simult Eqns II', sheet 'Gauss-Seidel 1') 

You may wish to experiment with changing the values of the coefficients. In 
particular, see the effect of making the diagonal elements large, or off-diagonal 
elements large. 

The Gauss-Seidel Method 
Implemented on a Worksheet 
Using Circular References 

The worksheet in the preceding section can be easily modified to use 
intentional circular references, as follows. After entering the starting values in 
row 13 and the formulas in row 14 as before (Figure 9-11), change the cell 



CHAPTER 9 SYSTEMS OF SIMULTANEOUS EQUATIONS 205 

references in the formulas in cells B14 and C14 from references to row 13 to 
references to row 14. The formulas in cells 814, C14 and D14 are now, 
respectively, 

=($E$8-$C$8*CI 4-$D$8*D14)/$8$8 

=($E$9-$B$9*BI 4-$D$9*D14)/$C$9 

=($E$I 0-$B$1 O*B14-$C$I O*C14)/$D$IO 

This produces the Tannot  resolve circular references" error message. Then 
choose Tools+Options.. ., choose the Calculation tab, check the Iteration box 
and change the Maximum Change parameter to a suitable small value, such as 
1E-10 or even zero. When you press OK, the final values of the variables are 
returned, as shown in Figure 9-12. Cell A14 contains the formula =A14+1, and 
shows that, in this example, one hundred cycles of iteration (the default value in 
Tools+Options+Calculation) were performed. 

Figure 9-12. The Gauss-Seidel method using intentional circular references. 
(folder 'Chapter 09 Simultaneous Equations', workbook 'Simult Eqns 11', sheet 'Gauss-Seidel2') 

A Custom Function Procedure 
for the Gauss-Seidel Method 

The Gauss-Jacobi and the Gauss-Seidel methods can easily be implemented 
as a custom function. Since the Gauss-Seidel method is more efficient, only the 
Gauss-Seidel custom function is presented here. The VBA code is shown in 
Figure 9- 13. 

If any of the diagonal elements of the coefficients matrix are zero, a divide- 
by-zero error will be produced. Thus it is necessary either to ensure that the 
coefficients matrix does not contain any zero diagonal terms before beginning the 
solution, or to incorporate code to swap rows if a zero diagonal element is 
encountered. The GaussSeidel2 procedure (not shown) includes swapping if a 
diagonal element = 0. 



206 EXCEL: NUMERICAL METHODS 

Option Base 1 
Option Explicit 
,+++++++++++++++++++i+++++++++++++++++++++i+i++++++ii+++ 

Function GaussSeidel(coeff-matrix, const-vector, Optional init-values) 
' Solving systems of linear equations by the GaussSeidel method. 
' Coefficients matrix cannot have zero diagonal element. 

Dim Resultvector() As Double 
Dim I As Integer, J As Integer, K As Integer 
Dim N As Integer, Nlterations As Integer 
Dim R As Integer, C As Integer 
Dim ConvergeFlag As Boolean 
Dim result As Double, sum As Double 

N = coeff_matrix.Rows.Count 
If coeff-matrix.Columns.Count <> N Or const-vector.Rows.Count - 
c> N Then GaussSeidel = CVErr(x1ErrRef): Exit Function 
ReDirn ResultVector(N) 

' Following shows code for either fixed or adjustable iteration parameters. 
' MaxChange and Maxlterations are set in the Tools/Options/Calculation menu. 
tolerance = 0.00000001 
Nlterations = 100 

' User can specify optional initial values for the calculation 
' This may be helpful for large arrays. 
If Not (IsMissing(init-values)) Then 
' Test if init-values is a Range. 
If Not (IsError(init-values.Address)) Then 
If init-values.Rows.Count = 1 Then 
K = init-values.Columns.Count 

Else 
K = init-values.Rows.Count 

End If 
Else 

' init-values must be an expression. 
K = UBound(init-values) 

End If 
For I = 1 To K 

Next I 
End If 

' Begin the iteration process. 
For J = 1 To Nlterations 
' Flag will be set to false if any of the result values has not yet converged. 
ConvergeFlag = True 
' Do each row in the matrix. 
For R = 1 To N 

' Sum each term in the row, but skip term on the diagonal. 

ResultVector(1) = init-values(1) 

sum = 0 

ForC= 1 TON 
sum = sum + coeff-matrix(R, C) * ResultVector(C) I 



CHAPTER 9 SYSTEMS OF SIMULTANEOUS EQUATIONS 207 

Next C 
sum = sum - coeff-matrix(R, R) * ResultVector(R) 
' Calculate the current result value 
result = (const-vector(R) - sum) I coeff-matrix(R, R) 
' If result exceeds previous value by more than toleranceset flag to false. 
If Abs(ResultVector(R) - result) > tolerance Then ConvergeFlag = False 
' Save the current value. 
ResultVector(R) = result 
Next R 
' When all terms are done in this loop, exit if all have converged. 
If ConvergeFlag = True Then GaussSeidel = 
Application.Transpose(ResultVector): Exit Function 
Next J 
' Did not converge, so send back an error value. 
GaussSeidel = CVErr(x1ErrNA) 
End Function 

Figure 9-13. VBA code for the Gauss-Seidel method. 
(folder 'Chapter 09 Simultaneous Equations', workbook 'Simult Eqns II', module 'GaussSeidelFunction') 

Solving Nonlinear Systems 
by Iteration 

Systems of nonlinear equations, as exemplified by 
w3 + 2x2 + 3y - 42 = -2.580 

wx - XY + Y X  = -3.9 19 
w 2 + 2 w x + x 2 =  1.000 

w + x + y - z = -3.663 

or 
2 sinx + 3 cosy = 0.41 19 

2 e x + 3  l n y =  3.427 
can only be solved by iterative methods. Newton's iteration method is the most 
commonly used method for solving systems of nonlinear equations. 

Newton's Iteration Method 
In a manner similar to that in Chapter 6, we can express each of the n 

simultaneous equations: 

F I ( X I ,  ~ 2 ,  . ., X n )  = CI 

FZ(XI ,  ~ 2 . 9  * - 9 xn) = c2 



208 EXCEL: NUMERICAL METHODS 

as a Taylor series expansion, e.g., 

CI = F1 (XI + Axl, . . - 9  xn + Ax,) 

= F ~ ( ~ ~ ,  x2, . . ., x,,) + kl - *I + ... + Ax,,- *I + higher-order terms 
a1 a,* 

where the Axi values are the corrections to the initial estimates of the xi values, 
for example, XI = XI + A x l .  

As before, we can obtain a good approximation to the - *i terms by 

aj 

calculating AF'i/Axj (see Chapter 6 ,  "Differentiation"). 

The problem has thus been reduced to a linear system 

... ... 
an 

that can be solved by methods that have already been described in this chapter. 

The solution process is as follows: with initial estimates of the xi values, we 
z. 

obtain the --!- values by numerical differentiation. We set up the matrix of 
ahci 

partial derivatives augmented by the vector of constants and solve for the Ax, 
variables. We then use these to calculate improved estimates of the xi values, 

calculate new values of the 2 terms and solve for the Ax, variables. We repeat 

the process until the magnitude of the Ax, variables is smaller than a specified 
tolerance. 

The VBA code for the SirnultEqNL function is shown in Figure 9-14. The 
syntax of the function is SimultEqNL( equations, variab/es,constants). 

The arguments have the same meaning as for the preceding GaussElirn, 
GaussJordan, or GaussSeidel functions. The function returns the results vector; 
since the function is an array function, you must select an appropriately sized 
range of cells and press CTRL+SHIFT+ENTER (Windows) or 
COMMAND+RETURN or CTRL+SHIFT+RETURN (Macintosh). 

z. 
ahci 



CHAPTER 9 SYSTEMS OF SIMULTANEOUS EOUATIONS 209 

Option Explicit 
Option Base 1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Function SimultEqNL(equations, variables, constants) 
'Newton iteration method to find roots of nonlinear simultaneous equations 

Dim I As Integer, J As Integer, K As Integer, N As Integer 
Dim Nlterations As Integer 
Dim R As Integer, C As Integer 
Dim VarAddr() As String, FormulaString() As String 
Dim con() As Double, A() As Double, B() As Double 
Dim V() As Double 
Dim Y1 As Double, Y2 As Double 
Dim tolerance As Double, incr As Double 

N = equations.Rows.Count 
K = variables.Rows.Count 
If K = 1 Then K = variables.Columns.Count 
If K e. N Then SimultEqNL = CVErr(x1ErrRef): Exit Function 
ReDim VarAddr(N), FormulaString(N), V(N), con(N) 
ReDim A(N, N + I), B(N, N + 1) 

tolerance = 0.000000000001 'Convergence criterion. 
incr = 0.0000000001 'Increment for numerical differentiation. 
Nlterations = 50 

For I = 1 To N 
VarAddr( I) = variables( 1) .Address 
Next 

'Initial values 
For I = 1 To N 
con(l) = constants(l).Value 
V(I) = variables(l).Value: If V(1) = 0 Then V(1) = 1 
Next 

For J = 1 To Nlterations 
'Create N x N matrix of partial derivatives. 
For R = 1 To N 

' 
' 

xlAl , xlAl, xlAbsolute) 

F o r C = I T o N  
Formulastring is formula in which all but one variable in each equation 
is replaced by current values. 
FormulaString(R) = Application.ConvertFormula(equations(R).Formula, - 

For I = 1 To N 
If I c> C Then FormulaString(R) = Application.Substitute( - 

Formula St ring (R) , VarAdd r( I), V( I)) 

'Calculate partial derivative (central differences). 
Next I 

Y2 = Evaluate(Application.Substitute(FormulaString(R), VarAddr(C), - 

Y 1 = Evaluate(Application.Substitute(FormulaString(R), VarAddr(C), - 
V(C) * (1 + incr))) 



210 EXCEL: NUMERICAL METHODS 

V(C) * (1 - incr))) 
A(R, C) = (Y2 - Y1) / (2 * incr * V(C)) 

Next C 
Next R 

'Augment matrix of derivatives with vector of constants. 
F o r R = l  T O N  

FormulaString(R) = Application.ConvertForrnula(equations(R).Formula, - 

ForC = 1 To N 
xlAl, x lA l  , xlAbsolute) 

FormulaString(R) = Application.Substitute(FormulaString(R), VarAddr(C), - 
V(CN 

Next C 
A(R, N + 1) = con(R) - Evaluate(FormulaString(R)) 

Next R 

For I = 1 To N 
If Abs((A(1, N + 1)) I V(I)) > tolerance Then GoTo Refine 
Next I 
SimultEqNL = Application.Transpose(V) 
Exit Function 

Refine: Call GaussJordan3(N, A, B) 
'Update V values 
For I = 1 To N 
V(I) = V(1) + A(I, N + 1) 
Next I 
Next J 

' Exit here if no convergence after 50 cycles of iteration 
SimultEqNL = CVErr(x1ErrNA) 
End Function 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Sub GaussJordan3(N, AugMatrix, TempMatrix) 
Dim I As Integer, J As Integer, K As Integer, L As Integer, P As Integer 
Dim pivot As Double, temp As Double 

For K = 1 To N 
' Locate largest matrix element, use as pivot. 
pivot = AugMatrix(K, K): P = K 
F o r L = K + I T o N  
If Abs(AugMatrix(L, K)) < Abs(pivot) Then GoTo EndOfLoop 
pivot = AugMatrix(L, K) 
P = L  
EndOfLoop: Next L 

' Swap rows 
ForJ = 1 To N + 1 
temp = AugMatrix(K, J) 
AugMatrix(K, J) = AugMatrix(P, J) 
AugMatrix(P, J) = temp 
Next J 



CHAPTER 9 SYSTEMS OF SIMULTANEOUS EQUATIONS 21 1 

' Normalize pivot row 
ForJ = 1 To N + 1 
TempMatrix(K, J) = AugMatrix(K, J) / pivot 
Next J 
' Do the Gauss elimination. 
For I = 1 To N 
If I = K Then GoTo EndOfLoop2 
For J = 1 To N + 1 
TempMatrix(1, J) = AugMatrix(1, J) - AugMatrix(1, K) * TempMatrix(K, J) 
Next J 
EndOfLoop2: Next I 

For I = 1 To N 
ForJ = 1 To N + 1 
AugMatrix(1, J) = TempMatrix(1, J) 
Next J 
Next I 

Next K 
End Sub 

Figure 9-14. VBA code for the SimultEqnNL function procedure. 
(folder 'Chapter 09 Simultaneous Equations', workbook 'NonLinNewton', module 'NewtonIterationlFunction') 

As an example of the use of the SimultEqNL function, consider the following 

w3 + 2w2 + 3w + 4 = 12.828 
set of four equations: 

wx + XY + YZ = -3.919 

w 2 + 2 w x + x 2 =  1 
w + x + y - z = -3.663 

The corresponding Excel formulas were entered in El l :E14 of Figure 9-15, 

=A1 1"3+2*A1 1 "2+3*A11+4 

as follows: 

=A1 l*B11 +B1 I'CI 1 +C11 *D11 

=A1 1 "2+2*A11 *B11 +B1 l "2  

=A 1 1 +B 1 1 +C 1 1 -D 1 1 

The constants were entered in cells F11 :F14 and trial values of the unknowns 
in cells A1 1 :D11. 



212 EXCEL: NUMERICAL METHODS 

Figure 9-15. A custom function for the Newton method for nonlinear equations. 
(folder 'Chapter 09 Simultaneous Equations', workbook NonLinNewton', sheet 'Figure 9-16') 

The custom function was entered in cells G I  1 :GI4 as an array formula: 

{=SirnultEqNL(Ell:E14,All:D11 ,FII:F14)} 

and returned the values of the variables w, x,  y and z shown in Figure 9-15. You 
can confirm for yourself that this set of results satisfies the set of equations by 
entering the results in the four variables cells and see that the values in the 
"Equations" cells agree with the values in the "Constants" cells. 

The custom function can be entered in the Variables'' cells so that the 
"Results" appear there. This creates a circular reference, so you must check the 
iteration box in Tools+Options-,Calculation. 

Again, be aware that attempting to solve large systems of equations, or even 
small sets of ill-conditioned equations, can lead to erroneous results. 



CHAPTER 9 SYSTEMS OF SIMULTANEOUS EQUATIONS 213 

Problems 

Answers to the following problems are found in the folder "Ch. 09 (Simultaneous 
Equations)" in the "Problems & Solutions" folder on the CD. 

1 .  Solve the following system of four simultaneous equations: 
3x1 + l . lx2-2x3 - l .8x4= 1 1  

3.2X1 + 2 . 1 ~ 2  + 32x3 + 2.2x4= 
3.4X1 + 2.3X2 + 4.h3 + 32x4 = 

1.6~1 + 1.1~2-3.2X3+2.4~4= -5 

0 

6 

2. Current flow in a circuit is described by Kirchhoffs laws. 
circuit network yielded the following three simultaneous linear equations: 

A particular 

1, + 1 2  - 1 3  = 0 
21, + 513 = 7 
211 - 412 = 2 

Find the currents Zl, Z2 and Z3 in the circuit network. 

3 .  Solve the following system of four simultaneous equations: 

2.829~1 - 2.253~2 + 6.777~3 + 3.970~4 = 6.235 
1.212~1 + 1.995~2 + 2.265~3 + 8.008~4= 7.319 
4.553~1 -t 5.681~2 + 8.850~3 + 1.302~4 = 5.730 
5.808~1- 5.030~2 + 0.098~3 + 1.832~4 = 9.574 



214 EXCEL: NUMERICAL METHODS 

4. The W-visible spectra of aqueous solutions of CoC12, NiCI2 and CuC12 are 
shown in Figure 9- 16. 

0 

m 
2 0.6 
g 0.5 
d 0.4 
U 

0.3 

0.2 

0.1 

0.0 

[ Ni2+ CO2' / 
350 450 550 650 750 

Wavelength, nrn 

Figure 9-16. W-visible  spectra of cobalt, nickel and copper solutions. 

Three wavelengths were chosen at which the absorbance of the three species, 
Co2+, Ni2+ and Cu2+, differed significantly. The molar absorptivities of the 
three species at the three wavelengths are shown in Table 9-1. 

Table 9- 1. Molar Absorptivity E, M-'cm-' 

h/nm co2+ Ni2+ cuz+ 
394 0.995 6.868 0.188 
510 6.450 0.2 15 0.198 
808 0.469 1.179 15.052 

A mixture of the three metal ions gave the following absorbance readings at 
the three wavelengths: 394 nm, 0.845; 510 nm, 0.388; 808 nm, 1.696, when 
measured using a cell with a 1.00-cm path length. Calculate the 
concentration of the three metal ions in the mixture, using Beer's Law: A = 

~ b c  (A = absorbance, E =  molar absorptivity, b = cell path length in cm, c = 
concentration in mol/L). 



CHAPTER 9 SYSTEMS OF SIMULTANEOUS EOUATIONS 215 

5. The following sets of simultaneous equations may or may not be solvable by 
the Gaussian Elimination method. For each case, explain why. If solvable, 
solve. 

(a) x + y + 32 = 5 

2x+2y+22=  14 

3x+3y+9z=  15 

2 x - y + z = O  

x + 3y + 22 = 0 

3x + 2y+ 3z= 0 

6. Solve the following system of six simultaneous equations: 

2.97 0.75 1.23 2.08 1.26 0 

2.34 2.38 1.23 1.23 1.94 2.07 

1.23 0.52 0 3.66 0.18 0.51 

1.84 1.89 2.64 2.65 0.51 0.38 

1.48 0.40 2.88 1.46 0 2.65 

2.94 1.55 1.71 1.06 2.46 2.97 - 

7.93 

9.79 

26.19 

5.10 

8.43 

- 15.74 

7. Solve the following system of nonlinear equations: 
x2 +y2 = 1 
x2 - y 2  = 0 



216 EXCEL: NUMERICAL METHODS 

8. Solve the following system of nonlinear equations: 
xyz = 2 

x2 + J  + 4.2 = 9 

2x2 + y3 + 62=  4 



Chapter 10 

Numerical Integration of 
Ordinary Differential Equations 

Part I: Initial Conditions 

A differential equation is an equation that involves one or more derivatives. 
Many physical problems, when formulated mathematically, lead to differential 
equations. For example, the equation (k > 0) 

-=- dy kY 
dt 

(10-1) 

describing the decrease in y as a function of time, occurs in the fields of reaction 
kinetics, radiochemistry or electrical engineering (where y represents 
concentration of a chemical species, or atoms of a radioactive element, or 
electrical charge, respectively) as well as in many other fields. Of course, a 
differential equation can 
1 ; another example from 

be more complicated that the one shown in equation 10- 
electrical engineering is shown in equation 10-2, 

di L- + Ri = E 
dt 

(1 0-2) 

where R is the resistance in a circuit, L is the inductance, E is the applied 
potential, i is the current and t is time. 

If  a differential equation contains derivatives of a single independent 
variable, it is termed an ordinary differential equation (ODE), while an equation 
containing derivatives of more than one independent variable is called a partial 
differential equation (PDE). Partial differential equations are discussed in a 
subsequent chapter. 

The general form of an ordinary differential equation is 

(1 0-3) 

217 



218 EXCEL NUMERICAL METHODS 

and although writing the differential equation, such as the above, may be simple, 
solving the problem is not. By "solving," we mean that we want to be able to 
calculate the value of y for any value of x. Some differential equations, such as 
10-1, are solvable by symbolic integration (the integrated equation is In y = -kt + 
const), but many others may not be amenable to solution by the "pencil-and- 
paper" approach. Numerical methods, however, can always be employed to 
find the value of the function at various values o f t .  Although we haven't found 
an expression for the function F(x, y ) ,  but simply obtained a table of y values as a 
function of x, the process is often referred to as "integration." 

You may remember from your freshman calculus class that when an 
expression is integrated, an arbitrary constant of integration is always part of the 
solution. For example, when equation 10- 1 is integrated, the result is In y = -kt + 
In yo, or yt  = yoe-". A similar situation pertains when numerical methods are 
employed: to solve the problem, one or more values of the dependent variable 
and/or its derivative must be known at specific values of the independent 
variable. If these are given at the zero value of the independent variable, the 
problem is said to be an initial-value problem; if they are given at some other 
values of the independent variable, the problem is a boundary-value problem. 
This chapter deals with initial-value problems, while the following chapter deals 
with boundary-value problems. 

Solving a Single 
First-Order Differential Equation 

This section describes methods for solving first-order differential equations 
with initial conditions (the order of a differential equation is determined by the 
order of the highest derivative in the equation). Two methods will be described: 
Euler's method and the Runge-Kutta method. Eulerk method is simple in 
concept, but not of sufficient accuracy to be useful; it is included here because it 
illustrates the basic method of calculation and can be modified to yield methods 
of higher accuracy. The Runge-Kutta method, of which there are several 
variants, is the usual method of choice. A third method, the predictor-corrector 
method, will be described later in this chapter. 

Euler's Method 
Let us use in our first calculation an example of equation 10- 1 : the first-order 

kinetic process A + B with initial concentration CO = 0.2000 m o l L  and rate 
constant k = 5 x s-'. We'll simulate the change in concentration of the 
species A vs. time over the interval from t = 0 to t = 600 seconds, in increments 
of 20 seconds. 



CHAPTER 10 ORDINARY DIFFERENTIAL EOUATIONS. PART I 219 

The differential equation for the change in concentration of the species A as a 
function of time is 

d[ A] ldt = -k[ A] (1 0-4) 

Expressing this in terms of finite differences, the change in concentration 
A[A] that occurs during the time interval from t = 0 to t = At is 

A[A] = -k[A], At (1 0-5) 

Thus, if the concentration of A at t = 0 is 0.2000 My then the concentration at 
t = (0 + At) is [A] = 0.2000 - (5  x lO")(O.2OOO)(2O) = 0.1800 M. The calculation, 
known as Euler's method, is illustrated in Figure 10-1. The formula in cell 87 is 

=BG-k*BG*DX. 

The concentrations at subsequent time intervals are calculated in the same 
way. In general, the formula is 

Yfl + I  = Yfl + hF(x,,, Yfl) ( 10-6) 

where h = xfl - x,. 

Figure 10-1. Simulation of first-order kinetics by Euler's method. 
(folder 'Chapter 10 Examples', workbook 'ODE Examples', worksheet 'Euler') 

The advantage of Euler's method is that it can be easily expanded to handle 
systems of any complexity. It is not particularly useful, however, since the error 
introduced by the approximation d[A]ldt = A[A]/At is compounded with each 
additional calculation. Compare the Euler's method result in column B of Figure 



220 EXCEL NUMERICAL METHODS 

10-1 with the analytical expression for the concentration, [A], = in 
column C. At the end of approximately one half-life (seven cycles of calculation 
in this example), the error has already increased to 3.6%. Accuracy can be 
increased by decreasing the size of At, but only at the expense of increased 
computation. A much more efficient way of increasing the accuracy is by means 
of a series expansion. The Runge-Kutta methods, which are described next, 
comprise the most commonly used approach. 

The Fourth-Order Runge-Kutta Method 
The Runge-Kutta methods for numerical solution of the differential equation 

dyldx = F(x, y) involve, in effect, the evaluation of the differential function at 
intermediate points between x, and x,,+~. The value of ynCl is obtained by 
appropriate summation of the intermediate terms in a single equation. The most 
widely used Runge-Kutta formula involves terms evaluated at x,,, x,+~/x/~ and 
x,,+~. The fourth-order Runge-Kutta equations for dyldx = F(x, y) are 

Ax 
Ti + 2Tz + 2T3 + T4 

6 Yn+l =Yn + (1 0-7) 

where 

T3 = F(x,+ --,yn+ Ax -) T2 
2 2 

( 1  0-9) 

(1 0-1 0) 

T4 = F (xn + b, ~n + T3) (10-1 1) 

If more than one variable appears in the expression, then each is corrected by 
using its own set of TI to T4 terms. 

Fourth-Order Runge-Kutta Method 
Implemented on a Worksheet 

The spreadsheet in Figure 10-2 illustrates the use of the RK method to 
simulate the first-order kinetic process A + By again using initial concentration 
[Ale = 0.2000 and rate constant k = 5 x The differential equation is, again, 
equation 10-4. This equation is of the simple form dyldx = F(y), and thus only 
they, terms of TI to T4 need to be evaluated. The F K  terms (note that TI is the 
Euler method term) are shown in equations 10-12 through 10-15. 



CHAPTER 10 ORDINARY DIFFERENTIAL EOUATIONS. PART I 22 1 

( 10- 12) 

(10-13) 

(10-14) 

(1 0- 15) 

Figure 10-2. Simulation of first-order kinetics by the Runge-Kutta method. 
(folder 'Chapter 10 Examples', workbook 'ODE Examples', worksheet 'MI') 

The RK equations in cells 87, C7, D7, E7 and F7, respectively, are (only part 
of the spreadsheet is shown; the formulas extend down to row 74): 

=-k*FG*DX 

=-k*( FG+TAl /2)*DX 

=- k*( F6+TA2/2)*DX 

=-k*( F6+TA3)*DX 

=FG+(TAI +2*TA2+2*TA3+TA4)/6. 

If you use the names TA1, . . ., TA4 you can use AutoFill to generate the 
column labels TA1, . . ., TA4. These names are accepted by Excel, whereas T1 is 
not a valid name. As well, the nomenclature is expandable to systems requiring 
more than one set of Runge-Kutta terms (e.g., TB1, . . ., TB4, etc.). 

Compare the RK result in column F of Figure 10-2 with the analytical 
expression for the concentration, [A]t = in column G. After one half-life 
(row 13) the RK calculation differs from the analytical expression by only 



222 EXCEL NUMERICAL METHODS 

0.00006%. (Compare this with the 3.6% error in the Euler method calculation at 
the same point.) Even after 10 half-lives (not shown), the RK error is only 
0.0006%. 

In essence, the fourth-order Runge-Kutta method performs four calculation 
steps for every time interval. The percent error after one half-life ( t  = 140) is 
only 6 x In contrast, in the solution by Euler's method, decreasing the 
time increment to 5 seconds to perform four times as many calculation steps still 
only reduces the error to 0.9% after 1 half-life. 

If the spreadsheet is constructed as shown in Figure 10-2, you can't use a 
formula in which a name is assigned to the values of the calculated concentration 
in column F (the range $F$7:$F$74). This is because the formula in 87, for 
example, will use the concentration in F7; this is called an implicit intersection. 
An alternative arrangement that permits using a name for the concentration [A], 
is shown in Figure 10-3. Each row contains the concentration at the beginning 
and at the end of the time interval. The name C-t can now be assigned to the 
array of values in column B; the former formulas (now in cells $C$7:$G$74) 
contain C-t in place of F6 and cell 87 contains the formula =G6. 

Figure 10-3. Alternative spreadsheet layout for the Runge-Kutta method. 
(folder 'Chapter 10 Examples', workbook 'ODE Examples', worksheet 'RK2') 

The RK equations in cells C6, D6, E6, F6 and G6, respectively, are 

=-k*C-t*DX 

=-k*(C_t+TAl/2)*DX 

=-k*( CWt+TA2/2)*DX 



CHAPTER 10 ORDINARY DIFFERENTIAL EQUATIONS. PART I 223 

=-k*( C_t+TA3)*DX 

= C-t+ (TA 1 +2 *TA2 +2*TA3 +TA4)/6 

and cell 87 contains the formula =G6. 

Fourth-Order Runge-Kutta Method 
Applied to a Differential Equation 
Involving Both x and y 

In the preceding examples, the differential equation involved only the 
dependent variable y. In the general case, the differential equation can be a 
function of both x and y.  The following example illustrates the use of the Runge- 
Kutta method for dyldx = F ( x ,  y). 

A function is described by the differential equation 

dyldx = 2x2 + 2y (1 0-1 6) 

and the function has the value y = 0.5 at x = 0. We want to find the value of the 
function over the range x = 0 to x = 1. Figure 10-4 illustrates the use of the RK 
method to model the function. The formulas for the TI-T~ terms, in cells B11 to 
E l  1 are, respectively, 

=2*A10A2+2*F10 

=2*(A1 O+deltax/2)"2+2*(FI O+BI 1 *deltax/2) 

=2*(A1 O+delta~/2)~2+2*( F1 O+C11 *deltax/2) 

Figure 10-4. The fourth-order Runge-Kutta method applied toy' = 2x2+2y. 
(folder 'Chapter 10 Examples', workbook 'ODE Examples', worksheet 'Both x and y (Formulas)') 



224 EXCEL NUMERICAL METHODS 

=2*(A1 O+delta~)~2+2*(FI O+DI l*deltax) 

and the formula for yn+1, in cell F11, is 

=F10+(B11+2*C11+2*DIl+El l)*deltax/G 

Figure 10-4 shows the agreement between the RK values and the exact 
values (the unknown function is y = eb - x2 - x - 0.5). The errors are small and 
increase only slowly with increasing x. 

Fourth-Order Runge-Kutta Custom Function 
for a Single Differential Equation 
with the Derivative Expression 
Coded in the Procedure 

The Runge-Kutta formulas can be implemented in the form of a VBA custom 
function. The VBA code is shown in Figure 10-5. 

This first version can handle a single first-order ordinary differential 
equation; the expression for the derivative must be "hard-wired" in the VBA 
code. The syntax of the function is Runge(x-variable, y-variable, interval). 
The function returns the value of y (the dependent variable) at x + Ax, based on 
the values of x (the independent variable), y and a differential equation. The 
arguments x-variable and y-variable are references to cells containing the values 
of x and y in the derivative expression coded in the subroutine. The argument 
interval is a value or cell reference or formula that specifies the interval of x over 
which the Runge-Kutta integration is to be calculated. 

Option Explicit 
Function Runge(x-variable, y-variable, interval) 
'Runge-Kutta method to solve a single first-order ODE. 
'Expression for derivative must be coded in subroutine. 
Dim T I  As Double, T2 As Double, T3 As Double, T4 As Double 
' Calculate the RK terms 
T I  = interval * deriv(x-variable, y-variable) 
T2 = interval * deriv(x-variable + interval / 2, y-variable + T I  /2) 
T3 = interval deriv(x-variable + interval /2, y-variable + T2 / 2) 
T4 = interval deriv(x-variable + interval, y-variable + T3) 
Runge = y-variable + (TI + 2 * T2 + 2 * T3 + T4) / 6 
End Function 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Function deriv(X, Y) 
'Code the derivative here. 
deriv = 2 * X  A 2 + 2 * Y 
End Function 

Figure 10-5. Simple custom function for Runge-Kutta calculation. 
(folder 'Chapter 10 Examples', workbook 'ODE Examples', module 'SimpleRungeKutta') 



CHAPTER 10 ORDINARY DIFFERENTIAL EQUATIONS. PART I 225 

Figure 10-6 illustrates the use of the custom function. The formula in cell C9 

=Runge(A8,C8,A9-A8) 

is 

Figure 10-6. The fourth-order Runge-Kutta method applied toy' = 2r2+2y 
by using a user-defined function. 

(folder 'Chapter 10 Examples', workbook 'ODE Examples', worksheet 'Both x and y (Simple RK function)') 

In following sections, procedures will be provided to handle systems of 
simultaneous differential equations. In addition, the VBA code will be modified 
so that the expression for the derivative is passed to the function as an argument. 

Fourth-Order Runge-Kutta Custom Function 
for a Single Differential Equation 
with the Derivative Expression Passed 
as an Argument 

The custom function Runge described in the preceding section simplifies the 
solution of an ordinary differential equation, but the VBA code must be modified 
for each case. The custom function to be described next permits the user to enter 
the expression for the derivative as an Excel formula in a worksheet cell and pass 
the expression to the custom function as an argument. This custom function uses 
the method employed in previous chapters: the Formula property is used to 
obtain the formula of (in this case) the derivative, the SUBSTITUTE function to 
replace a cell reference in the formula with a value, and the Evaluate method to 
calculate the value of the function. The VBA code is shown in Figure 10-7. The 
syntax of the function is Rungel (x-variable, y-variable, deriv-formula, 
interval). The arguments x-variable (the independent variable), y-variable (the 
dependent variable) and interval are as described in the previous section; the 



226 EXCEL NUMERICAL METHODS 

argument deriv-formula is a reference to a cell containing the derivative in the 
form of worksheet formula. 

A more advanced version that handles multiple differential equations will be 
presented later. 

Option Explicit 
Function Rungel (x-variable, y-variable, deriv-formula, interval) 
'Runge-Kutta method to solve ordinary differential equations. 
'Solves problems involving a single first-order differential equation. 
'Derivative expression passed as an argument. 

Dim FormulaText As String 
Dim XAddress As String, YAddress As String 
Dim X As Double, Y As Double 
Dim H As Double, result As Double 

'GET THE FORMULA AND REFERENCE ARGUMENTS 
FormulaText = deriv-formula.Formula 
'Make all references absolute 
FormulaText = Application.ConvertFormula(FormulaText, xlAl , xlAl , - 
xl Absolute) 
XAddress = x-variable.Address 'absolute is default 
X = x-variable.Value 
YAddress = y-variable.Address 'absolute is default 
Y = y-variable.Value 
Rungel = RKI (XAddress, YAddress, X, Y, interval, FormulaText) 
End Function 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Private Function RKI (XAddress, YAddress, X, Y, H, FormulaText) 
' Calculate the RK terms 
Dim T I  As Double, T2 As Double, T3 As Double, T4 As Double 
Dim result As Double 

Call eval(XAddress, YAddress, X, Y, FormulaText, result) 
T I  = result H 
Call eval(XAddress, YAddress, X + H I 2, Y + T I  / 2, FormulaText, result) 
T2 = result * H 
Call eval(XAddress, YAddress, X + H 12, Y + T2 12, FormulaText, result) 
T3 = result * H 
Call eval(XAddress, YAddress, X + H, Y + T3, FormulaText, result) 
T4 = result * H 
RKI = Y + (TI + 2 *T2 + 2 * T3 + T4) 16 
End Function 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Sub eval(XRef, YRef, XValue, Walue, ForrnulaText, result) 
'Evaluates the derivative formula. Replaces each instance of, e.g., $A$2 in 
formula with number value, e.g., 0.20, then evaluates. 
'Must do this replacement from end of formula to beginning. 
'Modified 03/08/06 to handle possible un-intended replacement of e.g., $A$2 in 
$A$22. 
'Method: replace $A$2 with value & " " 
'so that $A$22 becomes "0.20 2" and this formula evaluates to an error. 



CHAPTER 10 ORDINARY DIFFERENTIAL EQUATIONS. PART I 227 

I 

Dim T As String, temp As String 
Dim NRepl As Integer, J As Integer 
Dim dummy As Double 

T = FormulaText 
'First, do substitution of all instances of x address with value 
NRepl = (Len(T) - Len(Application.Substitute(T, XRef, I"'))) I Len(XRef) 
For J = NRepl To 1 Step -1 

temp = Application.Substitute(T, XRef, XValue & " ", J) 
On Error GoTo ErrorHandlerl 
dummy = Evaluate(temp) 
T = temp 

ptl: Next J 
'Then do substitution of all instances of y address with value 
NRepl = (Len(T) - Len(Application.Substitute(T, YRef, ""))) I Len(YRef) 
For J = NRepl To 1 Step -1 

temp = Application.Substitute(T, YRef, YValue 81 " ", J) 
On Error GoTo ErrorHandlerZ 
dummy = Evaluate(temp) 
T = temp 

pt2: Next J 
result = Evaluate(T) 
Exit Sub 

'ERROR HANDLER ROUTINES. 
ErrorHandlerl : 
'Trappable error number 13 (Type mismatch) is expected. 
If Err.Number = 13 Then 

On Error GoTo 0 
Resume ptl  'and continue execution. 

Else 
End 

End If 
ErrorHandlerZ: 
If Err.Num ber = 13 Then 

'Disable the error handler. 

'Some other error, so quit completely 

On Error GoTo 0 
Resume pt2 

Else 
End 

End If 
End Sub 

Figure 10-7. Custom function for Runge-Kutta calculation. 
(folder 'Chapter 10 Examples', workbook 'ODE Examples', module 'RungeKuttal') 

In Figure 10-8, the custom function is applied to the same first-order reaction 
kinetics problem that was calculated on a worksheet in the preceding sections. 
The formulas in cells C6 and D7 are, respectively, 

=-k*D6 

and = R u nge 1 (A6, D6, C6, A7-A6) 



228 EXCEL NUMERICAL METHODS 

Figure 10-8. Simulation of first-order kinetics by using a Runge-Kutta custom function. 
(folder 'Chapter 10 Examples', workbook 'ODE Examples', worksheet 'First Order') 

If you compare Figure 10-8 with Figure 10-3, you can see that the 
spreadsheet calculations are simplified considerably. 

Systems of First-Order Differential 
Equations 

Sometimes a system is described by several differential equations. For 
example, the coupled reaction scheme 

kl k3 

k2 k4 

A % B % C  

results in the simultaneous equations 

-- - -4 [All + k, [BI, 
d[All 

dt 
(10-17) 

(1 0-1 8) 



CHAPTER 10 ORDINARY DIFFERENTIAL EQUATIONS. PART I 229 

(1 0-1 9) 

The Runge-Kutta formulas can be used to solve systems of simultaneous 
differential equations, such as equations 10-17, 10-18 and 10-19. For a system 
with independent variable x, N dependent variables y,  and N differential equations 

( 1  0-20) 

(1 0-2 1) 

dyildx = Ft(x7 YI , ~ 2 ,  * - 3 Y N )  

T I ,  = Fi(x,Y1,Y2,*..,YN)AX 

the relationships are 

etc., and 

A,v~ = (7'1; + 2T2i + 27'3; + T4J6 ( 10-23) 

Systems of simultaneous differential equations, such as equations 10- 17, 10- 
18 and 10-19, can be solved by using worksheet formulas, but it is much more 
convenient to use a custom worksheet formula, described in the following 
section. 

Fourth-Order Runge-Kutta Custom Function 
for Systems of Differential Equations 

The simple Runge-Kutta custom function of Figure 10-4 was expanded so as 
to handle multiple differential equations, by using equations 10-2 1 through 10- 
23. The VBA code is shown in Figure 10-9. 

The syntax of the custom function is 
Runge3(x-variab/eY y-variables, deriv-formulas, interval, index). 

The argument x-variable is a reference to the cell containing the independent 
variable, the argument y-variables is a reference to the range containing the 
values of the N dependent variables, and the argument deriv-formulas is a 
reference to the range containing the formulas of the N derivatives, in the same 
order as y-variables. For y-variables and deriv-formulas, the user can enter a 
range of cells or make a nonadjacent selection. The argument increment is the 
Ax used in the calculation. The optional argument index specifies the dependent 
variable to return; if omitted, the function returns the complete array of 
dependent variables. In this case the user must select a range of cells in a row, 
enter the formula and then press CONTROL+SHIFT+ENTER. Since the function 
always calculates the complete array, this can save calculation time if several 
dependent variables are being returned. 



230 EXCEL NUMERICAL METHODS 

Option Explicit 
Option Base 1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Function Runge3(x_variable, y-variables, deriv-formulas, interval, Optional - 
index) 
'Runge-Kutta method to solve ordinary differential equations. 
'Solves problems involving simultaneous first-order differential equations. 

'x-variable is a reference to the independent variable x. 
'y-variables is a reference to the dependent variables y(1) ... y(N). 
'deriv-formulas is a reference to the derivatives dy(i)/dx, in same order. 
'interval is a reference to delta x 
'index specifies the y(i) to be returned. If omitted, returns the array. 

Dim FormulaText() As String, XAddr As String, YAddr() As String 
Dim J As Integer, N As Integer 

N = y-variables.Columns.Count 
If N = 1 Then N = y-variables.Rows.Count 
ReDim FormulaText(N), YAddr(N) 

'GET THE X REFERENCE, Y REFERENCE AND DERIVATIVE FORMULA 
XAddr = x-variable.Address 
F o r J = I T o N  

YAddr(J) = y-variables(J).Address 
FormulaText(J) = Application.ConvertFormula(deriv-formulas(J).Formula, - 

xlAl, xlAl, xlAbsolute) 
Next J 

If IsMissing(index) Then 

interval) 
Else 

interval) (index) 
End If 
End Function 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Private Function RK3(N, FormulaText, XAddr, YAddr, x-variable, y-variables, - 
H) 
Dim X As Double, Y() As Double, term0 As Double 
Dim J As Integer, K As Integer 
ReDim term(4, N), Y(N) 

Runge3 = RK3(N, FormulaText, XAddr, YAddr, x-variable, y-variables. 

Runge3 = RK3(N, FormulaText, XAddr, YAddr, x-variable, y-variables, - 

K = 1 : X = x-variable.Value 
For J = 1 To N: Y(J) = y-variables(J).Value: Next J 
Call eval3(N, FormulaText, XAddr, YAddr, X, Y, H, K, term) 

For J = 1 To N: Y(J) = y-variables(J).Value + term(1, J) / 2: Next J 
Call eval3(N, FormulaText, XAddr, YAddr, X, Y, H, K, term) 

K = 2: X = x-variable.Value + H / 2 



CHAPTER 10 ORDINARY DIFFERENTIAL EQUATIONS. PART I 23 1 

K = 3: X = x-variable.Value + H I 2  
For J = 1 To N: Y(J) = y-variables(J).Value + term(2, J) 12: Next J 
Call eval3(N, FormulaText, XAddr, YAddr, X, Y, H, K, term) 

For J = 1 To N: Y(J) = y-variables(J).Value + term(3, J): Next J 
Call eval3(N, FormulaText, XAddr, YAddr, X, Y, H, K, term) 

K = 4: X = x-variable.Value + H 

For J = 1 To N 
Y(J) = y-variables(J).Value+(term(l , J)+2*term(2, J)+2*term(3, J)+term(4, J)) / 6 
Next J 
RK3 = Y 
End Function 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Sub eval3(N, FormulaText, XAddr, YAddr, X, Y, H, K, term) 
Dim I As Integer, J As Integer 
Dim T As String 

ForJ = 1 To N 
T = FormulaText(J) 
Call SubstitutelnStringCT, XAddr, X) 
For I = 1 To N 

Next I 
terrn(K, J) = H * Evaluate(T) 

Call SubstitutelnStringCT, YAddr(l), Y(I)) 

Next J 
End Sub 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Sub SubstitutelnString(T, Ref, Value) 
'Replaces each instance of e.g., $A$2 in formula with number value, e.g., 0.20, 
then evaluates. 
'Must do this replacement from end of formula to beginning. 
'Modified 03/08/06 to handle possible un-intended replacement of e.g., $A$2 in 
$A$22. 
'Method: replace $A$2 with value & " " 
'so that $A$22 becomes "0.20 2" and this formula evaluates to an error. 

Dim temp As String 
Dim NReplacements As Integer, J As integer 
Dim dummy As Double 

'Substitute all instances of address with value 
NReplacements = (Len(T) - Len(Application.Substitute(T, Ref, "'I))) / Len(Ref) 
For J = NReplacements To 1 Step -1 

temp = Application.Substitute(T, Ref, Value 8, " ", J) 
On Error GoTo ErrorHandler 
dummy = Evaluate(temp) 
T = temp 

ptl :  Next J 
Exit Sub 

ErrorHandler: 
'Trappable error number 13 (Type mismatch) is expected. 



232 EXCEL NUMERICAL METHODS 

If Err.Number = 13 Then 
On Error GoTo 0 
Resume ptl  'and continue execution. 

Else 
End 

End If 
End Sub 

'Disable the error handler. 

'Some other error, so quit completely 

Figure 10-9. Fourth-order Runge-Kutta custom function 
for systems of differential equations. 

(folder 'Chapter 10 Examples', workbook 'ODE Examples', module 'RungeKutta3') 

Figures 10-1 0, 10-1 1 and 10- 12 illustrate the use of Runge3 to simulate some 
complex chemical reaction schemes. Figure 10-1 0 shows concentration vs. time 
for the consecutive first-order reaction scheme 

A + B + C  

for which the differential equations are 

0.005 

$ 0.004 
E 
i 
.p 0.003 
5 * 
C 

S 

3 0.002 
s 
0.001 

0.000 

1 

I > - 

0 2 4 6 8 10 
time, seconds 

(1 0-24) 

(1 0-25) 

(1 0-26) 

Figure 10-10. Runge-Kutta simulation of consecutive 
(folder 'Chapter 10 Examples', workbook 'ODE Examples', 



CHAPTER 10 ORDINARY DIFFERENTIAL EQUATIONS. PART I 233 

The parameters used in the simulation were [A10 = 5.00 x 1O-j mol L-', kl = 

Part of the spreadsheet is shown in Figure 10-11. The formulas for the 
0.5 s-' and k2 = 0.4 s-'. 

derivatives, in cells G I  0, H 10 and I1 0, are 

=-k-l *J 10 

=k-l*JlO-k-2*KlO 

=k_2*KI 0 

and the formulas in cells J11, K11 and L11 are 

=Runge3(AlO,JI O:L1O,G1O:llO,Al l -A l0 , l )  

=Runge3(AlO, J10:L10,G10:llO,Al l-A10,2) 

=Runge3(AlO,J1O:L1O,G1O:llO,Al l-A10,3) 

Figure 10-11. Spreadsheet for the Runge-Kutta simulation 
of consecutive first-order reactions. 

