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1 Introduction

Physics is fundamentally an experimental science, it is essentially based on observations of natures
and modeling such observations with a theory. Or conducting experiments that either confirm or
exclude a model that was set a priori. Although the recent scheme is recent and just few decades
ago, observations were ahead of theoretical models.

Since physics is based on observations and experiments in which we measure particular quantities
(could dynamical or non-dynamical), for example the velocity, momentum of some particle, or
temperature of an object, that could vary in time. Or distances between galaxies that appear
unchanging in time. The act of measurement itself is what gives us data in which we could analyse
to extract information about some part of nature that we want to discover or some theory that we
wish to test.

2 Measurement

There are two types of measurements, direct and indirect. We define the direct measurement is
by measuring a physical quantity with a device that resembles the same quantity; like using a ruler
to measure lengths. This type of measurement is very rare and most measurements in experimental
physics are bases on the second type. The indirect measurement could be made by letting the
measuring device or apparatus interact with the measured system. And btextased on some model
we can extract the data regarding the quantity we want to measure, like measuring the area of a
table by measuring its length L and width W Based on the model that this table is rectangular
and the the area is then L x W. Surly this ‘model’ assumes a priori that the table is rectangular,
but there is no way to say it is indeed rectangular with infinite accuracy.

Another example of indirect measurement is the measurement of temperature by an Hg or alco-
hol thermometer. We measure the expansion of the liquid and use the model of liquid thermal

expansion:
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Hence if we know the initial length and the factor o we could associate the change of length of the
liquid with the change of temperature.
In both cases of direct and indirect measurement we need to preform a Calibration procedure.
That is to to establish a relation between the quantity we measure that we call a signal ¢ with

the quantity we wanted to originally measure ¢q. Unfortunately, there is no guarantee that such



relation is easily established, but for many cases the relation could be approximates to being a
proportionality relation, and the proportionality constant is called the Calibration coefficient, i.e.
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Before preforming any experiment,/ measurement with an apparatus, it is essential to calibrate that
apparatus using the relation above- draw a graph using a known set of quantities {¢g;} and then
compute the slope = R. Calibration is different from using a model as discussed above, here we
could know nothing about the nature of interaction between the measured system and the apparatus
that produces the signal i. However, we only know that for a certain values of ¢ the relation (2)
holds.
When we wish to measure a quantity, for example the intensity of light via a photoelectric cell We
start from the initial intensity from the source E;, and detect intensity Ey4 at the cell. Which is
calculated from the relation (2) E; = i/R. However, there is no guarantee that E; = E; because
the detected intensity could only be a fraction of the incoming one, due to reflection of the light
from the cell’s surface, scattering of light by the air and so on. We define the ratio
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Which is known as the sampling of the signal. Once the sampling is known and the calibration,
as well we can recover the incident intensity from the signal ¢ using the relation:
i
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Sometimes, we detect only part of the incoming flux of the quantity ( like the intensity) or sometimes
momentum on purpose, to keep the system after measurement. Here the sample would be very small
> << 1. The case where the sampling is close to one ¥ ~ 1 we call the measurement a destructive
measurement.

3 Errors and Uncertainties

When preforming a measurement as discussed above, the measurement procedure does not reflect
the exact value of the quantity of study. It is impossible to make the measurement procedure and/or
the model in study perfect! We are bound to have errors in our measurements, and it is essential
to be able to define these errors and know their origin. It can be said that :

A measurement without uncertainties has no meaning at all

If we measured the length of an object and it was found to be 2, 8cm, this statement seems fine at
first, but if we have a theory that predicts the length of that object to be 3,0 cm. That measurement
will be indeed meaningless, in its current form it tells us nothing about the correctness of the model
we are studying. However, if we included the uncertainties / errors in the measurement and we find
that the length is 2,8 4+ 4¢m, now you would immediately say that the measurement confirms the
model within the experimental errors. Because 3,0cm lies within the uncertainty we have put.
Thus, it is crucial for experimental physics to be able to define and calculate the errors, otherwise ex-
perimentation becomes useless. There are two types of errors that we deal with in experimentation,
systematic and random (stexttatistical).



e Systematic error : is associated with the model used in the computation or the experimental
setup. It could be an error due to imperfection of the apparatus used in the measurement or
calibration ..etc .

e Random error : is associated with unknown or uncontrolled factors- like fluctuations in
the system- or the fact that the system in study is fundamentally random or probabilistic (
like quantum mechanical systems: such as radioactive decay).

