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In Ben Slimane and Ben Braiek (2012) and Ben Slimane (2012), we found 
characterizations of the pointwise and uniform directional regularities of a multi-
parameter function in terms of decay rates of either anisotropic Triebel wavelet 
coefficients or continuous Calderón anisotropic wavelet transform. The purpose of 
this paper is twofold. We first use a result of Kamont (1996) to provide an easier 
criterium of uniform directional Lipschitz regularity by decay conditions on the 
coefficients of the function in a tensor product Schauder basis. As a consequence, 
we deduce the characterization of the local critical directional Lipschitz regularity. 
We apply our results for both multidimensional parameter fractional Wiener field in 
R

d and Sierpinski cascade function. We then obtain criteria of pointwise directional 
Lipschitz regularity by decay conditions on either two progressive difference in the 
given direction or the coefficients of the function in a tensor product Schauder basis.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The well known pointwise, uniform and local Hölder regularities of a d-parameter function can be char-
acterized by either isotropic wavelet transform or isotropic wavelet (or spline) bases (see [21,28,30]). For 
d ≥ 2, such regularities are isotropic and uniform in all directions.

However many images have various anisotropic and directional regularity behaviors which are important 
for detection of edges, efficient image compression, turbulence, analysis and synthesis of clouds, of bones, 
or more generally, in medical image processing, for tracking contours (see [3,5,11,12,17,22,29,33,34,36]). 
Anisotropic behaviors are also important in medical imaging (osteoporosis, muscular tissues, mammogra-
phies, etc.), hydrology, fracture surfaces analysis (see [10,11,15,32]).
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A wide range of directional transform ideas have been proposed. Let us cite among them ‘Steerable 
Pyramids’ and ‘Cortex Transforms’ which were developed in the 1980’s by vision researchers (Adelson, 
Freeman, Heeger, and Simoncelli [34] and Watson [36]) to offer increased directional representativeness. 
Extensions of wavelet bases which can be elongated in particular directions were considered. They include 
the ridgelets of Candes and Donoho, see [12], or the bandelets of Mallat, see [29], but are efficient with 
singularities along lines, along hyperplanes, etc, for which wavelets do not deal with efficiently.

An increasing interest in non-isotropic models and semi-elliptic equations has recently turned attention 
to large classes of anisotropic Besov spaces. Clausel and Vedel [13] studied the sample paths properties 
of anisotropic selfsimilar Gaussian fields in anisotropic Besov spaces in the case where the anisotropy is a 
linear mapping of Rd with eigenvalues having positive real part, in particular, they proved that smoothness 
in these Besov spaces may be deduced from anisotropy. Anisotropic Besov spaces have played a central role 
in the mathematical modeling of anisotropic textures. They also have been used to study some PDEs see 
[35] and for the study of semi-elliptic pseudo-differential operators whose symbols have different degrees of 
smoothness along different directions see [2].

To our knowledge, the natural definition of pointwise anisotropic regularity which allows for an anisotropic 
wavelet characterization was first introduced by Ben Slimane [7] in order to investigate the multifractal 
properties of anisotropic selfsimilar functions. To take into account pointwise directional regularity, Jaffard 
[22] extended this definition and obtained a characterization by a necessary condition using mixture of 
anisotropic wavelets and Gabor transform.

The pointwise or uniform Hölder regularity of a d-parameter function in a given direction is the regularity 
of traces of f taken over 1-dimensional subspace R × {0}d−1, which is a set of vanishing d-dimensional 
Lebesgue measure. One thought that we cannot characterize pointwise and uniform Lipschitz regularity 
from d dimensional wavelet coefficients (or transform) of f .

In [33], using curvelet and Hart Smith transforms, Sampo and Sumetkijakan have obtained the pointwise 
and uniform Hölder regularity on Rd in a given direction by different necessary and sufficient conditions 
(due to a parabolic scaling).

But in [9], the relationship between anisotropic regularity and both pointwise and uniform directional 
Hölder regularities has been established. Full characterizations for pointwise and uniform anisotropic regu-
larities were obtained in:

• [6,9] where Ben Slimane and Ben Braiek have used Triebel anisotropic wavelet bases,
• [7,8], where Ben Slimane has used continuous Calderón anisotropic wavelet transform,
• [1], where Abry, Clausel, Jaffard, Roux and Vedel have used DeVore, Konyagin, and Temlyakov hyper-

bolic wavelet bases [16].

All these allowed anisotropic criteria to characterize the critical pointwise and uniform Hölder regularity in 
a given direction (see [6,8,9]).

Note that Calderón wavelet transform (resp. Triebel basis) is tailored to a specific anisotropy that allows 
different dilations factors related to the fixed anisotropy as opposed to the classical transform (resp. wavelet 
basis) that relies on a single isotropic dilation factor. On the contrary, hyperbolic wavelet bases are tensor 
products of one-dimensional wavelets, allowing different dilations factors in all directions. Thus, hyperbolic 
wavelet bases contain all possible anisotropies. There exist many senses for anisotropy, but here, the sense 
taken corresponds to different dilations factors.

In this paper, we aim to avoid to pass through anisotropies. We will only focus on Lipschitz regularity 
(i.e., Hölder regularity less than 1). Note that in signal processing, regularity is often less than 1. In order 
to study the local properties of a multidimensional parameter fractional Wiener field in Rd, Kamont [25]
(resp. [24]) considered some generalized Lipschitz (resp. Hölder) classes described in terms of moduli of 
smoothness, and characterized these classes by the coefficients of the function in a tensor product Schauder 



498 M. Ben Slimane et al. / J. Math. Anal. Appl. 460 (2018) 496–515
(resp. Franklin) basis. The comprehension of this result is actually the starting point which led us to this 
paper. We think that, using again the previous Kamont article [24], our techniques can be applied for 
regularities larger than 1 but we do not pursue this here, because the coefficients in the tensor product of 
Franklin system of sufficiently high order are complicated (see [24]), since the Franklin system is obtained 
by the Gram–Schmidt orthonomalization in L2, of iterated integrations of Schauder functions.

Alternatively, if the studied function f is continuously differentiable of order up to N , then our results 
remain valid for all derivatives of f of order N .

