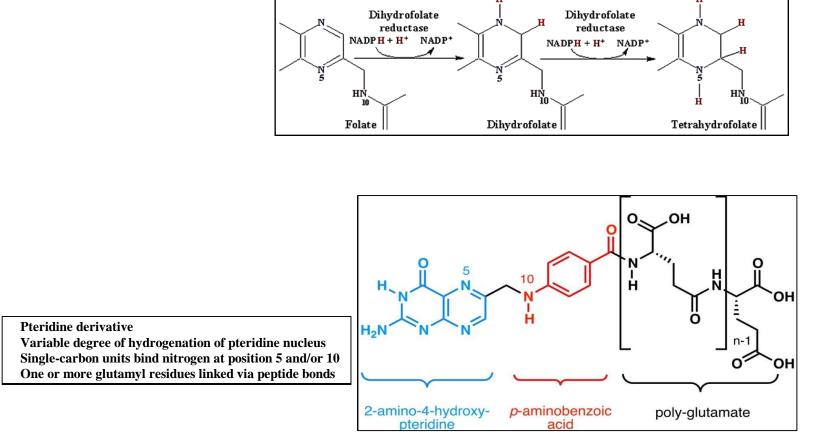
Lecture #10

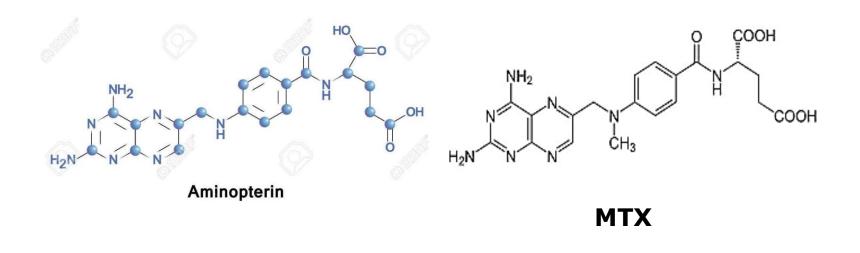
II- Water soluble vitamins

g- Vitamin B₉ (Folic acid)

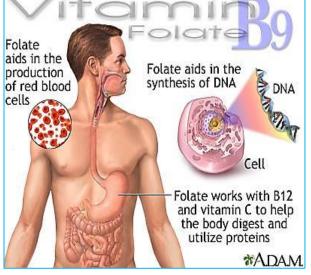


Vitamin B₉

- Folate is the generic descriptor for folic acid and related compounds exhibiting the biological activity of folic acid.
- The term folic acids and folates are used only as general terms for this group of compounds based on the N-[(6-pteridinyl)methyl]-*p*-aminobenzoic acid skeleton conjugated with one or more L-glutamic acid residues.
- Tetrahydrofolic acid is the reduce form of folic acid.


• *Folic acid* is the term used to refer to the <u>oxidized</u> form of the vitamin found in <u>fortified</u> <u>foods</u> and in <u>supplements</u>.

 Folic acid is itself not biologically active, but its biological importance is due to tetrahydrofolate and other derivatives after its <u>conversion to</u> dihydrofolic acid in the <u>liver</u>.

