Consider these values a sample:

2 1 4 3 5

- 1. Compute the mean, median, and mode.
- 2. Compute range, mean deviation, variance, and standard deviation.

Mean = $(2+1+4+3+5)/5 = 3 = \overline{x}$

To compute the median data should be arranged in ascending order first:

1 2 3 4 5

Median is the value in the middle if the number of values odd, median = 3, no mode here.

Range = largest value – smallest value = 5 - 1 = 4

х	x- mean	Abs(x-mean)
2	-1	1
1	-2	2
4	1	1
3	0	0
5	+2	2
total		6

Mean deviation = (6/5) = 1.2

х	x- mean	(x-mean)^2
2	-1	1
1	-2	4
4	1	1
3	0	0
5	+2	4
total		10

Variance =(10/(5-1)) = (10/4) = 2.5

Standard deviation = square root of variance = $\sqrt{var \ iance} = \sqrt{2.5} = 1.58$.

We have the following data:

2 1 4 3 5 4

- 1. Compute the mean, median, and mode.
- 2. Compute range, mean deviation, variance, and standard deviation.

Mean = $(2+1+4+3+5+4)/5 = 3.173 = \overline{x}$

To compute the median data should be arranged in ascending order first:

1 2 3 4 4 5

Median is the sum of the two values in the middle divided by 2 if the number of values even, median = (3+4)/2 = 3.5

mode is the most frequent value = 4

Range = $\max - \min = 5 - 1 = 4$

x- mean	Abs(x-mean)
-1.17	1.17
-2.17	2.17
0.83	0.83
-0.17	0.17
+1.83	1.83
0.83	0.83
	7
	x- mean -1.17 -2.17 0.83 -0.17 +1.83 0.83

Mean deviation =
$$\frac{\sum |x - x|}{n}$$
 = (7/6) = 1.17

х	x- mean	(x-mean)^2
2	-1.17	4.7089
1	-2.17	1.3689
4	0.83	0.0289
3	-0.17	0.6889
5	+1.83	0.6889
4	0.83	3.3489
total		10.8334
$\sum ()$		

Variance =
$$\frac{\sum (x-x)}{n-1}$$
 = (10.8334/(6-1)) = (10.8334/5) = 2.17

Standard deviation = square root of variance = $\sqrt{\text{var} iance} = \sqrt{2.17} = 1.47$

Consider these values a sample:

15	16	14	13	15	14	22
25	27	29	31	33	35	36
37	38	39	42	45	49	52

55

1. Compute the mean and median

Mean = 31= \overline{x} , median = 32

2. Organize the data using stem-and-leaf diagram.

The following is stem- and-leaf diagram:

```
1|3 4 4 5 5 6
2|2 5 7 9
3|1 3 5 6 7 8 9
4|2 5 9
5|2 5
```

1. Compute the mean and median

Mean = 31= \overline{x} , median = 32

Consider these values a sample:

15	16	14	13	15	14	22
25	27	29	31	33	35	36
37	38	39	42	45	49	52
55						

1. Compute the mean, mode, median Mean = $31 = \overline{x}$, median = 32

2. Show that
$$\sum (x - \overline{x}) = 0$$

х	$x - \overline{x}$
15	-16
16	-15
14	-17
13	-18
15	-16
14	-17
22	-9
25	-6
27	-4
29	-2
31	0
33	2
35	4
36	5
37	6
38	7
39	8
42	11
45	14
49	18
52	21
55	24
	$\sum (x - \overline{x}) = 0$

3. Compute the range

Range = (Max - Min) = 55 - 13 = 42

4. Compute the variance and the standard deviation

Variance = 172.76 , Standard deviation = square root of variance =

 $\sqrt{\text{var iance}} = \sqrt{172.76} = 13.14$

Compute the values corresponding to the first, second, and third quartiles
 To compute the required values we need to order the values from the smallest to
 the largest.

13	14	14	15	15	16	22
25	27	29	31	33	35	36
37	38	39	42	45	49	52
55						

L25 is the loca on of the first quartile, $L25 = (n+1)\frac{p}{100} = L25 = (22+1)\frac{25}{100} = 8$

The value that corresponds to location 8 is 25. The first quar le = 25.

L50 is the loca on of the first quartile, $L50 = (n+1)\frac{p}{100} = L50 = (22+1)\frac{50}{100} = 11.5$

The value that corresponding to location 11.5 is between 31 and 33. $\frac{31+33}{2} = 32$,

the median = second quar le = 32

L75 is the loca on of the third quartile, $L75 = (n+1)\frac{p}{100} =$

$$L75 = (22+1)\frac{75}{100} = 17.25$$

The value that corresponding to location 17.25 is between 39 and 42. The value that corresponds to location 17 is 39. We add 0.25(42 - 39) to 39:

39 + 0.25(42 - 39) = 39 + 0.75 = 39.75. So the value that corresponding to loca on 17.25 is 39.75. The third quar le = 39.75.

6. Compute the second decile and the 67th percentile.

L20 is the loca on of the second decile, $L20 = (n+1)\frac{p}{100} = L20 = (22+1)\frac{20}{100} = 4.6$

The value that corresponding to loca on 4.6 is between 15 and 15. The value that corresponds to location 4 is 15. We add 0.6(15 - 15) to 15: 15 + 0.6(15 - 15) = 15. So the value that corresponding to location 4.6 is 15. The second decile = 15.

L67 is the location of the 67th percentile, $L67 = (n+1)\frac{p}{100} =$

$$L67 = (22+1)\frac{67}{100} = 15.41$$

The value that corresponding to location 15.41 is between 37 and 38. The value that corresponds to location 15 is 37. We add 0.41(38 - 37) to 37: 37 + 0.41(38 - 37) = 37.41 So the value that corresponding to location 15.41 is 37.41. The 67th percentile = 37.41.

Consider the following information a sample:

15	16	14	13	15	14	22
25	27	29	31	33	35	36
37	38	39	42	45	49	52
55						

The information to be organized into frequency distribution

- 1. How many classes (k) would you recommend?
- $k^2 > n$, $2^5 > 32$, k = 5 classes I would recommend.
- 2. What class interval (i) would you suggest (class interval = class width = i)?

 $i \ge \frac{H-L}{k} = \frac{55-13}{5} = 8.4$, H = the largest value, L = the smallest value.

I can suggest 8.4, 8.5, 9, or 10, I would suggest 10.

3. What lower limit you recommend for the first class?

I recommend 10 so the first class would be (10 - 20).

4. Organize the information into a frequency distribution and determine the frequency distribution, the relative frequency distribution, the cumulative frequency distribution, and the relative cumulative frequency distribution.

		Relative	Cumulative	Cumulative Relative
class	Frequency	Frequency	Frequency	Frequency
10 - 20	6	0.27	6	0.27
20 - 30	4	0.18	10	0.45
30 - 40	7	0.32	17	0.77
40 - 50	3	0.14	20	0.91
50 - 60	2	0.09	22	1.00
Total	22	1		

5. Draw the histogram

We have the following histogram:

- 1. How many classes? 5 classes
- 2. What is the class interval (class width)? 10.
- 3. What is the lower limit for the first class? 10
- 4. What is the midpoint of the first class?
- 5. What is the frequency of the first class?
- 6. What is the relative frequency of the first class? (6/22) = 0.27