In section 2, we recall the definitions of pointwise, local, uniform, anisotropic and Lipschitz directional 
regularities. We provide various comparisons between them and recall main previous results (given in the 
Lischitz setting). In section 3, we prove a new characterization of the critical uniform directional Lipschitz 
regularity in terms of decay conditions on the coefficients of the function f itself in a tensor product Schauder 
basis. We then deduce the characterization of the local directional Lipschitz regularity. In section 4, we apply 
our results for both the multidimensional parameter fractional Wiener field in Rd and the Sierpinski cascade 
function (which can modelize turbulence or cascades). Finally, in section 5, we obtain criteria of pointwise 
directional Lipschitz regularity by decay conditions on either two progressive difference in the given direction 
or the coefficients of the function in a tensor product Schauder basis.

2. Definitions, equivalences and previous results

Let d be a positive integer and Ω be a subset of Rd with non-empty interior. We denote by C(Ω) the 
space of continuous d-parameter functions f : Ω → R.

Definition 1. Let 0 < α < 1 and f ∈ C(Ω). Let y ∈ Ω. We say that f is pointwise Lipschitz regular with 
exponent α at y, denoted by f ∈ Cα(y), if there exists a positive constant C such that

|f(x) − f(y)| ≤ C|x− y|α ∀ x ∈ Ω . (1)

The critical pointwise Lipschitz regularity of f at y is

αp(y) = sup{0 < α < 1 : f ∈ Cα(y)} . (2)

If C in (1) is independent of y ∈ Ω, then f is uniformly Lipschitz regular with exponent α on Ω, and we 
write that f ∈ Cα(Ω). The critical uniform Lipschitz regularity of f on Ω is

α(Ω) = sup{α ∈ (0, 1) : f ∈ Cα(Ω)} . (3)

We say that f is uniformly Lipschitz regular on Ω if α(Ω) > 0.
If N < α < N + 1, then we say that f ∈ Cα(Ω), if all derivatives of f of order N belong to Cα−N (Ω).

We can also define a critical local Lipschitz regularity at a point y through a localization of the critical 
uniform Lipschitz regularity (see [28]); let (Ωi(y))i∈N be open sets of Rd such that Ωi+1(y) ⊂ Ωi(y) and ⋂

i Ωi(y) = {y}. The critical local Lipschitz regularity of f at y is

αl(y) = supα(Ωi(y)) = lim
i→∞

α(Ωi(y)) . (4)

It is easy to show that αl(y) does not depend on the choice of the family (Ωi(y))i∈N.
In practice, most methods for estimating the critical pointwise Lipschitz regularity αp(y) make implicitly 

or explicitly the assumption that is equal to αl(y). The domain of validity of this equality has been studied 
in [28].
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The exponent αl(y) and its evolution in “time” are a relevant tool for characterizing or processing signals 
(see [27]). Moreover, the critical local Lipschitz regularity is also sensitive to oscillating behavior near the 
point; if 0 < α < 1, then for cusp-like singularities, such as |x − y|α, both αp(y) and αl(y) coincide and 
are equal to α, however, for very oscillatory behaviors, such as |x − y|α sin(1/|x − y|γ) for γ > 0, we have 
αp(y) = α but αl(y) = α/(1 +γ). The latest functions are the most simple examples of chirps at y. In signal 
analysis, this notion is expected to give a model for functions whose ‘instantaneous frequency’ increases fast 
at some time (see [23]).

Let ψ(r), r = 1, · · · , 2d − 1, be wavelets in Cτ (Rd) such that the 2dj/2ψ(r)(2jx − n), r = 1, · · · , 2d − 1, 
j ∈ Z, n ∈ Z

d, form an orthonormal basis of L2(Rd) (see [14,30]). Write

f(x) =
2d−1∑
r=1

∑
j∈Z

∑
n∈Zd

C
(r)
j,k ψ(r)(2jx− n) (5)

where

C
(r)
j,n = 2dj

∫
Rd

f(x) ψ(r)(2jx− n) dx . (6)

We have the following wavelet characterization of the critical pointwise (resp. uniform Lipschitz regularity 
of f on Rd) (see [30]);

αp(y) = min
(

1, lim inf
j→∞

inf
Ej

log |C(r)
j,n|

log(2−j + |y − n2−j)|

)
(7)

and

α(Rd) = min
(

1, lim inf
j→∞

inf
Ej

log |C(r)
j,n|

log(2−j)

)
, (8)

where Ej is the set of all (n, r).
If Ω is a bounded open set, then one uses Daubechies wavelets. We have the following wavelet character-

ization of the critical uniform Lipschitz regularity of f on Ω (see [30]);

α(Ω) = min
(

1, lim inf
j→∞

inf
Ej(Ω)

log |C(r)
j,n|

log(2−j)

)
, (9)

where Ej(Ω) is the set of all (n, r) such that the support of ψ(r)(2jx −n) is included in Ω. This leads to the 
following characterization

Proposition 1. We have

αl(y) = min
(

1, sup
i∈N

lim inf
j→∞

inf
Ej(Ωi(y))

log |C(r)
j,n|

log(2−j)

)
. (10)

Remark 1. The previous characterizations hold if wavelets are in Cτ(Rd) with τ > 1 and the left hand terms 
in both (8) and (10) are smaller than τ .

We can also replace the above wavelet basis by spline wavelet basis of order 1, i.e., an orthonormal wavelet 
basis (or a set of two biorthogonal bases) such that ψ is Lipschitz of order 1, for example the Schauder 
basis. This basis will be recalled in the next section.
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If d ≥ 2 then Definition 1 is isotropic and uniform in all directions. To take into account anisotropic 
pointwise regularity, Ben Slimane introduced the following definition in [7].