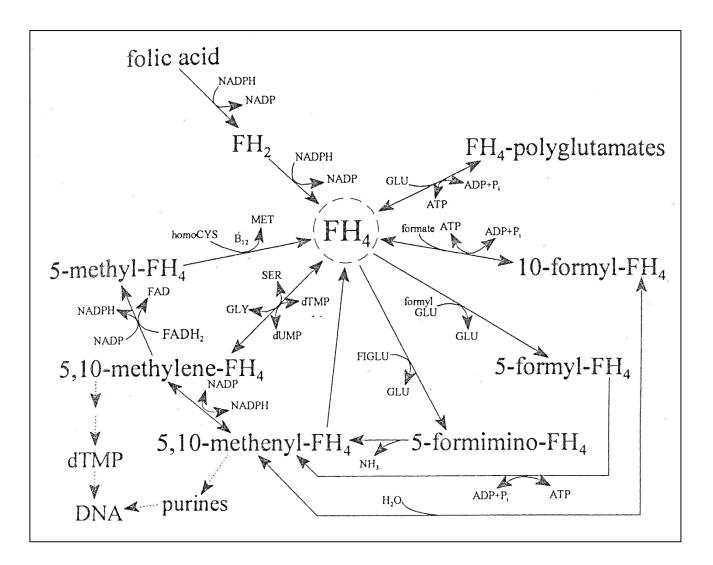

Folate antagonists

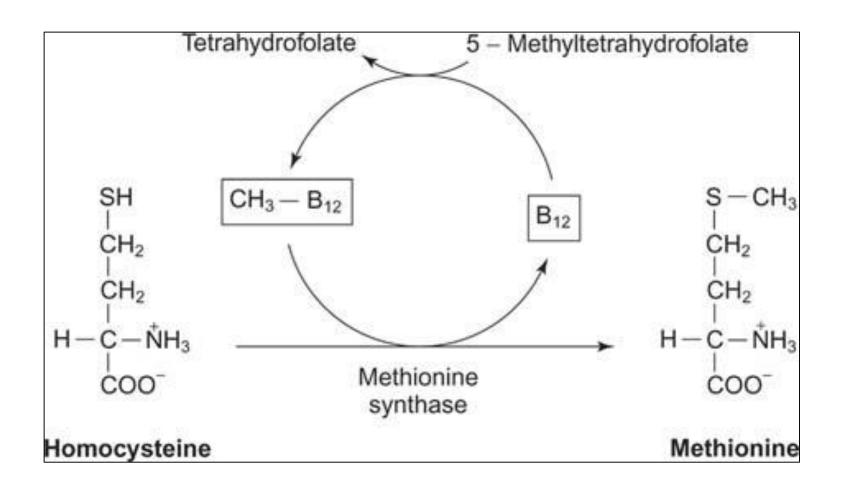
- 1- Aminopterin (4-aminofolic acid) is rodenticide
- 2- Methotrexate (4-amino-N¹⁰-methylfolic acid) is antineoplastic agent.

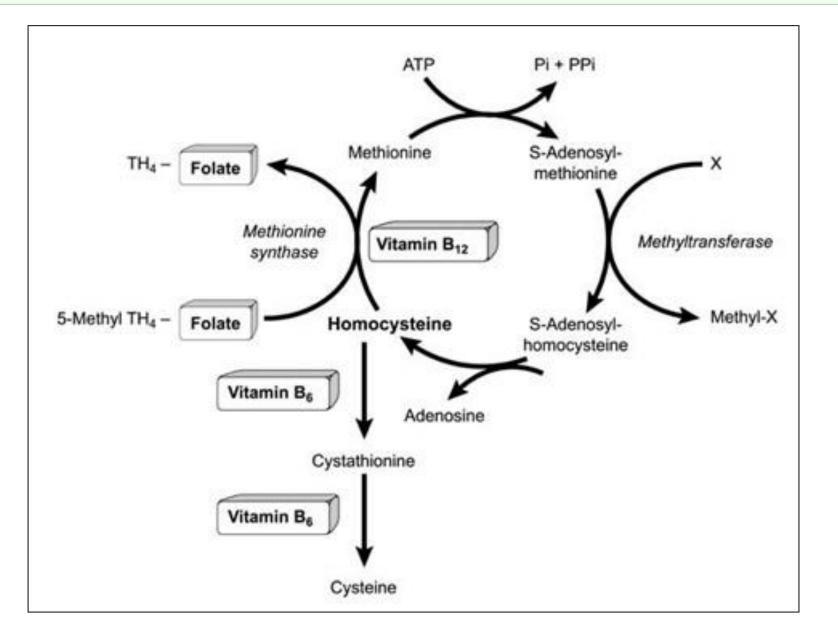
Significance of the vitamin

- It is important for normal metabolism and to the etiology of homocysteinemia and birth defects.
- Deficiency of the vitamin is prevalent in poverty and malnutrition population causing anemia.
- High doses of folate may maske the macrocytic anemia of vitamin B_{12} deficiency.

Source of the vitamin


- Liver, mushrooms and green leafy vegetables are rich sources of the vitamin.
- It is available in the reduced form FH_4 as 5-methyl-FH₄ and 10-formyl-FH₄.
- Most of folates are easily oxidized in the presence of light and heat even to inactive forms in the acid environment of normal gastric juice.
- In case of pernicious anemia (gastric anacidosis), isomerization will not occur.
- Presence of conjugase inhibitors reduce the bioavailability of folate.