Usually, random errors are easily improved in principle, by increasing the number of experiments
preformed. However, systematic errors are much harder to correct and do not improve with repeti-
tion of experimentation. It may often be reduced by very carefully with standardized procedures.
Part of the learning process in the various sciences is learning how to use standard instruments and
protocols so as to minimize systematic error.
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This combination results in a precision of 0.29%:

Myop = 172.51 4 0.27(stat) + 0.42(syst) GeV = 172.51 £ 0.50 GeV

@ a 41% improvement w.r.t. the most precise single input measurement
@ a 29% improvement w.r.t. the previous ATLAS combination
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Figure 1: A new result by the ATLAS experiment at the Large hadron collider LHC, showing the
mass of the ‘top’ quark.The major improvement in this result is the fact that they were able to
reduce the systematic errors. Observe that the statistical errors and systematic errors are treated
differently.

4 Statistics

The proper language to deal with the measured quantities having uncertainties/ errors is statistics.
Where these quantities are treated as ‘random’ variables. X having their own probability density
distribution function f(X) telling us the likelihood of a measured quantity to take a certain



value Xj. Ideally, the function f(X) takes a normal distribution form, or a Gaussian function
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We call Xy = p the mean value or expected value. And the quantity o the standard deviation.
Hence, when an experiment is preformed many times, we define the mean-value with the ‘measured’
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Figure 2: Normal distribution with different means and standard deviation

value , and the uncertainty with the standard deviation. This is of course the uncertainty for the
random errors. while the uncertainty for systematic errors is calculated in a different way, and it
shall not be discussed in this course. We can also define the full width half maximum or FWHM

or simply the ‘width’T" as
'=2v2ln2¢ (6)

Which plays an important role in many areas of physics, like particle physics for example.

Interpretation of the probability

We have demonstrated the proper language to use to describe the measured quantities in terms of
probability (density) distribution ¢, ,. But what is the meaning of this function ? How one could
interpret the meaning of probability? This is not a purely philosophical question, rather, it is a
necessity in order to draw conclusions from the collected data from measurement, this process is
called inference. Mainly there are two approaches to state inference.

e Frequentest approach , a objective way to interpret the probability of an event A is that
to take an infinite number of experiments N — oo with identical conditions and see the



‘frequency’ of which the event A occurs, N(A) , i.e.

N(4)
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The main difficulties of this approach is that it is impossible to preform an infinite number of
measurements,/ experiments and we could not usually produce identical conditions. Hence,
we try to make as many measurements as possible and the make the experimentation as
controlled as possible to approach this interpretation

e Bayésienne approach , in this approach we collect data about a phenomenon and from
this data we could define the probability as the degree of belief that a certain value is more
likely than others. As we can see this is completely subjective approach, but its is inadvisable
if one could not preform any number of experiments or create identical ones. We shall not
discuss the bayésienne school of statistics as almost always in physics the frequentest school
is followed.

Since we have agreed that the distribution ¢, , is interpreted using the frequentest school, we
could compute the mean p and the uncertainty o from the following laws: Let X; denote the ¢
th measurement in an experiment measuring the variable X. We define the expected value of the
mean value of the variable X as
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Where N is the number of measurements preformed. And the standard deviation or the uncertainty

as:
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If we have a quantity Xy that is known before and we with to compute the absolute error we use
the formula

M:X:
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and the relative error
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These quantities € and 7 are called approzimation errors. We may also define the per-cent error
as 0 = 100% x 7. There will tell us about the systematic errors we had in the experiments. Since
X is usually a quantity that is measured already by scientists with high precision. There are many
other types of errors and their ways to be analyzed statistically, the reader is strongly advised to
consult a reference in statistics and experimental physics for further information