Definition 2. Let u = (u1, · · · , ud) ∈ R
d be such that

0 < u1 ≤ · · · ≤ ud and u1 + · · · + ud = d . (11)

Let 0 < α < u1 and f ∈ C(Ω). Let B = (e1, · · · , ed) be an orthonormal basis of Rd. We say that f is 
u-pointwise Lipschitz regular with exponent h at a point y ∈ Ω with respect to (we will write w.r.t.) the 
basis B of Rd, denoted by f ∈ Cα

u (y, B), if there exists a constant C > 0 such that

|f(y +
d∑

i=1
tiei) − f(y)| ≤ C

d∑
i=1

|ti|α/ui ∀ y +
d∑

i=1
tiei ∈ Ω . (12)

The critical u-pointwise Lipschitz regularity of f at y w.r.t. B is defined as

αu,p(y,B) = sup {α ∈ (0, u1) : f ∈ Cα
u (y,B)} . (13)

f is u-uniformly Lipschitz with exponent α on Ω, w.r.t. B, denoted by f ∈ Cα
u (Ω, B), if (12) holds for any 

y ∈ Ω with C uniform. The critical u-uniform Lipschitz regularity of f on Ω w.r.t. B is defined as

αu(Ω,B) = sup {α ∈ (0, u1) : f ∈ Cα
u (Ω,B)} . (14)

Note that if u = (1, · · · , 1), then we return to the isotropic setting.
Full characterizations for αu,p(y, B) and αu(Rd, B) were obtained in:

• [6,9] where Ben Slimane and Ben Braiek have used Triebel anisotropic wavelet bases,
• [7], where Ben Slimane has used continuous Calderón anisotropic wavelet transform,
• [1], where Abry, Clausel, Jaffard, Roux and Vedel have used DeVore, Konyagin, and Temlyakov hyper-

bolic wavelet bases.

Note that Calderón wavelet transform (resp. Triebel basis) is tailored to the specific anisotropy u; roughly 
speaking it allows dilations factors 1/a, (1/a)u2/u1 , · · · , (1/a)ud/u1 (resp. about 2[ju1], · · · , 2[jud]) in directions 
e1, · · · , ed as opposed to the classical transform (resp. wavelet basis) that relies on the single 1/a (resp. 2j) 
isotropic dilation factor. On the contrary, hyperbolic wavelet bases are tensor products of one-dimensional 
wavelets, allowing different dilations factors 2j1 , · · · , 2jd in directions e1, · · · , ed. Thus, hyperbolic wavelet 
bases contain all possible anisotropies.

To take into pointwise directional pointwise regularity, Jaffard [22] extended Definition 2 in the following 
way.

Definition 3. Let f ∈ C(Ω) and −→α = (α1, · · · , αd) where 1 > α1 ≥ · · · ≥ αd > 0. Let B = (e1, · · · , ed) be 
an orthonormal basis of Rd. We say that f is pointwise Hölder Lipschitz with exponent −→α at a point y ∈ Ω
w.r.t. B, denoted by f ∈ C

−→α(y, B), if there exists a constant C > 0 such that

|f(y +
d∑

i=1
tiei) − f(y)| ≤ C

d∑
i=1

|ti|αi ∀ y +
d∑

i=1
tiei ∈ Ω (15)

We say that f is uniformly Lipschitz regular with exponent −→α on Ω, w.r.t. B, denoted by f ∈ C
−→α(Ω, B), if 

(15) holds for all y in Ω with uniform constant C.
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Jaffard [22] has characterized C
−→α(y, B) by a necessary condition using mixture of wavelets and Gabor 

transform.

Remark 2. The last definition can be understood as an anisotropic exponent where the anisotropy is defined 
as it is usually done for anisotropic functional spaces; let −→α = (α1, . . . , αd) where 1 > α1 ≥ · · · ≥ αd > 0.

Let

1
α̃

= 1
d

d∑
i=1

1
αi

. (16)

The anisotropy indices for 1 ≤ i ≤ d defined as

ui = α̃

αi
(17)

satisfy (11). It is also clear that 0 < α̃ < u1. We have

f ∈ C
−→α(Ω,B) ⇔ f ∈ Cα̃

u (Ω,B) (18)

and

f ∈ C
−→α(y,B) ⇔ f ∈ Cα̃

u (y,B) . (19)

The previous definition of Jaffard is connected to the notion of directional Lipschitz regularity.

Definition 4. Let 0 < α < 1 and f ∈ C(Ω). Let e be a fixed vector in the unit sphere Sd−1. Let y ∈ Ω.
We say that f is pointwise Lipschitz regular with exponent α at y, in direction e, denoted by f ∈ Cα(y, e), 

if there is C > 0 such that

|f(y + te) − f(y)| ≤ C|t|α ∀ y + te ∈ Ω . (20)

The critical pointwise Lipschitz regularity of f at y in direction e is

αp(y, e) = sup{0 < α < 1 : f ∈ Cα(y, e)} . (21)

If C is independent of y ∈ Ω, then f is uniformly Hölder Lipschitz with exponent α on Ω in direction e, 
denoted by f ∈ Cα(Ω, e). The critical uniform Lipschitz regularity of f on Ω in direction e is

α(Ω, e) = sup{α ∈ (0, 1) : f ∈ Cα(Ω, e)} . (22)

f is uniformly Lipschitz regular on Ω in direction e if α(Ω, e) > 0.

Remark 3. For y ∈ Ω, let fy,e denotes the 1 variable function t 	→ f(y + te). Then the critical uniform 
Lipschitz regularity on Ω in direction e expresses how globally “spiky” the graph of fy,e is, uniformly on 
y ∈ Ω. This makes the use of (8) or (9) very hard since we have to take wavelet coefficients of all functions 
fy,e, where y ∈ Ω.

Remark 4. Let e1 be a fixed vector in the unit sphere Sd−1. Let B denotes any orthonormal basis of Rd

starting with e1. If f is uniformly Lipschitz regular on Ω then

α(y, e1) = sup{α1 ∈ (0, 1) : ∃ε > 0 ; f ∈ C
−−−−−−−−−→
(α1,ε,··· ,ε)(y,B)} (23)
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and

α(Ω, e1) = sup{α1 ∈ (0, 1) : ∃ε > 0 ; f ∈ C
−−−−−−−−−→
(α1,ε,··· ,ε)(Ω,B)} . (24)

The lower bound follows from the fact that if f ∈ C
−−−−−−−−−→
(α1,ε,··· ,ε)(y, B) (resp. f ∈ C

−−−−−−−−−→
(α1,ε,··· ,ε)(Ω, B)) then 

f ∈ Cα1(y, e1) (resp. f ∈ Cα1(Ω, e1)), and the upper bound follows from the fact that if f ∈ Cα1(y, e1)
(resp. f ∈ Cα1(Ω, e1)) and f ∈ Cδ(Ω) then f ∈ C

−−−−−−−−→
(α1,δ,··· ,δ)(y, B) (resp. f ∈ C

−−−−−−−−→
(α1,δ,··· ,δ)(Ω, B)) because

|f(y +
d∑

i=1
tiei)) − f(y)| ≤ |f(y +

d∑
i=1

tiei)) − f(y + t1e1)| + |f(y + t1e1) − f(y)|

≤ C|t1|α1 + C(|t2|δ + · · · + |td|δ) .