Supplement		Metabolic Pathway
Folic acid	\rightarrow	Dihydrofolate (DHF)
		Ţ
Folinic acid (folinate salts)	\rightarrow	Tetrahydrofolate (THF)
		Ļ
		5,10- Methylenetetrahydrofolate (5-10 MTHF)
		Ļ
Levomefolic acid (levomefolate salts)	→ (=)	5-Methyltetrahydrofolate (L-5-MTHF or levomefolate)

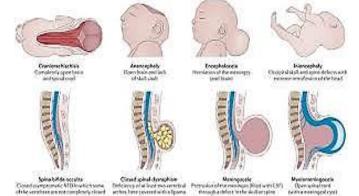

Metabolic functions of folate

- It acts as a coenzyme in many reactions of the metabolism of amino acid and nucleotides.
- It serves as an acceptor or donor of a single-carbon unit in the biosynthesis of DNA and methionine.
- Methionine is essential amino acid for the synthesis of proteins.

• The N5,N10-methylene-tetrahydrofolate can either donate its single-carbon group directly, be oxidized by NADP to the methenyl form, or be reduced by NADH to the *methyl* form. Depending on the biosynthetic pathway involved, any of these species can donate the 1-carbon group to an acceptor. The methylene form donates its methyl group during the biosynthesis of thymidine nucleotides for DNA synthesis, the methenyl form donates its group as a formyl group during purine biosynthesis, and the methyl form is the donor of the methyl group to sulfur during methionine formation.

Recommended Daily Allowance (RDA)

- 400 µg/day for men and women 9 years of age and above.
- 600 μ g/day for pregnant women.


Folate deficiency

- It results in impairment of DNA biosynthesis, which is manifested clinically as anemia, weakness and depression.
- In pregnant women, it may lead to birth defects as Neural tube defect (NTD).
- Neural tube defects are birth defects caused by abnormal development of the neural tube, a structure that give rise to the brain and spinal cord

brain and spinal cord.

Materia Randerers, | Dimma Primera

 Homocysteinemia, which through experimental studies, may be associated with increase in heart diseases.

Folate uses

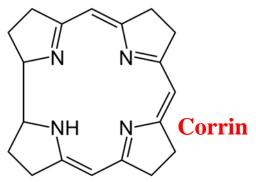
- In case of folate deficiency.
- Patients with homocysteinemia.
- Pregnant women.

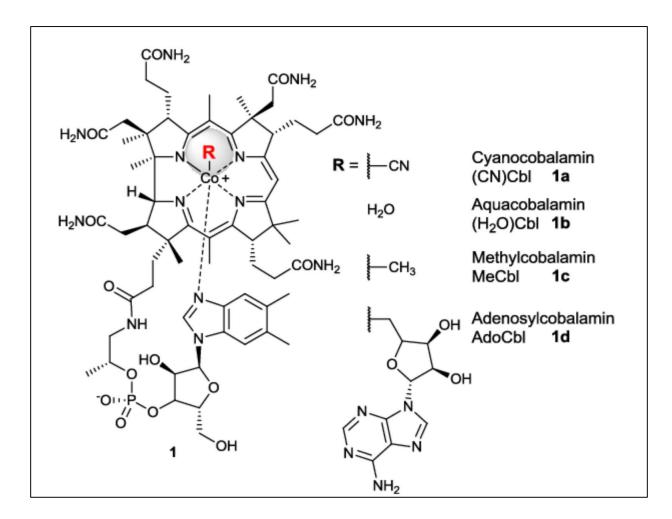
Folate toxicity

- It is low.
- Inconsistent results have been reported concerning the effect of high folate doses (1-10 mg) on human epileptics.
- Some patients may show increase in the frequency or severity of seizures and reduced anticonvulsant effectiveness.

II- Water soluble vitamins

h- Vitamin B₁₂


(Cobalamin)