(folder 'Chapter 10 Examples', workbook 'ODE Examples', worksheet 'A->B->C') 



234 EXCEL NUMERICAL METHODS 

& 
E 
E" 
'3 0.010 E 
0 

c 
C 
0 
0 
C 
0 
0 

The arguments of the function can be entered in other ways. Two of these 
are illustrated in rows 12 and 13 of the spreadsheet. If the derivatives are located 
in non-adjacent cells, the deriv-formulas argument can be entered as a non- 
adjacent selection, as illustrated by the formula in cell J12: 

=Runge3(Al l , (Jl l ,Kl l ,Ll1),G11:11l,Al2-Al l , l )  

The cell references must be enclosed in parentheses and separated by commas. 
The function can also be entered as an array formula, as in cells J 13:L13 

{=Runge3(A12, J12:L12,G12:112,A13-A12)} 

In this simulation, the largest errors are about 0.05%. 
Figure 10-12 shows a second example, concentration vs. time for a second- 

order autocatalytic reaction scheme. An autocatalytic reaction is one in which a 
product acts as a catalyst for the reaction. The reaction has two pathways: an 
uncatalyzed path (A+B) and an autocatalytic path (A + B + 2B). The rate law 
(the differential equation) is 

4 A ] t / d t  = 4B]t/dt = ko[A]t + kl[Alt[Blt (1 0-27) 

The parameters used in the calculation were: ko = 1.00 x lo4 s-I, k, = 0.50 
M-' s-', C = 0.0200 M. The spreadsheet can be examined on the CD-ROM. 

. 

I 
0.020 

i 
0.000 

0 200 400 600 800 1000 1200 
time, seconds 

Figure 10-12. Runge-Kutta simulation of second-order autocatalytic reaction. 
(folder 'Chapter 10 Examples', workbook 'ODE Examples', worksheet 'Autocatalytic') 



CHAPTER 10 ORDINARY DIFFERENTIAL EQUATIONS. PART I 235 

Predictor-Corrector Methods 
The methods in the preceding sections are one-step methods. They need only 

the value of the preceding point to calculate the value of the new point. Thus 
they are self-starting methods. Predictor-corrector methods, on the other hand, 
use the values of two or more previous points to calculate the value of the new 
point. They are not self-starting; two or more known initial values are needed. 
Often a Runge-Kutta calculation is used to provide the needed values. 

Predictor-corrector methods use two formulas, the predictor equation and the 
corrector equation. There are many forms of predictor and corrector equations, 
but all operate according to the same principle: calculate an approximate value of 
the function using a predictor equation, then use a corrector equation to correct 
the value. 

A Simple Predictor-Corrector Method 
To illustrate the method we will modify the simple Euler method, equation 

10-6, as follows. The predictor equation is 

Yn+l = Y,-l + 2hF(x,,,y,) (1 0-28) 

which requires values at x,-t and x, to calculate Y,+~. 
approximate value for Y,+~, we use the corrector equation 

Once we have an 

( 10-29) 

to get an improved value of yn+l. The corrector equation is used iteratively: the 
value of y,+l is used to obtain an improved value of y,+l and the process is 
continued until a specified level of convergence is obtained. Two starting values 
are required, and generally only a single value at xo is provided as part of the 
statement of the problem; the fourth-order Runge-Kutta method can be used to 
obtain the other starting value. 

The worksheet shown in Figure 10-13 illustrates the application of this 
simple predictor-corrector formula. Again we use as an example the simulation 
of the first-order kinetic process A -+ B with initial concentration CO = 0.2000 
mol/L and rate constant k = 5 x s-'. Again, we use a time increment of 20 
seconds. 



236 EXCEL NUMERICAL METHODS 

Figure 10-13. Decreasing error in the Euler method 
by a simple predictor-corrector method. 

(folder 'Chapter 10 Examples', workbook 'ODE Examples', worksheet 'Predictor-Corrector Method') 

The predictor formula was entered in column B. The first two values, shown 
in bold, are the starting values; the predictor formula, in cell B6, corresponds 
exactly to equation 10-28 and is 

=B4+2*DX*-k*B5 

The corrector formula, in cell C6, corresponds exactly to equation 10-29 and 
is 

=$ B5+ DX*( -k*$ B5-k*B6)/2 

The preceding formula is used iteratively. The formula (note the use of 
relative and mixed references) was Filled Right to perform the iterations. The 
formulas in row 5 were added to display the difference between a corrected value 
and the preceding one (for example, the formula in cell C5 is 

=B1 I-C11 

and shows how the corrector formula converges). 

A Simple Predictor-Corrector Method 
Utilizing an Intentional Circular Reference 

An intentional circular reference can be used in the corrector formula to 
eliminate the need to Fill Right the corrector formula in order to perform the 



CHAPTER 10 ORDINARY DIFFERENTIAL EQUATIONS. PART I 237 

iterations. The corrector formula in cell C6 is changed from the formula shown 
above to 

=$65+DX*(-k*$BS-k*CG)/2 

which creates a circular reference, since cell C6 refers to itself. A circular 
reference is usually an error; Excel displays the "Cannot resolve circular 
references" error message and puts a zero in the cell. In this case, however, the 
circular reference is intentional. We can make Excel recalculate the value in 
each cell, using the result of the previous iteration. To "turn on" iteration, choose 
Tools + Options -, Calculation and check the Iteration box. Unless you change 
the default settings for iteration, Microsoft Excel stops calculating after 100 
iterations or after the circular reference value changes by less than 0.00 1 between 
iterations, whichever comes first. Enter 1E-9 in the Maximum Change box. 
When you press OK the iterative circular reference calculation will begin. You 
can Fill Down the formula into the remaining cells in column C. The 
calculations in columns D-F are no longer needed and can be deleted. The 
spreadsheet is shown in Figure 10-14. 

The value displayed in cell C6 is identical to the value that would be 
obtained by extending the corrector formula to, in this case, the tenth iteration 
(these calculations can be seen in columns G-L in the spreadsheet of Figure 10- 
13). 

The errors obtained by using the modified Euler method are significantly less 
than with the simple Euler method, but greater than with the fourth-order Runge- 
Kutta method. 

Figure 10-14. A simple predictor-corrector method utilizing a circular reference. 
(folder 'Chapter 10 Examples', workbook 'ODE Examples', worksheet 'Predictor-Corrector Method (2)') 



238 EXCEL NUMERICAL METHODS 

Higher-Order Differential Equations 
Differential equations of higher order can also be solved using the methods 

described in this chapter, since a differential equation of order n can be converted 
into a set of n first-order differential equations. For example, consider the 
following second-order differential equation (equation 10-30) that describes the 
damped vibration of a mass m connected to a rigid support by a linear spring with 
coefficient k, and a vibration damper with coefficient kd, illustrated in Figure 10- 
15. 

Figure 10-15. A damped vibration system. 

d2x dx 
dt dt 

m---+kd-+ksx=O 

Equation 10-30 can be rearranged to 

(10-30) 

( 1  0-30a) 

The values of the mass, spring coefficient and damper coefficient are shown 
in Figure 10-16. We want to calculate the position x of the mass at time intervals 
from t = 0, when the mass has been given an initial displacement of 10 cm from 
its rest position. 

Figure 10-16. Parameters used in the damped vibration calculation in Figure 10-17. 
(folder 'Chapter 10 Examples', workbook 'ODE Examples', worksheet '2nd Order ODE') 



CHAPTER 10 ORDINARY DIFFERENTIAL EQUATIONS. PART I 239 

We define x as the displacement of the mass from its rest position at any time 
t ,  and X I  = dxfdt. Then, since d 2 x f  dt2 = d  ldt(dxf d t ) ,  equation 10-30 can be 
written as the two equations 

dx - = x' 
dt 

(10-3 1) 

(10-32) 

You can now use the methods described previously for systems of first-order 
differential equations to solve the problem. 

Figure 10-17 shows part of a spreadsheet describing the displacement x of 
the damped system as a function of time. The formula for the second derivative, 
in cell E6, is 

=(-kd*C6-ks*B6)/(m*0.01) 

(The mass m is multiplied by 0.01 to convert it from kg to N s2 cm-', in order to 
obtain the displacement in cm.) The custom function Runge3 is used in columns 
B and C to calculate x (in column B) and X I  (in column C); the array formula 
entered in cells 87 and C7 is 

{=Runge3(A6,B6:C6,D6:E6,A7-A6)} 

The value of X I  is in both columns C and D, since the same value is both the x 
value (in column C) and the derivative (in column D); the formula in cell D6 is =C6. 

Figure 10-17. Portion of the spreadsheet for damped vibration calculation. 
The initial values for the calculation are in bold. 

(folder 'Chapter 10 Examples', workbook 'ODE Examples', worksheet '2nd Order ODE') 



240 EXCEL NUMERICAL METHODS 

The displacement as a function of time, from 0 to 1 second, is shown in 
Figure 10-18. 

6 

5 

g 4  
' i i 3  Y 

-1 

-2 
0.0 0.2 0.4 0.6 0.8 1 .o 

time (t), s e c o n d s  

Figure 10-18. Damped vibration. 
(folder 'Chapter 10 Examples', workbook 'ODE Examples', worksheet '2nd Order ODE') 



CHAPTER 10 ORDINARY DIFFERENTIAL EQUATIONS. PART I 24 1 

Problems 

Answers to the following problems are found in the folder "Ch. 10 (ODE)" in the 
"Problems & Solutions" folder on the CD. 

1. 

2. 

3. 

4. 

5. 

6. 

A function is described by the differential equation dyldt = 1 - t f i  . 
Calculate y for t = 0 to t =5, in increments of 0.1. 

A function is described by the differential equation 

dy - 1 - 2x2 /(1+ x2) 
- - 

dx l + x 2  
Calculate y for x = 0 to x = 6. 

A function is described by the differential equation 

y - arctan(x1 + 
dx l + x  

Calculate y for x = 0 to x = 2.5. Adjust the magnitude of Ax for different 
parts of the calculation, as appropriate. 

Trajectory I. Consider the motion of a projectile that is fired from a cannon. 
The initial velocity of the projectile is vo and the angle of elevation of the 
cannon is B degrees. If air resistance is neglected, the velocity component of 
the projectile in the x direction (x') is vo cos 8 and the component in the y 
direction is vo sin B-gt. Use Euler's method to calculate the trajectory of the 
projectile. For the calculation, assume that the projectile is a shell from a 
122-mm field howitzer, for which the muzzle velocity is 560 d s .  (Getting 
started: create five columns, as follows: t, XI, y', x, y. Calculate x and y, the 
coordinates of distance traveled, from, e.g., x (+~  = xt + x,'At.) Verify that the 
maximum range attainable with a given muzzle velocity occurs when B = 
45". 

Trajectory 11. Without air resistance, the projectile should strike the earth 
with the same yl that it had when it left the muzzle of the cannon. Because of 
accumulated errors when using the Euler method, you will find that this is 
not true. Repeat the calculation of problem number 1 using RK4. 

Trajectory III. To produce a more accurate estimate of a trajectory, air drag 
should be taken into account. For speeds of objects such as baseballs or 
cannonballs, air drag can be taken to be proportional to the square of the 



242 EXCEL NUMERICAL METHODS 

velocity, f = Dv2. The proportionality constant D = 0.5pCA, where p is the 
density of air, A is the cross-sectional area of the projectile and C, the drag 
coefficient, is a dimensionless quantity that depends on the shape of the 
projectile. The forces acting on a projectile in flight are illustrated in the 
following figure. 

g 

Combining the above equation for the air drag and the relationship between 
force and acceleration, f = ma, we get, for the "deceleration" in the x- 
direction, x" = -Dv:/m; y" = -Dv;lm-g. 
Calculate the trajectory of a baseball hit at angle 8= 30" with initial velocity 
50 m / s .  The parameters of the baseball are: mass 145 g, circumference 23 
cm (from Rules of Baseball, Major League Baseball Enterprises, 1998). For 
air resistance, use p = 1.2 kg/m2 and the drag coefficient C = 0.5. 
(Getting started: create eight columns, as follows: t ,  XI', y", XI, y', v, x,  y.  At t 
= 0, XI and y' are calculated as in the previous problem, but for subsequent t 
values, they are calculated by the Euler method, using the previous values of 
XI' and y". Calculate x and y,  the coordinates of distance traveled, using, e.g., 
xt+l = xt + x;At + '/2Xl"(At)2.) 

7. Pendulum Motion I. The motion of a simple pendulum, consisting of a 
mass Mat the end of a rod of length L, is described by the following first- 
order differential equation: 

dw - g  s in8  
d8 L w 
-=-- 

where w = angular velocity (radls) 
8= angle of displacement from equilibrium position 
g=  9.81 m/s2 
L =  1.0m 

Calculate the angular velocity of the pendulum beginning with the initial 
conditions 8= lo", w =  0.3. 



CHAPTER 10 ORDINARY DIFFERENTIAL EOUATIONS. PART I 243 

8. Pendulum Motion 11. The motion of a simple pendulum as a function of 
time is described by the following second-order differential equation: 

d2B g -+-e=o 
dt2 L 

where the terms in the equation are as defined in the preceding problem. 
Generate a table of angle of displacement as a function of time from t = 0 to t 
= 2 seconds, with B= 10' and dB/d = 0 at t = 0 . 

9. Liquid Flow. A cylindrical tank of diameter D is filled with water to a 
height h. Water is allowed to flow out of the tank through a hole of diameter 
d i n  the bottom of the tank. The differential equation describing the height of 
water in the tank as a function of time is 

where g is the acceleration due to gravity. Produce a plot of height of water 
in the tank as a function of time for D = 10 ft, d = 6 in and ho = 30 ft. 
Compare your results with the analytical solution h = (6 - kt/2) , where 

k = (d  / D2)& . 

2 

10. Chemical Kinetics I. Calculate concentrations as a function of time for the 
second-order reaction 

k 
A + B - + C  

for which 4 A ] / d t  = -d[B]/dt = d[C]/dt = k[A][B]. Use [A], = 0.02000, 
[B]o = 0.02000, k = 0.050 s-'. Calculate concentrations over the time range 
from 0 to 500 seconds. 

1 1. Chemical Kinetics 11. Use the Runge custom function to calculate [A], [B] 
and [C] for the coupled reaction scheme 

kl k3 
A = B = C  

k2 k4 

using [Ale = 0.1, [BIo = 0, [C], = 0 mol L-I, kl = 1 s-I, k2 = 1 s-I, k3 = 0.1 s-' 
and k4 = 0.01 s-', over the range 0-100 s. 

12. Chemical Kinetics 111. Repeat #8, using [A], = 0, [B]o = 0.1, [C], = 0 mol 
L-' 



244 EXCEL NUMERICAL METHODS 

13. Chemical Kinetics N. Repeat #8, using [A10 = 0, [B]o = 0, [C]O = 0.1 mol 
L-' . 



Chapter 11 

Numerical Integration of 
Ordinary DHerential Equations 

Part 11: Boundary Conditions 

In the preceding chapter, we saw that a differential equation of order n could 
be converted into a set of n first-order differential equations. For example, if the 
problem to be solved is a second-order differential equation, it is converted into 
two first-order differential equations; two "known" values of the function or its 
derivative will be needed in order to solve the problem. In the second-order 
differential equation example illustrated in Figure 10-16, the value of the 
function and its first derivative were both known at x = 0. The problem was then 
solved using the standard methods described in Chapter 10. 

If information about a second-order differential equation is known at two or 
more different values of the independent variable, then the problem is known as a 
boundary-value problem (BVP). The points where the function is known are 
usually (but not always) the limits of the domain of interest - hence the term 
boundary-value problem. Problems of this type must be solved by different 
methods than those we applied to initial-value problems. 

Two approaches are commonly used to solve boundary-value problems: the 
"shooting'' method and the finite-difference method. This chapter shows how to 
apply these methods to differential equations of order two; fortunately, most 
important physical systems are described by differential equations of order no 
higher than two. 

The Shooting Method 
The shooting method is a trial-and-error method. To solve a problem where 

the values of y are known at xo and x,, the boundaries of the interval of interest, 
we set up the problem as though it were an initial-value problem, with two 
llknowns" given at the same boundary - for example, at xo. (See Figure 10-17 
for an example of an initial-value problem of this type: the two knowns, shown in 
bold, are the value of y at xo and a trial value of y' at xo.) Using the trial value of 

245 



246 EXCEL: NUMERICAL METHODS 

y', we calculate y for a suitable range of x values from xo to x,, and compare the 
calculated value of y at x, with the known value. If the calculated value does not 
agree with the known value, we repeat the calculations with a different trial value 
of y', until we calculate a value of y at the other boundary, x,,, that agrees with the 
boundary value, hence the name "shooting method." 

An Example: Deflection of a Simply Supported Beam 
A simply supported beam (a beam supported at the ends) is bent downwards 

by the applied load, consisting of the weight of the beam itself plus any other 
loads. 

Figure 11-1. Diagram of a simply supported beam. 

The simply supported steel beam shown in Figure 11-1 supports a uniformly 
distributed load of 2000 lblft. The length L of the span is 30 feet. The deflection 
(downward bending displacement) y of the beam as a function of distance x along 
the span of the beam is given by the second-order differential equation 1 1-1, 
known as the general equation of the elastic curve of a deflected beam. 

d2y - M 
dx2 EI 

(11-1) 

M, the bending moment at distance x ,  is given by equation 1 1-2 

M =  (WLXB) - (WX2/2) (1 1-2) 
where L is the length of the beam and w is the weight of the beam per unit length. 
E is the modulus of elasticity of the beam material; for carbon steel, E = 2.9 x 10' 
psi, and I is the moment of inertia of the cross section of the beam, given by 
equation 1 1-3. 

I =  bh3/12 (1 1-3) 

where b is the width and h the height of the beam cross section. In this example, 
for a beam 6 in wide x 16 in deep, I = 2048 in4. 

Equation 1 1 - 1 can be transformed into the two equations 

= z  - dY 
dx 

dz A4 
dx EI 
-=- 

(1 1-4) 

ans (1 1-5) 

where z is the slope of the beam. 



CHAPTER 11 ORDINARY DIFFERENTIAL EOUATIONS. PART I1 247 

We want to calculate the amount of deflection of the beam at the center of 
the span. Since the deflection is known to be zero at either end of the beam 0, = 
0 at x = 0 and y = 0 at x = 30), this is a boundary value problem. We will solve it 
by using the shooting method. We set up the problem as though it were an 
initial-value problem, with two "knowns" given at the same boundary, x = 0 in 
this example. The two known values are the value of y at x = 0 and a trial value 
ofz at x = 0. 

The spreadsheet used to solve the problem is shown in Figure 11-2. To 
ensure consistency in units, all dimensions have been converted to inches. The 
values of y along the beam were calculated at increments of 2 inches (rows 13- 
182 are hidden). For simplicity, the values of deflection y and slope z in rows 6 
through 185 were calculated by using Euler's method; the formulas in cells B6 
and C6 are, respectively, 

=B5+C5*(A6-A5) 

=C5+E5*(A6-A5) 

Figure 11-2. Simulation of beam deflection by the shooting method. The boundary 
values of the deflection and the initial trial value of the slope are in bold. 

Note that the rows between 12 and 183 have been hidden. 
(folder 'Chapter 1 1 Examples', workbook 'ODE-BVP, worksheet 'Beam deflection (Euler)') 



248 EXCEL: NUMERICAL METHODS 

Figure 11-3. Calculating the boundary condition by linear interpolation. 
(folder 'Chapter 1 1 Examples', workbook 'ODE-BVP', worksheet 'Beam deflection (Euler)') 

With a trial value of z = 0, the value of y calculated at x = 360 is not zero, but 
1.9420. We will now proceed to vary z in order to make y = 0. One method that 
can be used to find the correct value of z is to calculate two values of y at the 
upper boundary (x = 360), using two trial values of z at the lower boundary (x = 
0),  and then calculate an improved value of z by using linear interpolation to find 
the value that makes y = 0. Here, the trial values of z (the slope of the beam) that 
were used were zero and -0.1. These values of z were entered in cell C5; the 
resulting values of y that were obtained at x = 360 (in cell B185) are shown in 
Figure 11-3. 

Figure 11-4. Simulation of beam deflection by the shooting method. 
The final boundary values and the final value of the slope are shown in bold. 

(folder 'Chapter 1 1 Examples', workbook 'ODE-BVP', worksheet 'Beam deflection (Euler)') 



CHAPTER 1 1  ORDINARY DIFFERENTIAL EOUATIONS. PART I1 249 

The calculated value of z for the required boundary value is shown in the 
third row of the table. The formula in cell H8 is 

=H6-16*(H7-H6)/(17-16) 

If the problem is linear, the interpolated value of z obtained in this way will 
be the desired solution. The spreadsheet with final values is shown in Figure 11- 
4. A similar spreadsheet in which the y values were calculated using the Runge 
custom function can be seen on the CD-ROM. 

This "shooting" procedure was performed manually-that is, successive trial 
values were entered into the spreadsheet, and the resulting values copied and 
pasted into the cells shown in Figure 1 1-3, in order to use interpolation to find the 
final value. You can obtain the same final result essentially in one step by using 
Goal Seek. After entering a trial value, z = 0, in cell C6, use Goal Seek to change 
cell C6 to make the target cell, 61 85, attain a value of zero. 

The maximum 
deflection, at the midpoint of the beam, is 0.6138 in, within the allowable 
deflection limit of 1/360 of the span. For comparison, the analytical expression 
for the deflection at the midpoint of the span, 5wL4/384EI, yields 0.6137 in. 

The final results are shown in Figures 11-4 and 11-5. 

0 60 120 180 240 300 360 
Distance, in 

Figure 11-5. Beam deflection calculated by the shooting method. 
(folder 'Chapter I 1 Examples', workbook 'ODE-BVP', worksheet 'Beam deflection (Euler)') 

Solving a Second-Order Ordinary Differential Equation 
by the Shooting Method and Euler's Method 

Consider an unknown function y = F(x) that obeys the second-order 
differential equation y" - y = 0 and that is known to have boundary values of y = 
0 a t x =  0 and y = 3.63 a t x  = 2. 



250 EXCEL: NUMERICAL METHODS 

To solve the second-order differential equation 

y = o  -- d2Y 
dx 

we express it as two first-order differential equations: 

dz 
_- y = o  
dx 

and 

(11-6) 

(1 1-7) 

(1 1-8) 

The initial calculation, using a trial value of z = 0, is shown in Figure 1 1-6. 

Figure 11-6. Preparing to solve the differential equation y" - y  = 0 
by the shooting method. The initial boundary values 
and the initial trial value of the derivative are in bold. 

(folder 'Chapter 1 1 Examples', workbook 'ODE-BVP', worksheet 'y"-y'O (Euler)') 

As before, we will use Euler's method to develop an inaccurate but simple 
solution to the problem, then obtain a more accurate result by using the RK 
method. Euler's method formulas were used to calculate the values of y and z. 
The formulas used in cells C7 and D7 are, respectively 

=B6*(A7-A6) 

and 

=D6+C7 



CHAPTER 1 1  ORDINARY DIFFERENTIAL EQUATIONS. PART I1 25 1 

The Eulerk method calculation was performed in two steps in these two cells 
so as to make it convenient to convert to the RK calculation, as will be described 
in the following section. 

Using an initial estimate of 1 for dy/dx, the boundary value at x = 2.0, in cell 
F34, is 3.3030. Goal Seek was used to find the value of z that produced the 
desired boundary value, y = 3.63. The final calculations are shown in Figure 1 1 - 
7, together with the values calculated from the exact expression, y = sinh x, and 
the percentage error. 

Figure 11-7. Final values for the solution of the differential equation y" - y  = 0 
by the shooting method, using Euler's method to calculate y' and y. 

(folder 'Chapter 1 1 Examples', workbook 'ODE-BVP', worksheet 'y"-y'O (Euler)') 

In this example, the errors resulting from the use of Eulerls method to 
perform the calculations are rather large, in some cases as large as 10%. A 
convenient way to reduce the level of error in the calculations is to use Euler's 
method with a smaller hx. For the preceding problem, when a hx value of 0.01 is 
used instead of 0.1 (281 rows of calculation instead of 29), the maximum error is 
1% instead of the 10% seen in Figure 11-7. 

Solving a Second-Order Ordinary Differential Equation 
by the Shooting Method and the RK Method 

Using the Runge-Kutta method should produce much smaller errors than 
does Euler's method. Figure 11-8 shows the application of the RK method to the 
preceding problem, the solution of the differential equation y" - y = 0. Four 
columns, B:F, were inserted and labeled TZ1.. .TZ4, for the four RK terms used 
to calculate z. Similarly, four columns were inserted for the calculation of y .  As 
in Figure 11-7, the values in bold are the two boundary values (in cells G6 and 
L6) and the target value (cell L34). Columns B through G contain the series of 



F
ig

ur
e 

11
-8

. 
Fi

na
l v

al
ue

s 
fo

r t
he

 s
ol

ut
io

n 
of

 th
e 

di
ff

er
en

tia
l e

qu
at

io
ny

" -
y

 =
 0

 
by

 th
e 

sh
oo

tin
g 

m
et

ho
d,

 u
si

ng
 th

e 
R

K
 m

et
ho

d 
to

 c
al

cu
la

te
 y

' a
nd

 y
. 

(f
ol

de
r 

'C
ha

pt
er

 1
1 

E
xa

m
pl

es
', 

w
or

kb
oo

k 
'O

D
E

-B
V

P'
, w

or
ks

he
et

 'y
"-
y'
O 

(R
K

)')
 



CHAPTER 1 1  ORDINARY DIFFERENTIAL EOUATIONS. PART I1 253 

RK formulas to calculate z, columns H through M a similar series to calculate y .  
The RK formulas in cells C7 through G 7  are, respectively 

=B6*( A7-A6) 

=( B6+C7/2)*(A7-A6) 

=( B6+ D7/2)*( A7-A6) 

=( B6+E7)*(A7-A6) 

=G6+(C7+2*D7+2*E7+F7)/6 

As expected, application of the RK method reduces the errors significantly. 
The results from the more precise calculation are shown in Figure 11-9. Every 
fifth data point has been plotted. 

Even better accuracy can be obtained by using the RK method with a smaller 
kc. When a kc value of 0.0 1 is used instead of 0.1, the maximum error is 0.25% 

0 1 2 3 

x 

Figure 11-9. Solution of the differential equationy" - y  = 0 by the shooting method, 
using the RK method to calculate y' and y. Maximum error is ca. 1%. 

(folder 'Chapter 1 1 Examples', workbook 'ODE-BVP', worksheet 'y"-y=O (RK)') 



254 EXCEL: NUMERICAL METHODS 

Finite-Difference Methods 
As described in the following, approximating the derivative of a function by 

a finite difference quotient will allow us to reduce a boundary-value problem to a 
system of simultaneous equations that can be solved by methods that have been 
discussed in Chapter 9. Problems that are difficult or impossible to solve by the 
shooting method may sometimes be solved by the finite-difference method. 

Consider a two-point boundary value problem, where y is known at the ends 
of the range and the expression for the second derivative y" is given. For a 
differential equation of the general form 

y" + ay = bx + c (1 1-9) 

where a = F(x), we can replace the second derivative y" by the central difference 
formula 

1 ,  - Yi+l - 2Yi + Yi-1 
h2 

Y -  

where h = Ax (equation 1 1-1 O assumes equally spaced x values) to obtain 

(1 1-10) 

(1 1-1 1) 

where xI and yj represent the point at which the derivative is calculated. 
Rearranging equation 1 1 - 1 1 yields 

yl+1 + (h2a - 2 ) ~ ,  + yI-l= h2 (bxj + C) (1 1-12) 

We now divide the interval between the two boundary values into n equal parts to 
yield n simultaneous equations obtained from equation 11-12. The procedure is 
best illustrated by an example. 

Solving a Second-Order Ordinary Differential Equation 
by the Finite-Difference Method 

We wish to solve the boundary value problem 

(1 1-13) 

with boundary values y = 2 at x = 1 and y = -1 at x = 3. The differential equation 
is of the general form of equation 11-9 with a = -(0.15-x/2.3), b = 1 and c = 0. 
For this simple example, we will subdivide the x interval, x = 1 to x = 3, into ten 
subintervals; thus h = 0.2 and the x values defining the subintervals (sometimes 
called the meshpoints) are x1 = 1 .O, x2 = 1.2, . . ., x11 = 3.0. We can now write an 
equation of the form 



CHAPTER 1 1  ORDINARY DIFFERENTIAL EQUATIONS. PART I1 255 

for each subinterval. Since y is known at the ends of the interval, we need to 
write only nine simultaneous equations (e.g., at x2 = 1.2): 

y~ i- ((0.2)2(- 0.15 + x2/2.3) - 2)y2 +y3 = (0.2)2~2 

2 - 1.985~2 + J+ = 0.048 

1 .985y2 + y3 = -1.952 

at x3 = 1.4: 

y2 - (2 - (0.15 - ~3/2.3)(0.2)~)~,  +y4 = (0.2)2~3 

y2 - 1.982~3 + y4 = 0.056 
and at xIo = 2.8: 

y9-(2 -(0.15 -xl0/2.3)(0.2)~)ylo +yll=(0.2)2~10 

y9- 1.957ylo- 1 =0.112 

y9- 1.957ylo= 1.112 

These simultaneous equations can be expressed in matrix form: 

-1.985 I 0 0 0 0 0 0 0 
1 -1.982 1 0 0 0 

0 1 -1.978 1 0 0 

0 0 1 -1.975 1 0 

0 0 0 1 -1.971 1 

0 0 0 0 1 -1.968 
0 0 0 0 0 1 -  

0 0 0 0 0 0 
0 0 0 0 0 0 

0 0 0 
0 0 0 
0 0 0 
0 0 0 

1 0 0 

-1.964 1 0 

1 -1.961 1 

0 1 -1.957 

(1 1-15) 

(11-15a) 

(1 1-15b) 

(1 1-16) 

(1 1 - 16a) 

(1 1-17) 

(1 1-17a) 

(1 1-17b) 

-1.952 

0.056 

0.064 

0.072 

0.080 

0.088 

0.096 

0.104 

1.1 12 

and can be solved by any of the methods described in Chapter 9. 
The elements of the coefficients matrix and the constants vector can be 

generated easily by means of the spreadsheet layout illustrated in Figure 11-10. 
The formulas in cells C9 and F9 are, respectively, 

=-(p-dq) 

=-( 2-a*h A2) 



256 EXCEL: NUMERICAL METHODS 

It is important to remember that the formulas for the first and last terms of 

= hA2*b b*x+ hA2*cc 

the constants vector are different. The formula in cells G10:G16 is 

while the formulas in cells G9 and G I  7 are, respectively, 

=h"2*bb*x+ hA2*cc-B8 

and 

=h"2*bb*x+hA2*cc-BI 6. 

Be careful not to Fill Down the wrong formula when constructing a worksheet. 

Figure 11-10. Portion of the spreadsheet to solve the second-order differential equation 
y" - (0.15 - x/2.3)y = x by using the finite-difference method. 

(folder 'Chapter 1 1 Examples', workbook 'ODE-BVP', worksheet 'Finite Difference 1') 

The coefficients matrix (Figure 11-11) was assembled from the values in 

=IF( ROW()-top=COLU MN()-left, INDIRECT("F"&ROW()), I F(ABS(( ROW()-top) 

in cell 19 and filling the formula into the 9 x 9 matrix of cells 18:Q16 to produce 
the matrix shown in Figure 11-1 1. The cell 19 was assigned the name TopCell 

columns F and G by entering the formula 

-(COLUMN()-left))=l, 1 ,O)) 



CHAPTER 1 1 ORDINARY DIFFERENTIAL EOUATIONS. PART I1 257 

and the following named formulas were entered by using Insert-+Name+ Define.. . 
left: =COLUMN(TopCell) 

top: =ROW(TopCell) 

Figure 11-1 1. Coefficients matrix to solve the second-order differential equation 
y" - (0.15 - x/2.3)y = x by using the finite-difference method. The matrix is generated 

fiom the matrix terms in column F of Figure 11-10, then Fill Right. 
(folder 'Chapter 1 1 Examples', workbook 'ODE-BVP', worksheet 'Finite Difference 1') 

The solution vector was produced by the array formula 

{=MMULT(MINVERSE(l9:Ql7),G9:G17)} 

Figure 11-12. Results vector for the second-order differential equation 
y" - (0.15 - x/2.3)y = x solved by using the finite-difference method. 

(folder 'Chapter 1 1 Examples', workbook 'ODE-BVP', worksheet 'Finite Difference 1') 



258 EXCEL: NUMERICAL METHODS 

Solving a Second-Order Ordinary Differential Equation 
by the Finite-Difference Method: 
Another Example 

In preceding sections, we used Euler's method and the Runge-Kutta method 
to solve the second-order differential equation y" - y = 0 by the shooting method. 
This differential equation can be solved readily by using the finite-difference 
method. 

By comparison with equation 11-9, we see that a = -1, b = 0, c = 0. The 
elements of the coefficients matrix and the constants vector, calculated as before, 
are shown in Figure 1 1 - 13. 

Figure 11-13. Portion of the spreadsheet to solve the second-order differential equation 
y" - y = 0 by using the finite-difference method. 

(folder 'Chapter 1 1 Examples', workbook 'ODE-BVP', worksheet 'Finite Difference 2') 

The errors in the finite-difference method are proportional to llh2, so 
decreasing the interval from h = 0.3 to h = 0.1 reduces the errors by 
approximately one order of magnitude. 



CHAPTER 11 ORDINARY DIFFERENTIAL EQUATIONS. PART I1 259 

In order to simplify the construction of the coefficients matrix, you can use 
the spreadsheet layout shown in Figure 11-14. The formula in cell 17, which has 
been assigned the name top, is 

=IF(ROW()-ROW(tOp)=COLUMN()-COLUMN(tOp),lNDlRECT("F"&ROW()), 
IF(ABS((ROW()-ROW(tOp))-(COLUMN()-COLUMN(tO~)))~l, 1 ,O)) 

Figure 11-14. Coefficients matrix to  solve the second-order differential equation 

(folder 'Chapter 11 Examples', workbook 'ODE-BVP, worksheet 'Finite Difference 2') 
y" - y  = 0. 

To create the spreadsheet, do the following: 
Enter the desired range of x values in column A. This is best done by 
inserting rows within the range of x values, so as to preserve the formulas in 
the last row. 
Enter the boundary values of y in the first and last rows. 

Enter values or expressions for the coefficients a, b and c in cells C13, D13 
and E13, and Fill Down. 
Select cell 17 and Fill Down, then Fill Right, to create the coefficients 
matrix. 
Select the cell containing the formula for the results vector and Fill Down. 
Enter the formula by pressing CONTROL+SHIFT+ENTER. 

The results vector is shown in Figure 1 1 - 15 and a plot of the results in Figure 
11-16. 



260 EXCEL: NUMERICAL METHODS 

Figure 11-15. Results vector from the solution of the differential equation 
y" - y  = 0 by the finite-difference method. 

(folder 'Chapter 1 1 Examples', workbook 'ODE-BVP', worksheet 'Finite Difference 2') 

12 

10 

8 

* 6  

4 

2 

0 
0 1 2 3 

X 

Figure 11-16. Solution of the differential equation y" - y = 0 
by the finite-difference method. 

(folder 'Chapter 1 1 Examples', workbook 'ODE-BVP', worksheet 'Finite Difference 2') 



CHAPTER 1 1  ORDINARY DIFFERENTIAL EQUATIONS. PART I1 26 1 

A Limitation on the Finite-Difference Method 
As with other methods, decreasing the size of the x increment will increase 

the accuracy of the calculations. But be aware that there are size limitations for 
Excel's MMULT and MINVERSE matrix functions: the size of the array must not 
exceed 52 columns by 52 rows. 



262 EXCEL: NUMERICAL METHODS 

Problems 

Answers to the following problems are found in the folder "Ch. 11 (BVP)" in the 
"Problems & Solutions" folder on the CD. 

1. 

2. 

3. 

4. 

5 .  

6 .  

7. 

Repeat the beam deflection example at the beginning of this chapter, using 
the Runge-Kutta method instead of Euler's method. Use Goal Seek.. . to 
solve the problem. What is the maximum beam deflection? 

Modify the beam deflection example at the beginning of this chapter, so that 
200 rows of calculation are performed, and the length of the beam L is a 
variable. Use Goal Seek.. . to solve the problem. What is the maximum 
beam deflection for a 400-in beam, the other parameters (w, E, I) remaining 
constant? 

Use the shooting method and Goal Seek.. . to solve 

y" = x + (1 -x2)y 

where y( 1) = 2 and y(3) = 0. Use the Runge-Kutta method to calculate y.  

Use the shooting method and Goal Seek.. . to solve 

29' - XY' + 3y = 3 

where y(0) = 1 and y( 1) = -6. Use the Euler method to calculate y and y' 

Use the shooting method and Goal Seek.. . to solve 

y" - xy' + 3y = 0 

where y(0) = 1 and u( 10) = 257. Use the Euler method to calculate y and y'. 

Use the shooting method and Goal Seek.. . to solve 

y" + xy' - 3y = 0 

where y(-3) = -9 and y(7) = 9 1. Use the Euler method to calculate y and y'. 

Repeat problem 3 using the Runge-Kutta method to calculate y and y'. 



Chapter 12 

Partial 
Differential Equations 

For a function F(x,y) that depends on more than one independent variable, 
the partial derivative of the function with respect to a particular variable is the 
derivative of the function with respect to that variable while holding the other 
variables constant. For a function of two independent variables x and y,  the 
partial derivatives are B(x,y)/& (y held constant) and B(XJ)/+ (x held 
constant). There are three second-order partial derivatives for the function 
F(x,y): 8F(x,y)l&’, 8F(x,y)/&+ and ~?F(x,y) /$~.  

Many physical systems are described by equations involving partial 
differential equations (PDEs). In this chapter, discussion will be limited to linear 
second-order partial differential equations in two independent variables. Typical 
examples include the variation of a property in two spatial dimensions, or the 
variation of a property as a function of time and distance. 

Elliptic, Parabolic and Hyperbolic 
Partial Differential Equations 

A general form of the partial differential equation (up to the second order) is 

(12-1) 

where the coefficients a . . .fare functions of x and y.  Of course, a particular 
differential equation may be much simpler than equation 12-1. Depending on the 
values of the coefficients a, b and cy a partial differential equation is classified as 
elliptic, parabolic, or hyperbolic. A partial differential equation is elliptic if b2 - 
4ac < 0, parabolic if b2 - 4ac = 0, hyperbolic if b2 - 4ac > 0. 

263 



264 EXCEL: NUMERICAL METHODS 

In many physical models, x represents space and y represents time. The 
partial differential equation known as Laplace's equation (equation 12-2) is an 
example of an elliptic partial differential equation. 

( 12-2) 

Elliptic equations are often used to describe the steady-state value of a function 
in two dimensions. Parabolic partial differential equations are often used to 
describe how a quantity varies with respect to both distance and time. The one- 
dimensional thermal diffusion equation 

( 12-3) 

describing the temperature T = F(x,t) at position x and time t in a material with 
thermal diffusion coefficient K is an example of a parabolic equation (a = b = 0, c 

= K ,  thus b2 - 4ac = 0). A similar equation, Fick's Second Law, describes the 
diffusion of molecules or ions in solution, diffusion of dopant atoms into a 
semiconductor, and so on. 

Hyperbolic partial differential equations, involving the second derivative 
with respect to time, are used to describe oscillatory systems. The wave equation 
in one dimension, 

( 1  2-4) 

describes the vibration of a violin string. Equation 12-4 is an example of a 
hyperbolic partial differential equation (a = -k, b = 0, c = 1 ,  thus b2 - 4ac = 4k). 
Other applications include the vibration of structural members or the 
transmission of sound waves. 

In the previous chapter, some general methods were described that could be 
applied to any system of ordinary differential equations. In contrast, different 
methods of solution are required in order to solve partial differential equations of 
these three different types. The following sections will illustrate the different 
methods for solving elliptic, parabolic and hyperbolic partial differential 
equations. 

Elliptic Partial Differential Equations 
Elliptic equations describe the value of a function in two spatial dimensions. 

Elliptic partial differential equations have boundary conditions which are 
specified around a closed boundary, while hyperbolic and parabolic partial 
differential equations have at least one open boundary. Since the values are 



CHAPTER 12 PARTIAL DIFFERENTIAL EQUATIONS 265 

specified around a closed boundary, the equation describes a steady-state 
condition. 

Solving Elliptic Partial Differential Equations: 
Replacing Derivatives with Finite Differences 

In Chapter 6 we used the following approximation for a derivative 

dF(x)  - F ( x  + h)  - F ( x )  
-- 

dx h 
(12-5) 

where h was a suitably small value. Equation 12-5 is the forward difference 
equation. The corresponding backward difference equation is 

dF(x) - F ( x )  - F ( x  - h)  -- 
dx h 

( 12-6) 

For a partial derivative involving two independent variables, the finite 
difference equation will involve suitable small differences in both x and y .  We 
will use h and k to represent these differences. The forward and backward 
difference equations corresponding to 12-5 and 12-6 are 

( 12-7) dF(x, Y )  - - F ( x  + h, Y )  - F(x,  Y )  

d m ,  r) - - F(x ,  Y )  - F ( x  - h, Y )  
dx h 

(1 2-8) 
dx h 

and, for the partial derivative 

dF(x + h, Y )  - dF(x, Y )  

dx (1 2-9) a2F(x ,Y)  - - dx 
ax2 h 

Since we have used the forward difference equation 12-9 to calculate the partial 
derivative, we can use backward differences for dF/dx in order to eliminate bias. 
The result is 

(12-10) a w x ,  Y )  - - ~ ( x  + h, Y )  - WX, Y )  + ~ ( x  - h, Y )  

a 2 m ,  Y )  - - F(x ,  Y + k )  - 2 J - k  Y )  + F(x,  Y - k )  

ax2 h2 

and in a similar fashion, 

(12-1 1) au2 k2 

and 

(1 2- 12) 
d 2 F ( x , y )  - F ( x  + h,y  + k )  - 2F(x,y) + F ( x  - h,y - k )  

- 
axay hk 



266 EXCEL: NUMERICAL METHODS 

Thus, for example, Laplace's equation (12-2) is rewritten as 

F ( x  + h, Y ) -  2F(x, Y )  + F ( x  - h, Y )  + F(x9 Y + k)-2F(xy v)+  F(x ,  Y -k)  = 

h2 k2  
(12-1 3) 

Our approach for solving these problems will be to subdivide the region of 
interest into a lattice of mesh size h x k and write the difference equations that 
correspond to the lattice points, to obtain values of the function at each lattice 
point. For the general lattice point x,, yI  the derivative expression is 

= O  

( 1  2- 14) 

m,+1 Y Y ,  ) - 2 m ,  Y YI 1 + F(x,- ,  9 Y ,  1 + F(x,  7 YI+1) - 2F(x, Y Y ,  ) + F(x ,  3 YI-1) 
h2 k 2  

If h = k, equation 12- 14 simplifies to 

F(X,+,Y Y , )  + F(x,  ,Y,+1) - W x ,  ,Y,) + F k Y  Yl-1) + F(X,-,Y Y , )  = 0 

(1 2- 15) 
from which we obtain equation 12-16 

F ( x , + , , ~ l ) + F ( x l Y ~ l + , ) + F ( x l Y ~ l - , ) + F ( x l - , , ~ , )  (12-16) 
4 F(x,,y,)  = 

For the case where h # k, an expression for F(x,y) can readily be obtained 
from equation 12- 14. 

Note that four lattice points are involved in the calculation of F(x,y) by 
equation 12- 16, as represented in Figure 12- 1. This representation is sometimes 
referred to as the s t e n d  of the method. 

-1 0 1 
X i  

Figure 12-1. Stencil of the finite difference method for the solution of an 
elliptic PDE. The points shown as solid squares represent previously calculated 

values of the function; the open square represents the value to be calculated. 



CHAPTER 12 PARTIAL DIFFERENTIAL EOUATIONS 267 

Methods for the solution of equation 12-16 can best be illustrated by 
reference to a concrete example. 

An Example: Temperature Distribution in a Heated 
Metal Plate 

A typical example of an elliptic partial differential equation involves the 
solution of a steady-state heat-flow problem. For example, if a thin steel plate, 
10 x 10 cm, has one of the edges held at 100°C and the other three edges at O"C, 
what are the steady-state temperatures within the plate? For simplicity, we 
assume that heat is not lost through the faces of the plate. 

We subdivide the plate by means of a grid with h = k = 0.5 cm, thus creating 
a lattice of size 20 x 20. At equilibrium, heat flows in the x-axis direction into a 
lattice element at a rate proportional to the temperature of the adjoining element 
in the x-axis, and flows out of the element at a rate proportional to the 
temperature of the element. The same is true in the y-axis direction. This model 
gives rise to an elliptic partial differential equation of the form of equation 12-2. 
The time and the thermal conductivity k of the material do not enter into the 
equation. 

We will use equation 12-16 to calculate the temperature at each lattice point; 
the temperature at a lattice point is the average of the temperatures of the four 
surrounding lattice points. Thus we have generated a system of 400 
simultaneous linear equations in 400 unknowns. Although most of the terms in a 
given equation are zero, the problem is still unmanageable. However, we can 
solve the system by an iterative method, as described below. 