Remark 5. Clearly

f ∈ C
−→α(y,B) ⇒ ∀ i ∈ {1, · · · , d} f ∈ Cαi(y, ei) , (25)

and by triangle inequality,

f ∈ C
−→α(Ω,B) ⇔ ∀ i ∈ {1, · · · , d} f ∈ Cαi(Ω, ei) . (26)

Remark 6. In [11], using triangular inequality, Bonami and Estrade have proved that if there exists e0 such 
that 0 < α(Ω, e0) < 1 then the map e 	→ α(Ω, e) takes at most d different values. Moreover, it is constant 
except, perhaps, on the intersection of unit sphere Sd−1 with a subspace of dimension at most d − 1 where 
it may take larger values.

In [33], using curvelet and Hart Smith transforms, Sampo and Sumetkijakan have obtained the pointwise 
and uniform Lipschitz regularity on Rd in a given direction e by different necessary and sufficient conditions 
(due to a parabolic scaling).

In [6,9], Ben Slimane and Ben Braiek used anisotropic Triebel bases to characterize the critical pointwise 
and uniform Lipschitz regularity in a given direction e.

Using Remark 2, the relationship between critical pointwise (resp. uniform) Lipschitz regularity of the 
trace of f in direction e1 at y (resp. on Rd) and anisotropic regularity has been established in [8,9].

Proposition 2. Let B denotes any orthonormal basis of Rd starting with e1. Let E be the set of all u satisfying 
(11) and u1 = · · · = um. If f is uniformly Lipschitz on Rd then

α(y, e1) = sup
u∈E

(
αu,p(y,B)

u1

)
(27)

and

α(Rd, e1) = sup
u∈E

(
αu(Rd,B)

u1

)
. (28)

In this paper, we aim to avoid to pass through anisotropies. We will instead characterize both critical 
pointwise and uniform Lipschitz regularity of the trace of f in the direction e1 on Ω directly in terms of 
decay conditions for the coefficients of the function f itself in a tensor product Schauder basis. Our new 
results are easier than previous ones.
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3. Criteria of uniform directional Lipschitz regularity on a tensor product Schauder basis

Since we will use a Kamont result [25], we follow the same notations. Let I = [0, 1] and f ∈ C(Id). For 
t ∈ R and y ∈ Id, define the difference in direction e by the standard formula

Δt,ef(y) =
{

f(y + te) − f(y) if y + te ∈ Id,

0 if y + te /∈ Id.
(29)

Let ei = (δ1,i, · · · , δd,i) denotes the i-th coordinate vector in Rd. For f : Id → R, t ∈ R, the progressive 
difference in direction ei is defined by Δt,eif . From now on, we will write Δt,if instead of Δt,eif .

We need some notations; denote by D the set {1, · · · , d}. Let A ⊂ D. Let a = (a1, · · · , ad) and b =
(b1, · · · , bd) be two vectors of Rd. Put |a| = |a1| + · · ·+ |ad|. Put a(A) = (ã1, · · · , ̃ad) where ãi = ai if i ∈ A, 
and ãi = 0 if i /∈ A. Write a ≤ b if ai ≤ bi for all i ∈ D, and a < b if ai < bi for all i ∈ D. Finally, write 

ab =
d∏

i=1
abii . Let also 0 and 1 denote respectively the vectors (0, · · · , 0) and (1, · · · , 1) in Rd.

For h = (h1, · · · , hd) ∈ R
d and A = {i1, · · · , ik} ⊂ D we set

Δh,Af = Δhi1 ,i1
◦ · · · ◦ Δhik

,ikf . (30)

Clearly

Δhi,i ◦ Δhj ,jf = Δhj ,j ◦ Δhi,if . (31)

For f ∈ C(Id), define the moduli of smoothness in the directions A as

ωA(f, t) = sup
0<h≤t

sup
y∈Id

|Δh,Af(y)| for t ∈ R
d, 0 < t ≤ 1 . (32)

Remark 7. Clearly f ∈ Cβi(Id, ei) is equivalent to ω{i}(f, t) = O(tβi

i ), i.e., there exists C > 0 such that 
ω{i}(f, t) ≤ Ctβi

i when ti → 0.

Let β = (β1, · · · , βd), with 0 < β < 1. For t = (t1, · · · , td), define

ωβ(t) =
d∏

i=1
tβi

i . (33)

For a function g given on Id, A ⊂ D, and t ∈ Id, define

g(t;A) = g(t(A) + 1(D \A)) . (34)

In [25], Kamont considered the following spaces described in terms of moduli of smoothness;

Lip(β) = {f ∈ C(Id) : ∀(∅ �= A ⊂ D) ωA(f, t) = O(ωβ(t;A))} (35)

where O(t(A)) refers to min(ti : i ∈ A) → 0.
We first show the relationship between these spaces and uniform directional Lipschitz regularity in all 

directions.
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Proposition 3.

1. If f ∈ Lip(β), then f ∈ Cβi(Id, ei) for all i ∈ D.
2. Conversely, if f ∈ Cβi(Id, ei) for all i ∈ D, then

∀ 0 < θ = (θ1, · · · , θd) with |θ| ≤ 1 f ∈ Lip(θ1β1, · · · , θdβd) . (36)

Proof of Proposition 3.

1. Let i ∈ D. If f ∈ Lip(β), then ω{i}(f, t) = O(tβi

i ). The result follows from Remark 7.
2. Conversely, assume that f ∈ Cβi(Id, ei) for all i ∈ D. Let A ⊂ D be non-empty. Write A = {i1, · · · , ik}, 

we have Δh,Af = Δhi1 ,i1
g where g = Δhi2 ,i2

◦ · · · ◦ Δhik
,ikf . Since f ∈ Cβi1 (Id, ei1) and g is a linear 

combination of translated copies of f , then ωA(f, t) = O(tβi1
i1

). Similarly, using property (31), we have 

ωA(f, t) = O(tβil
il

) for all 2 ≤ l ≤ k. On the other hand, since f ∈ C(Id) then f is bounded and 
ωA(f, t) = O(1) for all k + 1 ≤ l ≤ d.
Therefore (36) holds. �

We will first be interested in the characterization of the critical uniform Lipschitz regularity of f on Id in 
a given direction e in terms of decay conditions for the coefficients of f in a tensor product Schauder basis.
Without any loss of generality, we can assume that e = e1, because we can take B starting with e and take 
coordinates on B.