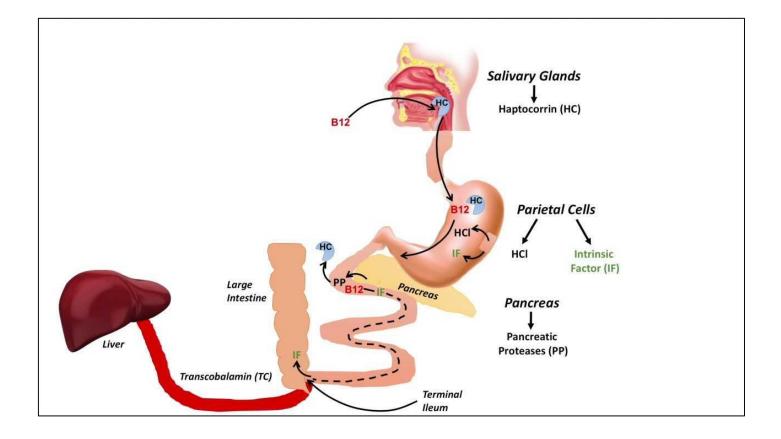


Vitamin B₁₂

- It is the generic descriptor for all corrinoids (compounds containing corrin nucleus) exhibiting the qualitative biological activity of cyanocobalamin.
- Cyanocobalamin is the trivial name of vitamin $\rm B_{12}$ and also called cobalamin.
- Other B₁₂ vitamers are methylcobalamin, deoxyadenosylcobalamin, hydroxycobalamin nitrocobalamin and aquacobalamin.
- Cobalamins are unstable to light.

Significance of B₁₂

- It is biosynthesized by bacteria.
- The vitamin is seldom found in in foods derived from plants.
- Strict vegans may produce vitamin B₁₂ deficiency manifested as anemia and peripheral neuropathy.
- Low B₁₂ status is not uncommon among older people.


Sources of B₁₂

- Animal tissues like liver, kidney, and fish are good source of the vitamin.
- Intestinal bacteria.
- It is available as bound to protein.
- High level of vitamin C and presence of Iron have been shown to catalyze the oxidation of B₁₂ to forms that are poorly utilized.

Absorption of B₁₂

- It is absorbed via active transport mechanism involving specific binding protein called intrinsic factor (IF).
- It is also absorbed by simple diffusion.
- Intrinsic factor is a glycoprotein secreted by the gastric parietal cells in response to histamine, gastrin, pentagastrin and the presence of food.
- Loss of these cells may be unable to absorbed dietary B_{12} .
- IF-B₁₂ complex protects the vitamin from catabolism by intestinal bacteria.

- The predominant form of B_{12} in the cell is 5-adenosylcobalamin.
- All forms of the vitamin is converted in the tissues to 5-adenosylcobalamin and methylcobalamin.

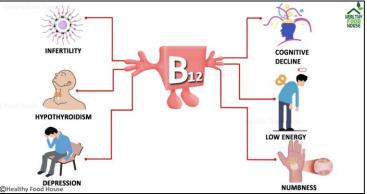
Metabolic functions of B₁₂

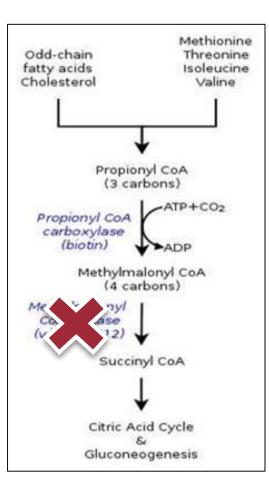
- Vitamin B₁₂ functions in metabolism in two coenzyme forms; adenosylcobalamin and methylcobalamin through three enzymes.
- These enzymes play key roles in the metabolism of propionate, amino acids and single carbon.

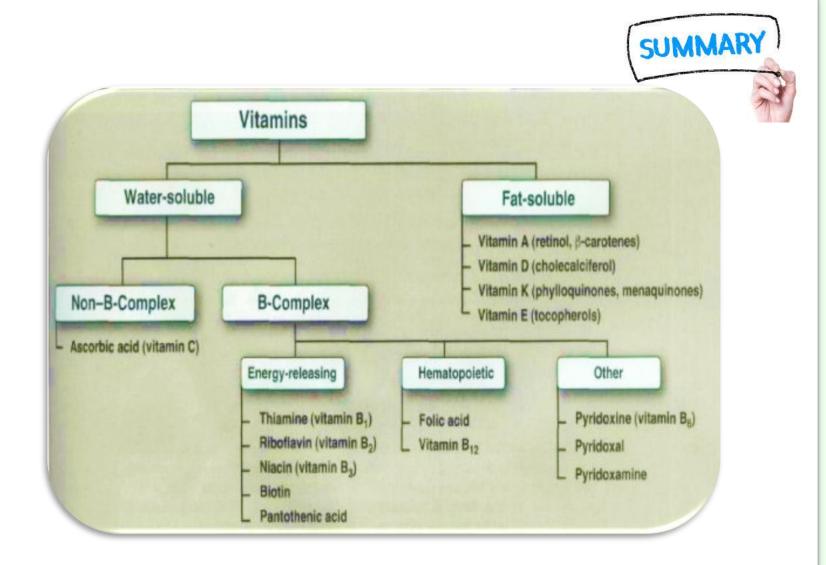
Enzyme	Metabolic functions	
1- Adenosylcobalamin		
Methylmalonyl-CoA mutase	Conversion of methylmalonyl-CoA to succinyl-CoA in the degradation of propionate	
L-α-Leucine mutase	Conversion of L- α -Leucine to aminoisocapronate as the first step in the synthesis/degradation of the amino acid	
2- Methylcobalamin		
Methionine synthetase	Methylation of homocysteine to produce methionine, serving as the methyl group carrier between the donor 5-methyl-FH ₄ and the acceptor homocysteine	