Figure 12-2 shows part of the spreadsheet used to solve the system; each cell 
of the 20 x 20 array corresponds to a lattice point. The formula in cell B6 is 

=(B5+A6+C6+B7)/4 

You can Fill Down the formula into 20 rows and then Fill Right into 20 columns 
to create the 20 x 20 array. 

Since cell B6 refers to cell 87 and B7 similarly refers to B6, we have created 
a circular reference, a formula that refers to itself, either directly or indirectly. In 
fact, the spreadsheet contains a large number of circular references. A circular 
reference is usually an error; Excel displays the "Cannot resolve circular 
references" error message and puts a zero in the cell. In this case, however, the 
circular reference is intentional. We can make Excel recalculate the value in 
each cell, using the result of the previous iteration. 



268 EXCEL: NUMERICAL METHODS 

Figure 12-2. Solving an elliptic PDE using intentional circular references. 
The worksheet shows part of the 20 x 20 array of lattice points representing the 

temperature distribution in a metal plate; the gray cells represent the temperature 
at the edges of the plate. 

(folder 'Chapter 12 (PDE) Examples, workbook 'Elliptic PDE', sheet 'Temp in a Plate') 

To "turn on" iteration, choose Tools+Options-+Calculation and check the 
iteration box. Unless you change the default settings for iteration, Microsoft 
Excel stops calculating after 100 iterations or after all values in the circular 
reference change by less than 0.00 1 between iterations, whichever comes first. 
When you press OK the iterative circular reference calculations will begin. 



CHAPTER 12 PARTIAL DIFFERENTIAL EQUATIONS 269 

Figure 12-3. Temperature distribution in a metal plate. 
(folder 'Chapter 12 (PDE) Examples, workbook 'Elliptic PDE', sheet 'Temp in a Plate') 

Parabolic Partial Differential Equations 
The previous example showed the steady-state distribution of temperature 

within a metal plate. We will now examine how temperature changes with time. 
This so-called heat equation is an example of a parabolic partial differential 
equation. 

Consider the flow of heat within a metal rod of length L,  one end of which is 
held at a known high temperature, the other end at a lower temperature. Heat 
will flow from the hot end to the cooler end. We want to calculate the 
temperature along the length of the rod as a function of time. We'll assume that 
the rod is perfectly insulated, so that heat loss through the sides can be neglected. 

Consider a small element dx along the length of the rod. Heat is flowing 
from the hot end (x = 0) to the cooler end (x = L). The rate of heat flow into the 
element at the point x is given by 

dT 
-KA- 

dx 
(1 2- 17) 

where K is the coefficient of thermal conductivity (cal s-l cm-' deg-'), A is the 
cross-sectional area of the rod (cm2) and dTldx is the temperature gradient. The 



270 EXCEL: NUMERICAL METHODS 

minus sign is required because temperature gradients are negative (heat flows 
from a higher temperature to a lower). The material of which the rod is made has 
heat capacity c (cal g-' deg-') and density p (g ~ m - ~ ) .  

The heat flow (cal s-') out of the volume element, at point x + dk, is given by 

- d( $ + s( g ) d x )  (1 2- 18) 

The rate of increase of heat stored in the element Adx is given by 

(12-19) 
dT 

cp( Adx) - 
dt 

From equations 12- 17 and 12- 18, the rate of increase of heat stored in the 
element Adx is Hi, - Hout, and this is equal to the expression in 12-19 

which can be simplified to 

dT (a,::) dt 
K -  =Cp- 

or 

= O  
d2T cp  dT 
ax= K dt 

(12-21) 

(12-21a) 

an example of a parabolic partial differential equation. 
There are several methods for the solution of parabolic partial differential 

equations. Two common methods are the explicit method and the Crank- 
Nicholson method. In either method, we will replace partial derivatives by finite 
differences, as we did in the example of the parabolic partial differential 
equation. 

Solving Parabolic Partial Differential Equations: 
The Explicit Method 

Using equation 12-2 1 as an example and writing it in the form 

a2F dF 
- + k - = O  
ax2 dy 

( 12-22) 

we can replace derivatives by finite differences, using the central difference 
formula for 8 ~ / a ~  



CHAPTER 12 PARTIAL DIFFERENTIAL EOUATIONS 27 1 

and the forward difference formula for dFldy 

(1 2-23) 

(1 2-24) 

When these are substituted into equation 12-22, we obtain equation 12-25, 
where r = Ay/ (~ l (hx)~) .  (Using forward and central differences simplifies the 
expression.) 

F , , /+ I  = f.(F,+l,/ + F , - l , /  ) + 0 - r k , /  (1 2-25) 

Or, when i represents distance x a n d j  represents time t, 

Fx,t+l = r(Fx+,,, + Fx-l,, 1 + 0 - r)Fx,t (12-25a) 

Equation 12-25a permits us to calculate the value of the function at time t+l 
based on values at time t .  This is illustrated graphically by the stencil of the 
method. 

-1 0 1 
X 

Figure 12-4. Stencil of the explicit method for the solution of a parabolic PDE. 
The points shown as solid squares represent previously calculated values 

of the function; the open square represents the value to be calculated. 

An alternative to the use of equation 12-25 is to choose hx and Ay such that r 
= 0.5 (e.g., for a given value of Ax, Ay = k ( A ~ ) ~ / 2 ) ,  so that equation 12-25 is 
simplified to 

( 12-26) 



212 EXCEL: NUMERICAL METHODS 

An Example: Heat Conduction in a Brass Rod 
Consider an insulated 10-cm brass rod, initially at a temperature of 0°C. One 

end of the rod is heated to 100°C. Equation 12-20 describes the heat flow in the 
rod as a hnction of time. (For simplicity, we assume that there is no heat loss 
through the sides of the rod.) For brass, the coefficient of thermal conductivity k 
is 0.26 cal s-' cm-' deg-', the heat capacity c is 0.094 cal g-' deg-' and the density 
p is 8.4 g ~ m - ~ .  From these values, the coefficient k in equation 12-22 is 3.04 s 
cm-*. Figure 12-5 shows part of the spreadsheet used to calculate the 
temperature along the rod, in 1-second and 1-cm intervals. The table extends to t 
= 100 seconds (row 1 13). 

Figure 12-5. Calculation of heat flow in a brass rod. 
The text in cells M4:MlO are the names assigned to the cells L4:LlO. 

(folder 'Chapter 12 (PDE) Examples, workbook 'Parabolic PDE', sheet 'Temp distribution') 



CHAPTER 12 PARTIAL DIFFERENTIAL EOUATIONS 273 

Cells K3:K9 contain constants used in the calculations; these cells were 
assigned the names shown in parentheses in column M. The formulas in cells 
K6, K7, K8 and K9 are, respectively 

=k/( hcap*rho) (coefficient k in general PDE, equation 12-22) 

=D12-C12 (AX) 

=B14-B13 (At) 

=e*Dt/( DxA2) (f) 

[In the spreadsheet, the range name f was used for the parameter Y in equation 
12-26, since r can't be used as a name in Excel.] 

The values in cells on the edges of the table of temperatures (column C and 
column M) are the constant temperature values at the ends of the rod; the values 
in row 13 are the initial temperature of the interior of the rod. The formula in the 
remaining cells in the body of the temperature table (D14:L113) is based on 
equation 12-22. For example, the formula in cell D14 is 

=f*( C 1 3+E 1 3)+( 1 -2*f)*D 1 3 

Experience has shown that the factorfmust be less than 1/2 in order to avoid 
instability in the calculations. For a given problem, this requires adjustment of 
both Ax and At. 

50 

$ 30 
e .c.. 

a, ; 20 

: 
10 

0 
0 20 40 60 80 100 

Time, seconds 

Figure 12-6. Temperature vs. time in a brass rod. 
(folder 'Chapter 12 (PDE) Examples, workbook 'Parabolic PDE, sheet 'Temp distribution') 



Solving Parabolic Partial Differential Equations: 
The Crank-Nicholson or Implicit Method 

In the explicit method, we used a central difference formula for the second 
derivative and a forward difference formula for the first derivative (equations 12- 
24 and 12-25). A variant of equation 12-26 that makes the approximations to 
both derivatives central differences is known as the Crank-Nicholson formula 

- rKl,,+l + (2 + w4,,+1 - YFf+I, ,+I  =r%, + (2 - 2r)F,,, + rF,+1,, 

- rK-l,l+l + (2 + 2 m , f + l  - r4+1,1+1 = ~ ~ x - I . 1  + (2 - 2dF,,I + rK+l,* 

(12-27) 

or, if i represents distance x and j represents time t, 

(1 2-27a) 

where r = A ~ / ( ~ ( A x ) ~ ) .  Choosing specific values for r and Ax determines the 
increment Ay. For r = 1, equation 12-27a simplifies to equation 12-28. 

- L , f + l  + 4K,l+l - Fx+l,l+l = + Fx+~,l ( 12-28) 

Equation 12-27a or 12-28 shows that Fx,I+l is a function of yet-to-be- 
calculated values at t+l (Fx-l,l+l and Fx+l,l+l) in addition to known values at time t 
(the quantities on the right-hand side of the equation). This is illustrated by the 
stencil of the method shown in Figure 12-7. Equation 12-27a results in a set of 
simultaneous equations at each time step. Again, the solution procedure is best 
illustrated by means of an example. 

-1 0 1 
X 

Figure 12-7. Stencil of the implicit method for the solution of a parabolic PDE. 
The points shown as solid squares represent previously calculated values 

of the function; the open circles represent unknown values in adjacent positions; 
the open square represents the value to be calculated. 



CHAPTER 12 PARTIAL DIFFERENTIAL EOUATIONS 275 

An Example: Vapor Diffusion in a Tube 
An air-filled tube 20 cm long allows water vapor to diffuse from a source 

(liquid water) to a drying chamber, where the vapors are dissipated. Initially the 
tube is capped so that the vapor cannot escape. The temperature of the tube is 
held at 30°C. The equilibrium vapor pressure of water at this temperature is 3 1.8 
mm Hg; thus the vapor pressure inside the tube is 3 1 .8 mm Hg. When the cap is 
removed, the vapor will diffuse toward the drying chamber, where the water 
vapor pressure is zero. We wish to model the vapor pressure along the length of 
the tube as a function of time. 

The diffusion equation is 

* = D E E  
dt ax2 

( 12-29) 

where p is the vapor pressure and D is the difhsion coefficient in units of cm2 s-I. 
For water vapor, D = 0.1 15 cm2 s-l at 30°C. 

We subdivide the length of the tube into uniform subintervals and calculate 
the value of the function (here the vapor pressure p )  at each interior point. 
Choosing Ax = 4 yields four x values where the function value needs to be 
evaluated (at x = 4, 8, 12 and 16 cm) and two boundary values where it is known 
(at x = 0 and 20). Also, using Ax = 4 and Y = 1 sets At = 139 seconds. 

Using equation 12-28 yields four simultaneous equations in four unknowns, 
thus: 
for x = 4, t = 139: 

for x = 8, t = 139: 

for x = 12, t = 139: 

for x = 16, t = 139: 

For Y = 1, the values of the coefficients for the four simultaneous equations 
are shown in the spreadsheet in Figure 12-8. They are designated c l ,  c2, c3 and 
c4 in the table. These coefficients will have different values if a different value 
of Y is chosen. The constants (the values of the right-hand side of the four 
equations) are also shown in Figure 12-8. The formulas in cells l15:L15 are 



276 EXCEL: NUMERICAL METHODS 

=C15+E15+C15 

=D15+F15 

=El 5+G15 

=F15+H15+H15 

Figure 12-8. A convenient spreadsheet layout for solving a parabolic PDE by 
the Crank-Nicholson method. The coefficients matrix is aligned directly above 

the table of values and the table of constants directly to the right. 
(folder 'Chapter 12 (PDE) Examples, workbook 'Parabolic PDE', sheet 'Crank-Nicholson 1') 

The set of simultaneous equations can be solved by methods described in 
Chapter 9. In this case the solution was found by the matrix inversion method; 
the array formula in cells D19:G19 is 

{=MMULT(I 15: L15,MlNVERSE($D$S:$G$l 2))) 



CHAPTER 12 PARTIAL DIFFERENTIAL EQUATIONS 277 

Figure 12-9. Chart of the results produced by the spreadsheet in Figure 12-8. 
(folder 'Chapter 12 (PDE) Examples, workbook 'Parabolic PDE', sheet 'Crank-Nicholson 1') 

A plot of the results, shown in Figure 12-9, indicates that a smaller increment 
o f t  is required. 

In the preceding example, the parameter r was set equal to 1, which 
simplifies the equations but also determines the values o f t  that were used in the 
calculations. In most cases it will probably be desirable to solve the system at 
specified values o f t .  Choosing specific values for Ax and At determines the 
value of r. The following example, using the same data as Example 12-3, 
illustrates this. 

Vapor Diffusion in a Tube Revisited 
This example uses formulas that permit the construction of a more general 

model. In Figure 12-1 0, the following cells or ranges were defined: D: $G$4; Dx: 
$G$5; Dt: $G$6; f: $G$7; coefficients: $D$9:$G$12; constants: $J$I 5:$M$26; 
values: $C$15:$H$27. The formulas in cells G5:G7 are, respectively, 

=D14-C14 

=B16-B15 

=( D*Dt)/DxY 



278 EXCEL: NUMERICAL METHODS 

Figure 12-10. A convenient spreadsheet layout for solving a parabolic PDE by 
the Crank-Nicholson method. The coefficients matrix is aligned directly above 

the table of values and the table of constants is directly to the right. 
(folder 'Chapter 12 (PDE) Examples, workbook 'Parabolic PDE', sheet 'Crank-Nicholson 2') 

In the coefficients table, the formulas =2+2*f, =-f or 0, were entered in the 

The constants table employs a single formula: 

=PTa bleValu e 1 +( 2-2*f)*Ta bleVa lue2+f*Ta bleVa I ue3+ I F( COL U M N ()= 
MinCol,f*TableValuel ,O)+IF(COLUMN()=MaxCol,f*TableValue3,0) 

appropriate cells to create the table. 

where TableValuel , TableValue2 and TableValue3 correspond to the function 
values on the right-hand side of the general equation 12-27a; the IF function 



CHAPTER 12 PARTIAL DIFFERENTIAL EQUATIONS 279 

terms add the appropriate boundary value terms to the first and last constant 
terms (see the four simultaneous equations following equation 12-29). The 
preceding Excel formula uses the following named formulas (they can be 
examined by choosing Insert -+ Name -+ Define): 

ValuesTableCol =COLUMN()-7 

TableValuel =INDIRECT("RC"& ValuesTableCo1,O) 

TableValue2 

Ta bleValue3 

MaxCol =MAX(COLUMN(constants)) 

MinCol =MIN(COLUMN(constants)) 

For readers unfamiliar with the INDIRECT function, INDIRECT(ref-text, a?) 
returns a reference specified by a text string. The optional argument a1 specifies 
what reference style is used: if a1 is TRUE or omitted, the reference is in Al-  
style; if a1 is FALSE the reference is in RlC1-style. 

The ValuesTableCol formula returns the column number of the values table 
that corresponds to the column in the constants table. This column number is 
used in the TableValuel, TableValue2 and TableValue3 formulas to return the 
appropriate value from the table of values. (The number 7 in the formula might 
have to be changed if columns in the spreadsheet were rearranged.) The MaxCol 
and MinCol formulas are used in the IF function in the formula in the constants 
table so as to add the boundary value terms to the first and last constant terms. 

=I NDI RECT("RC"& ValuesTableCol + I  ,0) 

=I NDI RECT("RC"& ValuesTableCol +2,0) 

Vapor Diffusion in a Tube (Again) 
This example, using the same data, illustrates the use of a smaller grid size. 

The spreadsheet ('Crank-Nicholson 37, not shown here, can be examined on the 
accompanying CD-ROM. The x-increment is 2 cm, thus creating a table of 
values that is 11 columns wide, including the boundary values, and requiring a 9 
x 9 matrix of coefficients. 

The spreadsheet employs a single formula for all cells of the coefficients 
table: 

=IF(CoeffFableRow=CoeffFableCol,2+2*f, I F(ABS(CoeMab1eRow- 
CoeffFableCol)= 1 ,-f ,O)) 

The formula uses the following named formulas 

CoeffFableCol =COLUMN()-MIN(COLUMN(coefficients)) 

CoeffFableRow =ROW()-MI N( ROW(coefficients)) 



280 EXCEL: NUMERICAL METHODS 

Thus a Crank-Nicholson calculation can be set up on a spreadsheet using a 
single formula to create the coefficients table, a (different) single formula to 
create the constants table, and a single formula for the values table. 

The results using the smaller grid size are shown in the following chart. 

I" 30 

25 

E! 20 a 
f 15 

- 10 
P 

m .- 
5 5  a 

0 cm 
2 
4 
6 
8 
I 0  
12 
14 
16 
18 

0 200 400 600 800 1000 1200 

Time, seconds 

Figure 12-11. Chart of the results produced by the spreadsheet shown in Figure 12-10. 
(folder 'Chapter 12 (PDE) Examples, workbook 'Parabolic PDE', sheet 'Crank-Nicholson 3') 

A Crank-Nicholson Custom Function 
Using a smaller increment for At improves the accuracy of the calculations. 

It may be desirable to employ a variable value for At, so as to use smaller At near 
the beginning and use larger At where the function is not changing rapidly. This 
obviously can't be done with the spreadsheets in the preceding examples, since At 
determines the value of r and thus the values in the coefficients matrix. The 
following VBA code implements the Crank-Nicholson method. The partial 
differential equation must be of the form shown in equation 12-29, that is, 
a82C / 8x2 - 8C / t@ = 0 . The syntax of the function is CrankNichoIson(coet7, 
delta-x, delta-f, prev-values). Coeff is the coefficient a in the above partial 
differential equation. Delta-x is the size of the x-increment, which must be 
constant. Delta-y is the size of the y-increment, which can vary. Prev-values is 
the range of function values, including the endpoint values, in the preceding row. 
The function returns an array of values in a row; the user must select the 
appropriate range of cells for the results, then press CTRL+SHIFT+ENTER 
(Windows) or CONTROL+SHIFT+RETURN (Macintosh) to enter the formula 



CHAPTER 12 PARTIAL DIFFERENTIAL EQUATIONS 28 1 

3ption Explicit 
3ption Base 1 
Function CrankNicholson(coeff, delta-x, delta-t, prev-values) 
Solves a parabolic PDE by the Crank-Nicholson method. 

Dim I As Integer, J As Integer, N As Integer 
Dim F As Double 
Dim CoeffMatrixO As Double, ConstantsVector() As Double 

N = prev-values.Count 
ReDim CoeffMatrix(N - 2, N - 2), ConstantsVector(N - 2, 1) 
F = coeff * delta-t I delta-x A 2 

'Create coefficients matrix. This is an N x N matrix. 
For I = 1 To N - 2 
F o r J = l  T O N - 2  

Select Case J 
Case I 

Case I - 1 

Case I + 1 

Case Else 

End Select 

CoeffMatrix(1, J) = 2 + 2 F 

CoeffMatrix(1, J) = -F 

CoeffMatrix(1, J) = -F 

CoeffMatrix(1, J) = 0 

Next J, I 

'Create constants vector. This is a COLUMN vector. 
F o r J = l  T O N - 2  

ConstantsVector(J, 1) = F * prev-values(J) + (2 - 2 * F) * prev-values(J + 1) + F * - 
prev-values(J + 2) 

Next J 
ConstantsVector(1, 1) = ConstantsVector(1, 1) + F * 
ConstantsVector(N - 2, 1) = ConstantsVector(N - 2, I F +  F * prev-values(N) 

prev-values(1) 

'Return results as an array in a row, thus use Transpose. 
CrankNicholson = Application.Transpose(App1ication. - 
MMult(Application.MInverse(CoeMVlatrix),ConstantsVector)) 

End Function 

Figure 12-12. VBA fbnction procedure to evaluate a PDE 
by the Crank-Nicholson method. 

(folder 'Chapter 12 (PDE) Examples, workbook 'Parabolic PDE', module 'Modulel') 



282 EXCEL: NUMERICAL METHODS 

Vapor Diffusion in a Tube 
Solved by Using a Custom Function 

This example, using the same data as the preceding one, illustrates the use of 
the custom function. The spreadsheet, not shown here, can be examined on the 
accompanying CD-ROM. Unlike the preceding spreadsheets, tables of 
coefficients and constants are not required. The x-increment is 2 cm, thus 
creating a table of values that is 11 columns wide, including the boundary values. 
The function returns values identical to those shown in Figure 12-1 1 .  

Hyperbolic Partial Differential Equations 
Hyperbolic second-order differential equations result from problems 

involving vibration processes, and are of the form 

d2F - d2y 
- 

p g  q&T 
For example, the wave equation in one dimension 

d 2 y  Tg d 2 y  -=-- 
at2 w a t 2  

(12-30) 

(12-31) 

describes the vibration (i.e., the lateral displacement y )  of a string of length L,  
weight W, tension T and weightlunit length w = WIL, as a function of distance x 
along the length of the string. 

Solving Hyperbolic Partial Differential Equations: 
Replacing Derivatives with Finite Differences 

Once again, we can solve the problem by replacing derivatives by finite 
differences. 

which, when rearranged, yields 

If we set Tg(A,t)2/w(hX)2 = 1 ,  equation 12-33 is simplified to equation 12-34. 
Interestingly, this simplified expression also yields the most accurate results. 

F . x , t + l  = Fx+l,t + F x - l , l  - F*,I-l ( 1  2-34) 



CHAPTER 12 PARTIAL DIFFERENTIAL EQUATIONS 283 

When employing the simplified equation, the value of At is determined by 

Ax 
the expression 

(1 2-3 5) 
= Jm 

Equation 12-34 calculates the value of the function at time til from values at 
t and t- , .  Figure 12-13 shows the stencil of the method. 

-1 0 1 

X i  

Figure 12-13. Stencil of the method for the solution of a hyperbolic PDE. The 
solid squares represent previously calculated values of the function; the open 

square represents the value to be calculated. 

To begin the calculations (i.e., to calculate the value of the function at t l ) ,  
equation 12-34 requires values of the function at to = 0 and also a value at t-l. 
We can get a value for the function at t-l by making use of the fact that the 
function is periodic. If the initial value of the function is zero, we can use the 
expression 12-36 for the first row of the calculation, and 12-34 afterwards. 

F X + l , O  + F X - l , O  
C , l  = I (1 2-36) 

If the value of the function is not zero at t = 0, a different method of 
beginning the solution must be used. 

An Example: Vibration of a String 
A string 50 cm long and weighing 0.5 g is under a tension of 33 kg. Initially 

the mid-point of the string is displaced 0.5 cm from its equilibrium position and 
released. We want to calculate the displacement as a function of time at 5 cm 
intervals along the length of the string, using equation 12-34. From equation 12- 
35 the At must be 8.8 x seconds. 



2 84 EXCEL: NUMERICAL METHODS 

The spreadsheet shown in Figure 12-14 illustrates the solution of the 
vibrating string problem. Column B contains time in increments of At from zero 
to 2.8 x seconds (only part of the spreadsheet is shown). The first row of 
displacement values (row 12, values shown in bold on the spreadsheet) are the 
initial conditions. The values in the second row (row 13, values in italics) are 
calculated according to equation 12-36; the formula in cell D13 is 

=( C 1 2+ E 1 2)/2 

Values in subsequent rows (rows 14-27 in Figure 12-14; rows 14-44 on the 
CD-ROM) are calculated according to equation 12-34; the formula in cell D14 is 

=C 13+E13-D12 

Figure 12-14. A spreadsheet layout for solving a hyperbolic PDE. 
(folder 'Chapter 12 (PDE) Examples, workbook 'Hyperbolic PDE', sheet 'Sheetl') 



CHAPTER 12 PARTIAL DIFFERENTIAL EOUATIONS 285 

If you examine the values in the table, you will see that 20 time increments 
constitute a complete cycle of vibration. This vibration time, 0.001758 seconds, 
corresponds to a frequency of 569 sd, and agrees exactly with the value 
calculated by the formula 

1 f =zd5J ( 12-3 7) 

The above procedure can be expanded to model vibrations in two space 
dimensions. 

( 1  2-38) 



286 EXCEL: NUMERICAL METHODS 

Problems 

Data for, and answers to, the following problems are found in the folder "Ch. 12 
(Partial Differential Equations) problems" in the "Problems & Solutions" folder on 
the CD. 

1. 

2. 

Repeat the example of temperature distribution in a metal plate, where two 
adjacent edges are at 0°C and where the temperatures of the other two edges 
increase from zero, in increments of 10°C, to 200°C at the corner diagonally 
opposite the two edges at zero. 

Revise the example of temperature distribution in a metal plate to model the 
temperature in a conduit where the outside edges of the 20 x 20 matrix are at 
0°C and the interior channel (a 10 x 10 matrix centered inside the 20 x 20 
matrix) is at 200°C. 



Chapter 13 

Linear Regression 
and Curve Fitting 

"Curve fitting" is frequently used in scientific or engineering applications to 
obtain the coefficients of a mathematical model that describes experimental data. 
In Chapter 5 we saw how to obtain the equation of a curve that passes exactly 
through a set of data points. This is the process of interpolation and requires (for 
example) four coefficients to describe a curve that passes through four data 
points. But what if, instead of four data points, we have 4000 data points? It 
would be ludicrous to try to find the 4000-parameter equation that describes the 
curve that passes through all the data points. Instead, we would like to find a 
relatively simple mathematical relationship that does not necessarily pass through 
data points but is a good fit to the data set as a whole. The "best fit" of a curve to 
a set of data points is considered to be found when the sum of squares of the 
deviations of the experimental points from the calculated curve is a minimum. 
This procedure is known as least-squares curve fitting or, more generally, as 
regression analysis. Excel provides several ways to obtain regression 
coefficients; these are described in the following sections. 

Linear Regression 
Linear regression is not limited to the case of finding the least-squares slope 

and intercept of a straight line. Linear regression methods can be applied to any 
function that is linear in the coeficients'. Many functions that produce curved x- 
y plots are linear in the coefficients, including power series, for example, 

y = a + bx + cx2 + dx3 (13-1) 

and some functions containing exponentials, such as 

+ Mathematically, a function that is linear in the coefficients is one for which the partial 
derivatives of the function with respect to the coefficients do not contain coeficients. For 
example, for the power series equation y = a + bx + cx2, 8yIaa = 1, +lab = x and ayldc = 

X 2 .  

287 



288 EXCEL: NUMERICAL METHODS 

y = ae" (13-2) 

Least-Squares Fit to a Straight Line 
Although it is relatively easy to draw a straight line with ruler and pencil 

through a series of points if they all fall on or near the line, it becomes more and 
more a matter of judgment if the data are scattered. The least-squares line of best 
fit minimizes the sum of the squares of the y deviations of individual points from 
the line. This statistical technique is called regression analysis. Regression 
analysis in the simplest form assumes that all deviations from the line are the 
result of error in the measurement of the dependent variable y .  

Regression analysis uses the quantities defined below, where there are N 
measurements of xi, yi data pairs. 

S,, = C X , ~  - (CXJ2/N 

Syy = Cy,2 - (CyJ2/N 
Sxy = C X $ ~  - CxiCyi/N 

(1 3-3) 

( 1  3-4) 

(13-5) 

For a straight line y = mx + by the least-squares slope and intercept are given 
by equations (13-6) and (13-7). 

m = SX,& ( 1  3-6) 

( 1  3-7) b = (Cy, - m Cx,) lN 

The Correlation coefficient, R, is a measure of the correlation between x and 
y.  If x and y are perfectly correlated (i.e., a perfect straight line), then R = 1. An 
R value of zero means that there is no correlation between x and y, and an R value 
of -1 means that there is a perfect negative correlation. 

More commonly, R2, the square of the correlation coefficient, given by 
equation (13-S), is used as the measure of correlation; it ranges from 0 (no 
correlation) to 1 (perfect correlation). 

R2 = Cv2 l(Sxx Syy) (13-8) 

R2 can be used as a measure of the goodness of fit of data to (in this case) a 
straight line. A value of R2 of less than 0.9 corresponds to a rather poor fit of 
data to a straight line. 

Excel provides worksheet functions to calculate the least-squares slope, 
intercept and R2 of the straight line y = mx + b. 



CHAPTER 13 LINEAR REGRESSION AND CURVE FITTING 289 

Least-Squares Fit to a Straight Line 
Using the Worksheet Functions 
SLOPE, INTERCEPT and RSQ 

Figure 13-1 shows the phase diagram of methane hydrate, one of a class of 
compounds known as clathrate hydrates. Methane hydrate, an ice-like solid, 
consists of methane molecules trapped in a crystalline lattice of water molecules; 
each unit cell of the crystal lattice contains 46 water molecules and up to 8 gas 
molecules. The figure shows that the solid phase forms under conditions of high 
pressure and relatively low temperature. Previously, information about the 
formation of methane hydrate was important in the natural gas transmission 
business because the solid can clog valves. More recently, the discovery of 
methane hydrate deposits on the ocean floor has led to estimates that they contain 
enough natural gas to provide an energy source for the next several hundred 
years, if they can be accessed. 

The data of Figure 13-1 conforms to an exponential curve. It can be shown 
that the vapor pressure varies with the absolute temperature according to the 
Clausius-Clapeyron equation (1 3-9): 

1 

T 
In P = -A-  + B (1 3-9) 

4000 

3000 

E 
a- 2000 

1000 

0 

0 10  30 40 50 
2o T,"C 

Figure 13-1. Methane hydrate phase diagram. 
The line is the least-squares fit to the data points. 

(folder 'Chapter 13 Examples', workbook 'Methane Hydrate', sheet 'Finished chart') 



290 EXCEL: NUMERICAL METHODS 

Figure 13-2. Portion of spreadsheet for Clausius-Clapeyron plot for methane hydrate. 
(folder 'Chapter 13 Examples', workbook 'Methane Hydrate', sheet 'Phase diagram data') 

When the data of Figure 13-2 is plotted in the form In P vs. 1/T where T is in 
The line is the least-squares best-fit line, Kelvin, Figure 13-3 is obtained. 

obtained as follows. 

9 ,  

8 

7 

n - E 6  

5 

4 

3 
0.0030 0.0032 0.0034 0.0036 

IlT, K-' 

Figure 13-3. Clausius-Clapeyron plot (In P vs. 1/T) for methane hydrate. 
(folder 'Chapter 13 Examples', workbook 'Methane Hydrate', sheet 'Phase diagram data') 



CHAPTER 13 LINEAR REGRESSION AND CURVE FITTING 29 1 

The SLOPE, INTERCEPT and RSQ worksheet functions were used to obtain 
the least-squares best fit coefficients of the data, plus R2, the coefficient of 
determination. The syntax of the SLOPE function is SLOPE(known_y's, 
known-x's); the arguments of INTERCEPT and RSQ are the same as for the 
SLOPE function. The values are shown in Figure 13-4. 

slope= -9705 
intercept= 38.61 

0.9959 

Figure 13-4. Slope, intercept and R2 of the plot of In P vs. 1/T for methane hydrate. 
(folder 'Chapter 13 Examples', workbook 'Methane Hydrate', sheet 'Phase diagram data') 

The formulas in cells F16, F17 and F18 are 

=SLOPE( F3: F14,E3: E14) 

=INTERCEPT(F3:F14,E3:E14) 

=RSQ(F3:F14, E3:E14). 

The least-squares line shown in Figure 13-1 was calculated using the 
regression coefficients A and B found for equation 13-9. 

Multiple Linear Regression 
Multiple linear regression fits data to a model that defines y as a function of 

two or more independent x variables. For example, you might want to fit the 
yield of a biological fermentation product as a function of temperature (0, 
pressure of C 0 2  gas (P )  in the fermenter and fermentation time (t) ,  for example, 

using data from a series of fermentation runs with different conditions of 
temperature, pressure and time. Or the dependent variable y could be a function 
of several independent variables, each of which is a function of a single original 
independent variable, for example, 

y = a.T + b.P +c.t + d ( 13- 1 0) 

y = a[H'I3 + b[H']* + c[P]  + d (13-1 1) 

Although equation 13-1 1 is a nonlinear function (a cubic equation), it is 
linear in the coefficients and therefore linear regression can be used to obtain the 
regression coefficients a, b, c and d of an equation such as 13-1 1. Excel provides 
at least three ways to perform linear regression: by adding a Trendline to a chart, 
by using the Regression tool in the Analysis ToolPak, or by using the worksheet 



292 EXCEL: NUMERICAL METHODS 

m(n) 
std.dev(n) 

rA2 
F 

SS(regressi0n) 

function LINEST. LINEST (for b e a r  estimation) is the most versatile of the 
three, so we will begin with it. 

The worksheet function LINEST returns the coefficients of multiple linear 
regression. As a first illustration, we will use LINEST to obtain the slope and 
intercept of the least-squares straight line through the data points of Figure 13-2. 

m(n-1) ... m(2) m(1) I b 
std.dev(n-1) ... I std.dev(2) I std.dev( 1 j I std.dev(bl 

std.dev(y) 
df 

SS(resid) 

Least-Squares Fit to a Straight Line 
Using LINEST 

Although you may find LINEST a bit confusing at first (the help description 
for most functions occupies a page or less, while the printed help for LINEST is 
seven pages), you will soon "get the hang of it" and will find that it is much to be 
preferred over the other methods that Excel provides for doing least-squares 
curve fitting. 

The general form of the linear equation that can be handled by LINEST is 

y = mlxl + m2x2 + m3x3 + ... + b (13-1 2) 

LINEST returns the array of regression coefficients m,, . . ., m2, ml, b. The 
syntax is LINEST(knownjs, known-xs, const_logical, sfafs-logical). If 
const_logica/ is TRUE or omitted, the regression coefficients include an intercept 
b; if consf-logical is FALSE, the fit does not include the intercept b. If 
sfafs-logical is TRUE, LINEST returns an array of regression statistics in addition 
to the regression coefficients m,, . . ., ml and b. The layout of the array of 
returned values is shown in Figure 13-5. A one-, two-, three-, four-, or five-row 
array may be selected. 

LINEST is an array function; to use it, you must do the following: 
9 Select a range of cells of appropriate dimensions for the results. For this 

example we will select a range two columns wide and five rows deep. The 
selection is two columns wide because we are returning two regression 
coefficients, rn and b, and five rows deep because that's the number of rows 
of statistical information returned by LINEST. You don't need to always 
select five rows for the results; often three rows are sufficient, in order to 
obtain the coefficients, their standard deviations, and the R2 value. 



CHAPTER 13 LINEAR REGRESSION AND CURVE FITTING 293 

Type the LINEST formula with its arguments, in this example 
=LINEST(F3:F14,E3: E14,TRUE,TRUE). You can use the following 
"shorthand" for the logical arguments const and stats: FALSE can be 
represented by 0 and TRUE by any nonzero value, as in the formula 
=LINEST(F3:F14,E3:E14,1,1). 

Enter the formula by using CONTROL+SHIFT+ENTER. 

When you "array-enter" a formula, Excel puts braces around the formula, as 

{=LINEST(F3:F14,E3:E14,1,1)} 

shown below: 

Figure 13-6. Regression results and statistics returned by LINEST 
for the methane hydrate phase diagram data. 

(folder 'Chapter 13 Examples', workbook 'Methane Hydrate', sheet 'Phase diagram data') 

You do not type the braces; if you did, the result would not be recognized by 
Excel as a formula. 

When the LINEST function is applied to the data in columns E and F of 
Figure 13-2, the results shown in Figure 13-6 are obtained. 

As you can see, LINEST returns a large amount of useful statistical 
information simply by entering a single formula: the regression coefficients, their 
standard deviations, the R2 value, plus several other statistical quantities. You 
must, however, be familiar with the layout of regression results and statistics 
shown in Figure 13-5 (also shown in Excel's On-Line Help for the LINEST 
worksheet function) in order to know what value each cell contains. 

Multiple Linear Regression Using LINEST 
Now that we've gained some familiarity with LINEST, let's apply it to an 

example of multiple linear regression. The data table in Figure 13-7 lists the 
freezing points of solutions of ethylene glycol. We want to be able to obtain the 
freezing point of a solution of ethylene glycol with wt% that is intermediate 
between the data values given in the table. 



294 EXCEL: NUMERICAL METHODS 

Figure 13-7. Freezing point of ethylene glycol-water solutions. 
(folder 'Chapter 13 Examples', workbook 'Dowtherm data', sheet 'Using Trendline') 

Instead of using one of the interpolation techniques described in Chapter 5 ,  
we would like to have a single fitting function that handles the whole range of 
data. In the previous example, theory (the Clausius-Clapeyron equation) 
demanded that the data be fitted to the function In P = -A/T + B, but in the 
present case we are free to choose any empirical fitting function that works. 

Figure 13-8 shows that a plot of the freezing point as a function of wt% 
ethylene glycol is not a straight line, so the equation y = a + bx will not be a good 
choice. What about the next higher power series: y = a + bx + cx2? This is the 
equation of a parabola, and we can see that the curve in Figure 13-8 doesn't 
behave like a parabola. What about a cubic equation: y = a + bx + cx2 x + ak3? A 
cubic fitting function probably will do a good job. We'll fit our freezing point 
data to a cubic equation: 

T=a.W3 + b.W2 + c . W + d  (1 3-13) 
One of the requirements of LINEST when fitting the dependent variable y to 

multiple independent variables XI, x2, . . . is that there must be a separate column 
of values for each independent variable (in our case W, W2 and W3). So the first 
thing we must do is insert two columns to the right of column A and enter 
formulas to calculate W2 and P, as shown in Figure 13-9. 



CHAPTER 13 LINEAR REGRESSION AND CURVE FITTING 295 

40 

20 
!+ 
r" - 
'5 0 

g 
0. 

-- -20 
N aa 
QI 
i 

-40 

-60 

I I 

I I I 

b 

0 I D  20 30 40 50 60 

W0;b Ethylene Glycol 

Figure 13-8. Fitting freezing point of ethylene glycol-water solutions by a power series. 
The line through the data points was calculated using the power-series coefficients in Table 13-10. 

(folder 'Chapter 13 Examples', workbook 'Dowtherm data', sheet 'Using LINEST') 

Second, select a block of cells appropriate for the results that will be returned 
by LINEST. Since we are fitting the data to a cubic equation (a + bx + cx2 x + 
dx3), we need to select a range four columns wide (one column for each of the 

Figure 13-9. Fitting freezing point of ethylene glycol-water solutions by a power series. 
The values in column D were calculated using the regression coefficients in Table 13- 10. 

(folder 'Chapter 13 Examples', workbook 'Dowtherm data', sheet 'Using LINEST') 



296 EXCEL: NUMERICAL METHODS 

four regression coefficients) and up to five rows deep (LINEST can return five 
rows of regression statistics, as illustrated in Figure 13-5). If you want to see the 
curve-fitting coefficients, their standard deviations and the R2 value, you need 
only select a range that is three rows deep. 

Third, enter the LINEST formula with its arguments: 

=LI N EST(D2: D14,A2:C14,1,1) 

Finally, enter the array function by pressing CONTROL+SHIFT+ENTER 
(Windows) or CONTROL+SHIFT+RETURN (Macintosh). 

The results returned by LINEST are shown in Figure 13-10. At first you may 
find them a little confusing, since they aren't labeled. Refer to the layout of the 
results shown in Figure 13-5 to understand what value is contained in each cell. 
The first row contains the regression coefficients, the second row contains their 
standard deviations, and the third row contains the R2 value in cell A20 and the 
SE(y) value (the standard error of the y-estimate, sometimes referred to as the 
RMSD, root-mean-square deviation) in cell B20. 

One feature of the LINEST results that can initially be confusing is that, as 
shown in Figure 13-5, the regression coefficients by ml, m2, m3 ,. . . progress from 
right to left (in cells D18 C18, B18, A18 in Figure 13-10) while the 
corresponding independent variables x l ,  x2, x3, ... progress from left to right (in 
columns A, B and C of Figure 13-9). Nonetheless, it's my opinion that using 
LINEST is by far the best way to do linear regression in Excel. 

Figure 13-10. Least-squares coefficients of a power series 
for freezing point of ethylene glycol-water solutions. 

(folder 'Chapter 13 Examples', workbook 'Dowtherm data', sheet 'Using LINEST') 

Once you've obtained the regression coefficients by using LINEST, it's a 
simple matter to calculate the freezing point of a solution of any wtY0 ethylene 
glycol. Assigning the names aa, bb, cc, dd for the regression coefficients in cells 
A1 8: D18 and W for the wt% ethylene glycol values in column A, respectively, is 
a good idea. The formula 

=aa*WA3+ bb*WA2+cc*W+dd 

was used to calculate the values in column E of Figure 13-9. 



CHAPTER 13 LINEAR REGRESSION AND CURVE FITTING 297 

Handling Noncontiguous Ranges 
of known-x's in LINEST 

One of the few limitations of LINEST is that the range of known-x's must be 
a contiguous selection (e.g., $A$2:$C$13 in Figure 13-9). Occasionally, you may 
wish to perform multiple linear regression where the known-x's are not in 
adjacent rows, and it may not be convenient to rearrange the spreadsheet so as to 
obtain a contiguous range of known-x's. You can use the custom function Arr to 
combine separate ranges into a single array. For example, if the ranges of 
independent variables xl, x2 and x3 were in the ranges A2:A13, C2:C13 and 
E2:E13, respectively, and the dependent variable y in F2:F13, the LINEST 
expression would be 

=LINEST( F2: F13, Arr(A2:Al3, C2:C13, E2: E l  3), 1 , I  ) 

A LINEST Shortcut 
Here's a shortcut that eliminates the need to create the columns of W2 and @ 

in Figure 13-10. If you've read Chapter 4, "Number Series," and understand 
array constants, you'll understand how the formula 

{=LINEST(D2:D14,A2:A14"{1,2,3},1 , I ) }  

creates an array of the values of the independent variable W raised to the first, 
second and third powers. Unlike the braces that are automatically placed around 
an array formula when you enter it by using CONTROL+SHIFT+ENTER, you must 
type the braces around the values of the array constant. 

You can examine that part of the formula by highlighting M:A14"{1,2,3} in 
the formula bar and pressing F9; you'll see the result displayed in the formula bar 
(only a portion of it is shown here): 

{0,0,0;5,25,125;10,100,1000;15,225,3375;20,400,8000; ...} 

Note that successive array elements in a row are separated by commas, and 

The formula, which must be entered by using CONTROL+SHIFT+ENTER, 

rows of elements are separated by semicolons. 

returns the same values that are shown in Figure 13-10. 

LINEST's Regression Statistics 
Additional regression statistics are returned by LINEST in rows 3, 4 and 5 of 

the array. The mathematical relationships between the regression statistics are 
given in equations 13-14 to 13-19 ( N  = number of data points, k = number of 
regression coefficients to be determined): 

df(degrees of freedom) = N -  k (13-14) 



298 EXCEL: NUMERICAL METHODS 

R 2 = I -  S‘resid 

“regression 

SS r egression F =  

( 13- 15) 

( 13- 16) 

(13-17) 

(13-18) 

( 13- 19) 

The coefficient of determination, R2 (or the correlation coefficient, R), is a 
measure of the goodness of fit of the data to (in this case) a straight line. If x and 
y are perfectly correlated (Le., the difference between yobsd and ycalc is zero), 
then R2 = 1. In contrast, an R2 value of zero means that there is no correlation 
between x and y .  A value of R2 of less than 0.9 corresponds to a rather poor fit of 
data to a straight line. 

The SEb) parameter, the standard error of the y estimate, is sometimes 
referred to as the RMSD (‘oot-mean-square deviation). 

The F-statistic is used to determine whether the proposed relationship is 
significant (that is, whether y does in fact vary with respect to x). For most 
relationships observed in chemistry, a relationship will unquestionably exist. If it 
is necessary to determine whether the variation of y with x is statistically 
significant, or merely occurs by chance, you can consult a book on statistics. 

Linear Regression Using Trendline 
You can also fit a least-squares line to data points such as those shown in 

Figure 13-9 by adding a trendline to a chart. You can choose from a menu of 
mathematical functions-linear, logarithmic, polynomial, power, exponential- 
as curve-fitting functions. 

To add a trendline, select the chart by clicking on it, then choose Add 
Trendline.. . from the Chart menu. 



CHAPTER 13 LINEAR REGRESSION AND CURVE FITTING 299 

Figure 13-11. The Type tab of the Trendline dialog box. 

If the chart has several data series, either select the desired data series before 
choosing Add Trendline ... or choose the desired data series from the Based On 
Series box. 

Choose the Type tab and then choose the appropriate fitting function from 
the gallery of hnctional forms. (Depending on the data in the series, the 
exponential, power or logarithmic choices may not be available.) If you choose 
the polynomial form, you can select the order of the polynomial by using the 
spinner. If you choose 3, for example, Excel will fit a polynomial of order three 
(i.e., a cubic equation) to the data points. The maximum order is a polynomial of 
order six. 