Using the partial ordering property

Lip(β) ⊂ Lip(β′) ∀ β′ ≤ β , (37)

we introduce the following definition as a substitute for α(Id, e1)

Definition 5. The uniform Lipschitz exponent of f in Id in the direction e1 is

α̃(Id, e1) = sup {β1 ∈ (0, 1) : ∃0 < ε < 1 f ∈ Lip(β1, ε, · · · , ε)} . (38)

We will show the following proposition

Proposition 4.

1. If α(Id, e1) = 0 then α̃(Id, e1) = 0.
2. We have always

α̃(Id, e1) ≤ α(Id, e1) . (39)

3. If f is uniform Lipschitz on Id then α̃(Id, e1) = α(Id, e1).

Proof of Proposition 4.

1. The first result is a consequence of the first part of Proposition 3.
2. The second result follows from the second part of Proposition 3.
3. Assume that f ∈ Cδ(Id) for 0 < δ < 1. Clearly f ∈ Cδ(Id, ei) for all i ∈ D and α(Id, e1) ≥ δ. 

Let β1 < α(Id, e1). Since f ∈ Cβ(Id, e1), then the second result in Proposition 3 implies that f ∈



M. Ben Slimane et al. / J. Math. Anal. Appl. 460 (2018) 496–515 505
Lip((1 − (d − 1)θ)β1, θδ, · · · , θδ) for all 0 < θ ≤ 1
d− 1 . Therefore by letting θ tends to 0, we obtain 

α̃(Id, e1) ≥ α(Id, e1). �
In [24,25], Kamont characterized the space Lip(β) in terms of decay conditions for the coefficients of f

in a tensor product Schauder basis.
Let {φk, k ≥ 0} be the following Schauder functions on I, i.e. φ0 = 1, φ1(t) = t, and for k ≥ 2, 

k = 2j + n with j ≥ 0 and 1 ≤ n ≤ 2j , φk(t) = φ(2j+1t − 2n + 1) (with support [(n − 1)2−j , n2−j ]), where 
φ(t) = max(0, 1 − |t|) (the so-called Schauder function).

In Rd, with d ≥ 2, we consider the family {Φk, k ≥ 0} of tensor products of Schauder functions, i.e. 
Φk(x) = φk1(x1) · · ·φkd

(xd) for k = (k1, · · · , kd).
For j ∈ M = {−2, −1, 0, 1, 2, · · · }, let

Ñ−2 = {0}, Ñ−1 = {1}, and Ñj = {2j + n : n = 1, · · · , 2j} for j ≥ 0 (40)

and for a vector j = (j1, · · · , jd) we put

Ñj = Ñj1 × · · · Ñjd . (41)

Let for f ∈ C(Id), i ∈ D, x ∈ Id and k ≥ 0

ci,0(f)(x) = f(x− xiei) , ci,1(f)(x) = f(x + (1 − xi)ei) − f(x− xiei) , (42)

and for k = 2j + n ∈ Ñj with j ≥ 0

ci,k(f)(x) = f(x + (2n− 1
2j+1 − xi)ei) −

1
2(f(x + (n− 1

2j − xi)ei) + f(x + ( n2j − xi)ei)). (43)

For k = (k1, · · · , kd) we put

Ck(f) = c1,k1 ◦ · · · ◦ cd,kd
(f) . (44)

Then for any f ∈ C(Id) we have

f =
∑

j∈Md

∑
k∈Ñj

Ck(f)Φk . (45)

In 
∑

j∈Md we assume the following order: for j = (jl, ..., jd) and j′ = (j′l , ..., j′d), if max(j1, ..., jd) <
max(j′1, ..., j′d), then j precedes j′.

For f given by (45) we put

τj(f) = sup
k∈Ñj

|Ck(f)| . (46)

The following wavelet characterization of spaces Lip(β) is due to Kamont [25]:

Proposition 5. Let

tj = (2− max(j1,0), · · · , 2− max(jd,0)) . (47)

Then, for 0 < β < 1,

f ∈ Lip(β) ⇔ τj(f) = O(ωβ(tj)) as |j| → ∞ . (48)
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Thanks to Proposition 4, the last result leads to the following characterization

Theorem 1. If f is uniform Lipschitz on Id, then

α(Id, e1) = sup
{
β1 ∈ (0, 1) : ∃0 < ε < 1 τj(f) = O(ω(β1,ε,··· ,ε)(tj))

}
= min

(
1, lim inf

|j|→∞

log τj(f)
log(2− max(j1,0))

)
.

Analogously, for 1 ≤ i ≤ d

α(Id, ei) = min
(

1, lim inf
|j|→∞

log τj(f)
log(2− max(ji,0))

)
. (49)

Using result (26), we also deduce that f ∈ C
−→α(Id, B) for all −→α with αi < min

(
1, lim inf

|j|→∞

log τj(f)
log(2− max(ji,0))

)
for all i ∈ {1, · · · , d}.

We can define a critical local directional Lipschitz regularity at a point y through a localization of the 
critical uniform directional Lipschitz regularity; let (Ωi(y))i∈N be open sets of Rd such that Ωi+1(y) ⊂ Ωi(y)
and 

⋂
i Ωi(y) = {y}. The critical directional local Lipschitz regularity of f at y, in direction e1 is

αl(y, e1) = sup
i∈N

α(Ωi(y)) = lim
i→∞

α(Ωi(y), e1) . (50)

As in Proposition 1 and Remark 1, we have the following characterization:

Proposition 6. If f is uniform Lipschitz on Id, then

αl(y, e1) = min
(

1, sup
i∈N

lim inf
|j|→∞

inf
Ej(Ωi(y))

log |Ck(f)|
log(2− max(j1,0))

)
, (51)

where Ej(Ωi(y)) is the set of all k ∈ Ñj such that the support of Φk is included in Ωi(y).