Recommended Daily Allowance (RDA)

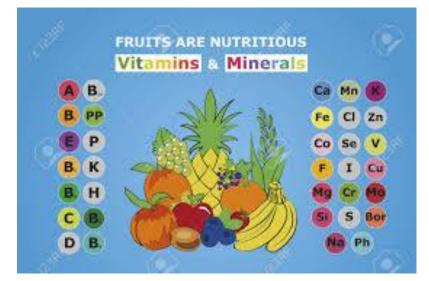
- 2.4 ug/day for men and women 14 years of age and older.
- 2.6 ug/day for pregnant women.


Vitamin B₁₂ deficiency


- It is caused by
- 1- Vegetarian diets.
- 2- Lack of IF.
- 3- Pancreatic insufficiency.
- 4- Parasitism (tapeworm infection).
- 5- Xenobiotic agents such as biguanides, alcohol and smoking.


- Vitamin B₁₂ deficiency is characterized by anemia and peripheral neuropathy.
- In case of lack of IF, this anemia is called pernicious anemia.
- Peripheral neuropathy is characterized by numbress of the hands and feet, memory loss and dementia.
- Methylmalonic aciduria (high level of methylmalonic acid in urine) is useful indicator for the vitamin B₁₂ deficiency and differentiate it from folate deficiency.

Vitamin B₁₂ toxicity


It has no appreciable toxicity and considered a safe vitamin.

Minerals & Trace elements

Lecture #11

• Minerals and Trace elements are inorganic nutrients that are needed for human health.

• What is the difference between them?

Macrominerals

- The daily requirement of macrominerals exceeds 100 mg
- Calcium
- Phosphorus
- Potassium
- Sulfur
- Chloride
- Magnesium

Microminerals

- The daily requirement of microminerals (trace elements) is less than 100 mg
- Iron
- Zinc
- Copper
- Manganese
- Iodine
- Selenium

- A mineral is said a macronutrient.
- A trace element is a micronutrient.
- Nutrients that can be in the category of minerals are: Calcium, Phosphorus, Sodium, Chloride, Potassium, maganisum and Sulfur.
- Nutrients that can be in the category of trace elements are: iron, Zinc, Copper, manganese, Chromium, Selenium, Vanadium, Iodine, Cobalt, Boron, Fluoride and Molybdenum.
- Water is also considered under the category of minerals.

Calcium

- It is the most abundant mineral in the body.
- Calcium, together with phosphorous and magnesium, is a primary ingredient of bones, teeth and the skeletal framework.
- Bones and teeth contain 99% of the body's supply of calcium.
- The remaining 1% plays the critical roles of calcium in the body.
- Calcium is needed for normal blood clotting, heart function, muscle contraction, nerve function and storage and release of hormones.

- Bone is a dynamic tissue that undergoes constant breakdown and rebuilding.
- Bone formation is greater than breakdown in growing children and is balanced in healthy adults.
- Breakdown exceeds rebuilding in women after menopause and in all older adults.

Sources of calcium

- It can be obtained from foods or dietary supplements.
- Foods calcium is better absorbed than calcium taken as supplements.

- Most of the calcium in our diet comes from milk and milk products.
- Cheese and yogurt are good calcium sources because most of their calcium is calcium caseinate.
- Many calcium supplements are difficult for people to take because they do not taste good and may be hard to swallow.
- Children absorbs higher percentage of calcium than adults.
- Vitamin D is necessary for intestinal absorption.
- Vitamin D-fortified milk is a very well absorbed form of calcium.