Now choose the Options tab (Figure 13-12). 
Check the boxes for Display Equation On Chart and Display R-squared 

Value On Chart; then press OK. Excel displays the trendline on the chart as a 
heavy solid line and the equation (with the least-squares coefficients) and k 
value as text on the chart, as shown in Figure 13-13. You can change the 
appearance of the trendline by clicking on the trendline, then choosing Selected 
Trendline.. . from the Format menu. 



300 EXCEL: NUMERICAL METHODS 

Figure 13-12. The Options tab of the Trendline dialog box. 

If you want to use the coefficients for calculations, you’ll have to copy them 
from the chart and paste them into worksheet cells. Usually the coefficients as 
displayed in the chart are not precise enough for calculations, but you can apply 
number formatting to the text to display more significant figures before copying 
the coefficients. Click once on the Trendline text to select it (a box indicates that 
the complete text has been selected), then choose Selected Data Labels ... from 
the Format menu and choose the Number tab. Choose an appropriate number 
format (Scientific, for example), then press OK. 

Alternatively, click on the Trendline text to select it and use the Increase 
Decimal toolbutton to display more figures. 

Now Copy the individual coefficients of the Trendline equation and Paste 
them into spreadsheet cells. 



CHAPTER 13 LINEAR REGRESSION AND CURVE FITTING 301 

40 

5c 20 

2 0  

r" 
S 

0- 

m 
C 
'i -20 

LL -40 
! 

R' = 0.9999 

0 10 20 30 40 50 60 

Wt% Ethylene Glycol 

Figure 13-13. Least-squares coefficients of a power series 
for freezing point of ethylene glycol-water solutions, obtained by using Trendline. 

(folder 'Chapter 13 Examples', workbook 'Dowtherm data', sheet 'Using Trendline') 

Limitations of Trendline 
The Trendline dialog box offers only a limited menu of mathematical fitting 

functions: linear, polynomial, exponential, etc. And, in addition, the independent 
variables used in the regression must be mathematical functions of a single 
independent variable: x, x2, x3, etc. LINEST, on the other hand, can perform 
multiple linear regression with several different independent variables. For 
example, in a study of the yield of a biomolecule produced by fermentation, 
regression analysis using LINEST, on data produced by a number of experiments, 
could provide a relationship that relates the yield of product (the dependent 
variable) as a function of: fermentation time, temperature and pressure of C02 
gas (the independent variables). In addition, only limited mathematical functions 
of the single x variable are available; you can fit a curve to a polynomial of the 
second degree o/ = ax2 + bx + c) for example, but not to the function y = ax2 + c. 

The most serious limitation of using Trendline to perform multiple linear 
regression is that the result is simply some text on a chart. You must then 
transfer the values of the regression coefficients from the chart to worksheet cells 
before you can use them, either by highlighting and copying individual sections 
of the trendline equation and pasting into the worksheet, or-horrors-manually 
typing the values. 



302 EXCEL: NUMERICAL METHODS 

After formatting to show a few more decimal places, for example, 

you are now ready to copy the values and paste them into your spreadsheet. 
y = -1.72727E-04x3 - 4.94605E-03x2 - 5.38589E-01~ + 3.20986E+01 

Importing Trendline Coefficients into a Spreadsheet 
by Using Worksheet Formulas 

The following are the various Trendline fitting functions that are displayed in 
the Add Trendline dialog box directly into worksheet cells: 

linear y = a x + b  
logarithmic y = a In(x) + b 
polynomial (e.g., order 3) y = ax3 

power y = ax 

exponential y = aebx 

bx2 + ex i d 
b 

The linear, logarithmic and polynomial expressions are linear in the 
coefficients and can be handled by Excel's built-in linear regression code. 
Trendline uses linear transformation of the power and exponential functions to 
obtain the coefficients: the exponential expression is transformed to lnb )  = bx + 
In(a) and the power expression to Inb) = b In@) + In(a). 

The following formulas allow you to get the coefficients of the various 
Trendline fitting functions directly into worksheet cells. The formulas use the 
results returned by LINEST, so there's really no reason not to use LINEST 
directly. But for those die-hards who insist on using Trendline, here are the 
relationships (in each formula, replace the arguments y-values and x-values with 
the appropriate range references): 

linear a =INDEX(LINEST(y-values,x-values,l ,O),l) 

b =INDEX( LINEST(y-values,x-values, 1,0),2) 

logarithmic a =INDEX( LI NEST(y-values, LN(x-values), 1 ,O), 1 ) 
= I  N D EX( LI N EST( y-values, LN(x-values) , I  ,0) ,2) b 

polynomial a =INDEX(LINEST(y-values,x-valuesA{l ,2,3},1 ,O) , l )  

(e.g., order 3) b =INDEX(LINEST(y-values,x-valuesA{l ,2,3},1,0),2) 

= I  N D EX( L I N EST( y-val ues, x-valuesA{ 1 ,2,3}, 1 , 0) ,3) 

= I  N D EX( LI N EST( y-val ues, x-valuesA{ 1 ,2,3}, 1 , O), 4) 
c 
d 



CHAPTER 13 LINEAR REGRESSION AND CURVE FITTING 303 

power a =EXP(INDEX(LINEST(LN(y-values),LN(x-values), 1,0),2)) 
b =INDEX(LINEST(LN(y-values),LN(x-values),l,O),l) 

exponential a =EXP( I NDEX( LIN EST( LN(y-values),x-values, 1,0),2)) 

b = I  N D EX( LI N EST( LN ( y-vat ues) , x-values ,I , 0) , I  ) 

The formulas for polynomials of other orders should be apparent from the 
example given. 

Even though LINEST is an array function and must be entered using 
CTRL+SHIFT+ENTER, you do not need to "array-enter" these formulas. 

Note that the formulas for the regression coefficients a and b for linear, 
logarithmic and polynomial equations differ only in the value of the last 
argument (the row-num argument of INDEX). The formulas for power and 
exponential are not identical. 

The formula for RSQ for the linear equation is 

= I  N D EX( LI N EST( y-val ues, x-values ,I , I  ) ,3,1) 

and there are similar formulas for the other fitting functions. 

Using the Regression Tool in Analysis Tools 
Linear regression can also be performed using the Add-In package called the 

Analysis ToolPak. If the Analysis ToolPak Add-In is installed, the Data 
Analysis ... command will be present at the bottom of the Tools menu; if the 
Data Analysis ... command is not present in the Tools menu, choose Add-Ins ... 
from the Tools menu and check the box for Analysis ToolPak or Analysis 
ToolPak (VBA) to install it. Now when you click on the Tools menu you will 
see the Data Analysis.. . command. 

Figure 13-14. The Data Analysis dialog box. 



304 EXCEL: NUMERICAL METHODS 

Figure 13-15. The Regression dialog box. 

After you choose Data Analysis.. . from the Tools menu, choose Regression 
from the Analysis Tools list box. The Regression dialog box (Figure 13-15) will 
prompt you to enter the range of dependent variable (y) values and the range of 
independent variable (x) values, as well as whether the constant is zero, whether 
the first cell in each range is a label, and the confidence level desired in the 
output summary. Then select a range for the summary table. You need select 
only a single cell for this range; it will be the upper left corner of the range. You 
can also request a table of residuals and a normal probability plot. If you select a 
cell or range such that the summary table would over-write cells containing 
values, you will get a warning message. 

In contrast to the results returned by LINEST, the output is clearly labeled, 
and additional statistical data are provided. 



CHAPTER 13 LINEAR REGRESSION AND CURVE FITTING 305 

Figure 13-16. Regression statistics returned by the Regression tool. 
(folder 'Chapter 13 Examples', workbook 'Dowtherm data', sheet 'Using Regression') 

Limitations of the Regression Tool 
Unlike Trendline, the Regression tool in Data Analysis.. . (the Analysis 

Toolpak) provides the coefficients and statistical parameters of linear regression 
as values in cells, ready to be used in calculations. And, they are presented in a 
nicely formatted table. The major limitation of the regression tool is that, unlike 
LINEST, it is not a function. With LINEST, the returned values are dynamically 
linked to the original data and are updated if the raw data is changed. If you use 
the Regression tool, the values are calculated from the raw data and entered into 
worksheet cells; they do not change if you change the input data. 

Importing the Trendline Equation 
from a Chart into a Worksheet 

Scientists and engineers often use Excel's Trendline feature to obtain a least- 
squares fit to data in a chart. Trendline provides a limited gallery of 
mathematical fitting functions, including regular polynomials up to order six. 
The disadvantage of Trendline is that the trendline equation is merely a caption 
in the chart; to use it in the worksheet, the coefficients must be transferred 
manually by typing, or copying and pasting. The utility TrendlineToCell 
provided on the CD-ROM converts the Trendline equation to an Excel formula 
and transfers the formula to a selected cell on a worksheet. Figure 13-17 shows 
the VBA code. 



306 EXCEL: NUMERICAL METHODS 

Sub TrendlineToCell() 
'Tranfers Trendline text to cell as formula. 

'REMEMBER LOCATION OF CHART 
If TypeName(ActiveSheet) = "Chart" Then 
ChartSheetNarne = ActiveSheet.Name 

Else 
pointer = Application.Find("Chart", ActiveChart.Name) 
ChartObjectName = Mid(ActiveChart.Name, pointer, 100) 

End If 

'MAKE SURE A TRENDLINE IS SELECTED. 
On Error GoTo Badselection 
'Selection.Narne e.g., "Text S3T1" 
If Selection.Name Like "Text S*T*" Then 
pointer = Application.Find("T", Selection.Name, 3) 
SeriesNum = Val(Mid(Selection.Name, 7, pointer - 7)) 
TrendlineNum = Val(Mid(Selection.Name, pointer + 1, 3)) 

Else 
Badselection: MsgBox "You must select a Trendline label." 
Exit Sub 
End If 
On Error GoTo 0 

'CHANGE NUMBER FORMAT TEMPORARILY TO GET SUFFICIENT PRECIS101 
TLNurnberFormat = Selection.NumberFormat 
Selection.Num berFormat = "0.0000000000E+00 

'CONVERT TRENDLINE TEXT TO AN EXCEL FORMULA 
'First, strip off y and R parts 
TLText = Selection.Characters.Text 
pointer = Application.Find("=", TLText) 
TLText = Mid(TLText, pointer, 1024) 
If Not (IsError(Application.Find("R, TLText))) Then 
pointer = Application.Find("R, TLText) 
TLText = Left(TLText, pointer - 2) 
End If 

'CONVERT DIFFERENT TYPES OF TRENDLINE EQUATIC, I 
Select Case ActiveChart.SeriesCoIlection(SeriesNum) - 

Case -4132 'Linear 

Case -41 33 'Logarithmic 

Case 3 'Polynomial 

.Trendlines(TrendlineNum).Type 

TLText = Application.Substitute(TLText, "x", "*x") 

TLText = Application.Substitute(TLText, "L", "*L") 

TLText = Application.Substitute(TLText, "x", "*xA") 
TLText = Application.Substitute(TLText, "xA ", "x ") 

TLText = Application.Substitute(TLText, "x", "*xA") 

TLText = TLTexi 8, "Y' 

Case 4 'Power 

Case 5 'Exponential 



CHAPTER 13 LINEAR REGRESSION AND CURVE FITTING 307 

~ 

TLText = Application.Substitute(TLText, "e", "*EXP(") 
TLText = Application.Substitute(TLText, "x", "*x") 

End Select 

'RETURN TO TRENDLINE TEXT TO RESTORE ORIGINAL NUMBER FORMAT 
If ChartSheetNarne c> "" Then 
Charts(ChartSheetName).Activate 
Charts(ChartSheetNarne).C hartArea.Select 

ActiveSheet.ChartObjects(ChartObjectNarne).Activate 
Else 

End If 
ActiveChart.SeriesCoIlection(SeriesNurn) - 

.TrendIines(TrendlineNum).DataLabel.Select 
Selection.Num berFormat = TLNurnberForrnat 

End Sub 

Figure 13-17. VBA code for theTrendlineToCel1 utility. 

The procedure is an Auto-Open macro; when you open the document, the 
procedure installs a new menu command, Copy Trendline to Cell ..., in the 
Tools menu of the Chart menu bar (see Figure 13-18), then hides itself. 



308 EXCEL: NUMERICAL METHODS 

Figure 13-18. The new menu command in the Chart menu. 

To use the utility, you first must select a Trendline equation in a chart. Then 
choose the Copy Trendline to Cell.. . command. Two dialog boxes direct you 
to, first, select the destination cell for the formula, and second, select the cell for 
the independent variable x .  The utility converts a trendline equation such as 

y = 3x3 + 25x2 - 5x - 11 

into the corresponding Excel formula 

= 3*A9"3 + 2.5*A9"2 - 5*A9 - 11 

The utility can handle linear, logarithmic, polynomial, power and exponential 
Trendline equations. 



CHAPTER 13 LINEAR REGRESSION AND CURVE FITTING 309 

Problems 

Data for, and answers to, the following problems are found in the folder "Ch. 13 
(Linear Regression)" in the "Problems & Solutions" folder on the CD. 

1 .  The calibration curve data in Table 13-1 shows readings taken on a series of 
sodium standards, using a CIBA-Corning Model 410 flame photometer. The 
calibration line is noticeably curved. 

Table 13-1. Data for flame photometry calibration curve. 

Fit the data to a cubic equation, y = ax3 + bx2 + cx + d. 

2. If any of the coefficients found in problem 13-1 have unacceptably large 
standard errors, repeat the analysis using a different fitting function. 

3. Fit the data In Table 13-2 (also available on the CD) to a power series 
function, y = axb, using (a) Trendline and (b) LINEST. 

Table 13-2. Data to be fitted with a power series. 



3 10 EXCEL: NUMERICAL METHODS 

0.0 

4. 

5. 

32.0 

6. 

50.0 

Fit the data for freezing point of ethylene glycol by wt% shown in the 
following table (also found in the problems for Chapter 5 )  to a cubic fitting 
function and estimate the freezing points of 33.3 wt% and 42.3 wt% ethylene 
glycol. 

-28.9 

I Wt% Ethylene I Freezing Point, OF I 

~~ ~ 

55.0 
60.0 

~. ~ 

-42.0 
-54.9 

22.2 
20.0 17.9 
25.0 12.7 

40.0 
45.0 -17.5 

Table 13-3. Heat transfer fluid freezing point data. 

Table 13-4 (also found on the CD) gives the specific heat of water at various 
temperatures from 0°C to 100OC. Using LINEST, fit the data to a 
polynomial of order 5 .  

- 

Table 13-4. Specific heat of water at various temperatures. 

Power output (P) from a gas turbine engine was measured at several different 
throttle settings (7) and output shaft speeds (S). The data are shown in Table 
13-5 and are also found on the CD-ROM. Use linear regression to obtain 



CHAPTER 13 LINEAR REGRESSION AND CURVE FITTING 311 

the coefficients of a single equation P = F(T,:s) so that a controller can be 
programmed to command a load on  the engine based on speed and throttle 
setting. 

Table 13-5. Power output of a gas turbine engine 
as a function of throttle setting and shaft speed. 



This Page Intentionally Left Blank



Chapter 14 

Nonlinear Regression 
Using the Solver 

If you have read the preceding chapter on linear regression and are familiar 
with the use of LINEST, you should have no trouble recognizing a function that is 
linear in the coefficients. Some examples of functions that are linear in the 
coefficients are y = a + bx + cx2 + dx3 or y = ae". 

However, if the function is one such as 

a + bx y = e  (14-1) 

it is not linear in the coefficients. It should be obvious that it's not possible to 
apply LINEST to this equation; given a column of x values, you can't create a 
column of e 

Some nonlinear equations can be transformed into a linear form. Equation 
14-1, for example, can be transformed by taking the logarithm to the base e of 
each side, to yield the equation 

a + bx when a and b are the "unknowns" you're trying to find. 

In y = a + bx ( 14-2) 

which is linear in the coefficients. 
Some equations cannot be converted into a linear form and are said to be 

intrinsically nonlinear. Consider this example from the field of chemical reaction 
kinetics: a system of two consecutive first-order reactions (the reaction scheme 
A-B-C) where kl and k2 are the rate constants for the reaction of species A to 
form the intermediate B and B to form the final product C, respectively. The 
equations for the concentrations of the species [A],, [B], and [C], in a reaction 
sequence of two consecutive first-order reactions can be found in almost any 
kinetics text. The expression for [B], is 

(1 4-3) 

and a typical plot of [B], vs. t looks like the one in Figure 14-1. Equation 14-3 is 
a classic example of an equation that is intrinsically nonlinear. 

313 



3 14 EXCEL: NUMERICAL METHODS 

Nonlinear Least-Squares Curve Fitting 
Unlike for linear regression, there are no analytical expressions to obtain the 

set of regression coefficients for a fitting function that is nonlinear in its 
coefficients. To perform nonlinear regression, we must essentially use trial-and- 
error to find the set of coefficients that minimize the sum of squares of 
differences between ycalc and yobsd. For data such as in Figure 14-1, we could 
proceed in the following manner: using reasonable guesses for kl and k2, 
calculate [B] at each time data point, then calculate the sum of squares of 
residuals, SSresiduals = C([B]ca~c - [B]e,,t)2. Our goal is to minimize this error- 
square sum. 

We could do this in a true "trial-and-error" fashion, attempting to guess at a 
better set of kl and k2 values, then repeating the calculation process to get a new 
(and hopefully smaller) value for the SSresjduals. Or we could attempt to be more 
systematic. Starting with our initial guesses for kl and k2, we could create a two- 
dimensional array of starting values that bracket our guesses, as in Figure 14-2. 
(The initial guesses for kl and k2 were 0.30 and 0.80, respectively and the array of 
starting values are 70%, SO%, go%, loo%, 1 lo%, 120% and 130% of the 
respective initial estimates.) Then, for each set of kl and k2 values, we calculate 
the SSresiduals. The kl and kl values with the smallest error-square sum (kl = 0.27, 

0'025 I 
0.020 

0.01 5 

0.01 0 

0.005 

0.000 

1 

0 2 4 6 8 10 

Time 

Figure 14-1. A typical plot of the concentration of species B for a system of two 
consecutive first-order reactions (the reaction scheme A+B+C) 



CHAPTER 14 NONLINEAR REGRESSION USNG THE SOLVER 315 

k, = 0.64 in Figure 14-2) become the new initial estimates and the process is 
repeated, using smaller bracketing values. Years ago this procedure, called "pit- 
mapping," was performed on early digital computers. 

In essence we are mapping out the error surface, in a sort of topographic 
way, searching for the minimum. A typical error surface is shown in Figure 14-3 
(the logarithm of the SSresiduals has been plotted to make the minimum in the 
surface more obvious in the chart). 

Figure 14-2. The error-square sums for an array of initial estimates. 
The minimum SSresiduals value is in bold. 

Figure 14-3. An error surface 



A more efficient process, the method of steepest descent, starts with a single 
set of initial estimate values (a point on the error surface), determines the 
direction of downward curvature of the surface, and progresses down the surface 
in that direction until the minimum is reached (a modern implementation of this 
method is called the Marquardt-Levenberg algorithm). Fortunately, Excel 
provides a tool, the Solver, that can be used to perform this kind of minimization 
and thus makes nonlinear least-squares curve fitting a simple task. 

Introducing the Solver 
Like Goal Seek, the Solver can vary a changing cell to make a target cell 

have a certain value. But unlike Goal Seek, which can vary only a single 
changing cell, the Solver can vary the values of a number of changing cells. 

The Solver is a general-purpose optimization package that can find a 
maximum, minimum or specified value of the target cell. The Solver code is a 
product of Frontline Systems Inc. (P.O. Box 4288, Incline Village, NV 89450; 
www. frontsys .corn). 

Microsoft's documentation makes no mention of the use of the Solver to 
perform least-squares curve fitting, but it is immediately obvious to almost any 
scientist that the Solver can be used to minimize the sum of squares of residuals 
(differences between Yobsd and ycalc) and thus perform least-squares curve fitting. 
The Solver can be used to perform either linear or nonlinear least-squares curve 
fitting. 

How the Solver Works 
The Solver uses the Generalized Reduced Gradient (GRG2) nonlinear 

optimization code developed by Leon Lasdon, University of Texas at Austin, and 
Allan Waren, Cleveland State University*. 

For each of the changing cells, the Solver evaluates the partial derivative of 
the objective function F (the target cell) with respect to the changing cell ai, by 
means of the finite-difference method. The procedure works something like this: 
the Solver reads the value of each changing cell a, in turn, modifies the value by 
a perturbation factor (the perturbation factor is approximately 1 0-8), and writes 
the new value back to the worksheet cell. This causes the spreadsheet to 
recalculate, producing a new value of the objective. The Solver calculates the 

* For linear and integer problems, the Solver uses the simplex method and branch-and- 
bound method, but these methods need not be discussed here. You can read more about 
the design and operation of the Solver in the following article (available online): "Design 
and Use of the Microsoft Excel Solver," Daniel Fylstra, Leon Lasdon, John Watson and 
Allan Waren, Interfaces 28, September 1998, pp. 29-55. 



CHAPTER 14 NONLINEAR REGRESSION USING THE SOLVER 3 17 

partial derivative dF/dai according to equation 14-4 and then restores the 
changing cell to its original value and perturbs the next changing cell. The same 
method was used earlier in this book to calculate the first derivative of a function 
(see "Derivative of a Worksheet Formula Using the Finite-Difference Method" in 
Chapter 6). 

8F AF F(ai  + A a i )  - F ( a i )  
dai Aai Aa,  

(1 4-4) - - =-- 

The Solver uses a matrix of the partial derivatives to determine the gradient 
of the response surface, and thus how to change the values of the changing cells 
in order to approach the desired solution. 

The use of finite differences to obtain the partial derivatives means that the 
Excel spreadsheet performs all of the intermediate calculations leading to the 
evaluation of the derivatives. Thus all of Excel's built-in worksheet functions, as 
well as any user-defined functions, are supported. The alternative, obtaining the 
derivatives analytically by symbolic differentiation of the spreadsheet formulas, 
would have been an impossible task. 

Loading the Solver Add-In 
The Solver is an Excel Add-in, a software program that is loaded only when 

needed. You'll find the Solver in the Tools menu; if it's not there, choose Add- 
Ins ... from the Tools menu to display the Add-Ins dialog box, shown in Figure 
14-4, check the box for Solver Add-In, then press OK. 

Why Use the Solver for Nonlinear Regression? 
A number of commercial statistical packages provide the capability to 

perform nonlinear least-squares curve fitting, so why use the Solver? 
First, the Solver is used within the familiar Excel environment, so that you 

don't have to learn new commands and procedures. 
Secondly, with commercial statistical packages you are generally restricted 

to using an equation chosen from a library of fitting functions provided within 
the program, whereas with the Solver you can fit data to any model (that is, any 
ycalc formula) you choose. 

Finally, the Solver is part of Excel. It's free, so why not use it? 



3 18 EXCEL: NUMERICAL METHODS 

Figure 14-4. The Add-Ins dialog box. 

Nonlinear Regression Using the Solver: An Example 
To perform nonlinear least-squares curve fitting using the Solver, your 

spreadsheet model must contain a column of known y values and a column of 
calculated y values, so that the sum of squares of residuals can be calculated. 
The calculated y values must be spreadsheet formulas that depend on the curve 
fitting coefficients that will be varied by the Solver. 

To illustrate the use of the Solver for nonlinear least-squares curve fitting, 
we'll use as an example the system of two consecutive first-order reactions (the 
reaction scheme A-+B-+C) where the species B is the observed variable. 
Equation 14-3 gives the expression for the concentration of species B as a 
function of time; as we have seen, [B], depends on two rate constants, kl and k2. 
In the experimental results that follow, species B was monitored by 
spectrophotometry (light absorption) and the relationship between the light 
absorbed (the absorbance) and the concentration of B is given by Beer's Law: 

A = E~ x (path length of light through the sample) x [B] 



CHAPTER 14 NONLINEAR REGRESSION USING THE SOLVER 319 

where E~ is the molar absorptivity (a constant dependent on the chemical species 
and the wavelength, and thus a third unknown quantity in this example). 
Therefore three curve-fitting coefficients (k,, k2 and E ~ )  must be varied in this 
example. If two variable coefficients produce an error surface in three 
dimensions, as illustrated in Figure 14-3, then varying three coefficients requires 
that we work in four dimensions! 

Figure 14-5 shows the spreadsheet that was used to produce the result shown 
in Figure 14-1. The experimental values of the dependent variable, Aobsd, are in 
column B, the concentration [B], in column C, Acalc in column D and the square 
of the residual in column E. 

Figure 14-5. The spreadsheet before optimization of coefficients by the Solver. The 
initial values of the three coefficients (the changing cells) and the current value of the 

objective (the target cell) are in bold. 



320 EXCEL: NUMERICAL METHODS 

The formulas in cells CIO, D10 and El0 are, respectively, 

=C-A*k-l*( EXP(-k-2*t)-EXP(-k-l *t))/(k-I -k-2) 

=E-B*0.4*CI 0 

=(BI 0-D10)"2 

Range names were used in these formulas; the names assigned to cells are 
shown in parentheses in the cell to the right of each named cell. 

The three changing cells ($E$6, $E$7 and $B$7) and the target cell ($E$26) 
are in bold. The initial values are guesses based on the appearance of the data in 
Figure 14-1. More specifically, the guesses were based on the rise time, decay 
time and maximum of the data, but if you experiment with the Solver you will 
see that much poorer guesses will almost always lead to the correct answer. 

(A good way to get initial values for the changing cells is to create a chart of 
the data, then vary the coefficients in order to get an approximate fit of the 
calculated curve to the experimental data points.) 

When the spreadsheet model has been set up, choose Solver... from the 
Tools menu. The Solver Parameters dialog box (Figure 14-6) will be displayed. 

Figure 14-6. The Solver Parameters dialog box. 

In the Set Target Cell box, type E26, or select cell E26 with the mouse. We 
In the By want to minimize the sum of squares, so press the Min button. 

Changing Cells box, enter E6:E7 and B7. 



CHAPTER 14 NONLINEAR REGRESSION USING THE SOLVER 32 1 

Figure 14-7. The Solver Options dialog box. 

For reasons that will be explained in a subsequent section, press the Options 
button to display the Solver Options dialog box (Figure 14-7) and check the Use 
Automatic Scaling box. 

Figure 14-8. The Solver Results dialog box. 

Press OK to exit from Solver Options and return to the Solver Parameters 
dialog box. Press the Solve button. 



322 EXCEL: NUMERICAL METHODS 

When the Solver finds a solution, the Solver Results dialog box is displayed 
(Figure 14-8). There are three reports that you can choose to print: Answer, 
Sensitivity and Limits, but none of these reports contain any information that we 
will use. 

You have the option of accepting the Solver's solution or restoring the 
original values. Press the Keep Solver Solution button. The spreadsheet will be 
displayed with the final values of the changing and target cells (Figure 14-9). 

Figure 14-9. The spreadsheet after optimization of coefficients by the Solver. The three 
coefficients (the changing cells) and the objective (the target cell) are in bold. 



CHAPTER 14 NONLINEAR REGRESSION USING THE SOLVER 323 

The Solver provides results that are essentially identical to those from 
commercial software packages. Any slight differences (usually ca. 0.00 1 YO or 
less) arise from the fact that, with all of these programs, the coefficients are 
found by a search method; the "final" values will differ depending on the 
convergence criteria used in each program. In fact, you would probably obtain 
slightly different results using the same program and the same data, if you started 
with different initial estimates of the coefficients. 

Some Notes on Using the Solver 
External References. The target cell and the changing cells must be on the 
active sheet. However, your model can involve external references to values in 
other worksheets or workbooks. 

Discontinuous Functions. Discontinuous functions in your Solver model 
may cause problems. They can be either discontinuous mathematical functions 
such as TAN, which has a discontinuity at 7d2, or worksheet functions that are 
inherently "discontinuous," such as IF, ABS, INT, ROUND, CHOOSE, LOOKUP, 
HLOOKUP, or VLOOKUP. 

Initial Estimates. Since the Solver operates by a search routine, it will find a 
solution most rapidly and efficiently if the initial estimates that you provide are 
close to the final values. As mentioned previously, it is often useful to create a 
chart of the data that displays both Yobsd and ycalo and then vary the parameters 
manually in order to find a good set of initial parameter estimates. 
Global Minimum. To ensure that the Solver has found a global minimum 
rather than a local minimum, it's a good idea to obtain a solution using different 
sets of initial estimates. 

"Unable to find a solution" When There Are a Large Number of 
Parameters. For a complicated model with a large number of adjustable 
coefficients, the Solver may not be able to converge to a reasonable solution. In 
such a case, it is sometimes helpful to perform initial Solver runs with subsets of 
the coefficients. For example, to fit a UV-visible spectrum with five Gaussian 
bands, and thus 15 adjustable coefficients, you could perform initial runs varying 
the coefficients for two or three of the bands at a time. When a reasonable fit has 
been found for the subsets, perform a final Solver run varying all of the 
coefficients. 

Some Notes on the Solver Parameters Dialog Box 
There are some additional controls in the Solver Parameters dialog box: 

By Changing Cells. 
individual cells or ranges in the By Changing Cells input box. 

You can use names instead of cell references for 



3 24 EXCEL: NUMERICAL METHODS 

For ease of editing an extensive series of references in the By Changing Cells 
input box, press F2; you can then use the arrow keys to move within the box. 
Constraints. With the Solver you can apply constraints to the solution. For 
example, you can specify that a parameter must be greater than or equal to zero, 
or that a parameter must be an integer. Although the ability to apply constraints 
to a solution may be tempting, it can sometimes lead to an incorrect solution. 
Don't introduce constraints (e.g., to force a parameter to be greater than or equal 
to zero) if you're using the Solver to obtain the least-squares best fit. The 
solution may not be the "global minimum" of the error-square sum, and the 
regression coefficients may be seriously in error. 
Add, Change, Delete. The Add, Change and Delete buttons are used to 
apply constraints to the model. Since the use of constraints is to be avoided, 
these buttons are not of much interest. 
Guess. Pressing the Guess button will enter references to all cells that are 
precedents of the target cell. In the example in Figure 14-9, pressing the Guess 
button enters the cell references $A$IO:$B$25, $B$7, $B$5, $E$6:$E$7 (t values, 
E-B, C-A, k-I, k-2, respectively) in the By Changing Cells box. Obviously, 
some of these coefficients must not be allowed to vary. Avoid using the Guess 
button. 
Reset All. The current Solver model is automatically saved with the 
worksheet. The Reset All button permits you to "erase" the current model and 
begin again. 

Some Notes on the Solver Options Dialog Box 
The Options button in the Solver Parameters dialog box displays the Solver 

Options dialog box (Figure 14-7) and allows you to control the way Solver 
attempts to reach a solution. The default values of the options are shown in 
Figure 14-7. 

Max Time and Iterations. The Max Time and Iterations parameters 
determine when the Solver will return a solution or halt. If either Max Time or 
Iterations is exceeded before a solution has been reached, the Solver will pause 
and ask if you want to continue. For most simple problems, the default limits 
will not be exceeded. In any event, you don't need to adjust Max Time or 
Iterations, since if either parameter is exceeded, the Solver will pause and issue a 
Tontinue anyway?" message. 
Precision and Tolerance. Both the Precision and Tolerance options apply 
only to problems with constraints. The Precision parameter determines the 
amount by which a constraint can be violated. The Tolerance parameter is 
similar to the Precision parameter, but applies only to problems with integer 
solutions. Since adding constraints to a model that involves minimization of the 



CHAPTER 14 NONLINEAR REGRESSION USING THE SOLVER 325 

error-square sum is not recommended, neither the Precision nor the Tolerance 
parameter is of use in nonlinear regression analysis. 
Convergence. The Convergence parameter corresponds to the Maximum 
Change parameter in the Calculations tab of Excel's Options dialog box (see 
Chapter 8, Figure 17), but unlike the Maximum Change parameter, which is an 
absolute convergence limit, the Solver's Convergence parameter is relative; the 
Solver will stop iterating when the relative change in the target cell value is less 
than the number in the Convergence box for the last five iterations. Thus you 
don't have to scale the convergence limit to fit the problem, as you do when 
using Goal Seek.. . . 
Assume Linear Model. If the function is linear, checking the Assume 
Linear Model box will speed up the solution process. If the Assume Linear 
Model option is checked, the Solver performs a linearity test before proceeding; 
if the model fails this linearity test, the Solver returns the message "The 
conditions for Assume Linear Model are not satisfied." 

Assume Non-Negative. Checking this box is equivalent to setting "greater 
than or equal to zero" constraints for each of the coefficients. 
Use Automatic Scaling. For some models the Solver may refuse to 
converge satisfactorily. The Solver may fail to vary one or more changing cells 
or vary them by only an insignificant amount. This can occur when there is a 
large difference in magnitude between changing cells, for example, if you are 
varying two parameters, an equilibrium constant K, with magnitude 1 ~ 1 0 ' ~  and 
an NMR chemical shift 6,  with magnitude 0.5, to fit data from an NMR 
"titration" (chemical shift as a function of pH). In such cases the Use Automatic 
Scaling option should be checked. In the example earlier in this chapter, you 
were instructed to check the Use Automatic Scaling box because there was a 
large difference between the parameters k-1 and k-2 (both on the order of 1) and 
the parameter E-B (on the order of lo3). You may find it constructive to re-run 
this example using the original estimates (0.5, 0.3 and 3E+03) but with the Use 
Automatic Scaling box unchecked. You will find that the Solver varies k-1 and 
k-2 but does not appear to change E-B. But if you examine the value of E-B you 
will see that the value did change a very small amount. (When I ran this model, 
the value changed from 3000 to 2999.99999714051 .) 
Show Iteration Results. If the Show Iteration Results box is checked, the 
Solver will pause and display the result after each iteration. You may find it 
interesting to try this option when you are first learning to use the Solver. 

If you create a model with a large number of cells to recalculate at each 
iteration, you may be able to observe the progress of the Solver in another way: 
after each iteration, the iteration number and the value of the target cell are 
displayed in the Status Bar at the bottom of the Excel worksheet. (The number 
format of the target cell in the Status Bar is the same as its format on the 



326 EXCEL: NUMERICAL METHODS 

worksheet, so be sure to display enough decimal places on the worksheet so that 
you'll be able to see the progress of the iterations.) Also, for a large model that 
takes a long time to calculate, you can press ESC at any time to halt the iteration 
process and inspect the current results, and then continue. 
Estimates, Derivatives and Search. These coefficients can be changed 
to optimize the solution process. The Search parameter specifies which gradient 
search method to use: the Newton method requires more memory but fewer 
iterations, while the Conjugate method requires less memory but more iterations. 
The Derivatives parameter specifies how the gradients for the search are 
calculated: the Central derivatives method requires more calculations (and will 
therefore be slower) but may be helpful if the Solver reports that it is unable to 
find a solution. The Estimates parameter determines the method by which new 
estimates of the coefficients are obtained from previous values; the Quadratic 
method may improve results if the system is highly nonlinear. For the majority 
of problems, you probably will not detect any difference in performance with any 
of these options. 
Save Model... and Load Model .... The current Solver model is 
automatically saved with the worksheet. The Save Model.. . and Load Model.. . 
buttons permit you to save multiple Solver models. An additional 512 bytes are 
added to the workbook for each model that is saved. 

When to Use Manual Scaling 
The Use Automatic Scaling option is important for many problems, but so is 

manual scaling. Even when Use Automatic Scaling is in effect, the Solver may 
still be unable to find a solution. Automatic Scaling rescales the model based on 
values at the initial point. Objective and changing cells are scaled so their scaled 
values at the initial point are 1. But, if a value is less than 1E-05 at the initial 
point, that value is not scaled. Thus, even though you have checked the Use 
Automatic Scaling box, scaling may not be in effect. Therefore, you need to be 
aware of the need for manual scaling. 

To apply manual scaling to the changing cells, modify one or more formulas 
so that the changing cells are all within three orders of magnitude or less of each 
other. For example, in the NMR titration example described in the previous 
paragraph, you could re-formulate the calculation so as to use log K instead of K. 
(Note that you can't apply a scaling factor directly to a changing cell, since it 
must be a number value that can be changed by the Solver; the scale factor must 
be incorporated into the target cell formula or into one of the intermediate 
formulas.) 

In my experience, if the magnitude of the objective (the target cell) is very 
small (e.g., 1E-09), the Solver may assume that convergence has been reached 



CHAPTER 14 NONLINEAR REGRESSION USING THE SOLVER 327 

and may not attempt to improve the solution'. Since many scientific problems 
can have values of the objective that are very small, manual scaling of the 
objective is extremely important. According to FrontLine Systems, "The user 
should always be cautious when thejnal  objective function is small and very 
cautious when the objectionjimction is less than 1E-5 in absolute value. The 
best way to avoid scaling problems is to carefully choose the 'units' used in your 
model so that changing cells and target cell are all within a few orders of 
magnitude of each other, andpreferably not less than 1 in absolute value." 

You can apply a scale factor directly to the objective function. For example, 
an objective function formula such as 

=SUM( D4: D22) 

that yields a sum-of-squares result with order of magnitude 1 E-9 can simply be 
changed to the formula 

=I EOS*SUM(D4:D22) 

If you apply a scale factor to the objective, be sure to examine the objective 
after minimization. You may need to increase the magnitude of the scale factor 
and rerun the Solver. 

Statistics of Nonlinear Regression 
The only problem with the use of the Solver to perform least-squares 

regression is that, although you get the regression coefficients readily, the results 
aren't much use if you don't know their uncertainties as well. These aren't 
available from the Solver. The following illustrates how to obtain the standard 
deviations of the regression coefficients after obtaining the coefficients by using 
the Solver. 

The standard deviation of the regression parameter ai is given by equation 
14-5. 

6 = 4pii-' SECy) ( 14-5) 

where Pii-l is the ith diagonal element of the inverse of the Pij matrix 

(1 4-6) 

~~ 

* This can sometimes result in a situation where good initial estimates, which result in a 
very small value of the objective, do not lead to a solution, while for the same model, 
poorer initial estimates give a solution. 



328 EXCEL: NUMERICAL METHODS 

dFn/aaj is the partial derivative of the function with respect to ai evaluated at 
xn. The above expressions can be found in some texts on nonlinear regression*. 
SEb) is as defined in equation 13-19. 

It's possible to carry out these calculations using a spreadsheet, but it's 
laborious and error-prone. A macro to perform the calculations is provided on 
the CD that accompanies this book. 

The Solver Statistics Macro 
The SolvStat Add-In returns regression statistics for regression coefficients 

obtained by using the Solver. The values returned are the standard deviations of 
the regression coefficients, plus the R2 and SE(y) statistics 

The add-in installs a new menu command, Solver Statistics ..., in the Tools 
menu. If the Solver add-in has been loaded, the Solver Statistics... command 
will appear directly under the Solver ... command in the Tools menu; if Solver is 
not installed, the Solver Statistics ... command will appear at the bottom of the 
menu. See "Loading the Solver Add-In" earlier in this chapter for instruction on 
how to load the add-in. Both SolvStat.xls and SolvStat.xla versions are provided 
on the CD. 

The macro calculates the aFn/i%i terms for each data point by numerical 
differentiation, in the same way as in Chapter 6 (see the worksheet "Derivs by 
Sub Procedure"). This process is repeated for each of the k regression 
coefficients. Then the cross-products ( ~ F / ~ u , ) ( ~ F / a u , )  are computed for each of 
the N data points and the Z ( ~ F / a u , ) ( ~ F / ~ u , )  terms obtained. The P, matrix of 
Z(aF/au,)(aF/au,) terms is constructed and inverted. The terms along the main 
diagonal of the inverse matrix are then used with equation 14-5 to calculate the 
standard deviations of the coefficients. This method may be applied to either 
linear or nonlinear systems. 

When you choose the Solver Statistics ... command, a sequence of four 
dialog boxes will be displayed, and you will be asked to select four cell ranges: 
(i) the yobsd data, (ii) the ycalc data, (iii) the regression coefficients obtained by 
using the Solver and (iv) a 3R x nC range of cells to receive the statistical 
parameters. The Step 1 dialog box is shown in Figure 14-10. The yobsd and ycalc 
values can be in row or column format. The Solver coefficients can be in non- 
adjacent cells. 

* For example, K. J. Johnson, Numerical Methods in Chemistry; Marcel Dekker, Inc., 
New York, 1980, p. 278. 



CHAPTER 14 NONLINEAR REGRESSION USING THE SOLVER 329 

Figure 14-10. Step 1 of 4 of the Solver Statistics macro 

The macro calculates the partial derivatives of the function, creates a matrix 
of sums of cross products, inverts the matrix and uses the diagonal elements to 
calculate the standard deviations. 

If the SolvStat macro is used with the kinetics data of Figure 14-9, the 
regression coefficients shown in Figure 14-1 1 are returned. The array of values 
returned is in a format similar to that returned by LINEST: the regression 
coefficients are in row 5 ,  the standard errors of the coefficients are in row 6 and 
the R2 and SE(y) or RMSD parameter are in row 7. 

Figure 14-11. Regression statistics returned by the SolvStat macro. 

The regression coefficients in row 5 are not calculated by the macro, but are 
the values returned by the Solver; they are provided simply to indicate which 
standard deviation is associated with which coefficient, since the Solver 
coefficients can be in nonadjacent cells. 

Be Cautious When Using Linearized Forms 
of Nonlinear Equations 

Some nonlinear relationships can be converted into a linear form, thus 
allowing you to use LINEST for curve fitting rather than applying the Solver. 
You should avoid this approach, because the curve fitting coefficients you obtain 
can be incorrect. An example will illustrate the problem. 



330 EXCEL: NUMERICAL METHODS 

In biochemistry, the reaction rate of an enzyme-catalyzed reaction of a 
substrate as a function of the concentration of the substrate is described by the 
Michaelis-Menten equation, 

( 14-7) 

where V is the reaction velocity (typical units mmolh), K, is the Michaelis- 
Menten constant (typical units mM), V,,, is the maximum reaction velocity and 
[S] is the substrate concentration. Some typical results are shown in Figure 14- 
10. 

50 

40 

0 

L 
% 30 

E 
E 20 
J 

10 

Figure 14-10. Michaelis-Menten enzyme kinetics. 
The curve is calculated using equation 14-9 with V,,, =50, K,,, = 0.5. 

Before desktop computers were available, researchers transformed curved 
relationships into straight-line relationships, so they could analyze their data with 
linear regression, or by means of pencil, ruler and graph paper. The Michaelis- 
Menten equation can be converted to a straight-line equation by taking the 
reciprocals of each side, as shown in equation 14-8. 

(14-8) 

This treatment is called a double-reciprocal or Lineweaver-Burk plot. A 
Lineweaver-Burk plot of the data in Figure 14-10 is shown in Figure 14-1 I .  



CHAPTER 14 NONLINEAR REGRESSION USING THE SOLVER 33 1 

The parameters V,,, and K,, can be obtained from the slope and intercept of 
the straight line (V,,, = Uintercept, K,, = interceptlslope). However, the 
transformation process improperly weights data points during the analysis (very 
small values of V result in very large values of 1/V, for example) and leads to 
incorrect values for the parameters. In addition, relationships dealing with the 
propagation of error must be used to calculate the standard deviations of V,,, and 
K,,, from the standard deviations of slope and intercept. 

0.00 ' 
0 5 10 

1 / P I  
Figure 14-1 1. Double-reciprocal plot of enzyme kinetics. 

The curve is calculated using equation 14-10 with V,, = 50, K,,, = 0.5. 

By contrast, when the Solver is used the data do not need to be transformed, 
ycalc is calculated directly from equation 14-7, the Solver returns the coefficients 
V,,, and K,,, and SolvStat returns the standard deviations of V,,, and K,n. 



332 EXCEL: NUMERICAL METHODS 

1 

2 

3 

Problems 

0 .OO 1 44 1 11 0.000051 

0.001 070 12 0.000036 

0.000739 13 0.000026 

Data for, and answers to, the following problems are found in the folder "Ch. 14 (Nonlinear 
Regression)" in the "Problems & Solutions" folder on the CD. 

5 
6 

1. First Order Reaction. The absorbance vs. time data in Table 14-1 was 
recorded for a chemical reaction. The reaction was believed to follow a first- 
order exponential decay: 

0.000367 15 0.000014 

0.000263 16 0.00001 0 

Table 14-1. Absorbance vs. time data. 

1 t,sec I Aobsd I t,sec I Aobsd 

I 0 I 0.002000 I 10 I 0.000077 I 

I 4 I 0.000542 I 14 I 0.000021 I 

I 7 I 0.000200 I 17 I 0.000007 I 
I 8 I 0.000140 I 18 I 0.000005 I 
I 9 I 0.000100 I I I 

Determine the rate constant k using the Solver. 

2. Logistic Curve I. The data in Table 14.2 can be described by a simple 
logistic curve 

1 

1 + e-ax 
Y =  

Determine the constant a using the Solver. 



CHAPTER 14 NONLINEAR REGRESSION USING THE SOLVER 333 

-8 

-7 

-6 

-5 

-4 

-3 

Table 14-2. Data for simple logistic equation. 