4. Examples

4.1. The multidimensional parameter fractional Wiener field in Rd

The fractional anisotropic Wiener field with the multidimensional parameter α = (α1, · · · , αd), with 
0 < αi < 2, is a Gaussian field {B(α)(t) : t ∈ R

d}, with continuous realizations, EB(α)(t) = 0, and the 
covariance kernel

EB(α)(t)B(α)(s) = Kα(t, s) , where Kα = Kα1 × · · · ×Kαd

and Kαi
, is the covariance kernel of one-dimensional fractional Brownian motion with parameter α, i.e.,

Kαi
(t, s) = 1

2(|t|αi + |s|αi − |t− s|αi) .

As for (33), for 0 < β = (β1, · · · , βd) < 1 and 0 < t = (t1, · · · , td) < 1, let

ωβ, 12
(t) = (

d∏
tβi

i ) (1 −
d∑

log(ti))1/2 . (52)

i=1 i=1
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Define

Lip(β, 1
2) = {f ∈ C(Id) : ∀(∅ �= A ⊂ D) ωA(f, t) = O(ωβ, 12

(t;A))} (53)

and

lip(β, 1
2) = {f ∈ Lip(β, 1

2) : ∀(∅ �= A ⊂ D) ωA(f, t) = o(ωβ, 12
(t;A))} (54)

where O(t(A)) and o(t(A)) refer to min(ti : i ∈ A) → 0.
We will first prove the following proposition.

Proposition 7.

1. We have Lip(β) ⊂ Lip(β, 12 ) and lip(β) ⊂ lip(β, 12 ).
2. If β′ < β then Lip(β) ⊂ lip(β′).
3. If β′ < β then Lip(β, 12 ) ⊂ Lip(β′).

Proof of Proposition 7.

1. The first point is a consequence of ωβ(t) ≤ ωβ, 12
(t).

2. Let f ∈ Lip(β) and β′ < β. We know from (37) that f ∈ Lip(β′). Let ∅ �= A ⊂ D. Since β′ < β then

ωA(f, t)
ωβ′(t;A) ≤ Cωβ−β′(t;A) = o(t(A)) .

Hence f ∈ lip(β).
3. Let f ∈ Lip(β, 12 ) and β′ < β. Let ∅ �= A ⊂ D. Since β′ < β and t log t = o(1) when t goes to 0 then

ωA(f, t)
ωβ′(t;A) ≤ Cωβ−β′(t;A)(1 −

∑
i∈A

log(ti))1/2 = o(t(A)) .

It follows that f ∈ Lip(β′). �
In [25], Kamont proved that, with probability 1, the restrictions B(α)

Id of realizations of B(α) to Id satisfy

B
(α)
Id ∈ Lip(α/2, 1

2) (55)

and

B
(α)
Id /∈ lip(α/2, 1

2) . (56)

We will prove the following result.

Proposition 8. With probability 1, the restrictions B(α)
Id satisfy

∀ i ∈ D α(Id, ei) = αi/2 (57)

and

∀y ∈ Id ∀ i ∈ D αl(y, ei) = αi/2 . (58)
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Proof of Proposition 8. Using the third point in Proposition 7, relation (55) implies that, with probability 
1, the restrictions B(α)

Id satisfy

B
(α)
Id ∈ Lip(β) ∀β < α/2 (59)

Using the second point in Proposition 7, relation (56) implies that, with probability 1, the restrictions B(α)
Id

satisfy

B
(α)
Id /∈ Lip(β) ∀β > α/2 . (60)

Thanks to the first point in Proposition 3, relation (59) yields the lower bound in (57). The optimality of 
this lower bound cannot be deduced from (60). Nevertheless, the coefficients of B(α)

Id in the tensor product 
Schauder basis were obtained in [25]; in fact

B
(α)
Id =

∑
j∈Md

∑
k∈Ñj

CkΦk , (61)

where (Ck)k≥0 is a Gaussian sequence, with ECk = 0, and the variance given by the formula

E|Ck|2 =
d∏

i=1
aki

(62)

where

a0 = 0, a1 = 1 and aki
= (2−αi − 2−2)2−jiαi for ki ∈ Ñji ji ≥ 0 . (63)

And clearly, the above optimality follows immediately from Theorem 1 (note that B(α)
Id is uniform Lipschitz 

on Id since B(α)
Id ∈ Cτ (Id) for all 2τ < min(α1, · · · , αd)).

The same arguments applied to the dilated and shifted field {ρ|α|B(α)(ρ2t − c) : t ∈ Id}, (ρ > 0, c ∈ R
d) 

give the same result as in (57) if Id is replaced by any arbitrary cube Q ⊂ R
d. This implies that for any 

subset Ω of Id with non-empty interior we have α(Ω, ei) = α(Id, ei) for all i ∈ D. Hence the local result 
(58). �
4.2. The Sierpinski cascade function

Without any loss of generality, we take d = 2. We will apply the above result to obtain both uniform and 
local critical directional Lipschitz regularity of the Sierpinski cascade function. It is a selfsimilar function 
adapted to a subdivision A used for the construction of Sierpinski carpet K (see [7,26,31] and references 
therein). In [7], we proved that the conjectures of Frisch and Parisi [17], or alternatively of Arneodo, Bacry 
and Muzy [4], called the multifractal formalism for functions, may fail for such selfsimilar functions. Our 
functions can modelize turbulence or cascade models; let s and t be two integers. We choose a finite subset 
A of {0, 1, . . . , s − 1} × {0, 1, . . . , t − 1} and for each pair ω = (i, j) ∈ A, we consider the affine map 
Sω : R2 → R

2, given by

Sω(x1, x2) =
(
x1

s
+ i

s
,
x2

t
+ j

t

)
.

We construct an anisotropic Sierpinski carpet K as follows: we divide the unit square R = I2 into a uniform 
grid of rectangles of height 1/t and width 1/s; each Sω maps the unit square into the rectangle
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Rω = [ i
s
,
i + 1
s

] × [j
t
,
j + 1
t

].

The Sierpinski carpet K will be the unique non-empty compact set (see [19]) such that

K =
⋃
ω∈A

Sω(K). (64)

We have

K = {x ∈ � : (Sω1 ◦ · · · ◦ Sωn
)−1(x) ∈

⋃
ω∈A

Rω ∀ (ω1, . . . , ωn) ∈ An}

=
∞⋂

n=1
(
⋃

ω∈An

Rω)

where

Rω = (Sω1 ◦ · · · ◦ Sωn
)(�) for ω = (ω1, . . . , ωn) .