- Vitamin C and lactose in milk enhance the absorption of calcium.
- Meals high in fat and proteins decrease absorption.
- Excess phosphorous consumption (as in carbonated sodas) can decrease calcium absorption.
- The average daily calcium intake is 2–2.5 g/day.
- Blood calcium level is tightly controlled by complex hormone system involving vitamin D, PTH and calcitonin.
- Normal range is 8.5 10.8 mg/dl.

- At hypocalcemia case, PTH is secreted, which causes:
- A- Phosphate diuresis from kidney.
- B- Stimulation of 25-OH-1-hydoxylase and leads to formation of 1,25-(OH) $_2$ -D $_3$.
- C- Both 1,25-(OH)₂-D₃ and PTH act in bone to promote the mobilization of calcium and phosphate.
- Under hypercalcemia, Calcitonin (CT) is secreted from thyroid gland and causes:
- A- Suppression of bone mobilization.
- B- Increases the renal excretion of both calcium and phosphate.
- C- 25-OH-1-hydroxylase feedback inhibited by 1,25- $(OH)_2$ -D₃.

Extracellular calcium exists in three forms:

- Complexed to bicarbonate, citrates, and phosphates (6%)
- 2. Protein bound, mostly to albumin (40%)
- 3. Ionized or free fraction (54%)
- Calcium enters cells through one of the three types of calcium channels that have been identified:
- T (transient or fast), N (neuronal), and L (long lasting or slow). Subsets of these channels may exist.
- Calcium channel blockers are likely to affect the L channels.

- Calcium is bound primarily to serum albumin (80%) and globulins (20%).
- Protein-bound calcium is in equilibrium with ionized calcium, which is affected by the serum anion concentration and blood pH.
- This equilibrium is important since ionized calcium is the physiologically active moiety.

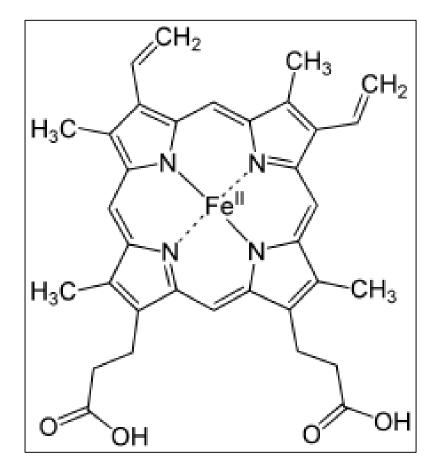
Calcium dietary supplement products

Supplement	Elemental calcium by weight	Comment
Calcium carbonate	40%	Most commonly used, Least expensive Less well absorbed in persons with decreased stomach acid
Calcium citrate	21%	Better absorbed, especially by those with decreased stomach acid, More expensive May protect against kidney stones
Calcium phosphate	38%	Absorption similar to calcium carbonate
Calcium gluconate	9%	Used intravenously for severe hypocalcemia Very expensive
Calcium glubionate	6.5%	Available as syrup for children
Calcium lactate	13%	Well absorbed, but low content elemental calcium

Calcium deficiency

- The most common causes of hypocalcemia are disorders of vitamin D metabolism or impaired PTH.
- Diminished calcium intake, especially in patients receiving long term total parental nutrition solutions.
- Drugs like loop diuretics, glucocorticoids and calcitonin, among others.
- Secondary hyperparathyroidism from chronic kidney disease.

- The early signs of hypocalcemia are finger numbness, tingling and burning of extremities.
- Osteomalacia (in adults) and rickets (in children) can result from deficiency in dietary calcium or vitamin D, diminished synthesis of vitamin D₃ from insufficient sunlight exposure, or resistance of the intestinal wall to the action of vitamin D.
- It may leads to secondary hyperparathyroidism and tetany in severe hypocalcemia.



Calcium toxicity

- The most common causes are malignancy and primary hyperparathyroidism.
- Drugs like thiazide diuretics, milk-alkali syndrome (now a days is rare).
- Hyperthyroidism, calcium supplements, excessive vitamin D, A and thyroid hormone.
- Hypercalciumic patients show signs of nausea, vomiting, abdominal pain, dyspepsia and anorexia.
- It may results in calcium-phosphate and calciumoxalate stones.