0.01 50 1 0.6198 

0.0338 2 0.7292 

0.0468 3 0.8177 

0.0712 4 0.8843 

0.1152 5 0.9206 

0.1850 6 0.9547 

1 x 1  Y 1 x 1  v I 

-1 

0 

0.3775 8 0.9863 

0.4972 10 0.6198 

I -2 I 0.2716 1 7 I 0.9706 1 

3 .  Logistic Curve 11. The logistic function 
a 

1 + e b+cx 
+ d  Y =  

takes into account offsets on the x-axis and the y-axis. Using the data in 
Table 14-3, determine the constants u, b, c and d using the Solver. 

Table 14-3. Data for logistic equation. 

I -1 I 10.06 

10.48 

10.73 

10.84 

11 .oo 
11 .oo 

1 9 1  11.03 I 



334 EXCEL: NUMERICAL METHODS 

4. Autocatalytic Reaction. The data in Table 14-4 describes the time course of 
an autocatalytic reaction with two pathways: an uncatalyzed path ( A  -+ B ) 

and an autocatalytic path ( A  + B ) .  [A], = 0.0200 mol L-'. The rate law 
(the differential equation) is 

B 

4Al t /d t  = d[B]t/dt= ko[A]t + kl[A]tCBlt 

Use any method from Chapter 10 to simulate the [B] = F(t) data, then use 
the Solver to obtain ko and kl. 

Table 14-4. Rate data for an autocatalytic reaction. 

5 .  van Deemter Equation. Gas chromatography is an analytical technique 
that permits the separation and quantitation of complex mixtures. The 
mixture flows through a chromatographic column in a stream of carrier gas 
(usually helium), where the components separate and are detected. In the 
analysis of a sample of gasoline, for example, the components are separated 
based on their volatility, the lowest-boiling emerging from the separation 
column first. The degree of separation can be treated mathematically in the 
same way as for fractional distillation: a column can be considered to have a 
number of theoretical plates, just as a distillation tower in a refinery has 
actual "plates" for the separation of different petroleum products (naphtha, 
gasoline, diesel fuel, etc.). For gas chromatography, separation efficiency is 
usually expressed in terms of HETP (Height Equivalent to a Theoretical 
Plate), the column length divided by the number of theoretical plates. 
Separation efficiency is a function of the carrier gas flow rate v, as shown in 
the following figure. There is an optimum flow rate that provides the 



CHAPTER 14 NONLINEAR REGRESSION USING THE SOLVER -- 335 

v, cmlsec 

0.9 

smallest HETP; too fast and there is not sufficient time for equilibration, too 
slow and gaseous diffusion allows the components to re-mix. 
The van Deemter Equation describes the relationship between HETP and 
carrier gas flow rate: 

HETP, cm 

0.64 

HETP = A + 23/11 + Cv 

3.0 

4.2 

where v = carrier gas flow velocity. The data in Table 14-5 (also on the 
CD) shows measurements of HETP for a gas chromatographic column, using 
different flow rates. 

0.42 

0.47 

Table 14-5. Gas chromatography data. 

7.0 

8.0 

0.63 

0.69 

I 1.5 I 0.51 I 

9.0 0.75 

I 5.6 I 0.55 I 

6. NMR Titration. The protonation constants K1 and K2 of a diprotic acid H2A 
were determined by NMR titration. (Protonation constants, for example, 

H + + L % H L  
are used in this example because they simplify the equilibrium expressions 
The chemical shift S of a hydrogen near the acidic sites was measured at a 
number of pH values over the range pH 1 to pH 11. The data are shown in 
the following Figure (data table and figure are on the CD that accompanies 
this book). 

K1= [HLI 1 WI [Ll 



8.00 I 

7.00 

1 6.00 

5.00 

4.00 
2.00 4.00 6.00 8.00 10.00 12.00 

PH 

Figure 14-12. NMR titration. 

At any pH value there are three acid-base species in solution: H2A, HA- 
and A2-; the observed chemical shift is given by the expression 

6 c d c  = a060 + a14 + a262 
where a, is the fraction of the species in the form containing j acidic 
hydrogens and q is the chemical shift of the species. The a values can be 
calculated using the expressions below: 

PJ LH' 1' a, = 
W,[H+IJ 

P, = K , K  ,... K ,  (Po  =1)  

KIK2 [H' l 2  a2 = 
1 + K ,  [H'] + K,K2 [H'I2 

Use the Solver to determine K I ,  K2, &, 61 and 6;. 

7. 2-D Regression. Using the Power vs. Speed and Throttle setting data in 
problem 13-6, find the coefficients for the polynomial fitting equation 

P = ( a ~ + + b T + c ) S S + ( d T + e ) S + f  



CHAPTER 14 NONLINEAR REGRESSION USING THE SOLVER 337 

8. Deconvolution of a Spectrum I. Use the data in Table 14-6 (also found on 
the CD in the worksheet "Deconvolution I") to deconvolute the spectrum. 
Close examination of the spectrum will reveal that it consists of four bands. 
Use a Gaussian band shape, i.e., 

where Acalc is the calculated absorbance at a given wavelength, A,,, is the 
absorbance at Amax, x is the wavelength or frequency (nm or cm-'), ,u is the x 
at A,,, and s is an adjustable parameter related to, but not necessarily equal 
to, the standard deviation of the Gaussian distribution or to the bandwidth at 
half-height of the spectrum. 

Table 14-6. Spectrum of a nickel complex. 

9. Deconvolution of a Spectrum 11. Use the data in the worksheet 
"Deconvolution 11" to deconvolute the spectrum of K3[Mn(CN)6] in 2M 
KCN, shown in Figure 14-13. Use a Gaussian band shape. It should be clear 
from the figure that the spectrum contains multiple bands, perhaps five or 
more. 



338 EXCEL: NUMERICAL METHODS 

1.8 

1.6 

1.4 

3 1.2 

5 1.0 e 
$ 0.8 

9 0.6 

0.4 

0.2 

0.0 

Spectrum of K3[Mn(CN),] 1 k in2MKCN 

c 

200 250 300 350 400 
Wavelength, nrn 

Figure 14-13. Spectrum of K3[Mn(CN)6]. 

10. Spectrum of a Mixture. The W-visible spectra of pure solutions of 
cobalt2+, nickel2' and copper2+ salts, and of a mixture of the three, are given 
on the CD-ROM over the wavelength range 350-820 nm. Instead of using 
absorbance readings at only three wavelengths to calculate the concentrations 
of the three salts in the mixture (as was done in problem 9-4), use the data at 
all 236 wavelength data points to calculate the three concentrations. Use the 
relationship A = E ~ C ,  where E, the molar absorptivity, is a dimensionless 
constant for a particular species at a particular wavelength, b is the light path 
length (1 .OO cm in this experiment) and c is the molar concentration. For the 
mixture, Aobsd = E ~ ~ C ~ ~  + E N ~ C N ~  + E ~ ~ C ~ ~  at each wavelength. 
Use the Solver Statistics macro to obtain the standard deviations of the three 
concentrations. 

1 1 .  Multiple-Wavelength Regression. Dissociation of the second hydrogen ion 
of Tiron ( 1,2-dihydroxybenzene-3,5-disulfonate, H2L) does not begin until 
the pH is raised above 10. The pKaz of Tiron was determined 
spectrophotometrically by recording the spectrum at constant Tiron 
concentration and varying pH. The spectra are shown in the following 
figure; the absorbance readings (from 226 nm to 360 nm in 2-nm increments) 
at each pH value are tabulated on the CD that accompanies this text. 



CHAPTER 14 NONLINEAR REGRESSION USING THE SOLVER 339 

I .o 

0.8 

0.2 

0 .o 
220 240 260 280 300 320 340 360 

Wavelength, nrn 

Figure 14-14. Spectra of Tiron at pH values between 10 and 12. 

The equilibrium reaction being measured is (charges omitted for clarity) 

H L = H ' + L  Ka= [r] [Ll/[HL] 

The dissociation of H2L to HL- is complete at pH values of 10 and higher, 
and can be neglected. The concentrations of L and HL are given by the 
following expressions: 

CLI = LT Ka /(Ka + [H+I) 

W I  = LT W+I /(Ka + [WI) 
where LT is the total concentration of Tiron in the solution. The absorbance 
at a given wavelength is the sum of the contributions of the two species, that 
is, 

A = EL[L] -I- E H L [ m ]  

where E is the molar absorptivity of the species, a constant at a given 
wavelength. 

Calculate the Ka value and the EL and EHL values at each wavelength, in one 
global minimization. (Excel's Solver can handle up to 200 changing cells, so 
we are pushing the limit here.) You will need to calculate the sum-of- 
squares-of-residuals for each wavelength, and minimize the "grand total" for 
all wavelengths. The Solver may have trouble "digesting" all this data. If so, 
use the Solver with data at a single wavelength to get the values of Ka, E~ and 
EHL, then use these as starting value for a global minimization. 



This Page Intentionally Left Blank



Chapter 15 

Random Numbers and 
the Monte Carlo Method 

The Monte Carlo method differs from the techniques we have considered in 
preceding chapters: instead of applying quantitative mathematical expressions to 
arrive at an answer, we approximate or simulate the process, repeat the 
calculation a large number of times using randomly selected inputs chosen within 
a suitable range, and then average the result or draw other statistical conclusions. 
The method can be lengthy and provide only an approximate answer, but it may 
be the only available way to arrive at an answer. 

Monte Carlo methods have been used in economics, in nuclear physics and to 
model traffic patterns. We will look at two main types of application: Monte 
Carlo simulation and Monte Carlo integration. 

Random Numbers in Excel 
Since the Monte Carlo method involves the use of random numbers, we will 

begin by examining how random numbers are produced and used within Excel. 

How Excel Generates Random Numbers 
In Excel 2003, an improved random number generator was implemented. 

Earlier versions of Excel used a pseudo-random-number-generation algorithm 
whose performance on standard tests of randomness was not sufficient to satisfy 
the demand of power users who might require the generation of a million or more 
random numbers. For the majority of users, the older pseudo-random-number 
generator was satisfactory. 

The earlier algorithm used the following iterative method to calculate 
pseudo-random numbers: 

The first random number: 

r = fractional part of (9821 x s + 0.21 1327) 

where s = 0.5, and successive random numbers: 

34 1 



342 EXCEL: NUMERICAL METHODS 

r = fractional part of (9821 x s + 0.21 1327) 

where s = the previous random number 
In an effort to increase the "randomness," Microsoft later provided a patch 

that caused r to be determined from the system clock (which added a further 
degree of randomness to the numbers generated). But because these pseudo- 
random numbers are produced by a mathematical algorithm, if a long sequence 
of them is produced, eventually the sequence will repeat itself. Statistical tests 
on series of random numbers produced by the earlier version of RAND revealed 
that the cycle before numbers started repeating was unacceptably short, in the 
vicinity of one million. 

In the improved random number generator used in Excel 2003, three sets of 
random numbers are generated. Three of these random numbers are summed, 
and the fractional part of the sum is used as the random number. By this 
procedure, it is stated that more than 1013 numbers will be generated before the 
repetition begins. 

The random-number algorithm in Excel 2003 was developed by B. A. 
Wichman and I. D. Hill ("Algorithm AS 183: An Efficient and Portable Pseudo- 
Random Number Generator," Applied Statistics, 31, 188-190, 1982; "Building a 
Random-Number Generator," BYTE, pp. 127-128, March 1987). This random 
number generator is also used in a software package that is provided by the U.S. 
Department of Health and Human Services. It has been shown to pass tests 
developed by NIST (National Institute of Standards and Technology). 

Using Random Numbers in Excel 
You can use random numbers in many ways, for example: to add "noise'' to a 

signal generated by a formula, to select items randomly from a list, or to perform 
a simulation by using the Monte Carlo method. These and some other uses of 
random numbers will be described in following sections. 

Excel provides several ways to generate random numbers. The worksheet 
function RAND returns a random real number greater than or equal to 0 and less 
than 1 .  RAND is a volatile function; that is, a new random number is returned 
every time the worksheet is calculated. You can test this, after entering =RAND() 
in a cell, by pressing F9 (Calculate Now) or by typing anything (even a space 
character) in a cell and pressing the Enter key. You will see that the value 
returned by the RAND function changes. 

The fact that random numbers are recalculated every time you do just about 
anything on a spreadsheet can sometimes be problematic, especially if your 
spreadsheet contains large ranges of such numbers. In the old days of 133-MHz 
computers, there could be a delay of several seconds while the spreadsheet 



CHAPTER 15 RANDOM NUMBERS & MONTE CARL0 METHOD 343 

recalculated. Fortunately, that's not usually a problem with today's high-speed 
computers. 

But when a random number is used as input into a calculation and the 
random number keeps changing, that can be a problem. If you want to use RAND 
to generate a random number but don't want the number to change every time the 
worksheet is calculated, you must convert the formula to its value. You can do 
this by entering the formula =RAND() in a cell, copying the cell, and then use 
Paste Special (Values). This will convert the contents of the cell from =RAND() 
to a value (e.g., 0.743487098126025). Alternatively, you can type the formula 
=RAND() in the formula bar, then press F9, then Enter. 

Instead of using the RAND worksheet function, you can use the 
RANDBETWEEN function, one of the Engineering functions. If this function 
does not appear in the list of functions in the Insert Function dialog box, or 
returns the #NAME? error when you use it in a worksheet formula, you must load 
the Analysis ToolPak add-in. After you load the Add-In, you will see a new 
function category, Engineering functions, in the Insert Function dialog box. As 
well as this new function category (which provide capabilities for working with 
imaginary numbers, or for converting between binary, hexadecimal and decimal 
number systems, among others), there are a number of new functions which are 
dispersed in other function categories: the RANDBETWEEN function is located 
in the Math & Trig category. The complete list of Engineering functions can be 
found in Appendix 5 .  

If you load the older Add-In, Analysis ToolPak, the function appears in the 
function list in uppercase ( e g ,  RANDBETWEEN). If you load the newer Add-In, 
Analysis ToolPak-VBA, the function list contains both the older uppercase 
function names and the newer function names, in lowercase. This helps to 
distinguish between Excel's built-in worksheet functions, such as RAND, and the 
Add-In names, such as Randbetween. 

RANDBETWEEN(bofforn,top) returns an integer random number. Bottom is 
the smallest integer RANDBETWEEN will return, top is the largest. For example, 
the expression RANDBETWEEN(0,lOO) returns (e.g., 74). 

To generate a random number between bottom and top, without loading the 
Analysis ToolPak, use 

=RAND()*(top - bottom) + bottom. 

For example, if bottom = 0 and fop = 5, the returned result could be for example, 
4.04608661 978098. 

To generate a random integer between bottom and top, use 

=ROUND(RAND()*(fOp - bottom) + bOttOm,O) 

For example, if bottom = 0 and top = 50, the returned result could be 27 



344 EXCEL: NUMERICAL METHODS 

Since all of the above formulas include the RAND function, the returned 
result is volatile; that is, it changes each time the spreadsheet is modified. 

Adding "Noise" to a Signal Generated by a Formula 
One of the simplest uses for the RAND function is to add noise to a 

theoretical curve generated by means of a formula, so as to simulate a real signal. 
In other words, we want to modify our worksheet formula F(x) by adding a 
random quantity 6. The 6must  be scaled to produce a noise term of suitable 
magnitude and the S terms must be equally distributed between positive and 
negative. Remember that RAND always returns a number greater than or equal to 
0 and less than 1. There are several ways that you can add such a random 
quantity, for example, 

(original worksheet formula) + scale-factor*( RAND()-0.5) 

to produce a noise term of constant magnitude (scale-factor determines the 
magnitude of the noise term) or 

(original worksheet formula)*( 1 + scale-factor*(RAND()-0.5)) 

to produce a noise term of constant signal-to-noise ratio. Some people use the 
expression RAND()-RAND() instead of RAND()-0.5 to produce equal probability 
of positive or negative noise terms. 

Figure 15-1 shows an example of a calculated curve with simulated 
experimental data points. 

0.02 - 

.. 

I I 

0 500 1000 1500 

t, seconds 

Figure 15-1. Experimental data simulated by using the RAND function. 



CHAPTER 15 RANDOM NUMBERS & MONTE CARL0 METHOD 345 

Selecting Items Randomly from a List 
You can use RAND to rearrange the values in a table so as to put them in 

random order, or to select a random sample from the table. There are two ways 
you can do this: either manually, using the Sort command, or by means of a 
formula. The former generates a randomized list that is %xed"; that is, once 
randomized, the values in the list do not change. The latter method generates a 
list that will change each time the spreadsheet is recalculated. Clearly, there are 
advantages and disadvantages of either method. 

To randomize manually, use =RAND() to generate a column of random 
numbers adjacent to (and most convenient, to the left of) the column of values to 
be randomized as shown in Figure 15-2. 

Figure 15-2. A list of names before randomizing. Only part of the list is shown. 
(folder 'Chapter 15 Examples', workbook 'Randomize', worksheet 'By Hand') 

Then select the two columns and use the Sort command to Sort By the 
values in the column of random numbers. If the random number column is the 
leftmost column, you can use the Sort Ascending toolbutton f i .  The 
randomized list is shown in Figure 15-3. To choose a random sample of N 
elements from the table, simply select, for example, the first N elements from the 
list. 



346 EXCEL: NUMERICAL METHODS 

Figure 15-3. A list of names after randomizing. Only part of the list is shown. 
(folder 'Chapter 15 Examples', workbook 'Randomize', worksheet 'By Hand') 

To sort by means of a formula, begin with the two columns as in Figure 15-2. 
The names random and Database were assigned to the ranges $A$:A139 and 
$B$:B139, respectively; the range references can be used if desired. In cell C2, 
enter the formula 

=SMALL( random, ROW()-I ) 

to sort the random numbers in ascending order. The expression ROW()-I would 
have to be modified if the formula wasn't entered in row 2-for example, ROW()- 
10 if the first row of the table were in row 1 1. In cell D2 enter the formula 

=MATCH(C2,random,O) 

to return the relative position of the returned random number in cell C2. In cell 
E2 enter the formula 

=INDEX(Database, D2) 

to return the value at the same position in the array Database. 

Figure 15-4. A list of names randomized by using worksheet formulas. 
(folder 'Chapter 15 Examples', workbook 'Randomize', worksheet 'By Formula') 



CHAPTER 15 RANDOM NUMBERS & MONTE CARL0 METHOD 347 

The preceding formulas can be combined into a single "megaformula" 

=INDEX( Database, MATCH (SMALL( random, ROW()-I ),random, 0)) 

to produce a more compact spreadsheet, as shown in Figure 15-5. 

Figure 15-5. A list of names randomized by using a single "megaformula." 
(folder 'Chapter 15 Examples', workbook 'Randomize', worksheet 'By Formula') 

Random Sampling by Using Analysis Tools 
If you have loaded the Analysis ToolPak Add-In (see earlier in this chapter), 

you will see that a command, Data Analysis ..., appears at the bottom of the 
Tools menu. If it's not there, choose Add-Ins.. . from the Tools menu and check 
the box for Analysis ToolPak; this will install Data Analysis ... in the Tools 
menu. 

Figure 15-6. The Data Analysis dialog box. 



348 EXCEL: NUMERICAL METHODS 

The Data Analysis add-in provides a toolbox of statistical analysis tools, 
including Analysis of Variance, Correlation, Smoothing, Regression Analysis, 
Sampling and others; part of the list of statistical tools is shown in Figure 15-6. 

The Sampling tool allows you to do either periodic or random sampling from 
a data array. To perform random sampling, choose Data Analysis from the Tools 
menu, choose Sampling from the list of tools, and press OK to display the 
Sampling dialog box. 

The Sampling tool has one limitation: it will only accept numeric data. If 
you want to sort non-numeric data, like the list of names in our previous 
examples, you must add a column of integers 1, 2, 3.. . as shown in Figure 15-7. 
The column does not have to be adjacent, but in Figure 15-8 they have been 
entered in column A. 

Then use the Sampling tool to perform random sampling on the values in this 
column. The input values in the Sampling dialog box are shown in Figure 15-8. 
In the example shown, the number of random samples is equal to the number of 
values in the original list, to randomize the complete list, but you could return a 
random sample of only 20, for example, if you wished. 

Figure 15-7. A list of names randomized by using random sampling. 
(folder 'Chapter 15 Examples', workbook 'Randomize', worksheet 'Sampling Tool') 



CHAPTER 15 RANDOM NUMBERS & MONTE CARLO METHOD 349 

Figure 15-8. The Sampling tool dialog box. 

The randomly sampled integers, returned in column C, are then used with the 
INDEX worksheet function to return the corresponding text value from column B; 
the formula in cell D2 is 

=INDEX(Name,C2) 

Simulating a Normal Random Distribution 
of a Variable 

You can create a table of random values having a normal distribution by 
using the NORMINV worksheet function. The syntax of the function is 

N 0 R M I NV( probability, m ean, standard-dev) 

For example, to create a table of 10,000 random values having a normal 
distribution with mean 0 and standard deviation 1, enter the formula 
=NORMINV(RAND(), 0 , 1) in a cell and Fill Down into 10,000 cells. Figure 15- 
9 shows the distribution of these 10,000 values. 



350 EXCEL: NUMERICAL METHODS 

Figure 15-9. 10,000 random values with ,LI = 0 and cr = 1, 
created by using the NORMINV worksheet function. 

The solid curve is the theoretical distribution. 
(folder 'Chapter 15 Examples', workbook 'Randomize', worksheet 'Normal Distribution') 

Monte Carlo Simulation 
The Monte Carlo method is any technique of random sampling employed to 

approximate solutions to quantitative problems. Often the system being 
simulated is clearly one that involves random processes, as, for example the 
Random Walk problem, sometimes described as the path a drunk takes as he 
staggers away from a telephone pole. If he takes N steps, each of length I, and 
each in a completely random direction, how far will he be from the telephone 
pole after the N steps? The problem can be solved algebraically (the answer is 
d = l f i ) ,  but it's apparent that a suitable answer can be obtained by using a 
random number to obtain an angle (the direction of each step relative to the one 
before), and thus the distance from the start point after each step. Figure 15-10 
illustrates the result of such a calculation. Phenomena such as collisions of 
molecules in a gas, or neutron shielding, can be modeled similarly. 

In other examples, the simulation appears little more than a game or 
diversion, but provides unexpected information. A classic example is the 
problem called Buffon's Needle, first proposed in 1777. A needle of length 1 is 
dropped on a sheet of paper with parallel rulings of spacing D. What is the 
probability of the needle crossing one of the lines? The surprising result is that 
the answer provides an estimate of the value of 7c. 



CHAPTER 15 RANDOM NUMBERS & MONTE CARL0 METHOD 351 

Figure 15-10. Random walk, 2000 steps of length 1. 
The large diamond symbol is the position at the end of 2000 steps, a distance of 48.9 

from the start point at 0,O. The "theoretical" distance 1 f i  = 44.7. 
(folder 'Chapter 15 Examples', workbook 'Random Walk', worksheet 'Random Walk') 

We can solve the problem in the following way: (i) generate a random 
number to calculate an angle 8, (ii) generate two more random numbers to obtain 
the x and y coordinates of one end of the needle, (iii) from the coordinates of the 
end, the length 1 of the needle and the angle 8, calculate the coordinates of the 
other end of the needle, (iv) use these two pairs of coordinates to determine 
whether either end of the needle crosses a gridline, (v) repeat the process N times, 
counting the number of needles that cross a gridline. Figure 15-1 1 illustrates the 
situation after 2000 needles of length 1 = 2 have been dropped on a sheet of paper 
with ruling spacing D = 2 (the calculation is simplified when 1 = 0). According 
to statistical theory, the ratio N/Nc ( N  = total needles dropped, N, = number of 
needles that cross a line) is equal to 7d2. 



12 

10 

8 

6 

4 

2 

0 
Figure 15-1 1. The Buffon's Needle experiment. 

(folder 'Chapter 15 Examples', workbook 'Buffon's Needle', worksheet 'Calculation') 

Since only the y coordinate of the end of the needle is used to determine 
whether the needle crosses a horizontal ruling, the spreadsheet shown in Figure 
15-12 provides a simplified calculation. Only two horizontal rulings are 
assumed, at 0 and 1. Two random numbers are generated: one to specify the 
angle of the needle (0 < .€J < 360), the other to specify the y coordinate of the 
middle of the needle (0 < y < 1). Using these two values we calculate the y 
coordinate of the ends of the needle and determine whether it crosses either of the 
horizontal rulings. In the worksheet shown in Figure 15-12, the calculation was 
performed 2000 times (rows 5 through 2004) and the values in column H were 
summed. 

The formulas used are 
in cell A5: =360*RAN D() 

in cell B5: =RAND() 

in cell C5: =O. 5*SI N ( PI ()*A511 80) 

in cell D5: =MIN( B5-C5,B5+C5) 

in cell E5: =MAX( B5-C5, B5+C5) 

in cell F5: = ~ 5 < = 0  

in cell G5: = ~ 5 > = 1  

in cell H5: =OR(F5,G5)*1 



CHAPTER 15 RANDOM NUMBERS & MONTE CARLO METHOD 353 

3.12 

3.11 

3.1 

3.09 

Figure 15-12. Portion of table to calculate n by Buffon's Needle method. There are 
2000 rows of calculation in the spreadsheet. 

(folder 'Chapter 1 5 Examples', workbook 'Buffon's Needle', worksheet 'Calculation') 

- 

4 )  

Figure 15-13 shows the result of recalculating the sheet 100 times, to provide 
a total of 200,000 calculations. As you can see, the calculation does not 
"converge'' very efficiently. Compare the result with the evaluation of n by 
evaluation of a series (Chapter 4) or  by integration of a function (Chapter 7); both 
methods are much more efficient. 

-_-_ ~ l_l_l__l_ll-l 

3.15 - 

3.14 1 

3.13 - 

0 50000 100000 150000 200000 250000 

Number of trials 

Figure 15-13. Approach of simulation result to the value n as the number of trials 
increases. 

(folder 'Chapter 15 Examples', workbook 'Buffon's Needle', worksheet 'Many trials') 



354 EXCEL: NUMERICAL METHODS 

Monte Carlo Integration 
The Monte Carlo method can be used to integrate a function that is difficult 

or impossible to evaluate by direct methods. Often the process of "integration" is 
the determination of the area of a figure. We'll illustrate the technique by 
determining the area of two figures: first, the area of a circle (from which we can 
evaluate n), and second, the area of an irregular figure. 

The evaluation of x is a classic illustration of the determination of an area by 
the Monte Carlo method. Two random numbers in the range -1 to +1 are used to 
determine the coordinates of a point in the x, y plane. The number of points 
inside the circle, defined by the equation x2 + y2 = 1 , divided by the total number 
of points, gives the ratio of the circle to the circumscribing square. Figure 15-14 
illustrates such a calculation, using 4000 points. 

Figure 15-14. Estimation of 7c by using RAND. 

This particular calculation gave 3.129 as the value of x. 

The Area of an Irregular Polygon 
When the preceding method is used to estimate the area of an irregular 

figure, we need a general method to determine whether a given point is inside or 
outside the figure. In the following, the figure must be a polygon, that is, a figure 
that can be described by a series of coordinates connected by straight lines. 
Since in an Excel chart, a curve can be approximated by a number of straight line 
segments, in theory a figure of any shape can be handled. 



CHAPTER 15 RANDOM NUMBERS & MONTE CARLO METHOD 355 

The standard method to determine whether a point lies inside or outside the 
figure is to draw a "ray" from the point extending out to infinity. In this example, 
illustrated in Figure 15-1 5 ,  a "ray" is drawn vertically upwards from the point. If 
the ray crosses the boundary line(s) of the figure an odd number of times, the 
point lies 

0 10 20 30 40 50 

X coordinate of point 

Figure 15-15. Determining whether a point lies inside or outside an irregular polygon. 

The procedure to test whether a point X A ,  y~ lies within the figure is as 

For each of the N edges that make up the figure: 
(1) If the x coordinates of both ends of the edge lie to the left of xA, then go 

to the next edge. 
(2) If the x coordinates of both ends of the edge are to the right of xA, then go 

to the next edge. 
(3) If the y coordinates of both ends of the edge are below yA, then go to the 

next edge. 
(4) If none of the above is true, the y coordinates of one or both ends of the 

edge are above the point. Determine the y coordinate of the "crossing 
point" where the vertical ray and the edge cross, using the formula 

follows: 

Y R  - Y L  Yc = YL + 
x R  - ' L  

(5) If yc > Y A ,  the ray crosses the edge of the polygon, so add one to the 
number of crossings found, and go to the next edge. 



356 EXCEL: NUMERICAL METHODS 

(6) When all Nedges have been evaluated, if the number of crossings is odd, 
the point lies inside the figure. 

This "inside or outside" calculation can be done either with worksheet 
formulas or with a VBA custom function. The following portion of a spreadsheet 
(Figure 15-1 6) illustrates the calculation using worksheet formulas. 

Figure 15-16. Inside/outside determined by using worksheet formulas. 
(folder 'Chapter 15 Examples', workbook 'Inside or Outside Figure', sheet 'Single Point Diagram') 

Note that, in the table of coordinates of the line segments that describe the 
figure (A6:B14 in Figure 15-16), the coordinates of the initial point are repeated 
in line 15 so as to complete the figure. (This of course is also necessary to create 
a chart of the figure.) Thus the nine rows of points shown in Figure 15-16 
describe eight line segments. That's why there are formulas in rows 7 through 
14, but not in row 6. (It would be equally suitable to have formulas in rows 6 
through 13 and not in row 14.) 

The formulas in row 7 are: 

in cell C7: =AND($A$19>A6,$A$19>A7) 

in cell D7: =IF(C7=TRUE,"",AND($A$I 9<A6,$A$19<A7)) 

in cell E7: =IF(OR(D7=TRUE,D7=""),"",AND($B$19>B6,$B$19>87)) 



CHAPTER 15 RANDOM NUMBERS & MONTE CARL0 METHOD 357 

in cell F7: =IF(E7=FALSE,(B6+(B7-B6)*($A$l9-A6)/(A7-A6)-$B$19)>0,"") 

and the formula in cell C19 (an array formula) is 

{=MOD(SUM(( F6:F14=TRUE)*1),2)<>0} 

The following VBA code illustrates how to perform the "inside or outside" 
calculation by means of a custom function. The function takes four arguments: 
the range of x values describing the figure, the corresponding range of y values, 
the x coordinate of the point to be tested and the y coordinate of the point. The 
function returns TRUE if the point is inside the figure, otherwise FALSE. 

Function Inside(x-values, y-values, x-point, y-point) As Boolean 

Dim N As Integer, J As Integer, C As Integer 
Dim YC As Double 

N = x-values.Count 
'Does figure have closure? 
If x-values(1) <> x-values(N) Or y-values(1) <> y-values(N) Then Inside = - 
F o r J = I T o N - l  
If x-values(J).Formula = "" Or y-values(J).Formula = "I' Then Inside = - 

'Both ends of segment to left of point? 
If x-point >= x-values(J) And x-point > x-values(J + 1) Then GoTo EOL 
'Both ends of segment to right of point? 
If x-point <= x-values(J) And x-point < x-values(J + 1) Then GoTo EOL 
'Both ends of segment below point ? 
If ygoint >= y-values(J) And y-point > y-values(J + 1) Then GoTo EOL 
'If came here, one or both ends of the segment are above the point. 
'Calculate the y coordinate where the "ray" crosses the segment. 
YC = y-values(J + 1) + (y-values(J) - y-values(J + 1)) - 
'if the crossing is above the point then add one to the count 
If YC - y-point > 0 Then C = C + 1 
EOL: Next J 
Inside = C Mod 2 
End Function 

CVErr(xlErrVa1ue): Exit Function 

CVErr(xlErrVa1ue): Exit Function 'Exit if cell is blank 

* (x-point - x-values(J + 1)) I (x-values(J) - x-values(J + 1)) 

Figure 15-17. VBA code to determine insideloutside. 
(folder 'Chapter 15 Examples', workbook 'Inside or Outside Figure', module 'Modulel') 

Figure 15-19 illustrates the use of the custom function to estimate the area of 
an irregular polygon such as the one shown in Figure 15-18. The values in cells 
$A$6:$B$14 specify the vertices of the polygon. The formulas in cells A17 and 
B17 use the RAND function to specify the x and y coordinates of a point within 
the area bounded by x = 0 to x = 50 and y = 0 to y = 35; the formulas are, 
respectively, 



358 EXCEL: NUMERICAL METHODS 

=50*RAND() 

and 

=35*RAND() 

and the formula in C17 contains the custom function 

=Inside($A$6:$A$14 ,$ B$6:$B$14 ,A1 7, B 1 7) 

The formulas were filled down to fill 2000 cells. The formulas to calculate 
the area are: 

in cell D7: =COUNTA($C$I 7:$C$2016) (total number of points) 
in cell E7: {=SUM(($C$17:$C$2016)*1)} (number of points inside polygon) 
in cell E9: =E7/D7 (fraction of points inside) 

in cell D11: =35*50 

in cell E l  1 : =E9*D11 

(area of the "box") 

(area of polygon) 

To plot only the points that lie within the polygon, the formula 

=IF($C17,A17,"") 

in cell D17 and the formula 

=I F( $C 1 7, B 1 7 ,"") 

in cell El7  would seem to be suitable. These formulas, w.,en filleL down, yield 
the spreadsheet shown in Figure 15-19. But null-string values are plotted as 
zeros in a chart, so the chart doesn't turn out the way we want. Instead we use 
the NA() worksheet function; cells containing #NA! values are not plotted. 

=IF($CI 7,A17,NA()) 



CHAPTER 15 RANDOM NUMBERS & MONTE CARLO METHOD 359 

50 
0 
0 10 20 30 40 

X coordinate 

Figure 15-18. Estimating the area of an irregular polygon. 

Figure 15-19. Spreadsheet to estimate the area of the irregular polygon of Figure 15-1 8.  
There are 2000 rows of inside/outside calculation in the spreadsheet. 

(folder 'Chapter 15 Examples', workbook 'Inside or Outside Figure', sheet 'Area by Custom Function') 



360 EXCEL: NUMERICAL METHODS 

Now the blank cells, pleasing to the eye in the table but disastrous when used 
in a chart, are replaced by #NA! values, unpleasing in the table but perfect when 
used in a chart. To make the #NA! values "disappear," you can use Conditional 
Formatting. The conditional formatting formula applied to the cells in column D, 
beginning in cell D17, is =ISERROR(D17), which, when TRUE, sets the font 
color of the text in the cell to white, thus making the #NA! value invisible. A 
similar format was applied to the values in column E, beginning in cell E17. You 
can see the error values if you select the range of cells, as shown in Figure 15-20. 

The data in $D$17:$E$2016, when added to the chart as a new series, shows 
the inside points, as illustrated in Figure 15-2 1. 

Figure 15-20. Spreadsheet layout to estimate the area of an irregular polygon and to plot 
the random points within the polygon. 

(folder 'Chapter 15 Examples', workbook 'Inside or Outside Figure', sheet 'Area by Custom Function') 



CHAPTER 15 RANDOM NUMBERS & MONTE CARL0 METHOD 361 

Figure 15-21. Estimating the area of an irregular polygon, with, the "inside" random 
points shown. 

(folder 'Chapter 15 Examples', workbook 'Inside or Outside Figure', sheet 'Area by Custom Function') 



3 62 EXCEL: NUMERICAL METHODS 

Problems 

Data for, and answers to, the following problems are found in the folder "Ch. 15 
(Random Numbers & Monte Carlo)" in the "Problems & Solutions" folder on the 
CD. 

1 .  Estimation of 7c. The equation of a circle is x2 + y2 = r2. Evaluate x by 
determining the area of a circle of radius r circumscribed by a square of side 
2r. x is the ratio of the area of the circle to that of the square. Generate a 
pair of random numbers to use as the x and y coordinates. If the distance of 
the point from the origin is less than or equal to r, it is within the circle. 
Repeat this N times, evaluating Nc;, the number of points that fall within the 
circle. The ratio Nc / N  should be a reasonable estimate of 7r. 

2. Male Children. A king wishes to increase the number of males in his 
kingdom. He decrees that all women in his kingdom may have as many 
children as they wish, as long as they are boys. As soon as a woman has a 
female baby, she must stop bearing children. If this decree is followed, what 
will be the ratio of boys to girls in the kingdom? 

3 .  Traffic Model. Create a simple mode! of traffic patterns at a stoplight. Use 
one row of a spreadsheet to represent a unit of time, say 5 seconds. Use a 
random number to decide whether a car arrives at the intersection in a 
particular time unit. Vary the traffic density (probability) and traffic light 
timing; observe the effect on congestion at the stoplight. 

4. Traveling Salesman. Given a number of cities and the costs of traveling 
from any city to any other city, what is the cheapest round-trip route that 
visits each city? 

5 .  Choose Once. Using spreadsheet formulas only, create a list of unique 
integers (e.g., 1-1 5 )  in random order. 

6. Deck of Cards. Using spreadsheet formulas only, simulate the shuffling of a 
deck of 52 cards. 

7. Frequency of Occurrence of Digits. Create 1000 random numbers and 
determine the frequency of occurrence of the numbers 0 through 9 in the first 
digit. 

8. Frequency of Occurrence of Digits 11. Create two columns, each 
containing 1000 random numbers, RN1 and RN2. Determine the frequency 
of occurrence in the first significant digit of the numbers 1 through 9 in the 
product RN1 x RN2. Repeat for the product RN1 x RN2 x RN3. 



Appendices 



This Page Intentionally Left Blank



Appendix I 

Selected VBA Keywords 
This listing of VBA objects, properties, methods, functions and other 

keywords will be useful when creating your own VBA procedures. The list is 
not exhaustive, but contains mainly those keywords that are used in the 
procedures shown in this book. 

For each VBA keyword, the required syntax is given, along with some 
comments on the required and optional arguments, one or more examples and a 
list of related keywords. See Excel's On-Line Help for further information. 

Abs Function 
Returns the absolute value of a number 
Syntax: Abs(number) 
Example: Abs(-7.3) returns 7.3 
See also: Sgn 

Activate Method 
Activates an object. 
Syntax: object.Activate 
Object can be Chart, Worksheet or Window. 
Example: Workbooks("BOOK1 .XLS").Worksheets("Sheetl ").Activate 
See also: Select 

Activecell Property 
Returns the active cell of the active window. Read-only. 
Syntax: Activecell and Application.ActiveCel1 are equivalent. 
See also: Activate, Select 

ActiveSheet Property 
Returns the active sheet of the active workbook. Read-only. 
Syntax: object.ActiveSheet 
Object can be Application, Window or Workbook. 
Example: AppIication.ActiveSheet.Narne returns the name of the active sheet of the 
active workbook. Returns None if no sheet is active. 
See also: Activate, Select 

Address Property 
Returns a reference, as text 
Syntax: object.Address (rowAbsolute, columnAbsolute, referencestyle, external, 
relative To) 

365 



366 EXCEL: NUMERICAL METHODS 

All arguments are optional. If rowAbsolufe or colurnnAbsolufe are True or omitted, 
returns that part of the address as an absolute reference. Referencestyle can be 
xlAl or xlRl C l  . If external is True, returns an external reference. See On-Line 
Help for information about the relafiveTo argument. 
See also: Offset 

And Operator 
Logical operator. (expressionl And expression2) evaluates to True if both 
expressionl and expression2 are True. Also can be used to perform bitwise 
comparison of two numerical values: (13 And 6) evaluates to 4. (13 = 00001101,6 = 
000001 10,4 = 000001 00). 
See also: Or, Not, Xor 

Application Object 
Represents the Microsoft Excel application. 

Array Function 
Returns a Variant containing an array. 
Syntax: Array (arglisr) 
Example: Array (31,28,31,30,31,30,31,31,30,31,30,31) 
See also: Dim 

As Keyword 
Used with Dim to specify the data type of a variable. 

Asc Function 
Returns the numeric code for the first character of text. 
Syntax: Asc(characfer) 
Example: Asc ("A) returns 65. 
See also: Chr 

Atn Function 
Returns the angle corresponding to a tangent value. 
Syntax: Atn(numbe0 
Number can be in the range -a to +a. The returned angle is in radians, in the 
range 4 2  to +7c/2 (-90" to 90"). To convert the result to degrees, multiply by 
180/7c. 
Example: Atn(1) returns 0.785388573 or 45 degrees. 
See also: Cos, Sin, Tan 

Bold Property 
Returns True if the font is Bold. Sets the Bold font. Read-write. 
Syntax: object.Bold 
Object must be Font. 
Example: Range("A1 :El").Font.Bold = True makes the cells bold. 
See also: Italic 



APPENDIX 1 SELECTED VISUAL BASIC KEYWORDS 367 

Boolean Data Type 
Use to declare a variable's type as Boolean (True or False), either in a Dim 
statement, or in a Sub or Function statement. Two bytes required per variable. 
When number values are converted to Boolean values, 0 becomes False and all 
other values become True. When Boolean values are converted to numbers, False 
becomes 0 and True becomes -1. 
See also: Dim, As, Double, Integer, String, Variant 

Call Command 
Transfers control to a Sub procedure. 
Syntax: Call name (argumentl, ...) 
Name is the name of the procedure. Argumentl, etc., are the names assigned to the 
arguments passed to the procedure. Call is optional; if omitted, the parentheses 
around the argument list must also be omitted. 
Example: Call Task1 (argumentl ,argument2) 
See also: Sub, Function 

Case Keyword 
See: Select Case 

Cells Method 
Returns a single cell by specifying the row and column. 
Syntax: object.Cells(row, column) 
Object is optional; if not specified, Cells refers to the active sheet. 
Example: Cells(2,1).Value = 5 enters the value 5 in cell A2. 
See also: Range 

Characters Object 
Represents characters in any object containing text. Use the Characters object to 
format characters within a text string. 
Syntax: expression. C haracters (start, length) 
Example: Selection.Characters(Start:=x, Length:=l).Font.Subscript = True 

Clear Method 
Clears formulas and formatting from a range of cells. 
Syntax: object.Clear 
Object can be Range (or ChartArea). 
Example: Range("A1 :ClO").Clear 
See also: ClearContents, ClearFormats in Excel's On-Line Help. 

Close Method 
Closes a window, workbook or workbooks. 
Syntax: For workbooks, use object.Close. For a workbook or window, use 
object. C I ose( Save ChangesLogical, File Name). 
Object can be Window, Workbook or Workbooks. If SaveChangesLogical is False, 



368 EXCEL: NUMERICAL METHODS 

does not save changes; if omitted, displays a "Save Changes?" dialog box. 
Example: Workbooks("BOOK1 .XLS").Close 
See also: Open, Save, SaveAs 

Column Property 
Returns a number corresponding to the first column in the range. Read-only. 
Syntax: object.Column 
Object must be Range. 
See also: Columns, Row, Rows 
Columns Method 
Returns a Range object that represents a single column or multiple columns 
Syntax: objectColumns(index) 
Object can be Worksheet or Range. lndex is the name or number (column A = 1, 
etc.) of the column. 
Example: Selection.Colurnns.Count returns the number of columns in the selection. 
See also: Range, Rows 

ColumnWidth Property 
Returns or sets the width of all columns in the range. If columns in the range 
have different widths, returns Null. 
Example: Worksheets("Sheetl").Columns("C").ColumnWidth = 30 
See also: RowHeight 

ConvertForrnula Method 
Converts cell references between A 1 -style and R1 C 1 -style, and between absolute 
and relative. On-Line Help states that Formula must begin with an equal sign, but 
references in a string that does not begin with an equal sign are also converted. 
Syntax: expression.ConvertFormula(Formula, FromReferenceStyle, 
ToReferenceStyle, ToAbsolute, RelativeTo) 
Example: 
Formulastring = Application.ConvertFormula(FormulaString, xlAl , x lA l  , xlAbsolute) 
See also: Address 

Copy Method 
Copies the selected object to the Clipboard or to another location. 
Syntax: object.Copy(destination) 
Object can be Range, Worksheet, Chart and many other objects. Destination specifies 
the range where the copy will be pasted. If omitted, copy goes to the Clipboard. 
Example: Worksheets("Sheet1 ").Range("Al :CBO).Copy 
See also: Cut, Paste 

Cos Function 
Returns the cosine of an angle. 
Syntax: Cos(nurnberj 
Number is the angle in radians; it can be in the range --oo to +oo. To convert an angle 
in degrees to one in radians, multiply by d180. Returns a value between -1 and 1. 
See also: Atn, Sin, Tan 



APPENDIX 1 SELECTED VISUAL BASIC KEYWORDS 369 

Count Property 
Returns the number of items in the collection. Read-only. 
Syntax: object.Count 
Object can be any collection. 
Example: The statement N = array.Count counts the number of values in the range 
array. 