Take g(x) = Λ(x1)Λ(x2) with Λ(t) = min(t, 1 − t) if t ∈ [0, 1] and 0 else. Clearly Λ(t) = 1
2Φ2(t).

We will call a the Sierpinski cascade function adapted to the subdivision A, a function F satisfying:

∀ x ∈ R F (x) =
∑
ω∈A

λωF (S−1
ω (x)) + g(x). (65)

Iterating (65), we obtain for any N ≥ 2:

F (x) = g(x) +
N−1∑
n=1

∑
(ω1,...,ωn)∈An

λω1 · · ·λωn
g
(
S−1
ωn

· · ·S−1
ω1

(x)
)

+
∑

(ω1,...,ωN )∈AN

λω1 · · ·λωN
F
(
S−1
ωN

· · ·S−1
ω1

(x)
)
.

(66)

Define

|λ|max = max
ω∈A

|λω| , |λ|min = min
ω∈A

|λω| and αmin = − log |λ|max

log max{s, t} .

The following result was obtained in [7].

Proposition 9. If 
∑
ω∈A

| λω |< st, then (65) has a unique solution in L1(R) given by the series

F (x) = g(x) +
∞∑

n=1

∑
(ω1,...,ωn)∈An

λω1 · · ·λωn
g
(
S−1
ωn

· · ·S−1
ω1

(x)
)
. (67)

If furthermore 
1

max{s, t} < |λ|max < 1, then F ∈ Cαmin(R) with 0 < αmin < 1.

We will prove the following result.
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Proposition 10. Let S and T be two positive integers. Assume that s = 2S and t = 2T . Assume that 
1

max{s, t} < |λ|max < 1. Then

α(R, e1) = − log |λ|max

log s and α(R, e2) = − log |λ|max

log t . (68)

• If s < t then

∀ e �= e1 α(R, e) = αmin = − log |λ|max

log t . (69)

• If s > t then

∀ e �= e2 α(R, e) = αmin = − log |λ|max

log s . (70)

• If s = t then

∀ e α(R, e) = αmin . (71)

For any open set Ω of R2 with non-empty intersection with the Sierpinski carpet K, we have α(Ω, e) =
α(R, e). This implies that the critical local directional Lipschitz regularity at any point y in K is constant 
α(R, e). But, if y /∈ K, then it equals 1.

Proof of Proposition 10. Clearly if ωl = (il, jl) then

g
(
S−1
ωn

· · ·S−1
ω1

(x)
)

= Λ(snx1 − sn−1i1 − · · · − sin−1 − in) Λ(tnx2 − tn−1j1 − · · · − tjn−1 − jn) .

Using Theorem 1, one gets immediately (68). Remark 6 yields (69) and (70). Result (71) is a consequence 
of Remark 6 and the fact that the maps Sω are similitudes.

The local result in Proposition 10 follows from the selfsimilarity for y ∈ K, and the fact that if y /∈ K

then F is a finite linear combination of translated dilated Λ function. �
5. Criteria of pointwise directional Lipschitz regularity

5.1. By decay conditions on two progressive difference in the given direction

It is known (see [18,20,21] and Remark 1) that, if a 1-parameter function f is uniformly Lipschitz regular 
on I, then its critical pointwise Lipschitz regularity can be characterized by estimates on the size of the 
Schauder coefficients;

Proposition 11. If a 1-parameter function f(x1) =
∑
j1∈M

∑
k1∈Ñj1

ck1(f)φk1(x1) is uniformly Lipschitz regular 

on I, then for all y1 ∈ I

αp(y1) = min
(

1, lim inf
j1→∞

inf
k1∈Ñj1

log(|ck1(f)|)
log(2−j1 + |n12−j1 − y1|)

)
. (72)
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Let now d ≥ 2, f ∈ C(Id) and y = (y1, . . . , yd) ∈ Id. Clearly,

f(x1, y2, . . . , yd) =
∑
j1∈M

∑
k1∈Ñj1

ck1(f(., y2, . . . , yd)) φk1(x1) , (73)

with

c0(f(., y2, . . . , yd)) = f(0, y2, . . . , yd) , (74)
c1(f(., y2, . . . , yd)) = f(1, y2, . . . , yd) − f(0, y2, . . . , yd) (75)

and for k1 = 2j1 + n1 ∈ Ñj1 with j1 ≥ 0

ck1(f(., y2, . . . , yd)) = f(2n1 − 1
2j1+1 , y2, . . . , yd) −

1
2(f(n1 − 1

2j1 , y2, . . . , yd) + f( n1

2j1 , y2, . . . , yd)) . (76)

Put

β(y, e1) = lim inf
j1→∞

inf
k1∈Ñj1

log |ck1(f(., y2, . . . , yd))|
log (2−j1 + |n12−j1 − y1|)

. (77)

The following result is a criterium of pointwise directional Lipschitz regularity by decay conditions on two 
progressive difference in the given direction.

Theorem 2. Let d ≥ 2, y ∈ Id and f ∈ C(Id). If f is uniformly Lipschitz regular on Id in direction e1 then 
the critical pointwise Lipschitz regularity of f at y ∈ Id in direction e1 is given by

αp(y, e1) = min (1, β(y, e1)) . (78)

Remark 8. The previous result remains valid if we replace the coefficients ck1(f(., y2, . . . , yd)) by those of 
the expansion of the function in a (smooth) wavelet basis (i.e., τ > 1).

5.2. By decay conditions for the coefficients of the expansion of f in a tensor product Schauder basis

We will now express critical pointwise Lipschitz regularity in terms of decay conditions for the coefficients 
Ck(f) (given in (44)) of f in a tensor product Schauder basis.

By comparing (73) to expansion (45), we get

ck1(f(., y2, . . . , yd)) =
∑

(j2,...,jd)∈Md−1

∑
(k2,...,kd)∈

∏d
i=2 Ñji

Ck(f)
d∏

i=2
φki

(yi) , (79)

where k = (k1, k2, . . . , kd).
Put

γ(y, e1) = lim inf
j1→∞

inf
k1∈Ñj1

log

⎛⎝∣∣∣∣∣∣
∑

(j2,...,jd)∈Md−1

∑
(k2,...,kd)∈

∏d
i=2 Ñji

Ck(f)
d∏

i=2
φki

(yi)

∣∣∣∣∣∣
⎞⎠

log (2−j1 + |n12−j1 − y1|)
. (80)

Clearly

β(y, e1) = γ(y, e1) .
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Theorem 3. Let d ≥ 2, y ∈ Id and f ∈ C(Id). If f is uniformly Lipschitz regular on Id in direction e1 then 
the critical pointwise Lipschitz regularity of f at y ∈ Id in direction e1 is given by

αp(y, e1) = min (1, γ(y, e1)) . (81)

Remark 9. The previous result remains valid if we replace the coefficients Ck(f) by those of the expansion of 
the function in the basis of hyperbolic tensor products of smooth wavelet functions [16]. Of course, Schauder 
terms φki

(yi) are replaced by wavelet terms ψki
(yi).

