Concentration Based on

Degree of Saturation

888 888 Ø 00 00 unsaturated solution 00 ٥0 more solute Øø dissolves 00 Øð supersaturated solution saturated added crystals solution grow no more solute dissolves

Saturation Degree

Unsaturated Solution

- less than the maximum amount of solute for a given temperature is dissolved in the solvent.
- There is more available space for solute to dissolve in the solvent
- No solid remains in flask.

<u>Saturated solution</u>

- Is one where the concentration is at a maximum no more solute is able to dissolve (you begin to see some crystals) at that temperature.
- A saturated solution represents an *equilibrium*.

<u>Supersaturated</u>

- Solvent holds more solute than is normally possible at that temperature.
- You can see a big amount of solute at the bottom of the flask

Percent Saturation

 Proteins are often purified by differential precipitation with salts ,such as ammonium sulfate. The salt conc. used to "salt out" proteins is always expressed in the terms of percent saturation

• It is the concentration of salt in a solution as a percent of the maximum concentration possible at a given temperature.

- V is the volume of the saturated salt needed.
- S1 is the initial low saturation (used as a decimal).
- **S2** is the final high saturation (used as a decimal).
- This is to the volume to be added to 100 ml at saturation S1.

Example

 How many ml of a saturated ammonium sulfate solution must be added to 40 ml of a 20% saturated solution to make the final solution 70% saturated?

 <u>Given values:</u> S1= 20% = 0.2, S2= 70% =0.7

V(ml) = 100(S2-S1) = 100(0.70 - 0.20) = 166.6 ml1-S1 1-0.70 (according to the formula, this is to the volume to be added to 100 ml at saturation S1)

 $\begin{array}{ccc} 100 \text{ ml} & \rightarrow & 166.6 \text{ ml} \\ 40 \text{ m} & \rightarrow & ? \end{array}$

The volume needed = 40×166.6 = 66.6 ml 100

Units Conversion

Symbol	10 ⁿ
d	10-1
c	10-2
m	10 ⁻³
μ	10 ⁻⁶
n	10 ⁻⁹
р	10 ⁻¹²
f	10-15
	Symbol d c m f f

Expression	Symbol	Definition		
Based on volume:				
Molarity	Μ	= <u>No. of moles of solute</u> volume of solution (L)		
Normality	Ν	 no. of equivalents volume of solution (L) nxM (n= number of OH or H) 		
Osmolarity	0	= nx M (n= number of dissociable ions)		
Weight/Vol %	wt/V%	= <u>Wt in gram of solute</u> 100ml of solution		
Milligram %	mg%	= <u>Wt in mg of solute</u> 100ml of solution		
Vol/Vol%	V/V%	= <u>volume in ml of a solute</u> 100ml of solution		
Based on weight:				
Weight/We ight%	w/w%	= <u>Wt in gram of solute</u> 100g of solution		
Molality	m	= <u>No. of moles of solute</u> 1000g of solvent		
Mole fraction	MF	$MF_2 = n_2 / (n_1 + n_2 + n_3)$		
Based on saturation:				
percent saturation		V (ml) = $\frac{100 (S2-S1)}{1-S2}$		

Preparations of Solutions

Preparation of stock solutions for acids

- The concentrations of many acids are given in the terms of w/w%
- In order to prepare an acid stock solution we need to know its density (p) or specific gravity, and calculate the needed volume by :

Wt(g) = $V(ml) \times \rho \times w/w\%$ (as decimal)

1- Solid material

2-Liquid

Preparation of Solutions from Solid Material

After calculating the weight required to prepare any given solution, you do the following:

Preparation of Solutions from Liquid

 Solutions are often prepared by diluting a more concentrated stock solution.

Dilutions

 Dilution- the procedure for preparing a less concentrated solution from a more concentrated one.

 Serial Dilution- the process of diluting a solution by removing part of it, placing this in a new flask and adding water to a known volume in the new flask.