Cut Method 
Cuts the selected object and pastes to the Clipboard or to another location. 
Syntax: 0bject.C ut( destination) 
Object can be Range, Worksheet, Chart or one of many other objects. Destination 
specifies the range where the copy will be pasted. If omitted, copy goes to the 
C 1 ipboard. 
Example: Works heets("S heet 1 "). Range("A1 :C50) .Cut 
See also: Copy, Paste 

CVErr Function 
Returns a Variant containing an error value specified by the user. 
Syntax: CVErr(numbe0 
CVErr can return either Excel's built-in worksheet error values, or a user-defined 
error value. The values of number for built-in worksheet error values are 
xlErrDiv0, xlErrNA, xlErrName, xlErrNull, xlErrNum, xlErrRef, xlErrValue. 
See also: IsError 

Delete Method 
Deletes the selected object. 
Syntax: object.Delete(SH1FT) 
Object can be Range, Worksheet, Chart and many other objects. SHIFT specifies 
how to SHIFT cells when a range is deleted from a worksheet (xlToLeft or xlUp). 
Can also use SHlFT = 1 or 2, respectively. If SHIFT is omitted, Excel moves 
the cells without displaying the "SHIFT Cells?" dialog box. 
Example: Worksheets("Sheetl2).Range("Al:AlO').Delete (xlToLeft) deletes the 
indicated range and SHIFTS cells to left. 

Dim Keyword 
Declares an array and allocates storage for it. 
Syntax: Dim variable (subscripts) 
Variable is the name assigned to the array. Subscripts are the size dimensions of 
the array; an array can have up to 60 size dimensions. Each size dimension has a 
default lower value of zero; a single number for a size dimension is taken as the 
upper limit. Use lower To upper to specify a range that does not begin at zero. 
Use Dim with empty parentheses to specify an array whose size dimensions are 
defined within a procedure by means of the ReDim statement. 
Example: Dim Matrix ( 5 3 )  As Double creates a 6 x 6 array of double-precision 
variables. 
See also: ReDim 



370 EXCEL: NUMERICAL METHODS 

Do ... Loop Command 
Delineates a block of statements to be repeated. 
Syntax: The beginning of the loop is delineated by Do or Do Until condition or Do 
While condition. The end of the loop is delineated by Loop or Loop Until condition 
or Loop While condition. Condition must evaluate to True or False. 
Example: See examples of Do ... Loop structures in Chapter 2. 
See also: Exit, For, Next, Wend, While 

Double Data Type 
Use to declare a variable's type as double-precision floating-point (1 5 significant 
digits), either in a Dim statement, or in a Sub or Function statement. Eight bytes 
required per variable. 
Example: Dim tolerance As Double 
See also: Dim, As, Boolean, Integer, String, Variant 

Else Keyword 
Optional part of If ... Then structure. 

Elself Keyword 
Optional part of If ... Then structure. 

End Command 
Terminates a procedure or block. 
Syntax: End terminates a procedure. End Function is required to terminate a 
Function procedure. End If is required to terminate a block If structure. End 
Select is required to terminate a Select Case structure. End Sub is required to 
terminate a Sub procedure. End With is required to terminate a With structure. 
Example: See examples under Select Case. 
See also: Exit, Function, If, Then, Else, Select Case, Sub, With 

Endlf Keyword 
Optional part of If ... Then structure. 

Err Function 
Returns a run-time error number. Use in error-handling routine to determine the 
error and take appropriate corrective action. 
Example: If Err.Number = 13 Then 

(code for corrective action here) 
Resume pt l  
End If 

See also: Error, On Error, Resume 

Evaluate Method 
Converts a name or formula to a value. 
Syntax: Evaluate(expressi0n) 
Expression must be a string, maximum length 255 characters. An initial equal 



APPENDIX 1 SELECTED VISUAL BASIC KEYWORDS 371 

sign is not necessary. 
Example: F$ = "2*3 

MsgBox Evaluate(F$) 
See also: Formula 

Exit Command 
Exits a Do ..., For ..., Function ... or Sub ... structure. 
Syntax: Exit Do, Exit For, Exit Function, Exit Sub 
From a Do or For loop, control is transferred to the statement following the Loop 
or Next statement, or, in the case of nested loops, to the loop that is one level 
above the loop containing the Exit statement. From a Function or Sub procedure, 
control is transferred to the statement following the one that called the procedure. 
Example: See examples of Exit procedures in Chapter 2. 
See also: Do, For ... Next, Function, Stop, Sub 

Exp Function 
Returns e raised to a power. 
Syntax: Exp(nurnbefj 
Returns the value of e raised to the power number. 
See also: Log 

False Keyword 
Use the keywords True or False to assign the value True or False to Boolean 
(logical) variables. 
When other numeric data types are converted to Boolean values, 0 becomes False 
while all other values become True. When Boolean values are converted to other 
data types, False becomes 0 while True becomes -1. 
Example: If SubFlag = False Then ... 
See also: True 

FillDown Method 
Copies the contents and format(s) of the top cell(s) of a specified range into the 
remaining rows. 
Syntax: object. Fi II Down 
Object must be Range. 
Example: Worksheets("Sheetl2").Range("Al :A1 O).FillDown 
See also: FillLeft, FillRight, FillUp in Excel's On-Line Help. 

FillRight Method 
Copies the contents and format(s) of the leftmost cell(s) of a specified range into 
the remaining columns. 
Syntax: object. FillDown 
Object must be Range. 
Example: Worksheets("Sheetl2").Range("Al :A1 O').FillRight 
See also: FillDown, FillLeft, FillUp in Excel's On-Line Help. 



3 72 EXCEL: NUMERICAL METHODS 

Fix Function 
Truncates a number to an integer. 
Syntax: Fix(numbe0 
If number is negative, Fix returns the first negative integer greater than or equal to 
number. 
Example: Fix(-2.5) returns -2. 
See also: Int 

Font Property 
Returns the font of the object. Read-only. 
Syntax: object. Fon t 
Example: ActiveCell.Font.Bold = True makes the characters in the active cell bold. 
See also: Fontstyle 

FontStyle Property 
Returns or sets the font of the object. Read-write. 
Syntax: object. Fon tStyle 
Example: Range("A1 :El"). Font.FontStyle = "Bold" 
See also: Font 

For ... Next Command 
Delineates a block of statements to be repeated. 
Syntax: For counter = start To end Step increment 

(statements) 
Next counter 

Step increment is optional; if not included, the default value 1 is used. lncrement 
can be negative, in which case start should be greater than end. 
Example: See examples of For ... Next procedures in Chapter 2. 
See also: Do ... Loop, Exit, For Each ... Next, While ... Wend 

For Each ... Next Command 
Delineates a block of statements to be repeated. 
Syntax: For Each element In group 

(statements) 
Next element 

Group must be a collection or array. Element is the name assigned to the variable 
used to step through the collection or array. Group must be a collection or array. 
Example: See examples of For Each ... Next procedures in Chapter 2. 
See also: Do ... Loop, Exit, For ... Next, While ... Wend 

Format Function 
Formats a value according to a formatting code expression. 
Syntax: Form at( expression, formattext) 
Expression is usually a number, although strings can also be formatted. formattext 
is a built-in or custom format. Additional information can be found in Microso@ 



APPENDIX 1 SELECTED VISUAL BASIC KEYWORDS 373 

Excel/Visual Basic Reference, or VBA On-Line Help. 
Example: Format(TelNumber,"(##) #t#M#W) formats the value TelNumber in the 
form of a telephone number. 

Formula Property 
Returns or sets the formula in a cell. 
If a cell contains a value, returns the value; if the cell contains the formula, 
returns the formula as a string. 
See also: Text, Value 

Function Keyword 
Marks the beginning of a Function procedure. 
Syntax: Function name argument?, ... 
Name is the name of the variable whose value is passed back to the caller. 
Argument?, etc., are the names assigned to the arguments passed from the caller to 
the procedure. 
Example: See examples of Function procedures in Chapter 2. 
See also: Call, Sub 
GoTo Command 
Unconditional branch within a procedure. 
Syntax: GoTo label 
Label can be a name or a line number. 

If ... Then ... Else ... End If Command 
Delineates a block of conditional statements. 
Syntax: If condition Then ... Else ... End If 
The statement can be all on one line (e.g., If condition Then statement). Alternatively, 
a block If structure can be used, in which case the first line consists of If condition 
Then; the end of the structure is delineated by End If. Condition must evaluate to 
True or False. The ellipsis following Then and Else can represent a single 
statement or several statements separated by colons; these are executed if 
condition is True or False, respectively. 
Examples: If Char = " . I '  Then GoTo 2000 

If (Char >= " 0  And Char <= "9)  Then 
(statements) 
End If 

See also: Elself, End 

InputBox Function 
Displays an input dialog box and waits for user input. 
Syntax: InputBox(prompt, title, defau/t,xpos, ypos, he/pfi/e,context) 
See Microsoft Excel/Visual Basic Reference or On-Line Help for details. 
See also: InputBox Method, MsgBox 



374 EXCEL: NUMERICAL METHODS 

InputBox Method 
Displays an input dialog box and waits for user input. 
Syntax: object.lnputBox(prornpt, title, defau/t,/eff, top, he/pfi/e, context, type) 
Object must be Application. The InputBox method has the additional type 
argument that allows the input of a reference. See Microsoft Excel/Visual Basic 
Reference or On-Line Help for details. 
See also: InputBox Function, MsgBox 

Insert Method 
Inserts a range of cells in a worksheet. 
Syntax: object.lnsert(SHlFT) 
Object is a Range object. SHlFT specifies how to SHIFT cells when a range is 
inserted in a worksheet (xlToRight or xlDown). Can also use SHlFT = 1 or 2, 
respectively. If SHlFT is omitted, the "SHIFT Cells?" dialog box is not 
displayed. 
Examples: Worksheets("Sheetl2).Range("Al :AlO).lnsert (1) inserts the indicated 
range and SHIFTS cells to right. 
Worksheets("Sheetl").Columns(4).Insert inserts a new column to the left of column 
D. 
See also: Delete 

lnstr Function 
Returns a number specifying the position of the first occurrence of one string 
within another. Returns zero if the search string is not found. 
Syntax: InStr(starf, string-to-search, string-to-look-for, compare) 
Optional start specifies the start position for the search. If omitted, search begins 
at position 1. Optional compare determines the type of comparison. See On-Line 
Help for details. 
Example: InStr(1 ,NameText,"!") finds the first occurrence of the " ! I '  character within 
the string contained in the variable NameText. 

Int Function 
Rounds a number to an integer. 
Syntax: Int(nurnbef) 
If number is negative, Int returns the first negative integer less than or equal to 
number. 
Example: lnt(-2.5) returns -3. 
See also: Fix 

Integer Data Type 
Use to declare a variable's type as Integer, either in a Dim statement, or in a Sub 
or Function statement. Two bytes required per variable. 
Example: Dim J As Integer 
See also: Dim, As, Boolean, Double, String, Variant 



APPENDIX 1 SELECTED VISUAL BASIC KEYWORDS 375 

Intersect Method 
Returns a Range object that represents the intersection of two ranges. 
Syntax: Intersect (rangel, range2) 
See also: Union, Areas, Caller 

IsArray Function 
Returns True if the variable is an array. 
Syntax: IsArray(name) 
See also: other Is functions 

IsDate Function 
Returns True if the expression can be converted to a date. 
Syntax: IsDate(expression) 
See also: other Is functions 

IsEmpty Function 
Returns True if the variable has been initialized. 
Syntax: Is Empty (expression) 
See also: other Is functions 

IsMissing Function 
Returns True if an optional argument has not been passed to a procedure. 
Syntax: IsMissing(name) 
See also: other Is functions 

IsNull Function 
Returns True if the expression is null (i.e., contains no valid data). 
Syntax: IsNull(expression) 
See also: other Is functions 

IsNumerie Function 
Returns True if the expression can be evaluated to a number. 
Syntax: IsNumeric(expression) 
See also: other Is functions 

Italic Property 
Returns True if the font is Italic. Sets the Italic font. Read-write. 
Syntax: objecf.ltalic 
Object must be Font. 
Example: Range("A1 :El").Font.ltalic = True makes the cells italic. 
See also: Bold 

LBound Function 
Returns the lower limit of an array dimension. 
Syntax: LBound(amy,dimension) 
Array is the name of the array. Dimension is an integer (1,2, 3, etc.) specifying the 



376 EXCEL: NUMERICAL METHODS 

dimension to be returned; if omitted, the value 1 is used. 
Example: If the array table was dimensioned using the statement Dim table (1 To 3, 
IOOO), LBound(table,l) returns 1, LBound(table,2) returns 0. 
See also: Dim, UBound 

LCase Function 
Converts a string into lowercase letters. 
Syntax: LCase (string) 
See also: UCase 

LTrim Function 
Returns a string without leading spaces. 
Syntax: LTrim (string) 
See also: RTrim 

Left Function 
Returns the leftmost characters of a string. 
Syntax: Left(string,number) 
If number is zero, a null string is returned. If number is greater than the number of 
characters in string, the entire string is returned. 
Example: Left("CHEMISTRY",4) returns CHEM 
See also: Len, Mid, Right 

Len Function 
Returns the length (number of characters) in a string. 
Syntax: Len(string) 
Example: Len("CHEM1STRY") returns 9. 
See also: Left, Mid, Right 

Log Function 
Returns the natural (base-e) logarithm of a number. 
syntax: Log(numbe0 
Number must be a value or expression greater than zero. VBA does not provide 
base- 10 logarithms; use Log(value)/Log(l 0). 
See also: Exp 

Macrooptions Method 
Sets options in the Macro Options dialog box. 
Syntax: Application.MacroOptions(macro, description, hasMenu, menuText, 
hasShortcutKey, shortcutKey, category, statusbar, helpContext, helpfile) 

macro is the name of the macro. description is the description that appears in the 
dialog box. category is the function category that the macro appears in: Financial, 1; 
Date & Time, 2; Math & Trig, 3; Statistical, 4; Lookup & Reference, 5 ;  



APPENDIX 1 SELECTED VISUAL BASIC KEYWORDS 377 

Database, 6; Text, 7; Logical, 8; Information, 9; User Defined, 14; Engineering, 
15. 
Example: Application.MacroOptions rnacro:="FtoC", Description:= "Converts 
Fahrenheit temperature to Celsius", Category:=3 
provides a description for the macro FtoC and assigns it to the Math & Trig 
category. 

Mid Function 
Returns the specified number of characters from a text string, beginning at the 
specified position. 
Syntax: Mid(string, start,numbefj 
If start is greater than the number of characters in string, returns a null string. If 
number is omitted, all characters from start to the end of the string are returned. 
Example: Mid("H2S04",2,1) returns 2. 
See also: Left, Len, Right 

Mod Operator 
Returns the remainder resulting from the division of two numbers. 
Syntax: result = number1 Mod number2 

MsgBox Function 
Displays a message box. 
Syntax: MsgBox(prompt,buftons, title, helpfile,context) 
See Microsoft ExceWisual Basic Reference or On-Line Help for details. 
See also: InputBox 

Name Property 
Returns or sets the name of an object. 
Example: SeriesName = Selection.Name assigns the name of the selected chart 
series to the variable SeriesName. 
See also: NameLocal, Names 

Next Keyword 
Delineates the end of a For ... Next or For Each ... Next block of statements. 
Not Operator 
Logical operator. Performs logical negation: True becomes False, False becomes 
True. 
See also: And, Or 

Now Function 
Returns the current date and time. 
Syntax: Now 
See also: other date and time functions. 



378 EXCEL: NUMERICAL METHODS 

NumberFormat Property 
Returns or sets the number format code of a cell. 
Example: Range("A1 :AlO).NumberFormat= "0.00 sets the number format of the 
specified range of cells. 
See also: GoSub, GoTo, Return, Select Case 

On ... GoTo Command 
Branches to one of several specified lines, depending on the value of an 
expression. 
Syntax: On expression GoTo label?, ... 
See explanation under On ... GoSub command. 
Example: See examples of On ... GoTo procedures in Chapter 2. 
See also: GoSub, GoTo, Return, Select Case 

On Error GoTo Command 
Enables an error-handling routine and specifies the action to be taken in event of 
an error. 
Examples: On Error GoTo line (enables the error-handling routine at the specified 

location in the procedure) 
On Error Resume Next (execution resumes with the statement 
immediately following the statement that caused the error) 
On Error GoTo 0 (disables any enabled error handler in the current 
procedure) 

Open Method 
Opens a workbook. 
Syntax: object.Open(filename, .. .) 
Object must be Workbooks. Filename is required. 
remaining arguments. 
Example: Workbooks.Open("S0LVSTAT.XLS) 
See also: Close, Save, SaveAs 

See On-Line Help for the 

Option Base Keyword 
Use at module level to declare lower bound for an array. 
Can be Option Base 0 or 1. The statement can appear only once in a module and 
must precede all Dim or equivalent declaration. 
See also: Dim, LBound, ReDim 

Option Explicit Statement 
Use at module level to force explicit declaration of all variables in that module. 
See also: Option Base, Option Compare 

Optional Keyword 
Indicates that an argument in a function is not required. All arguments following 
the Optional keyword must be optional. All optional arguments are Variant. 



APPENDIX 1 SELECTED VISUAL BASIC KEYWORDS 379 

Syntax: Function name(argument7 ,. . . Optional argument) 
See also: Function, ParamArray 

Or Operator 
Logical operator. (expression1 Or expression2) evaluates to True if either 
expression1 or expression2 is True. Also can be used to perform bitwise 
comparison of two numerical values: (13 Or 6) evaluates to 15. (1 3 = 00001 101, 6 = 
000001 10,15 = 00001 11 1). 
See also: Or, Not, Xor 

Param Array Keyword 
Allows the use of an indefinite number of arguments for a function. The 
argument becomes an array of Variant elements. The array has lower array index 
of zero, even if Option Base 1 is declared. 
Syntax: Function name(afgument7,. .. ParamArray argument() As Variant) 
Example: Function test (ParamArray rng() As Variant) 
See also: Dim, Function, Variant 

Paste Method 
Pastes the contents of the Clipboard onto a worksheet. 
Syntax: object. Paste (destination) 
Object must be Worksheet. There are other Paste methods, with different syntax, 
for Chart and many other objects. Destination specifies the range where the copy 
will be pasted. If omitted, copy is pasted to the current selection. 
Example: Worksheets("Sheet1 ").Range("Al :C5O).Copy 

See also: Copy, Cut 

Preserve Command 
Preserves data in an existing array when using ReDim. 

Actives heet.Paste 

Private Command 
Indicates that the procedure is available only to procedures in the same module. 

Public Command 
Indicates that the procedure is available to all other procedures. 

Quit Method 
Quits Microsoft Excel. 
Syn fax: object. Qu i t 
Object must be Application. 
Example: Application.Quit 
See also: Close, Save 
Range Method 
Returns a Range object that represents a cell or range of cells. 
Syntax: object,Range(reference) 
Object is required if it is Worksheet. Reference must be an Al-style reference, in 



380 EXCEL: NUMERICAL METHODS 

quotes, or the name of the reference. 
Example: Worksheets("Sheetl2).Range("AI").Value = 5 
See also: Cells 

ReDim Keyword 
Allocates or re-allocates dynamic array storage. 
Syntax: ReDim variable (subscripts) 
For discussion of variable and subscripts, see comments under the entry for Dim. 
You can use ReDim repeatedly to change the number of elements in an array, or 
the number or dimensions. 
Example: Dim Matrix() 

(statements) 
ReDim Matrix ( 5 5 )  
(statements) 
ReDim Matrix (1 5,25) 

See also: Dim 

Resume Command 
Resumes execution after an error-handling routine is finished. 
Examples: Resume 0 

Resume Next (execution resumes with the statement immediately 
following the statement that caused the error) 
Resume label (Execution resumes at the specified location in the 
procedure) 

See also: On Error GoTo 

Return Command 
Delineates the end of a subroutine within a procedure. 

Right Function 
Returns the rightmost characters of a string. 
Syntax: Right (string, number) 
If number is zero, a null string is returned. If number is greater than the number of 
characters in string, the entire string is returned. 
Example: Right(303585842,4) returns 5842. 
See also: Left, Len, Mid 

Rnd Function 
Returns a random number between 0 and 1. 
Syntax: Rnd 

Row Property 
Returns a number corresponding to the first row in the range. Read-only. 
Syntax: object.Row 
Object must be Range. 
Example: If ActiveCell.Row = 10 Then ActiveCell.lnterior.Colorlndex = 27 



APPENDIX 1 SELECTED VISUAL BASIC KEYWORDS 381 

changes the interior color of the active cell to yellow if it is in row 10. 
See also: Column, Columns, Rows 

RowHeight Property 
Returns or sets the height of all rows in the range. 
Example: Worksheet@ heet 1 ").Rows( 1 ).RowHeig ht = 15 
See also: ColumnWidth 

Rows Method 
Returns a Range object that represents a single row or multiple rows. 
Syntax: object.Rows(index) 
Object can be Worksheet or Range. Index is the name or number of the row. 
Example: Selection.Rows.Count returns the number of rows in the selection. 
See also: Columns, Range 

RTrim Function 
Returns a string without trailing spaces. 
Syntax: RTrim(string) 
See also: LTrim, Trim 

Save Method 
Saves changes to active workbook. 
Syntax: objectSave(fi1ename) 
Object must be Workbook. If filename is omitted, uses a default name. 
Example: ActiveWorkbook.Save 
See also: Close, Open, SaveAs 

SaveAs Method 
Saves changes to active workbook or other document with a different filename. 
Syntax: object.SaveAs(filename, . . .) 
Object can be Worksheet, Workbook, Chart or other document types. 
Microsoft ExceWVisual Basic Reference or On-Line Help for details. 
Example: NewChart.SaveAs("New Chart") 
See also: Close, Open, Save 

See 

Select Method 
Selects an object. 
Syntax: object.Select 
Object can be Chart, Worksheet or one of many other objects. 
Example: Range("A1 :CSO").Select 
See also: Activate 

Select Case Command 
Executes one of several blocks of statements, depending on the value of an 
expression. 
Syntax: Select Case expression 

Case expression 1 



3 82 EXCEL: NUMERICAL METHODS 

(statements) 
Case expression2 
(statements) 
End Select 

You can also use the To keyword in expression, e.g., Case "A" To "M". Expression 
can also be a logical expression. Use Case Else (not required) to handle all cases 
not covered by the preceding Case statements. 
Example: See examples of Select Case procedures in Chapter 2. 
See also: If ... Then ... Else, On ... GoSub, On ... GoTo 

Selection Property 
Returns the selected object. The object returned depends on the type of selection, 
See also: Activate, Activecell, Select 

Set Command 
Assigns an object reference to a variable. 
See also: Dim, ReDim 

Sgn Function 
Returns the sign of a number. 
Syntax: Sgn(numbe0 
Returns 1, 0 or -1 if number is positive, zero or negative, respectively. 
Example: Sgn(-7.3) returns -1. 
See also: Abs 

Sin Function 
Returns the sine of an angle. 
Syntax: Sin(numbe0 
Number is the angle in radians; it can be in the range +XI to +a. To convert an angle 
in degrees to one in radians, multiply by d180.  Returns a value between -1 and 1. 
See also: Atn, Cos, Tan 

Sort Method 
Sorts a range of cells. 
Syntax: object.Sort(sortkeyl,orderl,sortkey2, orded, . . .) 
Object must be Range. See Microsoft ExceWisual Basic Reference or On-Line 
Help for details. 

Sqr Function 
Returns the square root of a number. 
Syntax: Sqr(numbe0 
Number must be greater than or equal to zero. 

Step Keyword 
Stops execution, but does not close files or clear variables. 
See also: End 



APPENDIX 1 SELECTED VISUAL BASIC KEYWORDS 383 

Stop Command 
Stops execution, but does not close files or clear variables. 
See also: End 
Str Function 
Converts a number to a string. 
Syntax: Str(numbefj 
A leading space is reserved for the sign of the number; if the number is positive, 
the string will contain a leading space. 
See also: Format 

String Data Type 
Use to declare a variable's type as String, either in a Dim statement, or in a Sub or 
Function statement. One bytekharacter required per variable. 
Example: Dim J As Integer 
See also: Dim, As, Boolean, Double, String, Variant 

Sub Keyword 
Marks the beginning of a Sub procedure. 
Syntax: Sub name (argument?, ...) 
Name is the name of the procedure. Argument?, etc., are the names assigned to the 
arguments passed from the caller to the procedure. The end of the procedure is 
delineated by End Sub 
Example: See examples of Sub procedures in Chapter 2. 
See also: Call, Function 

Tan Function 
Returns the tangent of an angle. 
Syn tax: Tan (numbefj 
Number is the angle in radians; it can be in the range 4 to +a To convert an angle 
in degrees to one in radians, multiply by d180. Returns a value between -m and 
+a. 
See also: Atn, Cos, Sin 

Text Property 
Returns or sets the text associated with an object. 
The text can be associated with a chart, button, textbox, control or range. For all 
except range, this property is read-write, but for a range, it is read-only. 
Example: Worksheets("Sheet1 ").Buttons( 1 ).Text = "Undo" 
See also: Formula, Value 

Trim Function 
Returns a string without leading or trailing spaces. 
Syntax: Trim(string) 
See also: LTrim, RTrim 



3 84 EXCEL: NUMERICAL METHODS 

True Keyword 
Use the keywords True or False to assign the value True or False to Boolean 
(logical) variables. 
When other numeric data types are converted to Boolean values, 0 becomes False 
while all other values become True. When Boolean values are converted to other 
data types, False becomes 0 while True becomes -1. 
Example: If FirstFlag = True Then GoTo 2000 

UBound Function 
Returns the upper limit of an array dimension. 
Syntax: U Bound (array, dimension) 
Array is the name of the array. Dimension is an integer (1,2,3, etc.) specifying the 
dimension to be returned; if omitted, the value 1 is used. 
Example: If the array table was dimensioned using the statement Dim table (1 
To 3, IOOO), UBound(table,3) returns 1, UBound(table,2) returns 1000. 
See also: Dim, LBound 

UCase Function 
Converts a string into upper case letters. 
Syntax: UCase(string) 
See also: LCase 

Union Method 
Returns a Range object that represents the union of two or more ranges, i.e., 
performs the same function as the comma character in the worksheet expression 
SUM(A1, B2, C3). 
Syntax: Union (rangel, range2) 
See also: Intersect, Areas, Caller 

Until Command 
Optional part of Do ... Loop structure. 
Syntax: See explanation under Do ... Loop. 

Val Function 
Converts a string to a number. 
Syntax: Val (string) 
Val stops at the first non-numeric character other than the period. 
Example: Val("21 Lawrence Avenue") returns 2 1. 
See also: Str 

Value Property 
Returns the value of an object. 
Syntax: objecf.Value 
If object is Range, returns or sets the value(s) of the cell(s). Read-write. 
If Range contains more than one cell, returns an array of values. 
Example: Worksheets("Sheetl2).Range("AI").Value = "Volume, mL" 



APPENDIX 1 SELECTED VISUAL BASIC KEYWORDS 385 

Variant Data Type 
Use to declare a variable's type as Variant, either in a Dim statement, or in a Sub 
or Function statement. Variant is the default data type, so usually not required. It 
is required when using the ParamArray keyword. Sixteen bytes + one 
bytekharacter required per variable. 
Example: Function test (ParamArray rng() As Variant) 
See also: Dim, As, Boolean, Double, Integer, String 

Wend Command 
Delineates the end of a While ... Wend procedure. 
Syntax: See explanation under Do ... Loop. 
See also: Do ... Loop, While ... Wend 

While ... Wend Command 
Executes a series of statements as long as a specified condition is true. 
Syntax: See explanation under Do ... Loop. 
See also: Do ... Loop, Wend 

With ... End With command 
Delineates a block of statements to be executed on a single object. 
Syntax: With object 

(statements) 
End With 

See also: Do ... Loop, While ... Wend 

XOr Operator 
Exclusive Or operator. 
Use to perform bitwise comparison of two numerical values: (1 3 XOr 6) evaluates 
to 11. (13 = 00001101,6 = 00000110, 11 = 00001011). 
See also: Or, Not, Or 



This Page Intentionally Left Blank



Appendix 2 

Shortcut Keys for VBA 

Shortcut keys for running and debugging code 
Halt execution ESC 
Run F5 
Step through code F8 

Toggle breakpoint F9 
Toggle between Visual Basic Editor and Excel 
Step into F8 
Step over SHIFT+F8 
Run to cursor CTRL+F8 
Clear all breakpoints CTRL +SHIFT+F9 
Display Quick Watch window SHIFT+F9 

ALT+F 1 1 

Shortcut keys for working in the code window 
View Code window F7 
Jump to beginning of module 
Jump to end of module 
Undo CTRL +Z 
Delete current line CTRL +Y 
Indent TAB 
Remove tab indent SHIFT+TAB 
Print CTRL +P 
Paste CTRL +V 
Delete DEL or DELETE 
Find CTRL +F 
Find Next SHIFT+F4 

CTRL +HOME 
CTRL +END 

3 87 



388 EXCEL: NUMERICAL METHODS 

Find Previous 
Replace 
Display Project Explorer window 
Display Properties window 
List PropertiesMethods 
List Constants 

SHIFT+F3 

CTRL +H 
CTRL +R 
F4 
CTRL +J 
CTRL +SHIFT+J 



Appendix 3 

Custom Functions 
Help File 

MIndex 
Returns a horizontal 2-element array containing the row and column numbers of a 
specified value in an array. 

Syntax 

M I  n d ex (kokup- wabe, array-, match- type) 

lookup-value 
array- 
match-type 

the value you use to find the value you want in array- 
a contiguous range of cells containing possible lookup values 
the number -1, 0, or 1, that specifies the value found in array- 

Remarks 
The arguments lookup-value, array- and match-type can be either references or 
names. 
I f  match-type is 0 or omitted, returns the position of the value that is exactly equal 
to lookup-value, or #N/A. 
I f  match-type is 1, returns the position of the largest value that is less than or 
equal to  lookup-value. 
I f  match-type is -1, returns the position of the smallest value that is greater than 
or equal to lookup-value. 
array- must contain only numbers. I f  any cells contain text or error values, MIndex 
returns the #VALUE! error value. Empty cells are treated as zero. 
The MIndex function is an array function. To return the array, you must select a 
horizontal range of two cells, enter the function and then press 
CONTROL+SHIFT+ENTER (Windows) or COMMAND+RETURN or 
CONTROL+S Him+ RETU RN (Macintosh) . 

Example 

I f  the range A contains the values { 13,0,-1;5,12,22;-5,0,1}, the expression 
MIndex(MAX(A),A) returns the values {2,3}; the expression MIndex(7,A) returns the 
values {#N/A,#N/A}. 

I f  the range 8 contains the values {2,11,-1;4,-1,7;-3,1,13}, the expression 
MIndex(MIN(B),B) returns the values {3,1}; the expression MIndex(0,B-1) returns the 
values {3,2). 

3 89 



390 EXCEL: NUMERICAL METHODS 

MIdent 
Creates an identity matrix o f  a specified size. 

Syntax 
MIdent(size) 

size optional argument specifying the size of the matrix to  be created 

Remarks 
The function can be used in a formula or used to fill a selection. 
When used to  fill a selection, the size argument is not required. I f  selection is not 
square, returns #REF! error. 
The MIdent function is an array function. To return the array that results when a 
range of N rows by N columns is selected, enter =MIdent() and then press 
CONTROL+SHIFT+ENTER (Windows) or COMMAND+RETURN or 
CONTROL+SHIFT+ RETURN (Macintosh). 

Example 

The expression MIdent(4) returns { 1,0,0,0;0,1,0,0;0,0,1,0;0,0,0,1). 

Arr 
Combines individual 1-D arrays into a 2-D array. 

Syntax 
Arr(range1, range2.. .) 

rangel, range2 ... 1 to  29 ranges that you want to  combine into a single array 

Remarks 
The arguments rangel, range2, ... can be either references to  ranges of cells or 
named ranges. 
All individual arrays must be "vertical" and must have same number of rows. 
The Arr function is an array function. To return the array that results when 
individual ranges with a total combined width of N columns, each with M rows, you 
must select a range of cells N columns by M rows, enter the function and then press 
CONTROL+SHIFT+ENTER (Windows) or COMMAND+RETURN or 
CONTROL+SHIR-+RETURN (Macintosh). 

Example 
The expression Arr(A4:A13,C4:D13) returns an array three columns wide and ten rows 
deep. 



APPENDIX 3 CUSTOM FUNCTIONS HELP FILE 391 

InterpL 
Performs linear interpolation in a table of x- and y-values. Returns the interpolated y- 
value corresponding to  a specified x-value. 

Syntax 
Inter p L( lookup- value, kno wn-x Is, known- y ‘s) 

lookup-value 
kno wn-x ‘s 
known- y ‘s 

the x-value for which you want to  find the interpolated y-value 
the range of x-values in the table (independent variable) 
the range of y-values in the table (dependent variable) 

Remarks 
The argument lookup-value can be either a number or a reference to  a cell that 
contains a number. 
The arguments known-x’s and known-y’s can be either a reference to a range of 
cells or a named range. 
The function cannot handle implicit references; that is, a name or range reference 
cannot be used for a range of lookup values. 
The table of x- and y-values must be arranged in ascending order of x-values. 

The table of x- and y-values can be either either horizontal or  vertical. 
The function cannot be used for extrapolation. A lookup value that is either greater 
than or less than the range of x-values returns #REF!. 
The linear interpolation formula is: 

where x is the lookup value and xo and x1 are the values in the table that bracket 
the lookup value; xo is the value in the table that is equal to or less than 
lookup- value. 

Example 
The expression InterpL(33.3,$A$3:$A$47,$B$3:$B$47) where $A$3:$A$47 is the range 
containing the independent or x-values and $B$3:$B$47 is the range containing the 
dependent or y-values. 

See Also 
InterpC, InterpC2 



3 92 EXCEL: NUMERICAL METHODS 

InterpC 
Performs cubic interpolation in a table of x- and y-values, using the LaGrange 4th-order 
polynomial. Returns the interpolated y-value corresponding to a specified x-value. 

Syntax 
InterpC(1ookup-value, known-x Is, known-y Is)  

lookup-value the x-value for which you want to find the corresponding y-value by 
cubic interpolation 

known-x's the range of x-values in the table (independent variable) 
kno wn-y's the range of y-values in the table (dependent variable) 

Re m a r ks 
lookup-value can be either a number or a reference to a cell that contains a 
number. 
The function cannot handle implicit references; that is, a name or range reference 
cannot be used for a range of lookup values. 
The values in the table of x- and y-values must be numbers. 
The table of x- and y-values must be arranged in ascending order of x-values. 
The table of x- and y-values can be either either horizontal or vertical. 
The function cannot be used for extrapolation. A lookup value that is either greater 
than or less than the range of x-values returns #REF!. 
Cubic interpolation uses the values of four adjacent table entries, e.g., at xo, xl, x2 
and x3, to interpolate between x1 and x2. The interpolated value is calculated using 
the LaGrange 4th-order polynomial: 

+ (x - )(x - xZ - x 4 )  (x- - xZ)(x - 1 3 )  
Y 3  + Y 4  

( x 3  - ) (x3  - xZ ) (x3  - x 4  ) ( x 4  - ) (x4  - xZ )(x4 - x3 

where x is the lookup value and xl, x2, x3 and x4 are the four values from the table 
that bracket lookup-value (see Chapter 5 for further details). 

Example 

=InterpC(33.3,$A$3:$A$47,$6$3:$B$47) where $A$3:$A$47 is the range containing the 
independent or x-values and $6$3:$6$47 is the range containing the dependent or y- 
values. 

See Also 
InterpL, InterpC2 



APPENDIX 3 CUSTOM FUNCTIONS HELP FILE 393 

InterpC2 
Performs cubic interpolation in a 2-way table of x-, y- and z-values. x and y are the 
independent variable, z is the dependent variable. Returns the interpolated z-value 
corresponding to a specified x-value. 

Syntax: 
InterpC2 (x-lookup, y-lookup, known-x Is, known-y's, known-2's) 

x-lookup 
y-lookup 
known-x's 
known-y 's 
kno wn-z's 

the x-value for which you want to  find the interpolated z-value 
the y-value for which you want to find the interpolated z-value 
the set of x-values in the table (independent values) 
the set of y-values in the table (independent values) 
the set of z-values in the table (dependent values) 

Remarks 

x-lookup and y-lookup can be either numbers or references to a cell that contains a 
number. 
The function cannot handle implicit references; that is, a name or range reference 
cannot be used for a range of lookup values. 
The values in the table of x- , y- and z-values must be numbers. 
The table must be arranged in ascending order of both x-values and y-values. 
The function cannot be used for extrapolation. An x-lookup value that is either 
greater than or less than the range of x-values, or a y-lookup value that is either 
greater than or less than the range of y-values returns #REF!. 
The function uses the LaGrange 4th-order polynomial. See InterpC for details. 

Example 
= InterpC2(K7,L7,$A$4:$A$29,$6$3:$1$3,$6$4:$1$29) where K7 is a reference to  the 
x-lookup value, L7 is a reference to  the y-lookup value, $A$4:$A$29 is the range 
containing the independent x-values, $6$3:$1$3 is the range containing the independent 
y-values and $6$4:$1$29 is the range containing the dependent or z-values. 

See Also 
InterpC, InterpL 



3 94 EXCEL: NUMERICAL METHODS 

dydx 
Returns the first derivative of a function y = F(x), represented by a formula in a cell, at 
a specified value of x. Returns #DIV/O! error value if x = 0, in which case use the 
optiona I a rg u ment scale-factor. 

Syntax 
dydx( expression, variable, scale-factor) 
expression 

variable 

scale-factor 

reference to a cell containing a formula (the function F(x)to be 
differentiated) 
cell reference corresponding to the independent variable x in the 
function F(x) 
optional argument to be used when x is zero 

Remarks 

The argument expression can be either a reference to a cell that contains a formula, 
or a name. 

The argument reference can be either a reference to a cell, or a name. 
Use the optional argument scale-factor to specify a suitable value of x to be used to 
calculate Ax. For example, if the function requires values of x in the range -1 x lo5 
to 1 x lo5, use 1E-5 for scale-factor. 

The optional argument scale-factor can be either a number or a formula, or a 
reference to a cell that contains a number or formula, or a name. 
The function cannot handle implicit references; that is, a name or range reference 
cannot be used for a range of values. 
The workbook can be set to either RlC1- or Al-style. 

Limitations 

None of the precedent cells of the argument expression may contain references to 
the argument reference. 

The function cannot handle implicit references; that is, a name or range reference 
cannot be used for a range of values. 

Example 

I f  cell C2 contains the formula =SIN(B2) and cell B2 contains the value 1, the formula 
=dydx(C2,B2) returns the value 0.5403023062. The correct value is cos (1) = 
0.5403023059 (5.8 x error). 

See Also 
d2ydx2 



APPENDIX 3 CUSTOM FUNCTIONS HELP FILE 395 

dZydx2 
Returns the second derivative of a function y = F(x), represented by a formula in a cell, 
at a specified value of x. Returns #DIV/O! error value if x = 0, in which case use the 
optional argument scale-factor. 

Syntax 
d 2ydx2 (expression, variable, scale-factor) 
expression 

variable 

scale-factor 

reference to a cell containing a formula (the function F(x)to be 
differentiated) 
cell reference corresponding to the independent variable x in the 
function F(x) 
optional argument to be used when x is zero 

Remarks 
The argument expression can be either a reference to a cell that contains a formula, 
or a name. 
The argument variab/e can be either a reference to a cell, or a name. 
Use the optional argument scale-factor to specify a suitable value of x to be used to 
calculate ~ x .  For example, if the function requires values of x in the range -1 x lo5 
to 1 x lo5, use 1E-5 for scale-factor. 
The optional argument scale-factor can be either a number or a formula, or a 
reference to a cell that contains a number or formula, or a name. 
The workbook can be set to either R lC1-  or Al-style. 
Errors (difference between returned value and correct value, when the latter can be 
calculated using a calculus formula) are typically of the order of to lo-'. 

Limitations 
None of the precedent cells of the argument expression may contain references to 
the argument reference. 
The function cannot handle implicit references; that is, a name or range reference 
cannot be used for a range of values. 

Example 
I f  cell C2 contains the formula =SIN(62) and cell 62 contains the value 1, the formula 
=d2ydx2(C2,62) returns the value -0.841470981782962, The correct value is cos 
(l+n/2) = -0.841470984807897 (3.6 x 

See Also 
dydx 

O/O error). 



396 EXCEL: NUMERICAL METHODS 

C u rv Area 
Returns the area under a curve defined by a table of x- and y-values. 

Syntax 
CurvArea(x-values, y-values) 
x- values 
y-values 

the range of x-values in the table (independent variable) 
the range of y-values in the table (dependent variable) 

Remarks 
The arguments x-values and y-values can be either a reference to a range of cells 
or a named range. 
Errors (difference between returned value and correct value, when the latter can be 
calculated using a formula) will depend on the number of "panels" in the table. 

Example 
CurvArea($A$5:$A$30,$C$5:$C$30) where the ranges $A$5:$A$30 and $C$5:$C$30 
refer to a table of x- and y-values, respectively, defining a curve. 
See Also 
Integrate, Integrates, I nteg rateT 



APPENDIX 3 CUSTOM FUNCTIONS HELP FILE 397 

IntegrateT 
Returns the integral (the area under the curve) of an expression between specified 
limits. The area is calculated by using the trapezoidal approximation. 

Syntax 
I nteg rateT( expression, variable, from-lo wer, to- upper) 
expression 

variable 
from-lower 
to-upper 

reference to a cell containing a formula (the integrand, the function 
F(x)to be integrated) 
cell reference corresponding to x, the variable of integration 
the lower limit of integration 

the upper limit of integration 

Remarks 
The argument expression can be either a reference to  a cell that contains a formula, 
or a name. 
The argument variable can be either a reference to a cell, or a name. 
The arguments from-lower and to-upper can be either a number, a reference to  a 
cell containing a number, a formula or a name. 
Errors (difference between returned value and correct value, when the latter can be 
calculated using a calculus formula) are variable and depend on the expression 
being integrated. 
The area under the curve is divided into N "panels" of equal width H. The area of 
each panel is approximated as the area of a trapezoid of width H a n d  heights F(x) 
and F(x+H). The formula for the trapezoidal approximation is 

2 

Example 
The formula =IntegrateT(C3,B3,D3,E3), where C3 contains =B3"3, the expression to  be 
integrated, B3 is the variable of integration, 0 3  contains the value 0 and E3 the value 1, 
returns the area under the curve of y = x3 between the limits 0 and 1. 

Limitations 
None of the precedent cells of the argument expression may contain references to 
the argument reference. 
The function cannot handle implicit references; that is, a name or range reference 
cannot be used for a range of values. 

See Also 
CurvArea, Integrate, Integrates 



398 EXCEL: NUMERICAL METHODS 

Integrates 
Returns the integral (the area under the curve) of an expression between specified 
limits. The area is calculated by using Simpson's 1/3 method. 

Syntax 
IntegrateS(expression, variable, from-lower, to-upper) 
expression 

variable 
from-lo wer 
to- upper 

reference to a cell containing a formula (the integrand, the function 
F(x)to be integrated) 
cell reference corresponding to x, the variable of integration. 
the lower limit of integration 
the upper limit of integration 

Remarks 

The argument expression can be either a reference to a cell that contains a formula, 
or a name. 
The argument variable can be either a reference to a cell, or a name. 

The arguments from-lower and to-upper can be either a number, a reference to a 
cell containing a number, a formula or a name. 
Errors (difference between returned value and correct value, when the latter can be 
calculated using a calculus formula) are variable and depend on the expression 
being integrated . 
The area under the curve is divided into N "panels" of equal width H. The formula 
for the area of each panel by Simpson's 1/3 rule is: 

1 F ( x )  + 4 F ( x  + H A )  + F(x + H )  
AH[ 3 

Limitations 

None of the precedent cells of the argument expression may contain references to 
the argument reference. 
The function cannot handle implicit references; that is, a name or range reference 
cannot be used for a range of values. 

Example 
The formula =IntegrateS(C3,63,D3,E3), where C3 contains =B3"3, the expression to be 
integrated, 63 is the variable of integration, D3 contains the value 0 and E3 the value 1, 
returns the area under the curve of y = x3 between the limits 0 and 1. 

See Also 
CurvArea , Integrate, I ntegra teT 



APPENDIX 3 CUSTOM FUNCTIONS HELP FILE 399 

Integrate 
Returns the integral (the area under the curve) of an expression between specified 
limits. The area is calculated by using a tenth-order LeGendre polynomial. 

Syntax 
Integrate(expression, variable, from-lower, to-upper) 
expression 

variable 
from-lower 
to-upper 

reference to  a cell containing a formula (the integrand, the function 
F(x)to be integrated) 
cell reference corresponding to x, the variable of integration 
the lower limit of integration 
the upper limit of integration 

Remarks 
The argument expression can be either a reference to a cell that contains a formula, 
or a name. 
The argument variable can be either a reference to a cell, or a name. 
The arguments from-lower and to-upper can be either a number, a reference to  a 
cell containing a number, a formula or a name. 
Errors (difference between returned value and correct value, when the latter can be 
calculated using a calculus formula) are variable and depend on the expression 
being integrated. 

Limitations 
None of the precedent cells of the argument expression may contain references to  
the argument reference. 
The function cannot handle implicit references; that is, a name or range reference 
cannot be used for a range of values. 

Example 
=Integrate (C3,B3,D3,E3), where C3 contains the expression to be integrated, 83 is the 
variable of integration, D3 contains the value 0 and E3 the value 1, returns the area 
under the curve between the limits 0 and 1. 