Iron

- is one of the most abundant metals on Earth.
- It is essential to most life forms and to normal human physiology.
- Iron is found in human in association with many proteins such as hemoglobin and myoglobin.
- Almost two-thirds of iron in the body is found in hemoglobin.
- Hemoglobin is the protein in RBC'S that carries oxygen to tissues.
- Small amount of iron is present in myoglobin, a protein that helps supply oxygen to muscle.

Iron in heme

 Another small amount available in enzymes for biochemical reactions and storage.

Sources of iron

There are two types of iron.

- A- Heme iron and nonheme iron.
- B- Heme iron is derived from hemoglobin.
- Animal foods are the source of heme iron such as liver, meat, fish, poultry.
- Plant foods like lentils and beans provide us with nonheme iron.
- Nonheme iron is the form of iron added to ironenriched and iron-fortified foods.

- Heme iron is absorbed better than nonheme iron.
- Many factors can influence the absorption of iron.
- 1- Storage levels of iron have the greatest influence on iron absorption.
- 2- Type of dietary iron consumed.
- Absorption of heme iron ranges from 15% to 35%, and is not significantly affected by diet.
- Nonheme iron absorption is poor and is significantly influenced by various food components
- Presence of meat and vitamin C will increase nonheme absorption and decreased by tea and antacids and tetracycline antibiotics.

Recommended Daily Allowance (RDA)

- 11 mg/day for infants (7-12 months).
 (Breast milk provides 50% of iron needs)
- 11 mg/day for men age from 14-18 years.
- 15 mg/day for women age from 14-18 years.
- 8 mg/day for men from 19 and older.
- 18 mg/day for women from 19 to 50.

Functions of iron in the body

- iron is an essential component of proteins involved in oxygen transport.
- It is also essential for the regulation of cell growth and differentiation.
- It is important to the function of many enzymes involved in the body's energy generation system.
- Iron is stored in spleen, bone marrow and liver.

Iron deficiency

- The World Health Organization considers iron deficiency the number one nutritional disorder in the world.
- Around 80% of the world's population may be iron deficient, while 30% may have iron deficiency anemia.
- Iron deficiency develops gradually.
- Iron deficiency anemia is an advanced stage of iron depletion.
- It is characterized by small RBC's and pale in color.

- It occurs when storage sites of iron are deficient and blood levels of iron cannot meet daily needs.
- Blood hemoglobin levels are below normal with iron deficiency anemia.
- Physicians often measure serum ferritin, the storage form of iron.
- A serum ferritin level less than or equal to 15 micrograms per liter confirms iron deficiency anemia in women, and suggests a possible need for iron supplementation.
- Iron deficiency anemia can be associated with low dietary intake of iron, inadequate absorption of iron, or excessive blood loss.

Individuals who may at a risk of developing iron deficiency anemia:

- a. Women of childbearing age.
- b. pregnant women.
- c. preterm and low birth weight infants.
- d. older infants, toddlers and teenage girls.
- e. Women with heavy menstrual losses.
- f. kidney failure patients, especially those being treated with dialysis.
- g. vitamin A deficiency.
- h. GIT problems.

Signs of iron deficiency anemia

- 1- Feeling tired and weak.
- 2- Heart palpitations on exertion.
- 3- Irritability.
- 4- Pale in appearance.
- 5- Inflammation of lips and tongue.
- Iron supplements may be recommended to the above mentioned groups of individuals.

- Supplemental iron is available in two forms: ferrous and ferric.
- Ferrous iron salts (ferrous fumarate, ferrous sulfate, and ferrous gluconate) are the best absorbed forms of iron supplements.
- iron supplement is usually taken in two or three equally spaced doses.
- Iron from enteric coated or delayed-release preparations may have fewer side effects, but is not as well absorbed and not usually recommended.

Individuals who should not take iron supplements:

- 1- People with normal level of iron (old men and postmenopausal women).
- 2- People with hemochromatosis.
- 3- Individuals with blood disorders that require frequent blood transfusions.

Iron toxicity

- There is considerable potential for iron toxicity because very little iron is excreted from the body.
- In children, death has occurred from ingesting 200 mg of iron.
- It is important to keep iron supplements tightly capped and away from children's reach.
- Doses of iron prescribed for iron deficiency anemia in adults are associated with constipation, nausea, vomiting, and diarrhea, especially when the supplements are taken on an empty stomach.