Dilutions

•When a solution is diluted, solvent is added to lower its concentration.

•The amount of solute remains constant before and after the dilution:

moles BEFORE = moles AFTER

Dilutions

To calculate the concentration of diluted solutions:

$$\boldsymbol{C}_1 \boldsymbol{V}_1 = \boldsymbol{C}_2 \boldsymbol{V}_2$$

- C_1 = concentration of stock
- $V_1 =$ Volume of stock
- C_{2} = concentration of diluted
- $V_{2=}$ Volume of diluted

Example (1)

A bottle of 0.5M standard sucrose stock solution is in the lab. How can you use the stock solution to prepare 250 mL of a 0.348M sucrose solution?

 $C_1 X V_1 = C_2 X V_2$

0.5 X V₁= 0.348 X 250

0.348 X 250 / 0.5 = 174 ml

i.e: 174 ml of the stock solution will be diluted with water to reach the volume of 250 ml

Given values:	
C1= 0.5 M	
V1=?	
C2= 0.348M	
V2= 250 ml	

Example (2)

• Describe how you would prepare 800mL of a 2.0M H_2SO_4 solution, starting with a 6.0M stock solution of H_2SO_4 .

 $C_1 V_1 = C_2 V_2$ $6.0 \times V_1 = 2.0M \times 800$ $6.0 \times V_1 = 1600$ $V_1 = 1600/6.0$ $V_1 = 266.6 \, ml$ Given values: C1= 6 M V1=? C2= 2 M V2= 800 ml

i.e:266.6 ml of the 6.0M H₂SO₄ solution should be diluted with water to give a final volume of 800mL.

Serial Dilution

- A *serial dilution* is any dilution where the concentration decreases by the same quantity in each successive step.
- Dilution starts first with stock solution and each diluted solution produced is used to prepare the next.
- To calculate the concentration: $C_1 V_1 = C_2 V_2$

Linear Dilution

- Same stock solution is used to produce samples of different concentrations.
- To calculate the concentration: $C_1 V_1 = C_2 V_2$

Dilution Factor

- Dilution factor refers to the ratio of the volume of the initial (concentrated) solution to the volume of the final (dilute) solution
- To make a dilute solution without calculating concentrations use a dilution factor.
- Divide the final volume by the initial volume.

Df=Vf / Vi

- Vi = initial volume (aliquot volume)
- Vf = final volume (aliquot volume + diluent volume)
- DF of 100 = ratio 1:100

Example (1):

- What is the dilution factor if you add 0.1 ml aliquot of a specimen to 9.9 ml of diluent?
 - The final volume is equal to the aliquot volume + the diluent volume:
 Vf = 0.1 mL + 9.9 mL = 10 mL
 - The dilution factor is equal to the final volume divided by the aliquot volume:

Df =10 mL/0.1 mL = 1:100 dilution.

Example(2):

What is the Df when 0.2 ml is added to 3.8 ml diluent?

- Dilution factor = final volume/aliquot volume
- Final volume = 0.2 +3.8 = 4.0 ml
- Aliquot volume = 0.2 ml
- 4.0/0.2 = 1:20 dilution.

Example (3):

- From the previous example if you had 4 tubes what would be the final dilution of tube 4?
 - Since each dilution is 1:20 and we want to know the dilution of the
 FORTH tube so in this case it would be 1:20 multiplied FOUR times.
 - Df = 1:20 x 1:20 x 1:20 x1:20
 - − Df = 1:160,000

Examples

Importance of Dilution

- Example: A blood glucose of 800 mg/dl was obtained. According to the manufacturer the highest glucose result which can be obtained on this particular instrument is 500 mg/dl.
 - The sample must be diluted.
 - The serum was diluted 1:10 and retested.
 - The result is 80 mg/dL.
 - THIS IS NOT THE REPORTALBE RESULT!
 - You must multiply by the dilution factor of 10.
 - $-10 \times 80 = 800 \text{ mg/dl}.$