See Also 

CurvArea, Integrates, IntegrateT 



400 EXCEL: NUMERICAL METHODS 

NewtRaph 
Returns the value of the independent variable contained in variable necessary to make 
the formula contained in expression have the value zero. 

Syntax 
NewtRaph(expression, variable, initial-value) 
Expression 
Variable 
initiaCvalue 

reference to a cell containing a formula F(x) 
cell reference corresponding to x, the variable to be changed 
optional argument specifying the initial estimate to be used in the 
Newton-Raphson procedure 

Re marks 
The argument expression can be either a reference to a cell that contains a formula, 
or a name. The formula must depend on variable. 
The argument variable must be a reference to a cell. 
The argument initiaCvalue can be either a number, a reference to a cell containing 
a number, a reference to a cell containing a formula, or a name. 
The workbook can be set to either R lC1-  or Al-style. 
Use the optional argument initiaCvalue for functions that have more than one root, 
to control the value of the root that is returned. 
have three real roots, i.e., three different x-values that make y = 0. The root that 
NewtRaph returns will depend on the trial value that you begin with. 

For example, a cubic equation can 

Limitations 
None of the precedent cells of the argument expression may contain references to 
the argument reference. 
The function cannot handle implicit references; that is, a name or range reference 
cannot be used for a range of values. 

Example 
=NewtRaph(B3,A3), where 63 contains the worksheet formula 
=A3A2-0.000001*SQRT(A3)-0.0000000051 and A3, the independent variable, contains 
the value 1.2E-04, returns 0.00012814, a root of the function. 

See Also 
Bairstow, GoalSeek 



APPENDIX 3 CUSTOM FUNCTIONS HELP FILE 40 1 

Bairstow 
Returns an array of the roots, both real and imaginary, of a regular polynomial of 
maximum order six. A regular polynomial is one that contains only integer powers of x. 

Syntax 
Ba i rStow( equation, variable) 
equation 
variable 

reference to  a cell containing the formula F(x )  of a regular polynomial 
cell reference corresponding to x, the independent variable 

Remarks 
The argument equation can be either a reference to a cell that contains a formula, 
or a name. 
The argument variable must be a reference to a cell. 
The workbook can be set to  either RlC1- or Al-style. 
The Bairstow function is an array function. To return the roots of a polynomial of 
order N, you must select a range of cells 2 columns by N rows, enter the function 
and then press CONTROL+SHIFT+ENTER (Windows) or COMMAND+RETURN or 
CONTROL+SHI~+RETURN (Macintosh). 
The table of results contains the real part of the root in the first column, the 
imaginary part in the second column. 

Limitations 
The function cannot handle implicit references; that is, a name or range reference 
cannot be used for a range of values. 

See Also 
NewtRaph, GoalSeek 



402 EXCEL: NUMERICAL METHODS 

GoalSeek 
Returns the value of the independent variable x necessary to make the formula F(x) 
have a specified value. The function uses the Newton-Raphson method. 

Syntax 
Goalseek( target-cellf changing-cellf objective-value, initiacvalue) 
target-cell reference to a cell containing a formula F(x). 
changing-cell cell reference corresponding to x, the variable to be changed. 
objective-value the value to be returned by target-cell. 
initiaLvalue optional argument specifying the initial estimate to be used in the 

Newton-Raphson procedure 
Remarks 

The argument target-cell can be either a reference to a cell that contains a formula, 
or a name. The formula must depend on changing-cell. 
The argument changing-cell must be a reference to a cell. 
The argument objective-value can be either a number, a reference to a cell 
containing a number, a reference to a cell containing a formula, or a name. 
The argument initiacvalue can be either a number, a reference to a cell containing 
a number, a reference to a cell containing a formula, or a name. Use initiacvalue 
for functions that have more than one value of x that satisfies the relationship F(x) 
= objective-value, to control the value of x that is returned. 
The workbook can be set to either R lC1-  or Al-style. 
Microsoft does not provide a goal-seeking function, only Goal Seek... in the Tools 
menu. The Goal Seek... tool accepts only a fixed value as the objective, not a 
reference to a cell. I n  contrast, the GoalSeek function allows the user to use a cell 
reference as the objective. The cell can contain either a number or a formula. I n  
addition, Goal Seek... is a Sub procedure that must be run each time the formula 
in the target cell or the objective value is changed. The GoalSeek function updates 
automatically when either the formula or the objective is changed. 
Note that, unlike Goal Seek. .., the custom function does not change the value of 
changing-cell on which the cell containing target-cell depends. I f  you think that 
there is a possibility that an incorrect value could be returned, you should enter a 
copy of the formula in another cell, and make the formula depend on the value 
returned by Goalseek, to confirm that the desired objective was found. 

Limitations 
None of the precedent cells of the argument expression may contain references to 
the argument reference. 
The function cannot handle implicit references; that is, a name or range reference 
cannot be used for a range of values. 

Example 
I f  cell 85 contains the formula = A5"2+8*A5-10 and cell A5 contains the value 0, the 
expression GoalSeek(B5,A5,210) returns 12.1327, a value of the independent variable 
that makes the formula have the value 210. Since the formula describes a parabola, 
there are two values of the independent variable that cause the formula to return the 
value 210. The expression GoalSeek(B5,A5,H,-20) returns -18.1327, the other value. 

See Also 
Bairstow, NewtRaph 



APPENDIX 3 CUSTOM FUNCTIONS HELP FILE 403 

Rungel 
Performs fourth-order Runge-Kutta integration of an ordinary differential equation. 
Returns the value of the independent variable y at x + Ax, based on specified values of x 
and y at x, and a differential equation. 

Syntax 
Ru ngel (x- variable, y- variable, deriv-formula, interval) 

x- varia ble 
y-variable 
deriv-formula 
interval 

the value of x 
the value of y at x 
the differentia I equation dyjdx = f (x- varia ble, y- varia ble) 
Ax, the interval for the calculation 

Remarks 
The argument x-variable can be a value, or a reference to a cell containing a value 
or a formula. 
The argument y-variable can be a value, or a reference to a cell containing a value 
or a formula. 
The argument deriv-formula can be a value, or a reference to a cell containing a 
value or a formula. 
The argument interval can be a value or a formula, or a reference to  a cell 
containing a value or a formula. 
The workbook can be set to  either RlC1- or Al-style. 

Limitations 
None of the precedent cells of the argument expression may contain references to  
the argument reference. 
The function cannot handle implicit references; that is, a name or range reference 
cannot be used for a range of values. 

See Also 
Runge, Runge3 



404 EXCEL: NUMERICAL METHODS 

Runge3 
Performs fourth-order Runge-Kutta integration of a system of N ordinary differential 
equations. Returns the values of the N independent variables y at x + bit based on 
specified values of x and the N independent variables y at x, and N differential 
equations. 

Syntax 
Ru nge3 (x-variable, y- variables, deriv- formulas, interval, index) 
x-varia ble 
y- variables 
deriv-formulas 

interval 
index 

the value of x 
the array of y values at  x 
the array of differential equations dyldx = F(x-variable, y-variable), in 
the same order as y-variables 
AX, the interval for the calculation 

an optional argument specifying which one of the array of y-variables 
to  be returned; if omitted, returns the complete array 

Remarks 
The argument x-variable can be a value, or a reference to  a cell containing a value 
or a formula. 
The argument y-variables can be an array of values, or of references t o  cells 
containing values or formulas. 
The argument deriv-s is an array of references to  cells containing values or 
formulas. The array must be in the in the same order as y-variables. 
The argument interval can be a value or a formula, or a reference to  a cell 
containing a value or a formula. 
The optional argument index can be a value or a formula, or a reference to  a cell 
containing a value or a formula. 
The workbook can be set to  either R1C1- or Al-style. 
The Runge3 function is an array function. If you omit the optional argument index, 
you must select a horizontal range of cells, enter the function and then press 
CONTROL+SHIFT+ENTER (Windows) or COMMAND+RETURN or 
CONTROL+SHI~+RETURN (Macintosh). 

Limitations 
None of the precedent cells of the argument expression may contain references t o  
the argument reference. 
The function cannot handle implicit references; that is, a name or range reference 
cannot be used for a range of values. 

See Also 
Runge, Rungel 



APPENDIX 3 CUSTOM FUNCTIONS HELP FILE 405 

GaussElim 
Solves a set of N linear equations in N unknowns by the Gaussian Elimination method. 
Returns the array of N unknowns, in either a row or a column, depending on the range 
selected by the user. 

Syntax 
GaussElim (coeff-ma trix,const-vector) 
coeff-matrix 
const-vector 

a reference to  an N row x N column array of coefficients 
a reference to  an N row x 1 column array of constants 

Remarks 
The coeff-matrix and the const-vector tables can contain values or formulas. 
The GaussElim function is an array function. You can select either a 1 row x N 
column horizontal range of cells or an N row x 1 column vertical range of cells, 
enter the function and then press CONTROL+SHIR+ENTER (Windows) or 
COMMAND+RETURN or CONTROL+SHIFT+RETURN (Macintosh). 

See Also 

Gausslordanl, GaussJordanZ, GaussSeidel, SimultEqNL 



406 EXCEL: NUMERICAL METHODS 

GaussJordanZ 
Solves a set of N linear equations in N unknowns by the Gaussian-Jordan method. 
Returns the array of N unknowns, in column format only. 

Syntax 
Ga ussJorda n 2 (coeff-matrix,const- vector) 
coeff-matrix 
const-vector 

a reference to an N row x N column array of coefficients 

a reference to  an N row x 1 column array of constants 

Remarks 
The coeft-matrix and the const-vector tables can contain values or formulas. 
The GaussJordan2 function is an array function. You must select an N row x 1 
column vertical range of cells, enter the function and then press 
CONTROL+SHIF~+ENTER (Windows) or COMMAND+RETURN or 
CONTROL+SHIF~+RETURN (Macintosh). 

See Also 

GaussElim, GaussJordanl, GaussSeidel, SimultEqNL 

GaussJordanl 
Identical to GauddJordan2 except returns a single specified element of the results array. 

Syntax 

Ga ussJorda n 1 (coeff-matrix,const- vector, value-index) 
coeff-matrix 
const-vector 
value-index 

a reference to  an N row x N column array of coefficients 

a reference to  an N row x 1 column array of constants 

a value or a reference to a cell containing a value 

Remarks 
The coeft-matrix and the const-vector tables can contain values or formulas. 
The GaussJordanl function is an array function. You must select an N row x 1 
column vertical range of cells, enter the function and then press 
CONTROL+SHIF~+ENTER (Windows) or COMMAND+RETURN or 
CONTROL+S HI m+ RETU RN (Macintosh). 

See Also 
GaussElim, GaussJordan2, GaussSeidel, SimultEqNL 



APPENDIX 3 CUSTOM FUNCTIONS HELP FILE 407 

GaussSeidel 
Solves a set of N linear equations in N unknowns by the Gaussian-Seidel method. 
Returns the array of N unknowns, in column format only. 

Syntax 
Ga ussSeidel( coeff-matrix,const- vector, init- values) 
coeff-matrix 

const-vector 
init-values 

a reference to  an N row x N column array of coefficients 
a reference to an N row x 1 column array of constants 
a reference to  an N row x 1 column array of initial values 

Remarks 
The coeff-matrix, const-vector and init-values tables can contain values or 
formulas. 
The optional init-values may be helpful for large arrays. 
The GaussSeidel function is an array function. You must select an N row x 1 column 
vertical range of cells, enter the function and then press CONTROL+SHIFT+ENTER 
(Windows) or COMMAND+RETURN or CONTROL+SHIFT+RETURN (Macintosh). 

See Also 
GaussElim, GaussJordanl, GaussJordanZ, SimultEqNL 

SimultEqNL 
Solves a set of N non-linear equations in N unknowns by Newton’s iteration method. 
Returns the array of N unknowns, in column format only. 

Syntax 
Si mu It EqN L( equations, variables, constants) 
equations 

variables 
constants 

a reference t o  an N row x N column array of coefficients 
a reference t o  an N row x 1 column array of constants 
a reference to  an N row x 1 column array of initial values 

Remarks 
The coeff-matrix, const-vector and init-values tables can contain values or 
formulas. 
The optional init-values may be helpful for large arrays. 
The SimultEqNL function is an array function. You must select an N row x 1 column 
vertical range of cells, enter the function and then press CONTROL+SHIFT+ENTER 
(Windows) or COMMAND+RETURN or CONTROL+SHIFT+RETURN (Macintosh). 

See Also 
GaussElim, GaussJordanl, GaussJordanZ 



This Page Intentionally Left Blank



Appendix 4 

Some Equations 
for Curve Fitting 

This appendix describes a number of equation types that can be used for 
curve fitting. Some of the equation types can be handled by Excel's Trendline 
utility for charts; these cases are noted below. 

Multiple Regression. Multiple regression fits data to a model that defines y 
as a function of two or more independent x variables. For example, you might 
want to fit the yield of a biological fermentation product as a function of 
temperature (0, pressure of COZ gas (P) in the fermenter and fermentation time 
( t )  

y = a.T + b.P +ct + d (A4- 1)  
using data from a series of fermentation experiments with different conditions of 
temperature, pressure and time. 

Since you can't create a chart with three x-axes (e.g., T, P and t), you can't 
use Trendline for multiple regression. 

Polynomial Regression. Polynomial regression fits data to a power series 
such as equation A4-2: 

y = a + bx +cx2 + dx3 + ... (A4-2) 

409 



-30 L 
X 

Figure A4-1. Polynomial of order 3. 
The curve follows equation A42 with a = 5, b = -1,  c = -5 and d = 1. 

The Trendline type is Polynomial. The highest-order polynomial that 
Trendline can use as a fitting function is a regular polynomial of order six, i.e., 
y = ax6 + bx5 +cx4 + ak3 + ex2 +fx + g .  

LINEST is not limited to order six, and LINEST can also fit data using other 
polynomials such as y = ax2 + bx3'2 + cx + + e .  

Exponential Decrease. 

0.1 0 

0.08 

*, 0.06 

0.04 

0.02 

0.00 
0 2 4 6 8 10 

X 

Figure A4-2. Exponential decrease to zero. 
The curve follows equation A43  with a = 0.1 and b = -0.5. 

The Trendline equation is shown on the chart. 

Data with the behavior shown in Figure A4-2 can be fitted by the exponential 
equation 



APPENDIX 4 EOUATIONS FOR CURVE FITTING 41 1 

y = a e b x  (A4-3) 

The sign of b is often negative (as in radioactive decay), giving rise to the 

The linearized form of the equation is In y = bx + In a; the Trendline type is 
decreasing behavior shown in Figure A4-2. 

Exponential. 

Exponential Growth. 
curvature is upwards, as in Figure A4-3. 

If the sign of b in equation A4-3 is positive, the 

r, 

0 2 4 6 8 10 
X 

Figure A4-3. Exponential increase. 
The curve follows equation A4-3 with a = 0.1 and b = 0.5. 

The Trendline equation is shown on the chart. 

Exponential Decrease or Increase Between Limits. If the curve 
decreases exponentially to a nonzero limit, or rises exponentially to a limiting 
value as in Figure A4-4, the form of the equation is 

y = aebx + c 

Excel's Trendline cannot handle data of this type. 

(A4-4) 



412 EXCEL: NUMERICAL METHODS 

1 

0.8 

0.6 

0.4 

x 

0.2 

0 
0 2 4 6 8 10 

X 

Figure A4-4. Exponential increase to a limit. 
The curve follows equation A4-4 with a = -1, b = -0.5 and c = 1. 

The linearized form of the equation is In 0, - c)  = bx + In a. 

Double Exponential Decay to Zero. The sum of two exponentials 
(equation A4-5) gives rise to behavior similar to that shown in Figure A4-5. This 
type of behavior is observed, for example, in the radioactive decay of a mixture 
of two nuclides with different half-lives, one short-lived and the other relatively 
longer-lived. 

y = ae-bt + ce-dl (A4-5) 

>r 

0 

2 1  

1.5 
>r 

o . q \  
0 , , 

0 2 4 6 8 10 
X 

Figure A4-5. Double exponential decay. 
The curve follows equation A4-5 with a = 1 ,  b = -2, c = 1 and d = -0.2. 

If the second term is subtracted rather than added, a variety of curve shapes 
are possible. Figures A4-6 and A4-7 illustrate two of the possible behaviors. 



APPENDIX 4 EQUATIONS FOR CURVE FITTING 413 

I -  - 
I I I I I I 

2 4 6 8 10 

-1 L X 

Figure A4-6. Double exponential decay. 
The curve follows equation A4-5 with a = 1, b = 4 . 2 ,  c = -2 and d = -2, 

0 2 4 6 8 10 

X -0.8 

Figure A4-7. Double exponential decay. 
The curve follows equation A4-5 with a = 1, b = -2, c = -1 and d = -0.2. 

Equation A4-5 is intrinsically nonlinear (cannot be converted into a linear 
form). 

Power. Data with the behavior shown in Figure A4-8 can be fitted by equation 
A4-6. 

(A4-6) b y=aX 



4 14 EXCEL: NUMERICAL METHODS 

y =  1.1x-O.~ 

0 2 4 6 8 10 
X 

Figure A4-8. Power curve. 

The curve follows equation A4-6 with a = 1 . 1 ,  b = -0.5. 
The Trendline equation is shown on the chart. 

The linearized form of equation A4-6 is In y = b In x + In a; the Trendline 
form is Power. 

Logarithmic. 

4 

2 

-0 

-2 

y = 2Ln(x) + 1 

I 

10 

“ t  -6 
X 

Figure A4-9. Logarithmic function. 
The curve follows equation A4-7 with a = 2, b = 1 .  

Data with the behavior shown in Figure A4-9 can be fitted by the logarithmic 
equation A4-7. 

y = a lnx + b (A4-7) 



APPENDIX 4 EQUATIONS FOR CURVE FITTING 415 

The Trendline type is Logarithmic. 

"Plateau" Curve. A relationship of the form 

ax y = -  
b + x  

exhibits the behavior shown in Figure A4-10. 

1 

>r 0.5 

0 

(A4-8) 

0 2 4 6 8 10 
X 

Figure A4-10. Plateau curve. 
The curve follows equation A4-8 with a = 1, b = 1. 

In biochemistry, this type of curve is encountered in a plot of reaction rate of 
an enzyme-catalyzed reaction of a substrate as a function of the concentration of 
the substrate, as in Figure A4-10. The behavior is described by the Michaelis- 
Menten equation, 

(A4-9) 

where V is the reaction velocity (typical units mmol/s), K,,, is the Michaelis- 
Menten constant (typical units mM), V,, is the maximum reaction velocity and 
[ S ]  is the substrate concentration. Some typical results are shown in Figure A4- 
11. 



416 EXCEL: NUMERICAL METHODS 

50 

40 

30 

20 

10 

0 

Figure A4-11. Michaelis-Menten enzyme kinetics. 
The curve follows equation A4-9 with V,, = 50, K,, = 0.5. 

Double Reciprocal Plot. The Michaelis-Menten equation can be converted 
to a straight line equation by taking the reciprocals of each side. This treatment 
is called a Lineweaver-Burk plot, a plot of the reciprocal of the enzymatic 
reaction velocity (UV) versus the reciprocal of the substrate concentration 
(l/[SI). 

1 K , 1  1 - +- 
V Vmax S Vmax 

(A4- 10) 

A double-reciprocal plot of the data of Figure A4-11 is shown in Figure A4- 
12. The parameters V,,, and K,,, can be obtained from the slope and intercept of 
the straight line (Vmm = Uintercept, K,,, = interceptlslope). However, 
relationships dealing with the propagation of error must be used to calculate the 
standard deviations of V,,, and K, from the standard deviations of slope and 
intercept. By contrast, when the Solver is used the expression does not need to 
be rearranged, ycalc is calculated directly from equation A4-19, the Solver returns 
the coefficients V,,, and K,,,, and SolvStat.xls returns the standard deviations of 
V,,, and K,. 



APPENDIX 4 EQUATIONS FOR CURVE FITTING 417 

0.00 ' 
0 5 10 

WSI 

Figure A4-12. Double-reciprocal plot of enzyme kinetics. 
The curve follows equation A4-10 with V,,, = 50, K,,, = 0.5. 

Logistic Function. The logistic equation or dose-response curve 

(A4-11) 
1 y = -  

1 + e-" 

produces an S-shaped curve like the one shown in Figure A4-13. 

Y 

-5 0 5 10 -10 

X 

Figure A4-13. Simple logistic curve. 
The curve follows equation A4- 1 1 with a = 1. 



418 EXCEL: NUMERICAL METHODS 

In the dose-response form of the equation, the y-axis (the response) is 
normalized to 100% and the x-axis (usually logarithmic) is normalized so that the 
midpoint (the half-maximum response or ECSo) occurs at x = 0. 

Logistic Curve with Variable Slope. In equation A4-11, the coefficient a 
determines the slope of the rising part of the curve; in biochemistry a is referred 
to as the Hill slope. Figure A4-14 illustrates the effect of varying Hill slope. At 
the midpoint the slope is a/4. 

-5 0 5 10 
X 

-10 

Figure A4-14. Variable slopes of logistic curve. 
The three curves have a = 0.5, 1 and 2, respectively. 

Logistic Curve with Additional Parameters. Equation A4-12 is the 
logistic equation with addition parameters that determine the height of the 
"plateau" and the offset of the mid-point from x = 0. 

b 
c + e-ax 

The height of the plateau is equal to b/c. 

Y =  (A4- 12) 



APPENDIX 4 EQUATIONS FOR CURVE FITTING 419 

Figure A4-15. Logistic curve with additional variables. 
The curve follows equation A4-12 with a = 1, b = 0.5 and c = 5 .  

Logistic Curve with Offset on the y-Axis. The logistic equation 

-10 -5 0 5 10 15 20 
A 

Figure A4-16. Logistic curve with offset on the y-axis. 
The curve follows equation A4-13 with a = 1, b = -2, c = 1 and d = -0.2. 

(A4- 13) 

This equation takes into account the value of the plateau maximum and 
minimum (coefficients a and d, respectively), the offset on the x-axis, and the 
Hill slope. 



420 EXCEL: NUMERICAL METHODS 

Gaussian Curve. The Gaussian or normal error curve (equation A4-14) 

exp[-(x - p)2 /202] 
O J G  

Y =  (A4- 14) 

can be used to model UV-visible band shapes, usually in order to deconvolute a 
spectrum consisting of two or more overlapping bands. When used for 
deconvolution, a simplified form of the Gaussian formula can be used, for 
example 

A = & a x e - [ ( ~ - ~ ) ~ ~ ~ l ’ l  (A4- 15) 

where A is absorbance, x is the independent variable, either wavelength (e.g., 
nm), or, more commonly, l/wavelength (e.g., cm-’), and in is the value of x at 
Amax. The parameters is related to the bandwidth at half-height. 

10 

8 

6 

4 

2 

0 
0 2 4 6 8 10 

X 

Figure A4-17. Gaussian curve. 
The curve follows equation A4-15 with A,, = 10, m = 5 and s = 1.5. 

Log vs. Reciprocal. The function 

y = e x p  a - -  ( 3 (A4-16) 

is often seen in the relationship of physical properties to temperature. The 
linearized form is In y = -b/x + a. 

This equation form is encountered in the Clausius-Clapeyron equation 

(A4-17) 



APPENDIX 4 EOUATIONS FOR CURVE FITTING 42 1 

which relates vapor pressure of a pure substance to temperature, and the 
Arrhenius equation 

Ink=- - E a  +InA 
RT 

which relates rate constant k of a reaction to temperature. 

(A4- 1 8) 

Trigonometric Functions. Excel's trigonometric functions require angles in 
radians. For an angle 6' in degrees, use n6'/180. 

The function represented by equation A4-19 

y = a sin (bx + c) + d (A4- 19) 
or its cosine equivalent produces a curve with the appearance of a "sine wave" 
centered around the x-axis if d = 0, or offset from the x-axis if d # 0. 

Functions of the form 

y = sin ax + sin bx (A4-20) 
and their cosine equivalents produce a "beat frequency" curve such as the one 
shown in Figure A4-17. 

Figure A4-18. "Beat fi-equency" curve. 
The curve follows equation A4-21 with a = 1, b = 0.9. 

Equation A4-21 combines the parameters of equations A4-19 and A4-20. 

y =a sin (bx + c)  + d sin (ex +A + g (A4-2 1) 



This Page Intentionally Left Blank



Appendix 5 

Engineering 
and Other Functions 

The following functions are available only if you have loaded the Analysis 
ToolPak. Most are listed in the Engineering category in the Insert Function 
dialog box. 

BESSELl 

BESSELJ 

BESSELK 

BESSELY 

BIN2DEC 

BIN2HEX 

BI N20CT 

COMPLEX 

CONVERT 

DEC2BIN 

DEC2HEX 

DEC20CT 

DELTA 

EDATE’ 

EOMONTH’ 

ERF 

ERFC 

Returns the modified Bessel function In(x) 
Returns the Bessel function Jn(x) 

Returns the modified Bessel function Kn(x) 

Returns the Bessel function Yn(x) 

Converts a binary number to decimal 

Converts a binary number to hexadecimal 

Converts a binary number to octal 

Converts real and imaginary coefficients into a complex 
number 

Converts a number from one measurement system to 
another 

Converts a decimal number to binary 

Converts a decimal number to hexadecimal 

Converts a decimal number to octal 

Tests whether two values are equal 

Returns the serial number of the date that is a specified 
number of months before or after the specified start date. 

Returns the serial number of the last day of the month that 
is a specified number of months before or after the 
specified start date 

Returns the error hnction 

Returns the complementary error function 

423 



424 EXCEL: NUMERICAL METHODS 

FACTDOUBLE3 

GCD3 

GESTEP 

HEX2BIN 

HEX2DEC 

HEX20CT 

IMABS 

IMAGl NARY 

IMARGUMENT 

IMCONJUGATE 

IMCOS 

IMDIV 

IMEXP 

IMLN 

IMLOGIO 

IMLOG2 

IMPOWER 

IMPRODUCT 

IMREAL 

IMSIN 

IMSQRT 

IMSUB 

IMSUM 

ISEVEN* 

ISODD' 

LCM3 

MROUND3 

MU LTNOM IAL3 

OCT2 B I N 

Returns the double factorial of a number. See On-Line 
Help for more information. 

Returns the greatest common divisor of 1 to 29 integers. 

Tests whether a number is greater than a threshold value 

Converts a hexadecimal number to binary 

Converts a hexadecimal number to decimal 

Converts a hexadecimal number to octal 

Returns the absolute value (modulus) of a complex number 

Returns the imaginary coefficient of a complex number 

Returns the argument theta, an angle expressed in radians 

Returns the complex conjugate of a complex number 

Returns the cosine of a complex number in x + yi or x + yj 
text format. 

Returns the quotient of two complex numbers 

Returns the exponential of a complex number 

Returns the natural logarithm of a complex number 

Returns the base-10 logarithm of a complex number 

Returns the base-2 logarithm of a complex number 

Returns a complex number raised to an integer power 

Returns the product of 1 to 29 complex numbers 

Returns the real part of a complex number 

Returns the sine of a complex number 

Returns the square root of a complex number 

Returns the difference of two complex numbers 

Returns the sum of 1 to 29 complex numbers 

Returns TRUE if number is even, or FALSE if number is 
odd 

Returns TRUE if number is odd, or FALSE if number is 
even 

Returns the least common multiple of 1 to 29 integers. 

Returns a number rounded to the desired multiple. 

Returns the ratio of the factorial of a sum of values to the 
product of factorials. 

Converts an octal number to binary 



APPENDIX 5 ENGINEERING AND OTHER FUNCTIONS . 425 

OCT2 D EC 

OCT2HEX 

QUOTIENT3 

RANDBElWEEN3 

SERIESSUM3 

SQRTPI3 

WEEKNUM~ 

WORKDAY 

Converts an octal number to decimal 

Converts an octal number to hexadecimal 

Returns the integer portion of a division 

Returns a random integer between specified lower and 
upper limits 

Returns the sum of a power series. 
(See On-Line Help for more information) 

Returns the square root of (number * 7c) 
Returns the week number (1-52) in the year 

Returns the serial number of the date that is a specified 
number of workdays before or after the specified start date 

Listed in Date & Time category 
Listed in Information category 
Listed in Math & Trig category 



This Page Intentionally Left Blank



Appendix 6 

ASCII Codes 
The following table lists the ASCII codes for some usehl non-printing 

keyboard characters (codes 8, 9, 10, 13, 27), the keyboard characters (codes 32- 
127) and the "alternate character set" (codes 128-255). The alternate characters 
can be printed by holding down the ALT key while typing O###, e.g., for f, type 
ALT+O177. 

8 backspace 
9 horizontal tab 

32 (space) 
33 ! 
34 " 

35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61  
62 

# 
010 $ 

& 
1 

( 
I 

+ 
I 

I 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

I 

< 
- - 
> 

63 ? 

10 line feed 27 escape 
13 carriage return 

64 
65 
66 
67 
68 
69 
70 
7 1  
72 
73 
74 
75 
76 
77 
78 
79 
80 
8 1  
82 
83 
84 
85 
86 
87 
88 
89 
90 
9 1  
92 
93 
94 
95 

62 
A 
B 
C 
D 
E 
F 
G 
H 
I 
3 
K 
L 
M 
N 
0 
P 
Q 
R 
S 
T 
U 
v 
W 
X 
Y 
Z 
[ 
\ 
1 
A 

- 

96 
' 

97 a 
98 b 
99 c 
100 d 
101 e 
102 f 
103 g 
104 h 
105 i 
106 j 
107 k 
108 I 
109 m 
110 n 
111 0 

112 p 
113 q 
114 r 
115 s 
116 t 
117 u 
118 v 
119 w 
120 x 
121 y 
122 z 
123 { 
124 I 
125 } 
126 N 

127 (bksp) 

427 



EXCEL: NUMERICAL METHODS 

128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 

i 
... 
t * 
yo0 

S 

CE 
< 

"P )  * 
Z 

TM 

5 
> 
ce 
(NP)* 
i 
P 

160 
161 i 
162 4 
163 f 
164 x 
165 Y 
166 I 
167 5 
168 " 

169 0 
170 a 
171 << 
172 i 
173 - 
174 @ 
175 
176 O 

177 f 
178 2 

179 
180 ' 
181 p 
182 7 
183 - 
184 
185 
186 0 

187 >> 
188 '14 

189 '/z 
190 3/4 

191 i 

- 

192 a 
193 A 
194 A 
195 A 
196 A 
197 
198 IF 

200 E 
199 c 
201 E 
202 t 
203 E 
204 
205 i 
206 i 
207 I 
208 D 
209 fl 
210 0 
211 0 
212 6 
213 6 
214 0 

216 0 
217 U 
218 U 
219 9 
220 u 
221 .i 
222 D 
223 0 

215 x 

224 a 
225 6 
226 d 
227 8 
228 a 
229 8 
230 a3 
231 c 
232 & 
233 e 
234 6 
235 C 
236 1 
237 i 
238 7 
239 I 
240 a 
241 R 
242 b 
243 6 
244 6 
245 6 
246 6 
247 + 
249 U 

250 
251 Q 
252 U 

253 $ 
254 
255 y 

248 0 

*non- 
printing 



Appendix 7 

Bibliography 
Ayyub, Bilal M. and Richard H. McCuen, Numerical Methods for Engineers, 

Bourg, David M., Excel ScientiJc and Engineering Cookbook, OReilly, 2006. 

Chapra, Steven C. and Raymond P. Canale, Numerical Methods for Engineers, 4'h 

Cheney, Ward and David Kincaid, Numerical Mathematics and Computing, 

Gerald, Curtis F. and Patrick 0. Wheatley, Applied Numerical Analysis, 3rd ed., 

Hecht, Harry G., Mathematics in Chemistry, Prentice-Hall, 1990. 

Hoffman, Joe D., Numerical Methods for Engineers and Scientists, McGraw-Hill, 

Johnson, K. Jeffrey, Numerical Methods in Chemistry, Marcel Dekker, 1980. 

Kuo, Shan S., Numerical Methods and Computers, Addison-Wesley, 1965. 

Press, William H., et al., Numerical Recipes in FORTRAN, 2nd ed., Cambridge 

Rao, S. S., Applied Numerical Methods for Engineers and Scientists, Prentice-Hall, 

Rusling, J. F. and Kumosinski, T. F. Nonlinear Computer Modeling of Chemical 

Shoup, Terry E., Numerical Methods for the Personal Computer, Prentice-Hall, 

Prentice-Hall, 1996. 

ed., McGraw-Hill, 2002. 

Brooks/Cole, 1985. 

Addison-Wesley, 1984. 

1992. 

University Press, 1992. 

2002. 

and Biochemical Data, Academic Press, 1996. 

1983. 

429 



This Page Intentionally Left Blank



Appendix 8 

Answers and Comments 
for 

End-of-Chapter Problems 

Chapter 3 Matrices 

1. (a) inverse: 

(b) inverse: 

(c) Inverse: 

(d) Inverse: 

det = -360 

det = 4 

det = 0.25 

det = -1 

2. (a) det = 0. If A is a square matrix and two of its rows are proportional or 
two of its columns are proportional, the determinant is zero. 
(b) det = 1.55431E-15 (c) det = 6  

43 1 



432 EXCEL: NUMERICAL METHODS 

Chapter 4 Number Series 

1. (a) Sum of 24 terms = 2 
(c) Sum of24 terms = 1.71828182845899 

(b) Sum of 100 terms = 1.6349839. 

2 0.632120558828558, one of the so-called incomplete gamma functions. 

3. It's interesting to experiment with different values for a and x. 

4. Answer: 1.5 5. Answer: 0.5 

6. Summing the first 100 terms, the series sum is 7c = 3.133787 (0.2% error). 

7 

The formula in cell 18 is 

{=2*PRODUCT((2*ROW( I NDIRECT("1 :"&H8)))A2/(2*ROW( lNDl RECT("1 :"&H 
8))-1)/(2*ROW(INDIRECT("I :"&H8))+1))} 

8. 

9. 

The spreadsheet answer also incorporates the formula for the initial estimate 
(problem 9). 

Here is one possible formula. The number is in cell C2; the initial estimate 
formula is 

=LEFT(C2,0.!5*(LEN(C2)+1)) 

10. The series is described in Edward Kasner and James R. Newman, 
Mathematics and the Imagination, Simon & Schuster, 1940; Harper & Row, 
1989. The sum (10 terms) is 'II = 3.14159265359 (9 x % error). 

Chapter 5 Interpolation 

1. Interpolated values: 6.04, 0.59. The formula uses an external reference to 
refer to the data table on a different worksheet. 

2. This problem requires you to "lookup" to the left. You can either use a linear 
interpolation formula using MATCH and INDEX, like the one illustrated in 
Figure 5-3, or reorganize the data table so that the freezing point data is on 
the left of the wt% data. The latter approach permits the use of cubic 



APPENDIX 8 ANSWERS AND COMMENTS FOR PROBLEMS 433 

interpolation. If you use this approach, you must sort the data table so that 
the x values are in ascending order. Answer: 34.9%. 

3. 

4. 

5. 

6. 

Answers: 3.3423 1 , 5.40473. 

Answers: 1.52, 1.18. 

Data from .I Research National Bureau of Standards, 68A, 489 (1964). 
Answers: 1.50173, 1.48727, 1.52508, 1.53731, #VALUE! 

Depending on the behavior of the data, these interpolation methods can give 
values that are very close to the theoretical (if that is available) or values that 
are not so close. This example is one of the latter. 

Chapter 6 Differentiation 

1. 

2. 

3 .  

4. 

5. 

I used worksheet formulas, as illustrated in Figures 6-2 and 6-4. The value 
of the first derivative is a maximum at V =  20.00 mL (ApWAV= 61.949). 

There are two end-points, one at V = 7.16 mL and the second at V = 15.44 
mL. Since the data is real student data, there is some noise, which is 
accentuated in the first derivative and even more so in the second derivative. 

I used worksheet formulas to calculate the various derivative formulas. As 
expected, the errors are smaller (several orders of magnitude, in this 
example) when using the four-point central derivative formula, compared to 
the two-point formula. 

You can experiment with different coefficients for the cubic by changing the 
values on the worksheet. 

I used the custom function for this problem. The optional scale-factor was 
required for the case where x = 0. 



434 EXCEL: NUMERICAL METHODS 

6. (a) F'(x) = 0.1 1072 at x = -4, 0 at x = 0. 
(b) F'(x) = 9.0028E-07 at x = -4. 
(c) F'(x) = 0 at x = 0, -0.5 at x = 1. 
(d) F'(x) = 0 at x = 1, -0.01 176 at x = 10 
(e) F'(x) = 0.00242 at x = 90, -2E-10 at x = 100. 

7. I used the custom function to calculate the first derivative. For a = 1, the 
mid-point slope was 0.25. 

8. I used the custom functions dydx and d2ydx2 to calculate the first and second 
derivatives. Errors were all in the range lo-' to lo-'. 

Chapter 7 Integration 

1. Area = 2.4 105 (approx.). 

1 
2. (a) Answer: - 

l + n  
(b) 0.746824133375978 (c) 2 

(g) 0.287682 

3. Answer given in a table: 1.3506. 

4. Answer: 5.864 (approx.), 5.877 (exact). 

5. Answer: 2.71 1 (approx.), 2.721 (exact). 

6. I chose x-increments of 0.2 and calculated the two curves from -2 to +4. 
Fortunately the two curves intersected at x = -1 and x = 3. The cells that 
were summed to obtain the area are in blue. Area = 10.640. 

7. As in the preceding problem, I used x-increments of 0.2. This time it was 
necessary to use Goal Seek ... to find the points where the two curves 
crossed. After using Goal Seek, the target cell (YI-Y2) was deleted. The 
cells that were summed to obtain the area are in blue. Area = 4.822. 

8. As in the preceding problem, Goal Seek ... was used to find the two 
intersection points. Approximate answer 14900. 



APPENDIX 8 ANSWERS AND COMMENTS FOR PROBLEMS 43 5 

9. After evaluating the areas using a trial value of c, Goal Seek.. . was used to 
set the relationship area bounded by y=4 - 2* area bounded by y = c to 
zero. The changing cell and the target cell are shown on the spreadsheet. c = 
2.528. 

10. The same procedure was followed as in the preceding problem. c = 8.68 

1 1 .  Answer = 6.51413 (approx.), n4/15 = 6.493939 (exact). - 
12. (a) Answer: 1 (b) 1 (c) !h (d) 

Chapter 8 Roots of Equations 

1 .  To find the first time after t = 0 when the current reaches zero, you must 
begin with a value o f t  that will force Goal Seek to converge to the first i = 0 
after t = 0. Using t = 1 is a good choice. t = 1.576 seconds. 

2. Use Goal Seek.. . D = 0.756. 

3 .  The spreadsheet shows a manual method, similar to the interval-halving 
method, and also uses Goal Seek. [Ba2'] = 1.28 x 1 0-5 M. 

4. The spreadsheet shows the graphical method and also uses Goal Seek. S = 
0.13 mol/L. 

5 .  Use Goal Seek with Yl-Y2 as target cell formula. Use two different initial 
values of x to get the two different x-values. Formulas are under the chart. 
Answer: x = -5.857 and x = 12.494. 

6. Follow same procedure as in the preceding problem. For h = 0.5, x = -0.87 
and x = 0.87. If you use the Goal Seek custom function, you can change the 
value of h and observe the intersections change. 

7. This problem requires two successive uses of Goal Seek. The procedure is 
described on the spreadsheet.. 

8. x = 0.288, [A] = 0.4858 mol L-I. 
9. x = 0.8598, [A] = 0.1402 atm 



436 EXCEL: NUMERICAL METHODS 

1 1 .  I used Goal Seek.. . with the cell containing the formula MDETERM as the 
target cell and the cell containing the (1 , 1) element of the matrix as the 
changing cell. The cell value 0.25 gives a determinant value of zero. Two 
elements of the matrix cannot be varied so as to give a zero value: the (1 , 3) 
element and the (3, 1) element. 

Chapter 9 Simultaneous Equations 

1. Using the GaussElim function, x1 = 40.6752697, x2 = -77.86744959, 
~3 = 3.1 11657335, ~4 = 10.63794438. 

2. Using the GaussElim function, 11 = 1 , 12 = 0,13 = 1. 

3. Using the GaussElim function, x1 = 0.621563612,~2 =-5 .5~10-~~,  
~3 = 0.216058954, ~4 =0.758779009. 

4. [Co2'] = 0.0533, mi2+] = 0.1 125, [Cu2'] = 0.1022 mo1L 

5. (a) Not solvable. Row 3 is a multiple of row 1. 

6. Using the GaussElim function, XI = 29.746, x2 = 19.991, x3 = -20.487, 
x4 = 4.455, x5 = 48.369, xfj = -8.270. 

7. Using the SimultEqNL custom function, x = 0.707,~ = 0.707. 

8, Using the SimultEqNL custom function, x = -1 , y = 2, z = -1 

Chapter 10 ODES with Initial Conditions 

1. I used the Rungel custom function. 
columns: x,  y, y'. 

Set up the spreadsheet with three 

2. I used the Rungel custom function. 
columns: x,  y, yl. 
spreadsheet. 

Set up the spreadsheet with three 
The exact expression for y is given in the answer 



APPENDIX 8 ANSWERS AND COMMENTS FOR PROBLEMS 437 

3. Set up the spreadsheet with three columns: x, y, y'. I used the Rungel custom 
function. The exact expression for y is given in the answer spreadsheet. 

4. Set up the spreadsheet with five columns: t, x,  y, x' y'. Plot x vs. y to visualize 
the trajectory. I used Goal Seek to find the value o f t  that makes y = 0. 

5 .  Make a copy of the spreadsheet of problem 4 and modify it (I used the 
Rungel custom function). The projectile struck the ground at x = 3 1967 m. 
Note that the velocity was identical to that when it left the muzzle. 

6. It may be helpful to set up the problem using the Euler method first, without 
air drag, and then modify the spreadsheet to include air drag. Set up the 
spreadsheet with eight columns: t, x,  y, x' yl, x", y" and v. 
If you experiment with different angles, it appears that an angle of about 30" 
gives the longest drive when air resistance is taken into account. 
For calculations and interesting discussion on Mickey Mantle's "tape 
measure home run" of 565 feet, hit at Griffith Stadium on April 17, 1953, see 
Grant R. Fowles and George L. Cassiday, Analytical Mechanics, 7'h ed., 
Brooks Cole. 

7. Excel's SIN function requires angles in radians. It may be helpful to solve 
the problem using the Euler method first. 

8. The problem requires using two Runge-Kutta or Euler calculations. It may be 
helpful to solve the problem using the Euler method first. 

10. I used the Runge3 custom function to calculate the concentrations of A and 
B. Note that the exact expressions fail if [A] = [B]; thus I made [B] very 
slightly greater than [A]. 

11. I used names for the rate constants kl, kz, k3 and k4, to make the formulas 
clearer; I used the Runge3 custom function to calculate the concentrations of 
A, B and C. 

Chapter I1 ODES with Boundary Values 

1. Set up the spreadsheet as in Figure 1 1-2. Use an initial value of zero for the 
slope. Then use Goal Seek to get the value of the slope (changing cell) that 
gives a value of zero for the deflection at the other end of the beam (target 
cell). Maximum deflection: 0.6138 in. 

2. Use procedure as in problem 1. Maximum deflection: 0.9353 in at 200 in. 



43 8 EXCEL: NUMERICAL METHODS 

3. Set up spreadsheet as in Figure 10-17. This system is very sensitive to 
changes in y"; sometimes Goal Seek fails to converge. You may have to 
provide some manual guidance. 

4. Set up spreadsheet as in problem 3. 

5. Set up spreadsheet as in problem 3. 

6. Set up spreadsheet as in problem 3. 

Chapter 12 PDEs 

1. Set up spreadsheet as in Figure 12-2. 

2. Set up spreadsheet as in Figure 11-2, but with additional temperature 
constants as described in the problem. 

Chapter 13 Linear Regression 

1. 

2. 

3. 

4. 

5 .  

6 .  

Insert columns for x2 and x3, then use LINEST. Answer: a = 0.00141 f 
0.0005, b = -0.193 f 0.019, c = 13.28 f 0.19, d = 0.079 f 0.498, R2 = 
0.999986. 

The constant term d has a standard error much larger than its value; therefore 
it should be eliminated from the model. Fitting the data toy  = ax3 + bx2 + cx 
gives a slightly better R2 value. 

The answer spreadsheet shows the results from Trendline and also how to get 
the regression parameters of a power function using LINEST. 