If ki ∈ Ñji , with ki ≥ 2 then φki
has support [(ni − 1)2−ji , ni2−ji ]. It follows that for ji ∈ M with 

ji ≥ 0 and y ∈ Id, there exists a unique value of ki = ki,y for which yi ∈ [(ni − 1)2−ji , ni2−ji). We keep the 
notation ki = ki,y even if ji ∈ {−2, −1}. Put

k(y) = (k1, . . . , kd) ∈ Ñj .

It follows that

γ(y, e1) = lim inf
j1→∞

log

⎛⎝∣∣∣∣∣∣
∑

(j2,...,jd)∈Md−1

Ck(y)(f)
d∏

i=2
φki

(yi)

∣∣∣∣∣∣
⎞⎠

log (2−j1 + |n12−j1 − y1|)
. (82)

Corollary 1. Let d ≥ 2, y ∈ Id and f ∈ C(Id). If f is uniformly Lipschitz regular on Id in direction e1 then 
the critical pointwise Lipschitz regularity of f at y ∈ Id in direction e1 is given by

αp(y, e1) = min (1, γ(y, e1)) . (83)

Remark 10. If hyperbolic tensor products of Schauder functions are replaced by hyperbolic tensor products 
of smooth compactly supported wavelet functions, then the previous corollary remains valid if in (80) we 
keep only values of ki = ki,y for which yi is inside the support of the wavelet functions.

Remark 11. Summation over (j2, . . . , jd) ∈ Md−1 in (82) makes the use of Corollary 1 a little bit difficult. 
For this reason, we aim to avoid that summation. We will see that the positivity of Schauder functions φki

is important. Of course this is not the case for general (smooth compactly supported) wavelet functions.

Put

ρ(y, e1) = lim inf
j1→∞

inf
(j2,...,jd)∈Md−1

log
(
|Ck(y)(f)|

d∏
i=2

φki
(yi)

)
log (2−j1 + |n12−j1 − y1|)

. (84)

Theorem 4. Let f be uniformly Lipschitz regular on Id. Let y ∈ Id.
If

∀ k Ck(y)(f) ≥ 0 (85)

then

αp(y, e1) = min (1, ρ(y, e1)) . (86)
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Proof of Theorem 4. Thanks to Corollary 1, it suffices to prove equality between ρ(y, e1) and β(y, e1).
By assumption (85)

Ck(y)(f)
d∏

i=2
φki

(yi) ≤
∑

(j2,...,jd)∈Md−1

Ck(y)(f)
d∏

i=2
φki

(yi) .

Since functions φki
are positive then it follows that

ρ(y, e1) ≥ β(y, e1) . (87)

On the other hand, since f is uniformly Lipschitz regular on Id, then using the second result in Proposition 3, 
there exists δ > 0 such that

∀ 0 < θ = (θ1, · · · , θd) with |θ| ≤ 1 f ∈ Lip(θ1δ, · · · , θdδ) . (88)

Therefore from Proposition 5, there exists C > 0 such that

∀ k |Ck(f)| ≤ C

d∏
i=1

2−jiθiδ . (89)

Let 0 < σ < 1. We will again use the positivity of functions φki
.

Write

Ck(y)(f)
d∏

i=2
φki

(yi) =
(
Ck(y)(f)

d∏
i=2

φki
(yi)

)σ (
Ck(y)(f)

d∏
i=2

φki
(yi)

)1−σ

≤
(
Ck(y)(f)

)σ (
Ck(y)(f)

d∏
i=2

φki
(yi)

)1−σ

.

By (89)

Ck(y)(f)
d∏

i=2
φki

(yi) ≤ C

(
d∏

i=1
2−jiθiδσ

) (
Ck(y)(f)

d∏
i=2

φki
(yi)

)1−σ

.

Using the convergence of series 
∑
ji

2−jiθiδσ, we deduce that

∑
(j2,...,jd)∈Md−1

Ck(y)(f)
d∏

i=2
φki

(yi) ≤ C

(
Ck(y)(f)

d∏
i=2

φki
(yi)

)1−σ

.

Consequently

β(y, e1) ≥ (1 − σ)ρ(y, e1) . (90)

Since (90) holds for any σ ∈ (0, 1), we conclude that

β(y, e1) ≥ ρ(y, e1) . � (91)
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Corollary 2. Let f be uniformly Lipschitz regular on Id. We put

C+
K(f) = max {CK(f), 0} and C−

K(f) = −min {CK(f), 0} . (92)

Let y ∈ Id. We set

ρ+(y, e1) = lim inf
j1→∞

inf
(j2,...,jd)∈Md−1

log
(
C+

k(y)(f)
d∏

i=2
φki

(yi)
)

log (2−j1 + |n12−j1 − y1|)
(93)

and

ρ−(y, e1) = lim inf
j1→∞

inf
(j2,...,jd)∈Md−1

log
(
C−

k(y)(f)
d∏

i=2
φki

(yi)
)

log (2−j1 + |n12−j1 − y1|)
. (94)

1. If min (1, ρ+(y, e1), ρ−(y, e1)) = 1 then αp(y, e1) = 1.
2. If min (1, ρ+(y, e1), ρ−(y, e1)) < 1 then

(a) If ρ+(y, e1) �= ρ−(y, e1) then αp(y, e1) = min (ρ+(y, e1), ρ−(y, e1)).
(b) If ρ+(y, e1) = ρ−(y, e1) then αp(y, e1) ≥ ρ+(y, e1).

Proof of Corollary 2. It suffices to split f as

f =
∑

j∈Md

∑
k∈Ñj

C+
k (f)Φk −

∑
j∈Md

∑
k∈Ñj

C−
k (f)Φk (95)

and apply Theorem 4 for both left and right hand term functions in (95). �
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