The LINEST formula in this example uses an array constant to produce the 
squared and cubed values of the known-x's. (Answers: 33.3 wt%, 2.3'F; 42.3 
wt%, -12.6'F) 

The LINEST formula in this example uses an array constant to produce the 
values of known-x's raised to the required powers. (Answers: 33.3 wtYo, 
2.3"F; 42.3 wt%, -12.6'F) 

I first made a 3-D plot of the data. The shape of the surface (smooth upward 
curvature) suggested to me that the data vs. each independent variable could 
be a simple function, perhaps exponential or polynomial. I created XY plots 
of Power vs. Throttle and Power vs. Speed and experimented; quadratic or 



APPENDIX 8 ANSWERS AND COMMENTS FOR PROBLEMS 439 

cubic (polynomials of 2nd or 3rd order) fitted the data quite well. Using that 
information I used LINEST to find regression coefficients that fitted Power to 
Speed (5') for each value of Throttle (0 (the fitting function was a,!? + b.5'). 
I then fitted the regression coefficients a and b individually vs. Throttle. 
(From charts, it appeared that a could be fitted using a 3-term function, b 
using a 2-term function.) The final fitting function was (c*p + d.T + e )p  + 
( f T  + g)S. The g term had a large standard error and perhaps could be 
eliminated or modified. 
The final sheet in the workbook shows how the Solver (see following 
chapter) can be applied to the same data. Both the preceding 5-term fitting 
function and a 6-term fitting function, (cap + d.T + e ) 9  + VT + g)S + h, 
were tried. 
The preceding fitting function can be written in the following form: 

c .p-9  + d . F p  + e - 9  + f F S  + g S  + h 

Chapter 14 Nonlinear Regression and the Solver 

1. 

2. 

3. 

4. 

5 .  

6. 

8. 

Enter formula for Acdc 
formula for (residual)* 
cell). Use the Solver to 

(you'll need a cell for k, the changing cell). Enter 
and sum the squares of residuals (this is the target 
minimize the target. Answer: k = 0.3290. 

Follow the same procedure as in problem 1. Answer: a =.0.5005. 

Follow the same procedure as in problem 1, except that there are four 
changing cells. Answer: a = 1.0644246, b = 1.8495246, c = -0.8966248, d = 
9.97124864. 

The answer spreadsheet has been set up with headings for using the Runge3 
custom function. The workbook contains a "Data for Problem" sheet and the 
complete problem. 

Follow the same procedure as in problem 1, except that there are three 
changing cells. Answers I got were A = 0.10119, B = 5.1337, C = 

0.01 17922. 

This example requires scaling. The data for the exercise and the answer 
spreadsheet are in different workbooks. 

The workbook contains a worksheet with the raw data, plus two worksheets 
with solutions. You can compare the use of wavelength vs. wavenumber as 
the independent variable in deconvoluting W-visible spectra. Although it is 
generally considered that an independent variable that is proportional to 
energy (e.g., wavenumber) is the correct independent variable to use, in this 



440 EXCEL: NUMERICAL METHODS 

example a better fit is found when using wavelength as the independent 
variable. 

On the sheet "Deconvolution using wavenumber," wavelength (nm, 1 x 
m) is converted into wavenumber (cm-') by using the relationship 
wavenumber = lOOOO/wavelength. 

9. The data for the exercise and the answer spreadsheet are in different 
workbooks. I have not yet 
obtained a satisfactory solution. 

The spectrum contains a number of bands. 

10. Using the spectra of the pure species, calculate the E for each of the three 
Then, at each species, cobalt, nickel and copper, at each wavelength. 

wavelength, use the relationship 

You now have 236 equations with only three unknowns. Use the Solver to 
find the three unknowns. The answers are slightly different from the results 
found in Chapter 9. 

Aobsd = ECocCo + E N i c N i  + & u c C u  

1 1. The equations in the problem lead to the following worksheet formula for the 
absorbance: 

(Names were used for all cell references in this worksheet.) The changing 
cells are the log K value and the EL and EHL values, one pair for each column 
of absorbance values at a particular wavelength. 
Since the data table is large, it was most convenient to have the experimental 
absorbance values on one sheet and the calculated values on another. 
The SUMSQ worksheet function was used to calculate the sum of squares of 
residuals for each column. 
I used the Solver on the absorbance values at 260 nm first, to get a value of 
logK (changing cells and target cell for this calculation are in red). I then 
used these as starting values for the global refinement. Convergence was 
very slow. 

=TL*(K*eL+H*eHL)/(K+H) 

12. The five changing cells have very different magnitudes (values were 
estimated from the data table and/or the chart); three were of magnitude 10" 
and two were of magnitude 1. Using the Solver in the usual way did not give 
a reasonable solution (see the sheet "First Trial"). Checking the Use 
Automatic Scaling box did not give a reasonable solution either (see "With 
Automatic Scaling"). Manual scaling was done as described in the 
worksheet "Manual-kAutomatic Scaling" and this led to an acceptable 
solution. 



APPENDIX 8 ANSWERS AND COMMENTS FOR PROBLEMS 44 1 

Chapter 15 Random Numbers and Monte Carlo 

1. The answer spreadsheet contains two examples. The first uses 32 points, and 
is intended mainly to illustrate the method. Random number formulas are 
used to generate a pair of x,  y coordinates in columns A and B. The formula 
in column C uses an IF statement to determine whether the point is inside the 
circle; if inside, the formula returns the y coordinate, otherwise the cell is 
blank. 
The second example uses 4000 points and is used to create the chart. The 
formula in column G returns the y coordinate if the point is inside the circle; 
if not the cell returns #N/A. A cell containing #N/A is not plotted in a chart. 
71; is the number of points within the circle divided by the total number of 
points. 

2. A random number is used to specify whether a child is male (>0.5) or female. 
The simulation shown uses 100 mothers and a maximum of 10 children per 
mother. The "series" is terminated when the first "F" is generated. (Very 
occasionally 10 children is not sufficient to end the series.) It's fairly clear 
from the results from 100 mothers that the proportion is 50:50, but a macro 
button has been provided that sums the results of 100 recalculations. 
When I first encountered this problem many years ago, I sat down and 
derived an analytical expression for the result, but right now I can't reproduce 
it. 

3. Constructing a spreadsheet to simulate the traffic pattern is left to the reader. 

4. The Traveling Salesman problem is usually formulated as follows: a 
salesman must travel to a number of cities, visiting each one only once and 
finally returning to the city of origin. The problem is to minimize the 
distance traveled. It's obvious that this problem has many real-world 
applications, so an algorithm for a general solution would be very useful. 
But this seemingly simple problem is actually essentially impossible to solve 
for all but the simplest of cases. 
The straightforward approach would be to determine the distance between 
each city and to calculate the total distance of all possible routes. Thus, for 
example, if only five cities are to be considered, there are five cities at which 
to begin; having chosen one of the five, there are four possible destinations, 
etc. The total number of possible routes is 5 !  = 120. But as N, the number of 
cities increases, N!,  the number of possible routes, quickly increases to a 
number so large as to be make the solution impossible even with today's 
computers. Obviously, an approach that will simplify the problem is 
required. One strategy is to always travel to the city that is closest (of the 
ones not yet visited, of course). Strategies such as this may not provide the 
perfect solution but may at least provide a useful one. This method is 
illustrated on the sheet "Method 1 . I t  



442 EXCEL: NUMERICAL METHODS 

5 .  

6. 

7. 

8. 

Another approach has been to use the Monte Carlo method, illustrated on the 
sheet "Method 2." 

You can't use the expression IFRAND(), since this has the possibility of 
returning the same number more than once. The same is true of the 
expression RANDBETWEEN(1,15). The same deficiency occurs with the 
Sampling Tool in Tools+Data Analysis.. .. If you specify, for example, five 
random numbers from the list of integers 1, 2, 3, 4, 5 you could get the result 
2 , 5 , 2 ,  1,3.  
The only way to do this (that I can think of) is to create a two-column table 
with the integers 1-15 and 15 random numbers using RAND() and sort the 
table manually in ascending or descending order, in the same was as the 
example shown in Figure 15-2. You can also sort the list by using a formula, 
as shown in Figure 15-5. 

This problem is similar to the previous one (you could just create a list of the 
integers 1-52 in random order), except that it opens up the possibility of 
displaying the 52 values as numbers 1-13 in the four suits: clubs, diamonds, 
hearts, spades. The workbook shows several ways to display the results. 
The symbols for the four suits are in the Symbol font; Conditional 
Formatting was used to provide the red color for the diamonds and hearts. 

This workbook requires the RANDBETWEEN worksheet function. Some code 
has been provided so that if the Analysis ToolPak is not loaded, a Sub 
procedure in the sheet Thisworkbook loads the Add-In. 

The surprising result of this simulation shows that about 30% of all numbers 
obtained from real numerical data start with the digit 1 .  This has been 
termed Benford's Law. 
Newcomb (1881) observed that the first pages of tables of logarithms were 
more worn and dirty than later pages, suggesting that numbers with a low 
first digit occurred in calculations more often than ones with a high first 
digit. (The counter-argument, of course, is that people start at the beginning 
of the table and page through until they reach the page they need.) 
Benford (1938) determined the distributions of leading digits in data sets 
taken from a wide variety of sources, including molecular weights of 
compounds, surface area of rivers, and street addresses. He found the 
following distribution: 1 ,  30.6%; 2, 18.5%; 3 ,  12.4%; 4, 9.4%; 5, 8.0%; 6, 
6.4%; 7, 5.1%; 8, 4.9%; 9, 4.7% 
Hill (1996) showed that, for a variety of statistical data, the first digit is D 
with the probability loglo (l+l/D).  
Benford's law is more than a numerical curiosity; it has practical applications 
for the design of computers and for detection of fraudulent data. Benford's 
law was used as a plot device in the episode, "The Running Man" (2006), of 
the CBS television crime drama NUMB3RS. 



Index 
A 
ABS worksheet function 256,279 
active cell, reference to 35 
add a breakpoint 55, 56 
add a shortcut key 15 
Add Trendline.. . 298,299 
Add Watch ... 55, 57 
Add, Change, Delete (Solver 

Add-In function macros 53 
Add-In macro, create an 53 
Add-Ins 303 
AddIns folder 53 
addition, matrix 58 
additional matrix functions 63 
Address property 1 16 
alternating series 69 
Analysis ToolPak 289,303,343,347, 

And keyword 17,25 
approximation error 1 10 
area 

parameters) 324 

425 

between two curves 132 
of an ellipse 144 
of an irregular polygon 3 54 
underacurve 127, 129, 130, 131, 

132 
argument, 

data type of 49 
optional 50 

two ways to specify 34 
with or without parentheses 34 
indefinite number of 5 1 
naming 11, 17 
operators 17 

arguments, 

Arr (custom function) 65,297 
array 

constants 71 

function 292 

Array keyword 53 
array 

of values as a result 52 
dimensioning 43 
dynamic 45 
multidimensional 44 
one-dimensional 48 
size of 44 
variable type of 44 

arrays 43,51,57,64 
scaling 64 

As keyword 50 
ASCII codes 429 
assignment statements. 16 
Assume Linear Model (Solver options) 

Assume Non-Negative (Solver 
325 

options) 325 

B 
backward difference 99, 103 
Bairstow's method 166 
baseball trajectory (problem) 242 
bisection method 149 
Boolean keyword 29 
boundary-value problem 245 
branching 24 
breakmode 56 
breakpoint 55 
Buffon's needle (example) 350 
buttons parameter of MsgBox 40 
By Changing Cell (Goal Seek) 158, 

By Changing Cell (Solver) 323 
By Changing Cells box 320 

181 

443 



444 ~~ EXCEL:NUMERICAL METHODS 

C 
calculating derivatives 100 

cubic fitting function for 105 
Calculation tab 205 
Calculation tab, in Tools-Options 

158, 162, 180 
calibration curve (problem) 309 
Call keyword 30 
cell, reference to 35 
Cells keyword 36,37 
central difference 99, 103 
changing cells (Solver) 3 16,326 
Chartwizard method 35 
CheckSpelling method 35 
chemical kinetics 243 
choice of Ax 123 
circular reference 16 1, 2 12, 236,267 
Clausius-Clapeyron equation 289 
Codewindow 1 
code, stepping through 55 
coefficient of determination 296 
coefficients, linear in the 289 

regression 287,289,292 
collections of objects 3 1 
COLUMN worksheet function 256, 

259,278,279 
command macros 4 
comparison operators 17 
computing derivatives, formulas for 

constraints, in Solver model 324 
Convergence (Solver options) 325 
convergence, slow 153 
convergent series 69 
ConvertFormula method 1 17, 1 18 
correlation coefficient, R 288 
Cramer's rule 169, 190 
Crank-Nicholson 274,280 
create an Add-In macro 53 
critical points 100 
cubic 

equation 147 

104 

fitting data to 295 
fitting function for calculating 

derivatives 105 
interpolating polynomial 129 
interpolation 87 
interpolation in a table 89 
interpolation in a two-way table 9 1, 

93 
curve 

areaundera 127, 129, 130, 131, 

logistic 419, 420 
normal error 421 
plateau 416 
slopeofa 155 

133 

curved path, distance traveled along a 

curves, area between two 132 
curves, intersection of 176 
custom function 11,49, 389 

141 

dydx 1 19,120,123 
d2ydx2 120, 121, 123 
Integrate 134 
Integrates 136 
JntegrateT 136 

custom lookup formula 80 
CVErr keyword 50 

D 
Data Analysis ... 303, 347 
debug toolbar (VBA) 57 
Debug ... 55 
debugging 54 
deck of cards (problem) 362 
decrease, exponential 4 12 
definite integral 127 
derivative 

calculating first and second 99, 104 
cubic fitting function for calculating 

first 99, 100 
formulas for computing 104 

105 



INDEX 445 

of a function 109 
of a worksheet formula 110, 1 1 1 , 

partial 168 
partial 287 
second 99, 100, 120 

determinant 57, 58,60, 190 
degrees of freedom 297 
diagonal elements, in SolvStat macro 

diagonal matrix 58 
diatomic molecule (example) 183 
difference formulas 103 
difference, backward 99, 103 

112 

328 

central 99 
forward 103 

first-order 2 18 
higher-order 238 
ordinary 217 
partial 217 
second-order 245,259 

systems of first-order 228 
systems of simultaneous 229 

digits, frequency of occurrence of 

Dim keyword 43,44 
dimensioning an array 43 
discontinuous functions (Solver) 323 
distance traveled along a curved path 

Do While ... loop 27 
Double keyword 29 
double exponential 4 13 
double reciprocal plot 4 17 
dynamic array 45 

differential equation 2 17 

differential equations, systems of 229 

(problem) 362 

141 

E 
ellipse, area of 144 
elliptic partial differential equation 

263,264,267 

empirical fitting function 294 
Engineering functions 343,425 
entering VBA code 9 
equation, exponential 4 1 1 
equation, Michaelis-Menten 4 16 
equations, simultaneous 65 
error surface 3 15 
error value, returning 50 
error, approximation 11 1 
error-square sum 3 14 
estimation of n 353,354,362 
Euler's method 2 18,2 19,222, 247, 

Evaluate method 116, 117, 134,225 
evaluating series formulas 70 
event-handler procedures 3 
examining the values of variables 56 
Exit keyword 28 
exiting from a loop 28 

from a procedure 28 
explicit method 270 
exponential 

250,258 

curve 289 
decrease 412 
double 413 
equation 411 
growth 412 

external references (Solver) 323 

F 
F9 (function key) 71 
Fick's second law 264 
finite-difference method 254, 258 
first and second derivatives 99 
first derivative 99, 104, 155 

of a specific worksheet formula 

of a worksheet formula 1 1 1, 1 15 

systems of 228 

110 

first-order differential equations 2 I8 

fitting function, empirical 294 
fitting functions, Trendline 302 



446 EXCEL:NUMERICAL METHODS 

For Each ... Next loop 27 
For ... Next loop 26 
Formula property 1 16, 133,225 
formulas for computing derivatives 

forward difference 99, 103 
fourth-order polynomial, Lagrange 

fourth-order Runge-Kutta, see Runge- 

frequency of occurrence of digits 

Frontline Systems Inc 3 16 
F-statistic 298 
Function Arguments dialog box 13 
function linear in the coefficients 287 
function macro 1 1 

Function procedure, structure of a 5 
function 21 

104 

87 

Kutta 

(problem) 362 

Add-In 53 

custom 11,49, 389 
derivative of a 109 
engineering 425 
logistic 418 
naming 11 
partial derivative of 287 
shortcut to enter a 13 
trigonometric 422 

G 
GaussElim custom function 194, 196 
Gaussian 

curve 421 
elimination 19 1 , 192 
quadrature 137, 138 

Gauss-Jacobi method 200,205 
GaussJordan custom function 197, 

Gauss-Jordan method 196 
Gauss-Seidel custom function 205 
Gauss-Seidel method 200,203 

198 

Generalized Reduced Gradient 

getting Trendline coefficients into a 

global minimum (Solver) 323,324 
Goal Seek.. . 156, 159, 174, 175, 

178,251 
GoalSeek custom function 180, 182, 

183 
graphical method 147 
growth, exponential 4 12 
Guess (Solver parameters) 324 

(Solver) 316 

spreadsheet 3 02 

H 
heat conduction in a brass rod 

(example) 272 
hierarchy of objects 3 1 
higher-order differential equations 

Hill slope 419 
HLOOKUP worksheet function 77 

hyperbolic partial differential equation 

23 8 

use of, in Solver models 323 

263,282 

I 
identity matrix 63 
IF worksheet function 278,279 
If ... Then statement 25 
If.. .Then... E lself statement 25 
If ... Then...Else statement 25 
implicit intersection 107 
implicit method (PDE) 274 
indefinite integral 127 
indefinite number of arguments 5 I 
INDEX worksheet function 80, 8 1 , 

84, 106,346,349 
INDIRECT worksheet function 72, 

107,256,259,279 
inflection point 100, 10 1 
information functions, VBA 23 
initial conditions 2 1 8 



INDEX 447 

initial estimates for Solver 323 
InputBox function 4 1 
InputBox method, syntax of the 42 
insert a module sheet 2 
Insert Function dialog box 12 
Integer keyword 29 
integral, definite 127 

Integrate custom function 134 
Integrates custom function 136 
IntegrateT custom function 136 
integrating a function 133 
integration, lower and upper limits of 

indefinite 127 

134, 140, 142 
symbolic 127 

INTERCEPT worksheet function 289, 

intercept, least-squares 288 
InterpC custom function 88, 92 
InterpC2 custom function 93,95 
InterpL custom function 86, 90 
interpolation 77, 83 

cubic 87 
linear 83, 85, 86 

Intersect method 37 
intersection of two lines 174, 178 
interval method with linear 

interpolation 15 1 
interval-halving method 149 
intrinsically nonlinear 3 13 
inverse matrix, in SolvStat macro 328 
inverse of a matrix 60 
ISERROR worksheet function 360 
Iteration box 200, 205,237 

29 1 

J 
Jacobi method 200 

K 
Keep Solver Solution 322 
keywords, VBA 365 

L 
Lagrange fourth-order polynomial 87 
Laplace's equation 264,266 
LBound function 44 
least squares 

curve fitting 3 16 
fit to a straight line 288,289,292, 

294,3 16 
intercept 288 
slope 288 

Legendre polynomials 137 
limitations of the Regression tool 305 

limits of integration, lower and upper 

linear 

of Trendline 301 

134, 140, 143 

equations, systems of 190 
in the coefficients 287,289 
interpolation 83, 85, 86 
interpolation in a two-way table 90 
least squares curve fitting 3 16 
regression 287,289 

using Trendline 298 
linearized forms of nonlinear 

equations 329 
line-continuation character 10 
LINEST shortcut 297 
LINEST worksheet function 65, 105, 

LINEST's regression statistics 297 
Lineweaver-Burke 330,417 
liquid flow (problem) 243 
local minimum 323 
logarithmic 41 5 
logical operators 17,25 
logistic curve 4 18,4 19,420 
lookup functions 77 
LOOKUP worksheet function 79 
loop, exiting from 28 
looping 26 
loops, nested 28 

292, 293,294, 296,297 



448 EXCEL:NUMERICAL METHODS 

lower and upper limits of integration 
134, 140, 141 

M 
Macro Name list box 15 
macro, function 11 
macros, Add-In 53 

command 4 
two kinds of 4 

main diagonal 57 
male children (problem) 362 
manual scaling (Solver) 326 
Marquardt-Levenberg algorithm 3 16 
MATCH worksheet function 80, 84, 

mathematical functions, VBA 21 
matrices 57 
matrix 

106,107,346 

addition 58 
elements 57 
functions, additional 63 
inversion 60,62, 19 1 , 276 
mathematics 58 
multiplication 59 
subtraction 58 
transposition 60 
diagonal 58 
identity 63 
in SolvStat macro 328 
square 57 
symmetric 58 
transpose of a 62 
tridiagonal 5 8 
unit 58 

Max Time and Iterations (Solver 

MAX worksheet function 80,279 
Maximum Change parameter 159, 

Maximum Change (Solver options) 

options) 324 

162,205,237 

325 

MDETERM worksheet function 60, 

megaformula 107,347 
methane hydrate 289 
method of steepest descent 3 16 
methods, VBA 18,23,33 
Michaelis-Menten 330, 416 
MIDENT worksheet function 63 
MIN worksheet function 279 
MINDEX worksheet function 64 
MINVERSE worksheet function 60, 

MMULT worksheet function 62, 191, 

Module from the Insert menu 1 1 
module sheet, rename a 14 

Monte Carlo method 342,350, 354 
MSCALE worksheet function 64 
MsgBox 

63, 190, 191 

191,257,261,276 

257,261,276 

inserta 2 

function 39 
return values 41 
buttons parameter of 40 

multidimensional array 44 
multiple linear regression 289, 293, 

multiplication, matrix 59 
410 

scalar 59 

N 
named formulas 107 
naming functions and arguments 11 

nested loops 28 
Newton quotient 1 10 
Newton-Raphson 

variables or arguments 17 

custom function 163 
method 154, 155, 161, 176, 178 

Newton's iteration method 207 
nodes, in Gaussian quadrature 137 
noise 103,342,344 
non-contiguous ranges 297 



nonlinear equations 
linearized form of 329 
systems of 207 

nonlinear least squares curve fitting 
using the Solver 314,316,317 

nonlinear regression, statistics of 327 
nonlinear, intrinsically 3 13 
normal error curve 421 
normal random distribution, 

simulating 349, 421 
NORMINV worksheet function 349 
Not keyword 17,25 
number series 69 
NumberFormat property 19 
numerical differentiation 155 

0 
object browser 32 
objective function (Solver) 3 16, 326 
object-oriented programming language 

objects 18,3 1 
18 

collections of 3 1 
hierarchy of 3 1 

obtaining values from a table 77 
occurrence of digits, frequency of 

OFFSET worksheet function 106 
On Error GoTo statement 1 19 
one-dimensional array 48 
operators 17 

(problem) 362 

arithmetic 17 
comparison 17 
logical 17, 25 

optimization 3 16 
Option Base 1 44,47, 51 
Option Explicit 10 
optional argument 50 
Optional keyword 50 
Or keyword 17,25 
ordinary differential equation 2 17 
Orvis, William J. 88 

P 
n, estimation of 353,354,362 
panel 127, 140 
parabolic partial differential equation 

263,269,274 
ParamArray keyword 5 1 , 52,66 
parentheses, arguments with or 

partial derivative 168, 265, 287, 328 

partial differential equation 2 17,263 

without 34 

in SolvStat macro 328 

elliptic 263,264,267 
hyperbolic 263,282 
parabolic 263,269,274 

passing values 46 
Pearson product moment correlation 

pendulum motion (problem) 242 
Personal Macro Workbook 8 
perturbation factor (Solver) 3 16 
pH titration curve (example) 100 
phase diagram 289 
pit-mapping 3 15 
plateau curve 4 16 
polygon, area of 354 
polynomial 

coefficient 289 

cubic interpolating 129 
Lagrange fourth-order 87 
Legendre 137, 138 
regression 4 10 
roots of a regular 166 

position of a value in an array 64 
power series 69 
Precision and Tolerance (Solver 

options) 324 
predictor-corrector methods 23 5 
Preserve keyword 45 
principal diagonal 57 
Private 31 
procedure, exiting from 28 

running a Sub 8 



450 EXCEL:NUMEFUCAL METHODS 

structure of a Function 5 
structure of a Sub 5 
Visual Basic 4 

program control 24 
Project Explorer window 1 , 2 
properties 18, 19 

Properties window 1 , 4, 14 
Public 31 

Range object 20 

Q 
quadratic interpolating polynomial 

quadrature 127 
Quick Watch.. . 57 

128 

R 
R2 288,296,298 
RAND worksheet function 342,343, 

345 
RANDBETWEEN worksheet function 

343 
random 

number generator 34 1 
sampling 345, 347 

Range keyword 37 
range, reference to 35 
read-only 19 
Record Macro dialog box 7 
Record New Macro.. . 6 
Recorder, using the 6 
ReDim keyword 45 
reference 

to a cell 35 
to a range 35 
to the active cell 35 
circular 212 

refractive index of benzene (problem) 
97 

regression 
analysis 287,288 
coefficients 287,289,292 

linear 287,289 
multiple 410 
multiple linear 289 
parameters, standard deviation of 

polynomial 4 10 
statistics of nonlinear 327 

regression statistics 
from LINEST 297 
mathematical relationships 297 

limitations of 305 
using 303 

Regula Falsi method 15 1 , 153 
regular polynomial, roots of 166 
rename a macro 14 

a module sheet 14 
Reset All (Solver parameters) 324 
result, array of values as 52 
return statement 6 
return values, MsgBox 41 
returning an error value 50 
RMSD (root-mean-square deviation) 

roots of a regular polynomial 166 
ROUND worksheet function 343 
roundoff error 11 1 
ROW worksheet function 7 1 , 1 07, 

256,259,279,347 
RSQ worksheet function 289,29 1 
rules for naming variables or 

arguments 17 
Runge-Kutta custom functions 224, 

225,229,234 
Runge-Kutta method 2 18,220,222, 

223,225,235,237,251,258 
running a Sub procedure 8 

327 

Regression tool 289,304 

296,299 

S 
Sampling tool 348 
sampling, random 345,347 
scalar multiplication 59 



INDEX 45 1 

scale factor, in Solver model 326 
scaling arrays 64 
scoping a subroutine 30 
secant method 160 
second derivative 99, 102, 103, 106 

of a worksheet formula 12 1 
second-order differential equation 

245,258,263,282 
Select Case statement 25 
series 

alternating 69 
convergent 69 
formulas, evaluating 70 
power 69 
sumofa 69 

Set Cell box (Goal Seek) 158, 181 
Set keyword 32,43,47 
Set Target Cell box 320 
Sheets 32 
shooting method 245 
shortcut key, add 15 

shortcut keys for VBA 15,387 
shortcut to enter a function 13 
Show Iteration Results (Solver 

simply supported beam 246 
Simpson's 1/3 rule 128 
Simpson's 3/8 rule 129 
Simpson's method 127, 128, 133, 

simulating a normal random 

simultaneous differential equations, 

simultaneous equations 65 
SimultEqNL custom function 208 
size of an array 44 
slope 99 

ofacurve 155 
least-squares 288 

assigning 9 

options) 325 

134, 136 

distribution 349 

systems of 229 

SLOPE worksheet function 289, 291 

slow convergence 153 
SMALL worksheet function 346 
Solver Add-In 3 17 
Solver Estimates, Derivatives and 

Search 326 
Solver Options 32 1,324 
Solver Parameters dialog box 320, 

Solver perturbation factor 3 16 
Solver Results dialog box 32 1 , 322 
Solver Statistics macro 115, 328 
Solver 

323 

Add, Change, Delete 324 
Assume Linear Model 325 
Assume Non-Negative 325 
By Changing Cell 323 
changing cells 3 16, 326 
constraints 324 
Convergence 325 
discontinuous functions 323 
external references 323 
global minimum 324 
Guess 324 
initial estimates for 323 
manual scaling 326 
Max Time and Iterations 324 
Maximum Change 325 
objective 3 16,326 
Precision and Tolerance 324 
Reset All 324 
Save Model ... and Load Model ... 

scale factor 326 
Show Iteration Results 325 
target cell 3 16 
Unable to Find a Solution 323 
Use Automatic Scaling 325 
use of HLOOKUP in models 323 
use of VLOOKUP in models 323 

326 

Sort ... 345 
square matrix 57 



452 EXCEL:NUMERICAL METHODS 

standard deviation of the regression 

standard error of the y estimate 296, 

statements, VBA 16 
statistics of nonlinear regression 327 
StatusBar 325 
steepest descent, method of 3 16 
stencil 266, 271, 283 
Step mode 55,58 
stepping through code 55 
Stop keyword 55,56 
Stop Recording toolbar 6 ,7  
straight line, least-squares fit to a 

String keyword 29 
structure of a Function procedure 5 

of a Sub procedure 5 
Sub procedure, running 8 
Sub procedure, structure of 5 
subroutines 30 , 

SUBSTITUTE worksheet function 
116, 134,225 

subtraction, matrix 58 
sum of a series 69 
sum of the squares of deviations 288 
surface, error 3 15 
symbolic integration 127,218 
symmetric matrix 58 
syntax of the InputBox method 42 
systems 

of differential equations 229 
of first-order differential equations 

of linear equations 190 
of nonlinear equations 207 
of simultaneous differential 

parameter 327 

298 

288,289 

228 

equations 229 

T 
table, obtaining values from a 77 
target cell (Solver) 3 16 

Taylor series 73, 103,208 
temperature distribution 267 
tenth-order Legendre polynomial 138 
testing 54 
text functions, VBA 22 
thermal diffusion equation 264 
To Value box (Goal Seek) 158, 18 1 
Toggle Breakpoint 55 
traffic model (problem) 362 
trajectory (problem) 24 1 
transpose of a matrix 62 
TRANSPOSE worksheet function 49 
transposition, matrix 60 
trapezoid method for integration 127, 

traveling salesman (problem) 362 
TREND worksheet function 85, 86, 

Trendline 289,298 
fitting functions 302 
limitations of 301 
linear regression using 298 

Trendline.. .Tocell utility 305 
trial-and-error 3 14 
tridiagonal matrix 58 
trigonometric functions 422 
two kinds of macros 4 
two ways to specify arguments of 

two-way table 81 

134 

90 

methods 34 

cubic interpolation in 91,94 
linear interpolation in 

U 
UBound function 44,5 1 
Unable to find a solution (Solver) 

Union method 37 
unit matrix 58, 196 
Use Automatic Scaling (Solver 

options) 325 
user-defined functions 4 

323 



INDEX ~ 45-3 

using the Recorder 6 

D 
Value property 38, 116 
vapor diffusion in a tube (example) 

variable type of an array 44 
variables 17 

examining the values of 56 
naming 17 

275,277,279,282 

Variant data type 29 
VBA Add Watch dialog box 58 
VBA data types 28,29 
VBA information functions 23 
VBA keywords 365 

Address 116 
And 17,25 
As 50 
Boolean 29 
Call 30 
Cells 36, 37 
Chartwizard 35 
CheckSpelling 35 
Convertformula 1 17, 1 18 
CVErr 50 
Dim 43,44 
Double 29 
Evaluate 116, 117, 134,225 
Exit 28 
Formula 116, 133,225 
If ... Then 25 
If ... Then ... Elself 25 
If ... Then ... Else 25 
InputBox 41 
Integer 29 
Intersect 37 
LBound 44 
MsgBox 39 
Not 17,25 
NumberFormat 19 
On Error GoTo 119 

Option Base 1 44,47,5 1 
Option Explicit 10 
Optional 50 
Or 17,25 
ParamArray 5 1 , 52,65 
Preserve 45 
Private 31 
Public 31 
Range 37 
ReDim 45 
Select Case 25 
Set 32,43,47 
Sheets 32 
Stop 55,56 
String 29 
UBound 44,51 
Union 37 
Value 38, 116 

text functions 22 
VBA mathematical functions 21 

VBA, shortcut keys for 387 
VBA Watches Pane 58 
vector 57 
vibration of a string 282,283 
Visual Basic arrays 43 
Visual Basic Editor 1,2, 7 
Visual Basic procedures 4 
Visual Basic statements 16 
VLOOKUP worksheet function 77, 

VLOOKUP, use of, in Solver models 
79, 80, 81 

3 23 

W 
wave equation 264 
weights, in Gaussian quadrature 137 
window, properties 1, 5 
work-around for the row-column 

worksheet formula, derivatives of a 
problem 49 

110,111,112 
first derivative of a 1 1 1, 1 15 



454 EXCELNJMERICAL METHODS 

second derivative of 12 1 

ABS 256,279 
COLUMN 256,259,278,279 
HLOOKUP 77 
IF 278,279 
INDEX 80,81,84, 106,346,349 
INDIRECT 72, 107,279,256,259 
INTERCEPT 289,291 
ISERROR 360 
LINEST 65, 105,292,293,294,296, 

LOOKUP 79 
MATCH 80,84, 106, 107,346 
MAX 80,279 
MDETERM 60,63, 190, 191 
MIDENT 63 
MIN 279 
Mlndex 64 
MINVERSE 60, 191,257,261,276 
MMULT 62, 191,257,261,276 
MSCALE 64 
NORMINV 349 
OFFSET 106 
RAND 342,343,345 
RANDBETWEEN 343 
ROUND 343 
ROW 71, 107,256,259,279,347 
RSQ 289,291 
SLOPE 289,291 
SMALL 346 
SUBSTITUTE 116,134,225 
TRANSPOSE 49 
TREND 85,86,90 
VLOOKUP 77,79,80,81 

worksheet functions: 

297 

worksheet functions with VBA 23 


	Excel for Scientists and Engineers Numerical Methods
	Contents
	Preface
	Acknowledgments
	About the Author
	Chapter 1 Introducing Visual Basic for Applications
	The Visual Basic Editor
	Visual Basic Procedures
	There Are Two Kinds of Macros
	The Structure of a Sub Procedure
	The Structure of a Function Procedure
	Using the Recorder to Create a Sub Procedure
	The Personal Macro Workbook
	Running a Sub Procedure
	Assigning a Shortcut Key to a Sub Procedure

	Entering VBA Code
	Creating a Simple Custom Function
	Using a Function Macro
	A Shortcut to Enter a Function

	Some FAQs

	Chapter 2 Fundamentals of Programming with VBA
	Components of Visual Basic Statements
	Operators
	Variables
	Objects, Properties, and Methods
	Objects
	Properties
	Using Properties
	Functions
	Using Worksheet Functions with VBA
	Some Useful Methods
	Other Keywords

	Program Control
	Branching
	Logical Operators
	Select Case
	Looping
	For ... Next Loop
	Do While ... Loop
	For Each ... Next Loop
	Nested Loops
	Exiting from a Loop or from a Procedure

	VBA Data Types
	The Variant Data Type

	Subroutines
	Scoping a Subroutine

	VBA Code for Command Macros
	Objects and Collections of Objects
	"Objects" That Are Really Properties
	You Can Define Your Own Objects
	Methods
	Some Useful Methods
	Two Ways to Specify Arguments of Methods
	Arguments with or without Parentheses

	Making a Reference to a Cell or a Range
	A Reference to the Active Cell or a Selected Range
	A Reference to a Cell Other than the Active Cell
	References Using the Union or Intersect Method
	Examples of Expressions to Refer to a Cell or Range
	Getting Values from a Worksheet
	Sending Values to a Worksheet

	Interacting with the User
	MsgBox
	MsgBox Return Values
	lnputBox

	Visual Basic Arrays
	Dimensioning an Array
	Use the Name of the Array Variable to Specify the Whole Array
	Multidimensional Arrays
	Declaring the Variable Type of an Array
	Returning the Size of an Array
	Dynamic Arrays
	Preserving Values in Dynamic Arrays
	Working with Arrays in Sub Procedures: Passing Values from Worksheet to VBA Module
	A Range Specified in a Sub Procedure Can Be Used as an Array
	Some Worksheet Functions Used Within VBA Create an Array Automatically 
	An Array of Object Variables
	Working with Arrays in Sub Procedures: Passing Values from a VBA Module to a Worksheet
	A One-Dimensional Array Assigned to a Worksheet Range Can Cause Problems

	Custom Functions
	Specifying the Data Type of an Argument
	Specifying the Data Type Returned by a Function Procedure
	Returning an Error Value from a Function Procedure
	A Custom Function that Takes an Optional Argument

	Arrays in Function Procedures
	A Range Passed to a Function Procedure Can Be Used as an Array
	Passing an Indefinite Number of Arguments: Using the ParamArray Keyword
	Returning an Array of Values as a Result

	Creating Add-In Function Macros
	How to Create an Add-In Macro

	Testing and Debugging
	Tracing Execution
	Stepping Through Code
	Adding a Breakpoint
	Examining the Values of Variables While in Break Mode
	Examining the Values of Variables During Execution


	Chapter 3 Worksheet Functions for Working with Matrices
	Arrays, Matrices and Determinants
	Some Types of Matrices

	An Introduction to Matrix Mathematics
	Excel's Built-in Matrix Functions
	Some Additional Matrix Functions
	Problems

	Chapter 4 Number Series
	Evaluating Series Formulas
	Using Array Constants to Create Series Formulas
	Using the ROW Worksheet Function to Create Series Formulas
	The INDIRECT Worksheet Function
	Using the INDIRECT Worksheet Function with the ROW Worksheet Function to Create Series Formulas

	The Taylor Series
	The Taylor Series: An Example

	Problems

	Chapter 5 Interpolation
	Obtaining Values from a Table
	Using Excel's Lookup Functions to Obtain Values from a Table
	Using VLOOKUP to Obtain Values from a Table
	Using the LOOKUP Function to Obtain Values from a Table
	Creating a Custom Lookup Formula to Obtain Values from a Table
	Using Excel's Lookup Functions to Obtain Values from a Two-way Table

	Interpolation
	Linear Interpolation in a Table by Means of Worksheet Formulas
	Linear Interpolation in a Table by Using the TREND Worksheet Function
	Linear Interpolation in a Table by Means of a Custom Function
	Cubic Interpolation
	Cubic Interpolation in a Table by Using the TREND Worksheet Function
	Linear Interpolation in a Two-way Table by Means of Worksheet Formulas
	Cubic Interpolation in a Two-way Table by Means of Worksheet Formulas
	Cubic Interpolation in a Two-way Table by Means of a Custom Function

	Problems

	Chapter 6 Differentiation
	First and Second Derivatives of Data in a Table
	Calculating First and Second Derivatives
	Using LINEST as a Fitting Function

	Derivatives of a Worksheet Formula
	Derivatives of a Worksheet Formula Calculated by Using a VBA Function Procedure
	First Derivative of a Worksheet Formula Calculated by Using the Finite-Difference Method
	The Newton Quotient
	Derivative of a Worksheet Formula Calculated by Using the Finite-Difference Method
	First Derivative of a Worksheet Formula Calculated by Using a VBA Sub Procedure Using the Finite-Difference Method
	First Derivative of a Worksheet Formula Calculated by Using a VBA Function Procedure Using the Finite-Difference Method
	Improving the VBA Function Procedure
	Second Derivative of a Worksheet Formula
	Concerning the Choice of Dx for the Finite-Difference Method

	Problems

	Chapter 7 Integration
	Area under a Curve
	Calculating the Area under a Curve Defined by a Table of Data Points
	Calculating the Area under a Curve Defined by a Table of Data Points by Means of a VBA Function Procedure 
	Calculating the Area under a Curve Defined by a Formula
	Area between Two Curves

	Integrating a Function
	Integrating a Function Defined by a Worksheet Formula by Means of a VBA Function Procedure
	Gaussian Quadrature
	Integration with an Upper or Lower Limit of Infinity

	Distance Traveled Along a Curved Path
	Problems

	Chapter 8 Roots of Equations
	A Graphical Method
	The Interval-Halving or Bisection Method
	The Interval Method with Linear Interpolation (the Regula Falsi Method)
	The Regula Falsi Method with Correction for Slow Convergence
	The Newton-Raphson Method
	Using Goal Seek
	The Secant Method
	The Newton-Raphson Method Using Circular Reference and Iteration
	A Newton-Raphson Custom Function
	Bairstow's Method to Find All Roots of a Regular Polynomial
	Finding Values Other than Zeroes of a Function
	Using Goal Seek ... to Find the Point of Intersection of Two Lines
	Using the Newton-Raphson Method to Find the Point of Intersection of Two Lines
	Using the Newton-Raphson Method to Find Multiple Intersections of a Straight Line and a Curve
	A Goal Seek Custom Function

	Problems

	Chapter 9 Systems of Simultaneous Equations
	Cramer’s Rule
	Solving Simultaneous Equations by Matrix Inversion
	Solving Simultaneous Equations by Gaussian Elimination
	The Gauss-Jordan Method

	Solving Linear Systems by Iteration
	The Jacobi Method Implemented on a Worksheet
	The Gauss-Seidel Method Implemented on a Worksheet
	The Gauss-Seidel Method Implemented on a Worksheet Using Circular References
	A Custom Function Procedure for the Gauss-Seidel Method

	Solving Nonlinear Systems by Iteration
	Newton's Iteration Method

	Problems
	Chapter 10 Numerical Integration of Ordinary Differential Equations Part I: Initial Conditions
	Solving a Single First-Order Differential Equation
	Euler's Method
	The Fourth-Order Runge-Kutta Method
	Fourth-Order Runge-Kutta Method Implemented on a Worksheet
	Runge-Kutta Method Applied to a Differential Equation Involving Both x and y
	Fourth-Order Runge-Kutta Custom Function for a Single Differential Equation with the Derivative Expression Coded in the Procedure
	Fourth-Order Runge-Kutta Custom Function for a Single Differential Equation with the Derivative Expression Passed as an Argument

	Systems of First-Order Differential Equations
	Fourth-Order Runge-Kutta Custom Function for Systems of Differential Equations 

	Predictor-Corrector Methods
	A Simple Predictor-Corrector Method
	A Simple Predictor-Corrector Method Utilizing an Intentional Circular Reference

	Higher-Order Differential Equations
	Problems

	Chapter 11 Numerical Integration of Ordinary Differential Equations Part II: Boundary Conditions 
	The Shooting Method
	An Example: Deflection ofa Simply Supported Beam
	Solving a Second-Order Ordinary Differential Equation by the Shooting Method and Euler's Method
	Solving a Second-Order Ordinary Differential Equation by the Shooting Method and the RK Method

	Finite-Difference Methods
	Solving a Second-Order Ordinary Differential Equation by the Finite-Difference Method 
	Another Example
	A Limitation on the Finite-Difference Method

	Problems

	Chapter 12 Partial Differential Equations
	Elliptic. Parabolic and Hyperbolic Partial Differential Equations
	Elliptic Partial Differential Equations
	Solving Elliptic Partial Differential Equations: Replacing Derivatives with Finite Differences 
	An Example: Temperature Distribution in a Heated Metal Plate

	Parabolic Partial Differential Equations
	Solving Parabolic Partial Differential Equations: The Explicit Method
	An Example: Heat Conduction in a Brass Rod
	Solving Parabolic Partial Differential Equations: The Crank-Nicholson or Implicit Method 
	An Example: Vapor Diffusion in a Tube
	Vapor Diffusion in a Tube Revisited
	Vapor Diffusion in a Tube (Again)
	A Crank-Nicholson Custom Function
	Vapor Diffusion in a Tube Solved by Using a Custom Function

	Hyperbolic Partial Differential Equations
	Solving Hyperbolic Partial Differential Equations: Replacing Derivatives with Finite Differences 
	An Example: Vibration of a String

	Problems

	Chapter 13 Linear Regression and Curve Fitting
	Linear Regression
	Least-Squares Fit to a Straight Line
	Least-Squares Fit to a Straight Line Using the Worksheet Functions SLOPE, INTERCEPT and RSQ

	Multiple Linear Regression
	Least-Squares Fit to a Straight Line Using LINEST
	Multiple Linear Regression Using LINEST
	Handling Noncontiguous Ranges of known_x’s in LINEST
	A LINEST Shortcut
	LINEST's Regression Statistics
	Linear Regression Using Trendline
	Limitations of Trendline
	Importing Trendline Coefficients into a Spreadsheet by Using Worksheet Formulas
	Using the Regression Tool in Analysis Tools
	Limitations of the Regression Tool
	Importing the Trendline Equation from a Chart into a Worksheet

	Problems

	Chapter 14 Nonlinear Regression Using the Solver
	Nonlinear Least-Squares Curve Fitting
	Introducing the Solver
	How the Solver Works
	Loading the Solver Add-In
	Why Use the Solver for Nonlinear Regression?
	Nonlinear Regression Using the Solver: An Example
	Some Notes on Using the Solver
	Some Notes on the Solver Parameters Dialog Box
	Some Notes on the Solver Options Dialog Box
	When to Use Manual Scaling

	Statistics of Nonlinear Regression
	The Solver Statistics Macro
	Be Cautious When Using Linearized Forms of Nonlinear Equations

	Problems

	Chapter 15 Random Numbers and the Monte Carlo Method
	Random Numbers in Excel
	How Excel Generates Random Numbers
	Using Random Numbers in Excel
	Adding "Noise" to a Signal Generated by a Formula
	Selecting Items Randomly from a List
	Random Sampling by Using Analysis Tools
	Simulating a Normal Random Distribution of a Variable

	Monte Carlo Simulation
	Monte Carlo Integration
	The Area of an Irregular Polygon

	Problems

	APPENDICES
	Appendix 1 Selected VBA Keywords
	Appendix 2 Shortcut Keys for VBA
	Appendix 3 Custom Functions Help File
	Appendix 4 Some Equations for Curve Fitting
	Appendix 5 Engineering and Other Functions 
	Appendix 6 ASCII Codes
	Appendix 7 Bibliography
	Appendix 8 Answers and Comments for End-of-Chapter Problems

	INDEX





